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1 . Introduction

There is a need for a large signal theory of traveling

wave tube amplifiers (TWTA) because they are usually

operated close to saturation and the linear theory

developed by Pierce [1] is not adequate to describe this

type of operation. There have been attempts by Rowe [2] and

others to model the non-linear large signal operation of a

TWTA but they suffer from the drawback that the electron

stream is divided into a finite number of discrete charge

groups and the motion of each charge group is considered

independent of the other groups [ 3 ] . There is a new non-

linear theory developed by N. Kalyanasundaram [3] which

overcomes this drawback.

The intent of this work was to independently verify N.

Kalyanasundaram' s large signal theory of an O-type

traveling wave tube amplifier by writing a FORTRAN computer

program based on Kalyanasundaram' s equations and comparing

the results of the computer simulations to

Kalyanasundaram' s results. The results were then to be

extended and improved by using more terms in

Kalyanasundaram' s infinite series solution and by reducing

the step size in the numerical integrations.

A FORTRAN computer program was written which

implemented Kalyanasundaram' s equations. The results

produced by this program were compared to Kalyanasundaram'

s

results and were not found to be in agreement. The



agreement of the results was improved by changing the sign

of the phase factor used by Kalyanasundaram; however, there

were still some differences in the results. There was also

a possible problem with the convergence test used by

Kalyanasundaram and the FORTRAN program in that the test

did not guarantee that the solution converged, but only

that the solution did not change by more than a specified

amount from one iteration to the next.

Included in this report is J. R. Pierce's linear small

signal theory of TWTA's. Pierce's theory is included so

that the results of the small signal theory,

Kalyanasundaram' s large signal theory, and the FORTRAN

program can be compared for the small signal case. This is

done so that Kalyanasundaram' s theory can be verified for

the small signal case. For small signals both theories

should give similar results. Pierce's small signal theory,

and Kalyanasundaram ' s small signal results are similar for

the gain of a TWTA.

This report first develops Pierce's linear theory of

TWTA's. Next, Kalyanasundaram' s TWTA equations are given

and the results are compared to Pierce ' s results for a

specific small signal case. Last, this report describes the

development of a FORTRAN computer program which implements

Kalyanasundaram' s equations and compares Kalyanasundaram'

s

results and the FORTRAN program ' s results . The FORTRAN

program results and Kalyanasundaram ' s results are similar



qualitatively; however, they are not identical.

Future work towards reconciling the differences

between the FORTRAN program's results and N.

Kalyanasundaram' s results should include a complete

rederivation of Kalyanasundaram' s large signal theory to

verify the equations in his paper. Then with any

discrepancies uncovered the FORTRAN program should be

modified accordingly. Only then should extensions to

Kalyanasundaram ' s examples be attempted.



2.0 Pierce's Linear Theory of a Traveling Wave Tiibe

Amplifier.

This section will describe Pierce ' s linear small

signal theory of a traveling wave tube amplifier (TWTA).

Fig. 2.1 below shows a schematic of a typical traveling

wave tube. The parts of this which will be discussed are

the electron beam and the slow wave structure. A slow wave

structure is used to slow the speed of the traveling wave

to be slightly slower than the speed of the electron

stream. The electron stream has to travel slightly faster

than the wave so that energy can be transferred from the

electron stream to the RF wave which causes the power

amplification of the RF signal which is desired. A helix is

used as the slow wave structure as shown in Fig. 2.2. A

helix is basically a single wire wound like a corkscrew

which slows the forward travel of the voltage wave by

effectively increasing the distance the voltage wave must

travel per unit of travel along the axis of the tube.

To derive equations which describe the portion of the

tube shown in Fig. 2.2, the helix is simulated by a

transmission line, which extends infinitely in the z

direction and has distributed parameters L and C per unit

length, as shown in Fig. 2.3. The helix is modeled by the

transmission line because the mathematics is well known for

transmission lines and this results in a problem which is



Figure 2.1. Schematic of a traveling wave tube amplifier,
(from Pierce page 7 [1])

if ELECTROMAGNETIC WAVE TRAVELS
FROM LEFT TO RIGHT ALONG HELIX » ,

Figure 2.2. Portion of the traveling wave tube
amplifier needed for the analysis,
(from Pierce page 7 [1])
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Figure 2.3. The transmission line equivalent circuit, which
extends infinitely in the z direction, of the
helix used by Pierce, which has parameters L
and C per unit length and carries a voltage Vt
and current It

. The coupling of the electron_
beam is by a distributed source Jt = -iit/iz.

easier to solve rather than using field theory to find the

solution.

Pierce first considers the disturbance produced in the

circuit by a bunched electron stream. Refer to Fig. 2.3 for

this development. The main simplifying assumption which

Pierce makes is that all electrons in the electron flow are

acted on by the same a-c field [4]. This is a good

assumption when the diameter of the electron beam is small.

It is also assumed that the electrons are displaced by the

a-c field in the axial direction only because TWT's use

strong magnetic focusing fields to limit radial movement of

the electrons. Pierce also assumes all a-c and circuit

quantities, in complex form, vary with time and distance as



expljwt - rz) to get a self-consistent solution. Also, non-

relativistic equations of motion are used throughout the

development.

Applying Kirchhoff's current and voltage laws and

transmission line theory [5] to the circuit in Fig. 2.3

results in

nt/n = -c}vt/at - y.t/js (2.D

and ^Vt/^z = -L£It/Jt (2.2)

where Vt = Re{V-exp(jwt - rz)} (2.3)

is the transmission line voltage, V is a complex number

which has the magnitude and phase of Vt ,

it
= -I + Re{i-exp(jwt - rz)} (2.4)

is the electron beam convection current, i is a complex

number which has the magnitude and phase of the a-c part of

it , and I
Q

is the magnitude of average electron convection

current. Note that in Eq.(2.4) -Iq is used because the

electrons are traveling in the positive z direction.

I t
= Re{I-exp( jwt - rz)} (2.5)

is the transmission line current, and I is a complex number

which has the magnitude and phase of It .

Pierce is interested in cases in which all a-c

quantities, in complex form, vary with distance as exp(-rz)



because he is looking for a wave type solution for the

traveling wave tube. This allows replacement of

differentiation with respect to z by multiplication by -r.

Differentiation with respect to t is replaced with

multiplication by jw. The impressed current per unit length

is given by Pierce's equation (2.3) [6] as

Jt = -Ut/38 (2.6)

so , Eq . ( 2 . 1 ) and Eq . ( 2 . 2 ) become

-n = - jBV + ri (2.7)

-rv = -jXI (2.8)

where B = Cw (2.9)

is the shunt suseptance per unit length, and

X = Lw (2.10)

is the series reactance per unit length.

BX is chosen so that the phase velocity of the circuit

in Fig. 2.3 is the same as that for a particular traveling

wave tube helix and X/B is chosen so that -^Vt/Jz is equal

to the axial electric field component for that helix. This

establishes the definition of the transmission line model

for the helix.

Solving for I in Eq.(2.7) and Eq.(2.8) and setting the

results equal and rearranging results in



v(r 2 + bx) = -jrxi (2.H)

If there were no impressed current, the right side of

Eq.(2.11) would be zero and Eq.(2.11) would be the normal

transmission line equation. B and X can be replaced by the

propagation constant and characteristic impedance of the

line with beam absent as follows

.

rx
= j(BX) 1/2 (2.12)

where I\ is the propagation constant for the line in the

absence of the electron beam. Thus, the forward wave on the

line, with the electron beam absent, varies with distance

as Re{exp(-r1z)} and the backward wave as Re{exp(+r
1
z) }

.

These are sometimes called the cold waves.

The characteristic impedance, K, of the line itself is

from elementary transmission line theory [7]

K = (X/B) 1/2 (2.13)

Eq.(2.12) and Eq.(2.13) can be used to replace X and B by

T
1
and K. From Eq.(2.13) and Eq.(2.12)

X = -jKr
x

(2.14)

Substituting Eq.(2.13) and Eq.(2.14) into Eq.(2.11) results

in

-IT-iKi
V = — - -- (2.15)

<r2 - r\ 2
)



which is Pierce's equation (2.10) [6]. Thus the a-c part of

the convection current it is the source of the line voltage

Now that the transmission line voltage Vt has been

found in terms of the electron convection current it the

next part of the problem is to find the disturbance

produced on the electron beam by the fields of the

transmission line.

The force exerted on an electron by the electric field

is

F = -eE (2.16)

where e = 1.602xl0~ 19 coulomb, is the fundamental charge.

From Newton ' s second law of motion the force exerted on the

electron is

d(v + vt )

F = m_ (2.17)
dt

where me = 9.1095x10 -"-kg is the mass of an electron,

v = Re{v-exp(jwt -rz) } is the a-c component of the

electron velocity, and v is the average velocity of the

electrons. From the transmission line assumption above the

electric field component parallel to the beam is

3
vt

(2.18)
d Z

10



Equating Eq.(2.16) and Eq.(2.17) and substituting in

Eq.(2.18) gives

d(v + vt ) Wt— - n {-- (2.19)
dt ) 2

where n = 1.759x10 coulomb/kg is the charge to mass

ratio of electrons.

The derivative in Eg. (2.19) represents the change of

velocity following a single electron and obviously there is

no change in the average velocity vQ . The change in the a-c

component of the velocity is expressed by taking the total

derivative of vt since velocity is a function of time and

distance.

dvt avt a
vt dz a

vt
= + - = n — (2.20)

dt d t d z dt d z

Eg. (2.20) can be rewritten as shown below using

dz/dt = vQ + vt

^
Vt 5

vt
, ,

^
Vt

+ (Vq + vt ) = n — (2.21)
dt d z 3 z

Pierce assumes that the a-c velocity vt is small

compared to vQ so vt is neglected in the parentheses in

Eg. (2.21) to produce a linear differential eguation. Since

Pierce assumes that the a-c parts of all guantities, in

complex form, vary as exp(jwt - rz) he replaces

11



differentiation with respect to time with multiplication by

jw and differentiation with respect to distance with

multiplication by -r. Thus Eq.(2.21) becomes

(jw - vor)v = -nrv (2.22)

Solving Eq.(2.22) for velocity so that velocity can

be eliminated yields

-nrv
(2.23)

V^e ' r >

where e = w/vQ (2.24)

The next equation to work with is the equation of

conservation of charge, which is Pierce's

equation (2.17) [6].

& = - «£
d z dt

where pt = Re{p-exp(jwt - Tz)} is the a-c component of

the linear charge density and p is a complex number which

has the magnitude and phase of pt . Replacing

differentiation with respect to time with multiplication by

jw and differentiation with respect to distance with

multiplication by -r and solving for the a-c charge

density, p, results in

12



-jri
(2.26)

w

The total convection current is the total velocity

times the total linear charge density :

-I + it
= (vQ + vt )(pQ + pt ) (2.27)

By neglecting products of a-c quantities in comparison

with products of an a-c quantity and a d-c quantity and

recognizing that -Iq = vQpQ results in

i = pQv + vQp (2.28)

Substituting p from Eg. (2.26) into Eq.(2.28) along

with w from Eq.(2.24) and solving for i gives

iPePov
i = (2.29)

<jpe - D

Substituting Eq.(2.23) which gives the velocity in

terms of the voltage into Eq.(2.29) and using pQ = -Iq/vq

and using vQ = (2nVQ> 1 ' 2 the convection current given in

terms of the voltage is seen to be

JloPe™
i = : (2.30)

2V (j|3e
- D 2

which is Pierce's equation (2.22) [6].

In Eg. (2.30) the convection current is given in terms

of the voltage and in Eq.(2.15) the voltage is given in

13



terms of the convection current. Any value of r which

satisfies both equations provides a self-consistent

solution which is called a natural mode of propagation

along the circuit and the electron beam. By combining

Eq.(2.30) and Eq.(2.15) and eliminating the convection

current and the voltage results in Pierce's

equation (2.23) [6]

jKi per
2r 1

! = s—2-2 i (2.31)
2v (r1

2 - r2 )(jpe - v) z

which is valid for any electron velocity given by pe and

any wave velocity and attenuation given by the circuit

propagation constant T^_ [ 8 ]

.

Now Pierce considers a special case where he assumes

that the electron speed is made equal to the speed of the

wave in the absence of electrons. This case is considered

because it is of practical interest since the speed of the

wave and the electron stream need to be approximately equal

to achieve maximum power gain. This case is also considered

because it has an exact solution. So, Pierce has

-Vx = -jBe (2.32)

which is Pierce's equation (2.24) [6].

Since Pierce is looking for a wave with about the same

speed as the electrons, he assumes that the propagation

constant differs from pe by a small amount e , giving his

14



equation (2.25) [6].

-r = -JPe + e (2.33)

Substituting Eq.(2.32) and Eq.(2.33) into Eq. (2.31)

gives

-KI 3
2 (-p 2 - 2JPee + e 2 )

I = S-S S A (2.34)
2V

Q (2jpee
- e*)[e*)

which is Pierce's equation (2.26) [6].

For typical traveling wave tubes, e is much smaller

than Pe so in the numerator Pierce neglects terms involving

Pee and e 2 compared with Pe
2 and in the denominator Pierce

neglects the term e 2 compared with the term Pe e. This

results in

i i
KI

e 3 = -JPe
3 --- (2.35)
4V

For simplification Pierce defines the terms C and 6

with his equation (2.28) and equation (2.29) [6].

KI
Q
/(4V ) = C 3 (2.36)

e = PeC6 (2.37)

Substituting Eq.(2.36) and Eq.(2.37) into Eq.(2.35)

results in

6 = (-j) 1/3 (2.38)

15



The roots of Eg. (2.38) are

5X
= (3/4) 1/2 - j/2 (2.39)

6 2
= - (3/4) 1/2 - j/2 (2.40)

6, = j (2.41)

The three roots represent the three forward waves.

This is because the waves propagate down the line as

Re[exp(-rz)] = Re[exp(Re{6}C|3ez)-exp(-jpe (l - Im{6}C)z) ]

(2.42)

and |Im{6}C| < 1 (2.43)

Eg. (2.43) is true because for typical traveling wave

tubes [9] C will be approximately 0.02.

From Euler's theorem and the definition of Eg. (2.3) it

is known that if the exponential has a negative imaginary

argument the wave is forward traveling and, if the argument

is positive the the wave is backward traveling. For a

forward traveling wave if the real argument of the

exponential is positive it will be an increasing wave, if

the argument is negative it will be a decreasing wave. For

a backward traveling wave if the real argument of the

exponential is positive it will be a decreasing wave, if

the argument is negative it will be an increasing wave. The

wave corresponding to 6-^ is an increasing wave which

travels a little more slowly than the electrons, the wave

16



corresponding to 6
2

is a decreasing wave which travels a

little more slowly than the electrons, and the wave

corresponding to 63 is unattenuated and travels faster than

the electrons. Eq.(2.31) was of fourth order so it is seen

that a wave is missing. The missing root was eliminated by

the approximations which are only valid for forward waves.

Pierce shows that the other wave is a backward wave which

means that it propagates in a direction opposite to

electron velocity, and its propagation constant is given by

Pierce's equation (2.32) [6] as

-r = jpe (l
- C 3

/4) (2.44)

Since the transmission line voltage is

Vt = Re{V-exp(jwt - T2)} (2.45)

the rate at which a voltage wave will increase or decrease

is

G = |exp(-rz)

I

(2.46)

which in dB is

GdB = 20'Re{-r}-Z-log10e (2.47)

using

Re{-D = Re {6}|3eC (2.48)

the gain in dB becomes

17



GdB = 20peC-Re {6}-z-log10e (2.49)

Converting the gain formula from distance units z to number

of wavelengths N requires the use of

Pe
= w/vQ (2.50)

wavelength = z/N (2.51)

and

which yields

(2.52)

&e = 2txN/z (2.53)

Substituting Eq.(2.53) into Eq.(2.49) yields gain in dB

in terms of number of wavelengths, N, as

GdB = 40TxNC-Re{6}-log10e (2.54)

For the forward increasing wave

Re{6} = (3/4) 1/2 (2.55)

which yields

GdB = 40tiNC- (3/4) 1/2 -log10e = B-ON (2.56)

where B = 40n( 3/4) 1/,2 log10e = 47.3, N is the number of

wavelengths and C is as defined in Eq.(2.36). The above

value for GdB is the approximate gain for the tube because



the contribution of the other three waves is negligible.

Now the power flow in the transmission line will be

related to the electric field of the helix. From

transmission line theory [10] the power flow in the circuit

without the electron beam is given by

P = |V| 2 /(2K) (2.57)

where K is the characteristic impedance of the line.

Eq.(2.57) relates the power flow in the transmission line

to the electric field E of the helix because E = |rv|. A

quantity which Pierce uses as a circuit parameter to

connect the characteristic impedance, K, of the

transmission line to calculations for the electric field of

the helix is

E2/(0 2P) = 2K (2.58)

which is Pierce's equation (2.42) [6]. Using Eq.(2.36) and

Eq.(2.58) the unitless gain parameter, C, is related to the

electric field and the power in the transmission line by

C 3 = (2K)(I /(8V )) = (E2 /P
2P)(I /(8V )) (2.59)

where E is the magnitude of the electric field, and P is

the RF power in the circuit.

From the analysis of the fields of a sheath helix

given in Pierce's chapter 3 [11] and appendix 2 [12] Pierce

obtains for the field at the electron beam radius

19



(E2 /P
2P) 1/3 = (3/P )

1/3 (T/3) 4/3F(Tb)[I 2 (xa) -I^fxa)] 173

(2.60)

where a is the electron beam radius,

P = w/vn

3 = w/c

/xb I,

and F(xb) =
i240 Kr

*1 Xo Ko Kl
4

I l x
K
X

KQ Tb

(2.61)

(2.62)

(2.63)

with the In 's and Kn 's being modified Bessel functions of

argument xb, and order n, b the radius of the helix,

x = w(vr
-2 _ --2,1/2 (2.64)

c the speed of light in vacuum, and vp the phase velocity

of the increasing wave.

For a helix the phase velocity [13] of the increasing

wave is given by

v
p

= c-sin(e) (2.65)

with 8 being the pitch angle of the helix. Substituting

Eg. (2.65) into Eq.(2.60) and using the fact that = w/v

and O = w/vQ results in

E2
/(P

2P) = (1 - sin28) 2F 3 (xb)[I 2 (xa) - I 1
2 (xa) ]/sin(9)

(2.66)

So that comparisons can be made between Pierce's

20



theory and Kalyanasundaram ' s theory, conversion from

wavelengths in Pierce's gain formula to Kalyanasundaram '

s

normalized unit of length is required. Kalyanasundaram

defines normalized length [ 3 ] as

wz
z = — (2.67)

where z is the axial distance coordinate in meters, w is the

frequency of the RF signal in rad/sec, and vQ is the

initial electron velocity in meters/sec.

Eq.(2.68) relates z to N and Eq.(2.69) relates

wavelength to the phase velocity of the increasing wave and

the RF frequency of the signal.

N = 1/ (wavelength of RF signal) (2.68)

wavelength = 2TWp/w (2.69)

Substituting Eq.(2.68) and Eq.(2.69) into Eq.(2.67) and

assuming that v is approximately equal to vQ gives

N = z/(2n) (2.70)

Substituting Eg. (2.70) into Eq.(2.56) gives the gain

of the traveling wave tube in terms of the normalized

distance coordinate z.

GdB
= 7 -528-C-z (2.71)

where C is defined in Eq.(2.59) through Eq.(2.64).

21



Eq.(2.71) can be used to compare Kalyanasundaram ' s results

to Pierce's.

Table 2.1 shows the values which were used by

Kalyanasundaram [14] in his numerical solution of the

traveling wave tube.

Table 2.1. Values used in Kalyanasundaram' s numerical
solution of a TWTA.

Accelerating voltage, Vg = 5.6 kv

Beam current, Ig = 0.06 A

Helix pitch , e = 0.1349 radians

Normalized beam radius, a == a/b = 0.44

For the above case and assuming that the phase

velocity of the wave and the electron velocity are equal,

the theoretical small signal gain of a traveling wave tube

is

JdB 0.258z dB (2.72)

Removing the assumption that the cold wave phase

velocity and the electron velocity are equal and also

removing the narrow beam assumption the gain G^g decreases

because the value of B will be less than 47.3. The quantity

B decreases because not as much energy will be transferred

from the electron stream to the increasing voltage wave.

Space charge effects which are due to the capacitive

22



impedance and the diameter of the beam will also reduce the

value of B. The new value of B determined from Pierce's

Fig. A6.4 [15] and Fig. 8.11 [16] for the case of a solid

electron beam for a TWT with the parameters listed in Table

2.1 is

B = 32 (2.73)

This results in

GdB = 0.18a dB (2.74)

From the above development a number for the small

signal gain of a traveling wave tube which has parameters

as listed in Table 2.1 was obtained. This value of G^g =

0.18z dB will be compared to N. Kalyanasundaram's results

for the gain of a TWTA for small signals given in Section

3.0.

23



3.0 Kalyanasundaram's Large Signal Analysis of A Traveling
Wave Tube Amplifier.

This section contains a description of

Kalyanasundaram's large signal theory of a traveling wave

tube amplifier. Included are his equations which he

programmed. Some of the equations may appear to be

ambiguous; however, there will be no attempt to interpret

his equations in this section. Section 4.0 will interpret

the equations and describe how they were programmed on a

VAX 750 at Kansas State University.

The purpose of Kalyanasundaram ' s work was to

mathematically model a traveling wave tube amplifier

without resorting to using the transmission line analogy as

Pierce did. Kalyanasundaram did this by using the Eulerian

formulation for Maxwell's field equations and the

Lagrangian formulation for the electron ballistic equation.

Kalyanasundaram then substituted the expression for the

field into the electron ballistic equation. This resulted

in a double Fourier series expansion over time and space to

obtain the axial electric field of the tube.

With this approach Kalyanasundaram found a steady

state solution for a single frequency RF input signal. The

assumptions listed below were used by Kalyanasundaram to

achieve the solution.

1) A sheath-helix model is used for the slow wave

circuit [3].

24



2) Operation of the amplifier is axially

symmetric [3].

3

)

The electron beam is axially confined and partially

fills the tube [ 3 ]

.

4) Nonrelativistic operation is assumed, so that the

RF magnetic force terms can be dropped from the ballistic

equation [ 3 ]

.

5) The effect of the transverse electric field

components on the electron motion is negligible [ 3 ]

.

6

)

There is no initial transverse motion of the

electrons [3].

7) The velocity, vQ , and the charge density, pQ , of

the entering electron stream are constant. The DC electron

velocity is assumed to be close to the cold wave phase

velocity, v_, of the slow wave circuit at the input signal

frequency, to meet the condition of approximate synchronism

between the electron beam and the traveling electromagnetic

wave [ 3 ]

.

Table 3 . 1 below lists the dimensional and

nondimensionalised variables used by Kalyanasundaram in his

development.
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Table 3 . 1 Defining relations for the TWT variables
used by Kalyanasundaram.

Dimensional variables Nondimensionalised
variables

vQ : the initial electron velocity

w : angular frequency of the RF signal

z : axial coordinate z = wz/v

f : radial coordinate r = f/B

t : time t = wt

tQ : electron entrance time t_ = wtQ

t(z,f,tQ ) : electron arrival time at the

position specified by 2 and f t(z,r,t ) = wt(z,f,tQ )

a : radius of electron beam a = a/b

b : radius of sheath helix

d : interaction length of tube d = wd/vQ

p(z,f,t) : electron charge density

p(z,r,t) = v 2 Z p(z,f ,t)/wAc

AQ is the amplitude of the axial electric field

component at z = and r = b. ZQ is the intrinsic impedance

of vacuum.

Table 3 . 2 below lists the constants used in the

development of the TWT equations

.
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Table 3 . 2 Constants used in the equations

ZQ : intrinsic impedance of vacuum 376.7 ohms

Me : mass of an electron 9.1095xl0" 31 kg

e : charge on an electron 1.602X10" 19 C

c : speed of light 2.9979xl0 8 m/s

Kalyanasundaram uses the ballistic equation to obtain

an integral equation for the arrival time at point z,r of an

electron entering the tube at time tQ . This equation is

t(z,r,tQ ) = tQ + J dx/{l - 2eJ f 1 (s,r,t(s,r,to ))ds}
1/2

(3.1)

where e = A e/Mewv , and tQ is the electron entrance time,

for < z < d and < r < a . He solves this integral

equation by iteration based on an initial assumption for

the arrival time.

Kalyanasundaram uses the following equation [14] to

calculate the axial electric field component by forming a

temporal Fourier series.

H
f^z^t) = S(flm(z,r)exp( jmt) + c.c.) (3.2)

m=l

where c.c. denotes the complex conjugate of the expression.
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Recursively, the temporal Fourier coefficients [14] are

given by

f lm (z,r)
= 6lmAI (p1r)exp(-jk1 z)/2I (p1 )

+ [Flm (z,r) + jF2m (z,r)]/2m

m = 1,2,.. . ,M (3.3)

with 6lm being the Kronecker delta and the phase factor of

the RF input signal given by

A = exp(j*) (3.4)

with $ being the phase angle of the RF input signal. The

values of pm , which are eigenvalues for the sheath helix

when there is no electron beam present, and k^ are

calculated from the dispersion relation [ 3 ] , which is

derived from the sheath helix model, given below.

' a2Pm' 2l o< nlPm' Ko( rnPm» 2q «

a l I 'o' mPm» K 'o' mPm) (3 - 4)

k2 = a2 . + a2 ,

p

2 (3.5)
m 1 2 m

ax
= vQ/c (3.6)

a2
= v /w b (3.7)

with IQ , KQ , IQ
' , and KQ

' being Bessel functions of

argument mpm and order 0.

The spatial Fourier series [14] of the axial electric
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field is formed below.

N
Flm (z ' r) = E(2 " 50n ) t Flmn (r)cos nkdz

n=0
- Ijjtmi^rJFjjjujdJ.cos bU^z/IqCbj^) ], 1 = 1,2

(3.4)

with kd = Tt/d (3.4a)

The Fourier coefficients for the spatial Fourier series are

determined from the equations [14] below.

Flmn< r > Jo [Hj

H2mn< r 'y

F2mn< r
> = U Hlmn< r 'y> fcmn<Y> +

H
2mn( r 'y' f smn(y)]y dY < 3 - 6 >

where

Hlmn< r 'y> " aoP
2
mnco<Pmnr » co'Pmny>[ bmn + W r'*"

(3.7)

H2mn« r -y» = *oP
2
mnJo«Pinny> Jo«Pmnr '»niii

(3 - 8)

aQ
= p^na-^ (3.9)

with pQ being the normalized electron beam current density

at the entrance of the tube. JQ , 3-^^, bmn , and c are

Bessel functions which are defined below.
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rd rTI

f sran (y)
= J cos nkdx dx J

_

rt
sin mt(x,y,T) dx (3.10)

and

fcmn (y) = Jgcos nkdx dx J .^cos mt(x,y,x) dx (3.11)

The following Bessel function equations are needed to

interpret the above equations.

Hl<Pmnx > - Jl<Pmnx > " : Yl<Pmnx >< ^O' 1
<
3 - 12 >

which is the Hankel function of the second kind of order 1.

Also, CQ is defined by

f Jo ( Pmnx) for < n < HM^/lCa
co<Pmnx » = 1ll (pmnX) for n > mai /kd (3.13)

with JQ and I Q being Bessel functions of argument pmnX and

order 0. DQ is defined by

ixY (pmnX)/2 for < n < ma1/kd
Do<Pmnx >

1 K (pmnX) for n > mai/kd (3.14)

with YQ and KQ being Bessel functions of argument PmnX and

order . The Bessel function a,^ is defined by

m
l^^ofPrnn'/^otPmn'Smnl for < n < mai /kd

1 for n > mai /kd (3.15)

with HQ being the Hankel function of the second kind with

argument pmn and order . The Bessel function bmn is
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defined by

Im[RH (pmn )(l - Q- l
mn )/2J {pmn )]

for < n < ma^/k^

Ko<Pmn'(Q" mn " U'VW
for n > ma^/kjj (3.16)

The Bessel function Imn is defined by

Imn(r 'Y' = Do<Pmnmax(r 'y ))/co ( Pmnmax(r 'y" (3.17)

The Bessel function Qmn is defined by

^ + aV^nnVPmn'KofPmn't^e/^V'ofPmn'K'ofPmn)

for n > raa-i /k,a

2 = {
1 + a2 2P

2
ran

Jo(Pmn) Ho(Pmn) tan2e/m2a2 l
J 'o(Pmn' H, o(Pmn)

for < n < ma^/k^
(3.18)

An argument which appears in many of the above Bessel

functions is defined below.

n2,2 2V 2 WB 2 ,1/2|Kfra^a^ - n'kd*)/a*2 )
J-"!

|
(3.19)

Next, Kalyanasundaram defines a parameter, a, which

relates the power in the input RF signal power, P; n , to the

dc power of the electron beam. The dc beam power is given

in Eq.(3.21) .

a = 101og10 (Pin/Pdc ) (3.20)
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Pjjj, = beam current • beam voltage (3.21)

Kalyanasundaram solved the above equations iteratively

on an ICL 2955 mainframe for some typical values of a.

Table 3 . 3 below shows the parameters which remained

constant for all runs.

Table 3 . 3 Parameters for the solution of the TWT
equations

.

beam voltage, v = 5600 V

beam current, *0 = 0.06 A

helix pitch. tan(8) = 0.1357

normalized beam radius, a 0.44

a2 = v /wb a 2
= 0.453152

RF phase factor. A = 1.0

axial step size, dz = 0.20

radial step size. dr = 0.11

time step size, dto
= Tl/12

number of temporal harmonics ; M = 3

number of spatial larmonics ; N = 48

====================

Note that integral step sizes are given in Table 3.3;

however, there was no indication as to which method of

numerical integration he used.

Fig. 3.1a and Fig. 3.1b below shows some plots of

electron exit times for d = 120 and a = -30 dB, -50 dB,

and -«• dB. An a of -«• dB corresponds to an RF input power

of 0.
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Figure 3.1a. Electron exit time versus entrance time
for electrons at the center of the tube,
(from Kalyanasundaram [14] p. 164)
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Figure 3.1b. Electron exit time versus entrance time
for electrons at the edge of the beam,
(from Kalyanasundaram [14] p. 164)

33



The plots in Fig. 3.1a and Fig. 3.1b for a = -30 show

electron overtaking which is known to occur when the RF

input power is large enough. Also it should be noted that

there is little variation in electron exit times between

the center of the beam and the edge of the beam. Pierce's

theory assumes there is no variation.

Fig. 3.2a and Fig. 3.2b below shows plots of gain over

input power versus normalized distance for an a of -40 dB.

Gain is defined by

flm (z,r) = \f lm {z,z)/f 11 i0,r)\ (3.22)

The slope of the increasing part of the graph in Fig. 3.2a,

measured from z = 30 to z = 90, is 0.217 dB/z. The slope of

the increasing part of the graph in Fig. 3.2b, measured

from z = 60 to z = 90, is 0.2 dB/z. The value of the slope

predicted by Pierce's formulas for small signals was

between 0.26 dB/z and 0.18 dB/z. This seems to indicate

that the two theories ' gain formulas agree for small

signals; however, it would be better to compare the slopes

for a smaller a for a better comparison.
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30 60 90 120

Figure 3.2a. Plot of gain at the center of the tube versus
normalized distance for the TWT defined by the
parameters in Table 3.3.
(from Kalyanasundaram [14] p. 165)
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Figure 3.2b. Plot of gain at the edge of the beam versus
normalized distance for the TWT defined by
the parameters listed in Table 3.3.
(from Kalyanasundaram [14] p. 165)
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In Fig. 3.2 note that the gain does not start to

increase until z = 30. This is because the electrons need

time to bunch before they can transfer energy to the

electromagnetic field.

The gain comparisons given above seem to verify

Kalyanasundaram ' s large signal theory in the limiting case

of small input signals.
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4.0 Fortran Computer Program Development of a Traveling
Wave Tube Amplifier Mathematical Model.

The purpose of this work was to develop a Fortran

computer program named TUBE which would solve the equations

developed by Kalyanasundaram. The complete program listing

is given in the appendix. First, the program was used to

solve the same case as Kalyanasundaram solved and the

results were compared. Next, the results were going to be

extend by taking more terms of the Fourier series expansion

and taking smaller steps in the numerical integrations.

This second step was to be implemented on a CRAY

supercomputer because the program took approximately 12

hours on a VAX 750 to perform 8 iterations. The second step

was never taken because there appears to be some sort of

numerical instability in the program. The results produced

by TUBE agree qualitatively with Kalyanasundaram' s results

but they are not exactly the same as his results.

All equations in Section 3 . which were ambiguous will

be given in this section in the form that the program used

them. Refer to the appendix for all program listings.

The program begins by accepting the TWT parameters and

the numeric integration step sizes from the user. All

integrals are performed with trapezoidal integration. Table

4.1 below contains the parameters and step sizes used in

the solution of the equations. These parameters and step

sizes are the same as those used by Kalyanasundaram.
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Table 4.1. TWT parameters and integral step sizes,
which remain constant, used in the
solution of the TWT equations.

radial step size; dr >= 0.11

axial step size; dz i 0.2

time step size; dto
:= Tl/12

beam voltage; v = 5600 volts

beam current; x = 0.06 amps

normalized beam radius; a = 0.44

normalized tube length; d = 120

a
2 = V< wo5 >' a

2
" 0.453152

helix pitch; tan(9) = 0.1357

phase factor of input s ignal A = -1.0

number of temporal harmonics M = 3

number of spatial harmonics; N = 48
J

J

Note that there are two important differences between

Table 3 . 3 which lists the parameters Kalyanasundaram used

and the parameters listed above. The first is that the

phase factor, A, listed above is -1.0 and in Table 3.3 it

is 1.0. Changing the phase factor. A, produced better

agreement between Kalyanasundaram 1 s results and the FORTRAN

program's results. The next difference is that the quantity

&2 has been strictly interpreted by adding parenthesis. The

reason for interpreting a 2 as shown in Table 4.1 is that it

is known that a
2
has to be a unitless quantity.

Next, the program calculates the initial velocity of
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the electrons via the relativistic kinetic energy equation.

K.E. = eV = mec
2 [(l - v2 /c 2 )" 1/2 - 1] (4.1)

Solving Eq.(4.1) for initial electron velocity, vQ , the

equation below is obtained which is implemented by the

program named TUBE.

vQ = c(l - [eV /(Mec
2 + 1)]

_2
)
1/2 (4.3)

The program calculates the phase velocity of the

increasing wave using the equation below which was derived

from Pierce's analysis of a sheath helix [11].

v
p

= c-sin(8) (4.4)

Next, the program calculates the normalizing factor a^

ax = vQ/c (4.5)

From the analysis of the electric field of a sheath

helix derived by Pierce [11], the amplitude of the axial

electric field component, AQ , at the entrance of the tube

at the helix radius is found.

A 2
Q = Pincvp

w2 (v
_2

p
- c

_2
)F 3 (Tb)[I 2 (xb) - I 2

1
(xb)] (4.6)

where t = w(v
" 2 - c" 2

)
1/2

. (4.6a)

The program next calculates e as shown below.

e = AQe/(mewv ) (4.7)
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The non-normalized electron beam current density, pQ ,

at the tube entrance is given by

Po = 5"
< 4 - 8 '

Tt(a) 2vQ

Using Kalyanasundaram's normalizing factors [3] a can be

represented in terms of the normalizing factors. This is

shown in Eq.(4.9) through Eq.(4.11)

a = ab (4.9)

vo
b = (4.10)

wa
2

avo
a = (4.11)

wa2

Substituting Eq.(4.11) into Eq.(4.8) gives the non-

normalized electron beam current density at the entrance of

the tube in terms of the normalizing factors.

I w2a2 2
Po = —5—5--

< 4 - 12 >

nv J a

Kalyanasundaram's normalization of pQ [3], is shown below.

v2oPozo
Po = - — (4.13)

WAQ

Substituting Eq.(4.12) into Eq.(4.13) yields the normalized

beam current density equation, which is valid at the
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entrance of the tube, and which is implemented by the

program named TUBE.

zoI wa
2

Po = 5 (4 - 14)

TUBE calculates the quantity an using

a = (4.15)
Tia-^d

which is one of Kalyanasundaram' s normalizing factors.

The program calls a subroutine, ZEROIN, to solve for

pm , which is the eigenvalue of the cold wave problem for

the sheath helix at the angular frequency mw, in the

dispersion relation [3] given below.

' a2Pm) 2lo (mPm» Ko( n,Pm) 2_ _ cot^e = o (4.16)
az

1
I 1 (mpm )K

1 (mpm )

for m = 1, 2, 3

TUBE relates the quantity 1^ [3] to pm using

k
m " a2

l
+

< a2Pm>
2

(4-17)

for m = 1, 2, 3

The quantity pmn [3] is calculated by TUBE using
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|[(raai )
2 - (nkj,) 2

]!
1 / 2

Pmn =
< 4 - 18 '

a
2

for m = 1, 2, 3

n = 0, 1, 2, ... 48

The quantities amn , and bmn [14] are calculated by

subroutines AMN and BMN which implement Eg. (4.19),

Eg. (4.20) and Eg. (4.21).

amn

^o'Pmn'
Re

| \ for < n < mai/kd
2Jo<Pmn)emn,

for n > ma-]_/kd

for m = 1, 2, 3

n = 0, 1, 2, ... 48

(4.19)

."HolPmnHl - Q
_1
mn )

Im
|

> for < n < ma^/k^

V
Ko(Pmn»(Q^mn_:_l»

^(Pmn'
for n > ma^/kd

for m = 1 , 2, 3

n = 0, 1, 2, . . .48

(4.20)

where
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(a
2pmntan<e))'l (pmn )K <pmn )

for n > ma-i/kj
( mal> 2l l(Pmn» Kl<Pmn»

l mal>
2jl<Pmn> Hl<Pmn> m „for < n < ma^/k^

for m = 1, 2, 3

n = 0, 1, 2, ... 48

(4.21)

The program next calculates Hlmn and H2mn , which are

Bessel functions, using Eq.(4.22) through Eg. (4.26). The

variables r and y in these equations are radial variables

which run from the center of the electron beam to the edge

of the electron beam. With a radial step size of 0.11 and

normalized beam radius of 0.44 the variables r and y each

take on the values 0, 0.11, 0.22, 0.33, 0.44. The integer m

runs from 1 to 3 and the integer n runs from to 48.

Hlmn< r <y> = aoP
2
mnco<Pmnr » co<Pmny>r bmn + W r'*>l (4 - 22)

H2mn< r ' v > " aoP mnJo<Pmny> Jo<Pmnr > amn

where

colPmnx >

Jo<Pmnx '

VPmn*'

(4.23)

for < n < ma^/k^

for n > ma1/kd (4.24)

Do<Pmnx >

rtYo(Pmnx '/ 2

Ko<Pmnx >

for < n < ma^/k^

for n > ma^/k^ (4.25)
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and

xmn<r 'y) = E (pmnmax(r,y) )/C (pmnmax(r,y)) (4.26)

The program next creates an initial guess array,

called TIME(Z,R,T), for normalized electron arrival times

at all normalized radial and axial electron positions.

Eq.(4.27) defines the array. The initial guess array uses

Kalyanasundaram ' s time normalization, T = wf, and assumes

that no electron overtaking occurs so that the electrons

pass through the tube in a linear manner. The integer

variable Z runs from to 600 which represents a tube of

normalized length of d = 120. The integer variable R runs

from to 4 which represents an electron beam of normalized

radius a = 0.44. The integer variable T runs from to 24

which represents 24 electrons per period.

TIME(Z,R,T) = T-D_T + Z-D_Z - n

where D_T = n/12

and D_Z =0.20 (4.27)

Now that an initial guess has been made for the

solution of the electron position times, the program begins

iterating to find the solution for the actual electron

position times. The program begins the iteration by

integrating Eq.(4.28) and Eq.(4.29) using the trapezoidal

rule.
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fsmn ( y» = cosfnk^x) sin(m-TIME(Z,R,T) ) dt dx

-Tl

(4.28)

,(y) cos(nk(jx) COS(m-TIME(Z,R,T) ) dt dx

-n.

(4.29)

In the sums which replace the above integrals in

trapezoidal integration dt = n/12 and dx = 0.20 . The

program calls a subroutine called F1_X which calculates the

inner integrals in Eg. (4.28) and Eg. (4.29) using

trapezoidal integration.

The program next calculates the guantities Flmn (r) and

F2mn (r), which are the Fourier coefficients of the spatial

Fourier expansion of the axial electric field, using

Eg. (4.30) and Eg. (4.31). The integrals are implemented with

trapezoidal integration.

! lmn (r) [ Hlmn< r 'Y> fsmn<Y> " H2mn' r 'Y> fcmn<Y» & dY
'

(4.30)

; 2mn (r) = [Hi r)]y dy

14.31)

The program next performs the Fourier series sum of

the spatial harmonics of the axial electric field component

for n = to 48. This is implemented by TUBE as shown
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below.

N = 48
Flm (z,r) = E(2 - 60n )[Flmn (r)cos(nkdz)

n =
I o< mPmr > Flmn< 1 > cos < mkmz >/ I o< mPm>]

1 = 1, 2

(4.32)

The program next calculates the Fourier coefficients

needed for the temporal Fourier series expansion using

flm (z,r) = 6lmAI (p1r)EXP(-jk1 z)/(2I (p1 ))

+ [Flm (z,r) + jF2m (z,r)]/(2m) (4.33)

TUBE performs the temporal Fourier series expansion of

the axial electric field using

M = 3

f
1 (z,r,t) = E2Re{f lm (z,r)exp(jm-TIME(Z,R,T)} (4.34)

m = 1

Now TUBE performs the double integral in Eq. (4.35)

using trapezoidal integration. The result is the new

estimate of electron position times.

t(z,r,tQ ) = tQ + dx

2e f]_(s,r,t(s,r,t ) ) ds 1/2

(4.35)

After the double integral in Eq.(4.35) is performed,

convergence is checked. The convergence test used compares
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the old electron exit times to the new electron exit times.

The convergence test is shown below.

If It^d,^^) - ti+1 (d,r,t ) |
< 0.2 for all r and tQ

then the solution has converged. The convergence test shown

above was used so that the results of the computer

simulation could be compared to Kalyanasundaram's results

which were also based on this convergence test. It should

be noted that this is not a mathematically strict method

for testing convergence but was used for comparison

purposes.

Fig. 4.1 and Fig. 4.2 below show plots of electron

exit times for an a of -30 dB. Comparing these plots to

Kalyanasundaram's plots one can see they are qualitatively

similar but they are not exactly the same. The electron

exit time plots show electron overtaking which is known to

occur when the input signal level is large enough. Fig. 4.3

and Fig. 4.4 show gain curves for an a of -30. These curves

indicate the tube is beginning to saturate because the

curves are beginning to flatten out at the end. The gain of

the tube is calculated from the normalized Fourier

coefficient magnitudes of the axial electric field. The

plots in Fig. 4.3 and Fig. 4.4 which represent power gain

are generated by

10-log10 [f lm (z,r)] = 10-log10 [|flm (z,r)/f 11 (0,r)|] (4.36)
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Fig. 4.5 and Fig. 4.6 show plots of electron exit

times for an a of -40 dB. Note that the plots show very

little radial variation. Pierce's theory assumed that there

was no radial variation. Gain plots for a = -40 dB are

shown in Fig. 4.7 and Fig. 4.8. The slope of these plots,

measured from z = 60 to z = 90, is 0.2 dB/z. These are

similar to Kalyanasundaram ' s plots but not identical. The

plots in Fig. 4.7 and Fig. 4.8 show some type of periodic

numerical noise for which the explanation is not known.
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f s-

Figure 4.1. Electron exit time versus entrance time
for electrons at the center of the tube,
a = -30, d = 120, 9 iterations performed
in arriving at the solution.

P s-l

i a

To ALPHA • (-30)

Figure 4.2. Electron exit time versus entrance time
for electrons at the edge of the beam,
a = -30, d = 120, 9 iterations performed
in arriving at the solution.
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Z ALPHA - (-30dBl

Figure 4.3. TWT power gain versus normalized distance
along the tube at the center of the tube,
a = -30, d = 120, 9 iterations performed
in arriving at the solution.

ac j

(-30dB)

Figure 4.4. TWT power gain versus normalized distance
along the tube at the edge of the electron
beam, a = -30, d = 120, 9 iterations
performed in arriving at the solution.
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Figure 4.5. Electron exit time versus entrance time
for electrons at the center of the tube,
a = -40, d = 120, 9 iterations performed
in arriving at the solution.

P a-

TO ALPHA - (-40]

Figure 4.6. Electron exit time versus entrance time
for electrons at the edge of the beam,
a = -40, d = 120, 9 iterations performed
in arriving at the solution.
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Figure 4.7. TWT power gain versus normalized distance
along the tube at the center of the tube,
a = -40, d = 120, 9 iterations performed
in arriving at the solution.

.0.0 60.0 80.

1 ALPHA - (-40dB)

Figure 4.8. TWT power gain versus normalized distance
along the tube at the edge of the electron
beam, a = -40, d = 120, 9 iterations
performed in arriving at the solution.
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From the plots on the previous pages it is seen that

the FORTRAN program, TUBE, gives results for gain which

are similar to Kalyanasundaram' s and Pierce's. The results

for electron exit times are also similar to

Kalyanasundaram' s. The electron exit time plots show

electron overtaking which is known to occur for large

signal input. The electron exit time plots are linear for

small signal input. There is some numerical noise in the

gain plots which indicates some difference in the solution

method used by Kalyanasundaram compared to the method used

in TUBE. The cause of the noise needs to be determined

before further investigation can be done.
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5.0 Conclusion

This report described the development of Pierce's

linear theory for the small signal power gain of a

traveling wave tube. Using Pierce's theory the gain for a

specific TWT was determined to be 0.18 dB/z. The purpose of

the development of the Pierce theory was to verify

Kalyanasundaram' s non- linear theory in the limiting case of

a small signal input.

This independent verification of Kalyanasundaram '

s

theory has shown that his new theory produces gain results

which are similar to Pierce's for small signals. For a

signal input of a = -40 Kalyanasundaram ' s theory predicted

a gain of 0.21 dB/z. It was also seen that

Kalyanasundaram ' s theory predicted electron overtaking

which is known to occur for large signal inputs. The

FORTRAN program, which was developed at Kansas State

University, was seen to produce results which were similar

qualitatively to Kalyanasundaram' s but not identical. The

gain predicted by TUBE for a = -40 was 0.21 dB/z. TUBE also

displayed electron overtaking for an input of a = -30.

Further work which needs to be done includes a

rederivation of Kalyanasundaram' s equations. After finding

and correcting any discrepancies, the FORTRAN program

should be modified accordingly. When this is done the

theory should be extended by including more terms in the

Fourier series expansion. Also modeling a more practical
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traveling wave tube which includes losses would be

beneficial.

55



References

[I] J. R. Pierce, Traveling Wave Tubes New York: D. Van
Nostrand, 1950.

[ 2 ] J . E . Rowe , Nonlinear Electron Wave Interaction
Phenomena . New York: Academic Press, 1965

[3] N. Kalyanasundaram, "Large-signal field analysis of an
O-type travelling wave amplifier. Part Is Theory," IEE
Proceedings, Vol. 131, Pt. 1, No. 5, pp 145-152,
October 1985.

[4] J. R. Pierce, Traveling Wave Tubes , p 8, New York: D.
Van Nostrand, 1950.

[5] S. Y. Liao, Microwave Devices and Circuits , p 213,
Englewood Cliffs, New Jersey: Prentice Hall, 1980.

[6] J. R. Pierce, Traveling Wave Tubes pp 5-18, New York:
D. Van Nostrand, 1950.

[7] M. A. Plonus, Applied Electromagnetics . p 556,
New York: McGraw-Hill, 1978.

[8] J. R. Pierce, Traveling Wave Tubes , p 14, New York:
D. Van Nostrand, 1950.

[9] J. R. Pierce, Traveling Wave Tubes , p 15, New York:
D. Van Nostrand, 1950.

[10] M. A. Plonus, Applied Electromagnetics . p 577,
New York: McGraw-Hill, 1978.

[II] J. R. Pierce, Traveling Wave Tubes, pp 19-48,
New York: D. Van Nostrand, 1950.

[12] J. R. Pierce, Traveling Wave Tubes, pp 229-232,
New York: D. Van Nostrand, 1950.

[13] S. Y. Liao, Microwave Devices and Circuits , p 139,
Englewood Cliffs, New Jersey: Prentice Hall, 1980.

[14] N. Kalyanasundaram and R. Chinnadurai, "Large-signal
field analysis of an O-type travelling wave amplifier.
Part 2: Numerical results," IEE Proceedings, Vol. 133,
Pt. 1, No. 4, pp 163-168, August 1986.

[15] J. R. Pierce, Traveling Wave Tubes . p 249, New York:
D. Van Nostrand, 1950.

56



[16] J. R. Pierce, Traveling Wave Tubes . p 127, New York:
D. Van Nostrand, 1950.

57



Appendix

FORTRAN Program Listings

58



*****************************************************************

» Department of Electrical and Computer Engineering *

* Kansas State University *

.
*

* VAX FORTRAN source filename: TUBE. FOR *

,********»******************»*******************»*************

i

* REFERENCES: N. Kal yanasundaram, "Large-signal Field

» analysis of an 0-type travelling-wave

* amplifier. Part 1: Theory," IEE PROCEEDINSS,

* Vol. 131, Ft. 1, No. 5, pp 154-152,

* October 1984.

*

t N. Kalyanasundaram, and R. Chinnadurai,

* "Large-signal field analysis of

* an 0-type travelling-wave amplifier. Part 2:

« Numerical results," IEE PROCEEDINGS,

» Vol. 133, Pt. 1, No. 4, pp 163-168,

» August 1936.

All eguation numbers in this program refer to the above

references.

* ROUTINE: MAIN PROGRAM

* TUBE

*

* DESCRIPTION This program solves equations 29 and 42.

* The program first accepts constants related

t to the travelling wavetube. The program then

t normalizes the constants to be used in the

* calculations. Next Equation 22b is solved

* for the pa's. Next an initial guess is made

t of the solution. Next equations 42 and 29

* are itterated until the solution converges.

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN: Not used.

ROUTINES AMN, BMN, BESC, BESD, BESK01, BESJ01, BESY01,

CALLED: KRON.DEL, ZEROIN, F1_X

AUTHOR: Bradley P. Badke
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* DATE CREATED: 28SEP87 Version 1.0

*

* REVISIONS! None.

a****************************************************************

PROGRAM TUBE

IMPLICIT NONE

REAL a_o, aa, A 0, AMN, fl!3,0:48), Al, A2, AP
,
ALPHA,

+ SMN, B<3,0:48), BESJ01, BESK01, BESI01,

+ BESC, BESD, B_RAD, BI1GB, BIOGB, BK1GB, BKOGB,

C,

+ D R, D Z, D_T, d,

+ e, EPS,

+ f 1(0:600,0:5,0:24) , F1MN(0:5), P2MN(0:5),

t fc«n(0s5), fsmn(0:5), F1_X, F2_x

,

+ F1M<0:600,0:5) , F2M (0: 600 ,0: 5) , F.GAMMA.B,

+ FARR(0:6001

REAL GAMMA. B,

+ H1MNM,0:43,0:5,0:5),H2MN(4,0:48,0:5,0:5) ,

+ H_PIT,

+ I_0,

+ K_d, K _ m ( 3 )
, KRON_DEL, K_l,

+ Me,

+ NZ,

+ PI , P(3,0:48> , P_m(3> , Pin,

+ Qo, QUIT,

+ TIME(0:600, 0:5, 0:24) , TEMP,

+ VELo, VELp, VOLT,

+ Zo, ZEROIN

INTEGER CAP M, CAP_N, M, N, NUN.R, NUM.T,

+ NUM.Z, R, T, X, Y, Z, I, L, MAX. IT,

+ LL

CHARACTERS NAME, T I MEA , TIMEO ,
FOURIER

COMPLEX Lo_-f lm<3 , 0:600, 0:5)

COMMON TIME

EXTERNAL BESK01 ,BESJ01

,

BESIOi ,BESY01 , BESC , BESD, ZEROIN,

+ F1_X,AMN,BMN,KR0N_DEL

DATA PI/3.141592654/,e/1.602E-19/,Zo/376.7/,
+ Me/9.1095E-31/,C/2.9979E8/

** Accept TMT constants from the user.
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PRINT*, 'ENTER THE RfiDIAL STEP SIZE 10.11)'

REfiCi*,*) D.R

PRINT*, 'ENTER THE AXIAL STEP SHE (0.20)'

READ!*,*) D_Z

PRINT*, 'ENTER THE TIME STEP SIZE. (PI/12 = 0.2617994!'

READf*,*) D.T

PRINT*, 'ENTER THE ACCELERATING VOLTAGE IN VOLTS. (3400)'

READ(*,*) VOLT

PRINT*, 'ENTER THE BEAN CURRENT IN AMPS. (0.06)'

READ!*,*) 1.0

PRINT*, 'ENTER THE NORMALIZED INTERACTION

LENGTH OF THE TUBE, d = 120'

READ!*,*) d

PRINT*, ENTER THE NORMALIZED BEAM RADIUS, a = 0.44'

READ(*,*i aa

PRINT*, 'ENTER a2. a2 = 0.453152'

READ<*,*> A2

PRINT*, 'ENTER THE TANGENT OF THE HELIX PITCH.

(TANfPSIi = 0.1357)
'

READ(*,*> H_PIT

PRINT*, 'ENTER THE PHASE FACTOR OF THE

INPUT SIGNAL. (1)
'

READ!*,*! AP

PRINT*, 'ENTER THE NUMBER OF dB THE RF INPUT

POWER IS BELOW THE DC BEAM POWER. (-30 etc)'

READ!*,*) ALPHA

Pin = I 0*V0LT*(10**(ALPHA/10)

)

PRINT*, 'Enter the number of temporal harmonics,

"CAP M = 3"'
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READ < * , * ) CAP_M

PRINT*, 'Enter the number of spatial harmonics,

+ "CAP_N = 43" '

READ<*,*) CftP.N

PRINT*, 'ENTER THE MAXIMUM NUMBER OF ITTERATIONS'

READ*,MAX JT

** This is the reiativistic K.E. equation which gives

** initial electron velocity.

VELo = C*SQRT(1 - (e*V0LT/ (Me*C**2) + 1) ** -2!

** This is the phase velocity equation for a helix

** slow wave structure.

VELp C * SIN(ATAN(H_PITi!

PRINT*, 'VELp', VELp

** This is a normalizing factor. (Eqn. 4)

Al = 3SRT!! - (e*V0LT/(Me*C**2) + 1) ** -2!

** The following equations were derived from Pierce's

** Traveling Wave Tubes (Appendix 2). This is done to

** determine the strength of the electric field at the

** entrance of the tube.

GAMMA_B = VELo * SORT! (VELp ** -2) - (C ** -2) !

BI1GB = BESI01 (GAMMA_B,1,I)

BIOGB = BESI01 (GAMMA_B,0,1)

BK1GB BESK01 !GAMMA_B , 1 , 1 , NZ

>

BK0G8 = BESK01 (GAMMA_8 ,0, 1 , NZ

!

PRINT*, BI 1GB, BIOGB, BK 1GB, BKOSB

** Note when comparing F_GAMMA_B in the program to

** Pierce's formula that my F_GAMMA_B is cubed.

F GAMMA B = 24O*BKOGB/GAMMA_B/BI0GB/ (

+ BI1GB/BI0GB - BI0G3/BI1GB
+ + BK0GB/BK1GB - BK1GB/3K06B

+ + 4/GAMMA_B!

** Multiply in Pierce's correction factor for off axis

** fields.

** F_GAMMA_B = F_GAMMA_B* (B I0GB**2. - BIlGB**2.0i
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** Calculate a_o for use in equation 42e.

a_o = Zo»I 0*iA2**2)/Al/d/VELo/(PI**2)/(aat*2)/
+

"
3GRT (Pin*C*VELp*F.GftMNA_B)/(VELp**-2 - Ctt-2)

»* Calculate EPS for use in equation 29.

EPS = SQRT(Pin*C*VELp*F_GflMMft_B)*((VELp **

+ *e/Me/VELo

** Total number of radial terms is NUM_R + 1.

NUM_R NINT(aa/D_R)

*» Total number of electrons is NUM_T + 1.

NUH.T - NINT(2*PI/D_T)

** Total number of axial terms is NUM.Z + 1.

NUM_Z = MINT S d /D_Z )

K_l ' VELo/VELp

K_d = Pl/d

** Evaluate all AMN, BMN,PMN, K.n, and P.m so it is not done

ts* more than necessary. AMN, and BMN are equation 41. PMN is

** equation 19. K_m, and P_m are found from the roots of

** equation 22b and 22c.

00 10 H » 1, CAP_M

DO 3 N » 0, CAP_N

P(M,N> = SQRT(fl8S<<(<M*Al>**2>

(A2**2) )

)

( (M*K d)**2i )/

A(M,N) = AMN(PiM,N) ,Al,A2,N,M,K_d,H_PIT)

B(H,N) = BMN(P(M,N) , Al , A2 , N ,M ,K_d ,H_PIT)

The following code evaluates equation (42e).

DO 4 Y = 1 , NUM.R

DO 3 R = 0, NUM_R
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H1MN(M,N,R,Y) = a_o * <P(N,N>**2> *

+ BESC(PtM,N)*R*D.R,N,M,Al,K.d)
+ * BESC(P(M,N)*Y*D_R,N,M,Al,K_di
+ * !B(M,N)

+ + <BESD<P(M,N)*D_R*AMAXO<R,Y) ,N,M,A1 ,K_d)

+ / BESC(PiM,N>*D_R*At1AX0(R,Y> ,N,M,Al,K_d) > )

H2MN(M,N,R,Y! = a_o * (P(M,N)**2! *

* BESJOl (P<M,N>*Y*D_R,0) *

+ BESJOl (P(M,N)*R*D_R,0) *

+ A(N,N)

3 CONTINUE

»* Evaluate H1MN(1,Y) and H2HN(!,Y) because they are needed

** to evaluate FlMN(l) and F2MNI1). Note that H1MN(R,Y) and

i* H2MN(R,Y) are not needed far R between aa and 1.

HH1N(N,N,NUM R + 1,Y) a_o * (P(M,N)**2) *

BESC(P(M,N),N,H,fll,K_d!

+ * BESC(P(M,N>*Y*D_R,N,H,A1 ,K_di

+ * !B(N,N)

+ + (BE3D(P(M,N) ,N,«,Al,K_d)

+ / BESC(P(«,N! ,N,fl,Al,K_d))>

H2riN(M,N,NUM_R * 1,Y) = a_o » (P (M,M) **2) *

+ BESJOl (P(M,N)*Y*D.R,0!

+ BESJOl (P(M,N) ,0) i

+ A<M,N)

4 CONTINUE

** Finished with equation (42a).

5 CONTINUE

** Solve for the P_m's and K_«'S froa equations

** 22b and 22c.

P_«(M) ZEROINd. 0,3. 0,0. 00000000001 ,A2,A1 ,H_PIT,M)

K_«(H) = SQRT(Ai**2 * <A2*P_m (Ml I **2!

10 CONTINUE

** Create the initial guess array.

DO 40 Z = 0, NUM_Z

DO 30 R = 0, NUM_R
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DO 20 T = 0, NUM.T

TIHEiZ,R,TS = T * D.T + Z * D_Z - PI

20 CONTINUE

30 CONTINUE

40 CONTINUE

** Do not allow more than MAX_IT iterations for convergence' 1

DO 310 L = 1, MAX.IT

DO 43 Z = 0, NUM.Z

DO 42 R = 0, NUM.R

DO 41 T = 0, NUM.T

f 1 i Z , R , T ) = 6".

41 CONTINUE

42 CONTINUE

43 CONTINUE

** Itterate 42 once.

DO 265 M » 1, CAP.M

DO 52 Z = 0, NUM.Z

DO 51 B = 0, MUM.R

F1M(Z,R) = 0.0

F2K(Z,R) = 0.0

51 CONTINUE

52 CONTINUE
DO 190 N = 0, CAP.N

** The following code evaluates fsmn(y) and fcmnly)

«•* from equation (42f). Trapezoidal integration is

t* performed. The variable y runs from the center

»* of the tube to the outer radius of the electron

** beam.

DO 90 ¥ = 1, NUM_R

** The following DO loop evaluates the outer integrals of

*» equation (42f! from the entrance of the tube to the

** normalized end of the tube. Trapezoidal integration

** is used.

** Fl.X and F2_X arB the inner integrals of equation 42f.

** Note, C0S10) = 1

fsmniY! = Ft_X <0,Y,N, NUM.T, F2.X, D.T) 12

fcmn('() = F2.X/2

65



DO 80 X = 1, NUM.Z 1

fsnn(Y) = f»»n(Y) + Fl.X(X,Y,M,NUM_T,F2.X,C_Tii

COS(N*K_d*X*D_Z)

fcun(Y) = fcmn(Y) + F2.X*C0S (N*K.d»X»D.Z)

80 CONTINUE

** Note that N*FI = N*K_d*X«D_Z

fsanCY) « tfsen(Y) + (Fi.X(NUH.Z,Y,M,NU«.T,F2.X,D.T)«

+ C0S(N*PIW2) )*D_Z

fcmn(Y) = tfc»n(Y! + (F2.X*CQS(N*PI) 12) ) *D_Z

90 CONTINUE

** Finished with Equation (42f).

** Evaluate equation (42d). Trapezoidal integration will

»« be performed.

DO 140 R 0, NUN.R

** Initialize the integrals.

F1MNIR)

F2MN1R) =

** The first tern is zero so dont evaluate it.

DO 130 Y « i, NUH_R - 1

F1MN(R) = (( H1MN(«,N,R,Y) * t'smn(Y) -

+ H2i1N(M,N,R,Y) * fcmntY) ) * Y * D_R )

+ + FiMN(R)

F2MN<R> « (( H1MN(M,N,R,Y) * fc»n(Y) +

+ H2MN(M,N,R,Y> * fsmn(Y) ) * Y D_R i

+ + F2MN(R)

130 CONTINUE

FIHN(R) = ( F1WN(R) + ( (HiMN (N,N ,R, NUN.R) *

fsinn<NUH_R> - H2MN(M,N,R,NUM_R) *

fcmn(NUM_R) ) * aa / 2)) * D_R

F2MNIR) = I F2MNIR) + ( (HIMN (H ,N,

R

,NUM_R) »

fcmn(NUM.R) + H2MN (M ,N,R ,NUM_R">

fsmn(NUM_R) ) * aa / 2) ) * D_R
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140 CONTINUE

** Now integrate FlMNil) AND F2HN(1). NDte the values

* between R = aa and R - 1 are not needed.

F1HNINUH.R + 1! =

F2HN(NUH_R + 1) =

** The first term is zero so don't evaluate it.

DO 150 Y = 1, NUH.R - !

F1NN1NUM.R + 1) = (( H1MN (M,N,NUM_R + 1,Y> * fsirm(Y) -

+ H2HN!H,N, NUH.R + 1,Y) * fc»n<Y> ) * Y * D_R )

+ + FlKNfNUH.R + 1)

F2MN(NUM_R + 1) = << H1HN (H,N,NUM_R t 1,Y1 * fcir.n(Y) +

+ H2MN!H,N, NUH.R + 1,Y) * fsmn(Y) ! * Y * D.R )

+ + F2HM1MUH fi + 1)

150 CONTINUE

F1HNINUH.R + 1) = i FlHNiNUH.R 1) +

((H1NN(M,N,NUH R + 1, NUH.R) *

+ fs»n(NUH_R> - H2HN(M,N, NUH.R + 1, NUH.R) *

+ fc inn (NUH.R) ) « aa / 2) i * B.R

F2HN(NUH_R + 1) = ( F2HN1NUH.R + 1) +

+ ((H1HN(M,N, NUH.R + 1, NUH.R) *

+ tcmniNUH.R) + H2HN (H, N , NUH.R + 1, NUH.R) *

+ fsmn(NUH.R) ) * aa / 2)1 D.R

** Finished with equation (42d).

** Evaluate equation (42c)

DO 180 Z = 0, NUH.Z

DO 170 R = 0, NUH.R

F1H(Z,R) = F1H(Z,R) + (2 - KRON.DEL (0 ,N1 )
*

(F1HN(R)*C0S(N*K d*Z*D_Z) -

(BESI01(H»P m(Hi*R*D_R,0,l)*FlHN(NUH_R +1) *

C03(H»K_u(H)tZ*D.Z)/BESI01(H*P_in(H) ,0,1))!

F2H(Z,R) = F2H(Z,R> + (2 - KRON.DEL (0,N) )
*

(F2HN(R)*C0S(N*K_d*Z*D_Z) -

(BESI01 (H*P_«i<H)*R*D_R,0, 1 ) *F2HN (NUH.R +1! *

C0S(H*K i»(M)*Z*D.Z)/BESI01 (H*P_m(H) ,0,1! ! )

170 CONTINUE
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180 CONTINUE

** This next CONTINUE is fro* the N to CAF_N loop.

190 CONTINUE

** Evaluate equation (42a).

DO 260 Z = 0, NUK.Z

DO 250 R = 0, NUM_R

** Now equation (42b) will be evaluated.

Lo tlm(l1,Z,R>=KR0N_DELil,!"l)*AP»BESI0i(P_:iiil)*R*D_R,0,l)

+ »CEXP("CHPLX(0.O,-1.0*K.i(l)*Z*D.Z))/

+ (2*BESI01iP mil) ,0,1) )
+

t (CHPLX(FlM(Z,R),F2HiZ,R)!/(2*N))

** Evaluate equation 42a.

DO 240 T = 0, NUH.T

fl(Z,R,T)=2*REaL(Lo.fl«iM,Z,R)*CEXP(CMPLX(0.0,M»TI«EiZ,R,T)))i

t + i 1(Z,R,T)

240 CONTINUE

250 CONTINUE

260 CONTINUE

*« This next CONTINUE is from the M to CfiP_M loop.

265 CONTINUE

** Evaluate equation (29). Trapezoidal integration is used.

*» Note, TINE(0,R,T) = Entrance time

DO 300 T = 0, NUM_T

DO 290 R = 0, NUM.R

CC TEMP = TIME(NUM.Z,R,T)

FARR(O) = f l(0,R,T)/2

DO 280 Z = 1, NUK.Z
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FfiRR(Z) = FARRtI - 11 + fl(Z,R,Ti

us Mote, F(0,Z,R,T) = i

TIME(Z,R,T) = 0.5

DO 270 X = 1, Z - 1

TIME(Z,R,T) = TIME(Z,R,T) +

+ SQRT(1/(1 - Z*EPS*D.Z*(FARR(X) - 0.5*H (X ,R,T) i )

)

270 CONTINUE
TIME!Z,R,TS = (TIME!Z,R,TS +

+ SQRT(1/(1 - 2*EPS*D_Z*(FARR(Z) - 0. 5»f 1 ( Z , R , T! i
!

) 12)

+ * D_Z + T*D_T - PI

280 CONTINUE

eh Keep a check on convergence here. Compare TIME(NUM_Z
,
R

,
T)

*** to TEMP.

QUIT = MAX CABS (TEMF - TIME (NUM_Z ,R, T)
) ,

0.2)

290 CONTINUE

300 CONTINUE

IF (QUIT . EQ. 0.2! THEN

GOTO 320

END IF

310 CONTINUE

t* Save the needed results.

TIME0='TIME0'
TIMEA='TIMEA'
FOURIER="FOURIER'

320 open iuni t=10, f i

1

e=TIMEA , status= 'NEW '

)

WRITE 1 10,*) ,1

WRITEilO,*) ,L

HRITEdO,*) .ALPHA

DO 330 T=0,NUM_T

WRITE (10,*), TIME!NUM_Z,NUM_R,T)
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330 CONTINUE

close (unit=10)

open (unit»10,f ii«»TIHEO, status"' NEtT!

WRITES 10,*) ,0

WRITE (10,*) ,L

MRITEI10,*) .ALPHA

DO 340 T»0,NUM.T

WRITE (10,*), TIME<NUM_Z,0,T)

340 CONTINUE

close (unit=10)

open (unit=10,tile=F0URIER,statu5='new' )

WRITEdO,*) ,L

WRITEdO,*) , ALPHA

DO 360 Z = 0, NUM.Z

DO 350 R 0, NUM_R

WRITEdO,*) , LO.f l«d,Z,R)
350 CONTINUE
360 CONTINUE

close(unit=10)

STOP
END
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t Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source -filename; AMN. FOR *

*

* REFERENCES: N. Kal yanasundaram , "Large-signal field

t analysis of an 0-type travelling wave

* amplifier. Part 1: Theory," IEE PROCEEDINGS,

* Vol. 131, Pt. 1, No. 5, pp 145-152,

* October 1934.

t

* N. Kalyanasundaram and R. Chinnadurai,

* "Large-signal field analysis of an

* 0-type travelling wave amplifier. Part 2:

* Numerical results," IEE PROCEEDINGS,

( Vol. 133, Pt. 1, No. 4, pp 163-168,

* August 1936.

* All eguation numbers in this program refer to

* the above two references.

*

* ROUTINE: real function subprogram

* AMNIARG, Al, A2, N, H, K.d, H_PIT)

*

* DESCRIPTION: Returns AMN (Eqn. 41).

DOCUMENTATION
FILES: None.

ARGUMENTS:

ARG (input) real

The value at which AMN is evaluated.

Al (input) real

The initial velocity of the electron

divided by the speed of light. (Eqn. 4)

A2 (input) real

A normalization factor. (Eqn. 4)

(input) integer

The value of the outer loop.

(input) integer

The value of the inner loop
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K d (input) real

FI divided by the normalized tube length.

(Eqn. 14b)

H_P IT (input) real

The tangent of the helix pitch.

* RETURN: Not used.

* ROUTINES
* CALLED: BESJ01 (Evaluates the J Bessel function)

* BESY01 (Evaluates the Y Bessel function)

*

* AUTHOR: Bradley P. Badtce

*

* BATE CREATED: 21NQVS7 Version 1.0

* REVISIONS: None.

REAL FUNCTION AHNiARG, Al, A2, N, If, K_d, H_PIT)

IMPLICIT NONE

REAL ARB, Al, A2 , K_d, BESJ01, H_PIT, PI, ANSJ,

+ BESY01

INTESER K, N

COMPLEX BESSMN, BE3H_P, BESHO

EXTERNAL BESJ01 , 3E3Y01

PI = 3.141592654

** Calculate the Hankel function of the second kind

** of order zero.

BESHO = CMPLX(ANSJ,-1*BESY01 (ARG ,0 , ANSJ)

)

** Calculate the derivative of the Hankel function

t* of the second kind of order zero.

BESH_P = CMPLX(-1»ANSJ,BESY01 (ARG, 1, ANSJ)

)

IF (N .LT. M*Ai/K_d) THEN

** Calculate QMN (equation 20b)

BESQMN = 1 - i(A2 * ARG * H_PIT)**2) * 3ESJ01 ( ARG , 0) *
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BESHO/I (if! * ftl ) **2) * BESJOHARG.l)

* 8ESH_P i

AMN = REAL! PI*BESHO/( 2*BESJ01 (AR6.0) *

BESQMN) )

ELSE

AtlN = 0.0

ENDIF

RETURN

ENS
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* Department at Electrical and Computer Engineering *

* Kansas State University

* VAX FORTRAN source filename-. BMN. FOR

*

* REFERENCES: N. Kalyanasundaram, "Large-signal field

* analysis of an 0-type travelling-wave

. amplifier. Part 1: Theory," IEE PROCEEDINGS,

* Vol. 131, Pt. 1, No. 5, pp 145-152,

t October 1984.

*

* N. Kalyanasundaram, R. Chinnadurai,

* "Large-signal field analysis of an

* 0-type travelling-wave amplifier. Part 2:

* Numerical results," IEE PROCEEDINGS,

* Vol. 133, Pt. 1, No. 4, pp 163-168,

» August 1986.

#

*

* All equation numbers in this program refer

t to the above references.

*

* ROUTINE: real function subprogram

* BMNiARG, Al, A2 , N, M, K.d , H_PIT!

*

* DESCRIPTION: Returns BMN evaluated at ARG. (Eqn. 41)

*

* DOCUMENTATION
* FILES: None.

*

* ARGUMENTS:
* ARG (input) real

* The value at which BMN is evaluated.

*

* Al (input) real

* The initial velocity of the electron

t divided by the speed of light. (Eqn. 4)

*

t A2 (input) real

« The initial velocity of the electron

t divided by the frequency of the input RF

* signal in rad/sec and the helix radius.

* A2 = (Vo/Cdo b) ) (Eqn. 4)

*

* M (input) integer

* The value of the outer loop.

*

* N (input) integer

* The value of the inner loop.
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K_d (input) real

PI divided by the normalized tube length.

(Eqn. 14b)

H PIT

RETURN:

ROUTINES
CALLED:

(input) real

The tangent of of the pitch angle of the

helix.

Nut used.

BESJ01, BESI01, BESY01, BESK01

(All of which evaluate Bessel functions)

AUTHOR:

DATE CREATED

REVISIONS:

Bradley P. Badke

21N0V87 Version 1.0

None.

»t*t*tt»**»**»*»*0*****»****»*****»*»»»«****»**************

REAL FUNCTION BPINfARG, At, A2, N, PI, K_d, H.PITl

IMPLICIT NONE

INTEGER PI, N

REAL ARG, Al, A2, K_d, H.PIT, 3E5I01 , BE5J01

,

+ BESK01, PI, 3ESY01, ANSJ

COMPLEX BESQMN, BESHO, BE5H_P

EXTERNAL BESJ01 , BESK01 ,BESI01 , BESY01

PI = 3. 1415924.54

IF (N .LT. M*A1/K_d' THEN

* Calculate the Hankel function of the second kind

** of order zero.

BESHO = CPIPLX (ANSJ, -H6ESY01 (ARG, 0, ANSJ) )

** Calculate the derivative of the Hankel function of the

** second kind of order zero.

BESH_P = CMPLXi-l*ANSJ,3ESY01 (ARG, 1, ANSJ))

** Calculate QMN (equation 20b)
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BESGHN = 1 - Kfi2 * ARS * H_PIT)**2) * BESJ01 (ARS, 01 *

+ BESHO/'i KM * Al)**2) * BESJOl (ARE
,

1

)

+ * 8ESH.P )

BMN = ftIHflS(PI*BESHO*(l - ( 1/BESQMN) ) / (2*BESJ01 (ARG , 0)
) I

ELSE

** Calculate QMN (equation 20b)

BESQMN = I -
(

(

a 2 * ARS * H_PIT)**2) * 3ESI01 iARS , , 1

)

+ * BESK01(ARB,0,l,0)/( KM * Ali**2) *

t BESI01 (fiRS, 1,1) * BESKOKARS, 1,1,0) )

BMN = BESKOKARG, 0,1,0) *

t Kl/BESSMN) - l)/BESI01(ARB,0,i)

END IF

RETURN

END
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»»»*»***»***«*»*«»*»*»»*»»**•»***»*************»*******
* Department of Electrical and Computer Engineering *

t Kansas State University *

* VAX FORTRAN source filename: KR0N_DEL.F0R *

*

» ROUTINE: function subprogram

t KRON_DEL(L,K)

ft

* DESCRIPTION: Calculates the Kronecker delta.

« Returns 1 if L = K.

» Returns if L not equal to K

DOCUMENTATION
FILES: None.

ARGUMENTS:
L (input) integer

K (input) integer

RETURN: Not used.

ROUTINES
CALLED: None.

AUTHOR: Bradley P. Badke

DATE CREATED: 27N0VS7 Version :1.0

REVISIONS: None.

»,*»»*»**«»»»«**«»»*»»**»»***«**»»*****************
REAL FUNCTION KRON.DEL (L,K)

IMPLICIT NONE

INTEGER L, K

IF ( L .EG. K ) THEN

KR0N_DEL = 1.0

ELSE
KRON.DEL = 0.0

END IF

RETURN
END
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* Department of Electrical and Computer Engineering *

* Kansas State University *

*
*

* VAX FORTRAN source filename: F1_X.F0R *

****»**»,********,****»******************************************

*

* REFERENCE: N. Kal anasundaram , and R. Chinnadurai,

* "Large-signal field analysis of

* an 0-type travelling wave amplifier Part 2:

* Numerical results," IEE PROCEEDINGS,

* Vol. 133, Pt. 1, No. 4, pp 145-152,

* August 1986,

* All equation numbers in this program refer to the above

* reference.

ROUTINE: function subprogram
F1_X(X,Y,M,NUM_T,F2_X,D_T)

DESCRIPTION: Calculates the inner integrals of

Eqn. 42f using trapezoidal integration.

DOCUMENTATION
FILES: None.

ARGUMENTS:
X (input) integer

RETURN: Not used.

ROUTINES
CALLED: None.

AUTHOR: Bradley P. Badke

DATE CREATED: 30DEC37 Version 1.0

REVISIONS: None.

nut,»»*»»**»»«»»*******,********************************* ********

REAL FUNCTION Fl.X ( X , Y ,M ,NUK_T ,F2.X , D_T)

IMPLICIT NONE

REAL F2_X, D_T, TIHE(0: 600,0:5, 0:24)

INTEGE~R X, Y, NUM_T, H, I

COMMON TIME
Fl X = (SIN(M*TIME(X,Y,0)i + SIN (M*TIME (X , Y , MUM_T) )

)

12

F2~X = (C0S(M*TIME!X,Y,01) + COS !M*T IME ( X , Y ,NUM_T) )

)

II
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DC NUM

FZ

10

10 I =

Fl.X

F2_X

CONTINUE
Fl.X = F1_X*D_T

F2_X » F2_X*D_T
RETURN

END

- 1

SIN(M*TIME!X,Y,IS>
CDSiM*TIHE(X,Y,I!)
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C This function subprogram is a sligthly modified

C translation of the ALGOL 60 procedure, ZERO, given

C in Richard Brent, Algorithms for minimization

without derivatives, Prentice-Hal I , Inc. (1973).

C

C

C This program was modified on September 31, 1987

C by Bradley P. Badfee MSEE Kansas State University

C to find the zeros of Egn. 22b from "N.

C Kalyanasundaram, "Large-signal field

analysis of an 0-type travelling wave

C amplifier Part 1: Theory," IEE PROCEEDINGS,

C Vol. 131, Pt. 1, No. 5, pp 145-152,

C October 1984.

REAL FUNCTION ZEROIN ( AX , BX , TOL , A2, Al ,H_PIT , m)

IMPLICIT NONE

REAL AX,BX,T0L,A2,A1,H.PIT,BESK01,BESI01

INTEGER », NZ

EXTERNAL BESKOi ,BESI01

C

C A zero of equation (22b! is computed in the interval AX,BX.

C One of the values has to be negative and the other positive.

C

C INPUT..

C

C AX LEFT ENDPOINT OF INITIAL INTERVAL

C

C BX RIGHT ENDPOINT OF INITIAL INTERVAL

C

C Al The initial velocity of the electrons divided by

C the speed of light. (Eqn. 4)

C

C A2 The initial velocity of the electrons divided by

C the RF frequency (rad/sec) and the non-normalized

C radius of the sheath helix. (Eqn. 4)

C

C m The integer value which describes the root to be found.

C

C H_PIT The tangent of the helix pitch.

C

C TOL DESIRED LENGTH OF THE INTERVAL OF UNCERTAINTY OF THE

C FINAL RESULT ( .GE. 0.0)

C

C
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OUTPUT..

ZEROIN ABCISSA APPROXIMATING A ZERO OF EQUATION 22b IN THE

INTERVAL fiX , BX

IT IS ASSUMED THAT EQN. 22b EVALUATED AT (AX! AND

EQN. 22b EVALUATED AT (BX) HAVE OPPOSITE SIGNS WITHOUT

A CHECK. ZEROIN RETURNS A ZERO, X, IN THE GIVEN INTERVAL

C (AX.BX) TO WITHIN A TOLERANCE 4*MACHEFS*ABS < X ) + TOL,

C WHERE MACKEPS IS THE RELATIVE MACHINE PRECISION.

THIS FUNCTION SUBPROGRAM IS A SLISHTLY MODIFIED

TRANSLATION OF THE ALGOL 60 PROCEDURE ZERO GIVEN IN

RICHARD BRENT, ALGORITHMS FOR MINIMIZATION WITHOUT

DERIVATIVES, PRENTICE - HALL, INC. (1973).

REAL A,B,C,D,E,EPS,FA,FB,FC,T0L1,XM,P,Q,R,S

COMPUTE EPS, THE RELATIVE MACHINE PRECISION

EPS =1.0
10 EPS = EPS/2.

T0L1 = 1.0 + EPS

IF (T0L1 .GT. 1.0) GO TO 10

C INITIALIZATION
C

A = AX

B = BX

CC FA and FB are equation (22b).

FA = ( <A2*A)**2)*BESI01 <n*A,0, 1) *BESK01 (n*A,0, 1 ,NZ)
-

t (<(1/H.PIT)»A1)**21*BESI01(«*A,1, 1)*BE5K01 (u*A, 1 , 1 ,NZi

FB = ( (A2*8)**2)*BESI01 ifli*B,0, 1)*BESK01 (m*B ,0,1 ,NZ) -

+ (til/H_PIT)*Al)**2)*BESI01 (m*B, 1 , 1 ) *BESK01 U*B, 1 , 1 ,NZ)

C BEGIN STEP

C

20 C = A

FC = FA

D = 3 - A

E = D

30 IF (ABS(FC) .GE.

A = B

B = C

C = A

FA = FB

FB = FC

FC = FA

SBS(FB)) 60 TO 40
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c

C CONVERGENCE TEST

C

40 T0L1 = 2.0»EPS*ABS(B) + 0.5*TOL

Xfl = .5*(C - 8)

IF (ABStXM) .LE. TGLli GO TO 90

IF <F8 .EQ. 0.0) GG TO 90

C

C IS BISECTION NECESSARY

C

IF (ABS(E) .LT. TOLD GO TO 70

IF (ABS(FA) .LE. A3S(FB!) GO TO 70

C

C IS QUADRATIC INTERPOLATION POSSIBLE

C

IF (A .ME. C! GG TO 50

C

C LINEAR INTERPOLATION

C

S = FB/FA
P = 2.0*XN*S
Q = 1.0 - S

GO TO 60

C

C INVERSE QUADRATIC INTERPOLATION

C

50 Q = FA/FC

R = FB/FC
S « FB/FA

F = SK2.0*XM*Q*(Q - R) - (B - A)*(R - 1.0))

Q = I Q - 1 . ) * t R - 1 . ) * ( S - 1.0)

C

C ADJUST SIGNS

C

60 IF (P .ST. 0.0) Q = -Q

P = ABS(P)

C

C IS INTERPOLATION ACCEPTABLE

C

IF ((2.0*P! .GE. <3.0*XH*fl - ABS (T0L1*Q> S ) GO TO 70

IF (P ,SE. ABS(0.5*E*Q>) GO TO 70

E = D

D = P/Q

GO TO 30

C

C BISECTION
C

70 D = XM

E = D

C

C COMFLETE STEP
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30 A = B

FA = FB

IF (ABS(D) .ST. TOLD 8 = B + D

IF !ABS(D) .LE. TOLD B = B + SIGNiTOLl, X«)

CC FB is equation (22b)

.

FB = ( <A2*8)**2!*BESI01 dn*B, , D «BE3K0i (n*B,0,l ,NZ) -

t ( ! (l/H_PIT)*AD**2)*BESI0i im*B , 1 , D *BESK01 («*B,1,1,M2)

IF ( !FB*(FC/ABS(FC) > ) .ST. 0.0) GO TO 20

SO TO 30

C

C BONE
C

90 ZEROIN = B

RETURN
END
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,***»*,»«*************************»****************************

ft Department of Electrical and Computer Engineering *

* Kansas State University *

*
*

* VAX FORTRAN source filename: BESC.FGR *

*

* REFERENCES: M. Kal yanasundaram, "Large-signal field

* analysis of an 0-type travelling-wave

* amplifier. Fart 1: Theory," IEE PROCEEDINGS,

* Vol. 131, Pt. i, No. 5, pp 145-152,

* October 1934.

*

*

* N. Kalyanasundaram, and R. Chinnadurai,

* "Large-signal field analysis of an 0-type

* travelling-wave amplifier. Part 2:

* Numerical results," IEE PROCEEDINGS,

I Vol." 133, Pt. 1, No. 4, pp 163-168,

* August 1986.

*

* All equation numbers in this program refer

* to the above two references.

*

* ROUTINE: function subprogram

* BESCfARG, N, M, Al, K.d)

*

* DESCRIPTION: Returns BESJO(ARG) if N < N«A1/K_d else

ft return BESIO(ARG). BESC is called while

* calculating equation 42e.

*

* DOCUMENTATION
* FILES: None.

»

* ARGUMENTS:
* N (input) integer

* The number of the inner loop.

I

t M (input) integer

* The number of the outer loop.

*

* Al (input) real

* The initial velocity divided by the speed

* of 1 ight . (Eqn. 4)

*

* K_d (input) real

* The normalized length of the tube divided

* by PI. (Eqn. 14b)

ft

* ARG (input) real

* The value at which BESCO is evaluated.
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» RETURN: Not used.

*

t ROUTINES
* CALLED: BESJ01, BES 101 (These routines evaluate

* Bessel functions)

*

* AUTHOR: Bradley P. Badke

> DATE CREATED: 18N0V37 Version 1.0

*

< REVISIONS: None.

,HHtHH«HH*mH»H»HH»HHHHH»H»HH«HHHHH«HH

REAL FUNCTION BESCtARG, N, M, Al , K_d)

IMPLICIT NONE

REAL Al, ARG, K_d, BESJ01, BESI01

INTESER N, H

EXTERNAL BESJ01 ,BESIOi

IF IN .LT. H*ftl/K_d ) THEN

BESC = BESJ01(ARG,0)

ELSE

BESC = BESI01 (ARS,0, 1

)

ENDIF

RETURN

END
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*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

*

* VAX FORTRAN source filename: BE3D.F0R *

*

if REFERENCES: N. Kalyanasundaram , "Large-signal field

* analysis of an 0-type travelling wave

t amplifier Part ll Theory," IEE PROCEEDINGS,

» Vol. 131, Pt. 1, No. 5, pp 145-152,

* Dctober 1985.

*

* N. Kalyanasundaram and R. Chinnadurai,

* "Large-signal field analysis of an 0-type

t travelling wave amplifier Part 2:

* Numerical results," IEE PROCEEDINGS,

« Vol. 133, Pt. 1, No. 4, pp 143-168,

* August 1986.

*

» ROUTINE: function subprogram

( BESDfARG, N, M, Al, K_d)

i

* DESCRIPTION: Returns PI*Y0(ARG)/2 for N < M*A1/K_d else

* returns KO(ARG). Called when calculating

* equation 42e.

•

* DOCUMENTATION
* FILES: None.

*

* ARGUMENTS:
» ARG (input) real

* The value at which the Bessel function

* is to be evaluated.

*

* N (input) integer

* The value of the inner loop.

*

* M (input) integer

* The value of the outer loop.

*

* K_d (input) real

* The normalized tube length divided by PI.

X (Eqn. 14b)

*

* Al (input) real

* The initial velocity divided by the

* speed of light. (Eqn. 4)

*

* RETURN: Not used.
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* ROUTINES
* CALLED: BESKOl, BESYOl (These routines evaluate

Bessel functions)

* AUTHOR: Bradley P. Badke

*

* DATE CREATED: 09N0V87 Version 1,0

* REVISIONS: None.

*

*********,******************************************************

REAL FUNCTION BESDiARG, N, N, AS, K_dl

IMPLICIT NONE

INTEGER N, N, NZ

REAL ARG, Al, K.d, AN3J, PI, BESKOl, BESYOl

EXTERNAL BESKOl , BESYOl

PI = 3. 141592654

IF (N .LT. M*A1/K_d! THEN

BESD = (PI/2)*BESY01 <ARG,0,ANSJ>

ELSE

BESD = BESKOl (ARG, 0,1 ,NZi

ENDIF

RETURN

END
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Abstract

This report discusses the development of a large

signal theory for a traveling wave tube amplifier (TWTA)

.

There is a need for a large signal theory since TWTA's are

often operated near saturation and there has yet to be

developed a satisfactory model for large signal operation

of a TWTA. A good large signal model of a TWTA would be

useful when designing a TWTA for a particular application.

This report describes the computer implementation of a

mathematical model of a traveling wave tube amplifier

(TWTA). The first topic considered is the small signal

theory of TWTA's developed by J. R. Pierce. From Pierce's

small signal theory the gain of the amplifier considered

was 0.18 dB/z.

Next, the large signal theory of TWTA's, developed by

N. Kalyanasundaram, is discussed. For the amplifier

considered, the small signal gain of the amplifier is 0.2

dB/z, which is close to the gain predicted by Pierce's

theory. Kalyanasundaram ' s theory also shows electron

overtaking which is known to occur when a large signal is

input to the TWTA.

Next, independent verification of Kalyanasundaram '

s

theory is discussed. A computer program named TUBE was

developed based on Kalyanasundaram ' s equations. For the

amplifier considered, the gain of the TWTA was 0.2 dB/z

which is close to the small signal gain predicted by



Pierce's theory. TUBE also shows electron overtaking for

large input signals. The results produced by TUBE are

qualitatively similar to Kalyanasundaram ' s results but they

are not identical. The reason for the discrepancy is not

known

.


