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worms present. If .1 hosts a ....

.... each, a frequency distribution of the counts, i.e., i. is

with 0,1,2,... worms of a particular species, or of all .

be calculated. It nay then be possible to determine if this observed . ..cy

distribution follows some theoretical statistical distribution. If it doc ,

then the probability of a particular worm count occurring in any sample taken

from this population can be determined. The sample estimates of the

eters of the theoretical distribution can also be calculated from sample

counts adding to existing knowledge of the observed distribution.

If sacrificing the host to obtain worm counts is undesirable, then

parasite egg counts, obtained by taking subsamples of faecal samples col-

lected from the infected host, may be used to estimate the true vo

of the host. Just as in the case of worm counts, a frequency distribution

can then be constructed based on the observed number of faecal subsa...o!es

with 0,1,2,... eggs present.

This report is concerned with the most popular theoretical distributions

used by various workers in the past to fit the observed egg counts under

specified conditions.

Peters and Leiper (1940), using two different egg counting tec . ... ,

concluded that the distribution of successive counts of Haemonchus cont- :



eggs, when these counts were all from the sane suspension of eggs, was ap-

proximately the Poisson. Peters (1941) presents an interesting discussion

of dilution egg counts and gives three examples showing that the variance

or mean square of these counts approximates their respective means. He con-

cludes that the Poisson series is applicable. Emik (1947) concluded (using

a dilution counting technique) that nematode egg counts from 12 hetero-

geneous lambs were Poisson distributed. Brambell (1963) confirms Peters (1941)

position by taking egg counts from housed sheep. Hunter and Quenouille (1952)

took four faecal samples from each of 132 sheep and determined by a chi-square

test (discussed in the next section) that the distribution of the replicate

worm-egg counts in each sheep fitted the well-known Poisson distribution.

They performed other trials that gave similar results, i.e., Poisson distri-

buted counts; and in addition, the over-all chi-square test (i.e., the chi-

square value over all trials) also indicated the Poisson distribution. When

Hunter and Quenouille (1952) investigated 13 series of egg counts from dif-

ferent sheep however, they found that the negative binomial distribution

(also known as the binomial waiting-time distribution or the Pascal distri-

bution, (Wilks, 1962)) was appropriate.

If the assumption is made that egg counts are accurate estimates of the

worm population, then it becomes important to investigate what distributions

have been found to describe worm counts themselves. As regards this as-

sumption it is interesting to note that Uillmott and Pester (1552) performed

an experiment in which they tried to ascertain within what limits egg counts

were reliable criteria on which to base estimates of the number of flukes

(paramphis tomes) in the host. They admit that the number of observations was

too few to permit definite conclusions, but basec on their observations of
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. that the frequency distribution of woi

lickena followed the negative binomial distribui.

en (1955) found that the negative blnoi z'.-^ counts oi . . - .

alii which they obtained while working on the problem of Immunity and

tolerance of chickens to __. .Hi . Li and Hsu (1951) studied 15 8]

of parasitic nematodes, 3 species of cestodes, and 5 species of trer.-.utodes,

and found that the frequency distribution of tne counts of parasites found

in their natural host (of various types) had the characteristics of beii

skewed in the positive direction and similar in appearance. They hypothesized

that I. of the Pearsonian frequency curves would probably fit r.ost of the

curves. Although Northam and Rocha (1958) do not discount this conclusion,

they point out that the negative binomial distribution would prooaoly fit the

data as well, and it would have the advantage of being discrete just as the

data are discrete.

From the conclusions of these various investigators, it appears that

both egg counts and the underlying worm population can be described by C

Poisson or the negative binomial distributions, depending on the samplin

procedure. This report is therefore centered around these two distributions;

their derivations, properties, and applicaDility to egg count studies.



tile: poisson distribution

Derivation

The Poisson distribution was discovered by Poisson in 1337. Bortkewetsch

later expanded Poisson' s work by illustration. This series was independently

discovered in 1907 (Whitaker, 1914) by "Student" (1907) in his paper entitled

"On The Error of Counting With a Ilaemacytometer" , in which he showed that

the distribution of small particles in a liquid followed the Poisson law

e
"ra

[i + m + fr + . . . + si + . . . ] = £ls!L (1 )

where m is the arithmetic mean number of particles per unit volume, e is

the base of the natural logarithm and is approximately equal to 2.718, and

the successive terms in the series gives the probability that a given unit

volume contains 0,1,2, ... ,r,. . . particles.

The Poisson distribution can be derived in the following manner (Student,

1907; Ostle, 1963). Suppose that a liquid suspension of helminth eggs ob-

tained from a faecal sample is thoroughly mixed and spread evenly over a

surface marked off into N equal units of area. Suppose further that each area

has an average of m eggs contained in it, resulting in a total of Km eggs

throughout the whole suspension. If the suspension has been thoroughly mixed,

a given egg will have an equal probability (—) of falling on any one of the

unit areas, and an equal probability (1 - —) of not falling on a particular

unit area. Similarly, the probability that a given unit area will contain

m , . . m
an egg is — , and not contain an egg is 1 - — .

It must be assumed that each unit area has the capacity to hold any

number of eggs without affecting the probability of still more eggs falling



on . t of i ...

- x) La t eggs

BXX

- x) - fl(|) (1 - ~) -"• >>»•••

.^.. is simply Che expansion

<7 +(1 -7» (3)

Equation (2) is usually written as

,n. x n-x
(
x ) P q ,

1 , 1
witn n = mN. p — , ana q = 1 - —

x = 0,1,2, ..

.

(A)

where it should be noted that as N + ~, the quantity — * 0.

t- v>

The (x + 1) tern in the expansion of (2) is

x r.L.-x

[^j] nN[mN-l][mN-2] . . . [mli-x+l] [M [1- A]

1 in 1 v
Letting Nm = n, it is evident that — = — and 1 - — = 1 .

n N n

Therefore, (5) becomes

n(n-i)(n-2). . . (n-x+1)

x!

X , - .-.:

A (i - hn

Dividing both the numerator and denominator by n , it is seen that (6)

reduces to

(5)

(6)

i

~x

id - ha - h . . . (i - £i±) a- (i - -)'

n n n x!
(7)



Taking the limit of this expression as n -*• <° (which implies that mN + °»

which in turn implies that N -* °°, since m is considered fixed) it is seen that

(7) becomes

x
m —m
,,i

e » x - 0,1,2 , . . . (d)

which is the probability function of the Poisson distribution.

From this derivation, it is apparent that the Poisson distribution is a

limiting form of the binomial distribution given by equation (4) where

N -> «>
, resulting in — * while the mean number of particles per unit area

(m) remains constant; or as Peters (1941) puts it, "The Poisson series is

simply the binomial series pushed to the limit where p is indefinitely sraall,

q is near unity, and n is so large that the mean, np, is an appreciable

quantity."

It is not difficult to justify the premise that dilution egg counts fol-

low the Poisson distributioxi (Peters, 1941). Dilution egg counts are usually

performed using the licllaster slide technique in which the eggs are counted

that lie under a centimeter square engraved on the fixed coverglass which is

supported 0.15 cm. above a slide by 0.15 cc. of egg suspension. Because the

faecal suspension is a half-saturated solution of salt, the eggs rise to the

coverglass making them easy to count.

Peters (1941) estimates the average volume of 7 common sheep nematode

3
eggs to be 0.0002 mm , where he is considering the average egg to be a square

3
prism of dimensions 90y by 45u. Since 150 mm is the volume of the suspension

under the centimeter square, Peters calculates that there is room for

750,000 eggs closely packed in the available space. If the mean number of

eggs in each square centimeter is 100, then p, the probability that any unit
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Properties

C t ion to tne noisson Jis tribute . Hie Poissoo ri-

bution is known to approach the normal distribution as m becomes very lai

.s can be shown to be true by investigating tne distribution statistics a

and a , where

a

u
4

a

....ere u. and u. are the third and fourth moments about the of the di^-
b 4

tribution, respectively, and o 3 and a k are the third and fourth r of l

standard deviation of the distribution. The statistic a is a

skewness, and the normal distribution is always equal to zero cue to -

symmetry of the normal curve. A measure of kurtosis, i.e., a reasure of

whether the distribution is more peaked or flat-topped than the normal curve,

is given by the statistic a. ana is always equal to three in the normal cis-
4

tribution. It can be shown that for any point binomial distribution found



by evaluating (q + p) , the values for a„ and a. are
3 4

_ n-p 1 6 , .
a = ——— , a = + 3 .

3
^pT ^ npq n

Nov; if p is assumed to be very, very, small (which results in q

approaching 1) , and n to be very large so that np is an appreciable

quantity, then a and a, become appropriate statistics for the Poisson dis-

tribution. In such a distribution we have

a_ = —
, and a. = 3 + —

3 /— 4 m
vm

Thus, if m (the arithmetic mean of a Poisson distribution) is large, a -»

and a -* 3, which implies the Poisson distribution approaches the normal

distribution (Waugh, 1943).

Equality of the ileau and Variance . One of the most useful properties

of the Poisson distribution is the equality of the mean and variance, which

can be shown in the following manner:

The moment generating function of a random variable X with a Poisson

distribution is <J>(6) where

00 9x x
xfn\ -m r e m

x=0
XI

~
r 6]

X

-m v [me
e

K
^~

x=0

e
-m me

e • e

m(e - 1)
e
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2 20 r.(e
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,-no + e . A

2

It is concludes that

..) =:.: =
.

and

E(X") - (E(X))" =
i

- -
i - ra

2
,D - (ZOO) -b + -

= r. .

Tac Poisson distribution is therefore completely specified by the one

parameter

Transformations , To make the v..

.

lent (where the

observations are Poisson distributed) , Bartlett (1947) recoi ire

root transformation, Sx, or for very small numbers the transformation

/x + 1/2 .

ik (1947) usee! the square root transformation on ere. . count

tained on each of twelve sheep where the counts were Poisson dist

For each sheep he calculated the mean of the transformed com .

the mean and variance were no longer signific correl Lted,

formed an analysis of variance on tr.ejc transformed com t

tests for significance. He was able to make these tests onl
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transformation was made, causing the means to become independent of the

variances and the counts somewhat more normal.

Testing Hypotheses

Given that an experimenter has taken faecal samples and made numerous

dilution counts from these samples where the number of eggs per count ranged

from zero to n, he is usually interested in testing some hypothesis about

these counts. A common hypothesis tested, is that the counts follow the

Poisson distribution. If the experimenter assumes this hypothesis to be true

he can find the expected number of counts with 0,l,2,...,n eggs per count by

evaluating the probability function of the Poisson distribution for

x = 0,l,2,...,n and for m calculated using his sample counts. The prob-

ability function can be evaluated by first calculating equation (3) for

x = 0, then use the relationship

-m x+1 -m x
e m e m m
(x+l) ! x! x+1

for x = l,2,...,n. The probability function for each value of x is then

multiplied by N, the total number of counts taken, to obtain the expected

frequency of counts for x = Q,l,2,...,n. Now the experimenter is in need

of some statistical test that will help him make a decision as to whether his

observed counts differ significantly from the calculated expected counts,

resulting in a decision to either accept or reject the hypothesis that the

counts are distributed according to the Poisson distribution.

Probably the most commonly used test is the chi-square test developed

by Karl Pearson in 1899. He developed the x
2 statistic, where



x
2 - I CO, - E )'/..

.

i-1

0. the number of egg co... rved Li I cl..

class is one unit ir. length

and

E . tl . jcr oi egg counts expected in " class under t

hypothesis of Poisson distributee cour. I .

Under these conditions x
2 aas approximately the chi-square d ution

with n - p - 1 degrees of freedom, where the Dumber of class intervals used

in fitting the distribution is n, and p is the number of parameters in the

distribution. Since the Poisson distribution is being fitted, the appropriate

degrees of freedom are (n - 2). Equation (9) can thus be used to test the

hypothesis that the observed egg counts follow the Poisson distribution

(Ostle, 1963).

Instead of calculating the expected number of counts, it is a common

procedure to use the fact that for all Poisson series, the variance is

numerically equal to the mean and to use a slightly different form of the

chi-square statistic than given in equation (9). Since

I (x. - x)
2
/ o 2

i=l
1

has the chi-square distribution with (n - 1) degrees of freedom (Fisher,

1954), for true samples from a Poisson distribution,

n

(a
x

X
2 - I (x, - my/ m (IG)

i-1
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is approximately distributed as a chi-square with (n - 1) degrees of freedom,

where

x. = the number of eggs observed in the i count,

n = the total number of counts taken,

and

m = the mean number of eggs per count.

The reader should note that equation (9) is used when working with frequencies

of egg counts, whereas equation (10) is applicable when working with the

number of eggs per count. When using equation (10) the hypothesis being

tested is identical to the hypothesis underlying equation (9)

.

It is also of importance to note that the sum of k independent chi-

squares is a chi-square with degrees of freedom equal to the sum of the

degrees of freedom of each individual x
2

» The resulting x
2 test is

sensitive and will often show discrepancies that were not apparent in the

separate x
2 values.

If many values of x
2 are available for testing (all with the same

degrees of freedom), it is often aavisable to distribute the various x
2

values into classes bounded by values given in the chi-square table (de-

pending, of course, on the degrees of freedom with which the table was

entered) as Brambell (1963) does with chi-squares calculated from egg counts.

The expected frequency of these classes can be obtained directly from the

chi-square table. Thus a x
2 test may be performed using equation (9) where

9 th
0. = the observed frequency of occurrence of x values in tne i

class interval,

and

9 th
E. = the expected frequency of occurrence of x values in tne x

class as taken from the chi-square table.
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a'jovc arj a coi\ of . , •

degrees t -ve values of t' ..Mure

P the probability that a x
2 value will be observe t is I

calculated X" value fr

of Poisson distribution counts is true.

To every value of x
2 there thus corresponds some value of P. The question

now arises: What values of P would indicate the hypothesis shoulc be ac-

cepted? Fisher (1954) states that a value of P betv/een 0.1 and 0.9 woi

certainly indicate that the hypothesis should not be rejectee.

If an experimenter desires to test

H, : m < m
1 — o

: m > m
2 o

for a particular series of counts, this nay be accomplished by using a cable

of the cumulative Poisson distribution. In this table are values of F(x) where

F(x ) = P(x < x )
o — o

V e n

x=0
X "

for various values of m and x. The procedure for a sample of size one, is

to calculate

P = 1 - F(x - 1) (12)
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where F(x) is read from the above mentioned table assuming m = m . If
o

P
j5_ a, where a is a preassigned level of significance, E. is rejected and

J.

H„ accepted (Ostle, 1963). For samples of size two or larger, the sample

sum z, replaces x in equation (12) were z has the Poisson distribution

do to the following theorem from Wilks (1962), page 206:

If (x. ,x_ , • • • ,x ) is a sample from the Poisson distribution Po(m),

then the samplying distribution of the sample sum, say z, is distributed

as a Po (nm)

.

The quantity P = 1 - F(z-l) is then determined from the cumulative Poisson

tables and II is accepted or rejected on the basis of the size of P in re-

lation to a.

As an example, suppose 4 Licmaster slide counts have been made, resulting

in the following egg counts; 3, 0, 5, and 8. Let the null and alternative

hypothesis be

H : m <_ 2

K : m > 2,

which is testing the hypothesis that the average number of eggs per count

is 2, and let a be 0.01. Since n = 4 and m =2, from the above theorem it
' o

is seen that z is distributed as Po(8). Using the cumulative Poisson tables

in Ostle (1963) and equation (12) with z in place of x, it is seen that

P = 1 - F(16 - 1) = 1 - F(15) = 1 - 0.992

= 0.008

Since P < 0.01, the R. is rejected and it is concluded that m > 2.

Often an experimenter wishes to test for significant differences between

means of two or more Poisson series. Suppose 4 series of counts are known
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x
2 -i I (s

1
- h 2

d3)
. L-l
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,

. re d is the number of distributions I . f x
2

it is condu .at the i.'.eans, m . ,
oantly

. I . ution caiinot adequately fit all 4 series of count., (Snedecor,

e 234, 1956; Ostle, page 125, 1963).

If the number of counts taken is large so that the total number o.

counted is large, it is appropriate to test for differences between 2 Pois.

distributions by means of "Student's" t uest, where

(x - x ) - (y - y )

t = -^ — (14)

ff
x — x~
1 2

(aL - x
2

) - (y - y_)

X
l

X
2

Under the hypothesis that y_ = u , (15) reduces to

(15)

t = —* — do)
*n

-
J.

x„

/s
2 - S

x
l

X
2
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As an example, suppose 100 counts were taken resulting in 300 eggs being

counted over all counts. If the entire sample of 100 counts is considered

as a unit with 300 eggs, it may be thought of as a single sample drawn from

a population whose mean is estimated at 300 and whose variance is therefore

300 (assuming the counts are Poisson distributed). Therefore, since Poisson

populations with such large means are approximately normal in distribution,

this sample may be considered as drawn from a normal population whose mean

is estimated by x = 300 with standard error s = /300 . If another series
x

of counts is taken, say 75 counts resulting in 275 eggs, the difference

between these two distributions may be tested by equation (16). That is

._ 300 - 275

/300 +275

25

24

* 1.042

which would indicate that the two series of counts probably are from the

same population, i.e., the same Poisson distribution (Snedecor, p. 437, 1956)

Egg Count Studies

As was mentioned in the introduction, Peters and Leiper (1940) did a

study using sheep in which they investigated the variation among successive

dilution egg counts from the same suspension of eggs. They proposed two

questions:

1) What is the form of such a distribution?

2) What is the relationship between the mean and variance of this

distribution?
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1 a Mc tte. Ele\ , of c*

^rscood to be all of the present on a slide cont.. 0.15 ml. of

ach juries consists of 25 counts. All counts in a

. ies w< . ie £xc Le volume of 200 ml. of a suspension i

atration i s was different from scries to s. i

Since each series had its ov;n mean and variance, and since the authors

were interested in the overall distribution of the 275 counts, the tr -
-

formation

x - x
y = -T~

applied to each series, where x and s varied accc to t..^ series o:

counts in which the x variate appeared. ean anc standard deviation

of the new compounded distribution of 275 trans formea counts were

0.9894 respectively. To show that the transfomed counts were in appro;.

agreement with the norr.al curve, first it was shown that the distribution

was roughly normal in shape. This was done by simply superimpose

curve over the histogram made from the transformed counts bein to

10 intervals of length y = 0.5C and observing the visual ;_oodnes.> I .

Secondly, the chi-square test was perfor ned, i.e., the oosui-. .ies

in each interval were compared with the frecuencies expect

hypothesis that the observed values were normally distributed. In t.
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calculation of the x
2 statistic (using equation (9)), 8 intervals were

used instead of 10 due to the interval on each end of the distribution having

an expected frequency that was too small. If 3 intervals had been usee,

this would have resulted in an artificially large chi-square value. Thus

the most extreme intervals were combined with their nearest neighbor. The

total x
2 was equal to 2.3762 with 7 degrees of freedom, corresponding to

a P of about 0.9. Therefore Peters and Leiper (1940) concludec that the

egg counts were close to the normal distribution in form.

The authors point out the mean and variance of each of the II original

series of counts are roughly equal. They also note that as the mean of a

Poisson series becomes large, the distribution approaches the normal. This

result has been shown to be true previously in this report. With these

thoughts in mind, they continue on in an attempt to show that the counts

are Poisson in nature.

The mean and variance of each of the original 11 series of counts was

plotted with the mean on the abscissa and the variance on the ordinate. A

linear regression analysis was conducted resulting in a graph showing the

linear regression line along with its 95% confidence bound lines. The

expected line based on the Poisson distribution for which the mean and variance

are equal, just intercepted the lower limit line, resulting in Peters and

Leiper drawing the conclusion that the series of counts was just barely con-

sistent with the Poisson distribution.

These authors also performed a regression analysis on the logarithms of

the counts due to the fact that low counts were anticipated. Plotting the

log standard deviation against the log mean and then calculating the regression

line with its 95% confidence limits, the expected Poisson-theory line was out
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. ... car slide) wfa . , counts of naturally

, They wore concerned with this problem becau . :.ie

count increases as ;.:ore eggs are counted when dilution ct.

. used. A related problem of interest concerned the optimum ti ;e

before repeating the v;hole samplying procecure again. In order to i. -

cijate these two problems they first investigated the cion of ej

counts both between and within sheep. Chey found these :o be the negati

binomial distribution and the Poisson distribution, re . .ae

portion of their paper deali::/. rith : ^ve binomial distribution will

be delayed for discussion until later.

used were ewes and gimmers (yearli:. ieep) fi

various flocks in various parts of Scotland. Faecal sample

the rectun of these sheep and were counted usin^ th : -stcr sld

authors made 9 series of counts in all, <:.. ch series consisted of t -

taining several counts on each sheep.

The first series consisted of 4 counts on cao. of 132 . i-

square statistic was caiculatea usin_, equation (10) c -

counts and these values were added together yielding a total chi-squar
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415. S with 3x132 = 396 degrees of freedom. P was greater than 0.2 resulting

in the conclusion that chance variation could result in this outco:.:e when the

Poisson distribution was assumed to be applicable. The other 8 scries of

counts yielded various chi-square values with their appropriate decrees of

freedom. The total chi-square over all 9 series was 1,322.0 with 1,339 degrees

of freedom, indicating good agreement with the expected value (? > 0.50) and

very good agreement with the expected values in each series of counts.

Brambell (1963) considers the extent of variation of egg counts taken

from the same sample, and taken from several samples drawn from the same

sheep whose host-parasite physiological relationship is unchanged (i.e., given

a stable host-parasite relationship, the effects of the time of day, amount of

faeces passed, and water content of the faeces, can be investigated with less

error). In. order to gain insight into these two problems, Brambell makes ob-

servations of egg counts obtained using the McMaster slide technique on housed

sheep under experimental conditions that are infected with .- er-onchus contortus .

He used two groups of sheep. Group I consisted of seven sneer infected

with Haer.onchus contortus , and group II contained 4 sheep reared indoors under

worm-free conditions. Sixteen faecal samples were collectea from each sheep

in group I, where each sample consisted of four chamber counts. Equation (10)

was used to compute a x
2 value for each example, each with three degrees of

freedom. A chi-square goodness-of-fit test was then perforr.ee using a slightly

different technique than previous workers cited in this report had used.

Brambell' s technique involves comparing the per cent of sample chi-

square values falling within a given range of x
2 values in the chi-square

table against the expected frequency of x
2 values falling within these

intervals. The range of tabular x
2 values has a known expected frequency.
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' obs«r\

of occurreiu • all COuJ

X
2 statistic for cacti interval. A pooled x

2 v. i li-

ft x statistic computed for each interval i

total chi-square value of 5.63 with 6 decrees of freedom (since ue ...id 6

intervals). P was close to 0.30 which supported the hypothesis c

distributed counts. Accordingly, iirambell concludes that the hypothesis of

Peters (1941) that Mc'iaster slide egg counts follow the Poisson distribution

is confirmed.

Brambell (1963) considers his technique as outlined above to jc superior

to methods used that compare only one estimate of variance in a series of

counts with the mean of the series. He bases his argument on the fact tnat

other distributions than the Poisson have the characteristic that at certain

values of the mean, the variance approximates to the mean. He reasons that

to compare only one estimate of variance in a series of counts with the mean

of the series is thus not sufficient to distinguish the Poisson series.

Of the four sheep in group II (labeled A, B, C, and D) sheep A, B, and

C, had 120 samples counted (2 chamber counts per sample), and sheep D had

108 two chamber counts. The chi-square statistic was calculated on each

sheep using the same procedure as was used on group I sheep. Of the four

series, two, (A and C) , deviated from the Poisson distribution with chi-square

values of 23.36 and 27.02 respectively, with 6 degrees of freedom. In the

series from sheep A, 13% of the counts showed abnormally high variability.

With sheep C, the mean was so low and the number of chambers counted so few

that the chi-square test became unreliable.
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Many years earlier Peters (1941) hypothesized that a discrepancy such

as occurred in sheep A could be explained by personal error on the part of

the counter if the mean count is in the neighborhood of 50. The easiest way

to overcome the difficulties in the series associated with sheep C is to

count more chambers.

Brambell (1963) gives a table derived from the Poisson distribution as

an aid in the determination of the range of populations from which an egg

count could have been drawn. For counts from to 170 the table gives the

range of means of populations from which the given counts could be drawn

more often than once in twenty times, assuming the counts are from a Poisson

distribution.

Emik (1947) performed a chi-square test on 240 egg counts from 12

heterogeneous sheep in a manner similar to Brambell, but instead of using

a range of chi-square values for each interval, he used probability limits

in the x
2 tables with one degree of freedom under the assumption of Poisson

distributed counts. He then counted the number of observed x
2 values that

fell in each interval of P. The expected number of x
2 values falling

in each P interval was calculated directly from the probability intervals

themselves. The x
2 calculated was equal to 6.250 with 7 degrees of

freedom, yielding a P of about 0.5. This size P resulted in acceptance of

the hypothesis that the counts are Poisson distributed.
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. . .

Derivation

Live binomial distribution is one of several distributions

proposed to describe a series of counts in which the variance

icantly larger than the mean. The negative binomial,

Cq " P)"
k

n
where p f-, and q 1 + p, (where m and k are defined below) is so

k

called because of its analogy to the positive binomial (q + p) .

The first known derivation and publication of the distribution was due

to Montomort in 1714. Pascal and Fermat are also recognized as having dis-

cussed the distribution (Bartko, 1961). Student (1907) obtained the neg-

ative binomial when he observed, while deriving the Poisson series fron the

binomial, that two of his series gave negative values for p and n yet

fitted the data very well.

The distribution is completely specified by two parameters. The first

is the mean, namely m. The second is an index of over-dispersion, denoted

by k. The nature of k can be better understood if it is recalled that in

the Poisson distribution the mean is equal to the variance. In the negative
2

binomial distribution, however, the variance is given by m + r—• Liote that
k

as lc becomes large, the second term in the variance equation tends to zero,

i.e., the variance will approach the mean in value. Thus the negative bi-

nomial distribution with parameters m and k, becomes very much like the

Poisson with parameter m. As k becomes very small, the variance becomes

very large, a property called "over-dispersion" (h'ortham and Rocha, 1958).
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Wilks (1943) formally proved that the negative binomial approaches the

Poisson as k >• «, In addition, it is pointed out by Bliss and Fisher (1953)

that as k -* » and the number of units containing no individuals is disregarded,

the distribution approaches Fisher's logarithmic series (Williams, 1947).

—

k

If (q - p) ' is expanded, the probability P that an observational unit
X

will contain x 0, 1, 2, • . . individuals is

(k + x - 1) ! R*
x x! (k-1)! k

q

where R = p/q = m/(k + m). Therefore

p _ (k + x - 1)
j

/ m >x -k
x *

x! (k-1) !

" C
k-ha

; q

= (k + x - 1)

!

x -k-x (17)

x! (k-1)! P q

where k need not be an integer. To find the expected frequency of units

with x individuals simply multiply equation (17) by N, the total number of

counts.

If 1/q is taken to be the probability of a "success" and p/q as the

probability of a "failure" in a trial, then equation (17) can also be in-

terpreted to be the probability that x + k trials will be required to obtain

k successes (VJilks, 1943).

Equation (17) is not the only form of the negative binomial in use.

Bartko (1961) lists the following two forms in addition to the form given

in equation (17)

:

p(x) = (

X +
I

" X
) p

r
q
X

, x = 0,1,2,... (18)
A

where r and p are parameters, p + q = 1, and r is an integer;

and



P(X) -
<""J) I)" q\ x - 0,1,2,... (19)

M r and p arc eters vltfa B - r + x. U'ilks (l',/o2) .11

another lorn:

p(x) - (.",) p q , x - k,k+l,...,

•M x is a random variable denoting the number of trials perl on
i

order to obtain exactly k "successes". Although these alternative foi

have many useful applications, the negative binomial in the form of equation

(17) will be used in this report due to its frequent use in egg count studies.

Wilks (1943) shows that the mean and variance of the negative binomial

are kp and kpq respectively, which Fisher (1941) points out are identical

with the first and second moments of the positive binomial except that k

corresponds to -n and q = 1 + p, i.e., the sign of p is changed. Wilks

(1943) also formally proves that the negative binomial is an extension of

the Poisson series as the variance of the negative binomial approaches the

mean (as was noted above).

Models

The negative binomial distribution can arise from a variety of bio-

logical situations. In fact it has generally been held that in some cases,

one can start from two or more mutually incompatable biological hypotheses

and arrive at the same over-dispersed distribution using deductive reasoning.

As an example of this, Bliss (1958) states that one could assume that unit

areas are unequally exposed to infestation and individuals completely in-

dependent of each other, or that contagion was present and the initial in-

festation uniform. With the proper definitions, both hypotheses could lead

to the same over-dispersed distribution.
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Anscoinbe (1950) and Bliss and Fisher (1953) discuss the several ways

in which the negative binomial may arise. Only two of these will be presented

here due to their applicability to egg count studies. The reader interested

in the other models is referred to the above authors.

When the mean, m, of a Poisson distribution is not constant from trial

to trial or sample to sample, then the counts may be a mixture of several

homogeneous Poisson distributions. In such a mixture of Poissons, the mean

represents a positive continuous variate. If m is distributed according

to the Eulerian distribution (also known as the Pearson Type III distribution)

then the counts conform to the negative binomial distribution. Also, if the

mean degree of infestation in different sampling units follows the log-

arithmic distribution the negative binomial is known to arise (Hunter and

Quenouille, 1952).

Estimation of Parameters

The parameters m and k are estimated from the frequency distri-

bution of a sample by the statistics m and k. The mean number of eggs

per count is estimated efficiently from the frequency of counts, f, at each

level of x, the number of eggs per count. That is,

1
n

x m - rr I xf , x = 0,1,2,.. . ,n (20)

x=0
where

N - total number of counts taken

and

n = the largest number of eggs observed for any count.
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with no eggs present, and the method of maximum likelihood.

j
.>'d of foments . The simplest and oldest method Oi

2
is based on the first and second moments, m and s respectively. Since

2 .

s = K.pq

2

- n + f- . (21)

if equation (21) is solved for k we have the result:

2
1 - ra _ ! /TONk
i " 1 F

(22)

s - m r

where

2
s =

7fbiT EN E (xf
x
)2

( 2
xf

x
)2] * (23)

^ ; x=0
X

x=0
X

In practice, in is calculated using equation (20) and replaces m in

equation (22) to give k , which is the estimate of k derived by the method

of moments, i.e., in this instance, by equating the variance of the sample

to the variance of the distribution (Anscombe, 1949).

Fisher (1941) showed that the estimate of p by the method of moments

is given by the equation

2

p = . (24)m

Tnis result is easily seen by replacing k by — in equation (22) and solving

for p.
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R. A. Fisher (1941) also derived the equation of —, where E is the

efficiency of calculating k by the method of moments compared with k calculated

using the fully efficient maximum likelihood technique. Anscombe (1950)

plots this efficiency for various values of m and k. In general, the

method of moments has an efficiency of 90% or more for small values of rc

when k/m > 6, for large values of m when k > 13, and for intermediate values

of m when (k + m) (k + 2)/m _> 15 (Bliss and Fisher 1953). Fisher (1941)

states that if p is less than 1/9 for any value of k, or if k exceeds 18 for

any value of p, then high efficiency is assurred. If the efficiency in any

particular situation turns out to be low, then a more exact fitting nay be

acquired by the maximum likelihood method which is presented following the

ratio method.

The Ratio Method . To estimate k from the ratio of the total number of

observational units, (N) , to the number of units with no eggs present, (f ),

it is necessary to note from equation (17) that the probability for x =

is P = 1/q . Replacing P with the proportion of empty units to total units,

it is seen that

P = f /N = l/q
k

- 1/(1 + m/k)
k

.

o o

Since

or

or

log(f
o
/N) = logl - k

2
log(l + n/k

2
)

k
2
log(l + m/k ) —log f

Q
+ log N

k
2
log(l + m/k

2
) = log(N/f

Q
), (25)
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k '
, respectively) give a product both Larger and smaller than the n

2

side of equation (25), which is calculated i row I pie values

therefore a constant. The first approximation of k (denoted by k!) i

tained by interpolation between these two products. II o:

equation (25) is then calculated using k' and interpolation between k! and

k' or k' and k' is executed depending on whether the new product (using ki)

is larger or smaller than the right side of equation (25). This final in-

terpolation gives the desired estimate of k.

If k is to be estimated with an efficiency of 90% or more, at least

1/3 of the observation units must be empty. If m is less than 10, enough

empty units must exist such that

(m + 0.17) (P - 0.32) > 0.20 (Bliss and Fisher 1953).
o

The '- Method of laxir.um Likelihood . It sometimes happens that k cannot

be efficiently estimated by the above techniques. If tnis is the case, the

method of maximum likelihood may be used, resulting in a fully efficient

estimate of k.

Haldane (1941) derives the following maximum, likelihood equation:

f +f +. ..+f f +f +...+f f

H[log(fcha)-log k] - -±-^_ a + ^ S. + . . . + j-j-SL- (26)

waere
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f. = observed frequency in the i class,

n = maximum number of eggs counted in a single count,

N = total number of counts, and

m = mean number of eggs per count.

The maximum likelihood estimate of k, is that value of k which satisfies

equation (26) (Edgerton, 1953). Haldane (1941) points out that interpolation

becomes easier if both sides of equation (26) are multiplied by k, since this

causes one side to increase with k while the other side decreases.

Bliss and Fisher (1953) present another maximum likelihood technique

for estimating k but their method is fully efficient only if the largest

frequency does not exceed 30. The equation

x=0 x i

where A is the number of observations exceeding x, is calculated using trial
X

values of k! , selected so that they bracket the required estimate k such that

Z. = zero. Equation (27) is computed using k' , which is usually obtained by

the method of moments. If Z is positive, the value of k 1 is increased

slightly, yielding the value k' such that k' > k' . If Z is negative, k'

is taken as less than k' . Then k' is used in the calculation of Z and the

new value k' is obtained by interpolation between k' and k' for Z = 0. To

increase the precision of k, a Z, may be computed that is opposite in sign

from Z_ by selecting k! at about the same distance as k' beyond a newly in-

terpolated k 1 for Z = 0. Interpolation between k' and k' gives the final

maximum likelihood estimate of k. Anscombe (1950) presents a good dis-

cussion of the preceding estimation techniques and Bliss and Fisher (1953)

give examples of all three methods.
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1

1950) is L>.'
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..>
1
tndfl only on k. ka Of k is then obtained by calcu-

lating the sample variance of y and equating it to tht oxpoctod v

I process is then repeated if the new value of k is muck differ

1... old one. Ansconbe (1949) suggests using the transfomation

y - log
1Q

[r +|] (20)

where r is an actual count, if o _> 15 and if 2 _<_ k <_ 5. If 2 > I; > 5,

then equation (28) may still be used but only if m is sufficiently lat

Under these conditions, the expected variance of y is approximately inde-

pendent of m and is equal to 0.1886^' (k)> where ^' (k) is the second

derivative of lnT(k) with respect to k.

The equation

y = Sinh"
1

/ (29)m 2c

may be used if k _> 2. The constant c is equal to 0.375 if k is large

and 0.2 when k = 2. The expected variance of y usin;j this transformation

is 0.25^'(k). The mean, m, nay be as small as 4 or 5 (Anscombe, 1949).

One important characteristic of t'ae negative binomial must be noted.

Since the distribution may be very skewed, confidence limits and standard

errors should be calculated initially in terms of 1/k, which has a relatively

symmetrical distribution.
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Variance of x and k

The variance of x is

, 2

V(x) = ±[m + f-] (30)
Li K.

A

where m and k are necessarily replaced by x and k.

A A

The variance of k depends on the method by which k is estimated. If

equation (22) is used to estimate k, its large sample variance is

A A

v(k ) = 2k ^+i]
(31)

NR

where

R = ^r-
2— . (32)

k + x

a

If k is calculated using equation (25) then the appropriate large sample

variance is given by

-k
V(k

2
) = -£iz£J * X " kR

(33)

N[-ln
e

(1-R) - R]
2

A A

where R is as defined in equation (32). The variance of k, where k is

calculated using the method of maximum likelihood (equation (27)), is given

by the ratio

a k._ - k,

V(k) = -f f- (34)
Z
4

" Z
3

where Z„ and Z, are the two values of Z. just above and below zero and
3 4 i

calculated using k' and k'.
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(k+l)
2
nj

,
' (k)««« denote th< « rivatives of lnr(k). Equation

(35) La accurate for pract Leal purposes .according to Anscombe if ra > 50

id assumin; ropriate hyperbolic sine transformation is used.

.3s of Fit Tests

rhe chi-square test is used to test the adequacy of the negative bi-

nomial distribution in fitting a series of counts much the same way as the

Poisson distribution is tested Lor goodness of fit.

iSt 1 . Bliss and Fisher (1953) presented the following procedure:

1). Compute the expected frequencies using equation (17). Start with

the number expected at x = 0, which is
<J>

= N'/q ,

2). Find the expected frequencies for x = 1,2,3,... by using the

relationship

= Hchc-ll .

X x x-1

3) . Avoid accumulating rounding errors by retaining more decimals

in the calculator than necessary.

A). Pool the frequencies with small expectations so that no expectation

is less than 5.

5). Compute
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n (f - 6 )'

x
2 = V _i x-

X=0 YX
(37)

where f is the observed frequency for each x, and the degrees of freedom

are (n - 3) , i.e., three less than the number of ratios summed. If x
2 is

small and m and k are efficient estimates, probably no other test is

needed.

Other tests have been proposed by Anscombe (1950) and have been dis-

cussed and illustrated by Bliss and Fisher (1953). Two tests in particular

are described that are applicable when N is large, each being based on the

difference between the observed and the expected second and third moments

of the negative binomial. These tests are not influenced by chance ir-

regularities in the observed frequencies and furthermore, the few large

values in the tails of the observed distribution are not ignored.

Test 2« Using the method of moments (equation (22)), estimate the

first two moments of the sample from a negative binomial distribution and

find T, the difference betx^een the third sample moment and the expected

third sample moment predicted from the first two moments of the same sample.

That is

.1*2. .
II

pq[q + p]m

= ^~ - S
2 [%^- 1]

m

n

I [f (x - m)
J

J

x=0
X

2
r
2s ..

- s [—X 1]

m

1
M

n _ * n - *
9

n

I [fy) - 3m I [f x
Z

] + 2i/ I [f x]

x=0
x

x=0 x=0

- s
2 [%-- 1],(38)

n
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root of its lai , v(T), where

V(T) = |[2n (k + l)p
2
q
2
$2(3 + 5p) + 3kq j J, (39)

C6 p m/k, c: 1 + p, and k is the maximum likelihood est li. ate if

Liable (Anacombe (1950) and Blisa (1953)).

Test J_. Compute tlie observed second moment and subtract from it its

expectation. That is, calculate U, where

U - s - (m + t-) (40)
k
2

A

where k„ is calculated using the ratio method (equation (25)). U has the

large sample variance

V(U) = 2m[k+l] pq
2

[l -
_ ln[ i_R3 .R / [N + p

A
V(k

2
)]

A

where V(k ) is defined by equation (33) but computed with the maximum

A

likelihood estimate of k if it is available, as are the other terms in

equation (41).

It should be noted that the expected moments in tests 2 and 3 are

confuted using other than maximum likelihood estimates. Bliss and Fisher

(1953) state that this is the procedure because V(T) and V(U) are derived

A

assuming T and U are calculated with a k estimated using some method other

than maximum likelihood. Thus V(T) and V(U) are of doubtful applicability

unless the procedure given above is followed.

(41)
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Transformations

There have been two transformations proposed for stabilizing the

variance of negative binomial distributions. One of these is the log-

arithmic transformation given by

y = log [* + y]. (42)

Beall (1954) suggests using the more sophisticated transformation given by

y = 4T sinh"
1
fx , (43)

which has been tabled for various values of x and 1/k ranging from to 1.

In both of these transformations, k is actually a common k as defined below

if a common k is available (Northma and Rocha, 1958; Bliss and Owen, 1958).

These transformations, in addition to making the variance independent of the

mean, also tend to make the transformed scores normal in distribution, and

the real effects additive. An analysis of variance can be computed on the

transformed counts and F tests performed since the assumptions underlying

such tests are more nearly met.

Calculation of a Common k

Several authors, for example, Anscombe (1949 and 1950), Bliss and

Fisher (1953), Bliss and Owen (1953), and Bliss (1953), have discussed the

calculation of a common k among several negative binomial distributions.

Bliss and Owen (1953) state that since observed counts are often compared

in terms of their means, a stable k would simplify such comparisons

materially. Bliss and Fisher (1953) see an advantage in a common k in that
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follow a

.. k, win n thods 1, 2, and 3, td on equal ions (22) , (2 ; ,

and the transformation method for esti. k, respectively^

1). Guess a value of k and calculate T for each set of count.
,

i.e., for each negative binomial distribution, where

[;:-l]s
2

- [N-l- km[l + -

T : *-
, (44)

[m + lc]^

2
where N is the number of observation units counted, and s and m are

defined in equations (20) and (23) respectively. The common k is tuat

value of k for which the sum of the expressions T, over all sets of counts,

is zero. N should be at least 10.

2). Guess a value of k and calculate U for each set of counts, where

U = log[l +?]
o k

-•[^l]

2[m + k] J
(45)

where n is the number of observation units that are empty. As in the first
o •

J

method, the object is to use a value of k such that the sum of all U over

all series of counts is zero. Again, N is assumed to be at least 10, Tor

details on the derivation of equation (44) and (45) see Anscombe (1950).

3). Calculate the variance of the transformed variate y (where y

is defined by equation (28) or (29)) for each set of counts, pool the answers

and equate to the theoretical variance, li may be as small as two in this

case. The restrictions on m and k for an appropriate transformation to

exist must be observed as mentioned following equations (28) and (29).
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Bliss and Fisher (1953) , by an expansion of the maximum likelihood

method of estimating k, present a method of calculating a common k (which

he denotes by k ) from several series of distributions. Equation (27) is

used to compute the score Z for each component distribution with the same

trial values of k'. These values of Z are added over all component dis-

tributions for each k 1 trial value resulting in suns S(Z). Different trial

values of k' are used until two of the sums are obtained which bracket zero

very closely. By interpolation between these two sums, the required

k is that value of k' for which S(Z) equals zero. Denoting these two

sums by S(Z«) and S(Z.) from corresponding values of k' and k', the error

variance of k can be calculated using equation (34) if Z and Z. of that

equation are replaced by S(Z ) and S(Z ).

Bliss and Fisher (1953) also show how to test for homogeneity of k

values over the component distributions by use of x
2

« That is, do the

values of k from the component distributions differ significantly. If

they do not then a common k can be derived. For each negative binomial

distribution Z_ and Z. are calculated using k' and k! • Then for each
3 4 3 4

distribution, the ratio

3

7

4

7

3
(46)

Z
3

" 4

is computed. From the sum of all of these ratios over all distributions for

which the ratio was computed is subtracted the ratio (equation (46)) cal-

culated using the sums S(Z.) and S(Z.) in place of Z. and Z. for k' and
3 4 3 4 3

k' respectively. The difference is distributed as a chi-square with (g-1)

degrees of freedom, where g is the number of distributions being con-

sidered. If the difference between the k's is not significant, then a
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the quantities x' and y' are computed, where

9
2

x' - x
Z

- f^ (47)

and

y* = s
2

- u .

If y' is plotted against x' , where x 1 is on the abscissa, the line fitting

these points and passing through the origin has the slope b = 1/k . Since

the increase in the variability of y' is often roughly proportional to l

increase in x' , a first estimate of 1/k is
c

i
1*'

r-77 • <49)

c 2.x'

where the summation extends over all component distributions.

It is possible to determine whether a common k holds over all dis-

tributions by calculating

1 v'

for each distribution and plotting it against its mean, x. If 1/k does

not consistently increase or decrease with x, and if there is no distinct

clustering of points, a common k may be fitted.
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A more accurate method for fitting k has been developed (Bliss and

Owen, 1958). For each negative binomial distribution in the set of dis-

tributions for which a common k is to be fitted, calculate the following

- 2 2
quantities: x, s , x' , y'

, y'/x', (m + k 1

) , wx 1

, and wx'y', where

x = observed mean given by equation (20)

,

2
s = observed variance given by equation (23)

,

x' = a statistic given by equation (47),

y' = a statistic given, by equation (48)

,

k 1 - jy/jy, (5D

where the summation extends over all distributions,

and

-- °- 5 ^ ' 1 ' k
' A

r • —^ r (52)

k f [k'+l] - [2k f -l]/N - 3/N
2

x f [m + k']
2

A

x' [m+k']
Z

where A is a constant for each distribution if N is constant from dis-

tribution to distribution. The quantity k is then given by

£[wx'
2

]

k = (53)

where the summation is over all distributions. If k differs appreciably

from
2

k' , the values of (m + k 1

) and wx' are recalculated using k instead

of k 1

. Equation (51) is a good first estimate of k if the quantities v/x'

are relatively stable over all distributions.

Instead of calculating w for each distribution, the product wx' may

be obtained by using the equation
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this difference is Che wei,;ht w (BliSl tad Owen, 1958) •

kt X test may be used here also to test v/hether a series of .
.\-

binomials distributions has a common k. lac procedure is to calculate t

quantity wy' for each distribution. This is most easily done by £irL,t D -

puting y'/x' and computing

(vx'Hy'/x') = wy' . (55)

The products of (y')(wy') are summed over all distributions to obtain

/.[wy
1

]. The quantity

J>y'
2

] - [I(wx
,

y
,
)3

2/ £(wx'
2

) (56)

is distributed approximately as a x
2 with (g - 2) degrees of freedom, where

g is the number of distributions. An additional degree of freedom is

lost due to the second terra of expression (56) being the slope of the line

with a zero intercept. It is important that k and k' agree closely before

column wy 1 is calculated because this chi-square test is sensitive to any

discrepancy between the two.

Bliss and Owen (1958) also describe a method of calculating a common

k that is useful when a k is necessary in transforming negative binomial

counts so that an analysis of variance may be computed.
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Egg Count Studies

There have not been many papers written describing egg count studies

where the counts follow the negative binomial distribution. Kost egg count

studies are concerned with replicate counts from the same animal and these

counts are usually Poisson distributed. Two papers will be discussed here

that involve the negative binomial distribution.

Hunter and Quenouille (1952) took egg counts on two different breeds

of sheep from three counties during the months of June, January, and July

in Scotland, and found some sheep tend to give much higher counts than would

arise in a random distribution, possibly due to different levels of resistence

to the parasites. They believe that the negative binomial might be appropriate

because the following two points were reasonable assumptions to make in light

of the egg counts they observed:

1). Counts from the same sheep follow a Poisson distribution.

2). The quantity m in different animals follows the logarithmic dis-

tribution.

Hunter and Quenouille (1952) fitted 13 series of observations to the

negative binomial by computing the expected number of counts for x = 0,1,2,...

and comparing these with the observed frequencies. The number of sheep in

these series ranged from 49 to 90. A x
2 test was computed for each series,

yielding a total x
2 value over all 13 series of 38.35 with 34 degrees of

freedom resulting in a P > 0.25. They conclude therefore that the negative

binomial is applicable to these counts.

The authors point out that a knowledge of p and k provides a con-

venient summary of any series of counts. They state that p usually is more
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output, .uiu k remained fairly uniform, varyiu;-. from • .• +0.61 to

. .2 + U.12. The authors Mention that the use of k alio on

oi distributions of egg counts under differing conditions and at d

tir.es to determine how uniformly the worms are distributed under these

varying conditions.

[he relative efficiency of different size samples in terms of the

variance is also investigated. The equation

ML+Jd x 100% = JL+A x ioo% (57)

kp[7+p] 7+p

is derived for this purpose, where kp(l + p) is the variance of a negative

binomial distribution for a particular sample size, and kp(l/r + p) is the

variance per unit sample of a sample r tiir.es as large. Thus, once p is

known for a particular sample size, the relative efficiency of various

multiples of this sample size may be computed.

Hunter and Quenouille (1952) also use the expression

102%
(58)

l-^
m

to calculate the relative efficiency in terms of the possible efficiency

obtainable with a sample of unlimited size. 2y using various values of i

and k in equation (58) they conclude that for large k (over 0.6) it is ad-

visable to take a sample large enouga to make the mean number of slices counted
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per sheep about four. For values of k between 0.4 and 0.7 a mean of 2

slides is sufficient.

The problem of how much time should lapse between repetition of the

whole samplying procedure is also discussed. The percentage gain in in-

formation from taking a second set of samples n days after the first is

.. k nH p

100 x r —
(59)

1 + - + pm n

where p is the correlation between the infestations n days anart.
n

After examination of this expression for various values of k/m and p ,

n

Hunter and Quenouille conclude that weekly sampling is adequate for most

practical purposes.

These two authors conclude by pointing out that a comparison of egg

counts between two flocks of sheep should take into account the parameter k,

since the dispersion of eggs throughout the population is just as important

as the number of parasites. The question of whether a high or low k is

most beneficial to the parasite is unknown. In more practical terms, this

could be stated as Hunter and Quenouille do; "In other words whether eggs

dropped on pasture would survive better if isolated in a few large groups

(low k) than in more evenly dispersed smaller groups (high k)", is unknown.

Hortham and Rocha (1958) did a statistical study on the worm burden of

chickens and showed that the distribution of the worm counts followed the

negative binomial law. They present 4 large frequency distributions of counts

of Ascarida %alli in experimentally infected chickens. They assumed that

1). the frequency distribution of the number of worms per bird fol-

lows the Poisson series, provided the chickens have the same genetic re-

sistence and that external factors are controlled, and
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I y citing three :icricj of worn counts pi

subdivided into 3 parts; :r.ule, female, and COI ...
over all 3 series were taken fron the same inbred line in an attempt to cc<; -

tr^ aetic resistence variability. Each distribution for male,

combined, was shown to follow the Poisson lav;. They stress the i

of controlling external factors in arriving at a Poisson distribution by cit>

another experiment similar to the one above, except that several illnesses oc-

curred, the result being over-dispersion and non-Poisson distributions of worm

counts. The authors do not test assumption two directly.

For each of the 4 distributions, they calculate the ncan, standard cevi-

ation, standard error of the mean, and 3 estimates of k by the method of

maximum likelihood, method of moments, and the proportion of birds with no

s to the total number of birds investigated. They note that the 4 dis-

tributions do not have a common value of k. A x test was performed on

each distribution with resulting values of p ranging from 0.10 to 0.25

thus indicating the negative binomial distribution adequately described

the distributions.

Tne fact is noted that with the values of k and m they calculated,

the relative efficiency of the method of moments as compared with the

maximum likelihood approach is around 50%, while the ratio method is somewhat

better, giving a relative efficiency between 75% and 90%. Northam and Rocha

(1958) continue on and apply these statistical results to an experiment by

Rocha in 1955 using the drug Phenothiazine.
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CONCLUSIONS

The preceding discussion has centered around the Poisson and the negative

binoraial distributions with a consideration of many of their properties such

as derivations, parameter estimation procedures, transformations, and ap-

plicability to egg and worm count studies.

It was shown that replicate worm and egg counts obtained by the use of

a dilution technique (usually the McMaster slide) are distributed according

to the Poisson distribution. This distribution was not too difficult to work

with due to the equality of the mean and variance, and the property of conver-

gence to the normal distribution with large m.

The negative binomial distribution is not as simple to work with as the

Poisson. This is due to the fact that two parameters must be specified for

each negative binomial distribution, namely m and k, where k is a measure of

over-dispersion, i.e., a measure of how much variability is present by-

yond what we could expect in a Poisson series.

Perhaps two of the more important techniques presented under the negative

binomial section were the calculation of a common k and the calculation of

test statistics used to determine if the common k calculated is valid over

all component negative binomial distributions. In sheep studies for example,

an experimenter may be interested in determining whether two negative binomial

distributions fitted to different egg counts are really significantly dif-

ferent from each other. A comparison of means between the two distributions

in an attempt to answer this question is much more meaningful if it can be

shown that a common k can be calculated.

As a concluding remark, it should be noted that the negative binomial

is not the only over-dispersed distribution, although it is the easiest to
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1961), the Conditional Poisson (Cohen Jr., I960), and tiie truncat. . ve

binor^Lal (Bartko, 1961; Sar.pford, 1955) are also discussed in the literature,

but are of only secondary interest to the topic of this report.
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The parasitologist is often interested in the frequency distribution of

egg counts of internal parasites found in various animals. If such a dis-

tribution is known the parasitologist can predict more accurately the number

of eggs expected in a future count from the same population. His interest

in egg counts stems from his ability to obtain an accurate worm count at

necropsy only.

Two statistical distributions have been shown to be of major importance

in egg count studies. The first of these is the Poisson distribution which

is applicable when a dilution technique in counting is used (such as the

HcIIaster slide method) and when the counts are taken from a homogeneous pop-

ulation, such as repeated sampling from the host.

Various workers such as Peters, Leiper, Emik, Hunter and Quenouille,

and Brambell have performed egg count studies on sheep and have found the

Poisson distribution to adequately fit the egg counts obtained.

The mean and variance of a Poisson distribution are equal, resulting

in only one parameter having to be estimated, namely the mean. In the event

that an analysis of variance is going to be calculated using Poisson dis-

tributed counts a transformation is usually required. The transformation

applied to Poisson distributed data is usually the square root, v'x" , or

/x+l/2, depending on the size of the count.

The chi-square test may be used to test; (1) does a given series of

counts actually follow the Poisson distribution, (2) is the mean of a

Poisson greater than a particular value and (3) do several Poisson distri-

butions have the same mean. For two Poisson distributions with large means,

the t statistic may be used to test for significant differences between

the means of the distributions.
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this greater variability , tae Poisson distribution is not . ibe

such counts. Several distributions have been pi. .e cou:.

Lest to work With and the nost applicable is the negative I .1.

The negative binomial can arise from ;;iany different biological circe -

stances, but eg;; count distributions seen mainly to arise fron two mode '.
j

one where u is not constant from one Poisson distribution to the next and I ,

in fact, distributed according to the Tearson type III curve, r,

where m follows the logarithmic distribution from one Poisson to another.

The negative binomial distribution is specified by two parameters, the

., m, and an index of over-dispersion, k. The parameter k has been cal-

culated using at least four different techniques; (1) Che method of moments,

(2) the ratio of the total number of counts to the i of counts with

no eggs present, (3) the method of maximum likelihood and (4) tne trans-

formation method. The maximum likelihood approach is fully efficient while

the other methods are not. Their efficiency can usually be calculated

however. The variances of x and k can also be found.

The chi-scuare statistic may be used to test for goodness of fit of the

negative binomial. Tests using the difference between the observed and

expected second and third moments are applicable for this purpose also.

Two transformations are commonly used to stabilize the variance of a

negative binomial distribution. One is the logarithmic transformation de-

scribed by Ansconbe and the other was suggested by Beall and involves sinh .

A stable k between several negative binomial distributions is oft

advantageous (especially in comparing means). Accordingly, several meth

have been developed for finding a common k. Anscombe discusses three sue!.



methods based on methods for calculating a single k. Bliss uses an extension

of the maximum likelihood technique, and Bliss and Owen present a method based

on a weighted moment estimate in terms of regression. Various x
2 tests are

available for determining whether a common k exists between several distri-

butions.

Both egg and worm count studies have produced counts distributed ac-

cording to the negative binomial as shown by Hunter and Quenouille, Egerton,

Egerton and Hansen, and Northam and Rocha.


