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Abstract
We prove that for k ≥ 2, 0 < ε < 1

k(k−1)
, n > k−1

ε
, prime p > P (ε, k), and integers ai,

0 ≤ i ≤ n, with p - ai, 1 ≤ i ≤ n, there exists a solution x to the congruence

n∑
i=1

aix
k
i ≡ a0 (mod p)

in any cube

B := {x ∈ Zn : di + 1 ≤ xi ≤ di +B, 1 ≤ i ≤ n},

of side length B ≥ p
1
k

+ε.

We further prove that for any positive integer k there exists a constant c(k) such that

for any positive integer n ≥ 3(k2 + k + 1), prime p, and integers ai with p - ai, 1 ≤ i ≤ n,

there exists a solution of
n∑
i=1

aix
k
i ≡ a0 (mod p)

with 1 ≤ xi ≤ c(k)p
1
k .

We also prove that for any positive integer k, there exists a constant c(k) such that for

any positive integers n, q with n > c(k) and cube

B := {x ∈ Zn : di + 1 ≤ xi ≤ di +B, 1 ≤ i ≤ n},

with side length B ≥ (q/k2)1/k, such that for any prime factor p of q, the k-th powers

(mod p) are not constant on any edge [ci + 1, ci +B] of B, there exists a solution in B of the

congruence
n∑
i=1

aix
k
i ≡ a0 (mod q).
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Chapter 1

Introduction

The main goal of this thesis is to find the minimal B ∈ N such that any cube

B = B(d, B) := {x ∈ Zn : di + 1 ≤ xi ≤ di +B, 1 ≤ i ≤ n} (1.1)

of side length B contains a solution of the congruence

a1x
k
1 + a2x

k
2 + · · ·+ anx

k
n ≡ c (mod q). (1.2)

Here, we let di, ai, c ∈ Z for 1 ≤ i ≤ n and (ai, q) = 1 for 1 ≤ i ≤ n. Of particular interest

are solutions with

‖x‖ := max |xi|

as small as possible.

1.1 History of the Problem

The main theorems in this thesis are motivated by the classical Waring Problem, stated here:

For a given k ∈ N, is there a value n such that every c ∈ N may be written as

c = xk1 + xk2 + · · ·+ xkn

1



for nonnegative integers xi, 1 ≤ i ≤ n?

In 1909, Hilbert proved that such an n does exist:

Theorem 1.1.1 (Hilbert-Waring Theorem). For a fixed k ∈ N, there is a number n such

that every natural number can be expressed as a sum of at most n kth powers of positve

integers.

Of particular interest is determining the minimal value of n given the degree k.

One of the most well-known results on Waring’s Problem is Lagrange’s Four Squares

Theorem—that every natural number can be expressed as a sum of at most four squares.

We also now know that every natural number can be expressed as a sum of at most nine

cubes thanks to Wieferich and Kempner [34, 21] and as a sum of at most nineteen fourth

powers due to Balasubramanian, Deshouillers, and Dress [6, 7].

We consider next Waring’s Problem (mod q) for a natural number q. For this task, we

define γ := γ(k, q) to be the smallest value n such that every integer c can be written as a

sum of n kth powers of integers (mod q), that is,

c ≡ xk1 + xk2 + · · ·+ xkn (mod q).

Using the Chinese Remainder Theorem, one can show that if q has prime power factorization

q =

j∏
i=1

p`ii , then γ(k, q) can be described by γ(k, q) = max
1≤i≤j

γ(k, p`ii ); we prove this in

Corollary 2.4.1. Thus, to find the value of γ(k, q), we need only know γ(k, ·) on prime

powers. Hardy and Littlewood proved that for any prime power pt, t ∈ N, γ(k, pt) ≤ 4k, and

γ(k, pt) ≤ p
p−1

k + 1 for p odd. Thus, for any natural number (mod q), γ(k, q) ≤ 4k.

We may generalize Waring’s Problem further by not only considering congruences

(mod q), but also allowing the kth powers to have integer coefficients.

Definition 1.1.1. Let Γ(k, q) be the minimal n (should it exist) such that for any integers

ai with (ai, q) = 1, 1 ≤ i ≤ n, and any integer c, the congruence

a1x
k
1 + a2x

k
2 + · · ·+ anx

k
n ≡ c (mod q)

2



is solvable in integers xi, 1 ≤ i ≤ n.

When all of the ai = 1 this is just Waring’s Problem (mod q). We will show in Chapter

2.6, Theorem 2.6.1, that for any positive integers k, q, we have that Γ(k, q) ≤ 4k, thus

generalizing the result of Hardy and Littlewood, stated above. The hypothesis that (ai, q) = 1

is natural to impose; otherwise, the congruence reduces to one in fewer variables for certain

prime divisors of q.

1.2 Previous Results

The goal of this thesis is not merely to obtain the existence of solutions of (1.2), but rather

to obtain solutions with the xi restricted to a cube B as in (1.1). Of particular interest is to

find small integer solutions to the congruence

n∑
i=1

aix
k
i ≡ c (mod q) (1.3)

with k, q ∈ N and ai, c ∈ Z, (ai, q) = 1, 1 ≤ i ≤ n. We say the congruence is homogeneous

if c = 0. By small we mean ‖x‖ := max|xi| ≤ ξqλ with λ < 1 and ξ a constant possibly

dependent upon λ, k, or n. We hope, in particular, to find the smallest possible value of λ for a

given k and n. We also find solutions within a small box that is not centered at the origin. In

this case, we seek the minimal B such that any cube B := {x : di+1 ≤ xi ≤ di+B, 1 ≤ i ≤ n}

with di ∈ Z for 1 ≤ i ≤ n, contains a solution of (1.8).

The optimal choice of λ is λ = 1
k
. We reach this conclusion after considering the congru-

ence
∑n

i=1 x
k
i ≡

q−1
2

(mod q). Any solution x must satisfy n‖x‖k ≥ |
∑n

i=1 x
k
i | ≥

q−1
2

and so

‖x‖ ≥
(
q−1
2n

) 1
k .

As we shall see, by restricting our attention to a prime modulus or to a homogeneous

congruence, one can often get much stronger results. For instance, Schmidt in [27, Equation

(4.1)] proved that for k odd, ε > 0, and n sufficiently large, there exists a nonzero solution

to the homogeneous congruence with prime modulus such that ‖x‖ � pε. (See Section 2.1

for information on the Vinogradov notation, f(x) � g(x).) Thus, one can surpass the p
1
k

3



barrier for a homogeneous congruence of odd degree. For a homogeneous congruence of even

degree, p
1
k is still optimal.

R. Baker [4] and Dietmann [16] proved results in the homogeneous case for a composite

modulus. In particular, Baker proved in [4, Theorem 1] that for any ε > 0, q ∈ N, and

integers a1, a2, . . . , an, there is a nonzero solution of

a1x
k
1 + · · ·+ anx

k
n ≡ 0 (mod q)

with

‖x‖ �ε


q

1
2

+ 1
2(n−1)

+ε, n ≥ 4;

q
2
3

+ε, n = 3.

Dietmann [16] made an improvement for cubic congruences. He proved that for a1, . . . , an ∈

Z, n ≥ 3, and q ∈ N, there is a nonzero solution of the congruence

a1x
3
1 + · · ·+ anx

3
n ≡ 0 (mod q)

with

‖x‖ ≤


q

1
2

+ 1
2n , n odd;

q
1
2

+ 1
2(n−1) , n even.

Cochrane [11, Equation (2.33), Example 4.8.14] considered a non-homogeneous congru-

ence with prime modulus. He proved that for k, n ∈ N, any prime p, and ai, c ∈ Z, with

p - ai, 1 ≤ i ≤ n, and p - c, the diagonal congruence (1.3) with q = p has a solution in any

cube of side length B for which

B �k,n p
1
2

+ 1
2n . (1.4)

For c = 0 and n ≥ 3, the same result holds (as seen in [11, Theorem 4.7.13]) with

B �k,n p
1
2

+ 1
2(n−1) .

4



In [29, Theorem 3], Schmidt proved that for p a prime, k odd, ε > 0, and ai ∈ Z with

p - ai, 1 ≤ i ≤ n, the congruence

n∑
i=1

aix
k
i ≡ 0 (mod p)

has a nonzero solution x with

‖x‖ �n,ε p
1
3

+
c(k)√
n

+ε
(1.5)

for a constant c(k) depending on k.

Applying a result of Schmidt [28, Theorem 3], Cochrane [11, Cor. 5.7] showed that for

k ≥ 2, there exists a solution to (1.3) when q = p for arbitrary c in any cube with side length

B �ε,k,n p
1
k

+ 1
n

(1− 1
k

)2kΦ(k)+ε (1.6)

where Φ(k) is a constant dependent upon k. The result of Schmidt shows that one can take

Φ(2) = Φ(3) = 1, Φ(4) = 3, Φ(5) = 13, and in general, there is a Φ(k) < (log 2)−kk! that

one can take.

R. Baker proved in [5, Lemma 10.1] that for q ∈ N, ai ∈ Z, 1 ≤ i ≤ n, and n ≥ C(k, ε),

there exist non-negative integers x1, . . . , xn satisfying

n∑
i=1

aix
k
i ≡ 0 (mod q)

with

‖x‖ ≤ q
1
k

+ε, (1.7)

although no attempt was made to make C(k, ε) explicit.

5



1.3 Main Results of This Thesis

We will highlight four of the main results in this thesis. In the first two theorems, we consider

the case of a prime modulus with arbitrary c,

n∑
i=1

aix
k
i ≡ c (mod p). (1.8)

The first theorem deals with finding solutions in a general cube

B := {x ∈ Zn : di + 1 ≤ xi ≤ di +B, 1 ≤ i ≤ n} (1.9)

of side length B.

Theorem 1.3.1. For k ≥ 2, 0 < ε < 1
k(k−1)

, n > k−1
ε

, prime p > P (ε, k), and integers ai,

0 ≤ i ≤ n, with p - ai, 1 ≤ i ≤ n, there exists a solution x to the congruence (1.8) in any

cube B of type (1.9) of side length B ≥ p
1
k

+ε.

We deduce this theorem, given in Chapter 3, from Theorem 3.0.3 whose proof makes use

of exponential sums and Weyl-type estimates. We note that the size of the cube given by

the theorem is optimal up to removal of the epsilon.

The next three theorems deal with finding small solutions of (1.8).

Theorem 1.3.2. For any positive integer k there exists a constant c(k) such that for any

positive integer n ≥ 3
2
(k2 + k + 2), prime p, and integers ai with p - ai, 1 ≤ i ≤ n, there

exists a solution of (1.8) with 1 ≤ xi ≤ c(k)p
1
k .

The proof of this theorem, given in Chapter 4, makes use of the Vinogradov Mean Value

Theorem. We note that this result is best possible up to the determination of the constant

c(k). Ideally, we would like to obtain the same result for smaller values of n and for a cube

in general position. While we have not achieved that, we do have the following two results

for smaller values of n.

6



Theorem 1.3.3. For k ≥ 2 and ε > 0, there exists a constant P (ε, k) such that for any

prime p > P (ε, k) and integers c, ai with p - ai, 1 ≤ i ≤ n, there exists a nonzero solution x

to (1.8) with

‖x‖ ≤


p
k(log k+γ log log k)

n
+ε, if n ≤ k(k − 1)(log k + γ log log k);

p
1

k−1 , if n > k(k − 1)(log k + γ log log k).

Here, γ = γ(ε, k) is the same constant as in Lemma 3.3.1.

The proof of Theorem 1.3.3 is given in Section 3.3.

Theorem 1.3.4. For any positive ε < 1, k ≥ 4, n > 3
2
k log(3e/ε) + 3, prime p, and integers

ai, 0 ≤ i ≤ n with p - ai, 1 ≤ i ≤ n, there is a solution of (1.8) with

1 ≤ xi �ε,n,k p
1
k

+ε, 1 ≤ i ≤ n. (1.10)

The proof of this theorem, given in Chapter 4, involves additive combinatorics and results

in a solution in which all of the variables are smooth numbers (discussed in Section 4.8).

In contrast to the previous results, the next theorem pertains to the composite modulus

case.

Theorem 1.3.5. For any positive integer k, there exists a constant c(k) such that for any

positive integers n, q with n > c(k) and cube B of type (1.9) with side length B ≥ (q/k2)1/k,

such that for any prime factor p of q, the kth powers (mod p) are not constant on any edge

[ci + 1, ci +B] of B and ai ∈ Z with (ai, q) = 1, 1 ≤ i ≤ n, there exists a solution in B of the

congruence
n∑
i=1

aix
k
i ≡ c (mod q).

We note the necessity of the additional hypothesis in our theorem, “for any prime factor

p of q, the kth powers (mod p) are not constant on any edge [ci + 1, ci + B] of B.” If the

kth powers are constant on an edge of B, then we are essentially dealing with a congruence

in fewer variables. Indeed, in the worst case, the congruence may not be solvable at all, no

7



matter how many variables we use. We give such an example in Section 2.3. Once again, we

have obtained an optimal result up to the determination of c(k).

8



Chapter 2

Preliminary Information

2.1 Vinogradov Notation

When we write

f(x)�t g(x)

we mean that for all x,

|f(x)| ≤ c(t)|g(x)|

for some constant c(t) depending only on t. In particular, f(x)� g(x) means |f(x)| ≤ c|g(x)|

for some absolute constant c.

2.2 Modular Arithmetic

Definition 2.2.1. For a positive integer q and a, b ∈ Z, if q|(a−b) we say that a is congruent

to b modulo q and write a ≡ b (mod q).

Notice that the following are equivalent for integers a, b and positive integer q:

• a ≡ b (mod q),

• a = b+ tq for some integer t, and

9



• a and b have the same remainder when divided by q.

Lemma 2.2.1. For all a, b, x, y ∈ Z, if x ≡ y (mod ab), then x ≡ y (mod a) and x ≡ y

(mod b).

Proof. Suppose x ≡ y (mod ab). By definition, this is equivalent to ab|(x− y). Thus, both

a and b divide (x− y). Hence, x ≡ y (mod a) and x ≡ y (mod b).

Lemma 2.2.2. If (a, b) = 1 (i.e. gcd(a, b) = 1), x ≡ y (mod a), and x ≡ y (mod b), then

x ≡ y (mod ab).

Proof. Since x ≡ y (mod a) and x ≡ y (mod b), by definition, a|(x− y) and b|(x− y). Then

since (a, b) = 1, it follows that ab|(x − y). Again by definition, this is equivalent to x ≡ y

(mod ab).

We can generalize the above lemma so that it applies to any number of congruences by

using mathematical induction.

Lemma 2.2.3. If (mi,mj) = 1 for each 1 ≤ i < j ≤ n and x ≡ y (mod mi) for each

1 ≤ i ≤ n, then x ≡ y (mod
n∏
i=1

mi).

Proof. From Lemma 2.2.2, when n = 2 this lemma holds. Assume now that for some n ≥ 2

we have that x ≡ y (mod m1m2 . . .mn). Consider mn+1 such that (mn+1,mi) = 1, 1 ≤ i ≤ n.

Then (mn+1,m1m2 . . .mn) = 1. Thus, by Lemma 2.2.2 again, x ≡ y (mod m1m2 . . .mn ·

mn+1).

Finally, in the Section 2.3, we will make use of the following theorem due to Fermat.

Theorem 2.2.1 (Fermat’s Little Theorem (1640)). If p is a prime and p - a, then ap−1 ≡ 1

(mod p).

2.3 Additional Hypothesis in Theorem 1.3.5

Recall the additional hypothesis in Theorem 1.3.5, “for any prime factor p of q, the kth

powers (mod p) are not constant on any edge [ci + 1, ci +B] of B.” Otherwise, the diagonal

sum
∑n

i=1 aix
k
i will be constant (mod p) on the cube B.

10



As an example, if we suppose that q is a positive integer with prime factor p such that

(p− 1)|k and the intervals [di + 1, di +B] do not contain a multiple of p, then, by Fermat’s

Little Theorem, for any xi ∈ [di + 1, di +B]

xki ≡ 1 (mod p).

That is, the kth powers are constant on the edge [di + 1, di +B]. In this case,

a1x
k
1 + a2x

k
2 + · · ·+ anx

k
n ≡ a1 + · · ·+ an (mod p).

Thus, without the added condition, we cannot solve the congruence for an arbitrary integer

c.

2.4 Chinese Remainder Theorem

Theorem 2.4.1 (Chinese Remainder Theorem). Suppose that the positive integers m1, . . . ,mj

are pairwise co-prime. Then for any given integers a1, . . . , aj, there exists an integer x that

simultaneously solves the system of congruences

x ≡ a1 (mod m1)

...

x ≡ aj (mod mj),

and it is unique (mod

j∏
i=1

mi).

For a proof of the Chinese Remainder Theorem, see [2, p. 117].

Corollary 2.4.1. If q has prime power factorization q =

j∏
i=1

p`ii , then γ(k, q) = max
1≤i≤j

γ(k, p`ii ).

Proof. Let us begin by supposing that n ≥ γ(k,

j∏
i=1

p`ii ), and let us pick an integer c. Then,

11



there exist integers x1, . . . , xn such that c ≡ xk1 + · · ·+xkn (mod
∏j

i=1 p
`i
i ). By Lemma 2.2.1,

it follows that c ≡ xk1 + · · · + xkn (mod p`ii ) for each 1 ≤ i ≤ j. Since c was arbitrary,

we have shown now that for any integer c, there exist integers x1, . . . , xn such that c ≡

xk1 + · · · + xkn (mod p`ii ) for every 1 ≤ i ≤ j. Hence, n ≥ γ(k, p`ii ) for all 1 ≤ i ≤ j. Thus,

n ≥ max1≤i≤j γ(k, p`ii ).

Next let us instead suppose that n ≥ γ(k, p`ii ) for all 1 ≤ i ≤ j, and let us pick an integer

c. Then, for every 1 ≤ i ≤ j, there exist integers xit, 1 ≤ t ≤ n, such that

c ≡ xki1 + · · ·+ xkin (mod p`ii ).

For each 1 ≤ t ≤ n, we are assured by the Chinese Remainder Theorem, Theorem 2.4.1,

that there exist integers xt, 1 ≤ t ≤ n, such that for all 1 ≤ i ≤ j, xt ≡ xit (mod p`ii ).

Thus,
n∑
t=1

xkt ≡
n∑
t=1

xkit ≡ c (mod p`ii ) for 1 ≤ i ≤ j. Thus, by Lemma 2.2.3, c ≡
∑n

t=1 x
k
t

(mod

j∏
i=1

p`ii ).

In a similar manner, one can show:

Corollary 2.4.2. If q has prime power factorization q =

j∏
i=1

p`ii , then Γ(k, q) = max
1≤i≤j

Γ(k, p`ii ).

2.5 Calculation of γ(2, q)

To illustrate the calculation of Waring’s number using Corollary 2.4.2, we consider the case

when k = 2 and q is odd.

Lemma 2.5.1. For any integer c and odd prime p, there exist x, y ∈ Z such that x2 +y2 ≡ c

(mod p), i.e. γ(2, p) = 2.

Before we begin the proof of Lemma 2.5.1, let us state Lagrange’s Theorem which we

will use in its proof.

12



Theorem 2.5.1 (Lagrange’s Theorem). If p is a prime and f(x) = adx
d + · · · + a1x + a0

is a polynomial of degree d ≥ 1 whose coefficients are integers with ad 6≡ 0 (mod p), then

f(x) ≡ 0 (mod p) has at most d solutions (mod p).

Proof of Lemma 2.5.1. Notice that for each positive integer a,

(p− a)2 = p2 − 2ap+ a2 ≡ a2 (mod p).

Hence, the nonzero squares (mod p) can each be represented in two ways. That is, for b 6= 0,

x2− b ≡ 0 (mod p) has two solutions (mod p), and by Lagrange’s Theorem, it has no more

than two solutions (mod p). Thus, for an odd prime p, there are exactly p+1
2

distinct squares

(mod p). There are also p+1
2

distinct numbers c − y2 (mod p) for a fixed c. Now, there are

p values (mod p), and p+1
2
> p

2
of them are squares (mod p) while p+1

2
> p

2
of them can be

represented as c− y2 (mod p). Hence, there must be at least one square (mod p) that can

also be written as c− y2 (mod p). Therefore, there exist x, y with x2 ≡ c− y2 (mod p).

Lemma 2.5.2. For any prime p with p ≡ 1 (mod 4), γ(2, p`) = 2 for any positive integer `.

Proof. We will prove this lemma by induction. Theorem 2.5.1 assures that for any c and

odd prime p, x2 + y2 ≡ c (mod p) has a solution. If p - c, then certainly p - x or p - y. If p|c,

then x2 + y2 ≡ c (mod pj) for some j ≥ 1 implies that x2 + y2 ≡ 0 (mod p). Since p ≡ 1

(mod 4), there exist x, y such that x2 + y2 = p. In this case too, we may say p - x. (If,

however, p ≡ 3 (mod 4), then x2 + y2 ≡ 0 (mod p) would imply that x ≡ y ≡ 0 (mod p).

Thus, we need another variable in the case when p ≡ 3 (mod 4).)

Without loss of generality, let us say that p - x. Suppose that for some j ≥ 1 there exist

x, y such that x2 + y2 ≡ c (mod pj) where p - x. Consider (x+ pjt)2 + y2 (mod pj+1).

(x+ pjt)2 + y2 ≡ x2 + y2 + 2xpjt+ p2jt2 ≡ x2 + y2 + 2xpjt (mod pj+1).

Let us choose t ≡ 2−1x−1 (c−x2−y2)
pj

(mod p) (note that all of the inverses are (mod p) and
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pj|(c− x2 − y2) since x2 + y2 ≡ c (mod pj)) so that:

(x+ pjt)2 + y2 ≡ x2 + y2 + 2xpjt

≡ x2 + y2 + 2xpj2−1x−1 (c− x2 − y2)

pj

≡ x2 + y2 + c− x2 − y2

≡ c (mod pj+1).

Lemma 2.5.3. For any prime p with p ≡ 3 (mod 4), γ(2, p`) = 3 for any positive integer `.

Proof. One can prove this lemma by induction as well. Theorem 2.5.1 assures that for any

c and odd prime p, x2 + y2 ≡ c (mod p) has a solution. Now we will split our proof into two

cases.

The proof of the case when p - c is the same as the proof for γ(k, p`) = 2 when p ≡ 1

(mod 4). That is, we only need two variables when p - c even when p ≡ 3 (mod 4).

Let us consider the case when p|c. We note that p|c implies that p - c− 1. Thus by the

first case, x2 + y2 ≡ c− 1 (mod pj) is solvable; that is, x2 + y2 + 1 ≡ c (mod pj) is solvable.

The next theorem follows from the previous two lemmas and Corollary 2.4.1.

Theorem 2.5.2. For odd q, γ(2, q) = 2 if all prime divisors p of q are such that p ≡ 1

(mod 4), and γ(2, q) = 3 if q has a prime divisor p such that p ≡ 3 (mod 4).

Proof. Let us say q has prime power factorization q =

j∏
i=1

p`ii , then γ(k, q) = max
1≤i≤j

γ(k, p`ii )

by Corollary 2.4.1 above. Thus, if all prime divisors pi of q are such that pi ≡ 1 (mod 4),

then γ(k, q) = max
1≤i≤j

γ(k, p`ii ) = 2 by Lemma 2.5.2. If, however, q has a prime divisor pj such

that pj ≡ 3 (mod 4), then γ(k, q) = max
1≤i≤j

γ(k, p`ii ) = 3 by Lemma 2.5.3.

Note, in Theorem 2.6.1, we show that for any odd q, Γ(k, q) ≤ 3
2
k. This, of course,

implies that γ(2, q) ≤ 3 for any odd q as we just discovered. One can prove in an identical
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manner that Γ(2, q) = 3 for any odd q.

2.6 A Generalized Waring Number (mod q)

Let us recall the definition of Γ(k, q). For any positive integers q and k let Γ(k, q) be the

minimal n (should it exist) such that for any integers ai with (ai, q) = 1, 1 ≤ i ≤ n, and any

integer c, the congruence

a1x
k
1 + a2x

k
2 + · · ·+ anx

k
n ≡ c (mod q) (2.1)

is solvable in integers xi, 1 ≤ i ≤ n. When all of the ai = 1 this is just Waring’s Problem

(mod q), and in this case it is known by the work of Hardy and Littlewood [17] that if

n ≥ 4k, then every integer is a sum of at most n k-th powers (mod q). We claim that the

same is true for the more general congruence (2.1).

Theorem 2.6.1. For any positive integers k, q, we have uniformly that Γ(k, q) ≤ 4k. More-

over for any odd q, Γ(k, q) ≤ 3
2
k, and for any prime p, Γ(k, p) ≤ k.

We will make use of the following extension of the Cauchy-Davenport inequality due to

Chowla [9].

Lemma 2.6.1. Let q be a positive integer, and S, T be subsets of Zq such that 0 ∈ S, and

for all nonzero s ∈ S we have (s, q) = 1. Then |S + T | ≥ min(q, |S|+ |T | − 1).

Proof of Theorem 2.6.1. It is plain that if q has prime power factorization q =
∏j

i=1 p
ei
i then

Γ(k, q) = maxi Γ(k, peii ) and so we may restrict our attention to prime power moduli q = pr.

We will actually prove a slightly stronger result than what is stated in the theorem. For

1 ≤ i ≤ n, let ai be an integer with (ai, q) = 1 and

Si := {0} ∪ {aixk ∈ Zq : (x, q) = 1}.
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By successive applications of Chowla’s Lemma, we see that for any positive integer n,

|S1 + S2 + · · ·+ Sn| ≥ min(q, |S1|+ |S2|+ · · ·+ |Sn| − (n− 1)). (2.2)

Suppose that p is odd, so that the group of units (mod q) is cyclic. Then the subgroup

of k-th powers has cardinality φ(q)/(k, φ(q)), and we get

|Si| =
φ(q)

(k, φ(q))
+ 1,

for 1 ≤ i ≤ n. By (2.2),

|S1 + S2 + · · ·+ Sn| ≥ min
{
q, n

φ(q)

(k, φ(q))
+ 1
}
.

Thus, if nφ(q)/(k, φ(q)) + 1 ≥ q, then S1 + · · · + Sn = Zq. It suffices to have n ≥ p
p−1

k. In

the worst case, p = 3, we need n ≥ 3
2
k. For q = p, it suffices to have n ≥ (k, p− 1).

It is easy to verify that for any k ≥ 2, Γ(k, 2) = 1 and Γ(k, 4) = 3. Suppose next that

q = 2e with e ≥ 3, the case where the group of units is not cyclic. The subgroup of k-th

powers has cardinality 2e−1 if k is odd, and cardinality
2e−1

2(2e−2, k)
if k is even. In the former

case, |Si| = 2e−1 + 1 and so it suffices to take n = 2, while in the latter case,

|Si| =
2e−1

2(2e−2, k)
+ 1 ≥ 2e−2

k
+ 1,

and so, by (2.2), it suffices to take n = 4k.

2.7 Cauchy-Davenport Type Result for an Abelian Group

We begin this section with the statement of the Cauchy-Davenport Theorem.

Theorem 2.7.1 (Cauchy-Davenport). For any prime p and nonempty subsets A and B of

Z/pZ, |A+B| ≥ min{p, |A|+ |B| − 1}.
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Theorem 2.7.2. Suppose that A, B are finite, nonempty subsets of an additive abelian group

G such that neither A nor B is contained in a coset of any proper subgroup of G. Then either

A+B = G or |A+B| ≥ 3
4
(|A|+ |B|).

Note that by considering A = B = H ∪ (H + a), where G is a finite group of odd order, H is

a proper subgroup of G, and a /∈ H, we see that the constant 3
4

cannot be improved. In this

case, |A| = |B| = |H∪(H+a)| = 2|H| since a /∈ H. Also, |A+B| = |H∪(H+a)∪(H+2a)| =

3|H|. We deduce the result as a consequence of Kneser’s Theorem following the method used

to prove [32, Corollary 5.6].

Lemma 2.7.1. Kneser’s Theorem. For any finite, nonempty subsets A,B of an additive

abelian group G, we have

|A+B| ≥ |A+H|+ |B +H| − |H|,

where H = stab(A+B) = {x ∈ G : x+ (A+B) = A+B}.

Proof of Theorem 2.7.2. Let A,B be subsets of G not contained in a coset of any proper

subgroup of G. Suppose that |A+B| < 3
4
(|A|+ |B|). Let H = stab(A+B). If H = G then

A+B = G. Assume now that H is a proper subgroup of G. By Kneser’s Theorem we have

3

4
(|A|+ |B|) > |A+B| ≥ |A+H|+ |B +H| − |H| ≥ |A|+ |B| − |H|,

and so |H| > 1
4
(|A|+|B|). Since A+B is a union of cosets of H, and |A+B| < 3

4
(|A|+|B|) <

3|H|, we must have that A + B is a union of one or two cosets of H. Suppose that A + B

is a union of two cosets. Then |A + B| = 2|H|. Also, A + H and B + H are unions of

cosets of H, and so since neither A nor B is contained in a coset of H, |A+H| ≥ 2|H| and

|B +H| ≥ 2|H|. Thus by Kneser’s Theorem,

2|H| = |A+B| ≥ |A+H|+ |B +H| − |H| ≥ 2|H|+ 2|H| − |H| = 3|H|,

a contradiction. Therefore, A+B is a single coset of H, but this implies that A is contained
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in a coset of H, a contradiction. Hence |A+B| ≥ 3
4
(|A|+ |B|).

By induction on j, we obtain that for any collection of 2j subsets Ai of Zq of cardinality

at least N , none of which are contained in a coset of a proper subgroup of Zq, that |A1 +

· · ·+ A2j | ≥ min{q, (3/2)jN}. Hence, we obtain the following corollary.

Corollary 2.7.1. Let A1, . . . , An be subsets of Zq of cardinality at least N , none of which

are contained in a coset of any proper subgroup of Zq. Then

|A1 + · · ·+ An| ≥ min{q, (n/2)
log(3/2)

log 2 N}.

Proof. Given 2j ≤ n < 2j+1 and |Ai| ≥ N for all 1 ≤ i ≤ n,

|A1 + A2 + · · ·+ An| ≥ |A1 + A2 + · · ·+ A2j | ≥ min{q, (3/2)jN}.

Note that

(3/2)j = 2log2(3/2)j = 2j·
log(3/2)

log 2 ,

and since log(3/2)
log 2

> 0 and n
2
< 2j, we obtain 2j·

log(3/2)
log 2 > (n/2)

log(3/2)
log 2 , and hence

|A1 + A2 + · · ·+ An| ≥ (n/2)
log(3/2)

log 2 N.

2.8 Exponential Sums

An example of an exponential sum is

B∑
x=1

e
2πi
q

(axk) (2.3)
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where q, k, B ∈ N, i =
√
−1, and a ∈ Z. We will define eq(x) := e

2πix
q so that we may more

briefly write (2.3) as
B∑
x=1

eq(ax
k).

For our purposes, we need to estimate the size of such exponential sums. A trivial upper

bound is given by ∣∣∣∣∣
B∑
x=1

eq(ax
k)

∣∣∣∣∣ ≤ B,

since each term has absolute value 1.

We can compute the number of solutions of (1.8) in B using the following two lemmas

involving exponential sums.

Lemma 2.8.1. For any positive integer q,

q∑
x=1

eq(ax) =


q, if q|a

0, if q - a.

Proof. If q|a, then eq(ax) = 1 for x = 1, 2, . . . , q implying that

q∑
x=1

eq(ax) =

q∑
x=1

1 = q. If

q - a, then
q∑

x=1

eq(ax) =
eq(a)− eq(a(q + 1))

1− eq(a)
=
eq(a)− eq(a)

1− eq(a)
= 0.

Lemma 2.8.2. Fix n ≥ 2, k ≥ 2, and ε > 0, and let c, ai be integers, 1 ≤ i ≤ n, q ∈ N, B

be a cube

B := {x ∈ Zn : di + 1 ≤ xi ≤ di +B}

of side length B where B, di ∈ Z, 1 ≤ i ≤ n, B ≥ 1, and N be the number of solutions of

(1.8) in B. Then

N =
Bn

q
+

1

q

q−1∑
λ=1

eq(−λc)
n∏
i=1

B∑
xi=1

eq
(
λai(xi + di)

k
)
.
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Proof. Let N be the number of solutions of (1.8) in B. Notice that via Lemma 2.8.1

q∑
λ=1

eq

(
λ

(
n∑
i=1

aix
k
i − c

))
=


q, if q|

(∑n
i=1 aix

k
i − c

)
0, otherwise ,

and so this sum is non-zero only when
n∑
i=1

aix
k
i−c ≡ 0 (mod q), that is, only when

n∑
i=1

aix
k
i ≡

c (mod q). Hence if we multiply this sum by 1
q

and sum over all x ∈ B, we obtain a sum

that counts the number of solutions to (1.8) in B. Therefore,

N =
1

q

∑
x∈B

q∑
λ=1

eq

(
λ

(
n∑
i=1

aix
k
i − c

))

=
|B|
q

+
1

q

q−1∑
λ=1

ep(−λc)
∑
x∈B

eq

(
λ

(
n∑
i=1

aix
k
i

))

=
Bn

q
+

1

q

q−1∑
λ=1

eq(−λc)
n∏
i=1

di+B∑
xi=di+1

ep
(
λaix

k
i

)
,

and thus

N =
Bn

q
+

1

q

q−1∑
λ=1

eq(−λc)
n∏
i=1

B∑
xi=1

eq
(
λai(xi + di)

k
)
.

Theorem 2.8.1. [33, Weil] For any polynomial P [x] over Z of degree k and prime p such

that P [x] is not a constant function (mod p) (that is, P (x) 6≡ g(x)p − g(x) + c (mod p) for

any polynomial g(x) and constant c),

∣∣∣∣∣ ∑
x (mod p)

ep(P (x))

∣∣∣∣∣ ≤ (k − 1)p
1
2 .

Using the Weil estimate in the case when q = p is prime, we get from Lemma 2.8.2 that

∣∣∣N − Bn

p

∣∣∣ ≤ p− 1

p

(
(k − 1)p

1
2

)n
< (k − 1)np

n
2 ,
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and so N > 0 provided that

B ≥ (k − 1)p
1
2

+ 1
n .

Thus, we obtain a result similar to that in (1.4). Unfortunately though, using the Weil

estimate above, we cannot reach any result below p
1
2 no matter how large n is.

In our application, we need a bound of the type

max
1≤a<p

∣∣∣∣∣
B∑
x=1

ep(ax
k)

∣∣∣∣∣�ε,k B
1+ε−σ (2.4)

for some value σ = σ(k), depending only on k, that holds for any ε > 0. If B < p
1
k , we may

not obtain much cancellation, and so such an estimate cannot hold. Indeed, in this case, the

sum in (2.4) can remain close to B in size for certain a. For B > p
1

k−1 ,

• the classical Weyl sum estimate (1920) establishes that the result in (2.4) holds for

σ = 1
2k−1 ;

• Wooley [39] established the result in (2.4) for k ≥ 3 with σ = 1
2(k−1)(k−2)

; and

• Bourgain, Demeter, and Guth [8] established the result in (2.4) for k ≥ 2 with σ =

1
k(k−1)

.

Inserting the bound in (2.4) into the value of N in Lemma 2.8.2, we see that

∣∣∣∣N − Bn

p

∣∣∣∣�ε,k
p− 1

p

(
B1+ε−σ)n < Bn−nσ+nε,

and thus N > 0 provided that
Bn

p
�ε,k,n B

n−nσ+ε,

that is,

B �ε,k,n p
1
nσ

+ε.

Hence, if we use Weyl sum estimates such as that in Bourgain, Demeter, and Guth [8]

where it was proven that max
1≤a<p

∣∣∣∣∣
B∑
x=1

ep(ax
k)

∣∣∣∣∣ �ε,k B
1+ε− 1

k(k−1) , we would find that N > 0
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provided that

B �ε,k,n max{p
1

k−1 , p
k(k−1)
n

+ε}.

For p
1
k < B < p

1
k−1 , we make use of a variation of (2.4) provided in (3.9).

22



Chapter 3

Using Weyl Sum Estimates

In this chapter we improve on the results stated in Section 1.2 for the case of prime moduli,

establishing two main theorems, the first for cubes centered at the origin, and the second

for a cube in general position. The results apply equally well to the homogeneous and

non-homogeneous congruences.

Theorem 3.0.2. For k ≥ 2 and ε > 0, there exists a constant P (ε, k) such that for any

prime p > P (ε, k) and integers c, ai with p - ai, 1 ≤ i ≤ n, there exists a nonzero solution x

to (1.8) with

‖x‖ ≤


p
k(log k+γ log log k)

n
+ε, if n ≤ k(k − 1)(log k + γ log log k);

p
1

k−1 , if k(k − 1)(log k + γ log log k) < n ≤ k(k − 1)2;

p
1
k

+ k−1
n

+ε, if n > k(k − 1)2.

Here, γ = γ(ε, k) is the same constant as in Lemma 3.3.1.

Thus, as n → ∞, we approach the optimal estimate ‖x‖ � p
1
k . In particular, for any

positive ε′ < 1
k(k−1)

and n > k−1
ε′

, applying the theorem with ε = ε′ − k−1
n

, gives a solution

of (1.8) with ‖x‖ � p
1
k

+ε′ , for p sufficiently large. Indeed, as the next theorem illustrates,

for such n, p, any box of side length B � p
1
k

+ε′ contains a solution of (1.8). The first two

estimates in the theorem are consequences of Proposition 3.3.1 in Section 3.3 while the third
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follows from Proposition 3.2.1 in Section 3.2, as we indicate after the statement of these

propositions. These estimates improve on the estimate ‖x‖ � p
1
2

+ 1
2n available from (1.4) for

n > (2 + o(1))k log k and uniformly improve on (1.5) and (1.6).

For solutions in an arbitrary cube, we establish the following result.

Theorem 3.0.3. i) For k ≥ 2 and ε > 0, there exists a constant P (ε, k) such that for any

prime p > P (ε, k) and integers c, ai with p - ai, 1 ≤ i ≤ n, there exists a solution x to (1.8)

in an arbitrary cube B of side length B provided that

B ≥


p
k(k−1)
n

+ε, if n ≤ k(k − 1)2;

p
1
k

+ k−1
n

+ε, if n > k(k − 1)2.

(3.1)

ii) For 2 ≤ k ≤ 5, the inequalities in (3.1) may be improved to

B ≥


p

2k−1

n
+ε, if n ≤ 2k−1(k − 1);

p
1
k

+ 2k−1

nk
+ε, if n > 2k−1(k − 1).

(3.2)

These results yield improvements on the bound in (1.4) for k ≥ 6 and n ≥ 2k(k − 1) and

uniformly improve on (1.6). They also yield improvements on (1.4) for k = 3, n ≥ 8; k = 4,

n ≥ 16; and k = 5, n ≥ 32. We have nothing new to offer here for k = 2.

Proof of Theorem 1.3.1. If n > k−1
ε

and ε < 1
k(k−1)

, then ε > k−1
n

and n > k(k − 1)2.

Applying (3.1) in Theorem 3.0.3, it is sufficient to take B ≥ p
1
k

+ k−1
n

+ε ≥ p
1
k

+ε+ε = p
1
k

+ε′ .

3.1 Best Bounds Among Known Results

In this section we give a summary of the best known bounds, including results from this

chapter and the next, on the size of solutions to the diagonal congruence

n∑
i=1

aix
k
i ≡ c mod p
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for a given k, c, and n. We will separate the results into the four possible cases based upon

whether the congruence is homogeneous or not and whether the solution is small or in a

general cube. For the results obtained in other papers, we will include a citation next to the

bound. We will also use κ1(k) as the same constant as in Theorem 4.7.1 while κ2(k, ε, n)

will be the implicit constant in Theorem 4.9.1.

3.1.1 Small Solutions of a Homogeneous (c = 0) Diagonal Congru-

ence

Degree Size of Solution for p ≥ P (ε, k)

k = 2 0 < ‖x‖ ≤ p
1
2 , n ≥ 4, [10].

k = 3 0 < ‖x‖ ≤


p

1
2 , 4 ≤ n ≤ 8, [11];

p
1
3

+ 4
3n

+ε, 9 ≤ n < 21, Theorem 3.0.3;

κ1(3)p
1
3 , n ≥ 21, Theorem 4.7.1.

k = 4 0 < ‖x‖ ≤



p
1
2

+ 1
2(n−1) , n ≤ 14, [11];

p
8
n

+ε, 14 < n ≤ 24, Theorem 3.0.3;

p
1
4

+ 2
n

+ε, 24 < n ≤ 32, Theorem 3.0.3;

κ1(4)p
1
4 , n ≥ 33, Theorem 4.7.1.

k = 5 0 < ‖x‖ ≤


p

1
2

+ 1
2(n−1) , n ≤ 30, [11];

p
16
n

+ε, 30 < n ≤ 47, Theorem 3.0.3;

κ1(5)p
1
5 , n ≥ 48, Theorem 4.7.1.

k ≥ 6 0 < ‖x‖ ≤


p

1
2

+ 1
2(n−1) , n ≤ (2 + o(1))k log k, [11];

p
k(log k+γ log log k)

n
+ε, (2 + o(1))k log k < n < 3

2
(k2 + k + 2), Theorem 3.0.2;

κ1(k)p
1
k , n ≥ 3

2
(k2 + k + 2), Theorem 4.7.1.
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Note that from Theorem 4.9.1, we obtain a solution with

0 < ‖x‖ ≤ κ2(k, ε, n)p
1
k

+ 3 exp
(
1− 2

3
n−3
k

)
,

which for k sufficiently large can yield further improvements for certain n. (See Remark

4.9.1.) For k odd, it is known [11] that for n > k, there is a nonzero solution with ‖x‖ < p
1
2 .

3.1.2 Solution in a General Cube of a Homogeneous (c = 0) Diag-

onal Congruence

Degree Size of Solution for p ≥ P (ε, k)

k = 2 B � p
1
2

+ 1
2(n−1) , [11].

k = 3 B �


p

1
2

+ 1
2(n−1) , n ≤ 6, [11];

p
4
n

+ε, n = 7, 8, Theorem 3.0.3;

p
1
3

+ 4
3n

+ε, n ≥ 9, Theorem 3.0.3.

k = 4 B �


p

1
2

+ 1
2(n−1) , n ≤ 14, [11];

p
8
n

+ε, 14 < n ≤ 24, Theorem 3.0.3;

p
1
4

+ 2
n

+ε, n > 24, Theorem 3.0.3.

k = 5 B �


p

1
2

+ 1
2(n−1) , n ≤ 30, [11];

p
16
n

+ε, 30 < n ≤ 64, Theorem 3.0.3;

p
1
5

+ 16
5n

+ε, n > 64, Theorem 3.0.3.

k ≥ 6 B �


p

1
2

+ 1
2(n−1) , n ≤ 2k(k − 1)− 2, [11];

p
k(k−1)
n

+ε, 2k(k − 1)− 2 < n ≤ k(k − 1)2, Theorem 3.0.3;

p
1
k

+ k−1
n

+ε, n > k(k − 1)2, Theorem 3.0.3.
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3.1.3 Small Solutions of a Non-homogeneous (c 6= 0) Diagonal

Congruence

Degree Size of Solution for p ≥ P (ε, k)

k = 2 0 < ‖x‖ ≤


p

1
2 log p, 4 ≤ n < 12, [13];

κ1(2)p
1
2 , n ≥ 12, Theorem 3.0.2.

k = 3 0 < ‖x‖ ≤



p
1
2

+ 1
2n , n ≤ 7, [11];

p
1
2

+ε, n = 8, Theorem 3.0.2;

p
1
3

+ 4
3n

+ε, 9 ≤ n < 21, Theorem 3.0.3;

κ1(3)p
1
3 , n ≥ 21, Theorem 4.7.1.

k = 4 0 < ‖x‖ ≤



p
1
2

+ 1
2n , n ≤ 15, [11];

p
8
n

+ε, 16 ≤ n < 24, Theorem 3.0.3;

p
1
4

+ 2
n

+ε, 24 ≤ n < 33, Theorem 3.0.3;

κ1(4)p
1
4 , n ≥ 33, Theorem 4.7.1.

k = 5 0 < ‖x‖ ≤


p

1
2

+ 1
2n , n ≤ 31, [11];

p
16
n

+ε, 32 ≤ n < 48, Theorem 3.0.3;

κ1(5)p
1
5 , n ≥ 48, Theorem 4.7.1.

k ≥ 6 0 < ‖x‖ ≤


p

1
2

+ 1
2n , n ≤ (2 + o(1))k log k, [11];

p
k(log k+γ log log k)

n
+ε, (2 + o(1))k log k < n < 3

2
(k2 + k + 2), Theorem 3.0.2;

κ1(k)p
1
k , n ≥ 3

2
(k2 + k + 2), Theorem 4.7.1.

Again, we note that from Theorem 4.9.1, we obtain a solution with

0 < ‖x‖ ≤ κ2(k, ε, n)p
1
k

+ 3 exp
(
1− 2

3
n−3
k

)
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for k sufficiently large and for certain n. (See Remark 4.9.1.)

3.1.4 Solutions in a General Cube of a Non-homogeneous (c 6= 0)

Diagonal Congruence

Degree Size of solution

k = 2 B � p
1
2

+ 1
2n , [11].

k = 3 B �


p

1
2

+ 1
2n , n ≤ 7, [11];

p
1
2

+ε, n = 8, Theorem 3.0.3;

p
1
3

+ 4
3n

+ε, n ≥ 9, Theorem 3.0.3.

4 ≤ k ≤ 5 B �


p

1
2

+ 1
2n , n ≤ 2k − 1, [11];

p
2k−1

n
+ε, 2k ≤ n ≤ 2k−1(k − 1), Theorem 3.0.3;

p
1
k

+ 2k−1

nk
+ε, n > 2k−1(k − 1), Theorem 3.0.3.

k ≥ 6 B �


p

1
2

+ 1
2n , n < 2k(k − 1), [11];

p
k(k−1)
n

+ε, 2k(k − 1) ≤ n ≤ k(k − 1)2, Theorem 3.0.3;

p
1
k

+ k−1
n

+ε, n > 2k(k − 1)2, Theorem 3.0.3.

3.2 Solutions in a General Cube

We start by recalling a classical result of Hua and Vandiver [20] and Weil [33] on the number

Nn(c) of solutions of the equation
n∑
i=1

aix
k
i = c (3.3)

over the finite field Fp in p elements, where ai 6= 0, 1 ≤ i ≤ n: If c 6= 0 then

|Nn(c)− pn−1| ≤ (k − 1)np
n−1

2 . (3.4)
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Thus, for c 6= 0, and n ≥ 2, the equation (3.3) is guaranteed to have at least one solution

provided that

p > k
2n
n−1 . (3.5)

For c = 0, (3.3) always has the trivial solution x = 0. We note that Nn(c) is just the number

of solutions of (1.8) in a cube of side length B = p.

Next we turn to finding solutions in a restricted cube

B := {x ∈ Zn : di + 1 ≤ xi ≤ di +B} (3.6)

of side length B where B, di ∈ Z, 1 ≤ i ≤ n, 1 ≤ B ≤ p. The key ingredient to our

investigation is a Weyl sum estimate for the exponential sum
B∑
x=1

e(α1x+ · · ·+ αkx
k); here,

e(x) := e2πix for x ∈ R. The classical Weyl sum bound is stated in the next lemma; see [15,

Lemma 3.1].

Lemma 3.2.1. Let k ≥ 2 be an integer, and αi ∈ R, 1 ≤ i ≤ k. Suppose that for some

a ∈ Z, q ∈ N with (a, q) = 1, one has |αk − a
q
| ≤ q−2. Then with σ = σ(k) = 21−k, we have

for any B ∈ N ∣∣∣∣∣
B∑
x=1

e(α1x+ · · ·+ αkx
k)

∣∣∣∣∣ ≤ cεB
1+ε

(
1

q
+

1

B
+

q

Bk

)σ
(3.7)

for some constant cε := cε(k).

Wooley [38, Theorem 11.1] established an improved estimate, obtaining the inequality

in (3.7) with σ(k) = 1
2k(k−2)

for k ≥ 4, and made further improvements in [40, Theorem

11.1] and [39, Theorem 7.3], obtaining in the latter, σ(k) = 1
2(k−1)(k−2)

for k ≥ 3. Bourgain,

Demeter and Guth [8] recently obtained σ(k) = 1
k(k−1)

for k ≥ 2. The latter value improves

on Wooley’s estimates and the classical value σ(k) = 21−k for k ≥ 6. For k = 6, an estimate

of Heath-Brown [19] is better for certain ranges of q. Finally, Montgomery [22, Conjecture

1, p. 46] has conjectured that one can in fact take σ(k) = 1
k
, which would be best possible.

Such a value is currently only known to hold for k = 2.
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Proposition 3.2.1. Fix n ≥ 2, k ≥ 2, and suppose that the Weyl sum estimate in (3.7)

holds for some positive real σ = σ(k). For any ε > 0, there exists a constant P (ε, k) such

that for any prime p ≥ P (ε, k) and any integers c, ai with p - ai, 1 ≤ i ≤ n, there exists a

solution x to (1.8) in any cube B of side length B ≤ p with

B ≥


p

1
σn

+ε, if n ≤ (k − 1)σ−1;

p
1
k

+ 1
σnk

+ε, if n > (k − 1)σ−1.

Applying the proposition with the value of Bourgain, Demeter and Guth, σ = 1
k(k−1)

,

immediately yields Theorem 3.0.3 (i) and the third inequality in Theorem 3.0.2. For 2 ≤

k ≤ 5 we use the classical value σ = 2k−1 to obtain Theorem 3.0.3 (ii).

Proof. Fix n ≥ 2, k ≥ 2, and ε > 0, and let c, ai be integers with p - ai, 1 ≤ i ≤ n, B be a

cube as in (3.6), N the number of solutions of (1.8) in B, and ep(ξ) = e
2πi
p
ξ. Then

N =
1

p

∑
x∈B

p∑
λ=1

ep

(
λ

(
n∑
i=1

aix
k
i − c

))

=
|B|
p

+
1

p

p−1∑
λ=1

ep(−λc)
∑
x∈B

ep

(
λ

(
n∑
i=1

aix
k
i

))

=
Bn

p
+

1

p

p−1∑
λ=1

ep(−λc)
n∏
i=1

di+B∑
xi=di+1

ep
(
λaix

k
i

)
,

and thus

N =
Bn

p
+

1

p

p−1∑
λ=1

ep(−λc)
n∏
i=1

B∑
xi=1

ep
(
λai(xi + di)

k
)
. (3.8)

We now apply the Weyl sum estimate of Lemma 3.2.1 to the polynomial λai(xi + di)
k

with q = p and αk = λai
p

. We observe that with a = λai and 1 ≤ λ ≤ p − 1, we have

(a, p) = 1 and |αk − a
p
| = 0 < 1

p2 . Note that, it is also plain that with B satisfying the lower
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bound stated in the proposition, Bk ≥ p. By (3.7), we have

∣∣∣∣∣
B∑

xi=1

ep(λai(xi + di)
k)

∣∣∣∣∣ ≤ cε′B
1+ε′

(
1

p
+

1

B
+

p

Bk

)σ
(3.9)

for any ε′ > 0. We use (3.8) to determine a lower bound for B such that the error term is

less than the main term in (3.8). It suffices to have B satisfy

Bn

p
>

1

p

∣∣∣∣∣
p−1∑
λ=1

ep(−λc)
n∏
i=1

B∑
xi=1

ep
(
λai(xi + di)

k
)∣∣∣∣∣ . (3.10)

With (3.10) satisfied, we are assured a solution to (1.8) in B.

First, let us consider the case where n > (k−1)σ−1. In this case, we put B = bp 1
k

+ 1
σnk

+εc.

We claim that Bk−1 ≤ p. Indeed, say n = (k − 1)σ−1 + β, with β > 0, so that, n − β =

(k − 1)σ−1. Then

Bk−1 ≤ p
k−1
k

+ k−1
σkn

+ε(k−1) ≤ p1− 1
k

+n−β
kn

+ε(k−1) = p1− β
kn

+ε(k−1) ≤ p,

for ε ≤ β
k(k−1)n

, which we may assume, for if there exists a solution of (1.8) with ε ≤ β
k(k−1)n

,

then trivially there exists a solution for larger values of ε. Using Bk−1 ≤ p and B ≤ p, the

Weyl sum estimate in (3.9) simplifies to

∣∣∣∣∣
B∑

xi=1

ep(λai(xi + di)
k)

∣∣∣∣∣ ≤ cε′B
1+ε′

(
3p

Bk

)σ

for any ε′ > 0. Applying this estimate and the triangle inequality to the right-hand side of

(3.10), we find that we are guaranteed a solution to (1.8) if

Bn

p
> cnε′

(
B(1+ε′)n

)( 3p

Bk

)nσ
(3.11)
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or equivalently

Bn(kσ−ε′) ≥ 3nσcnε′p
1+nσ.

Thus it suffices to have

B �k,ε′ p
1+nσ

n(kσ−ε′) = p
1

k−ε′σ−1 + σ−1

n(k−ε′σ−1) = p
1

k(1−ε′σ−1k−1)
+ σ−1

nk(1−ε′σ−1k−1) .

If ε′

σk
< 1

2
, then we may use (1− x)−1 < 1 + 2x for 0 < x < 1

2
to see that it suffices to have

B �k,ε′ p
1
k

+2 ε′
σk2 + 1

σnk
+2 ε′

σ2nk2 .

By taking ε′ sufficiently small and p sufficiently large, we see that the latter bound holds for

B = bp 1
k

+ 1
σnk

+εc.

Next, let us consider the case where n ≤ (k − 1)σ−1. In this case we set B = dp 1
σn

+εe.

Then plainly Bk−1 > p
k−1
σn ≥ p, and thus the Weyl sum estimate simplifies to

∣∣∣∣∣
B∑

xi=1

ep(λai(xi + di)
k)

∣∣∣∣∣ ≤ cε′B
1+ε′

(
3

B

)σ
,

for any ε′ > 0. Then by (3.10), we find we are guaranteed a solution to (1.8) if

Bn

p
> cε′

n
(
B(1+ε′)n

)( 3

B

)σn
, (3.12)

and thus it suffices to have

B �ε′,k p
1

σn(1−ε′/σ) . (3.13)

If ε′/σ < 1
2
, then it suffices to have

B �ε′,k p
1
σn

+ 2ε′
σ2n . (3.14)

Thus, for ε′ sufficiently small and p sufficiently large, our choice B = dp 1
σn

+εe suffices.
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3.3 Small Solutions via Sums Over Smooth Numbers

Let k ∈ N and P be a large real number. When 2 ≤ R ≤ P, we define the set of R-smooth

numbers, A(P,R), by

A(P,R) = {n ∈ [1, P ] ∩ Z : p prime, p|n =⇒ p ≤ R},

and for each real number α, we define the corresponding exponential sum over smooth

numbers, f(α;P,R), by

f(α;P,R) :=
∑

x∈A(P,R)

e(αxk).

In [35] Wooley established the following estimate for f(α;P,R).

Lemma 3.3.1. [35, Theorem 1.1] Let m denote the set of real numbers α such that whenever

a ∈ Z, q ∈ N, (a, q) = 1, and |α − a/q| ≤ 1
qPk−1 , one has q > P . Then when η = η(ε, k) is a

sufficiently small positive number, and 2 ≤ R ≤ P η, we have,

sup
α∈m
|f(α;P,R)| ≤ ξεP

1−σ′+ε (3.15)

for some constants ξε := ξ(ε, k) and γ := γ(ε, k) with

σ′ = σ′(k) := k−1(log k + γ log log k)−1.

As a consequence of this lemma we shall deduce the following result.

Proposition 3.3.1. Suppose that the inequality in (3.15) holds for a given σ′ = σ′(k). Then

for k ≥ 2, n > σ′−1, and ε > 0, there exist constants P (ε, k) and η′(ε, k) such that for

any positive integer ` satisfying 1
`
≤ η′(ε, k), prime p > P (ε, k), integers c, ai with p - ai,

1 ≤ i ≤ n, and positive integer B with

B > max
{
p

1
σ′n+ε, p

1
k−1

}
,
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there exists a solution x to (1.8) with xi ∈ A(B,B
1
` ), 1 ≤ i ≤ n.

Applying the proposition with Wooley’s value σ′ = k−1(log k+ γ log log k)−1, yields the first

two inequalities in Theorem 3.0.2.

Proof. Suppose that k ≥ 2, n > σ′−1, and B satisfies p
1

k−1 < B < p. We apply Lemma 3.3.1

with P = B, R = B1/` where ` will be chosen below. For the sake of brevity, we’ll define

A := A(B,B
1
` ) and let An = A × A × · · · × A, n times. The number of solutions M of

n∑
i=1

aix
k
i ≡ c mod p with x ∈ An is

M =
1

p

∑
x∈An

p∑
λ=1

ep

(
λ

(
n∑
i=1

aix
k
i − c

))

=
|A|n

p
+

1

p

p−1∑
λ=1

ep(−λc)
n∏
i=1

∑
xi∈A

ep
(
λaix

k
i

)
. (3.16)

Let m be as defined in Lemma 3.3.1. We note that for 1 ≤ λ ≤ p − 1, α := λai
p
∈ m.

Indeed, suppose that (a, q) = 1 and that |λai
p
− a

q
| ≤ 1

qBk−1 . Then either q = p, whence q > B,

or q 6= p, whence
1

pq
≤
∣∣∣λai
p
− a

q

∣∣∣ ≤ 1

qBk−1
;

that is p ≥ Bk−1, contradicting B > p
1

k−1 . Thus for any ε′ > 0 and ` sufficiently large,

` ≥ 1/η(ε′, k), we have by Lemma 3.3.1 that

∣∣∣∣∣ ∑
xi∈A

ep
(
λaix

k
i

) ∣∣∣∣∣ ≤ ξε′B
1−σ′+ε′ .

Combining this with (3.16), we see that M > 0 provided that

|A|n

p
> ξnε′B

(1−σ′+ε′)n.
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By the work of Ramaswami [24], we have

|A(B,B
1
` )| = ρ(`)B + O

(
B

logB

)
,

where ρ is the Dickman function. Thus for B sufficiently large in terms of `, we have

|A(B,B
1
` )| ≥ 1

2
ρ(`)B. Hence it suffices to have

ρ(`)nBn

2np
> ξnε′B

(1−σ′+ε′)n, (3.17)

that is,

Bσ′−ε′ > ξε′
2p

1
n

ρ(`)

or equivalently

B �ε′,`,k p
1

σ′n(1−ε′σ′−1) .

Assuming that ε′σ′−1 < 1
2
, we see that it suffices to have

B �ε′,`,k p
1
σ′n+ 2ε′

σ′2n .

Thus with ε′ sufficiently small and p sufficiently large, we obtain a solution in An provided

that B > max
{
p

1
σ′n+ε, p

1
k−1

}
. We note that since n > σ′−1, for ε small enough, p

1
σ′n+ε < p.

Thus we may take p
1

k−1 < B < p as assumed.

Remark 3.3.1. In his work [36, Theorem 5], Wooley obtains an estimate for a more general

Weyl sum over smooth numbers that one may hope would allow us to generalize Proposition

3.3.1 to boxes in arbitrary position. Unfortunately, for the application here, this estimate

leads to a weaker result than what is already available from Proposition 3.2.1.
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Chapter 4

Using Vinogradov Mean Value

Estimates

4.1 Introduction

Let q, n, k be positive integers, ai be integers with (ai, q) = 1, 1 ≤ i ≤ n, and c be any

integer. Our interest here is in obtaining solutions to the diagonal congruence

a1x
k
1 + a2x

k
2 + · · ·+ anx

k
n ≡ c (mod q), (4.1)

with variables restricted to a cube

B := {x ∈ Zn : di + 1 ≤ xi ≤ di +B, 1 ≤ i ≤ n}, (4.2)

of edge length B ∈ N with B ≤ q; here di ∈ Z, 1 ≤ i ≤ n. First we give a general upper

bound on the number of solutions of (4.1) in B.

Theorem 4.1.1. Let q, n, k be positive integers with n ≥ k2 + k + 2, B be any cube of edge
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length B as in (4.2), ai be integers with (ai, q) = 1, 1 ≤ i ≤ n, and c ∈ Z. Then

#

{
x ∈ B :

n∑
i=1

aix
k
i ≡ c (mod q)

}
�k

(
Bn

q
+Bn−k

)
.

In some sense this upper bound is the best one can hope for. Indeed, as c runs from 0 to

q − 1, the average number of solutions of the congruence (4.1) with x ∈ B, is Bn/q. On the

other hand, if A :=
∑n

i=1 |ai| is fixed, and c is allowed to run from −ABk to ABk, then the

average number of solutions of the equation
∑n

i=1 aix
k
i = c with 1 ≤ xi ≤ B is of order Bn−k.

Thus for large B, we can do no better than Bn/q, while for small B (namely, for B �k q
1
k )

and boxes cornered at the origin, we can do no better than Bn−k.

The upper bound in Theorem 4.1.1 implies that for n > k2 + k + 2, the value set of the

diagonal form, {
n∑
i=1

aix
k
i (mod q) : x ∈ B

}
,

has cardinality on the order of q provided that B �k q
1/k. Using further variables and

arithmetic combinatorics we can then represent all values by the diagonal form.

Theorem 4.1.2. For any positive integer k, there exists a constant c3(k) such that for any

positive integers q, n with n > c3(k), cube B of type (4.2) with side length B ≥ (q/k2)1/k,

and integers ai with (ai, q) = 1, 1 ≤ i ≤ n, such that for any prime factor p of q, the k-th

powers (mod p) are not constant on any edge [di + 1, di + B] of B, there exists a solution

of (4.1) in B.

For prime moduli, we can obtain a much stronger result.

Theorem 4.1.3. For any positive integer k there exists a constant c4(k) such that for any

positive integer n ≥ 3
2
(k2 + k + 2), prime p, and integers ai with p - ai, 1 ≤ i ≤ n, there

exists a solution of

a1x
k
1 + · · ·+ anx

k
n ≡ c (mod p), (4.3)

with 1 ≤ xi ≤ c4(k)p
1
k .
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This improves on Theorem 3.0.2 for n > 3
2
(k2 + k + 2) and on Theorem 3.0.3 for n >

3
2
(k2 + k + 2) and cubes cornered at the origin.

4.2 A General Upper Bound on the Number of Solu-

tions of (4.1)

Let Zq denote the residue class ring mod q. For any subsets S1, . . . , Sn of Zq, put S =

S1 × · · · × Sn, and define

In,k(S) := #
{

(x, y) ∈ S× S :
n∑
i=1

xki ≡
n∑
i=1

yki (mod q)
}
.

Lemma 4.2.1. Let q, n, k be positive integers, S1, . . . , S2n be subsets of Zq, and T = S1 ×

· · · × S2n. For any integers ai, 0 ≤ i ≤ 2n, with (ai, q) = 1, 1 ≤ i ≤ 2n, we have

#
{
x ∈ T :

2n∑
i=1

aix
k
i ≡ a0 (mod q)

}
≤

2n∏
i=1

In,k(Sni )
1

2n ,

where Sni is the cartesian product of Si with itself n times.

Proof. We have

#{x ∈ T :
∑2n

i=1aix
k
i ≡ a0 (mod q)} =

1

q

∑
x∈T

q∑
λ=1

eq

(
λ

(
2n∑
i=1

aix
k
i − a0

))

=
1

q

q∑
λ=1

eq(−λa0)
∑
x∈T

eq

(
λ

2n∑
i=1

aix
k
i

)

=
1

q

q∑
λ=1

eq(−λa0)
2n∏
i=1

∑
xi∈Si

eq
(
λaix

k
i

)
=

1

q

∣∣∣∣∣
q∑

λ=1

eq(−λa0)
2n∏
i=1

∑
xi∈Si

eq
(
λaix

k
i

)∣∣∣∣∣ .
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Then by the triangle inequality and Hölder’s inequality, we have that

#{x ∈ T :
∑2n

i=1aix
k
i ≡ a0 (mod q)}

≤ 1

q

q∑
λ=1

∣∣∣∣∣eq(−λa0)
2n∏
i=1

∑
xi∈Si

eq
(
λaix

k
i

)∣∣∣∣∣
=

1

q

q∑
λ=1

∣∣∣∣∣ ∑
x1∈S1

eq(λa1x
k
1)
∑
x2∈S2

eq(λa2x
k
2) · · ·

∑
x2n∈S2n

eq(λa2nx
k
2n)

∣∣∣∣∣
≤ 1

q

 q∑
λ=1

∣∣∣∣∣ ∑
x1∈S1

eq(λa1x
k
1)

∣∣∣∣∣
2n
 1

2n

. . .

 q∑
λ=1

∣∣∣∣∣ ∑
x2n∈S2n

eq(λa2nx
k
2n)

∣∣∣∣∣
2n
 1

2n

.

Consider now the sum
q∑

λ=1

∣∣∣∣∣∑
xi∈Si

eq(λaix
k
i )

∣∣∣∣∣
2n

for a fixed i, 1 ≤ i ≤ 2n.

q∑
λ=1

(∣∣∣∣∣∑
xi∈Si

eq(λaix
k
i )

∣∣∣∣∣
)2n

=

q∑
λ=1

[(∑
x1∈Si

eq(λaix
k
1)

)(∑
y1∈Si

eq(−λaiyk1)

)
. . .

(∑
xn∈Si

eq(λaix
k
n)

)(∑
yn∈Si

eq(−λaiykn)

)]

=

q∑
λ=1

∑
x1∈Si

∑
y1∈Si

· · ·
∑
xn∈Si

∑
yn∈Si

eq
(
λai(x

k
1 + xk2 + · · ·+ xkn − yk1 − yk2 − · · · − ykn)

)
=
∑
x1∈Si

∑
y1∈Si

· · ·
∑
xn∈Si

∑
yn∈Si

q∑
λ=1

eq
(
λai(x

k
1 + xk2 + · · ·+ xkn − yk1 − yk2 − · · · − ykn)

)
.

This counts q times the number of solutions to the congruence

ai(x
k
1 + · · ·+ xkn) ≡ ai(y

k
1 + · · ·+ ykn) (mod q),
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with variables restricted to Si, and since (ai, q) = 1 this is just qIn,k(S
n
i ). Therefore,

#{x ∈ T :
2n∑
i=1

aix
k
i ≡ a0 (mod q)} ≤ 1

q

2n∏
i=1

(qIn,k(S
n
i ))

1
2n =

2n∏
i=1

In,k(S
n
i )

1
2n .

4.3 Relating In,k(B) to Jn,k(B)

Next, we obtain an estimate for In,k(B) for a cube of the type

B = B(c, B) := {x ∈ Zn : c+ 1 ≤ xi ≤ c+B, 1 ≤ i ≤ n}, (4.4)

by relating it to the number of solutions Jn,k(B) to the system of congruences

x1 + · · ·+ xn ≡ y1 + · · ·+ yn (mod q),

x2
1 + · · ·+ x2

n ≡ y2
1 + · · ·+ y2

n (mod q),

... (4.5)

xk1 + · · ·+ xkn ≡ yk1 + · · ·+ ykn (mod q)

with 1 ≤ xi, yi ≤ B, 1 ≤ i ≤ n.

Proposition 4.3.1. For any positive integers n, k, q and cube B(c, B) as in (4.4) we have

In,k(B) ≤ (2n)k−1B
k(k−1)

2 Jn,k(B). (4.6)

Moreover, if for some j ≤ k − 1 we have n(Bj−1 − 1) < q/2 ≤ n(Bj − 1), then

In,k(B) ≤ (2n)j−1B
j(j−1)

2 qk−jJn,k(B). (4.7)

Lemma 4.3.1. Let n, k, and q be fixed positive integers, c be any integer, and (x, y) ∈
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Zn × Zn. Then (x, y) is a solution of (4.5) if and only if (x, y) is a solution of the system

(x1 − c) + · · ·+ (xn − c) ≡ (y1 − c) + · · ·+ (yn − c) (mod q),

(x1 − c)2 + · · ·+ (xn − c)2 ≡ (y1 − c)2 + · · ·+ (yn − c)2 (mod q),

... (4.8)

(x1 − c)k + · · ·+ (xn − c)k ≡ (y1 − c)k + · · ·+ (yn − c)k (mod q).

Proof. Note that by considering a translation of the variables, it is enough to show that

whenever (x, y) solves (4.8), it also solves (4.5). We will show by induction on the degree k

that the result holds. First note that trivially (x, y) being a solution of
n∑
i=1

(xi−c) ≡
n∑
i=1

(yi−c)

(mod q) implies that
n∑
i=1

xi ≡
n∑
i=1

yi (mod q).

Let us now assume that the result holds for systems of polynomials up to degree k − 1

and consider a system up to degree k. Suppose that (x, y) is a solution of

n∑
i=1

(xi − c)τ ≡
n∑
i=1

(yi − c)τ (mod q) for each 1 ≤ τ ≤ k. (4.9)

We know by the induction hypothesis that (x, y) is also a solution to

n∑
i=1

xτi ≡
n∑
i=1

yτi (mod q) for each 1 ≤ τ ≤ k − 1. (4.10)

We need only to show that (x, y) is a solution to

n∑
i=1

xki ≡
n∑
i=1

yki (mod q). (4.11)

By the binomial theorem, (x, y) is a solution of

(x1 − c)k + · · ·+ (xn − c)k ≡ (y1 − c)k + · · ·+ (yn − c)k (mod q)
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if and only if (x, y) is a solution of

n∑
i=1

k∑
t=0

(
k

t

)
xti(−c)k−t ≡

n∑
i=1

k∑
t=0

(
τ

t

)
yti(−c)k−t (mod q).

In other words, (x, y) is a solution of

n∑
i=1

xki +
n∑
i=1

k−1∑
t=0

(
k

t

)
xti(−c)k−t ≡

n∑
i=1

yki +
k−1∑
t=0

(
k

t

)
yti(−c)k−t (mod q). (4.12)

By (4.10),

n∑
i=1

k−1∑
t=0

(
k

t

)
xti(−c)k−t =

k−1∑
t=0

((
k

t

)
(−c)k−t

n∑
i=1

xti

)

≡
k−1∑
t=0

((
k

t

)
(−c)k−t

n∑
i=1

yti

)

≡
n∑
i=1

k−1∑
t=0

(
k

t

)
yti(−c)k−t (mod q),

and thus (4.12) implies
n∑
i=1

xki ≡
n∑
i=1

yki (mod q). (4.13)

In our application we actually consider a hybrid system

(x1 − c) + · · ·+ (xn − c) ≡ (y1 − c) + · · ·+ (yn − c) (mod q),

(x1 − c)2 + · · ·+ (xn − c)2 ≡ (y1 − c)2 + · · ·+ (yn − c)2 (mod q),

... (4.14)

(x1 − c)k−1 + · · ·+ (xn − c)k−1 ≡ (y1 − c)k−1 + · · ·+ (yn − c)k−1 (mod q)

xk1 + · · ·+ xkn ≡ yk1 + · · ·+ ykn (mod q).
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It follows from the arguments in the proof of Lemma 4.3.1 that this system is also equivalent

to the systems considered in Lemma 4.3.1. That is, x is a solution of (4.8) (or equivalently

(4.5)) if and only if x is a solution of (4.14). In particular, if x with c + 1 ≤ xi ≤ c + B

for 1 ≤ i ≤ n solves (4.14), then it solves (4.8). Thus, x, y with 1 ≤ xi, yi ≤ B solves (4.5).

Hence, the number of solutions x with c + 1 ≤ xi ≤ c + B, 1 ≤ i ≤ n that solve (4.14) is

Jn,k(B). This leads us to our next lemma.

Lemma 4.3.2. Let B(c, B) be a cube as in (4.4). The number of solutions of the system

(4.14) with x, y ∈ B(c, B) is Jn,k(B).

We are now in a position to prove Proposition 4.3.1.

Proof of Proposition 4.3.1. Let B = B(c, B) be a cube as in (4.4). For any x, y ∈ B we set

h1 =(x1 − c) + · · ·+ (xn − c)− (y1 − c)− · · · − (yn − c)
...

hk−1 =(x1 − c)k−1 + · · ·+ (xn − c)k−1 − (y1 − c)k−1 − · · · − (yn − c)k−1.

It is plain that for any choice of x, y ∈ B, we have |hj| ≤ n(Bj − 1), 1 ≤ j ≤ k − 1. Thus,

by summing over the potential values for the hj and writing
∑
x∈B

to denote
c+B∑

x1=c+1

· · ·
c+B∑

xn=c+1

,
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we have

In,k(B) =
∑
x∈B

∑
y∈B

xk1+···+xkn≡yk1 +···+ykn (mod q)

1

=
∑

|h1|≤n(B−1)

· · ·
∑

|hk−1|≤n(Bk−1−1)

∑
c+1≤x1,...,xn≤c+B
c+1≤y1,...,yn≤c+B

h1≡
∑n
i=1(xi−c)−

∑n
i=1(yi−c) (mod q)

...
hk−1≡

∑n
i=1(xi−c)k−1−

∑n
i=1(yi−c)k−1 (mod q)

xk1+···+xkn≡yk1 +···+ykn (mod q)

1

=
∑

|h1|≤n(B−1)

· · ·
∑

|hk−1|≤n(Bk−1−1)

1

qk

∑
x∈B

∑
y∈B

q∑
λ1=1

· · ·
q∑

λk=1

eq

[
λk

(
n∑
i=1

xki −
n∑
i=1

yki

)
+

k−1∑
j=1

λj

(
n∑
i=1

(xi − c)j −
n∑
i=1

(yi − c)j − hj

)]

=
∑

|h1|≤n(B−1)

· · ·
∑

|hk−1|≤n(Bk−1−1)

1

qk

∑
x∈B

∑
y∈B

q∑
λ1=1

· · ·
q∑

λk=1

eq

[
k∑
j=1

−λjhj

]
eq

[
λk

(
n∑
i=1

xki −
n∑
i=1

yki

)
+

k−1∑
j=1

λj

(
n∑
i=1

(xi − c)j −
n∑
i=1

(yi − c)j
)]

=
∑

|h1|≤n(B−1)

· · ·
∑

|hk−1|≤n(Bk−1−1)

1

qk

q∑
λ1=1

· · ·
q∑

λk=1

eq

[
k∑
j=1

−λjhj

]
×

∑
x∈B

∑
y∈B

eq

[
λk

(
n∑
i=1

xki −
n∑
i=1

yki

)
+

k−1∑
j=1

λj

(
n∑
i=1

(xi − c)j −
n∑
i=1

(yi − c)j
)]
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By the triangle inequality and Lemma 4.3.2, we obtain

In,k(B) =

∣∣∣∣∣ ∑
|h1|≤n(B−1)

· · ·
∑

|hk−1|≤n(Bk−1−1)

1

qk

q∑
λ1=1

· · ·
q∑

λk=1

eq

[
k∑
j=1

−λjhj

]
×

∑
x∈B

∑
y∈B

eq

[
λk

(
n∑
i=1

xki −
n∑
i=1

yki

)
+

k−1∑
j=1

λj

(
n∑
i=1

(xi − c)j −
n∑
i=1

(yi − c)j
)] ∣∣∣∣∣

≤
∑

|h1|≤n(B−1)

· · ·
∑

|hk−1|≤n(Bk−1−1)

1

qk

q∑
λ1=1

· · ·
q∑

λk=1

∣∣∣∣∣∑
x∈B

∑
y∈B

eq

[
λk

(
n∑
i=1

xki −
n∑
i=1

yki

)
+

k−1∑
j=1

λj

(
n∑
i=1

(xi − c)j −
n∑
i=1

(yi − c)j
)] ∣∣∣∣∣

=
∑

|h1|≤n(B−1)

· · ·
∑

|hk−1|≤n(Bk−1−1)

1

qk

q∑
λ1=1

· · ·
q∑

λk=1

∑
x∈B

∑
y∈B

eq

[
λk

(
n∑
i=1

xki −
n∑
i=1

yki

)
+

k−1∑
j=1

λj

(
n∑
i=1

(xi − c)j −
n∑
i=1

(yi − c)j
)]

=
∑

|h1|≤n(B−1)

· · ·
∑

|hk−1|≤n(Bk−1−1)

Jn,k(B)

≤ 2k−1nk−1B
k(k−1)

2 Jn,k(B).

If for some j < k we have n(Bj−1 − 1) < q/2 ≤ n(Bj − 1), then the upper bound can

be improved by simply allowing hj, . . . , hk−1 to each run through a complete residue system

(mod q). In this case, we see that there are at most (2n)j−1B1+2+···+(j−1)qk−j choices for the

hi, and so we obtain the second inequality in the theorem.
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4.4 Estimation of Jn,k(B)

Let J∗n,k(B) denote the number of integer solutions of the system of equations

x1 + · · ·+ xn = y1 + · · ·+ yn,

x2
1 + · · ·+ x2

n = y2
1 + · · ·+ y2

n,

... (4.15)

xk1 + · · ·+ xkn = yk1 + · · ·+ ykn,

with 1 ≤ xi, yi ≤ B, 1 ≤ i ≤ n.

We call a nonnegative real number ∆∗n,k an admissible exponent for the system (4.15) if

J∗n,k(B) ≤ c1(n, k)B2n− 1
2
k(k+1)+∆∗n,k (4.16)

for some constant c1(n, k). In his seminal work on Waring’s problem, Wooley [37, 38] estab-

lished the following estimates for J∗n,k(B) and ∆∗n,k.

Lemma 4.4.1. (i) [37, Theorem 1.1] Suppose that n and k are natural numbers with k ≥ 2

and n ≥ k(k + 1). Then for any ε > 0 we can take ∆∗n,k = ε.

(ii) [37, Theorem 1.2] Suppose that k ≥ 3. Then for n ≥ k2 + k + 1, we have

J∗n,k(B) ∼ c(n, k)B2n− 1
2
k(k+1), (4.17)

for the positive constant c(n, k) as given in (4.19) below. Consequently, for such n, k

we can take ∆∗n,k = 0.

(iii) [38, Theorem 1.1] If k ≥ 3 and n ≥ k2 − 1 then for any ε > 0 we can take ∆∗n,k = ε.

Recently, Bourgain, Demeter, and Guth proved the following.

Lemma 4.4.2. [8] Let n and k be natural numbers such that n ≥ 1
2
k(k+ 1) and k ≥ 2, and
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let ε > 0. Then

J∗n,k(B)� B2n− 1
2
k(k+1)+ε.

Furthermore, if n > 1
2
k(k + 1), then

J∗n,k(B) ∼ c(n, k)B2n− 1
2
k(k+1), (4.18)

where c(n, k) is the positive constant in (4.19) below.

Define

S(n, k) :=
∞∑
q=1

q∑
λ1=1

· · ·
q∑

λk=1

(λ1,...,λk,q)=1

∣∣∣∣∣q−1

q∑
x=1

eq
(
λ1x+ · · ·+ λkx

k
)∣∣∣∣∣

2n

and

J(n, k) :=

∫
Rk

∣∣∣∣∫ 1

0

e(β1x+ · · ·+ βkx
k)dx

∣∣∣∣2n dβ.
Whenever the asymptotic formula in (4.17) is valid it is known that

c(n, k) = S(n, k)J(n, k). (4.19)

In this case we can take the constant c1(n, k) in (4.16) to be c(n, k) + ε for any ε > 0,

provided that B is sufficiently large in terms of ε, n,and k. In Section 4.10 we show that

e
73
450

(k+1)(k+4)J(n, k) < c(n, k) <
(
1− k

2

)
e1.74(k3+k2+2k)J(n, k).

It is shown in Arkhipov, Chubarikov and Karatsuba [3, Theorem 3.9] that for n ≥

2k2 log k + k2 log log k + 4.5k2,

J∗n,k(B) ≤ k30k3

B2n− 1
2
k(k+1).

In [31, Theorem 1.1], Steiner proved that for k ≥ 3, n ≥ k2 + k + 2, λ = k2+1
k2 > 1 and
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B ≥ n10, we have the estimate

Jn,k(B) ≤ CB2n− 1
2
k(k+1),

where C is the maximum of 4k30k3
and

[
e1.03973k2+6.57361k+3.86874k

1
2
k2+ 19

6
k− 15

2
+ 5

2
De

1
2
λk log(λ)

5
2M0

] 3.87
68

log(λ)kD+1

· 4(2k)2k+11,

where

D =

⌈
4 log k + log log k + 4.2

log λ

⌉
and

M0 = max
γ∈{1, n−k

n−2k
}

{(
e1.09658k2+6.21267k−0.52770k−

1
2
k2+ 19

3
k−4(λ+ 1)ke

λ
2·66

)γ
, e−0.34657k2−1.27076k+3.86874

}
.

Lemma 4.4.3. For any integers l1, . . . , lk the number of integer solutions of the system

x1 + · · ·+ xn = y1 + · · ·+ yn + l1,

x2
1 + · · ·+ x2

n = y2
1 + · · ·+ y2

n + l2,

... (4.20)

xk1 + · · ·+ xkn = yk1 + · · ·+ ykn + lk,

with 1 ≤ xi, yi ≤ B is at most J∗n,k(B).

Proof. Note that ∫ 1

0

e2πiλn dλ =


1, n = 0;

0, n ∈ Z \ {0}.
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The number of solutions is given by

B∑
x1=1

· · ·
B∑

yn=1

∫ 1

λk=0

· · ·
∫ 1

λ1=0

e2πiλ1(x1+···−yn−l1) · · · e2πiλk(xk1+···−ykn−lk)dλ

=

∣∣∣∣∣
B∑

x1=1

· · ·
B∑

yn=1

∫ 1

λk=0

· · ·
∫ 1

λ1=0

k∏
i=1

e2πiλi(x
i
1+···−yin−li)dλ

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

λk=0

· · ·
∫ 1

λ1=0

B∑
x1=1

· · ·
B∑

yn=1

k∏
i=1

e2πiλi(x
i
1+···−yin−li)dλ

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

λk=0

· · ·
∫ 1

λ1=0

k∏
i=1

e−2πiλili

B∑
x1=1

· · ·
B∑

yn=1

k∏
i=1

e2πiλi(x
i
1+···−yin)dλ

∣∣∣∣∣
≤
∫ 1

λk=0

· · ·
∫ 1

λ1=0

∣∣∣∣∣
B∑

x1=1

· · ·
B∑

yn=1

k∏
i=1

e2πiλi(x
i
1+···−yin)

∣∣∣∣∣dλ
=

∫ 1

λk=0

· · ·
∫ 1

λ1=0

B∑
x1=1

· · ·
B∑

yn=1

k∏
i=1

e2πiλi(x
i
1+···−yin)dλ

= J∗n,k(B).

Lemma 4.4.4. If for some j with 1 ≤ j ≤ k we have that n(Bj−1 − 1) < q/2 ≤ n(Bj − 1),

then

Jn,k(B) ≤ 6c1(n, k)(2n)k−j+1qj−k−1B2n− j(j−1)
2

+∆∗n,k .

Remark 4.4.1. If n > 1
2
k(k + 1), then we may remove the ∆∗n,k from the exponent of B by

Lemma 4.4.2.

Proof. For 1 ≤ t ≤ j − 1 we have n(Bt − 1) < q/2, and thus any integer solution of the

congruence

xt1 + · · ·+ xtn ≡ yt1 + · · ·+ ytn (mod q), (4.21)

with 1 ≤ xi, yi ≤ B, 1 ≤ i ≤ n, is in fact a solution of the equation

xt1 + · · ·+ xtn = yt1 + · · ·+ ytn.
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For t ≥ j any solution of (4.21) is a solution of an integer equation of the form

xt1 + · · ·+ xtn = yt1 + · · ·+ ytn + ltq

for some integer lt with |lt| ≤ n(Bt − 1)/q. Thus there are at most 2bn
q
(Bt − 1)c+ 1 choices

for lt, and altogether at most

k∏
t=j

(
2

⌊
n

q
(Bt − 1)

⌋
+ 1

)

choices for lj, . . . , lk. In order to simplify this product we define for j ≤ t ≤ k,

βt :=
2bn

q
(Bt − 1)c+ 1

2n
q
Bt

.

Using the fact that Bj − 1 ≥ q
2n

, we have

βt ≤
2n
q
Bt − 2n

q
+ 1

2n
q
Bt

= 1 +
1− 2n

q

2n
q
BjBt−j

< 1 +
1− 2n

q

2n
q

q
2n
Bt−j

< 1 +
1− 2n

q

Bt−j < 1 +
1

Bt−j ,

and thus for B ≥ 2,

k∏
t=j

βt ≤
(

1 +
1

1

)(
1 +

1

B

)(
1 +

1

B2

)
· · ·
(

1 +
1

Bk−j

)
< 2e

∑∞
t=1

1
Bt = 2e

1
B−1 < 6.

Therefore, the number of choices for lj, . . . , lk is at most

k∏
t=j

βt
2n

q
Bt < 6(2n)k−j+1qj−k−1B

k(k+1)
2
− j(j−1)

2 .
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Each such choice of the lt gives a system of the type (4.20) having at most J∗n,k(B)

solutions, by the preceding lemma. The result now follows from the upper bound J∗n,k(B) ≤

c1(n, k)B2n− k(k+1)
2

+∆∗n,k .

Theorem 4.4.1. For any positive integers n, k and cube B as in (4.4), we have

In,k(B) ≤ 6c1(n, k)(2n)k max
{B2n

q
, B2n−k

}
B∆∗n,k . (4.22)

Proof. If for some j ≤ k − 1 we have n(Bj−1 − 1) < q/2 ≤ n(Bj − 1), then by Lemma 4.4.4

Jn,k(B) ≤ 6c1(n, k)(2n)k−j+1qj−k−1B2n− j(j−1)
2

+∆∗n,k ,

while by Proposition 4.3.1

In,k(B) ≤ (2n)j−1B
j(j−1)

2 qk−jJn,k(B) ≤ 6c1(n, k)(2n)kB2n+∆∗n,kq−1.

Similarly, if n(Bk−1 − 1) < q/2 ≤ n(Bk − 1), then

Jn,k(B) ≤ 6c1(n, k)(2n)q−1B2n− k(k−1)
2

+∆∗n,k ,

while

In,k(B) ≤ (2n)k−1B
k(k−1)

2 Jn,k(B) ≤ 6c1(n, k)(2n)kB2n+∆∗n,kq−1.

Finally, if n(Bk − 1) < q/2, then Jn,k(B) = J∗n,k(B) ≤ c1(n, k)B2n− k(k+1)
2

+∆∗n,k , and so

In,k(B) ≤ (2n)k−1B
k(k−1)

2 Jn,k(B) ≤ c1(n, k)(2n)k−1B2n−k+∆∗n,k .

The theorem is now immediate.

Corollary 4.4.1. Let q, n, k be positive integers and C be any cube of edge length B as in
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(4.2) with n replaced by 2n. For any integers ai with (ai, q) = 1, 1 ≤ i ≤ 2n, we have

#

{
x ∈ B :

2n∑
i=1

aix
k
i ≡ a0 (mod q)

}
≤ 6c1(n, k)(2n)k max

{B2n

q
, B2n−k

}
B∆∗n,k .

Proof. For 1 ≤ i ≤ 2n, let Si = {x ∈ Z : ci + 1 ≤ x ≤ ci + B}, making Sni a cube of type

(4.4). By Theorem 4.4.1, we have

In,k(S
n
i ) ≤ 6c1(n, k)(2n)k max

{B2n

q
, B2n−k

}
B∆∗n,k

for each of the cubes Sni , and thus the corollary follows immediately from Lemma 4.2.1.

We are now in a position to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Let q, n, k be positive integers with n ≥ k2 + k + 2, B be any cube

of edge length B as in (4.2), and ai be integers with a0 ∈ Z and (ai, q) = 1, 1 ≤ i ≤ n. It

suffices to prove the upper bound for n = k2 + k + 2. Indeed, if n > k2 + k + 2, then for

k2 + k+ 2 < i ≤ n, we can assign any of the B possible values in the i-th interval to xi, and

apply the upper bound for n = k2 + k + 2 to the resulting congruence. Set m = k2+k+2
2

. By

the work of Bourgain, Demeter, and Guth [8], we can take ∆∗m,k = 0. Thus, by Corollary

4.4.1,

#{x ∈ B :
n∑
i=1

aix
k
i ≡ a0 (mod q)} ≤ 6c1(m, k)(2n)k max

{Bn

q
, Bn−k

}
.
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4.5 Lower Bound on the Number of Values of a Diag-

onal Form (mod q)

For any cube B as in (4.2), we define SB to be the set of values the diagonal form
n∑
i=1

aix
k
i

takes on (mod q) as x runs through B,

SB := {
n∑
i=1

aix
k
i ∈ Zq : x ∈ B}, (4.23)

and put

NB := #

{
(x,y) ∈ B × B :

n∑
i=1

aix
k
i ≡

n∑
i=1

aiy
k
i (mod q)

}
. (4.24)

Lemma 4.5.1. For any cube B and diagonal form
n∑
i=1

aix
k
i , we have

|SB| ≥ B2n/NB.

Proof. For any integer ν define nν by nν := #

{
x ∈ B

∣∣ n∑
i=1

aix
k
i ≡ ν (mod q)

}
. Then by

the Cauchy-Schwarz inequality,

Bn = |B| =
q∑

ν=1

(1 · nν) ≤

 q∑
ν=1
nν 6=0

1


1/2(

q∑
ν=1

n2
ν

)1/2

.

After squaring both ends of the inequality, we arrive at

B2n ≤

 q∑
ν=1
nν 6=0

1


(

q∑
ν=1

n2
ν

)
,

where

q∑
ν=1
nν 6=0

1 is the number of values of ν that can be represented as
n∑
i=1

aix
k
i ≡ ν (mod q)
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with x ∈ B and

q∑
ν=1

n2
ν is the number of solutions to

n∑
i=1

aix
k
i ≡

n∑
i=1

aiy
k
i (mod q) with

x, y ∈ B. That is,

B2n ≤
∣∣SB∣∣ ·NB.

One now only needs to divide both sides of the inequality by NB to complete the proof.

By Theorem 4.1.1, if (ai, q) = 1, 1 ≤ i ≤ n, then for any cube B,

NB ≤ 6c1(n, k)(2n)k max
{B2n

q
, B2n−k

}
B∆∗n,k , (4.25)

and so we derive from the preceding lemma the following result.

Corollary 4.5.1. For any positive integers k, n, q, integers ai with (ai, q) = 1, 1 ≤ i ≤ n,

and cube B as in (4.2) of edge length B, we have

i) If Bk ≤ q then

|SB| ≥
1

6
c1(n, k)−1(2n)−kBk−∆∗n,k , (4.26)

where c1(n, k) is the constant in (4.16).

ii) If Bk ≥ q then

|SB| ≥
1

6
c1(n, k)−1(2n)−kB−∆∗n,kq. (4.27)

4.6 Solutions of a Diagonal Congruence (mod q) in a

Cube

We return now to obtaining solutions to the diagonal congruence

a1x
k
1 + · · ·+ anx

k
n ≡ c (mod q), (4.28)

in a cube.
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Lemma 4.6.1. For any cube B as in (4.2), and diagonal form
n∑
i=1

aix
k
i with (ai, q) = 1,

1 ≤ i ≤ n, the value set SB is contained in a coset of a proper additive subgroup of Zq if

and only if there exists a prime divisor p|q, such that xk (mod p) is constant on every edge

[ci + 1, ci +B] of the cube.

Proof. Suppose that SB is contained in a coset pZq + l for some p|q, p 6= 1, and l ∈ Z. We

may assume that p is a prime by enlarging the subgroup if necessary. Thus, for all x ∈ B

we have
n∑
i=1

aix
k
i ≡ l (mod p). In particular, xki (mod p) must be constant on the interval

[ci + 1, ci +B]. The converse is trivial.

Theorem 4.6.1. For any positive integer k, there exists a constant c5(k) such that for any

positive integers n, q with n > c5(k) and cube B of type (4.2) with side length B ≥ (q/k2)1/k,

such that for any prime factor p of q, the k-th powers (mod p) are not constant on any edge

[ci + 1, ci +B] of B, there exists a solution of (4.28) in B.

The constant (1/k2)1/k in the size of B required for success can be reduced further at the

expense of increasing the value of c5(k), given in (4.31).

Proof. Set n1 := k2+k+2
2

. We may assume that n > 2(2k−1n1)
log 2

log 1.5 . Suppose first that

q ≤ 2kn1. For 1 ≤ i ≤ n set

Ai := {aixki (mod q) : ci + 1 ≤ xi ≤ ci +B}.

By the assumption that the k-th powers (mod p) are not constant on [ci+1, ci+B], we know

by Lemma 4.6.1 that the Ai are not contained in a coset of any proper additive subgroup of

Zq. Moreover, each Ai has cardinality at least 2. Thus by Corollary 2.7.1

|A1 + · · ·+ An| ≥ min{q, 2(n/2)
log 1.5
log 2 } = q,

the latter equality following from our assumption on the size of n and q.

Suppose next that q > 2kn1. Let B be any cube in n variables with edge length B

satisfying 1
2
(q/n1)1/k ≤ B < (q/n1)1/k. Note 1

2
(q/n1)1/k > 1 by our assumption on the size
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of q, so such an integer B will exist. Divide the n variables into L := b n
n1
c sets each with

at least n1 variables and no more than 2n1 variables; let Bi be the cube corresponding to

the i-th set of variables, 1 ≤ i ≤ L, and Si = SBi , the set of values assumed by the sum

over the i-th set of variables. To be clear, the first set of variables will have n1 variables.

If say x1, . . . , xn1 is the first set of variables, then S1 is the value set of the diagonal form

a1x
k
1 + · · ·+ an1x

k
n1

(mod q), as the xi run through the intervals [ci + 1, ci +B], 1 ≤ i ≤ n1,

and so on.

Let us define C1 :=
1

6
max

n1≤n∗1<2n1

{c1(n∗1, k)(2n∗1)k} with c1 (n, k) as given in (4.16). Since

n1B
k < n1q/n1 = q, it follows by Corollary 4.5.1 that for 1 ≤ i ≤ L,

|Si| ≥ C−1
1 Bk ≥ c2(k)q, (4.29)

for some constant c2(k), which we may take to be

c2(k) := (2C1n1)−1. (4.30)

By Lemma 4.6.1 the Si are not contained in a coset of any proper additive subgroup of Zq

(by our assumption that the k-th powers are not constant (mod p) on any edge of B for

prime p|q), and thus by Corollary 2.7.1,

|S1 + · · ·+ SL| ≥ min{q, (L/2)
log 1.5
log 2 c2(k)q}.

Since c2(k) < 1, if L ≥ 2c2(k)−2, we conclude that S1 + · · · + SL = Zq. Since L = b n
n1
c, it

suffices to have

n ≥ (2c2(k)−2 + 1)

(
k2 + k + 2

2

)
=: c5(k). (4.31)
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4.7 Small Solutions of a Diagonal Congruence with

Prime Modulus

For prime moduli and boxes cornered at the origin, we obtain a result that allows the number

of variables to be much smaller, at the expense of a slightly larger solution. We make use of

the following lemma due to Sárközy [26].

Lemma 4.7.1. [26, Corollary A] If A,B,C,D are subsets of Zp with |A||B||C||D| > p3,

then there is a solution of a+ b = cd with a ∈ A, b ∈ B, c ∈ C, d ∈ D.

An immediate consequence is the following lemma.

Lemma 4.7.2. If A1, B1, A2, B2 are subsets of Zp with |A1||B1||A2||B2| > p3, then A1B1 +

A2 +B2 = Zp.

Proof. For any x ∈ Zp, apply Sárközy’s Lemma with A = A2 − x,B = B2, C = −A1, D =

B1.

Theorem 4.7.1. For any positive integer k there exists a constant κ1(k) such that for any

positive integer n ≥ 3
2

(k2 + k + 2), prime p, and integers c, ai with p - ai, 1 ≤ i ≤ n, there

exists a solution of

a1x
k
1 + · · ·+ anx

k
n ≡ c (mod p), (4.32)

with 1 ≤ xi ≤ κ1(k)p
1
k .

Proof. Put n1 = k2+k+2
2

and assume n ≥ 3n1. We may also assume κ1(k) > max{2kn1, k/c2(k)3},

with c2(k) as given in (4.30). If p ≤ max{2kn1, k/c2(k)3} < κ1(k), the result is trivial.

In this case the xi are allowed to run through a complete residue system (mod p), and

since Γ(k, p) ≤ k by Theorem 2.6.1, it suffices to have n ≥ k. Thus we may assume that

p > max{2kn1, k/c2(k)3}.

Let B be the cube 1 ≤ xi ≤ B, 1 ≤ i ≤ n, in n variables with side length B satisfying

1
2
(p/n1)1/k ≤ B < (p/n1)1/k. Such an integer B exists since p > 2kn1. Divide the n variables

into three sets, say F1, F2, F3, each with at least n1 variables. Say that Fj has fj-many

57



variables with fj ≥ n1, 1 ≤ j ≤ 3. Let Bi be the cube corresponding to the i-th set of

variables, and let A1, A2, B2 be the value sets of the diagonal sums over each of these sets of

variables. Thus, for the first set of variables, F1, we have that

A1 = {a1x
k
1 + · · ·+ af1x

k
f1

(mod p) : 1 ≤ xi ≤ B, 1 ≤ i ≤ f1}

and similarly for A2 and B2. Put B1 := {1k, 2k, . . . , Lk} ⊆ Zp (with L a parameter to be

chosen later), which is a set with at least L/k distinct values (mod p) assuming that L ≤ p.

As in (4.29) we have,

|A1|, |A2|, |B2| � c2(k)p. (4.33)

Thus, if L ≤ p and c2(k)3p3L/k > p3, we can apply Lemma 4.7.2 to obtain A1B1 +A2 +B2 =

Zp. It suffices to take L =
⌈

k
c2(k)3

⌉
, a value that is at most p by our assumption that

p > k/c2(k)3. If the first set of variables is x1, . . . , x`, then

A1B1 =
{∑`

i=1 ai(yxi)
k (mod p) : 1 ≤ y ≤ L, 1 ≤ xi ≤ B, 1 ≤ i ≤ `

}
.

Here 1 ≤ yxi ≤ LB < L(p/n1)1/k ≤ κ1(k)p1/k for some constant κ1(k).

Remark 4.7.1. It is plain from the proof above that the cubes corresponding to the second

and third sets of variables may be taken in arbitrary position. In this way we can obtain

a solution of (4.32) with roughly one third of the variables restricted to the interval [1, B],

and the other two thirds in arbitrary intervals of length B � κ1p
1/k.

Remark 4.7.2. The constant κ1 in Theorem 4.7.1 may be taken to be

κ1 =

⌈
k

c2(k)3

⌉
n

1
k
1

=

⌈
(2C1n1)3k

⌉
n

1
k
1

where c2(k) is as in (4.30).
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4.8 Smooth Solutions (mod q)

Let k, q, n, `, and B be positive integers and A = A(B,B
1
` ) be the set of B

1
` -smooth numbers

defined by

A := {x ∈ [1, B] ∩ Z : p prime, p|x⇒ p ≤ B
1
` }. (4.34)

By the work of Ramaswami [24], we have

|A| = |A(B,B
1
` )| = Bρ(`) + O

(
B

logB

)
, (4.35)

where ρ(`) is the Dickman function. Put

I∗n,k(An) = #

{
(x, y) ∈ An ×An :

n∑
i=1

(xki − yki ) = 0

}
.

The following definition and lemma are from [35, §2].

Definition 4.8.1. [35, §2, p. 4] We call an exponent ∆n,k permissible when

I∗n,k(An) ≤ c(ε, k, `, n)B2n−k+ε+∆n,k .

Lemma 4.8.1. [35, Lemma 2.1] For k ≥ 4, n ≥ 2, let ∆n,k be the unique positive solution

of the equation ∆n,ke
∆n,k
k = ke1−2n/k. Then ∆n,k is permissible. In particular, the exponent

∆∗n,k = ke1−2n/k is permissible.

For any positive δ < k, k ≥ 4, and n ≥ 1
2
k log(ek/δ), we obtain from the lemma the

permissible exponent

∆∗n,k := ke1−2n/k ≤ ke1−log(ek/δ) = δ. (4.36)

Now we define

In,k(An) = #

{
(x, y) ∈ An ×An :

n∑
i=1

(xki − yki ) ≡ 0 (mod q)

}
.
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Note that if we assume that Bk < q
n
, then any solution of

n∑
i=1

(xki − yki ) ≡ 0 (mod q) is a

solution of
n∑
i=1

(xki − yki ) = 0. That is, if we assume that Bk < q
n
, then In,k(An) = I∗n,k(An).

Corollary 4.8.1. For any integers ai with (ai, q) = 1 for 1 ≤ i ≤ 2n, Bk < q/n, and any

permissible exponent ∆n,k we have

#

{
x ∈ A2n :

2n∑
i=1

aix
k
i ≡ a0 (mod q)

}
≤ c(ε, k, `, n)B2n−k+ε+∆n,k .

Proof. Applying Lemma 4.2.1 with Si = A with A as in (4.34), 1 ≤ i ≤ 2n, we have that

#

{
x ∈ A2n :

2n∑
i=1

aix
k
i ≡ a0 (mod q)

}

= #

{
x ∈ S1 × · · · × S2n :

2n∑
i=1

aix
k
i ≡ a0 (mod q)

}

≤
2n∏
i=1

In,k(S
n
i )

1
2n

= In,k(An).

By Definition 4.8.1, for any permissible ∆n,k, we have

In,k(An) ≤ c(ε, k, `, n)B2n−k+ε+∆n,k ,

and so

#

{
x ∈ A2n :

2n∑
i=1

aix
k
i ≡ a0 (mod q)

}
≤ c(ε, k, `, n)B2n−k+ε+∆n,k .
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Letting NAn denote the value

NAn := #

{
(x, y) ∈ An ×An :

n∑
i=1

aix
k
i ≡

n∑
i=1

aiy
k
i (mod q)

}
,

we have as a special case of the corollary that if ∆n,k is a permissible exponent, then

NAn ≤ c(ε, k, `, n)B2n−k+ε+∆n,k . (4.37)

Corollary 4.8.2. Let SAn :=

{
n∑
i=1

aix
k
i ∈ Zq : x ∈ An

}
. If Bk < q/n then

|SAn| ≥ 1
2
ρ(`)2nB2n/NAn ≥ c̃Bk−ε−∆n,k ,

where c̃ := 1
2
ρ(`)2nc(ε, k, `, n)−1.

Proof. Define nν by nν := #

{
x ∈ An

∣∣∣ n∑
i=1

aix
k
i ≡ ν (mod q)

}
. Then by the Cauchy-

Schwarz inequality,

|An| =
q∑

ν=1

(1 · nν) ≤

 q∑
ν=1
nν 6=0

1


1/2(

q∑
ν=1

n2
ν

)1/2

.

For B sufficiently large, say B ≥ B0(n, `), we have by (4.35), that |A| ≥
(

1
2

) 1
2n ρ(`)B. Hence,

after squaring both ends of the inequality and using our lower bound on |A|, we arrive at

1
2
ρ(`)2nB2n ≤ |A|2n ≤

 q∑
ν=1
nν 6=0

1


(

q∑
ν=1

n2
ν

)

where

q∑
ν=1
nν 6=0

1 is the number of values of ν that can be represented as
∑n

i=1 aix
k
i ≡ ν (mod q)
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with x ∈ An and

q∑
ν=1

n2
ν = #

{
(x, y) ∈ A2n

∣∣∣∣∣
n∑
i=1

aix
k
i ≡

n∑
i=1

aiy
k
i (mod q)

}
. That is,

1
2
ρ(`)2nB2n ≤

∣∣SAn∣∣ ·NAn .
One now only needs to divide both sides of the inequality by NAn and apply the bound in

(4.37).

4.9 Small Solutions (mod p) with a Small Number of

Variables

Next, we use the results of the previous section to find small solutions of (1.8) with a prime

modulus.

Theorem 4.9.1. For any positive ε < 1, k ≥ 4, n > 3
2
k log(3e/ε) + 3, prime p, and integers

ai, 0 ≤ i ≤ n with p - ai, 1 ≤ i ≤ n, there is a solution of (1.8) with

1 ≤ xi �ε,n,k p
1
k

+ε, 1 ≤ i ≤ n. (4.38)

Proof. Let n > 3
2
k log(3e/ε) + 3, m = bn

3
c, B = b

(
3p
n

) 1
k c. Since n > k, we know by Theorem

2.6.1 that (1.8) is solvable for any odd prime p. Thus by taking the implied constant in

(4.38) sufficiently large we may assume that p is greater than any constant we may need

depending only on ε, n and k. In particular, we may assume that 3p > n, whence B ≥ 1.

We divide the n variables into three sets, each with at least m variables. Assuming the first

set of variables is x1, . . . , xm, let

A1 =

{
m∑
i=1

aix
k
i ∈ Zp : xi ∈ A, 1 ≤ i ≤ m

}
,

and define A2 and B2 similarly for the second and third sets of variables.

Note that m ≥ n
3
− 1 > 1

2
k log(3e/ε), and so by (4.36) with δ = εk

3
, ∆∗m,k <

εk
3

, that is,
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there exists an ε′ > 0 such that εk
3
− ε′ is a permissible exponent. Also, Bk ≤ 3p

n
≤ p

m
. Thus,

by Corollary 4.8.2 (with the ε in the corollary taken to be ε′) we obtain

|A1|, |A2|, |B2| ≥ c̃Bk−kε/3,

for some constant c̃ depending on ε, k, ` and n. Now 31/k ≥ e1/k ≥ 1 + 1
k
, and so for p > nkk

we have

B ≥ (3p/n)1/k − 1 ≥
(

1 +
1

k

)
(p/n)1/k − 1 = (p/n)1/k +

1

k
(p/n)1/k − 1 > (p/n)1/k.

Thus for p > nkk,

|A1|, |A2|, |B2| ≥ c̃(p/n)
1
k

(k−kε/3) = c̃(p/n)1−ε/3.

Let B1 = {1k, 2k, 3k, . . . , Lk} ⊆ Zp, a set with at least L/k distinct values (mod p),

assuming that L ≤ p. Thus, for p > nkk and L ≤ p,

2∏
i=1

|Ai||Bi| ≥ c̃3(p/n)3−εL/k ≥ p3,

provided that L ≥ kc̃−3(p/n)ε. Letting L be the smallest integer satisfying this inequality,

we have L ≤ p for p sufficiently large, and thus by Lemma 4.7.2, there exists a solution of

(1.8) with

1 ≤ xi ≤ LB ≤ 2kc̃−3(p/n)ε(3p/n)1/k = κ2(ε, n, k)p
1
k

+ε,

for 1 ≤ i ≤ n.

Remark 4.9.1. An equivalent formulation of Theorem 4.9.1 may be stated as follows:

For k ≥ 4, n ≥ k, prime p, and integers ai, 0 ≤ i ≤ n with p - ai, 1 ≤ i ≤ n, there is a

solution of (1.8) with

1 ≤ xi �ε,n,k p
1
k

+ 3 exp
(
1− 2

3
n−3
k

)
.

Remark 4.9.2. By restricting the values in B1 to smooth numbers, we can in fact obtain a
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solution of (1.8) with all of the variables smooth.

Letting ε = 1
2
− 1

k
, we see that if n > 3

2
k log

(
6ek
k−2

)
+ 3 or rather if n > 5.23k+ 3 we obtain

the following corollary.

Corollary 4.9.1. If k ≥ 4 and n > 5.23k + 3, then there exists a solution of (1.8) with

1 ≤ xi �
√
p.

4.10 Estimation of c(n, k)

Define

S(n, k) :=
∞∑
q=1

q∑
λ1=1

· · ·
q∑

λk=1

(λ1,...,λk,q)=1

∣∣∣∣∣q−1

q∑
x=1

eq
(
λ1x+ · · ·+ λkx

k
)∣∣∣∣∣

2n

and

J(n, k) :=

∫
Rk

∣∣∣∣∫ 1

0

e(β1x+ · · ·+ βkx
k)dx

∣∣∣∣2n dβ.
Then when the asymptotic formula in (4.17) is valid we have

c(n, k) = S(n, k)J(n, k).

For q, k, n, λi ∈ N, 1 ≤ i ≤ k, we define

S(q) :=

q∑
λ1=1

· · ·
q∑

λk=1

(λ1,...,λk,q)=1

∣∣∣∣∣q−1

q∑
x=1

eq
(
λ1x+ · · ·+ λkx

k
)∣∣∣∣∣

2n

.

Theorem 4.10.1. S(q) is a multiplicative function. Furthermore,

S(n, k) =
∏

p prime

(
S(1) + S(p) + S(p2) + · · ·

)
.
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Proof. Recall that

S(n, k) :=
∞∑
q=1

q∑
λ1=1

· · ·
q∑

λk=1

(λ1,...,λk,q)=1

∣∣∣∣∣q−1

q∑
x=1

eq
(
λ1x+ · · ·+ λkx

k
)∣∣∣∣∣

2n

.

Write S(n, k) =
∞∑
q=1

S(q). Let a, b be positive integers such that (a, b) = 1. Write a =

(a, . . . , a), b = (b, . . . , b), 1 = (1, . . . , 1), α = (α1, . . . , αk), β = (β1, . . . , βk), and λ =

(λ1, . . . , λk). Let us define
a∑

α=1

:=
a∑

α1=1

· · ·
a∑

αk=1

and similarly
b∑

β=1

:=
b∑

β1=1

· · ·
b∑

βk=1

Then we can write both

S(a) =

a∑
α=1

(α1,...,αk,a)=1

∣∣∣∣∣a−1

a∑
x=1

ea(α · (x, . . . , xk))

∣∣∣∣∣
2n

and

S(b) =

b∑
β=1

(β1,...,βk,b)=1

∣∣∣∣∣b−1

b∑
y=1

eb(β · (y, . . . , yk))

∣∣∣∣∣
2n

.

Let us begin by examining the inner sums

a∑
x=1

ea(α · (x, . . . , xk)) and
b∑

y=1

eb(β · (y, . . . , yk)).

First, we note that for a polynomial function f(x) =
∑k

i=1 λix
i, the sum

∑ab
x=1 eab(f(x))

can be reduced using the correspondence x ←→ bu + av where 1 ≤ u ≤ a and 1 ≤ v ≤ b.
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For a general power k of bu+ av we have

(bu+ av)k = bkuk +

(
k

1

)
(bu)k−1av + · · ·+

(
k

1

)
(av)k−1bu+ akvk

≡ bkuk + akvk (mod ab).

Thus,

ab∑
x=1

eab(f(x)) =
a∑

u=1

b∑
v=1

eab(f(bu+ av))

=
a∑

u=1

b∑
v=1

eab

(
k∑
i=1

λi(bu+ av)i

)

=
a∑

u=1

b∑
v=1

eab

(
k∑
i=1

λi(b
iui + aivi)

)

=
a∑

u=1

eab

(
k∑
i=1

λib
iui

)
b∑

v=1

eab

(
k∑
i=1

λia
ivi

)

=
a∑

u=1

ea

(
k∑
i=1

λib
i−1ui

)
b∑

v=1

eb

(
k∑
i=1

λia
i−1vi

)
.

Second, we note that for λi = bζi + aγi (1 ≤ i ≤ k),

(λ1, . . . , λk, ab) = 1⇐⇒ (λ1, . . . , λk, a) = 1 and (λ1, . . . , λk, b) = 1

⇐⇒ (bζ1 + aγ1, . . . , bζk + aγk, a) = 1 and (bζ1 + aγ1, . . . , bζk + aγk, b) = 1

⇐⇒ (bζ1, . . . , bζk, a) = 1 and (aγ1, . . . , aγk, b) = 1

⇐⇒ (ζ1, . . . , ζk, a) = 1 and (γ1, . . . , γk, b) = 1.
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Finally,

S(ab)

=

ab∑
λ=1

(λ1,...,λk,ab)=1

∣∣∣∣∣(ab)−1

ab∑
x=1

eab

(
k∑
i=1

(λix
i)

)∣∣∣∣∣
2n

=

ab∑
λ=1

(λ1,...,λk,ab)=1

∣∣∣∣∣(ab)−1

a∑
u=1

ea

(
k∑
i=1

(λib
i−1ui)

)
b∑

v=1

eb

(
k∑
i=1

(λia
i−1vi)

)∣∣∣∣∣
2n

.

Making the substitution λi = bζi + aγi, we reach

S(ab) =

a∑
ζ=1

b∑
γ=1

(ζ1,...,ζk,a)=1

(γ1,...,γk,b)=1

∣∣∣∣∣(ab)−1

a∑
u=1

ea

(
k∑
i=1

((bζi + aγi)b
i−1ui)

)
b∑

v=1

eb

(
k∑
i=1

((bζi + aγi)a
i−1vi)

)∣∣∣∣∣
2n

=

a∑
ζ=1

b∑
γ=1

(ζ1,...,ζk,a)=1

(γ1,...,γk,b)=1

∣∣∣∣∣(ab)−1

a∑
u=1

ea

(
k∑
i=1

(ζib
iui + abi−1γiu

i)

)
b∑

v=1

eb

(
k∑
i=1

(bai−1ζiv
i + aiγiv

i)

)∣∣∣∣∣
2n

=

a∑
ζ=1

b∑
γ=1

(ζ1,...,ζk,a)=1

(γ1,...,γk,b)=1

∣∣∣∣∣(ab)−1

a∑
u=1

ea

(
k∑
i=1

biζiu
i

)
b∑

v=1

eb

(
k∑
i=1

aiγiv
i

)∣∣∣∣∣
2n

=

a∑
ζ=1

(ζ1,...,ζk,a)=1

∣∣∣∣∣a−1

a∑
u=1

ea

(
k∑
i=1

biζiu
i

)∣∣∣∣∣
2n b∑

γ=1

(γ1,...,γk,b)=1

∣∣∣∣∣b−1

b∑
v=1

eb

(
k∑
i=1

aiγiv
i

)∣∣∣∣∣
2n

=

 a∑
α=1

(α1,...,αk,a)=1

∣∣∣∣∣a−1

a∑
x=1

ea

(
k∑
i=1

αix
i

)∣∣∣∣∣
2n




b∑
β=1

(β1,...,βk,b)=1

∣∣∣∣∣b−1

b∑
y=1

eb

(
k∑
i=1

βiy
i

)∣∣∣∣∣
2n


= S(a)S(b),

where the penultimate equality is due to the substitution biζi = αi and aiγi = βi for each
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1 ≤ i ≤ k. Thus, S(q) is a multiplicative function, implying that

S(n, k) =
∏

p prime

(
S(1) + S(p) + S(p2) + · · ·

)
.

For integers λi ∈ Z, 0 ≤ i ≤ k, let f(x) = λ0 + λ1x+ · · ·+ λkx
k and

S(f, q) :=

q∑
x=1

eq
(
λ0 + λ1x+ · · ·+ λkx

k
)
.

Currently, the best upper bounds known for S(f, q) are

|S(f, q)| ≤ ek+O( k
log k

)q1− 1
k ,

if (λ1, . . . , λk, q) = 1, due to Stečkin [30], and

|S(f, q)| ≤ e1.74kq1− 1
k , (4.39)

if (λ1, . . . , λk, q) = 1 and k ≥ 3, due to Qi and Ding [23].

Theorem 4.10.2. (i) For n ≥ (k2 + k + 2)/2 and k ≥ 2, we have

S(n, k) ≤
(
1 + k

2

)
e1.74(k3+k2+2k).

(ii) For all n we have S(n, k) ≥ e
log 6
30

(k+1)(k+4).
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Proof. (i) Using the upper bound on S(f, q) in (4.39), we have that

S(n, k) =
∞∑
q=1

q∑
λ1=1

· · ·
q∑

λk=1

(λ1,...,λk,q)=1

∣∣∣∣∣q−1

q∑
x=1

eq
(
λ1x+ · · ·+ λkx

k
)∣∣∣∣∣

2n

≤
∞∑
q=1

q∑
λ1=1

· · ·
q∑

λk=1

(λ1,...,λk,q)=1

∣∣∣q−1e1.74kq1− 1
k

∣∣∣2n

=
∞∑
q=1

q∑
λ1=1

· · ·
q∑

λk=1

(λ1,...,λk,q)=1

e3.48knq−
2n
k

≤ e3.48kn

∞∑
q=1

qk−
2n
k .

For n > k2+k
2

, or equivalently k − 2n
k
< −1, the sum

∑∞
q=1 q

k− 2n
k is a convergent series.

Furthermore, for such an n,

∞∑
q=1

qk−
2n
k ≤ 1 +

∫ ∞
q=1

q
k2−2n
k dq = 1 +

k

2n− (k2 + k)
≤ 1 +

k

2
,

and so

S(n, k) ≤ e3.48kn

∞∑
q=1

qk−
2n
k ≤

(
1 + k

2

)
e3.48kn.

Since S(n, k) is decreasing as a function of n, for n ≥ k2+k+2
2

,

S(n, k) ≤ S
(
k2+k+2

2
, k
)
≤
(
1 + k

2

)
e1.74(k3+k2+2k).

(ii) Suppose that p < (k + 4)/3. We shall derive a lower bound on

S(p) =

p∑
λ1=1

· · ·
p∑

λk=1

(λ1,...,λk,p)=1

∣∣∣∣∣p−1

p∑
x=1

ep
(
λ1x+ · · ·+ λkx

k
)∣∣∣∣∣

2n
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for such p. For p - x we have

k∑
i=1

λix
i ≡

p−2∑
`=0

 k∑
i=1

i≡` (mod p−1)

λi

x` (mod p)

by Fermat’s Little Theorem. Let n` be the number of i with i ≡ ` (mod p−1) and 1 ≤ i ≤ k;

namely, n` = b k−`
p−1
c. Note that since p < (k + 4)/3 we have n` ≥ b3p−4−`

p−1
c ≥ b3p−4−p+2

p−1
c = 2

for all `.

In the case when p = 2, the above sum yields only the constant term x0. Thus there are

pn0 − 1 = 2k − 1 choices for the λi with i ≡ 0 (mod 1) and (λ1, λ2, . . . , λk, 2) = 1 for which

the polynomial above is identically a constant.

Now let us consider the case when p > 2. The above polynomial is identically a constant

if for ` ≥ 1, each sum over i is 0 (mod p). For a given ` ≥ 1 there are pn`−1−1 choices for the

λi with i ≡ ` (mod p− 1) where (λ`, λ`+p−1, . . . , λ`+(n`−1)(p−1), p) = 1 and
k∑
i=1

i≡` (mod p−1)

λi ≡ 0

(mod p). Thus, there are at least

pn0

p−2∏
`=1

(pn`−1 − 1) = pn0

p−2∏
`=1

(
1− 1

pn`−1

) p−2∏
`=1

pn`−1

>
(

1− 1
p

)p−2

p−p+2+
∑p−2
`=0 n`

≥ e−1pk−p+2,

choices of the λi with (λ1, . . . , λk, p) = 1 that make the polynomial identically a constant,

noting that for ` = 0 the λi can be arbitrarily selected. Each such choice of the λi gives a

contribution of 1 to the sum S(p), and so S(p) ≥ e−1pk−p+2. By Theorem 4.10.1, we have

that

S(n, k) =
∏

p prime

(
S(1) + S(p) + S(p2) + . . .

)
.
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Thus

S(n, k) ≥
∏

p<(k+4)/3

S(p) ≥
∏

p<(k+4)/3

e−1pk−p+2.

Taking the logarithm of both sides we get, for k ≥ 8,

logS(n, k) ≥
∑

p<(k+4)/3

((k − p+ 2) log p− 1)

≥
∑

p<(k+4)/3

(
k − k + 4

3
+ 2

)
log p

=
2

3
(k + 1)

∑
p<(k+4)/3

log p. (4.40)

By a result of Rosser and Schoenfeld [25], for x ≥ 41,

Θ(x) =
∑
p≤x

log p > x

(
1− 1

log x

)
.

Applying this bound in (4.40), for (k + 4)/3 ≥ 41, we obtain that

logS(n, k) >
2

3
(k + 1)

(
k + 4

3

)(
1− 1

log((k + 4)/3)

)
.

Noting that for (k + 4)/3 ≥ 41,

1− 1

log((k + 4)/3)
> 1− 1

log 41
> 0.73,

we conclude that

logS(n, k) >

(
2

9

)
(k+ 1)(k+ 4)

(
73

100

)
=

(
73

450

)
(k+ 1)(k+ 4) >

(
log 6

30

)
(k+ 1)(k+ 4).

Finally, we can exponentiate both sides to get the result of the theorem for (k + 4)/3 ≥ 41.

For (k + 4)/3 ≤ 41, one can numerically check that the result of the theorem holds.
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[26] A. Sárközy, On products and shifted products of residues modulo p, Integers: Electron.

J. Combin. Numb. Theory 8(2) (2008), A9, 18.

[27] W. M. Schmidt, Small zeros of additive forms in many variables. II., Acta Math. 143

(1979), no. 3-4, 219–232.

[28] W. M. Schmidt, Bounds on exponential sums, Acta Arith. 94 (1984), no. 3, 281-297.

[29] W. M. Schmidt, Small solutions of congruences with prime modulus, Diophantine analy-

sis, Proc. Number Theory Sect. Aust. Math. Soc. Conv. 1985, London Math. Soc. Lect.

Note Ser. 109, (1986), 37–66.
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