
BEHAVIOR OF COMPOSITE BEAMS
WITH WEB OPENINGS

by

KRIGO S. ELIUFOO

B.S., Kansas State University, 1978

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1979

Approved by '.

"naior Professor



n ii

5p?c .
Oil-

LO

qjj TABLE OF CONTENTS

C«2- Page

LIST OF FIGURES i

LIST OF TABLES ii

INTRODUCTION 1

ELASTIC ANALYSIS 2

Assumptions 2

Solution Outline 2

Section Properties 3

Shear Ratio V-/V- 4

Elastic Stresses and Neutral Axis Location 5

Method of Solution 6

Shear Carried by Concrete

Examples 8

CONSIDERATIONS FOR ULTIMATE STRENGTH ANALYSIS 9

General Assumptions .... 9

Failure Laws 9

Discussion of Approach 10

Development of Equations II

CONCLUSIONS 26

RECOMMENDATIONS FOR FURTHER RESEARCH 27

APPENDIX I - REFERENCES 29

APPENDIX II - NOTATION 30

APPENDIX III - SHEAR DEFLECTION COEFFICIENTS 33

APPENDIX IV - SERVICE STRESS EQUATIONS 39

COMPUTER PRINTOUT 57



LIST OF FIGURES

Figure Page

1 Transformed Composite Section at Opening 41

2 Elevation of a Steel-Concrete Composite Beam With
Web Opening 42

3 Cross-Section Locations for Computed Stresses .... 43

3a Flow Diagram 44

4 Geometry Parameters Used in the Calculation of the
Shear-Deflection Coefficient 45

5 Beams Used in Analysis Examples 46

6 Longitudinal Stresses in Region of Hole-Beam No. 1. . 47

7 Longitudinal Stresses in Region of Hole-Beam No. 2. . 48

8 Longitudinal Stresses in Region of Hole-Beam No. 3. . 49

9 Comparison of Strains With Test Results for Beam
No. 3 in Region of Hole 50

10 Failure State Interaction Diagram for Concrete. ... 51

11 Stress Diagram for Mu = 0, Model 1, Top Neutral
Axis in Steel 52

12 Stress Diagram for Mu = 0, Model 1, Top Neutral
Axis in Concrete 52

13 Stress Diagram for My ^ 0, Model 1, Top Right
Neutral Axis in Steel 53

14 Stress Diagram for My f 0, Model 1, Top Right
Neutral Axis in Concrete 53

15 State 1 Stresses in Slab for M = 0, Model 2 54

16 State 2 Stresses in Slab for M - 0, Model 2 54
u



11

LIST OF TABLES

Table Page

1 Properties of Beams Used in Examples 55

2 Shear Ratios for Example Beams 56



INTRODUCTION

In the design of high-rise structures, especially steel building

frames, steel beams with web openings are commonly used. These openings

are used for locating utility ducts rather than placing them below the

steel beams and girders. By doing this the total building height is

reduced significantly and a more economical design is achieved.

In recent years many studies of these beams have been made by a

number of investigators, leading to methods of their analysis and

design. However, a related problem of some significance which to date

has not been studied in great detail is the steel-concrete composite

beam with web openings. In the first section of this report a complete

elastic analysis of composite beams with web openings is presented.

The problem was approached using standard assumptions of elastic be-

havior of a transformed section with application of the Vierendeel

Method of analysis. In the second section of this report some consider-

ations for ultimate strength analysis of the same beams are presented.

For both analyses a sufficient number of shear connectors are

assumed to be present so that full composite action is attained. The

openings are assumed to be rectangular and unreinforced

.



ELASTIC ANALYSIS

Assumptions

The following assumptions were made in this analysis.

1. A point of contraflexure occurs at the midpoints of the sections

above and below the opening (Vierendeel action)

.

2. Shear, which causes secondary bending, is constant along the

length of the hole. Only the uncracked portion of the slab carries shear.

3. The deflection curve of the section above the hole is identical

to that below the hole as assumed by Knostman, et al. (1).

Solution Outline

The solution to this problem has been approached in a simple manner

and by basically adhering to the assumptions of beam bending theory.

In solving the problem the section properties are first defined.

Then a consideration of equilibrium of forces and moments on a transformed

cracked section (Fig. 1) leads to the general stress equations. The

concrete is assumed cracked at some depth c below the surface of the

slab. By applying the requirement of zero stress at the cracked surface

an equation for c is obtained. By using the assumptions made by

Knostman, et al. (1), in particular, that the deflection curve of the

section above the hole is identical to that below the hole,

a relationship between the top shear force V , and the bottom shear

force V is obtained.

With the above information the normal service stresses can be

computed by a trial and error procedure for any location along the

length of the hole. A fairly short computer program has been written

to facilitate this process.
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Section Properties

Referring tc Fig. 1, the cross-section properties are defined as

follows

:

Top composite area, L = b c + A_, .

Top steel area, A_ = bt + s„t .

Bottom steel area, A_ = bt + s-t .

d n w

Net cross-section area, A = A_ + A„.

Top steel centroid,

s = [|bt 2
+ s

t
t
w (| s

T
+ t)]/A

Ts
. (1)

Top steel moment of inertia,

Irs-n bt3 + bt (i - i t)2 +
it Vt

3

+ s
T
t
w (| s

T
+ t - s)

2
. (2)

Top composite centroid,

yT
- [y b

s
c
r

2
+ A

rs
(s + c)]/^. (3)

Bottom centroid,

^B " ^w (I 3
B
+ t} + I bt2]/A

B'
(4 >

Centroid of composite section,

^N
= [A

3
(d " ^B

+ C) + Vt 1/A (5)

Moment of inertia of composite top section,

I_ * rr b C + b c (y_ - — c ) + I_
T 12 s r s r 7 T 2 x' Ts

+ A
Ts

(5 + c - yT )

2
. (6)



Moment of inertia of bottom section,

h = U Vb
3 + Vw (

2
S
B
+ fc " ^B

)2

+ 3j bt
3 + bt (yB

- | t)
2

(7)

Moment of inertia of composite section,

h = h + h (d " ^B
+ C " V 2 + X

T

+ a
t (*n - yT

)2 (8)

In the above equations if the section is uncracked, replace c

by c.

Shear Ratio, V^/V.,
1 Q

By equating the deflections of the top and bottom sections at the

center of the opening and considering both shearing and bending deflec-

tions the ratio V_/V can be shown to be
1 a

V
T

a
2
G .h

3I
B
E

'

A
B

V
B a

2
G

h
*T

3I
T
E k^

(9)

as derived by Knostman, et al. (1). In this equation a is the half-

length of the hole, E and G are the modulus of elasticity and modulus

of rigidity for steel. A^, A„ and IT , I_ are transformed areas and

moments of inertia above and below the hole, V_ + V. = V is the
1 o

applied shear at the section. The terms Z~, K are section shape

factors for shear deformation, and are determined in Appendix III.



Elastic Stresses and Neutral Axis Location

The general service stress equations for the top and bottom

sections are:

M
pyN

V
T

x yT
f = —— + (10a)

"pyM V
R

X ^R

N B

These equations are derived by considering the equilibrium of

forces and moments on a transformed, cracked section shown in Fig. 1. The term

y is the distance from the neutral axis of the section to the location

where the stress is desired and similarly y_,, y„ are the distances from
1 D

the neutral axes of the top and bottom sections. >L is the moment at

the center of the opening and x is the distance from the center of the

opening to any location of interest along the opening as shown in Fig. 2

(-a < x < a).

In order to locate the neutral axes of the top and net sections

the value of c must be known. This is some depth below the top surface

to where the concrete has cracked due to tensile stress. From this depth

to the bottom of the slab, the concrete stress is zero due to the assump-

tion that no concrete tensile stress can exist in a cracked section.

Note that this implies cracking proceeding from the bottom of the

slab such as could occur at the high moment edge of the hole. The

other possibility is cracking proceeding from the top surface downward,

as could occur at the low moment edge. This immediately leads to a

conclusion that the entire section is cracked. This will have to occur

in order to satisfy statics because of the assumption that no concrete

tensile stress can exist in a cracked section.



Applying the requirement of zero stress In the concrete leads to

c
r

Vt „ Vn

M
+
4

(11)

where, M_ = V„x. Expressions for y,„, y„, I_, I are as were given

previously.

Method of Solution

In solving for the parameter c by expanding Eq. (11) , a fairly com-

plicated polynomial of c results because y„, y , I , I and M_ all contain

the parameter c . A more suitable method to determine c is by trial and

error. In this method a value of c is assumed, normally the full slab

depth c. Experience with a number of numerical examples has shown that

convergence within an error tolerance of 1% occurs very rapidly with the

starting value of c equal to c.

Since the algebraic expressions which must be evaluated at each iter-

ation are lengthy, a fairly short computer program written in Fortran was

developed to facilitate the iteration process. This program initially

assumes a value for a V_/V (= 0.9) and c (= c) . With a fixed, the

program determines a value for c by an iteration process. The equations

for K_ and Y— in Appendix III are then employed to compute a new value for

a. Using this new value for a, again a convergence for c is obtained.

This procedure is repeated until convergence is obtained for both a. and

c . Then using the general service stress equations, stresses are computed

for the locations shown in Fig. 3 from which the top and bottom horizontal

forces are obtained. The stress equations for the locations shown in

Fig. 3 are shown in Appendix IV. The flow diagram for the computer program

developed in this report is shown in Fig. 3a.



If the cracking proceeds from the top downward, the value of c

is set to zero. It is assumed all the concrete cracks and is not

effective. The ratio a for the resulting steel section is computed

directly, and the stresses obtained for the locations shown in Fig. 3

by using the stress equations given in Appendix IV.

Shear Carried by Concrete

The area of the concrete slab as compared to the area of the top

steel section is normally large, especially if the concrete is uncracked.

It is thus of interest to know the amount of shear carried by the concrete.

The shear stress v in the concrete portion of the transformed section

above the hole is obtained following the classical bending theory. That

is,

v
<

=

=K (12)

in which Q is the first area moment about the top neutral axis (See

Fig. 4a). The division by n in Eq. (12) is to convert the current steel

stress into concrete stress.

By directly integrating Eq. (12) over the uncracked portion of the

slab, the ratio V"
Tc

/V can easily be shown to be

V
Tc V/ <

3
?T - V

V7
=

6nTJ TO

From Eq. (13) it can be noted that the ratio V_ /V„, will remain
Tc 1

constant along the length of the hole, provided the concrete remains

uncracked. c
r

, f and I in Eq. (13) will be constant along the length

of the hole if this occurs. The assumption that shear in the concrete

is carried by the uncracked portion only is conservative, for some



shear will be carried in the cracked section because of aggregate

interlock on cracked surfaces and because of the reinforcing steel.

Examples

Three beams were analyzed by the method described in this report

and also using a finite element computer program (3) with the capability

of utilizing non-linear material properties and cracking in the concrete,

The properties of the three beams are presented in Table 1 and Fig. 5.

The beams were loaded as shown in Fig. 5 and the stresses obtained

by the two methods were plotted. For each beam the stresses at the

high and low moment edges of the hole were plotted as well as for some

other sections in between. In all cases there was a reasonable agree-

ment between the two methods. The plots are shown in Figs. 6, 7 and 3.

The stresses obtained for Beam No. 3 by using the method presented

in this report were appropriately converted to strains and compared to

actual experimental test results. Beam No. 3 was loaded as shown in

Fig. 5 in the test and electric resistance strain gages were used to

measure the surface strains. The results obtained were plotted and are

shown in Fig. 9. Again the calculated results were in a fairly good

agreement with the test results.

The shear ratios v"

T
/V and V /V obtained by the method developed

in this report and by the finite element program (3) for the three beams

are shown in Table 2. A reasonable agreement between the two methods

is again shown.

It should be noted that in all the examples presented here the

selfweight of the beams were neglected.

The experimental data was obtained from tests conducted at the
University of Kansas.



CONSIDERATIONS FOR ULTIMATE STRENGTH ANALYSIS

General Assumption s

The general assumptions made in this consideration are the following:

1. At the point of contraflexure the axial (normal) stress is zero

for the case of secondary moment only.

2. Shear, which causes secondary bending is constant along the

length of the hole.

3. Shear in the steel section is carried by the areas t (s, + t)
w b

for the bottom section and t (s + t) for the top section, and is uniform-

ly distributed.

4. The Von Mises Failure Law is assumed for the steel.

5. A linear failure law is assumed for the concrete (2).

6. Failure due to instability and the effects of strain hardening

are not considered.

7. Equilibrium and compatibility are satisfied.

Failure Laws

The Von Mises Failure Law for the steel may be written as:

f = J\ (f
2

- f
2

) (14)v 3 y s
v

'

in which f is the shearing stress, f the yield stress and f the normalv y s

stress.

The Linear Failure Law for the concrete is derived by considering

the interaction diagram (2) shown in Fig. 10 and Mohr's circle of

stresses constructed for concrete. The equation for the linear portion

of Fig. 10 is

o - - f + -£ a, (15a)
c 1
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where a. and o
?
are the principle stresses, f and f are the compressive

and tensile strengths of concrete.

From Mohr's circle of stresses for concrete the principle stresses

can easily be shown to be

V °2
=
-Y f

c
± 4 f

c

2
+ f

vc
2

<15b >

in which f and f are the compressive and shearing stresses of concrete,
c vc

The following equation is obtained by equating equations (15a) and

(15b)
i « it

n = r 2 f f + f (f - f )

J\ f
2
* f

2 c fc

,

c
f
—£-.

4 c vc
2 (f * + f

;
}

Simplifying and solving for f leads to the form in which the equation

is desired,

I r "t
' S2-T

(16)fvc4/« 1-
I I

f + f
c t J

Equation (16) is the Failure Law for concrete as used in this report.

Discussion of Approach

There are two principle cases in the approach used here. In case a

the ultimate moment at the center of the hole M is assumed zero and the
u

amount of shear V the beam can carry in the region of the hole is
u

determined. This shear is determined at the critical locations, that

is at the edges of the opening where the secondary moment (moment due

to shear) is maximum. Simple assumptions are made to facilitate the

development of equations and these assumptions are later modified and

made more realistic in two steps. The assumptions and equations developed

in the three steps are referred to as Models 1, 2 and 3.
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In the first model the concrete is assumed to carry tension at

failure (f = f ) and the shearing stress f is assumed to be carried
t c vc

by the entire concrete section. Using these assumptions the normal

stress distribution at the low moment edge will be exactly equal and

opposite to the normal stress distribution at the high moment edge.

For equilibrium of forces to be attained, the point of contraflexure

will have to occur at the center of the opening.

In the second model the amount of tension the concrete can carry

is reduced and is assumed to be f = yf . The factor y is some number
t ' c

less than one, but not equal to zero. The shearing stress f is still

assumed to be carried by the entire concrete section. In the third

model it is assumed, f « y£ and the shearing stress f to be carried
' t c vc

in the compressed portion of the concrete section only.

For case b, the ultimate moment M is assumed not to be zero.' u

Some known ratio, 9 = M /V is assumed and the process described
u u r

previously is followed in determining the ultimate moment and shear.

In this report the equations of Model 1 for both cases a and b

have been developed. For case a, the shear capacity V for Beams 1,

2 and 3 were determined using the equations developed. The results

obtained appeared high when compared to test results. This was expected

because of the assumption, f = f .

Some interesting conclusions were reached for the second model

case a while attempting to develop the equations. These conclusions

are also presented.

The results of evaluating Models 1 and 2 led to modifications which

resulted in the proposed third model as stated above.
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Development of Equations

Model 1, Case a

Only one neutral axis was assumed in the top section and one in

the bottom section for all cases and models as determined from the

elastic analysis. Two sets of equations were developed. The first

for the case when the top neutral axis (NAj,) and the bottom neutral

axis (NAg) are in the steel flanges and the second for the case when

the top neutral axis is in the concrete slab and the bottom neutral

axis is in the web.

At the outset the failure laws for the concrete, the top steel

section and the bottom steel section may be written as:

1 / • 'V -
2
/V t

1-

r
' * v 2«i

!2f - f + f
c c t

t i

f + f .c t

.
.
/I ff 2 2.

f
vT " /

3
(f
y " f

sT
}

e /l ,- 2 - 2.
f
vB

= 7
3

(f
y

- f
sB }

where f and f are the shearing stresses in the top and bottom steel

sections, f and f _ are the normal stresses in the top and bott
'sT

steel sections.

sB
om

Referring to Fig. 11, the total shear carried by the concrete

slab,

c / ' '

V = -a- / f f
c I c t

1-

f 'rl2f - f + f

i i

f + f
c t

(17)
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The total shear carried by the top steel section,

V . - A* A
sT "sT ' 3

(f
y

" f
sT > < 18 >

i

in which A
sT = t (S_ + t) .

w i

The total shear carried by the bottom steel section,

V
sB " A

sB 4 (f
y

2
" f

sB

2

> <19 >

t

in which A _ = t (s_ + t)
sB w v B

Hence, the total amount of shear the section can carry,

V
u " V

c
+ V

sT
+ V

sB (20)

In Fig. 11, independent consideration of the equilibrium of forces

of the three free body diagrams and their moments about points A and B

leads to the following equations:

S = f
c
cb

c <21a )

where s is half the shearing force between the concrete slab and the top

steel section.

V =
2

fcV
2

' < 21b >

S = f
gT (Vw + bt " 2bV" (21c)

V
sT

a = f
sT [Vw ( 2

S
T
+ O + J b(t

2
- 2 yT

2
)]. (21d)

-
A
B

yB
=

2b ' (
21e )

V
sB

a = f
sBtVw (| S

B
+ C) + I b(t2 " 2 **»' < 21f >

Solving for f from equations (17) and (21b),

22' r 2 ? ' ' oftt i

f
c

[c (f
c
+ f

t
)

Z
+ 4a

Z
(f

c
f
t
)] - f

c
[(4a- f^Cf. - f^]

" *a2 (f
r>t)

2
= 0- (22)
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Notice also that equilibrium and failure considerations require

the point at contraflexure to occur at the midpoint of the hole.

Combining equations (18) and (21d) , (21a) and (21c) leads to

i

A _af
f,
T

"
ST 7 - (23)

/(A
sT

a)
2
+ 3[s

T
t
w
(i s

T
+ t) + \ b(t

2
- 2 yT

2
)]

2

and

-
fsT<Vw + bt) - fcV

yT
=

2bf- < 24 >

sT

y and f _, in equations (23) and (24) are determined by a trial and

error method. Experience with a number of numerical examples has

shown convergence to occur fairly rapidly.

From equations (19) and (21f )

,

A _af
f
sB

" 7 - (25)

/(A^a)
2
+ 3 t sB

t
w (|

s
B
+ t) + \ b(t

2
- 2 yB

2
)]

2

Referring to Fig. 12 (NA,^ in concrete slab and NA^ in web), and

independently considering the equilibrium of forces of the three free

body diagrams and their moments about points A and B leads to the follow-

ing second set of equations:

s = f
c
b
c
(c - 2 yT

) (26a)

V =
2

f
c
b
c
(c2 " 2 yT

2) (26b)

S = A
sT

f
sT (26c)

V
sT

a = f
sT [I bt2 +

*rS,<|
S
T
+ t)] ( 26d )

t
w
(s
B
+ 2t) - bt

?b
=

T- (26e >

w



V
sB

a =
2 WV^ + t ~ V (S

B
+ t + yB

>

15

- VyB

2
- t2) - bt^ (26f)

From equations (18) and (26d) ,

sT

A _af
sT y

/(A:A
sT

a)
2 + 3[|bt2 + 8

T
tw(|sT

+ t)]
2

(27)

Combining equations (17) and (26a), (26b) and (26c) then solving

for f leads to the quadratic,

1 +
(f

c
+ f

t
r(c - 2 yTV
2 2 '

'

4c a (f f )
c t

- £
c
(f' - t[) - y' = 0. (28)

and

yT
=

f
c
b
c
C - A

sT
f
sT

2f b
c c

(29)

The terms f and y in equations (28) and (29) are determined by

trial and error method.

From equations (19) and (26f )

,

£
SB " A

sB
a£

y
/((A

sB
a) + ftVs + C " ^B

)(S
B
+

'
+

?B>

-^ - ^ - be
2

,

2
)
1 ' 2

. - (30)

In solving numerical examples the locations of the neutral axes

must be determined first and the proper equations used thereafter.

The values of V obtained for the three beams using the above

K K K
equations were 177 , 117 and 134 of which an average of 88% of the

total shear was carried by the concrete. Test results of the same

beams were much lower (31.4 , 35.

4

K
, 12.

4

K
) , but the ratio, 9 = M /V

u u

was very high (7 ft., 9 ft., 33 ft.) for these beams.
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Model 1, Case b

In case b, for a given ratio, 9 = M /V a procedure similar to the
u u

one followed in case a to determine V was used with the addition of the
u

equation for M . Two sets of equations were developed, depending on the

location of the neutral axes. The first set is for the case when the

top right neutral axis y was in the steel flange and the bottom right
IK

neutral axis y was in the web. In the second set the top right neutral

axis is in the concrete slab and the bottom right neutral axis is in the

steel flange.

In Fig. 13, by independantly considering the equilibrium of forces

of the three free body diagrams and their moments about points A and B one

obtains the following equations:

S = f
c
b
c
(c " yTL } (31a)

where y is the location of the top neutral axis at the left edge (low

moment) of the opening.

V =
I f

c
b
c
(c2 " ^TL

2) '- (31b)

3 " f
sT<

A
sT " b

*TR>
(31C)

2
2V

sT
a " f

sT
[bU " FTR

2
) + sT t (2t + sT )]. (31d)

1 w 1

^BL
b = V S

B
+ l - hR>>

(31e)

where y is the location of the bottom neutral axis at the left edge

of the opening.

2V
sB

a = f
sB

[t
w ( *B

+ t - W (S
B
+ C +

^BR> ' h
?BL ] (31f)

The equation for the moment at the center of the opening M was

found by adding up the summation of moments at the left edge (M -M )



about point D, to the summation of moments at the right edge

(M + M ) about point B. This leads to the equation

17

2M f
c
b
c ^TL^TL

+ 2d) + f
sT

b
^TR

(2d
' ^TR }

+ Ww (t2 "^ + f
sB

b ^BL
2

' t2) (32)

9 = M /V
u u (33)

in which 9 is known.

From equations (17) and Gib)

,

ab c/f f
c c t

1 -

T I

2f - f + f
c c t

f + f
c t

= f
c
b
c
(c2 - hL> (34a)

From equations (18) and (31d),

2aA' T
/i(f„ 2

- f^ 2
) = f„T [b(t

2
- y

2
) + s,t (2t + _)]. (34b)

sT 3 y sT ' "sT

From equation (19) and (31f )

,

TR T w'

2aA' A(f 2
- f

2
) = f a [t (s„ + t - LXk + t + yBJsB 3 y sB sB L w B BR'

v
B BR y

" bO (34c)

Eliminating M by combining equations (32) and (33) then substitut-

ing for V ,

u

cb
c / • •

29 {-Wf f
2 c t

1-
2f - f + f

c c t

f + f
c t

+WK2
"

f
sT

2)

+ k'/U-
SB' 3

(f
y "

f
sB

)}= fcVlL^TL + 2d) + f
sT

b
?TR

(2d ' W
+ Vw^

2
" ^BR

2
)
+ f

sB
b ^BL

2
" t2)
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Eliminating the square root terms by using equations (34) then

simplifying leads to,

Wnfc + h + 2d
^TL " 7 ^

+ f
8T

b tyiR
2

<I - 1} + 2d
?TR " 7 ^ " ab VT <2t + S?»

+ ^bS^BR^ " 1} + 7 r *BL
2
+ ^ " 7(S

B
+ ^ = °- <

35 >

w

Equating the summation of horizontal forces at the left edge to

zero,

WlL + f
sT

b
^TR " f

sB
(A

sB " 2
^BL

b) = °- (36 >

Combining equations (31a) and (31c) then rearranging

f
c
b
c^TL ' f

sT ^TR
= f

c
b
c
C " f

sT
A
sT ." (a)

Rearranging equations (31e) and (36),

b
?BL

+
VfiR

= S^B + t}
- <b >

£cVtt + f
sT

b
?TR

+ 2f
sB

b
?BL

= f
sB
A
sB. <c >

Adding equations (c) and (a),

% = 2fV (f
c
b
c
C " ^Al + f

sB
A
sB " 2f

sB
b >

F

BL
) (37a)

c c

Subtracting Eq. (a) from Eq. (c)

,

?TR
=
2f^b (f

sB
A
sB " f

c
b
c
C + f

sT
A
sT " ".B^BL* (37b)

From Eq. (b)

?BR
= S

B
+ C ~ T ?BL <37c >

w

Solving for ygL
using equations (37a)

, (37b) , (37c) and (36) leads

to the quadratic,



r
- ^yBL

|
f b
c c

9

f ~b f „b

(1 «. i) + _4l_ (i _ 1} + _s5_
(

e _ 1}
f
sT

a t a
w
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f _9b| jR.f Db . R.f n
,

sB _
I 1 sB .. kj ., 2 sB .6 .

J c c

+ 2f
sb<

s
b
+ c) e - 1}

-R.
2

+ 7T=T- (1 + -) + 2R.d - Z.f b
4f b a 1 lcc
L c c

in which

R
2 9 8 2

+ TT-r (- - 1) - Z,f „b + f _t (- - l)(s_ + t)
Z

4f _,b a 2 Si sB w N
a B

sT

+ Z„f „t =
3 sB w

1 c c si sT sB sB

R = f_A D -fbc + f rrA„;2 sB sB c c si sT

3 2
Z, - - c ;

1 a

Z
2

=
I t2+

ab
t
w
S
T^
2t+s

T
);

Z = t
2

- —Cs + t
1

)

2

"3 C
a^

S
B

t;

— (38)

The values of f^ f^, f
gB , y^, yTR , y^ and y

fiR
can probably

be determined by a trial and error procedure, y , y , f and jL
BL BR TL ' TR

can be determined from equations (38) and (37) by assuming reasonable

values for f f and f . The values of f , f and f - are th'sB sT ! en

computed from equations (34a), (34b) and (34c). This iteration process

is repeated until there is a convergence.

Referring to Fig. 14 (yTR
in concrete slab and y in steel flange)

and independantly considering the equilibrium of forces of the three



free body diagrams and their moments about points A and B lead to

the following second set of equations.

20

s = f
c
b
c
(c - y^ - yTR

).

2aV
c
=f

c
b
c
[(c

2 -y
TL

2
) "^

(39a)

(39b)

s =

2aV
sT

f
sT
A
sT"

f
sT

[bt + Vv^T + 2t)] '

(39c)

(39d)

Vf + Mt - W =
^Bl/

(39e)

2aV
sB * WVw^B + 2t) + b(t2 " ^BR

2

" ^BL

2
^' (39f)

The equation for the moment at the centerline of the opening M is

obtained in a similar manner as equation (32)

2M
u

= f
c
b
c

(yTL- W (^TL
+ yTR

+ 2d)

" f
sB

b(y
BR

2

" y
BL

2) ' (40)

From equations (17) and (39b),

r
» ?

acb / f f
c c t

1 -

t !

2f - f + f
c c t

i i

f + f .c t

= f
c
b
c

r (c2 -*iL
2)

yTR • (41a)

From equations (18) and (39d)

,

2aA
sT

/
J(f

y

2
- f

sT
2)

- hl^ + ¥w< S
T
+ 2t^' (41b)

From equations (19) and (39f ) ,

s3 3
s
y

2a,' _ /I f cR
2

) " fa*[**t„(sB + 2t) + b(t
2

- >F

BR
2

sB 'sB L B w • B

'BL (41c)
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From equation (41b),

2aA f
sT y

"sT

/(2aA* )
2
+aA

gT
r + 3[bt

2
+ s

T
t
w
(s
T
+ 2t)]

2
(42)

Eliminating M by combining equations (33) and (40) then substitut-

ing for V
u ,

26

cb
c / ' '

-n~ /f f 1 •

< C t

t f

2f - f + f.

! I

f + f
c t

' /T 2 2
+ V

sT
+WK " f

sB>

= W^IL - ^TR)(?TL
+

^TR
+ 2d) " ^B^BR

2
" O*

Eliminating the square root terms by using equations (41), then

simplifying,

f
c
bc^TR

2
(1 - I> ~ ^TL

2(1 + b + 2d(
^TR " *H> ]

+ I(f
c
b
c
c2 + V

sT>
+ f

sB
b ^BR

2(1
" b " ^BL

2(1 + fy

f
sB

be
1 2

(43)

The value of V _ in equation (43) can be computed directly from equations

(42) and (18).

Equating the summation of horizontal forces at the right edge to

zero (the stress distribution shown at the right edge in Fig. 12 is valid),

f
c
b
c
(c - 2y

TR
) - A

sT
f
sT

+ f
sB

(A
sB

- 2by
BR

) = (44)

Rearranging equation (44)

,

2f
c
b
c^TR

+ 2f
sB

b
?BR " f

c
b
c
C " f

sT
A
ST

+ f
sB
A
sB <d >

From equations (39a) and (39c),

2fcVTR
+ 2f

c
b
c^TL

= 2fcV * 2f
sT
A
sT <«>



From equation (39e) ,
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by
BR

+ by
BL

= A
sB'

(f)

From equation (f )

,

yBL b
A
sB yBR"

(45a)

Subtracting Eq. (d) from Eq. (e)

,

yTL
= 2fV (f

c
b
c
C " f

sT
A
sT " f

sB
A
sB

+
"sB^BR*'

c c

(45b)

From equation (ci)

1
yTR

=
2fT" (f

c
b
c
C " f

«T*.T
+ f

sB
A
sB " 2f

sB
by

BR } -

c c

(45c)

Solving for y using equations (45) and (43) leads to the quadratic,
BR

2 2
29f V

^sB^-^-^fV-"^^
c c

7
br''

Isj£ [Vl-i)+ R
3
<l + ±)]

C C

+ 2f
sB

[2bd + A
sB

(l +I)]^

+ 4fV [R4^ 1 -|)
- R

3
2(1+

I^ ^^"V
c c

^^ (i + i) + z, = o-
b a 4

(46)

in which

R_ = f b c - f TA„ - f „A _;
j c c si 31 s3 sB

R, » £ b C - f>. +:fU .!
4 c c si sT sB sB

Z4=7 {f
c
b
c
c2+V

sT
+ f

sB
b^(3

B
+ 2t

)
+t'^'
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In case b if the following combinations of the locations of the

neutral axes should occur, y in concrete slab and yDO in web or
IK. BR

}?„,„ in steel flange and yOD in steel flange, then equations (32) thru
IK oK

(38) and equations (40) thru (46) will change. The new equations can

be developed following a procedure similar to the one used in obtaining

equations (32-38) or equations (40-46)

.

Model 2, Case a

In this model the tensile stress of the concrete f which was
c

assumed to be equal to the compressional stress f in the first model

is set equal to yt , where y is some reduction factor. The effect this

reduction will have on the shearing force V the concrete carries, and

the compressive stress f were studied by allowing them both to change.

Equilibrium considerations of the steel section (see Fig. 12) will

require the point of contraflexure to occur at the midpoint of the opening.

This means the point of contraf lexure for the concrete section will have

to occur at its midpoint for there can only be one point of contraflexure.

Two sets of equations were developed for the free body diagram of

the concrete block for the two states of stress defined below.

State 1: State 1 is similar to Model 1 (see Fig. 15) where,

f
Ci

- f
c
Cl- c) = f

c
, i.e. « - o;

f = Yf . (1 _ fi)f „ f i.e. 6 = 0;11 c

V = V .

c c
1

Also for this state as in Model 1, y = y = v .
' 'TL 'TR. y T
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State 2: f = f (1 - s) , i.e. t 4 or 1;
C
2 °

f - yf = (1 - 5)1 , i.e. 5 j> 0.
C
2

C
2

C
2

Figures 15 and 16 show the two states for the concrete slab and

are referred to in the derivation of the following equations. The stress

distribution in the steel is as shown in Fig. 12. In Figs. 15 and 16,

consideration of the equilibrium of forces of the right and left free

body diagrams then their moments about points A and B leads to the follow-

ing equations:

s = f
c
b
c
(c - 2y

T
). (47a)

V = 1 f
c
b
c
(c2 " 2

^T
2)

-
(47b)

s = (1 - £)f
c
b
c
[c - yTR

(2 - 5)]. (48a)

V =
I(1 " £)fcV c2 " *TR

2

2
(2 - «»• (48b >

s = (1 - e)f
c
b
c
[(l - 5)c - yTL

(2-5)]. (48c)

V. a = f(l - e)fbf(l - 5)c - y_ ^ (2 - 5)]. (48d)
c» L c c rL„

Equations (47a) and (47b) refer to both the right and left free

body diagrams of Fig. 15, Eqs. (48a) and (48b) refer to the right free

body diagram of Fig. 16 and Eqs. (48c) and (48d) refer to the left free

body diagram of Fig. 16.

From equations (47a) and (48a),

2y
T

- £c

yTR ^
-

( 2 - 5)(1 - O • (49a)

From equations (47a) and (48c),

c[(l - e)(l - 6) - 1] + 2y
T

*n
2

=
(2 - S)(l -7) • (49li)



From equations (47b) and (48b),

25

TR,

2
c
2
(l - e) - S(c

2
- 2y

T

2
)

,

'

(2 - 6)(1 - e)
(50a)

in which 3 = V /V .

c c
2

From equations (47b) and (48d),

yTTTL,

2
(1 - 5)(1 - e)c

2
- 3(c

2
- 2y

T

2
)

,

=
(1 - e)(2 - 5)

(50b)

Solving for 3 from Eqs. (49a) and (50a),

3 =

c
2

- 2y
2

c (1 - e) -
(2y

T
- ec)

2 -i

(2 - 5)(1 - e)

Solving for g from Eqs. (49b) and (50b),

(51a)

2 ._ 2
c - 2y

T

c
Z
(l - 6)(1 - e)

([(1 - e)(l - 6) - 1] c + 2y )

2

(1 - e)(2 - 5)

Equating Eq. (51a) to Eq. (51b) and solving for E leads to,

6[e(2yT - c) + c - 2yT ] = 0.

(51b)

(52)

Examining equation (52) shows that either 5=0, meaning f = f

or e = 1, meaning f which is impossible. This leads to the

conclusion that in order for statics to be satisfied for Model 2 as

it stands, then f must be equal to f . In reality the tensile stress of
t ^ c

concrete at failure is much less than its compressive stress and there-

fore the second model should be changed accordingly to reflect this.
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CONCLUSIONS

An elastic analysis of steel-concrete composite beams with web

openings has been made based on Vierendeel's method. A method of

solution and a short computer program to facilitate the process have

been presented. The results obtained using the method presented

here showed a reasonable agreement with results obtained from a

finite element computer program. This justified the suitability of

the Vierendeel approach to the problem. Of further interest is the

fact that a fairly high percent of the total shear is carried by the

concrete, especially when uncracked. A general method of approach

to the ultimate strength analysis based on the findings in the elastic

analysis was also developed and discussed.

«



RECOMMENDATIONS FOR FURTHER RESEARCH
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The author recommends further research in the development of

equations for the second and third models for ultimate strength

analysis. Experience from the first model shows that the equations

will be lengthy, and a trial and error method would be necessary to

solve them. A computer program similar to the one developed for the

elastic analysis would very likely be required to facilitate the

iteration process.
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APPENDIX II - NOTATION

A - Net cross-section area

A_ - Bottom steel area

A^ - Top composite area

A_ - Top steel area

a - One-half length of opening

b - Steel flange width

b - width of concrete slab
c

b - Width of transformed concrete slab

c - Thickness of concrete slab

c - Thickness of cracked concrete slab

d - Steel section depth

E - Modulus of elasticity for steel

e - Opening eccentricity

f - Normal compressive stress in concrete

t

f - Compressive strength of concrete

f « - Normal stress in bottom steel section

f
T

- Normal stress in top steel section

i

f - Tensile strength of concrete

f„ - Shearing stress in concrete

f - Yield stress of steel

f, - Elastic steel stress at bottom of bottom section

f, - Elastic steel stress at top of bottom section
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f - Elastic concrete stress at bottom of slab
c

f - Elastic concrete stress at top of slab
c r

f - Elastic steel stress at bottom of top section

f - Elastic steel stress at top of top steel section

G - Modulus of rigidity for steel

h - Opening depth

I- - Bottom section moment of inertia

I, - Moment of inertia of net composite section

I_ - Top composite section moment of inertia

I - Top steel moment of inertia

K_ - Shearing deflection coefficient of bottom section

K,^ - Shearing deflection coefficient of top composite section

K_ - Shearing deflection coefficient of top steel section

"B
= V

M - Moment at center of opening
P

Mj = V
T
x

M - Moment at center of opening at failure

n - Modular ratio

P - Load

s - Half the shearing force between concrete slab and top steel flange

s„ - Depth of web section in bottom tee at opening

s_ - Depth of web section in top tee ac opening

s - Distance from top of top steel section to NA^-
1 O
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t -

t -
w

V -

V„ -

Steel flange thickness

Steel web thickness

Total shear applied to beam at opening

Shear carried by bottom section

V - Shear carried by concrete section

VT - Shear carried by top composite section

V - Total shear at failure carried by section

x -

yD -

y*
-

yM -

Distance from center of opening to desired location (-a - x - a)

Distance from NA^ to depth desired in bottom section

Distance from bottom of bottom tee section to NA„

Distance from NA(net) to depth desired

y - Distance from top of concrete slab to NA(net)

yT
"

yT -

Distance from NA_ to depth desired in top section

Distance from top of concrete slab to NA_

6 =

v
T
/v

V /v
C
2

C

VV
B

VV
u
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APPENDIX III - SHEAR DEFLECTION COEFFICIENTS

Three principal shear deflection coefficients are required for the

purpose of computing the total shearing force distribution, to the top

(composite) and bottom sections, and also for the top steel section for

the case when all concrete is assumed cracked. These are iL,,

Kj, and K,_ . To determine these the strain energy approach is used and

also the shearing stresses x and strains y axe assumed linearly pro-

portional. For a given small volume v, the shearing strain energy is

2

u = I-
( 53a)

where

t = VQ/It.

For a given length s, the total shearing strain energy U can be

written as

2 2

U = /
S
dx / -^- dA (53b)

U A
21 tG

in which Q is the first moment of the cross-sectional area, I the

centroidal moment of inertia and t the thickness. Rewriting the

shearing strain energy equation

U "
'o 2^ dx Ir f

A 4 dA
i- <53c>

L z c J

The term in the bracket is dimensionless and depends only on the

cross-sectional area. This constant is referred to as the shear

deflection coefficient K. Hence,

A - Q
2

K = 1 J
r* 2

dA " (53d)
I*" ^ t
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Referring to Fig. 4a, K_, is evaluated by separating the integration

of the cross-section into three parts: the concrete slab, the flange

and the web.

Kj = — (K
x
+ K

2
+ K

3
)

I
T

(54)

h m 7? fA
q2 dA;

D
s

in which

Qi

Q
2

= if b
s
ydy)

2

f- (
Ql

4
- 2

Ql

2
y
2
+ y

4
).

Therefore,

K
l

=
"I ;

-Q (Q
1

4
" 2Q

l
2y2 + Q4) dy -

*i " "4 tQi
4(Q

i
+ V "f Qi

2

<Q!
3
+ Q

2

3
)

+ j(Qx

5
+ Q

2

5
)] (55a)

Similarly,

K
2

=VA Q
2
dA,

b

in which

Q
2

=

L
f byd

y
+ \ (Q

4
+ Q5

) s
T
t
w

\ (Q
4

2 -y2
) +|(Q4 + Q5)

s
T
t
w



Therefore,

Similarly,

in which

Therefore,
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K
2

- ri
'
Q

' &%
z

- y2
>
+
i % + q5 ) VvJ

2
dy -

b _>

K
2

=
4

[Q
4
4(Q

4
- V " 3 Q4

2
(Q

4

3
" O +

J (Q
4

5
" O 1

+ y (Q
4
+ Q

5
) s

T
t
w [Q

4

2
(Q

4
- Q

3
) - | (Q

4

3
- Q

3

3
)]

+
b C

2
(Q

4
+ Q

5
} Vw ]2 (Q

4 " V" (55b)

h m
fl

f
A Q

'
dA '

w

2
Q
5 2

Q " <'
y V dy)

t
2

w ^n 2 2,2
= — (Q

5
- y ) •

„
C
w

r

Q
5 ,. 4 _ 2 2

L 4, ,

3 ~4 ;
Q

(Q
5 " 2Q

5 y y 5 dy '

K
3

=
-J [ ^5

4
(Q

5 " V " f Q
5

2
(Q

5

3
" Q

4
3)

+
5

(Q
5

5

" Q
4
5)]

<55c >

Referring to Fig. 4b, Kg is evaluated by separating the integration

of the cross-section into two parts, the web and the flange sections.

A
B

K
B

= ~~
2

(K
4
+ V' < 56 >

r
B

K
4 = 7t4Q2dA '

w



in which

Therefore,

Similarly,

in which

Qc

36

Q
2

= (// V dy)
2

,

t
2

w 4 2 2 4

„ w r 6 /•« 4 00 2 2 4 NK
4

= T ;
-Q

7

( ^6 " 2Q
6

y + y } dy

K
4

" "T CQ
6

4

^6 + V " f ^ ^6
3
+O

+ i (Q
6

5
+ Q

?

5
)]. (57a)

K
5

=

J J
A Q

2
dA

'

b

9 xq 9

Q
Z

= (/
y
° by dy)^

b
2

/« 4 on 2 2 l ^=
4 (Q

8
" 2Q

8
y + y >'

Therefore,

b ,

Q
8 ,n 4 ,_ 2 2

, 4, ,

K
5

=
4

J

Q
?

(Q
8

" 2Q
8

y + y } dy -

K
5 " ! f%

4

«>8 " V " f ^8
2

(Q
8

3
" Q

7
3)

+ | (Q
8

5
- Q

y

5
)] (57b)

When all the concrete is assumed cracked, a new value of the top

shearing deflection coefficient has to be determined, for it is also

assumed that when this occurs, the beam behaves as if the concrete slab

were not present.
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Hence, referring to Fig. 4c, the shearing deflection coefficient

of the top steel section is evaluated by separating the integration of

the cross-section into two parts; the flange and the web.

^s
iS

I
Ts

in which

Therefore,

Similarly,

in which

K
6

= h JA ^dA
'

b

2 Qq ?

Q
Z

= (// by dy)
Z

,

fa2 fn 4 9n 2 2 t ^— (Q
9

~ 2% V + V >

»

b 9 4 2 2 4

*
6

- | [Q
9

4
(Q

9
- Q10 ) -fQ9

2
(Q

9

3 -Q
10

3
)

+
5

(Q
9

5
" Q10

5)] " (59a)

k
7 --Va q2dA

>

Cw

Q2 = (/
y

U
C
w y dy)2

'

t
2

w 4 2 2 4=
-f-«n " 2Qn

2
y
2
+ y

4
)-



Therefore,

K? = ^ ^o (Ql1 ' " 2Ql1 ^ + ^ dy

K
7

= T [Qn\i +V -KiXi^O

38

+
I (Qn

5 + Q
io

5>- (59b)
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APPENDIX IV - SERVICE STRESS EQUATIONS

Referring to Fig. 3 , the service stress equations for the locations

indicated are the following:

Concrete Stress at Top of Slab

t \h ^T
c n I

N
n I

T

Concrete Stress at Bottom of Slab (if not cracked)

M (y - c) m
( C - y )

f
b P_i? + JI _l_

(
n I

N
n k

Steel Stress at Top of Top Steel Section

t c

Steel Stress at Bottom of Top Section

M (s + t + c - y M (s + t + c - y )

f
b . + _£_! N

+ _J_^ T_.
(6Qd)

h x
t

Steel Stress at Top of Bottom Section

M (d + c - S
B

- t - y ) M^ + t - y )

f = _k (60e)
b h h

Steel Stress at Bottom of Bottom Section

M (d + c - y ) >Ly
fb = -J^— JL + 11, (60£)
b h h

Referring to Fig. 3 for the case C =0, the service stress equations

for the indicated locations may be written as follows:

Steel Stresses for Top and Bottom of Top Steel Section

t Vn Vt
X
N

L
T
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MjyM t - s
T

) M
T
(s
T
+ t - yT )

f
b 2^N_^ II + -JUL- HI. (61b)

Steel Stresses for Top and Bottom of Bottom Section

M (d - t - S
B

- y ) ^(Sb + t - y )

f = -c (61c)
b h h

M (d - y ) My
f
b . _^ N_ + JO , (61d)
b h l

B

where the cross-section properties yT , y and I for this case are:

yT
= i, (62a)

*N
= [A

B
(d " V + ^s ¥ /<A

B
+

*T.>'
(62b)

X
N

=
*I.

+A
Ts (^N "V

2
+ X

B

+ Vd " ?N " ^B
)2 (62C)

Since the stresses are assumed to vary linearly, the top and bottom

horizontal forces are easily obtained by multiplying the stresses with

the area over which they act.
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Fig. 1 - Transformed Composite Section at Opening



42

T
h s

/

V M

t hole
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Fig. 3 - Cross Section Locations for
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©
READ & WRITE: b, t , tw ,

d, c, b s , h, Mp, V, x,

e, n, n, a. EC IT

WRITE: CR, FCT, FCB, KTT, FTB,

FBT, FEB, FMT, FMB, FHT, FHB

-»{calc. St. s b , ab. 7b. Ib. kb

a-VT/y-0.9

T
CALC. VT ,V B ,MT ,MB

i

CR«C, 1PASS=0 CALC . ats, 3, its
_1

»:ALC. AT.YT.lT.A.y.I

IF
fes

1PASS - Oj> > :ALC. 4 WRITE:
FCCR, FCRC

Mo

CR=CR1

—{ci"ul

-
|
1PASS lj

CALC. KT.S.n.al No #CR -

CALC. Kts.b',3
j

Yes
WRITE: a

CALC: FCT, FTT , FCB, FTB,

FBT, FBB, FMT, FMB, FHT, FHB

T
CALC: VT , VB , MT , MB , y, I, FTT,

FMT, FTB, FBT, FMB, FBB, FHT, FHB

WRITE: a FCT-0, FCB-0

Fig. 3a - Flow Diagram
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Fig. 5 - Beams Used in Analysis Examples
1 in. = 0.0254 m, 1 ft. = 0.305 m
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Concrete
slab

x « 4 in. x - 8 in.

Stresses calculated by method of this report

Stresses obtained from finite element program ( 3

)

concrete stresses times ten

Fig. 6 - Longitudinal Stresses in Region of Hole - Beam No. 1
1 in. - 25.4 mm, 1 ksi. - 6.3976 M?a
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5 5-5 5

x - -10.8 in. x -5.4 in. x -

5

Concrete
slab

Top sceel

High M edge

\\ Bottom steel

5
Stress

ksi

x - 5.4 la. x - 10.8 in.

Stresses calculated by method of this report

Stresses obtained from finite element program ( 3

)

concrete stresses times ten

Fig. 7 - Longitudinal Stresses in Region of Hole - Beam No. 2

1 in. - 25.4 mm, 1 ksi. - 6.8976 KPa



49

Concrete
slab

Top steel

x - 5.4 in. x - 10.8 In.

Stresses calculated by method of this report

Stresses obtained frota finite element program (3 )

concrete stresses times ten

Fig. 8 - Longitudinal Stresses in Region of Hole - Beam No. 3

1 in. - 25.4 mm, 1 ksi. - 6.8976 MPa
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P = 5.95
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—O O- Experiment

Method of this report

Fig. 9 - Comparison of Strains With Test Results
for Beam No. 3 in Region of Hole.
1 in. = 25.4 mm, 1K = 4.45 KN
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Fig. 10 - Failure State Interaction Diagram
for Concrete
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Fig. 12 - Stress Diagram for Mu = 0, Model 1,
Top Neutral Axis in Concrete
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Hole

Fig. 13 - Stress Diagram for Mu ^ 0, Model 1,

Top Right Neutral Axis in Steel
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Fig. 14 - Stress Diagram for Mu ^ 0, Model 1,

Top Right Neutral Axis in Concrete
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Table 1 - Properties of Beams Used in Examples
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Beam Ho. 1

W14x34
Beam No. 2

W13x45
Beam No. 3

W18x45

b , xn.
c / \(cm)

48

(121.92)

48

(121.92)

48

(121.92)

c, in.

(cm)

4

( 10.16) (

4

10.16)

4

( 10.16)

a, in.

(cm)

8

( 20.32) (

10.8

27.432)

10.8

( 27.432)

h, in.

(cm)

8

( 20.32) (

10.8

27.432)
10.8

( 27.432)

s
T , in

.

(cm)

2.547

( 6.469) (

3.031
7.699)

3.031

( 7.699)

s
B

in
(cm)

2.547

( 6.469) (

3.031
7.699)

3.031

( 7.699)

t, in.

(cm)

0.453

( 1.151) (

0.499
1.267)

0.499

( 1.267)

t , in.
W

/ N(cm)

0.287

( 0.729) (

0.335
0.851)

0.335

( 0.851)

b, in.

(cm)

6.75

( 17.145) (

7.477

18.991)
7.477

( 18.991)

E , ksi.
S

(GPa)
29 x 1C3

(200.03)

29 x 103

(200.03)

29 x 10
3

(200.03)

E , ksi.
C

(GPa)

4.67 x 10
3

( 32.212)
3

(

87 x 103

26.694)
3.87 x 10

( 26.694)

f , ksi.
C

(MPa)

7.0

( 48.283) (

4.475

30.867)
5.81

( 40.075)

>

f , ksi.
C

(MPa)

0.7

( 4.828) (

0.6745
4.652)

0.497

( 3.428)

f , ksi.
y

35.65

(245.898)
39.5

(272.454)
39.5

(272.454)



Table 2 - Shear Ratios for Example Beams
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Beam 1

x, in. -4 +4

97.

1

+
97.

1

+

% v
T
/v 97.1

*
96.9

*
96.6

(90.0) (90.3) (86.3)

87.

8

+
87.

8

+

% v
Tc

/v 87.8
*

83.2
*

63.2

(83.2) (83.1) (80.7)

+ '

Section uncracked if f from Table 1 used.

* •

Section cracked if f assumed = 0.

Beam 2

x, ins. -5.4 +5.4

% v
T
/v

95.0

(86.7)

95.0

(88.5)

95.0

(86.4)

% v
Tc

/v
80.5

(81.5)

80.5

(80.4)

80.5

(81.4)

Beam 3

x, ins. -5.4 +5.4

% v
T
/v

95.0

(88.4)

95.0

(88.6)

95.0

(86.3)

% v
Tc

/v
80.5

(84.6)

80.5

(82.2)

80.5

(84.7)

R.esults from finite element program (3) in parentheses,



COMPUTER PRINTOUT • 57

JJOB
C PROGRAM TO DETERMINE ELASTIC STRESSES IN A COMPOSITE BEAM WITH A HOLE

C IF THE SECTION IS CRACKED
C THE PROGRAM WILl ALSO DETERMINE VT AND VB ELASTICALLY

1 1000 REA0(5,1,EN0=999) BF , TF,

T

U, OS ,TS, BS ,HH

2 1 FORMATJ7F10.3J
3 2 FORMAT (5X, ' 3r= • , F 10. 3

,

'TF =

'

,F10.3,'TW=« ,F10.3,'0S=» , F10.3 ,
« TS = »

,

1F10.3,/5X,« 3S=« ,F10.3,'t-H=' ,F10.3/)
4 WRITE(6,2) BF,TF,TW,DS,TS,BS,HH
5 READ<5,11-PM,V,XS,£C,XN,XNU,AA
6 READ(5,L) FCPT
7 WRITE(6,3) ?M,V,XS,EC,XN,XNU,AA
d 3 F0RMATI5X, 'CENTER MOMENT* • , F10. 3, 'TOTAL SHE AR= • ,F 10. 3 ,

' XS=' ,F 10.3

,

l'EC=« tF10.3i/5X, • XN«' ,F10.3, ' XNU=« ,F10.3,«AA=« .F10.3/J
9 CALL CRST<BF,TF,Tw,0S,TS,3S,HH,PM,£C,V,AA,CR,FCT,FCB,FTT,FT3,

1F3T,FB3,XN,FMT,FM3,FHT,FH3,XNU,XS ,FCPT)

10 WRITE<6,4) CR,FCT,rC3,FTT,FT3,FeT,F23,FMT,FM8
11 4 FORMAT <5X,'CR=' ,F10.3, 'FCT- ' , F10.3, 'FCB=« ,F10 .3 , ' FTT= ' ,F10. 3

1, »FT3=« ,F10.3,/5X,« F3T=' ,F10 .3 , ' F3E=

•

.F10.3, 'FMT=' , F10 .3, 'FM8=',

1F10.3)
12 WRITE(6,5) FHT.FHB
13 5 F0RMAT(5X,'FHT=« , F10.3 , • FHB=' iF10.3)
14 GO TO 1000
15 99S STOP
16 END

C SUBROUTINE CRST TO COMPUTE CRACKING OEPTH AND STRESSES

17 SUBROUTINE CRST1 SF ,TF ,TH ,DS , T S, BS ,HH, PM, EC, V, AA.CR.FCT, FC3, FTT

,

1FT B, F 3T, FSB, XN ,f MT.FM3, FHT ,FH3 , XNL, XS , FCPT)
18 ST=lDS-hH)/2.-TF
19 SB=ST-EC
20 ST=ST+EC

C SECTION PROPERTIES 8CTTCM T

21 AB=8F»TF+SB*TW
22 WRITEI6.91) AB
23 91 F0RMATI5X,' Ab=' ,F10.3)
24 Y8B=(S3*TV>*(SB/2.+TF)+BF*TF*TF/2.)/AB
25 XIB=S3*TW*lS6*SB/12.+lSB/2.+TF-Y3B)**2)+SF*TF*(TF*TF/12.+<Y3B-TF

l/2.)**2)
26 EPS=.0Ol
27 ICO=0
23 ALPH=0.9
29 XK&=A8/XIB**2*<TW/4.*< ( SB+TF-YBB ) **4*SB

l-2./3.*(S3+TF-Y63)**2*l { S6+TF-Y E5 >**3+ ( YB8-TF ) **3

)

l+l./5.*USS + TF-Yf.3)**5+( Y3B-TF)**5) J +

lBF/4.*(Y3B**4*TF-2./3.*YBB**2*(Y36**3-( YL3~TF)**3)
H-1./5.*(YB3**5-(Y38-TF)**5) ))

30 1000 VT=ALPH*V
31 VB=V-VT
32 TM=VT*XS
33 BM=V3*XS
34 ICCUNT=0
35 IPASS=0
36 CR=TS

C SECTION PROPERTIES TOP STEEL T

37 ATS=BF*TF+ST*TW
38 S£B=(ST*TW*(ST/2.+TF)+SF*TF*TF/2. )/ATS
39 XITS=ST*TW*(ST*ST/12.+(ST/2.+TF-Se8)**2)+3F*TF*(TF*TF/12.+(SBB-TF

1/2.J**2)
C SECTICN PROPERTIES TOP COMPOSITE T



AT=BS*CR+ATS 58
WRITE (6, 92) AT
FORMAT <5X,'AT=« .F10.3)
YaT=i 3S*CR*CR/2.+ATi*l333 + TSJ J /AT
XIT=BS*CR*(CR*CR/12.+(Y8T-CA/2. J**2 )+XI TS+ATS *l SBB+TS-YBT) **2
WRITE(6,20) CR.YBT.XIT
FORMAT 1 5X,'CR = ' , F 10 .3 ,

' YBT= '

,

F10.3, 'XIT= » ,F10

.

2 )

SECTION PROPERTIES COMPOSITE NET SECTION
XK=OS-YBB+TS
XM=S8B+TS
A=AT+AB
YB=(AB*X.<+AT*YBT)/A
XI=XIB*A8*(XK-Y3)**2+XIT+AT*(YB-Y6T)**2
IF(IPASS)1,1,22
CHECK STRESS AT TOP AND BOTTOM OF SLAB

FCCR=l-P 1<*(Y6-CH)/XI+TM*(CR-YBT)/XIT)/XN
FCRC=(-PM*YB/XI-TM*Y3T/XIT)/XN
WRITE(6,19) FCCR,FCRC
F0RMAT(5X,' FCCR=' .F10.3, 'FCRC=« .F10.3)
IPASS=1
IF(FCCR-fCPT)29,2,2
IF(FCRC-FCPT) 3,3,900
CR1=(PM*YB/XI+TM*YBT/XIT)/(PH/XI+TM/XIT)
TEST=A8S((CR-CR1 )/CR)
IF<TEST-EPS)9,9,4
IC0UNT=ICCUNT+1
CR2=CR
CR=CR1
IF UCCUNT-100) 100,100,5
WR1TE(6,10) CR2,CRi
F0RMAT<5X,'N0 CONVERGENCE IN IOC CYCLES CR=» ,F10. 3 , CR1=' ,F10.3/)
RETURN
WRITE(6,11) CR,CR1,ICCUNT,ALPH
FORMAT (5X, 'CONVERGENCE CR= • ,F 10.3 , ' CR 1=

' , F10. 3 ,
' I COUNT* ' ,13,

1»ALPH=' ,F10.3)
72 3 XKT=8S*AT/(4.*XIT**2)*(Y3T**4*CR-2./3.*YBT**2*(YaT**2+(CR-YeT)**3>

l*l./5.*iY8T**5+<CR-YBT)**5) ) +

lBF*AT/(4.*XIT**2)*<(TS-Y6T+TF)**4*TF-2./3.*(TS-Y8T+TF)*»2
1*UTS-Y5T+TF)**3
l-<TS-Y3T)**3)+l./5.*UTS-YBT+TF)**5-(TS-Y3T)**5))
1-MTS-YBT + TF+ST/2.)*(ST*TW)*AT/XIT**2*(( TS-Y8T+TF) **2*TF
1-1./3.*((TS-Y3T+TF)**3-(TS-YBT)**3) J

1*1 (TS-YBT+TF+ST/2.)*ST*Tw)**2*AT*TF/(3F*XIT**2)
l«-Tl**AT/(4.*XIT**2)*UTS-Y3T + TF+ST)**4*ST-2./3.*(TS-Y8T+TF + $T)**2
l*((TS-YBT+TF+STJ**3-(TS-YaT+TFJ**3)
l+l./5.*UTS-YBT<-TF + ST)**5-< TS-Yc)T+TF)**5) )

73 bETA=(AA**2/(6.*XIB*(l.+XNU) J+XKB/AS) / ( AA**2/ ( 6.*Xi T*(1.«-XNU) )

1+XKT/AT)
ALPH 1=3ETA/(1.+6ETAJ
TEST=A6SUALPH-ALPH lJ/ALPh)
IF(TEST-EPS)33,33,40
ICC=IC0+1
IF(ICO-100)41,41,42
ALPH=ALPH 1

GO TO 1000
KRITE(6,12)
F0RMATI5X, 'NO CONVERGENCE IN ALPH IN 100 CYCLES')

RETURN
FCT=(-PM*YB/XI-TM*YBT/XIT) /XN
FTT=-PM*(YB-TS)/XI+TM*(TS-YEI)/XIT

40 100
41
42 92
43

44

46 20
C

47
48
49

50
51

52

c
53 1

54

55
56 19
57
58 22
59 29
60 2

61

62
63 4

64
65
66

67 5

63 10
69
70 9

71 11

74
75

76

77 40
78
79 41
30
61 42
32 12
83
34 3

85



86 IF(IC0UNT)6,6,7 59
87 6 FCB=FTT/XN
88 GO TO 8

89 7 FCB=0
90 8 FT8=Prt*(ST+TF+TS-YB)/XI«-Trt*<ST-t-TF+TS-YBTl/XIT
91 F BT=PM* { 0S+ TS-SB-TF-Yo)/X I -8.1* (Sa*TF-Y8d)/X 13
92 FBB=PM*iOS+TS-YB)/XI+BM*YSB/XI6
93 FMT=Prt*(TF+TS-Y&)/XI+TM»(TF+TS-YBT)/XIT
94 FMB=PM*10S+TS-Y3-TF)/XI+BM*< Y6B-TFJ/XI3
95 FHT=f FC7+FCB)*XN*CR*eS/2.+{FTT+ FMT )*TF#uF/2. I FMT+FT3 )*ST*TW/2 .

S6 FHB=(FoT+ FM8 )*SE*TW/2 .+ ( FM3+F £8 )*TF*8F/2.
97 WRITE(6,13)AL?H
98 13 FCRMAT(5X, 'THE RATIO GF VT TO V IS ALPH= ' ,F10.3/)
99 GO TO 14

100 90C WR!TE(6,15)
101 15 F0RMAT15X, 'ALL CONCRETE CRACKED HENCE CR=0 '

f F 10.3/

J

C ALL CCNCRETc ASSUMED CRACKEO hEf^CE LOAO CARRIEC BY STEEL SECTION ONLY
C SECTION PROPERTIES AND ELASTIC STRESSES FOR STEEL SECTION

102 CR=0
103 XKTS=ATS/(XITS**2)*IBr/4.*(S3S**4*TF-2./3.*S8B**2*(Se3**3-

l(S8B-TF)**3)*(SBB**5-(S6B-TF)**5)/5.)+TW/4.*l ( TF+ST-SBti 1**4*ST
l-2./3.*(TF+ST-S3B)**2*( ( SB8-TF) **3* (TF+ST-S B3)**3

)

l-M<S3B-TF]**5-MTF+ST-SaB)**5)/5.) )

104 B£TA=UA**2/16.*XI3*(1.+XNU))+XKB/A8>
1/<AA**2/16.*XIT5*(1.+XNU)J+XKTS/ATS)

105 ALPH=3ETA/(1.+8£TA)
1C6 WRITE(6,16)ALPH
107 16 FORMAT! 5X, 'THE RATIO OF VT TO V IS ALPH=' ,F10 .3/)
108 VT=ALPH*V
109 VB=V-VT
110 TM=VT*XS
111 BM=VB*XS
112 Y8Z=l A3*{0S-YBB)+ATS*S36J/(AB+ATS1
113 XIZ=XITS+ATS*(Y6Z-SBBJ**2+XIB*AB*{DS-Y8Z-YB8)**2
114 FTT=-PM*YBZ/XIZ-TM*S3B/XITS
115 FMT=-PM*(Y3Z-TF)/XIZ-TM*{S3B-TF)/XITS
116 FTB=-PM*(Y3Z-TF-ST)/XIZ+TM*(ST+TF-Sab)/XITS
117 FBT=PM*{0S-Y3Z-SB-TFWXIZ-8M*(S3+TF-YBB)/XIB
118 FM6=PM*(0S-YBZ-TF)/XIZ+8M*( Yc3-TF)/XI8
119 F6B=PM*{0S-Y3Z)/XIZ+3M*Y&a/XIB
120 FH7=(FTT+FMT)*TF*3F/2.+(FMT+FTB)*ST*TW/2.
121 FHB=( F3T+FMB)*S3*TW/2.+(FMB+Fb31*TF*BF/2.
122 FCT=0
123 FCB=0
124 14 RETURN
125 END

$ENTRY
6F= 6.750TF= 0.453TW= 0.287DS= 14.000TS= 4.000
BS= 7.729HH= 8.000

CENTER MO«ENT= 420.0CCTGTAL ShEAR= 5.000XS= -8.00CEC= 0.000
XN= 6.210XNU= 0.300AA= 8. COO

AB= 3.789
AT= 34.705
CR= 4.000Y3T= 2.275XIT= 64.360
FCCR= -0.137FCRC= -0.093
AT= 34.705
CR= 4.000YBT= 2.275XIT= 64.360



FCCA* -0.150FCRC* -0.077 60

THE RATIO CF VT TO V IS AlPH* 0.971

1.263CR= 4.G00FCT* -0.077FCB= -0.150FTT= -0.929FT8=
FBT = 7.128F68* 6.642FM7* -0.980FM3* 6.715

FHT* -25.482FH8* «;5.4a2
8F= 6.750TF= 0.453Th= 0.287DS* 14. 000TS= 4.

as* 7.729HH= 8.000

CENTER MOMENT- 420 OGOTOTAL SHEAR= 5.000XS = -4. OOCEC=
XN* 6.210XNU* 0.300AA= 8.000

AB= 3.789
AT* 34.705
CR* 4.000YBT* 2.275XIT* 64.360
FCCR* -0.060FCRC= -0.195
AT* 34.705
CR= 4.000YBT* 2.275XIT* 64.360
FCCR= -0.066FCRC* -0.187
THE RATIO CF VT TG V IS ALPH* 0.971

CR* 4.000FCT* -0.187FCB= -0.066FTT* -0.t09FTB=
F8T= 6.318FBB* 6.810FMT* -0.323FM8* 6.736

0.000

0.158
)FMT= -0.323FM8* 6.736

FHT= -25.482FHS= 25.482
8F= 6.750TF* 0.453TW* 0.2870S* 14.000TS= 4.000
BS= 7.729HH* 8.000

CENTER MOMENT* 420.000TOTAL SHEAR* 5.000XS= C.OOOEC= 0.000
XN= 6.210XNU* 0.300AA* 8.00C

A8* 3.789
AT* 34.705
CR* 4.000YET* 2.275XIT* 64.360
FCCR* 0.013FCRC* -0.298
AT* 32.940
CR= 3.772YBT* 2.188XIT* 59.525
AT- 32.697
CR* 3.766YBT* 2.186XIT* 59.419
CONVERGENCE CR= 3 .766CR1* 3.766IC0UNT*
AT= 34.705
CR* 4.000Y8T* 2.275XIT* 64.360
FCCR = C.018FCRC* -0.298
AT* 32.940
CR* 3.772YBT* 2.188XIT* 59.525
AT* 32.897
CR* 3.766YBT* 2.186XIT* 59.419
CCNVERGENCE CR= 3 .766CR1* 3. 7661 COUNT*
THE RATIO OF VT TO V IS Ai_PH = 0.969

2ALPH* 0.90C

2ALPH* 0.969

CR* 3.766FCT* -0.297FCB* O.OOOFTT* 0.115FTB* 1.586
FBT* 5.510FB3* 6.982FMT* C.337FM8* 6.759

FHT* -2S.493FHB* 25.493
BF* 6.750TF* 0.453TK* 0.287DS* 14. COOTS* 4.000
BS= 7.729HH* 8.000

CENTER MOMENT* 420.COOTOTAL SHEA** 5.000XS* 4.000EC* 0.000
XN= 6.210XNU* 0.300AA* 8.00C

A3* 3.789
AT* 34.705



CR«
FCCR
AT=
CR =

AT=
CR =

AT=
CR=
CGNV
AT=
CR«
FCCR
AT =

CR=
AT=
CR=
AT=
CR=
CONV
THE

26
3

27
3

27
3

ERG6N
34
4

28
3

27
3

2c
2

ERGEN
RATIO

.000Y3T=
O.Q96FCRC=

.73 8

,223YBT=
.340
.047YBT=
.152
.023Y8T=
CE CR=
.705
,0O0YBT=
0. 101FCRC=
.543
.20 3Y3T=
.Co9
.012Y8T=
.86 3

.986Y8T=
CE CR=
Of VT TO I

3.

2.275XIT=
-0.400

1.997XIT=

1.938XIT=

1.931XIT=
023CR1=

2.275XIT=
-0.408

1.9&8XIT=

1.927X17=

1.919XIT=
,986CR1=
IS ALPH=

CR =

F6T =

FHT=
3F =

8S=

2.986FCT=
4. 517F33=

-25.42CFHB=
6.750TF=
7.729HH=

-0.427FCB=
7.156FMT=

25.392
0.453TH=
8.000

64.360

51.138

49.221

'•*.993

3.020ICOUNT=

64.360

50.854

48.395

48.663
2.983ICOUNT=
0.966

0.000FTT=
1.305FMB=

61

3ALPH= 0.900

3ALPH= 0.966

0.903FT8=
6.757

3.567

0.2S70S= 14.000TS= 4.0C0

CENTER MGKENT= 420.000TCTAL ShEAR= 5.000XS=
XN= 6.210XNU= 0.300AA= 8.00C

8.00CEC= O.CCO

AB= 3.789
AT= 34.705
CR= 4.000Y3T= 2.275XIT= 64.360
FCCR = 0.173FCRC= -0.503
AT= 26.775
CR= 2.974YBT= i.916XIT= 48.558
AT= 24.540
CR= 2.685YBr= 1.832XIT= 46.505
AT= 24.244
CR= 2.647Y3T= 1.822XIT= 46.298
AT = 24.221
CR= 2.644YBT= 1.821XIT= 46.23 2

CONVERGENCE CR= 2 • 644CR1 = 2. 6431 CO IN T= 4ALPH=
AT = 34.705
CR= 4-CO0Y3T= 2.275XIT= 64.360
FCCR = 0.185FCRC= -0.517
AT= 26.576
CR= 2.948YBT= 1.908XIT* 48.338

*

AT = 24.258
CR= 2.648Y8T= 1.823XIT= 46.307
AT= 23.955
CR= 2 ,609YBT = 1.812XIT= 46.108
AT= 23.932
CR= 2.606YBT= 1.812XIT= 46.093
CONVERGENCE CR= 2 .606CRi= 2.606ICOUNT= 4ALPH=
THE RATIO CF VT TO V IS AL?H = 0.965

CR= 2.606FCT= -0.558FC3= O.OO0FTT= 1.855FTB
FBT = 3. 467FB3= 7.342FMT= 2.457Fi"3 = 6.757

FHT= -25.295FH6= 25.292

0.900

0.965

5. £46



8F* 7.477TF= 0.499TW= 0.3350S* 17.860TS= 4.000 62

8S= 6.410HH= 10.800

CENTER MOMENT* 494. 100TGTAL SHEAR= 4.575XS= -10.800EC= 0.000

XN= 7.490XNU= 0.280AA= 10.830

A8= 4.746
AT- 30.386
CR= 4.000YBT= 2.410XIT= 65.169
FCCR= -0.186FCRC= 0.CC5
AT= 30.386
CR= 4.000Y8T= 2.410XIT= 65.169
FCCR = -0.194FCRC= 0.017
THE RATIO GF VT TO V IS ALPH= C.950

CR= 4.000FC7= 0.017FC8* -0.194FTT* -1.454FT3= -2.850

FBT= 6.505F68= 5.0i8FMT= -1.651FMB= 5.228

FHT= -25.070FH8= 25.070
BF= 7.477TF= 0.49^TW= 0.3350S= 17.860TS= 4.000

BS= 6.410HH= 10.800

CENTER MCKENT= 494.100TOTAL ShEAR= 4.575XS= -5.400EC= 0.000

XN= 7.490XNU= 0.280AA= 10.800

AB= 4.746
AT= 30.386
CR= 4.000YBT= 2.410XIT= 65.169
FCCR= -0.114FCRC* -0.105
AT= 30.386
CR= 4.C0QY3T= 2.41GXIT= 65.169
FCCR= -0.118FCRC= -0.C99
THE RATIO CF VT TO V IS ALPH= 0.950

CR= 4.000FCT= -0.099FCB= -0.118FTT= -0.882FT3= -1.C07

FBT = 5.422FBS= 5.251FMT* -0.899FM8= 5.276

FHT= -25.070FHB= 25.070
BF= 7.477TF= 0.499TW= 0.3350S* 17.860TS= 4.000
6S= 6.410HH= 10.800

CENTER MOMENT= 494.100TCTAL SHEAR= 4.575XS= O.O00EC= 0.000

XN= 7.490XN0= 0.280AA= 10.800

AB= 4.746
AT= 30.386
CR= 4.000YaT= 2.410XIT= 65.169
FCCR= -0. 041FCRC= -0.215
AT= 30.386
CR= 4.000Y8T= 2.410XIT= 65.169
FCCR= -0.041FCRC= -0.215
THE RATIO CF VT TO V IS ALPH= 0.950

CR= 4.000FCT= -0.215FCB= -0.C41FTT= -0.309FTB= 0.836
FBT= 4.340F88= 5.485FMT= -0.147FM8= 5.323
FHT= -25.07CFH8= 25.070
BF= 7.477TF= 0.499TH= 0.3350S= 17.860TS= 4.000
BS= 6.410HH= 10.800

CENTER MG*ENT= 494.100T0TAL SHEAR= 4.575XS= 5.400EC= 0.000
XN= 7.490XNU= 0.280AA= 10.800



AB= 4.746 ,,
AT* 30.J86 J

CR= 4.000YBT* 2.410XIT* 65. 169
FCCR* 0.031FCRC* -0.324
AT= 30.386
CR= 4.000YBT* 2.410XIT* 65.169
FCCR* 0.035FCRC* -0.330
THE RATIO CF VT TO V IS ALPH* 0.950

CA= 4.000FCT* -0.330FCB* 0.035FTT= 0.263FTE* 2.679
FBT= 3.258F-88* 5.719FMT* C.604FM8 = 5.371

FHT* -25.070FriB= 25.070
BF= 7.477TF* 0.499T** 0.335DS= 17.860TS= 4.000
BS= 6.410HH= 1C.800

CENTER MOMENT* 454.100T0TAL SHEAR* 4.575XS* 10.800EC* 0.000
XN= 7.490XNU* 0.280AA= 10.800

A8= 4.746
AT* 30.386
CR= 4.C00YBT= 2.410XIT= 65.169
FCCR= 0.104FCRC* -0.434
AT= 30.386
CR* 4.C00YBT= 2.410XIT= 65.169
FCCR= 0.112FCRC* -0.446
THE RATIO CF VT TO V IS ALPH= 0.950

CR= 4.000FCT= -0.446FCB* 0.112FTT* 0.835FTB* 4.52'
FBT* 2.175FSB* 5.953FNT* 1.356FM8* 5.419

FHT= -25.07CFHB= 25.070
8F= 7.477TF= 0.499TW= 0.33505= 17.860TS* 4.0C0
BS* 6.41CHH= 1C.800

CENTER MOMENT* 792.000TGTAL ShEAR= 2.000XS= -10.800EC* 0.000
XN* 7.490XNU* 0.280AA* 10.800

AB= 4.746
AT* 30.386
CR= 4.000YBT= 2.410XIT= 65.169
FCCR* -0.129FCRC= -0.248
AT* 30.386
CR= 4.000YBT= 2.410XIT* 65.169
FCCR* -0.133FCRC= -0.243
THE RATIO CF VT TO V IS ALPH* 0.950

CR* 4.CO0FCT* -0.243FCB= -0.133FTT* -0.996FTB* -C.271F8T* 7.903F86* 8.58cFMT= -0.894F.MB= 8.491
FHT* -40.184FH8= 40.184
BF= 7.477TF= 0.499T** 0.3350S* 17.860TS* 4.000
BS* 6.410HH= 10.300

CENTER MOMENT* 792.000TOTAL SHEAK* 2.0C0XS* -5.400EC* 0.000
XN* 7.490XNU= Q.280AA* 10.800

AB= 4.746
AT* 30.386
CR= 4.000YBT* 2.410XIT* 65.169
FCCR* -0. C98FCRC* -0.296
AT* 30.366
CR= 4.000YBT* 2.410XIT* 65.169



64
FCCR= -0.1C0FCRO -0.293

THE RATIG CF VT TO V IS ALf>H= 0.950

CR= 4.000FCT= -0.293FCB= -0.100FTT- - '™*™" °* 534

FBT= 7.430FB3 = 3.690FMT= -0.565FMB= 3.512

2? -";
7 ?T

4

F=
B=

o!^9T
8

W= 0.3350S= 17.860TS* 4.000

BS= 6.410hH= 10.800

CENTER MCMENT= 792.000TCTAL SHEAR= 2.000X5- O.000EC= 0.000

XN= 7.490XNU= 0.280AA= 10.800

AB= 4.746
AT* 30.386
CR= 4.000Y3T= 2.410XIT= 65.1o9

FCCR = -O.066FCRC= -0.344

AT= 3 0.386
CR= 4.000YBT= 2.410XIT= 65.169

FCCR= -0.066FCRC= -0.344

THE RATIO OF VT TO V IS ALPH= 0.950

CR= 4.000FCT= -0.344FC3= -0.066FTT= -0.496FTE= 1.340

FBT= 6.957FB3= 8.792FMT= -0.236FMB= 3.533

FHT= -40.134FHB= 40.184
BF= 7.477TF= 0.499TW= 0.335OS= 17.860TS= 4.000

BS= 6.410HH= 10.800

CENTER MCMENT= 792.000TOTAL ShEAK= 2.000XS= 5.400EC= 0.000

XN= 7.490XN«J= 0.280AA= 10.800

AB= 4.746
AT= 30.386
CR= 4.000YaT= 2.410XIT= 65.169

FCCR= -0.035FCRC= -0.392
AT= 30.386
CR= 4.000YBT= 2.410XIT= 65.169

FCCR= -O.Q33FCRC= -0.395
THE RATIO CF VT TO V IS Ai.PH= 0.950

CR= 4.000FCT= -0.395FCB= -0.033FTT= -0.246FTB= 2.146

FBT= 6.433F3B= 8.895FMT= 0.092FM8= 8.554

FHT= -40.184FHB= 40.184
BF- 7.477TF= 0.499TW= 0.335DS= 17.360TS= 4.0C0

BS= 6.410HH= 10.800

CENTER MGKENT* 792.C0OTOTAL SHEAR= 2.000XS= 10.8C0EC= 0.000

XN= 7.490XNU= 0.230AA= 10.800

AB= 4.746
AT= 30.336
CR= 4.000YBT= 2.410XIT= 65.169

FCCR= -0.003FCRC= -0.440
AT= 30.386
CR= 4.000YBT= 2.410XIT= 65.169

FCCR= 0.001FCRC= -0.445
AT= 30.351
CR= 3.995YBT= 2.409XIT= 65.080
CONVERGENCE CR= 3.995CR1= 3.994ICCUNT= 1ALPH= 0.950

THE RATIO OF VT TO V IS ALPH= 0.950



CR = 3.995FCT= -C.445FC8= 0.000FTT= 0.005FTe=
FBT = 6.010FB8= 3.997FMT= 0.422FMB = 8.574

FriT= -40.192FH8= 40.183

65

2.954

CORE USAGE OBJECT COOE = 10896 BYTES, ARRAY AREA= BYTES, TOTAL AREA AV.

OIAGNOSTICS NUMBER CF ERRGRS= 0, NUMBER OF WARNINGS= 0, NUMBER OJ

COMPILE TIME= 0.56 SEC , EXECUTION TIME= 0.99 SEC, 22.04.43 WEDNESDAY
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ABSTRACT

A method of analysis and solution technique have been developed

for determining the stresses in the elastic level and shear forces in

the regions of web openings in steel-concrete composite beams. Reason-

able agreement was achieved when results obtained by the method developed

here were compared to results from a finite element program (3). The

Vierendeel approach was used in developing the method of elastic analysis

presented in this thesis. A general method of approach to the ultimate

strength analysis was also developed and discussed.


