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1. INTRODUCTION

Because today's industrial society consumes energy at such

an alarmingly high rate, domestic supplies of fossil fuels such as

natural gas and oil, which are non-renewable resources, have become

severely depleted. This high consumption rate is the cause of the

current energy dilemma facing the world. The skyrocketing cost of

these fossil fuels has forced a re-evaluation of raw energy sources

used to generate electricity. Nuclear fuel is a possible candidate

to replace fossil fuel for large-scale power generator. However, public

fear of nuclear energy and its consequences has proved to be a formidable

barrier to the development of nuclear power. Hence, other means to gener-

ate power have been investigated. To many, renewable energy resources

such as solar and wind energy are especially attractive. In addition, to

low input energy costs afforded by solar and wind energy systems, these

resources are available to all countries and consequently need not be

imported from other lands. Such resources could help make the U.S.

and other industrialized nations less dependent on expensive foreign

oil.

Potentially available wind power, a form of solar power, in

the Continental U.S., the Aleutian Arc, and the Eastern Seaboard

has been estimated to be 10 GW [1]. This is more than thirty times

the estimated total annual average power requirements of the U.S. by

1980.

Because of this large potential and the recent large increase

in traditional energy costs, the development of various wind energy



systems is currently receiving vide attention. However, wind power

is not a recent development, but has been used by man throughout

history. As far back as 200 B.C. wind turbines were used to grind

grain. From then up until the present day, wind turbines have been

used by many societies to supply energy for a variety of industrial

activities. In the mid-19th century wind power was used in rural

America to pump water and generate electricity until the 1930 's when

the Rural Electrification Administration displaced these units with

more reliable centralized electric power. Thus, small wind systems

became a second choice for power generation.

Past wind systems have not been limited to serving small local

power requirements. A central station wind-powered electrical system

was conceived by Palmer Putnam and built by the S. Morgan Smith Company

of York, Pennsylvania during the early 1940s [1]. This system was

rated at 1250 kW and fed power into the electrical network of the

Central Vermont Public Service Company. The unit operated inter-

mittently until March, 1945. At this time, one of the blades broke

off near the hub where a known weakness had been identified but

had not been corrected because of the wartime material shortages.

However, after a comprehensive economic analysis, it was discovered

that the unit, even if repaired, could not compete effectively, at

that time, with conventional electrical generation plants. Hence,

although the project was a technical success, economics forced the

plant to be abandoned. Other similar endeavors in Denmark, Russia,

France, England, and Germany during this same period of time suffered

the same economic fate [1].



Currently, the rising cost of traditional energy sources has

kindled new interest in wind power. In September 1975 under a Federal

wind energy program, the Energy Research and Development Administration

(ERDA) began testing a wind turbine generator rated at 100 kW in 18 mph

winds (the Plum Brook unit of the National Aeronautics and Space Admin-

istration (NASA)). Through this program, the problems associated with

large wind turbine generators are to be investigated. These include re-

ducing capital costs, eliminating television interference, and improving

aesthetic appearances [2], Although large wind turbines may offer the

potential of lower capital costs per installed kilowatt, small wind tur-

bines of comparatively simpler design are already on the market and do

not face the problems of television interference or aesthetic impact.

Consequently, wind power generation faces an economy of scale, i.e.,

whether to install one large central station unit or use several small

units to serve particular load demands.

Whichever size units are chosen to be used, areas of high wind

power potential must be identified. Reed [3] has compiled extensive

power calculations from historical meteorological data tapes for many

locations. However, because of the wind's inherent variability, the

power output from wind turbines is often highly variable from day to

day and even from minute to minute. Consequently, there have been many

studies to try to characterize this variability analytically so as to

be able to predict the energy that can be extracted by a particular wind

turbine. Justus, et. al.
, [4], made use of the Weibull distribution in

modeling wind speed distributions and computing total energy production



for two different central station power units, a 100 kW wind turbine

with characteristics similar to the NASA experimental unit and a hypo-

thetical 1 MW unit, at various sites throughout the United States.

Johnson [5], too, used the Weibull distribution in analyzing wind turbine

performance at specific Kansas locations. In addition, Hennessey [6] in-

corporated the Weibull distribution in his study of computing mean power

densities at several locations; but he solved for the Weibull distribution's

parameters using a matching-moments method, whereas Justus and Johnson

estimate the parameters by a linear least squares technique. Corotis [7]

also investigated the Weibull distribution using the matching-moments

parameter estimation method for computing the available power in the

wind as a function of wind speed. He also examined the use of the

Rayleigh distribution, which is a special case of the Weibull distri-

bution involving the estimation of only one parameter. Cliff [8]

also employed the Rayleigh distribution to estimate the average annual

output of a wind turbine. Finally, Kaminsky [9] analyzed four different

distribution functions, log-normal, gamma, Weibull, and Rayleigh, and

compared how well each of these distributions fit given wind speed data.

Kaminsky solved for the parameters of the above distributions by using

maximum likelihood estimators for all except the log-normal distribution

for which he employed a matching-moments estimation. However, common to

all these studies that analyze wind turbine performance by using an analytical

distribution to characterize wind speed data, it is assumed that all the

generated electricity is used by the electrical network, i.e., the wind

turbine is a replacement for conventional generators and no generated

energy is wasted.



Obermeier [10] studied the prospect of using wind power to

meet particular load demands. He investigated the use of wind

turbines in current commercial production and his criterion for an

"optimal" wind turbine and battery size was one which will supply the

entire demand, i.e., the customer does not need to purchase any electri-

city. However, there was no consideration of the cost to the customer

of such an optimal system. Because economics plays a key role in the

determination of energy policies, another criterion for choosing an

"optimal" wind turbine size would be to test many different sized wind

systems and see which one would save the user the most money in com-

parison to purchasing all the demanded electricity from a utility.

Based upon these previous wind power and feasibility studies, the

scope of this work was two-fold. First, various analytical models

of wind speed distributions were investigated. Several of the more

common methods of solving for the parameters of the Weibull distribution

were studied. In addition, the beta distribution was introduced and in-

vestigated to determine how well it could represent wind speed data.

Two goodness of fit tests were performed on each analytical model to

determine the appropriateness of each model in describing observed wind

speed distributions. This study of the representation of observed wind

speed distributions by analytically fit functions is presented in

Chapter 2. In the second phase of this work a methodology was developed

whereby an appropriate analytical wind speed model was used to compute an

economically optimal wind turbine system to serve a particular load.



The details of this optimization methodology and an investigation of

the sensitivity of the optimally sized wind turbine generator system

to the problem parameters is presented in Chapter 3.



2. ANALYTICAL REPRESENTATIONS OF WIND SPEED DISTRIBUTIONS

2 .1 Introduction

To evaluate accurately the energy potential of a wind turbine

generator system (WTGS) for a given application and geographical

area, it is first necessary to have sufficient information about the

wind speeds likely to be encountered by a WTGS at a specific location.

Wind speed characteristics may vary widely for different geographical

regions as well as locally as a result of local terrain features. More-

over, the wind speeds vary throughout the day as well as with the season.

Ideally, one would like to have the average wind speed distribution for

times throughout a day and for days throughout the year at a specific

site. For more detailed analyses, more detailed information about the

wind speed characteristics may be needed, e.g., standard deviations of

the average wind speed, wind duration (or persistence) characteristics,

and gust characteristics. Such characterizations of the wind speeds may

be obtained from historical wind velocity data which have been collected

at many locations in the United States and other countries over a

period of many years. In their most basic form, these data represent

measured values of wind speeds (either "instantaneous" or averaged)

at periodic times throughout the day for every day of the year. Be-

cause of the large amount of information, these historical wind records

are most often stored on magnetic tape which can readily be processed



by computers. From the historical records a great deal of information

about the average characteristics of the wind at the specific location

can be computed if a sufficient number of years has been included in

the data records.

For the evaluation of a WTGS at a specific site, the most fund-

amental wind speed information needed is the average speed distribution

for various times throughout a day in any season (or month) . From the

meteorological wind data tapes, various wind speed frequency (or

probability) distributions have been obtained by averaging the observed

wind speed data from various intervals throughout the day for each

month. Extensive compilations of such frequency distributions for

many locations in the United States have been published [11,12], With

such averaged wind speed distributions the potential of a given site

for generating power can be evaluated accurately.

However, even the use of these historical averaged wind speed

distributions (usually presented as histograms) still involves exten-

sive data manipulation. Moreover, if the average speed distributions

have been generated from only a few years of historical data, the

resultant frequency distribution may still differ significantly from

the actual wind frequency distribution at the site as a consequence

of large wind speed variations. For the analysis of wind potential,

it is often easier to use a smooth, analytical, functional representation

of the observed wind frequency. The use of such analytical functions

to represent the wind speed distribution allows a significant simpli-



fixation in the calculation of energy generated from a WTGS by

allowing much analytical simplification in the analysis and, thereby,

requiring considerably fewer numerical computations. Furthermore, the

use of analytical functional representations of the wind speed distri-

butions tends to smooth out data variations resulting from insufficient

experimental data. Strict use of the experimental data may not produce

an accurate representation of the actual wind speed distribution as a

result of statistical fluctuations in the data, whereas the analytical

function representation may yield a more accurate wind speed representation

by averaging over the statistical fluctuations. Of course, the function

used to represent the wind data must be shown to be very representative

of actual wind speed distributions. Finally, most experimental wind speed

distributions are presented as histograms with relatively large velocity

intervals or bins. This "binning" procedure of the historical measurements

produces at best an approximate representation of the wind speed distribution,

which, in reality is a continuous distribution. Thus, the use of analytical

functions to represent the wind speed distributions resembles the smooth

and continuous nature of actual wind speed distributions as well as pre-

serving the distribution character and accuracy of representing the average

wind speeds.

For modeling accurately power generation over the speed range in

which the WTGS power output varies rapidly with wind speed, the use of a

continuous wind speed model is conceptually more appealing than the use

of a discrete frequency distribution. The WTGS power output varies, ideally,
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with the cube of the wind speed. The discrete frequency distribution

of wind speeds obtained from historical wind data usually contains only

two or three intervals over the rapidly varying (with the cube of the

wind speed) transition range (from cut-in to rated speeds) of the WTGS

response.

Consequently, there has been much effort in the past few years

to find various simple functions which can represent accurately actual

wind speed distributions as well as to develop techniques for finding

the parameters of such analytical representations, which fit the observed

wind data [4,5,6,7,8,9,12]. In the first phase of this work, several

techniques for fitting two functions (the Weibull and beta distributions),

which are well suited to represent wind speed distributions, are ex-

amined and two tests (chi-square and power ratio), are developed to

indicate the accuracy of the resulting fits.

2 . 2 Description of Wind Speeds

For analysis of WTGS performance, in addition to the WTTGS response

to wind speeds, only information about the distribution of speeds for

a given daily time interval is needed. The directional dependence of

wind speeds is not a concern in this study. Wind speed distributions

can be described by either of the following two distributions:

(i) f(v) = "probability density function". The quantity
f(v)dv is the probability that the wind is in

the interval dv about speed v and is normalized
such that

f(v)dv = 1. (2.2-1)
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H
L) F(v) E

J
f(v')dv' =(li) F(v) =

J
f(v')dv' » "cumulative distribution" function,

i.e., the probability that the wind
speed is less than v. (2.2-2)

Historical wind speed recordings are not continuous, but rather

the data are grouped into discrete speed intervals called wind speed

bins. In such a discrete representation, the possible range of wind

speeds, from zero to high storm speeds, is divided into n contiguous

subintervals of widths Av. bounded by speeds v. and v.,,. In most
1 l l+l

compilations of wind speed data, the frequency distribution of wind

speeds in each discrete subinterval is given, i.e., the probability

P. (or fraction of the total number of observations) in which the wind

speed was observed to be in the i-th speed subinterval (v.<v<v ,), is
i i+1

given: .

1+1
f(v) dv. (2.2-3)

An example of a frequency distribution compiled from historical records

is given in Table 2.2-1. From such frequency data, a discretized form

of the probability density function can be constructed as

P.

f
.

« T— , v. < v < v.,_ . (2.2-4)
x Av. l l+l K

'

l

Also, the wind speed data can be represented by a discrete form of

the cumulative distribution function,

*, = I V J-l,...,n. (2.2-5)
i=l

The corresponding probability density and cumulative distribution
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functions of the data in Table 2.2-1 are shown in Figs. 2.2-1 and

2.2-2, respectively. The mean wind speed, u, and the dispersion (or

2
variance) , o , of the wind speeds at any particular time are calculated

from the continuous speed distributions as

V »
I

vf(v)dv, (2.2-6)

and

(v-u)
2
f(v)dv. (2.2-7)

From the discrete representation, i.e., the experimental data, the

mean and variance can be estimated by

1=1

and

s
2

= I (v ... - v)
2
P (2.2-9)

1=1 *** X

where n is the total number of speed subintervals, and v... is the mid-

point of wind speed subinterval i.

2.3 Weibull Probability Density Function

The two-parameter Weibull distribution [4,5] is the most widely

used distribution to characterize wind data because of the simplicity

of its cumulative distribution function. The Weibull distribution is

given as
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Fig. 2.2-1. Probability density function for data in Table 2.2-1.



15

100

a 40

20

J
1

1 1 1 1

10 20 30

Wind Speed (knots)

40 50

Fig. 2.2-2. Cumulative distribution function for data in Table 2.2-1.
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f(v) = Cf)(f)
k_1

exp(-(^)
k
), v,k,c>0, (2.3-1)

where v is the wind speed, c is the scale parameter and k is the

shape parameter. The corresponding cumulative distribution is

given by

/
V
f(v) dv = F(v) - 1 - exp[-(-)

k
]. (2.3-2)

The mean and variance of the Weibull distribution, which will

be needed later for fitting wind data, are [4]:

H -«*(!+£), (2.3-3)

and

2 2 2 2 ? i

a = c r(l +£) - cV(l +i),
(2.3.4)

where r(x) is the gamma function, defined by

r (x) = j y e y dy, x>0. (2 3-5)

The effect of variation in the shape parameter, k, upon f(v) is

illustrated in Fig. 2.3-1. In this case the scale parameter, c, is

set to unity; however, f (v) can be obtained for other values of c

from these graphs by simply dividing the ordinate by c and multiplying

the abscissa by c. This adjustment preserves the requirement of unit

area under the curve [5]. For values of- k between zero and unity, the

distribution has a mode at zero and is monotonically decreasing (ex-
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Fig. 2.3-1. The standard form of the Weibull
distribution.

.
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potential-shaped). For k equal to unity, the distribution is

purely exponential. For v greater than 3.5, the distribution becomes

approximately normal [6].

The Rayleigh distribution is a special case of the Weibull

distribution. In the Rayleigh distribution, the shape parameter, k,

is fixed at a value equal to 2. Consequently, the Rayleigh distribution

is a single parameter distribution depending solely upon the value of

the mean of the distribution.

2.3.1 Representation of Wind Speeds by the Weibull Distribution

(a) Double Logarithmic Transformation Least Squares (DLTLS) Method

Several methods to estimate the unknown parameters, c and k, of the

Weibull distribution have been proposed [A ,5 ,6, 7 , 12] . One method is to

perform a least squares fit of the observed data to the double logarithm

of the observed cumulative distribution function. The cumulative Weibull

distribution function is a more tractable form than its probability density

function. The cumulative distribution function is linearized by taking

the logarithm twice of each side as shown below [5]

ln[-ln(l-F.)] = k lire.^ - klnc . (2.3-6)

This result is of the linear form

y = ax + b, (2.3-7)
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where

y - ln[-ln(l - F )],

a = k,

and b = -k lnc

Hence, a least squares procedure can be used on Eq. (2.3-7) to

yield estimates of the parameters a and b, which in turn can be used

to form estimates of k and c. Thus, use of the observed cumulative

distribution function, F., with a standard linear least squares

method gives estimates of the parameters c and k. To avoid the case

where F. is exactly unity (i.e., when j is equal to n) , a modification

of Eq. (2.3-6) has been used [13], namely

ln[-ln(1.0001-F.)] = k lnv.,, - k Inc. (2.3-8)
J i"f*5

Because of the addition of the small amount in the left hand side

of Eq. (2.3-8), each value is slightly in error. Alternately, the

final data point, F , can be omitted and Eq. (2.3-8) used with no

modification.

The least squares estimates a and b (Eq. (2.3-7)) are given by [14]:

y w. 7 w.x.y. - J w.x. V w.y.
.-, i .'-, i i/i .

L
, i i .'. 11

i=l i=l 1=1 1=1

n n ~ n
9

y w. y w.x. -
( y w.x.

)"

i i . , 1 1 . , 1

1

1=1 i=l i=l

(2.3-9)

and

i=l
l 1-1

1-1
x

i=l
x

(2.3-10)
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where w. is the weighting factor for speed subinterval i.

Often the weighting factors for the least squares technique

are assumed to be unity, i.e., each point has the same effect on

the least squares estimators. Johnson [13] reports that weighting

factors of unity cause all speed subintervals to have the same effect

on the least squares estimators, whereas some speed subintervals actually

represent more observations than others. Consequently, in order for the

speed subintervals with the most observations to have more effect on the

least squares estimators, each speed subinterval can be weighted with the

probability, P., of a wind speed occurring in that i-th speed sub-

interval. Thus, the resulting Weibull distribution will fit the

speed subintervals which have the most observations better than the

Weibull distribution obtained by using unit weighting factors. How-

ever, this weighting scheme is strictly judgmental and not statistically

justified.

Weighting factors which are inversely proportional to the variance

of the residuals between the observed data and the expected value (as

predicted by the functional form used to model the data) yield least

squares estimators, which are of minimum variance [15]. Hence, these

are the best estimators, in the least squares sense. The weighting

factors are not independent of the parameters of the model; however,

it is normally assumed that the variance of the residual is caused only

by the variance in the observed data. Thus, the weighting factors

are commonly taken as the reciprocal of the variance of the observed
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data. In this case (finding least squares estimates for a and b of

Eq . (2.3-7)), the weighting factors should be the reciprocals of the

variance of the y values, i.e., the reciprocal of the logarithm of

the negative logarithm of unity minus the cumulative distribution

of the observed data! However, because the variance of the observed

data is unknown, the statistically correct weighting scheme is unable

to be performed.

Irrespective of which weighting factors are used, the above

linear least squares method minimizes the sum of the errors associated

with the linear approximation of the doubly logarithmic transformed

cumulative distribution function, i.e., the fit parameters are chosen

so as to minimize

n
9

E. = {(k lav.., - k lnc) - ln[-ln(l - F.)]} . (2.3-11)
1 . =1 m 1

However, these methods do not guarantee that the sum of the squared

errors of the actual cumulative distribution,

E
Q

= I {(1 - exp[-[-i^] k ]) - F.}
2

,
(2.3-12)

i=l

is a minimum.

To illustrate this point, suppose the wind data, which are

shown in Table 2.3-1, are used. A double logarithmic transformed least

squares fit to the cumulative Weibull distribution yields k equal to

1,42 and c equal to 6.20 so that the fitted distribution can be written as,



0-2 1 0.092

2-6 4 0.2288

6-12 9 0.441

12-18 15 0.1758

18-24 21 0.0624

22

f(v) = 0.229 (T^o)
' 42

expt-(^)
1 - 42

] . (2.3-13)

Table 2.3-1. Hypothetical Wind Speed Data to be Fit by a Weibull
Distribution Using the Method of Least Squares.

Speed Subinterval
Subinterval midpoint P. f. F.

i i i
(knots) (knots)

0.0460 0.092

0.0572 0.3208

0.0735 0.7618

0.0293 0.9376

0.0104 1.0

The error parameter E. , using this result in Eq. (2.3-12), is

-3
6.8 x 10 , while E. , i.e., the sum of the squared differences between

the doubly logarithmic transform of the cumulative distribution associated

with Eq. (2.3-13) and the given data, is 0.491. However, a Weibull

distribution can be found which passes through all the data points

except the third speed subinterval. The parameters of this distri-

bution are k equal to 1.5 and c equal to 10.0 while written explicitly

f(v) = 0.15 C^) ' 5
exp[-

(ygfo)

1 ' 5
] • (2.3-14)

The error parameter, EL, using this result in Eq. (2.3-12), is now

-3
smaller with a value of 0.166 x 10 , while E increases to 3.08. The

fit of Eq. (2.3-14) to the data is considerably improved, although that
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of the doubly logarithmic transform of the cumulative Weibull is poorer

than in the first case (Eq. (2.3-13)). Hence, the DLTLS estimation de-

scribed in this section assures the minimization of E , but not

necessarily the minimization of Eq !

(b) Hatching-Moments Method

Another procedure to obtain estimates of c and k is by a matching-

moments method. The sample mean and variance of the wind data, given by

Eqs. (2.2-8) and (2.2-9), are set equal to the mean and variance of the

Weibull probability density function, Eqs. (2.3-3) and (2.3-4), to

obtain

v = V = cr(l + h, (2.3-15)
k

s
2

= a
2

= c
2
[F(l + |) - r

2
(l + i)J. (2.3-16)

From these equations, c can be expressed in terms of k as

(2.3-17)

r(i + i)

Substitution of c from Eq. (2.3-17) into Eq. (2.3-16) yields an equation

for k, namely,

ra + h -2 2
v

I
s

= 0. (2.3-18)

r
2
(i + i)

To solve Eq. (2.3-18) for k, a numerical procedure for finding

the roots of a nonlinear equation must be used. In this study, the

Mueller's iteration method (an elegant successive bisection technique [30])
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is preferred over a technique such as Newton's method, because the

former does not require the calculation of derivatives which can become

cumbersome when dealing with gamma functions. Once k is found, c can

be determined by substitution of k into Eq. (2.3-17). If calculations

are to be performed by hand, a crude estimate of k can be made by using

Kotel'nikov's nomogram [6]. The value for c can then be obtained by

substitution of k into Eq. (2.3-17).

The matching-moments technique is very flexible in that only

the sample data mean and variance are needed to solve for k and c.

Consequently, diurnal effects on the wind distribution can be studied

with some ease. Since diurnal variations are generally given in terms

of their effect on mean seasonal wind speeds, the resulting frequency

distribution is easily computed. However, a numerical method or Kotel'-

nikov's nomogram approximation is needed to solve for k; this numerical

computation is an unattractive feature of this method.

2.4 Beta Probability Density Function

The second probability density function proposed for the modeling

}f wind data is the two-parameter beta distribution,

f(v)

e^*- 1
(i

v B(ct,6) v
max max

0, otherwise

v .e-i
0<v<v

max

(2.4-1)

where

Ka,B) = r(a)r(B)
:(o + B)
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a and & are positive parameters, and v is the maximum speed forr max r

which the beta distribution is defined, i.e., maximum observed wind

speed.

Variation of the parameters a and 6 causes the beta distribution to

assume many shapes as illustrated in Fig. 2.4-1. For a less than £,

the beta distribution is positively skewed, i.e., there is a longer

"tail" to the right of the maximum than to the left. For a greater

than B the distribution is negatively skewed and for a equal to 6, the

distribution is svmmetric about the value ^T -In the special case of
max

both a and 3 equal to unity, the beta distribution is uniform over

its entire defined wind speed range.

The mean and variance of the beta distribution, which will be

needed in the following subsection for fitting wind data, are

y = —TS v - .
(2.4-2)

(2.4-3)

(a + 6)
2
(a + B + 1) ™aX

2.4.1 Representation of Wind Speeds by the Beta Distribution

To use the beta distribution to model given wind speed data, a

method must be found to obtain values for the parameters a and 3 of

the beta distribution. Techniques such as a non-linear least squares

or maximum likelihood estimates can be used to find estimates of a

and 3. However, the above techniques require numerical procedures in the

computation of a and &.



26

2.4

b =
0.5,

3

2 o

2.0

>

1.8

u
c

1.6 / b - 3 \ / b - 2 \

0)

1.4

1.2

CC

J2

i-

P-

m
PQ

1.0

o.s

\ / a b - 1 \ \

0.6

0.4

0.2

,
1 1 1 1 1 1 lT-—4_

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Wind Speed v/v
max

1

Fig. 2.4-1 The standard form of the beta distribution.
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Another method to solve for a and g is by the raatching-moments

technique. As was done when solving for the parameters of the

Weibull distribution by matching-moments, the sample data mean,

Eq. (2.2-8), and variance, Eq. (2.2-9), are set equal to the beta

distribution's mean (Eq. (2.4-2)) and variance (Eq. (2.4-3)). The

resulting equations can be solved simultaneously for a and 3 to yield

— v(v - v)

a= _v_
j

ma|
_ 1]( (24_4)

max s

= !max
V
_ a _ (2.4-5)

It should be emphasized that a and B can be obtained analytically.

The beta distribution is a particularly attractive distribution

for wind modeling because it can assume many shapes and because it is

defined only over a finite speed interval. These two properties help

the beta distribution to resemble the given wind data more closely

since all real wind frequency distributions are zero beyond some max-

imum wind speed, v . Furthermore, the parameters of the beta distri-
r max

bution are more easily obtained by matching-moments than those for the

Weibull fit since a numerical (iterative) solution is not required for

the beta distribution.

2.5 Description of Goodness of Fit Tests

Once the parameters of the desired distribution are computed,

the accuracy of these distributions to represent the wind speed data
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2
must be verified. Two tests, a chi-squared (x ) test and a power

ratio test, to judge the goodness of fit are developed in this section.

(a) y
2
Test

2
The first test is the x test which is based on the following

statistic [16]:

, n [NP.°
bE

- NP.]
2

X
2

- I -Ag- J—
, (2.5-D

1=1 i

where P ° is the observed frequency of occurrence of wind speeds in
i

subinterval i obtained from recorded data, while P. is the expected

frequency as predicted by the analytical model (i.e., as computed

from Eq. (2.2-3). The symbol 8 represents the total number of all wind

speed observations used to obtain the observed frequency distribution.

2
To determine the significance of the x test, the number of

degrees of freedom, equal to the number of speed subintervals,

n, minus the number of different independent linear restrictions

imposed on the observations, must be determined. For the present case,

one restriction, i.e., the loss of one degree of freedom, is due to the

fact that the probability in the last speed subinterval is determined

after the probabilities in the first n-1 speed subintervals are known.

Furthermore, an additional constraint (loss of one degree of freedom)

results from each independent parameter, e.g., v and s, which allows

the determination of a and B, of a distribution estimated from the data

[16]. Thus, the number of degrees of freedom, v, is given by,

v = n - 1 - e, (2.5-2)



29

where n is the number of speed subintervals and e is the number of

parameters estimated from the data.

The number of degrees of freedom and the calculated value of

2
X are used to determine the level of significance, i.e., the

2
probability that chance would allow a value of x as large or larger

than the one calculated. This significance level can be found from

either standard tables or numerically integrating the incomplete gamma

function, which the x distribution follows. Thus, if the calculated

2 2
X is larger than the theoretical x > the hypothesis that the analytical

distribution, with parameters estimated from the data, represents the

wind speed data is rejected.

In the computation of x , it is imperative that NP . is the

number of observations and not a probability percentage. The x

test is invalid if probability percentages are used unless the sample

size is exactly 100 [16], The sample size is crucial because as noted

2
from Eq. (2.5-1), the x value is a function of the sample size. Hence,

2
use of the incorrect sample size changes the x value and consequently

2
changes the significance level of the x test which could result in

an erroneous conclusion about the fit of" data to the analytical

distributions.

2
Also, when performing the x test, wind speed subintervals should

be grouped such that each wind speed subinterval for the analytical

distribution contains at least a single observation [17]. With this
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2
adjustment, large contributions to x from wind speed subintervals

with few observations are avoided. Table 2.5-1 illustrates the

2
effect of grouping data. This example shows that the statistic x

can be reduced by a factor of 2 if the data are grouped properly, i.e.,

combining wind speed subintervals so that every subinterval has at least

a single observation. It must be noted, though, that grouping the

intervals at the tails so that the expected observations are much greater

2
than unity causes the x~ test to loose its power. This is because

grouping may cover up the most distinct differences where the two

distributions differ the most [17].

(b) Power Ratio Test

In the second test, the power available in the wind for a given

analytical distribution is computed and compared to the power avail-

able as computed from the histogram of data from which the analytical

model was obtained. The ratio of these two power calculations is de-

fined to be the power ratio. A power ratio of unity indicates

power calculations using the observed wind speed distribution and

the fitted analytical distribution yield identical results. Conse-

quently, this test shows the accuracy of the analytical fit over

the entire speed range of interest for wind turbines rather than

comparing accuracies at selected intervals.

To compute this power ratio, an expression for average wind

power must be obtained. Using the analytical distribution, the

average power output of a WTGS, P., , is given by the equation
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2
Table 2.5-1. Tabulation of y. Values Illustrating Effect of Grouping

Data.

Wind Speed
Subinterval NP

0bs
NP.

Contribution
to*2

Contribution
to x

2

(knots) (ungroupe d) (grouped)

0.0 - 1.0 61 56.3 0.392 0.392

1.0 - 3.5 293 305.8 0.552 0.552

3.5 - 6.5 A52 434.5 0.747 0.747

6.5 -10.5 517 498.6 0.679 0.679

10.5 -16.5 452 455.5 0.020 0.020

16.5 -21.5 143 162.7 2.45 2.45

21.5 -27.5 52 58.8 1.02 1.02

27.5 -33.5 10 6.53 0.253
*1.16

33.5 -40.5 2 0.27 11.1

Totals 1982 1982 17.2 7.02

*last two subintervals combined
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V =
j R(v)f(v)dv, (2.5-3)

tit
Q

where R(v) is the response function of the wind turbine generator,

i.e., the power obtained from a WTGS when the wind has a speed v,

and f(v) is the wind speed probability density function to be tested.

To calculate the power available when using the discrete probability

density function, f., the integral in Eq. (2.5-3) must be divided up

and summed over each of n speed subintervals with f (v) equal to f. for

v between v and v. , . Hence, when using the discrete probability
l i+l

density function to compute the average power output of a WTGS, p
^ s

>

the following equation is used:

P . = ) f. /
i+1

R(v) dv. (2.5-4)
obs ,**, i '

1=1 v.

To evaluate the above integrals, the WTGS response function, R(v),

must first be selected. Several response function models have been

proposed. Justus, et . al., [4] suggest a quadratic polynomial. The

model used for such a fit was NASA's Plum Brook WTGS. The parameters

of this unit are a rated power output of 100 kW, a cut-in speed (a

wind below which the generator produces no power) of 8 mph, a rated

speed of 18 mph, and a furling speed (a wind speed above which the

generator turns off to prevent damage to the system) of 60 mph. The

response function is described by
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v<v— c

R(v) =
A + Bv + Cv", v <v<v (2.5-5)

c — r

P , V <v<v„ ,
r r — furl

0, v>v, ,furl

where v is the cut-in speed, v is the rated speed, v, , is the
c r furl

furling speed, and P is the rated speed. The coefficients A, B, and

C are determined from the following conditions

2
A + Bv + Cv =0

c c

A + Bv + Cv - P
r r r (2.5-6;

, v 3

A + Bv + Cv = P (—

)

o o r v
r

J

where

v + v
c r

V " 2 '

The response function chosen for use in this study is a more

idealized one and is based upon the theoretical power in the wind due

to the mass and velocity of air molecules. The total power available

from the motion of air with speed v through a cross-sectional area

A is given by [5]

P = i pAv
3

, (2.5-7)
w 2

3
where P is the power in watts, p is the density of air in kg/m ,

w
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A is the exposed area in m , and v is the wind speed in m/s. The

important feature of this relation is that the available power varies

with the cube of the wind speed.

The wind turbine response function used in this study was assumed

to follow a cubic relation also. Fig. 2.5-1 shows this idealized WIGS

response function. Below v (cut-in speed), the wind turbine produces

effectively zero power due to electrical and mechanical losses.

Between v and v (rated speed), power proportional to the cube of the

wind speed is produced. Once the rated speed is reached, the wind turbine

reaches its rated power output, P . For speeds greater than v , a control

system varies the blade pitch so that the generator capacity is not exceeded

and the power ouput is maintained at its rated power. However, if the wind

ever exceeds v. , , the WTGS is shut down or furled in order to prevent
furl r

damage to the system. This idealized model is expressed by the following

equation:

R(v)

fv V
(2.5-8)

V < V < V- -. ,
r — furl

, v > v
furl

Because storm level winds are usually suppressed in reported wind

speed data, the speed v, , is set equal to the v which is the
furl max

maximum speed reported in the wind speed data. Furthermore, unless

specified, the cut-in speed is given by the equation
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Fig. 2.5-1.

Wind Speed

An idealized KTGS response function.
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v - 0.46416 v . (2.5-9)
c r

This relation implies that the WTGS is idle when the output power is less

than 10% of the rated power for the WTGS.

Substitution of the WTGS response function given in Eq. (2.5-8)

into Eq. (2.5-3) yields an explicit form for the average power out-

put of a WTGS using the analytical distribution as follows

Y

t =
|

p
r
M 3

f(v

where Y » min (v , v )

.

1 r max

If, in any of the integrals in Eq. (2.5-10), the upper limit is less

than the lower limit, the integral is assumed to be zero. Because the

above integrals cannot be evaluated analytically when the analytical

distribution is used, a numerical technique is required. Standard Gauss-

Legendre quadrature was used (see Section 3.2-4).

When using the WTGS response function (Eq. (2.5-8)) to compute the

average power output of a WTGS for the discrete wind speed distribution

from Eq. (2.5-4), care must be taken to use the proper form of the WTGS

response function depending upon the magnitude of the speeds in a partic-

ular speed subinterval. For example, if the rated speed occurs in the

middle of a speed subinterval, the speeds in the subinterval less than

or equal to v follow the cubic power relationship given in Eq. (2.5-8)

while the speeds greater than v follow the constant power relationship.
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Consequently, computation of the power ratio requires calculation

of the average power using both the analytical and discrete probability

density functions. The ratio of these two results gives an indication

of the closeness of fit between the analytical and discrete wind speed

probability density functions for wind power calculation. A value of

unity means there is an excellent fit, while values significantly less

than or greater than unity indicate an under- or overestimation of the

available wind power, respectively.

2.6 Results

To solve for the parameters of the fitting distributions and to

evaluate the goodness of fit tests, a computer routine, CURVEFIT, was

developed. A listing and explanation are contained in Appendix A.

Wind speed data were obtained from the National Climatic Center, Asheville,

North Carolina for seventeen sites throughout the United States. A

map showing the locations of the sites is given in Fig. 2.6-1. These

sites are representative of the many possible wind conditions and power

densities found throughout the United States. Table 2.2-1 is a typical

listing of the "binned" wind speed data obtained from the National

Climatic Center. For each of the seventeen sites, wind speed data

were given in eight, three-hour intervals throughout a day for a particular

month. Data for the months of January, April, July, and October were

chosen in this study to simulate the four seasons of the year. Con-

sequently, 544 (= 8 x 4 x 17) observed wind speed distributions were

chosen and fit by analytical distributions. Although anemometer heights
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for the recorded wind speed data typically varied during the recording

period at individual observation stations, no attempt could be made to

adjust for these variations. This is because complete historical records

of anemometer heights at each location used were unavailable. However,

anemometer heights were roughly from 7 to 10 meters and consequently,

any changes incurred because of varying anemometer heights should be

minimal

.

Example results from the CURVEFIT program are given in Tables 2.6-1

and 2.6-2. Two tables are used to present the results from each location.

The first table lists the parameters for each of the analytical distri-

butions calculated from the wind speed data while the second table lists

the results of the goodness of fit tests run on each analytical distri-

bution. In Table 2.6-1, the first line gives the mean, standard deviation,

and the fit parameters for the wind speed distribution data from Syracuse,

New York, in the month of January during the first three hours of a

typical day (beginning at midnight).

The parameters given in Table 2.6-1 can be used to plot the

probability density functions. Figure 2.6-2 shows the four analytical

fits whose parameters are given in the first line of Table 2.6-1 to-

gether with the actually observed distribution.

Table 2.6-2 presents the goodness of fit statistics for the cases

2
presented in Table 2.6-1. This table lists the x values for each of

the four analytical distributions. The integer in parentheses is the

2
number of degrees of freedom associated with the x value for that
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Fig. 2.6-2. Comparison of analytical distributions to

observed distribution for Syracuse, New York,

data (January, hours 1-3).
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particular analytical fit. The final four columns show the power

ratio computed for each analytical fit. The rated power (100 kW)

,

cut-in speed (8 mph) , and rated speed (18 mph) used were those of

the NASA experimental wind turbine generator at Plum Brook, Ohio.

2
(a) Results of x Test

2
The results of the >; test reveal rather large values for

all analytical fits. For the Weibull distributions using the

2
least squares technique to estimate parameters, all X values

2
are in excess of 180. This is quite large considering the x value

at the 0.995 confidence level with ten degrees of freedom is 25.2

2
and all tabulated x values have fewer than ten degrees of freedom.

Hence, there is less than a 0.5% chance that the least squares fitted

distributions describe the given data. This result was not totally

unexpected because, as shown earlier, the least squares estimation of

the Weibull distribution parameters does not guarantee the best fit to

the data.

2
However, large x values were also obtained for the matching-

moments estimation of both the Weibull and beta distribution para-

meters. Over 93% did not pass the non-significance test at the 0.005

2
significance level. But there are some x values which indicate

a good fit of the analytical functions to the data (see Table 2.6-2

in which the analysis of the fits to the wind data from Syracuse,

New York is shown). In the examples of Table 2.6-2, about half of the

2
matching-moments Weibull distribution pass the x test at the 0.005

significance level, and of those all except one pass the test at signifi-
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cance levels less than or equal to 0.01. For the beta distribution, only

31% pass the test at a significance level of 0,005 or less. Examination

of the remaining tables in Appendix B shows other isolated cases where

2
the x values for both the Weibull and beta distribution, using the

matching-moments parameter estimation, yield significant results. In

addition, there are sporadic cases where the beta distribution gives the

largest x value of all of the analytical fits.

Similar results were obtained by Kaminsky for all the analytical

distributions he used to describe observed wind speed data [9], i.e.,

2
the x values were typically very large. However, of the four distri-

butions (log-normal, gamma, Weibull, and Rayleigh) he used to characterize

2
wind speed distributions, the lowest x values were obtained with the

gamma and Weibull distributions.

2
Because the x test merely sums the square of the deviations

between the data and the analytical fit at each speed sub interval, the

. 2
contributions to the x value from each of these speed subintervals was

investigated. In one case, for the April wind speed data from Columbus,

Indiana during hours nine through twelve, both the Weibull and beta

2
distributions using matching-moments estimation yield x values greater

than the other Weibull distributions. A breakdown of the contributions

9

to the x value by speed subinterval is shown in Table 2.6-3.

For the Weibull and beta distributions using matching-moments

2
estimation, 98% of the total contribution to the final x value

arises from the first two speed subintervals, or speeds between and 3.5
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knots. The remaining speed subintervals contribute little to the final

X value. On the other hand, the other two Weibull distributions (obtained

by least squares fits) show rather uniform contributions from each speed

2
subinterval to the total x value. There are no speed subintervals which

contribute such a large amount to the final value. This is typical of

most of the remaining data, i.e., the deviations between the Weibull and

beta distribution using the matching-moments estimation techniques and the

actual wind speed distribution occur in the first two speed subintervals,

whereas in the two least square fits to the Weibull distribution, an

2
equally large amount is contributed to the x statistic by all

speed subintervals. Consequently, this indicates that the matching-

moments estimations of the parameters of the Weibull and beta distri-

butions fit the intermediate and high wind speed subintervals much more

closely than at the low speed end of the distribution. It is the middle

and upper speed subintervals which are important in the analysis of a

WTGS and for which the matching-moments technique produces good fits

with the Weibull and beta distributions.

(b) Results of Power Ratio Test

The power ratio values were also obtained for all 544 wind distri-

butions fit by the Weibull and beta distributions. In addition to use

of the cut-in and rated speeds of the NASA Plum Brook WTGS (a cut-in

speed of 8 mph and a rated speed of 18 mph) , rated speeds of 12, 15, 21,

and 24 mph were also used. Rated power was held constant at 100 kW. Cut-

in speeds for the latter four cases were given by Eq. (2.5-9).
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The mean power ratios obtained from the wind speed data at the

seventeen sites for each WTGS size are tabulated in Table 2.6-4. As

explained earlier, 544 observed wind speed distributions were used

to calculate the power ratios for each WTGS size. From this table

it can be seen that parameter estimations obtained by unweighted and

weighted least squares of the doubly logarithmic transformed cumulative

Weibull distribution grossly underestimate the power available,

whereas the matchin g-moments parameter estimations of both the Weibull

and beta distributions yield values very close to unity.

Frequency plots showing the distributions of the power ratio

values about their calculated mean are shown in Figs. 2.6-3 to 2.6-12.

Because of the large dispersion of power ratios about the mean value

for the Weibull distributions which were obtained by the least

squares estimators, their power ratios are grouped into wider class

intervals in order to yield a smoother distribution.

Since the power ratios obtained from both the beta and Weibull

distributions using matching-moments parameter estimation are so close

to the expected value of unity, it is reasonable to test these values

and ascertain whether there is a significant difference. Consequently,

a t test [18] is applied.

A t test is used to determine if there is a significant difference

between an observed mean and a theoretical mean or between two observed

means. Philosophically, one establishes the hypothesis that the two means

(observed and theoretical or two observed means) are equal or that the



Table 2.6-4- List of Power Ratio Means and Standard Deviations for

Various Analytical Distributions and Generator Rated

Speeds.
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Method For
Calculation of

Power Ratio

Rated Speed Power Ratio Sample

v Mean Std. Dev.

(mph) 7 Sr

Weibull- 1st. sq.

Neibull-wt. 1st. sq.

Weibull- matching-inoments

Beta

12 0.589 0.115

15 0.556 0.109

18 0.529 0.108

21 0.519 0.113

24 0.519 0.118

12 0.664 0.0754

15 0.648 0.0607

18 0.636 0.0730

21 0.648 0.105

24 0.671 0.159

12 0.982 0.0355

15 0.988 0.0376

18 0.975 0.0427

21 0.986 0.0475

24 0.998 0.0647

12 0.992 0.0232

15 1.01 0.0311

18 1.001 0.0331

21 1.01 0.0342

24 1.02 0.047
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samples used to calculate the observed means are from the same pop-

ulation. The calculated t value is compared to a t value (called the

critical t value) at a specified level of significance, i.e., to the

integral of the t distribution with an integration limit set such

that the area of integration is equal to unity minus the level of

significance. Thus, the level of significance is the probability that

chance will allow a t value equal to or greater than the critical t

value.

The t statistic is defined by [18]

[sWS

where r is the sample mean, y is the mean which r is to be tested

against (equal to unity for the sample variance, and N is the sample

size), and s is the standard deviation of the sample values from the

sample mean.

Table 2.6-5 lists the results of this test for the power ratio

sample means. The t value at the 0.001 significance level with an

infinite number of degrees of freedom (each mean power ratio mean

was computed from 544 wind speed distributions) is 3.291, which means

that there is less than a 0.1% probability that a random sample of

power ratios drawn from a population with a mean of u will yield a

t value of 3.291 or greater. All but two power ratio sample means

have t values larger than 3.291; thus, it can be stated that the true

mean of the power ratio using a particular analytical distribution is

something other than unity at the 0.001 level of significance.
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Although the t test does not confirm the suspicion that the power

ratio values for the distributions using matching-moments estimators have

a mean of unity, a significant difference can be seen between the power

ratios for the distributions using matching-moments estimators and those

distributions using least squares estimators. The latter distributions

yielded power ratio values ranging from .29 to 2.2 with most values

being between .4 and .8 while the former distributions were consistent-

ly in the .85 to 1.4 range with 90% of the values between .90 and 1.1.

Since the speeds at which the wind turbine generators produce significant

power correspond to the intermediate and high speed range, and since the

best power ratio values are obtained from the matching-moments estimation

of the Weibull and beta distribution parameters, the conclusion drawn from

the x test that the matching-moments estimators yield distributions which

accurately fit the intermediate and high speed subintervals is substan-

tiated. Furthermore, because a wind turbine cannot use low speeds (wind

speeds below the cut-in speed), analytical models which accurately charac-

terize intermediate and high speed subintervals are most desirable.

Finally, the t test was performed again to investigate whether

there is a significant difference between the mean values of the

power ratios of the beta and Weibull distributions, whose parameters

were obtained by the matching-moments technique. In this case since

the means of two distributions are compared against each other, rather

than comparing one mean with a predetermined value, a slightly different

form of Eq. (2.6-2) is used, namely [19]
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(2.6-3)

where |

N
1
+ N

2

j + N
2

;

1

2 W
1

- 1 + s
2

2
(N

2
- 1)

(K
1

- 1) + (N
2

- 1)

K and N- are the sample sizes of each distribution to be compared,

and s and s are the standard deviations of each distribution. The

quantity s is called the pooled estimate of the population

standard deviation. The quantity s is then just the difference in

the standard deviations of the two means.

The results are shown in Table 2.6-6. The t values are all much

greater than the t value at a significance level of 0.001 and an infinite

number of degrees of freedom. Consequently, it can be stated that the

two distributions do yield significantly different power ratio values

and hence the two distributions are different. From Table 2.6-4, it can

be seen the beta distribution usually overestimates the available power

since the power ratios corresponding to this distribution are greater

than unity whereas the Weibull distribution using matching-moments esti-

mators underestimates the available power for all wind turbine sizes

considered.

In summary, analysis of 544 observed wind speed distributions by

the routine CURVEFIT shows that either the Weibull or beta distributions

obtained by the matching-moments technique gives an excellent fit to
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2
observed windspeed data. Although most x values for both distributions

are too large to accept either distribution as a good fit at even the

0.005 significance level, they are far better representations of the

data than the Keibull distributions obtained by using a least squares

2
estimation of the parameters. These unexpectedly large values of x

for the Weibull and beta distributions, whose parameters are estimated

by the matching-moments technique, results from discrepancies in the fit

in the very low speed subintervals. The remaining wind speed sub intervals

are very accurately fit. This conclusion is supported further by near

unity results for the power ratio test, which places large emphasis on

intermediate and high speeds. Hence, for the speed subintervals of

interest, the Weibuli or beta distribution derived from the matching-

moments method are generally very representative of the wind speed

data.



60

3. WIND TURBINE GENERATOR OPTIMIZATION

3.1 Introduction

An optimum wind turbine generator system (WTGS) depends upon many

factors, such as its intended application, wind characteristics, economic

considerations, aesthetic aspects, system reliability, and practical con-

straints placed upon its design, location, building materials, etc.

Consequently, the term optimum can assume many meanings. An optimum

system may be one which is completely autonomous, i.e., capable of gener-

ating the demanded power without the need of any back-up system. Still

another interpretation may require that the amount of time the wind

machine is down for repairs is to be minimized. For this case the optimum

system would be one which makes use of the most reliable components in the

manufacture of the wind system.

In this time of increasing energy awareness, wind power is being

looked upon to generate electricity on both a central station and a local,

decentralized level. As noted in Chapter 1, some technical and economical

problems still plague the large, central station units. Small wind turbines,

on the other hand, have produced power successfully for many years. In

contrast to both fossil and nuclear fuels, wind power is both a relatively

clean and renewable source of energy. However, for wind generated electricity

to make a significant impact as a decentralized power source, it must be

shown to be capable of producing energy competitively with more convent-

ional sources of power. For decentralized production, economic optimiz-

ation becomes a key factor. Like all economic decisions, the desirability

of one alternative over another is based upon the alternative that saves
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the user the most money. For a WTGS to be economically viable it must be

demonstrated that it can save the user money, otherwise it is wiser

economically to continue to purchase all of the demanded power from the

utility. To compute the economic savings afforded by use of a certain

size WTGS in a particular application, the power output from the wind

system (given wind speed data at the location where the WTGS will be

used) must be matched with the load demands of the application to see how

much of the load the wind system can supply. The remainder of the demand

load must be provided by a back-up system or purchased from an energy

utility. In addition, the capital cost of the WTGS and its amortization

becomes an economic factor to be considered in such an analysis.

Most previous economic studies on the use of a WTGS to generate

power have simply examined the total amount of energy generated with the

assumption that the generated power can always be used. However, for

decentralized applications the demand power requirements will have to be

matched to the power production of the WTGS both of which will vary

throughout the day and from season to season. Very little work has been

done to date on examining the economics of matching a dedicated WTGS to

a given demand load. Developmental Planning and Research Associates (DPRA)

of Manhattan, Kansas, has recently performed pioneering work in this area

[12]. Their study entailed the development of a methodology to determine

the national impact that economically optimum sized WTGSs could have in

various agricultural applications. However, this investigation did not

examine the sensitivity of their economic optimization procedure to changes
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in the model parameters, e.g., mean wind speed, variations of wind speeds

about this mean, and variations in load demand. Consequently, in the

second phase of this work, the methodology for economic optimization of a

WTGS given wind and load distribution is examined and the results of

sensitivity studies on the optimization model are reported. In addition,

this methodology is used for a realistic example to determine the WTGS

size needed in order to realize maximum savings over the purchase of all

of the required power. Also, the effect of detailed wind speed and load

information on the optimum WTGS size is illustrated by this realistic

example.

Two major assumptions have been made about the application of a

WTGS to a dedicated load in this study. First, the WTGS was assumed to

generate AC electric power compatable with that supplied by the utility

grid. Furthermore, the WTGS was connected to the electric grid in such

a manner that the demanded electric power which cannot be supplied by

the WTGS was purchased from the electric utility. This implies the use

of an interfacing system between the WTGS and the power grid so that a

blending of wind generated and utility power can occur. This system

will keep the WTGS in synchronization with the utility grid as well as

monitor whether power is to be taken from the grid or dumped onto the

grid depending upon the demanded load and the output of the WTGS. Con-

sequently, power supplied from the WTGS will be indistinguishable to

the user from power supplied by the utility grid. Second, there was

no energy storage capability associated with the WTGS. Hence, whenever
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the wind was of sufficient strength to generate power above that

demanded by the load, the excess was either wasted or sold to the

utility or another customer.

3.2 Optimization Methodology

The methodology used in the present optimization study involves the

development of a series of procedures or modules. First, the power

output of a given sized WTGS for a particular distribution of wind

speeds must be matched with the given demand load. Because demand

loads and wind speeds typically vary throughout a day and throughout

days in a year, load demand and wind speed profiles must be given both

for various times throughout a day and for many typical days (or seasons)

throughout a year. This detail in the wind and load data is necessary to

compute accurate values for the WTGS performance values, e.g., the generated,

purchased, and excess power. Second, once these WTGS performance values

are calculated, the savings in purchased energy costs plus the profit

from selling excess power (if any) must be compared with the costs assoc-

iated with the installation of a WTGS, i.e., capital and maintenance costs,

to find if the given WTGS size yields a net savings. Third, other WTGS

sizes, i.e., WTGSs with different rated powers and speeds, must be evaluated

in order to find the WTGS size which affords the maximum economic savings.

If too small a WTGS is chosen the energy production will be insignificant

compared to the cost of the WTGS. Similarly, if too large a system is

chosen, the WTGS costs will overshadow any energy savings. Consequently,

a key element of the methodology is a search technique to optimize the

savings achieved by installation of a WTGS.
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Because of the inherent structure of the methodology and the large

number of different sizes of VTGSs which will have to be tried, this

study lends itself to a computer algorithm. A flow diagram for such a

computer algorithm is shown in Fig. 3.2-1. The algorithm consists of

combining the results of several modules, each module models some aspect

of necessary information needed for the computation of the size parameters

for the optimal WTGS.

For the computer algorithm to give accurate estimates of the WTGS

needed to supply a particular load with electrical power, the input data

must be sufficiently detailed. This includes specifying the wind speeds

and load demand requirements for several time intervals throughout each

day and for typical days throughout a year. The "typical" days used

throughout a year will be termed seasons. Within a given season, wind

speeds will fluctuate from day to day for a particular daily time interval,

and representation of the wind speed for this interval by a constant

value for every day in the season is not at all realistic. The wind

speed in any daily time interval must be characterized by a wind speed

distribution. Such wind speed distribution information is available for

many locations throughout the United States '[11,12]. Although load de-

mands will also fluctuate within a time interval, detailed information

about these fluctuations is generally unavailable. Consequently, the load

demand was assumed constant for every time interval. This assumption of

constant load demands within a time interval is not altogether inaccurate

because for residences with an established living pattern or an enterprise

with well-defined energy applications, the load will vary only slightly
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Daily power load Wind profile and
curves for each wind speed
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for each season

1

Initial guess Calculate: Wind
for WTGS rated speed distribu-
speed and power tion function for

each daily time
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' \

Calculate: (i) annual required electrical utility energy
purchased,

Cii) annual useful WTGS energy generated,

(iii) annual excess WTGS energy generated

.
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' 1

1 r_
Calculate: Calculate: Annual net savings
Annual WTGS
system cost

realized by a WTGS

Change WTGS
rated speed

No ^y^ is ^-s.^ ^iet savings a^>
and power ^*s»<^a x imu^f^^

Yes'

1
f

Output: Maximum savings; optimum
WTGS size; generated, purchased,
and sold electricity

Fig. 3.2-1. Block diagram of optimization methodology.
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from day to day in a season for any daily time period. Finally, the

purchase and selling price (if any) of electricity must be established.

With the optimisation methodology and the type of input data

specified, models for each of the program modules must be constructed.

In the following sections, the models for each program module used in

this investigation are described in detail.

3.2.1 Wind Models and Data Requirements

The most fundamental wind data needed for this optimization study

are the wind speed distributions expected for a given daily time interval

and for a given season. If detailed wind speed data are available, they

can be used directly as a discrete form of the probability density

function or modeled by an analytical distribution. Because the analytical

wind speed distribution is conceptually more appealing, since in reality

the wind behaves in a smoothly varying manner, and is mathematically

easier to handle, the Weibull and beta distribution functions were

examined in Chapter 2. From this study it was found that if the two

parameters of either of these analytical representations are estimated

by a matching-moments technique, accurate characterizations of actual

wind speed distributions can be obtained. The use of analytical distri-

butions to represent the wind data greatly reduces the amount of data

required for each daily time interval and for each season since only the

two parameters of the distributions need be specified.

Since many wind speed distributions are needed to characterize the

variability of the wind, the following terminology convention is adopted
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for the remainder of this report. The term f (v) denotes the wind

speed distribution, either discrete or continuous, in the i-th daily

time interval of the j-th season. The number of time intervals and

seasons chosen is arbitrary and depends upon the variability of the

wind throughout the day and the year at the site chosen for the WTGS,

i.e., one should use many intervals if the wind distribution changes

rapidly throughout the day or throughout the year.

Often, detailed wind speed data, usually in the form of magnetic

computer tapes, are available only for a limited number of locations.

However, the required wind speed distribution functions can be

synthesized in an approximate manner from less detailed meteorological

data than are readily available. For such a synthesis, two pieces of

wind data are required for each location, namely (i) the wind speed

frequency distribution averaged over each month or season, and (ii) an

average wind speed distribution as a function of time of day for each

month or season. The overall distribution of frequency of wind speeds

at any time of day is determined primarily by the local weather patterns

of fronts and other slowly varying meteorological phenomena. Thus, the

relatively short-time diurnal variation, which are caused primarily by

solar heating effects, can be expected to affect the average speed at

any time of day but not the overall shape of the wind frequency distri-

bution for any daily time interval. Hence, an approximate method which

can be used to generate the required distribution f -1
(v) is to assume

its overall shape (i.e., variance) is the same as the distribution of
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wind speeds in the j-th season but with the mean shifted so that the

mean speed corresponds to the mean speed observed in the i-th time

interval of the j-th season. Consequently, only two parameters are

needed to compute the necessary wind speed distributions: (i) the mean

speed in the i-th time interval of the j-th season, and (ii) the seasonal

variance of wind speeds about the seasonal mean wind speed. Hence,

with the mean speed and variance determined for each daily time interval,

the matching-moments technique can be used to obtain the parameters of

an analytical distribution for each daily time interval. This synthesis

technique, while quite straightforward, is only approximate and should

not be used if wind speed distribution data are available for each daily

time interval for each season.

3.2.2 WTGS Response Model

The response function for the WTGS used in this optimization study

is an idealized one which was discussed in Chapter 2, namely

, v < v ,

R(v) =

P (~) 3

r v

(2.5-8)

"furl"

As noted earlier, v_ - is set equal to v , which is the maximum
furl max

speed included in the wind speed distribution with storm conditions

excluded. Also, cut-in speed, v is set equal to 0.46416 v . This
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assumes that the WTGS is idle when the output power is less than 10%

of the rated power for the WTGS.

The response function, R(v), gives the net electrical power output

of the WTGS exposed to a steady wind speed v. Hence, all efficiency and

performance factors of the WTGS are taken into account by this function and

no explicit description is needed for the generic type of wind turbine

or electrical conversion system used, e.g., blade diameter, number of

blades, aerodynamic efficiency, drive train efficiency, and inverter

efficiency. To describe completely the response of the WTGS, only a

pair of parameters, P and v , are needed to describe the entire

system response.

No allowance is made for the separate effects of wind gusts on

the WTGS. In effect it is assumed that the wind speed distributions,

f (v), have been determined from measurements made with instruments

which have the same dynamic response time constants as the idealized

WTGS.

In most realistic systems, there is also a furling speed above

which the WTGS is feathered or shutdown to prevent damage from high

winds. However, for most wind speed distribution data, abnormally high

wind conditions are suppressed. By suppression of such storm level

winds from wind speed data, the existence of a furling speed has

effectively been incorporated by setting f (v) to zero for v greater than

v . Hence, v becomes the furling speed of the model WTGS response
max max or r

function.
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The assumed response function used in this study resembles the

basic features of many response functions of actual wind systems.

However, the methodology developed in this study is sufficiently

general that the response function for any particular WTGS could be

readily substituted.

3.2.3 Matching Load to Available Power

Once the wind speed model and WTGS response model are specified,

the output power that a particular size WTGS can generate from the

given wind speed conditions can be matched with the demand load. The

three power calculations needed in the optimization analysis, are

the annual required electric utility energy purchased, the annual useful

WTGS energy generated, and the annual excess WTGS energy generated. In

the following subsections the formulas used to calculate each of the

above power calculations are derived.

(a) Purchased Electrical Energy

If the WTGS is too small or the wind not of sufficient strength

to handle the load power requirements, electrical power must be purchased

from the utility to supplement the power generated by the WTGS. Hence,

the amount of power that must be purchased over the i-th daily time

interval in the j-th season is

P^ " [P^ 3 - R(v)] H[P* 3 - R(v)], (3.2-1)

where
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1, x>0,

0, x<0.

P -1 is the electrical power demand for the i-th daily time interval
d

in the j-th season, and R(v) is the WTGS electrical power output when

the wind speed is v. The unit step function, H[x], is needed to describe

the case when the power demand is less than the WTGS power generated,

i.e., when no purchased power is needed.

Because the output response of the WTGS depends upon the wind

frequency distribution, the power that must be purchased from the utility

is averaged with the wind frequency distribution to compute the average

or expected purchased power for the i-th daily time interval in the j-th

season. This purchased power is given by

vl3 = P [Py1 - R(v)] f
1J (v) H[P^ - R(v)]dv.

b d d
(3.2-2)

Since high wind speeds are suppressed, the highest wind speed observed

at a location, v , can replace the upper limit in the above equation,
max

Also, since R(v) is equal to zero when v is less than v , Eq. (3.2-2)

becomes

vx J =

I
max ij

f
iJ (v)dv . |

max
f
iJ (v)dv , P < M

d
v

r ~ °

/ P* j
f
lj

(v)dv - / R(v)f
lj

(v)dv, P > P^

(3.2-3a)

(3.2-3b)

where

6 =

mill (v,,v ), v <v,,
d max c — d
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z = min (v v )

,

d max

P is the rated power of the WTGS, and v, (which is less than v ) is
r u r

the speed at which the WTGS first produces the demanded power. The

first term on the right hand side in Eq. (3.2-3a) can be simplified by

noting

i max ij . .

J
f (v)dv

= 1 for beta distributions and actual

wind histograms,
* 1 for Weibull distributions.

(3.2-4)

Therefore,

r max _ij ..ij , . ,

J
F ,

J
f

J (v)dv
ij

j
max

f
ij

(v)dv . p
ij.

(3.2-5)

The upper limits on the integrals of Eq. (3.2-3b) are different

than those of Eq. (3.2-3a) because when P is greater than P , there

exists a demand speed, v , such that P(v.) is equal to fA The

speed v is calculated by solving Eq. (2.5-8) for v , with P(v.) equal

to p: namely
?1
P
r

1/3

(3.2-6)

Two sets of limits are needed in the first integral of Eq. (3.2-3b)

to account for the two possible relationships between v and v . When
c d

v is greater than v., the wind speed is sufficiently high (according
c d

to Eq. (3.2-6)) to cause the WTGS to produce power but is still
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below the cut-in speed and the WTGS remains idle. Thus power must

be purchased until v is greater than v . When v is less than orv
c c

equal to v., power is only purchased until the wind speed reaches

v. and the WTGS produces enough power to satisfy the demand load,
d

For wind speeds greater than v , the WTGS generates excess power and

hence no power needs to be purchased. If in any of the above integrals

the lower limit is greater than the upper limit, the entire Integral

is set to zero.

Finally, subsitutlon of the explicit form for P(v), Eq. (2.5-8),

into Eqs. (3. 2- 3a) and (3.2-3b) yields

?'

M -P / (^-)
3

f
lj

(v)dv- P f""fiJ Wdv,r < P^ (3.2-7.)
r ; v t ' r — d

/ P*j
f
±j

(v)dv - F / (^-)
3

f (v)dv, P
r

> P* j

v r

(3.2-7b)

Y = min (v , v ) .

r max

The average power output of the WTGS, defined by

pU =
/

max _, . ,ij , .. ,

R(v) f (v)dv, (3.2-8)

cannot always be used to estimate the expected power purchased which

intuitively one might expect to be simply the difference between the

demand and average WTGS output power, i.e., P -1 = P -1 P
i;i

. Such a
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procedure may produce an erroneous result for the amount of purchased

power. Substitution of Eq. (3.2-8) for the second integral in Eq. (3.2-3a)

yields

pf j = P* j - P
ij

, P < P^ j (3.2-9)
b d r — d

which is the intuitive result. However, if Eq. (3.2-8) is used in

Eq. (3.2-3b), the result is

?t
3 P^ J - P 1J + f [P(v) - P^ J

] f
1J (v)dv, (3.2-10)

r a

where

t = max(v . ,v )

.

d max

Thus, for the case v greater than v.,* r to d

pij
>

pij
.

p-ij
# (3.2-11)

b d

Hence, the purchased power would be underestimated when only the

average power output of the WTGS and the demanded power are used.

Finally, because utility costs are based on energy consumption, the

energy used in every time interval is found by multiplying the expected

power purchased in that interval by the duration of the time interval,

At . . Then this quantity is summed over all time intervals in the typical
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day of a season. The total annual purchased energy is found by multiplying

the daily consumption by the number of days in a season, d., and summing

over all seasons. Hence, the expected total annual purchased energy,

E, , is given by

s t _. .

E =
I

d I
?}J At (3.2-12)

b j-1 J i=l
b X

where s is the number of seasons in a year and t is the number of daily

intervals.

Cb) Generated Electrical Energy

The annual amount of electrical energy generated by the WTGS and used

by the load,E , can be computed from the result of the previous section as

the difference between the total demand and total purchased electrical

energy, i.e.,

t

E_ - I dj I P^3 At, - E,.. (3.2-13)

j*

=
I d

j
I P

d
J At

i - V
1=1 J 1=1

(a) Surplus Electrical Energy

Whenever the WTGS produces more power than is demanded, the excess

must be stored, sold, or wasted. Storage has not been considered in

this study. For the i-th daily time interval in the j-th season the

amount of surplus power is

Fgj = [R(v) - P*j ] H[R(v) - P^j
]. (3.2-14)
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Again, the unit step function is needed so when R(v) is less than P, ,

no surplus power is generated.

Averaging this quantity with the wind speed probability density

function for the i-th daily time interval in the j-th season gives the

expected surplus power (upon substitution for R(v))

P / (—

)

3
f
lj

(v)dv + P /
VmaX

f
ij

(v)dv - pM
/
Vmax

f
ij

(v) dv, P > P*j

r v r a r a
n r v n

?o =

C3.2-15a)

, P < P^ (3.2-15b)
r — a

where n = max(v.,v ),
a c

and G = min (v ,v )

.

r max

The lower limit, max(v ,v ), of two integrals in Eq. (3.2-15a) is

required since there can be no surplus power generated until v has

been reached.

As was true in the calculation of the amount of purchased electricity,

the use of only an average power output from the WTGS and the demand power

can give misleading results for the average surplus power. This derivation

is as follows
. . v

p
ij m j

max
f
iJ

(v)[R(v) _ p^]dv (3.2-16a)

= /
maX

f
ij

(v)[R(v) - P^jdv - / f
±j

(v) [R(v) - P^j ]dv

(3.2-16b)

_. . . . n jj
= P 1J - P* J + / f

1J (v)[P^J - R(v)]dv (3.2-16c)
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> P1J - P* J
. (3.2-16d)

Hence, the amount of surplus power which is calculated by taking the

difference between the average WTGS output and the demand power will

always be underestimated.

The annual amount of excess WTGS energy, E , is given by

s t _. .

E = "
d . T P

13
At.. (3.2-17)

j*l J i=l

3.2.4 Evaluation of Integrals for P?"
3 and P

13

_ b s_

When a beta or Weibull probability density function is substituted

in Eqs. (3.2-7a), (3.2-7b), and (3.2-15a) the integrals cannot be evaluated

analytically; a numerical technique must be used. The method chosen

in this study is Gauss-Legendre quadrature. The quadrature formula

for a range (a,b) may be written as [20]

b r _ -, L [-z. (b - a) + b + a \

j g(x)dx . p-^-i y I jM -
2 j

, (3.2-18)

a ^ ' i=l *

where L is the number of quadrature points used, w. is the weighting

factor at point i, and z. is i-th quadrature ordinate. Extensive

tables of z. and w. have been compiled [21].

Because the beta distribution was used in most of the sensitivity

studies of this chapter to characterize the necessary wind speed

distributions, the following scheme was used to determine a quadrature

order that would minimize computational effort yet maintain accuracy
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of integral evaluation. If g(x) is a polynomial function, then

Gauss-Legendre quadrature will evaluate a polynomial of the order 2L + 1

or less exactly. Since the beta distribution is a polynomial function

of order a + B - 2, if o and B are integer parameter values greater than

V
2 i'

unity, integrals of the form / f
J (v)dv can be evaluated exactly by a

v
l

v
i 3 i'

quadrature order of !<(a + 6 - 3) and integrals of the form / (—-) f
3 (v)dv

V
l

r

can be evaluated by a quadrature order of ^ (a + B) . However,

for most wind speed distributions, the parameters of the beta distribution,

a and B, are non- integer values, but by choosing the quadrature order

to be the nearest integer greater than h (a + B) , it can be expected that

the numerical evaluation of the integrals would still give accurate,

although not exact, results. However, for most beta distributions, a

quadrature order of six was found to be adequate to cover most values of

a and B encountered in the fitted wind distribution; but, before using

any quadrature order, the range of expected a and B values should be

computed and if large values are indicated, a higher quadrature order

should be used for those cases so accurate results can be obtained.

If the discrete form of the probability density function is used in

Eqs. (3.2-7a), (3.2-7b), or (3.2-15a), the integrals can be evaluated

exactly since the discrete distribution is a constant over each speed

subinterval. Consequently, these equations must be divided into n

speed subintervals and integrated between the endpoints since the discrete

distribution assumes a different but constant value in every speed sub-

interval. The integrations over every speed subinterval are summed to
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vield the integration over the entire speed range. This summation

can be written as follows

I fj j
/
k+1

Q(v)dv, (3.2-19)

tc-1
k

v,
k

where n is the number of speed intervals, f
-1 (v) is the value at the

k-th speed subinterval of the probability density function for the i-th

time interval in the j-th season, and Q(v) is either the WTGS response

function, R(v), corresponding to the speed subinterval to be integrated

or the demand power, t , for the i-th time interval in the j-th season.

It should be noted that Q(v) is a polynomial (or constant) that can be

integrated analytically.

Therefore, both analytical and discrete probability density functions

can be used to evaluate the integrals that give the purchased and surplus

electricity. This use of both types of distributions gives flexibility

to the optimization program in that the effect of the distribution type

on the optimum WTGS can be determined.

3.2.5 WTGS Cost Model

Because WTGS electrical components and other major system

components have not been produced in significant quantitites, the costs

of various sized wind turbines are difficult to determine. The costs

vary with the size and type of rotor, gear mechanism, inverter, and

tower as well as the type of feathering device used to prevent damage

to the WTGS at high wind speeds. Furthermore, control units which auto-

matically blend WTGS output power with utility power to meet the demand load
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have not been commercially developed. A compilation of costs of WTGSs

already in production has been made by DPRA [12] using data reported by

both Obermeier [10] and Rosen, et. al. [22]. The reported values are

for WTGSs with a rated speed of 25 mph and are shown in Fig. 3.2-2 in

the form of cost per kilowatt ($/kW) as a function of rated power (in

kW) . As can be seen from Fig. 3.2-2, the data from Rosen, et. al.

,

yields slightly lower capital costs than the data from Obermeier.

To interpolate between data points to obtain costs for various

other sizes of WTGSs, a quadratic polynomial has been fit to the more

optimistic values provided by Rosen, et al. The equation for this cost

model is [12]

lnfel) " 7.73971 - 0.46578[ln(P )] + 0.02573[ln(P )

2
], (3.2-20)

KW r r

F > 1 kW. v , = 25 mph.
r — ref

where v . is the reference rated speed for all WTGSs used to obtain
ref

this result. For a WTGS rated below 1 kW, the slope of Eq. (3.2-20) at

P equal to 1 kW is used to give the simple linear cost model

4= 2297.8 (P
)-°- 46578

;
P < i kW

,
(3.2-21)

kW r r

v ^ = 25 mph.
ref

Because these cost models assume a constant rated speed (25 mph)

and because the optimization methodology varies the rated speed in

order to find the optimum combination of rated power and rated speed,

a conversion factor is needed so that the values obtained from the

above cost models can be applied to other rated speeds. Eldridge [1]
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reports that capital costs of a WTGS decrease as the rated speed in-

creases since, for a given output capacity of a WTGS, the size and

weight of the blades, rotor, gear train, and other system components

will generally decrease when the WTGS is designed for higher rated

speeds. This is due to the fact that power derived from the wind

varies linearly with the area swept by the rotor but varies with the

cube of the wind speed. Hence, for a given rated power, area decreases

considerably if rated speed increases. Using data from references 10

and 22, DPRA has derived an expression correcting costs (S/kW) for

different rated speeds. For a WTGS with a rated speed different from

that used to derive Eqs . (3.2-20) and (3.2-21), the cost can be corrected

for this change in rated speed by multiplying the capital cost ($/kW)

by (Wv
re£

)" 2
.

Other costs associated with the WTGS are those of operation and

maintenance. Obermeier [10] reports that annual operation and mainten-

ance costs are a fixed percentage of the capital cost of the WTGS and

depend on the type of use as well as the durability of system components.

Maintenance costs of one percent for factory produced wind generators,

three percent for partly owner assembled systems, and five percent for

home built systems are typical. In this study, a three percent annual

maintenance cost was assumed.

Although the cost model described above and used in this study is

based on rather uncertain data and many different types of WTGS, the

model is felt to approximate expected costs of WTGS given a sufficiently
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large degree of production. However, the optimization procedure is

written such that any other cost model could be readily substituted for

the one used in this study.

3.2.6 Calculation of Annual Net Savings

The net financial savings, or burden if money stands to be lost,

realized by the installation of a WTGS is determined by adding together the

money saved on purchased electrical energy costs and made by selling

surplus electricity (if any) , and subtracting from this value the costs

associated with a WTGS. The following equation expresses this relation-

ship

A = (E )(C, ) + (E )(CJ - AC,,T„ - AOM, (3.2-22)
g b S s U'TGS

where A is the annual net savings, E is the electrical energy (kWh)

generated in a year by the WTGS and which is used, E is the surplus

electrical energy generated in a year by the WTGS which is wasted or

sold to another user (e.g., utility or other enterprise), C is the cost

($/kWh) of purchasing electrical energy from the utility, C is the price

for which surplus WTGS electricity can be sold (if wasted, C equals

zero), ACTTrT^,„ is the effective annual cost ($) of the WTGS, and AOM
WTGS

is the effective annual cost for operating the WTGS.

In the previous section, capital cost models were given in order

to compute the cost of installing a particular size WTGS. Because the

WTGS represents such a large investment, the capital cost is amortized

over a period of m years, at a yearly interest rate i . The fraction
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of the initial investment required each year for the amortization is

called the capital recovery factor {CBS) and is given by [23]

i (1 + i )

m

CRF = — — . (3.2-23)

(1 + i
r

)

m
- 1

The capital cost, C , of the WTGS is multiplied by the CRF to obtain

the annual net cost, A, i.e.

A = (C )(CRF). (3.2-24)
c

In this study, the interest rate was assumed to be 10% per year

with a 20 year WTGS life expectancy. No salvage value was assumed for

the WTGS at the end of the life expectancy. The annual operation and

maintenance costs for the WTGS are assumed to be three percent of the

capital cost of the WTGS.

3.2.7 Optimization Technique

Because the purpose of this optimization study was to maximize

the annual net savings described by Eq. (3.2-22), a technique to find

the maximum of this objective function was needed. The net annual

savings depends upon the size of the WTGS through its rated power and

rated speed, and hence the problem becomes a two-parameter optimization

problem. An algorithmic technique such as the method of steepest descent

could be used to find the maximum of the objective function, A(P ,v ).j ' r' r

However , because this method requires evaluation of the first derivatives

of the objective function, its use was precluded in the present study
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because of the complexities in calculating the derivatives of the

generated, purchased, and surplus powers. Hence, a search technique is

more appropriate since such a method is merely an organized procedure

that chooses points so that the contours of the two-dimensional space

are scanned in order to find the point that yields the maximum value

of the objective function. The technique chosen for this study is the

sequential simplex pattern search method [24,25,26]. The computer sub-

routine used to calculate the maximum by the simplex technique was adapted

from a program written by Lai [27].

3.3 Sensitivity of the Optimally Sized WTGS to Problem Parameters

The computer code BLOHARD was written to carry out the optimization

methodology described in the previous sections of this chapter. This

routine is based on a similar code developed by DPRA in their study of

wind applications in agriculture [12]. A listing, explanation, and

sample output of routine BLOHARD are contained in Appendix C. The program

BLOHARD was used to investigate the sensitivity of the optimally sized

WTGS to various problem parameters such as diurnal variations in load,

load size, diurnal variations in wind speed, variance in wind speed

distributions, variations in mean wind speed, and credit given for surplus

electricity. Furthermore, the effects of seasonal changes in the wind

speed distributions and load demands are also examined.

3.3.1 Model Wind and Load Profiles

So that the sensitivity of the optimization procedure to the

problem parameters can be analyzed, idealized models for both the wind
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speed and the demand load must be developed. Crawford, et.al. [28]

report that due to solar effects, mean wind speeds are lowest just

after midnight, rise gradually after sunrise reaching a peak in the

middle afternoon, and then fall gradually after sunset back to the

low value. The wind speed data, which were analyzed in the previous

chapter, and were obtained from the National Climatic Center, Asheville,

North Carolina, for 17 locations throughout the United States, exhibit

such diurnal fluctuations. One simple model which exhibits such diurnal

variations is a sinusoidal variation about some mean daily or seasonal

speed of the form

v(t) v - a cos(-j7 - r)> (3.3-1)

where v(t) is the average or expected speed at time t (in hours beginning

at midnight), v is the mean daily speed, and "a" is the amplitude of the

variation about the mean speed. Eq. (3.3-1) reaches the minimum at 3 hours

and the maximum at 15 hours, which approximately correspond to the obser-

vations made by Crawford, et.al.

To generate analytical representations of such model wind speed

distributions, e.g., wind speed distributions for eight, three-hour

intervals in the day, the average value of Eq. (3.3-1) was calculated

for every daily interval of interest. This procedure yields an average

speed for every daily time interval. To obtain a distribution of speeds

about this mean value, for each daily time interval a dispersion or

variance of speeds about each interval's mean speed needs to be specified.
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For the model winds used in this study the variance was assumed to

vary linearly with the interval's mean speed,

s
2 = c v., (3-3-2)
l l

where s. is the wind speed variance for the i-th time interval of the

day, V is the average speed for the i-th daily time interval, and c is

the constant of proportionality between the mean speed and variance,

called the coefficient of variation.

Once the mean and variance of the wind speed for a particular daily

time period are calculated from Eqs. (3.3-1) and (3.3-2), a model wind

speed distribution for that time period can be obtained by using a beta

function representation whose parameters are chosen such that the required

mean and variance are realized. In Chapter 2 it was shown that such a

matching-moments technique was both analytically very simple as well as

vielding beta distributions which modeled actual wind speed data very

accurately. To obtain model wind speed profiles for use in the sensitivity

analyses, each day was divided into eight time intervals or periods each of

three hours duration. Diurnal fluctuations of 10% and 25% of the daily mean

wind speed were chosen (i.e., a equal to 0.1 v and 0.25 v, respectively in

Eq. (3.3-1)). Corotis [7] reports that diurnal variations of about 10% are

representative of the range of fluctuations encountered in a season with re-

latively constant winds and a value of about 25% is typical for a season

with rather gusty winds. The diurnal fluctuations as a function of daily

time interval for these two cases are listed in Table 3.3-1. So that the

effect of both a large and small variance in the average speed for every

daily time interval can be studied, coefficients of variation, c, equal to
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Table 3.3-1* Average Speed as a Function of Time Interval.
Mean Daily Wind Speed is 10 Knots for Both Cases.

Time Interval
(hrs)

Small wind
fluctuation

10% of mean speed
(knots)

Large wind
fluctuation

25% of mean speed
(knots)

- 3 9.10 7.75

3 - 6 9.10 7.75

6 - 9 9.63 9.07

9 - 12 10.

A

10.9

12 - 15 10.9 12.3

15 - 18 10.9 12.3

18 - 21 10.4 10.9

21 - 24 9.63 9.07
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1 and k (corresponding to relatively steady and gusty wind conditions,

respectively) were selected. Finally, a maximum wind speed of 50 knots

was used for the v term in the beta distribution. Normally, speeds
max

above 50 knots are considered storm speeds for which a WTGS would not be

operated.

Table 3.3-2 assigns a wind model number to the different permu-

tations of the two diurnal variations paired with the two coefficients

of variation to be studied. To study the effect of seasonal mean wind

speed on the optimum WTGS, one additional case was run. The seasonal

mean speed was doubled to 20 knots and combined with the large diurnal

variation and large coefficient of variation to form a model characteristic

of high speed, gusty wind conditions.

A second necessary component of the sensitivity studies is the

construction of model demand load profiles. DPRA [12] and Obermeier [10]

report that typically two load demand peaks are reached throughout the

day. In this study, the greatest load demands were assumed to occur between

the hours of 9 and 12 and again from hours 15 to 18. Load demands were

assumed to be constant throughout every three-hour period, i.e., there

is no distribution in the demand about the given load for a particular

time interval. Three cases were considered as being representative of

the various types of load demands that may occur throughout the day;

a flashy toad (one with variations in the mean daily load of 100%) , a

smooth load (one with variations in the mean daily load of 50%) , and a

constant load (no variation throughout the day). Table 3.3-3 lists the

daily variations in each model load as a function of time interval. The
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Table 3.3-2- Wind Model Numbers Assigned to the Various

Combinations of Diurnal Fluctuations and

Coefficients of Variation.

Wind Model Diurnal Coefficient

# Fluctuation of Variation

25% of seasonal
mean speed

25% of seasonal
mean speed

10% of seasonal
mean speed

10% of seasonal
mean speed

25% of seasonal
mean speed

(20 knots)
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Table 3.3-3, Model Load Variations as a Function of Time Interval

for Flashy, Smooth, and Constant Loads. (Ail Loads

are normalized to a daily average of unit demand (1 kW)).

Constant Load

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Time Interval Flashy Load Smooth Load

(hrs)

1-3 0.0 0.5

3 - 6 0.5 0.75

6 - 9 1.0 1.0

9-12 2.0 1.5

12 - 15 1.0 1.0

15 - 18 2.0 1.5

18 - 21 1.0 1.0

21 - 24 0.5 0.75
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load profiles in this table were normalized to an average demand of

one unit (1 kW) ; consequently, for a given mean load, the values in

the table are multiplied by the desired mean daily load demand. Mean

daily load demands of 5 kW and 35 kW were chosen as values representative

of a small residential load and a residential load combined with a farm

load (or possibly a combination of several residential loads), respectively.

3.3.2 Results of the Model Case Studies

The model wind distributions and model demand load profiles

discussed in the previous section, were used to determine the sensitivity

of the economically optimum WIGS to various types of winds and loads. In

particular, 14 combinations of the model wind speed distributions with

model loads were used. These combinations or cases are defined in

Table 3.3-4. In Cases 1 through 12 the model wind profile and load curve

were assumed to hold for the entire year, i.e., only a single season was

considered. For Case 13 two seasons were used for the year while Case 14

used four seasons with actual wind speed distributions and load profiles

characteristic of a Kansas farming operation. Although the single

season cases are unrealistic, they will tend to accentuate any peculiar

features affecting the selection of the optimum WTGS. Consequently,

these single season cases are useful in identifying general trends

in optimum WTGS size without specifying large amounts of wind speed or

load demand data. However, the interaction of seasonal variations in

input wind speed and load data is important when examining the compet-

itiveness of wind energy with conventional energy sources; hence, more
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Table 3.3-4. Case Numbers Assigned to Various Combinations of Wind

and Load Models. (S urpl*as electrical energy is assumed

to have no value unless otherwise noted)

.

Case Number Wind Model Type of Load

(see Table 3.3-2) (see Table 3.3-3)

1 1 Constant - 5 kW average

2 1 Smooth - 5 kW average

3 1 Flashy - 5 kW average

4 5 Smooth - 5 kW average

5 1 Smooth - 5 kW average
Credit for surplus (s 2c/kWh

6 4 Flashy - 35 kW average

7 1 Flashy - 35 kW average

8 3 Flashy - 35 kW average

9 1 Smooth - 35 kW average

10 1 Smooth - 5 kW average
Credit for surplus @ 2o/kWh

11 2 Flashy - 35 kW average

12 5 Smooth - 35 kW average
Two season problem:

13 3 (season #1) Smooth - 10 kW average

1 (season #2) Smooth - 20 kW average

14 Actual seasonal Four Season Problem:

wind data for Loads typical of winter

Wichita, KS wheat/sorghum farm
operation
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detailed information is needed. Cases 13 and 14 investigate this inter-

action of seasonal variations and their effect upon the optimum WTGS size.

A summary of results for these 14 cases is presented in Tables

3.3-5 through 3.3-7 for various assumed costs of utility supplied

electricity. The results in these tables will be referred to throughout

the remainder of this section and are presented here for convenience.

The optimum WTGS size, i.e., rated power and rated speed, is listed along

with the amount of electricity generated and used, the amount of electricity

which had to be purchased from the utility, and the amount of surplus

electricity which is wasted or sold to other users. The column headed

"% self-sufficiency" gives the percentage of the entire energy demand

that is generated by the WTGS. Finally, the annual net savings of the

optimum WTGS is listed. In the following subsections the results of

these case studies are discussed.

(a) Effect of Load Variations on Optimum WTGS

Cases 1,2,3,7 and 9 best illustrate the effect of the three different

model load profiles upon the optimum WTGS. Figs. 3.3-1 and 3.3-3 show

that the optimum rated power is the same as the maximum load demand if

the cost of utility power is sufficiently high. However, the rated speed

increases while approaching the breakeven value, i.e., the point at

which costs of installing a WTGS equal the fuel costs saved, but as

purchased electrical costs decrease further the rated power may begin to

decrease rapidly. This behavior is expected because as the rated speed is

increased, initial or capital costs decrease by approximately the square of



95

U
cu

Z to

oc
«H CJ <- r-. c PI <T o
CO -H « m CO p* <r CO

3 !>
^

'

& sO LP, LTl r^

C CO <T)

3 CO
<

-o
CO ^
iJ

i £
QJ u_i QJ

OS .H -H O O^ es CO

to a) o
H CD *H in CO l£l \D O
QJ LM m rn f) r^. <r

> e-s «w
< 3

CO
3
^ PI <r

rn o O ©
tn CO

3 >^--N
C H H rH

h odj:
a u S

o
X

X X X

Uh M cu ^ o m o
3 c ^ in o CN o

Cfl CO H
a ' n p*. rH

•H Xi
4J 3
to ^ TJ <r <j -3" <r

0) O o o C ©
J-i Li CO >./-% *-i rn
GJ r-t tO OC ,T
J-i • X X X X X
O O CJ ^
co </> M 3 ^ CN vD LY~1 o>
M 3 W 00 r*> p* o LTl

CO 11 Ch
CN CN est CN

CJ >»
4->

4J -H •3

3 U OJ

CL -H 4-1

*-> M CO <r <r <r -d-

3 *J M "3 o c c © O
O QJ CD ^

01

13 rH
P CD r3
0) P 3 X X X X X

C W O J*
to 13 *-" *£i r- CN rn o>

U-l ^ 3 LTl vD ^3 en r^
0) c 00 CO

N M m
QJ

co co 3
o @

CO CJ
o
H I

3 M
w C fN

E 0) U CO -J- &\ o> m
3 H CO W
e a M W O LA v£ 00 00 GO
H E QJ > 3 H —

1

+J to 3 M
a. x 0) w
o w

E
3

LTl S ^
1 H H CS O LTl o m en
en J-J &4 ^

Cu ,—

'

m r-~ o r-
m © *-* rH

cu l-i

0) QJ

U3 CO ,3 CN C~! <r m
CO co E
H O 3

2



96

jj

QJ

Z C/J

go
i—1 c *-^

Oo ,_j o m «H r^ rH ^ C in CO

3 > —

'

C CO

c w

cc CN CN m cn cn o>

r— CT» o o CN CO CT^ m in m O CTi

cn CN LP, CN r^- l£S ** m m «e p** o\

<

"3

ffl

_3

QJ

Ofi

<+4 3
iH QJ O vD rH Pi r-i CO c o> o l£» CO in ^r> r^

cO

1-1

QJ

qj -h
tfi Cj U") vD m ,_, c ~3- m cr. <r CO r^ o> <r CTi

cn
1-1 cN CN CN pi m ^D <r m -V <r o pi f"'

> b-j; y-i

< I4H

3
3 Ul

^
inm r-i m <r m m <3- ^ <f m <r <T <T <r

to o O O o o O O o o o O O o
T3 3 >>^1 H H r-i rH i—

1

rH H H H 1—1 i—

1

rH

C
ffl

O
X X X X X X X X X X X X X

m |H GJ M
3 p w
CO W

o
43 tO CO o m CN m o IT) -cr CN vC ©
pi <r o cn o -<r o m tn <r C~\ m 1-1

r-l m H tn r-i vn r-. en rH CO Oi rH CN

U-i

cc •

u tS
•H 3
4J ^
to -i.

QJ

-c <T <r .- <r m m in m in <r <r -c- -T

© O o o o o O o O o © O O
CO p* -*i rH i-i r-i i—i —

!

-—I •—

i

H t~| f—i ,—
I

rH -H

i-4 m CO QO X3
X X X X X X X X X X X X X X

QJ rH a QJ -ii

M 3 w CTv H o m \D CO m <r c CO CC CO CTi CN

a o 3 W CN CN m CN o O r- CO '-- m CO CN m <r

ccj </>• Oh
rr> en ro H cn H rH rH rH rH CTi US CO O^

« ii

CJ >.
4-1

4J «H
3 O CJ

a -h 4J

O
CO

V4 13 <r <T ^-j. <T <T m m in in in m m <r -d-

QJ QJ ^—

^

o O c O O o o o O O c o O c
3 £
QJ P 3
CJ ^

i—i H i—( rH H rH rH i—i rH rH rH 1—1 T—i

c w X X X X X X X X X X X X X X
CO

tfcl cr. ^ CO cn CN o> CN CN pi o^ cc <- m H
QJ 00 CO c H O H cn OS m CN cn -d- o <r m CN

N
•H 4J QJ _| H r-i cn rH H rH rH rH H CN CN <r \0

Cfl CO 3
£j

LO O
u
E-i

1

3 M
tn /-v

CPi

COE oj

3 rH
4-1 CO

CO 4J o Ch o CO m c m \D o CO rH m rH

g & S-i w o
QJ > 3 Cn o n o o m vO VJ? in \C m r^ r^. vO

JJ CO c ^ H CN CN CN CN rH i—

1

rH i—1
.

rH rH rH rH rH

a X 01 w
o w t3

£
3 <~« o 00 H \D ^c o O C m © m rH \0

vC E u 3 o <t ON in CO
iH Ph ^ O o O •a- o CN m m

m 4-1 "W in ^ CTn r~- CO r- h" r-^ in O r^ m CN CN

ro o
QJ

H
j3

H
M

Q) Q|

CO JJ CN m •o- m o p- CO 0> o r-l CN cn <r
cc E 1—

1

rH rH H H
CJ 3
2



97

4_)

<u en

s oc
c ^ LH <r m r- r-- •cr

—
1 >H « iTi CN cc CN cn

re > —

*

<r m CO CN ^3
3 CC I -d- o> O
c to C^
c 1

<

s*>

,
u

1 c
u-i qj

rH -H SO H m O ^c <r c
0) U
en -h m vO a> SO Ln m m

Ifcl en CN i-i cn en <T r- CN
e*s u-i

3
GQ

T3
re

o
-J <r * <r -3- <r <T <r m

CO o O o O O o o o
QJ 3 >,^-s H H
OC H o£jr
TO a. u 3 X X X X X X X X
M k 11^
QJ

- c w ON © o r-^ <f
> W W CTv PH r-. CN cc CC CO
< H CN •tf CN

3^
QJ

m rt
m -o iPl IT) in m m m <r ^ m

OJ O o o O O c O -H o
h (ft >i^ ^H 0) iH

U-i

re oCjC

CJ QJ -It

X X X X X X
re

X QJ X

GO t-i (=:
"—

'

r*- h< o \£> r- m .H
y • 3 W o> CN -3- a> vD HUM

CU
CN CN CN H H CO 3 i-t

en j^
-H --* CO

M LO o
OJ vC
u c rg £
u . ©
re o u
i- -to- re

re M m <r -3- <r m m m •<r

X II OJ 13 O O o c O O c o
u 3 QJ ^ tH H
U 4->

III in r
O D 3 X X X X X X X X

3 -H ^
a u S^ "3 '—' o cn c c m cn
4J -H DC C G Cr> v3 <T CN in

3 P u re

O 4J QJ CC IT\ flft H CN m
U 3

*3 QJ m
3 >-i

re u
0) vw u
N O

4-> CO

[/I JJ re 4J Cl CC tO o H o -cr

00 h u
W QJ > 3 <r o ON CTv cn m o c
o a 3 J* H CN H H H H CN CN
H QJ W
3 1 si

53£ QJ E
3 r-H cn

E U 3 in <r CO in O
•H E Hfti^ r-~

jj re 4-J "—

'

tO r- m CN O -3" CN o
a x Cl m m m r>> m, m CN
o w o

t-^

m
h

en OJ QJ

0) re E v3 r- CO CTn o CN Cn <f
U 3 H ^H

.fl Z
re

H



98

A (0.11)

22

21 Q(0.105)

J-|(0.11) ^ (0.125)

20

r 19 c5(0.105)

c
L (0 u,

6(0.125) I

>W.ll) V A (0.15)* 18

0
GJ

Q.
in

17 i
(0 - 125)

ico.15)
V O Case 1
a)

i-i

a
£=2

16 d Case 2

6(c
15

Numbers in parenthesis indicate

14 cost of electricity ($/kWh)

.

Uppermost symbol represents breakeven

13 - cost of electricity.

1
1 1 1 1 1 1 1

3 4 : b
' 8 9 10 11 12

Rated Power (kW)

Fig. 3.3-1. Size of optimum UTGS as a function of cost of
electricity - Cases 1,2, and 3.



99

O Case 1

300
Case 2

A Case 3 /q

200

//
100 - //
//

100 1 1 1 1

10 11 12 13

2
Cost of Electricity ($/kWh x 10 )

Fig. 3.3-2. Annual net savings versus cost of electricity
for optimum WTGS - Cases 1, 2, and 3.



100

o

S

20

IS

16

14

12

10

30

,(0.08)

(0.10)

(0.07)

(0.075)

(0.085)

(0.10)

n Case 7

Case 9

Numbers in parenthesis indicate

cost of electricity ($/kWh)

Uppermost symbol represents

breakeven cost of electricity

40 50 60 70

Rated Power (kK)

Fig. 3.3-3. Size of optimum WIGS as a function of cost of

electricity - Cases 7 and 9.



101

5000

4000

3000

2000

1000

H Case 7

Case 9

-1000
10

Cost of Electricity ($/kWh x 10 )

Fig. 3.3-4. Annual net savings versus cost of electricity for

optimum WTGS - Cases 7 and 9.



102

the ratio of the speed change due to the decrease in the VTGS rotor

size. Capital costs are also reduced if the rated power decreases,

however, in the 5 kW case, the saving achieved is apparently not

significant enough to compensate for the loss in generation capacity

by using a smaller rated power. But for the kK mean load demand cases,

generator rated power decreases sharply as the breakeven value is

approached. Initially, as the cost of purchased electricity decreases,

rated speed increases to decrease capital costs. However, an upper limit

on the rated speed is eventually reached, so the rated power decreases

while the rated speed stays relatively constant. As electrical costs de-

crease further, the WIGS becomes economically infeasible and the optimi-

zation program converges to a "zero-cost" size WTGS, i.e., one with a

vanishingly small rated power with an exceedingly large rated speed. Such

a zero cost WTGS is one that is physically vanishingly small.

From Figs. 3.3-2 and 3.3-4 it can be seen that the type of model

load has a relatively small effect on the breakeven cost of purchased

electricity (less than lc/kWh difference). At all costs of purchased

electricity that yield a positive annual net savings, slightly more

savings are achieved by the smooth load than either the flashy or constant

load. Furthermore, self-sufficiency is about the same for all three loads

at any given cost of purchased electricity. Consequently, for the assumed

diurnal load fluctuations, only a small increase in annual net savings

and decrease in the breakeven value is achieved by attempting to smooth

the variations in load demand. In fact, a constant load fared slightly
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worse than a smooth load as far as annual net savings and self-sufficiency

are concerned. This intuitively unexpected result is a consequence of

the diurnal variations in the model winds used for these examples which

are inphase with the variations in the demand load. If the model load

fluctuations occurred in the time intervals with the lower mean speeds

or out-of-phase with the model wind, the constant load model can be

expected to exhibit a larger annual net savings and a lower breakeven

value.

One peculiar result found in this and all sensitivity studies in

this section was for electrical costs slightly below breakeven, an optimum

WTGS was found by BLOHARD that yielded an annual net savings that was neg-

ative, i.e, a loss. This result is caused by the simplex optimization

technique converging upon a local maximum that has an associated negative

savings rather than converging to the global maximum of a zero-size WTGS

with an annual net savings of zero. However, as the electrical costs

decrease further below the breakeven cost, the optimization routine

converges to the expected annual net savings of zero. Consequently, such

negative results for net savings indicate that if the optimum WTGS must be

used at a particular electrical cost where an annual net loss is found, this

system is the best one to use, since this system will lose the least

amount of money.

Furthermore, the simplistic nature of the curves, i.e., horizontal

or vertical trajectories, shown in the plots of rated speed and rated

power as a function of cost of electricity, is a consequence of using a
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single season to describe an entire year. As more wind speed and load

data are supplied so that seasonal fluctuations can be characterized,

trajectories are obtained that exhibit a complex variation with rated

speed and power. However, sensitivity analyses using a single season

of data are instructive in that general tendencies in the optimum WIGS

size can be identified.

(b) Effect of Average Load Size on the Optimum WTGS

The effect of average load size on the optimum WTGS is best seen

from Figs. 3.3-2 and 3.3-4 which show annual net savings as a function

of cost of purchased electricity. Larger average loads have approximately

a 1.5 times reduction in the breakeven electrical cost for the same wind

and normalized load models. Breakeven costs for the 35 kW average load

range between 5.5c/kWh to 6.5c/kWh while the 5 kW average loads have

breakeven costs of about 10.5c/kWh. This variation with average load

is expected since larger WTGSs are less expensive on a per unit capacity

basis than are smaller systems. Consequently, because of the large net

savings potential, large loads are more attractive to wind energy appli-

cations. However, as the WTGS rated power increases, a value of rated

power is reached whereby the cost function assumed in Eq. (3.2-20) is

no longer valid. This is due to the requirement of more expensive and

sophisticated control systems and other components for a large WTGS that

are not needed for a small WTGS. Hence, for very large loads, the WTGS cost

function should be modified for large units to reflect the expected in-

crease in per unit capacity costs with size.
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Besides lower breakeven electrical costs, the cases with large

average load demands exhibit a greater self-sufficiency at a specified

electrical cost than the lower average load demand, given the same wind

models. For example, Cases 2 and 9, 3 and 7, and 5 and 10 are the

same wind models and normalized load models with the only difference

lying in the average load demand. From Table 3.3-6, which shows the re-

sults of the optimum WTGS for the same cost of purchased electricity, the

self-sufficiency factor is at least 17% greater for the large average load

demand than for the small one. Hence, this too shows larger average

loads are better candidates for wind energy applications than small

average loads.

As the breakeven electrical cost is approached, the rated power

for the cases with the large average load demand is very sensitive to

slight changes in electrical costs. From this behavior, it can be in-

ferred that large loads do not lose a significant amount of generation

capacity by reducing the generator rated power in order to reduce capital

costs.

(a) Effect of Diurnal Variations on the Optimum WTGS

Cases 7 and 8 demonstrate the effect of diurnal variations on

the optimum WTGS. From the results shown in Fig. 3.3-6, there is only

a slight effect on annual net savings; the case with larger diurnal

variations saves more money than the case with small diurnal variations.

However, the differences in annual net savings become negligible with
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decreasing electrical costs and both cases have comparable breakeven

costs, i.e., less than 0.5c/kWh difference. Figure 3.3-5 indicates

that the optimum WTGS size is the same for both cases up to a certain

electrical energy cost. Below this critical cost, the case with the

small diurnal variations shows sharp reductions in the rated power as

electrical costs decrease whereas the case with large diurnal variations

remains at the same rated power and just increases the rated speed. As

breakeven is approached, both systems have reduced power ratings, but the

case with large diurnal variations has higher rated speeds.

An explanation of this observation is that there is less variability

in the wind speeds that occur during the daily wind speed peak in the

case with a small diurnal variation than the case with a large diurnal

variation. This occurs because the variance of wind models used is

assumed to be directly proportional to the average wind speed for any

daily interval (see Eq . (3.3-2)). Since the daily wind speed peak

coincides with the larger load demands for these model cases, there is

a greater probability of higher wind speeds occurring in the daily

wind speed peak of the wind model with the larger diurnal variations.

Hence, because of this greater probability of higher speeds, the rated

speed of the optimum WTGS can be increased (so as to lower capital costs),

and still provide a sufficient amount of electricity to try to cover the

peak load demand, rather than lowering capital costs by decreasing the

rated power and thereby decreasing the capability of the WTGS to supply

the peak load demand. However, this probability of higher than average

wind speeds does not occur when there is only a small diurnal variation;
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hence, the rated power must be reduced instead, so that capital costs can

be lowered and an economically feasible system obtained.

In addition to having only a slight effect on the annual net

savings, diurnal variations affect the self-sufficiency of the WTGS

only slightly. Winds with large diurnal variations have a somewhat

larger self-sufficiency than winds with small diurnal variations about

the same seasonal mean wind speed. This effect is seen by examining

the results of Cases 7 and 8 listed in Tables 3.3-6 and 3.3-7. Con-

sequently, little effect on the optimum WTGS is observed by diurnal

variations if the overall mean wind speed remains constant.

(d) Effect of Wind Speed Fluctuations on the Optimum WTGS

The effects of changes in the variance of the wind speed distribution

of speeds about the average speed in a particular time interval has also

been investigated. In the model wind profiles, coefficients of

variation with values of four and unity are used. Cases 6 and 8 and

Cases 7 and 11 are excellent examples because the only difference

between these pairs is in the values used for the coefficients of

variation in the wind profiles. Figure 3.3-7 shows that for large

electrical costs, the annual net savings for the cases with small variances

and either large or small diurnal variations are quite large. However, as

the cost of electricity decreases, the curves drop off sharply, ending

up with breakeven values that are nearly the highest of all cases studied.

Figure 3.3-8 shows the effects differences in the variances of wind
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speed distributions have on the size of the optimum WTGS . As expected,

for sufficiently high electrical costs, the rated power attains the value

of the largest load demanded in the season. The cases with a small co-

efficient of variation exhibit much lower rated speeds (and have higher

capital costs). Again, with decreasing electrical costs, the rated speed

increases while rated power remains constant, along with the characteristic

sharp break as rated speed stays constant while rated power decreases

rapidly. However, the range of rated speeds at which the rated power

remains constant is significantly smaller in the cases with the small

coefficient of variation than the cases with the large coefficient of

variation.

These differences between the cases caused by different wind speed

variances can best be explained by noting that the wind speed distribution

with a coefficient of variation of unity is very highly peaked around the

average value. Because of this small variation in wind speeds about the

mean, there is a relatively small probability of wind speeds much greater

than one standard deviation beyond the mean speed. Hence, although the

optimum rated speed increases with decreasing cost of purchased electricity,

too much of an increase in rated speed would place the rated speed value

at a point on the tail of the wind speed distribution where the wind has only

a slight probability of occurring. Since very little power could be

generated by increasing the rated speed, the rated power must be reduced

instead in order to lower the capital costs of the WTGS. Therefore,

the WTGS becomes infeasible at a much lower rated speed for a
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wind speed distribution with a small coefficient of variation than for

a distribution with a large coefficient of variation because the system's

rated capacity must be reduced sooner when the wind speed distribution

has a smaller coefficient of variation.

Although the breakeven costs are higher for a wind model with a

small coefficient of variation, the self-sufficiency is enhanced. Tables

3.3-6 and 3.3-7 show that the cases under study have values of self-

sufficiency that differ from each other by at least 15% for equivalent

costs of electricity. Hence, although breakeven costs are higher, wind

speeds with distributions that are grouped very closely about the mean

speed can produce much greater amounts of power than wind speed distributions

that are highly dispersed about the same mean speed.

(e) Effect of Doubling Mean Wind Speed on the Optimum WTGS

To study the effect of variations in the seasonal mean speed upon

the optimum WTGS, a model wind speed was doubled from 10 knots to 20 knots.

The wind model used had both the large diurnal variations and the large

coefficient of variation, while the model load chosen was the flashy load

with average load demands of both 5 kW and 35 kW.

The results for Cases 4 and 12 (shown in Fig. 3.3-9) indicate

that annual net savings and breakeven costs are dramatically increased

and decreased, respectively. In increasing the mean wind speed from 10

to 20 knots, the breakeven value for the 5 kW average load model was

reduced to about 2.75c/kWh from the previous value of 10.5c/kWh and for

the 35 kW average load model, the breakeven value was reduced to 1.5?/kWh

from the previous value of 6.0c/kWh. Tables 3.3-5 through 3.3-7
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show that self-sufficiency was increased also. Even at the breakeven

value, the optimum WTGS for both the large and small average load demand

has a self-sufficiency in excess of 35%. Figure 3.3-10 shows that results

similar to the 10 knot seasonal mean speed cases (Cases 2 and 10) are ob-

tained, i.e., rated power achieves the value of the maximum load demand

and with decreasing electrical costs the rated speed increases until

breakeven is reached (like the previous 5 kW mean load demand cases)

or the rated speed increases to a certain point and then stays constant

while the rated power decreases until breakeven is reached (similar to the

previous 35 kW mean load demand cases). Furthermore, the range of speeds

at which the rated power of the WTGS remains constant is much greater than

the corresponding case with a 10 knot mean wind speed. This is to be ex-

pected since for the same coefficient of variation, a mean speed of 20 knots

produces a greater variability of wind speeds about this mean. Hence,

because there is a greater probability of higher wind speeds occurring

for a mean wind speed of 20 knots than for one of 10 knots, the rated

speed of the optimum WTGS can be increased to lower capital costs of the

WTGS before reaching the point where rated power must be decreased to

lower capital costs.

The investigation of the effect of increases in seasonal mean speeds

on the optimum WTGS is important because seasonal mean speeds generally

increase with the height of a WTGS above ground [3]. Much more power

can be generated by increasing the height of the WTGS above ground.

However, because increasing the tower height increases the cost of the
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WTGS, there will be a tradeoff in increased power production and

increased tower capital costs.

(f) Effect of Credit for Surplus Electricity on the Optimum WTGS

Of considerable interest in the development of the WTGS is the

effect of the utility giving credit for any surplus energy that is fed

back into the utility grid. A credit of 2c/kWh was chosen since any

credit given by the utility in the near future can be expected to be

considerably less than the price that is charged to purchase electricity.

This expected small credit is due to the fact that costs of purchased

electricity reflect the capital costs of the utility, amortization of

the transmission and distribution systems, costs of protective systems,

etc., in addition to actual fuel costs. Since any power fed into the

utility grid by the WTGS will save the utility only the cost of fuel,

the low credit value is reflective of this partial savings. This credit

was applied to both the 5 kW and 35 kW average demand load models.

The effects of credit for surplus electricity are best seen by

contrasting Cases 2 and 5 and Cases 9 and 10. The only difference

between each of these cases is that Cases 5 and 10 receive credit for

surplus electricity. The results obtained for the optimum WTGS are

tabulated in Tables 3.3-5 through 3.3-7. As can be seen, considerably

larger optimal rated powers are attained in order to generate more sur-

plus energy. However, the rated speeds remain about the same as in the

cases where no credit was given. Furthermore, only a moderate increase in

self-sufficiency is achieved if credit is given for surplus electricity.
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Figures 3.3-12 and 3.3-13 show that there is only a slight increase

in the annual net savings but very little effect in the breakeven cost.

Finally, as electrical costs decrease, Figs. 3.3-11 and 3.3-14 show

that both rated power and rated speed decrease in a smooth but complex

manner, unlike the sharp breaks in the trajectories of rated speed versus

rated power in the cases where no credit is given for surplus energy.

Consequently, for the expected low value of credit received for

surplus power, the effect on the optimum WTGS is slight. Although more

net savings are achieved at every cost of purchased electricity, there

are only slight improvements in the breakeven values and self-sufficiencies.

Unless larger credits are given for generation of surplus energy by a

WTGS, it is conjectured that more effective use of this surplus energy

can be made by storing the excess, e.g., in batteries.

(g) Effect of Seasonal Variations on the Optimum WTGS

(i) Two Seasons:

In the first multiple season case study, two seasons of load and

wind data were used to characterize the entire year. For the first

season, wind model 3 supplies power to a smooth load with a 10 kW

seasonal average and for the second season, wind model 1 supplies

power to a smooth load with a 20 kW seasonal average. Figure 3.3-15

shows the results of this two season optimization problem along with

the results of each season run as a single season case, i.e., used for

the entire year. As can be seen, for high costs of purchased electricity,

the rated power of the optimum WTGS is the same as the maximum load demand
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for the entire year. As the cost of electricity decreases the optimal

rated speed increases while holding the rated power constant in order to

decrease capital costs. Again, the tendency is to try to cover as much

of the peak demand as possible. However, if this cannot be achieved, the

rated speed remains constant while rated power decreases so as to

decrease capital costs. But because there are two seasons with different

average load demands, there exists another rated power at which the

WTGS can sufficiently supply the peak of the lesser load demand as

well as supply an adequate portion of the greater load demand, though

it cannot cover all of the maximum demand load. Hence, as the cost of

electricity approaches breakeven, the size of the WTGS remains at this

lower value of rated power while rated speed continues to increase.

Figure 3.3-16 shows that the annual net savings for the two

season case lies between the values obtained when each season characterizes

an entire year. Furthermore, the breakeven cost is approximately the

average value of the individual seasons when each season is used for

the entire year. Consequently, the effect of seasonal variations on

the optimum net savings is that of averaging the results obtained from

the optimization procedure when each season is run separately.

Although Fig. 3.3-15 still exhibits the step-like characteristic

of the single season models, it must be kept in mind that the seasonal

load variation also exhibited these characteristics, i.e., the two

seasonal load profiles differ by a factor of two. In realistic cases,

the seasonal wind and load changes are not as pronounced, but vary
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smoothly from season to season. Hence, as more seasons are added

it can be expected that the trajectory of the WTGS size as a function

of cost of electricity will vary in a smooth but more complex manner,

(ii) Four Seasons:

A four season case was studied to see if the results obtained from

the idealized model wind speed and load models could be used to predict

the behavior of realistic wind speed and load profiles. A load model

representative of a Kansas winter wheat-sorghum farm was chosen. Wind

speed data for Wichita, Kansas was obtained from the National Climatic

Center and are listed in Table 3.3-8. These wind speed data are assumed

to be applicable to winter wheat-sorghum operations near this city. Load

information for the residence and farm was obtained from DPRA [12]. Both

the residence and farm load are shown in Tables 3.3-9 and 3.3-10. The

residential load is based on a totally electric home for a family of four

under a normal daily living pattern. The only significant farm load

comes from aeration fans which are used in the wheat storage bins to

prevent spoilage.

The discrete wind speed distributions in every three-hour interval

are modeled by the beta distribution using the method of matching-

moments . The parameters of the approximating beta distribution of the

wind distributions for each daily and seasonal time interval are tabulated

in Table 3.3-11. As a comparison of the effect of using approximating

analytical distributions, the discrete wind speed distributions were also

used in the optimization routine for this realistic case. The results of
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Table 3.3-9. Typical Residence Load for Family of Four on

Western Kansas Winter Wheat-Sorghum Farm
(From Ref . 12).

Time Interval (hrs.)

Season 0-3 3-6 6-9 9-12 12 - 15 15 - 18 18 - 21 21 - 24

Load Demand (kW)

Fall 5.96 3.77 15.6 8.48 6.47 7.53 15.9 12.6

Winter 19.7 20.0 31.8 22.2 20.2 21.0 36.9 28.6

Spring 11.5 12.0 21.1 11.2 9.22 4.78 15.9 12.6

Fall 7.91 5.72 19.9 12.8 17.8 16.13 24.5 18.9

Table 3.3-10. Typical Load for Kansas Winter Wheat-Sorghum Farm

(From Ref. 12).

Season 0-3 3-6 6-9
Time

9-12
Interval
12 - 15

(hrs.)

15 - 18 18 - 21 21 - 24

Load Demand (kW)

Fall 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Winter 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Spring 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 3 .3-11. Parameters
Wind Speed

of Beta
Data.

Distribution for Wichita, Kansas

Time
V
maxSeaon Interval a B

(hrs) (knots)

Fall - 3 1.32 3.73 33.5

3 - 6 1.56 4.42 33.5
6 - 9 1.67 4.38 33.5

9 - 12 2.14 4.13 33.5

12 - 15 2.28 5.21 40.5

15 - 18 2.00 3.72 33.5

18 - 21 1.41 2.94 27.5
21 - 24 1.53 4.14 33.5

Winter - 3 1.59 3.72 33.5

3 - 6 1.54 3.75 33.5

6 - 9 1.56 3.71 33.5

9 - 12 1.85 3.64 33.5

12 - 15 2.00 3.50 33.5

15 - 18 2.09 3.49 33.5
18 - 21 1.57 3.88 33.5
21 - 24 1.60 3.74 33.5

Spring - 3 1.61 3.34 33.5
3 - 6 1.99 5.44 40.5

6 - 9 2.05 3.88 33.5

9 - 12 2.68 5.07 40.5

12 - 15 2.81 6.34 47.5

15 - 18 2.45 4.45 40.5

18 - 21 2.07 5.20 40.5

21 - 24 1.55 3.32 33.5

Summer - 3 1.88 4.14 27.5

3 - 6 1.74 4.46 27.5

6 - 9 1.90 4.12 27.5

9 - 12 2.41 5.49 33.5
12 - 15 2.36 5.08 33.5

15 - 18 2.51 5.20 33.5

18 - 21 2.88 8.61 40.5

21 - 24 2.17 5.98 33.5
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the BLOHARD routine for both the approximating beta and the actual

discrete wind speed distributions are listed in Table 3.3-12 for various

costs of purchased electricity. There is little difference between the

optimum WTGS for either wind speed distribution. For low electrical

energy costs, an optimum WTGS, which yields a negative annual net

savings, is found. This occurrence indicates a local optimum for which

the amount of money lost by using a WTGS is minimized although the true

optimum would be a zero-size WTGS.

From Fig. 3.3-17, which shows the WTGS size plotted as a function

of electrical energy costs, the shape of the trajectory has many

characteristics of those found for the single and dual season idealized

wind speed and load models. For very high costs of electricity, the

rated power of the optimum WTGS tends toward the maximum load for the

year. With decreasing electrical costs, rated power decreases some-

what but rated speed increases at a faster rate. Finally, as electrical

costs approach breakeven, the rated power begins to decrease at a

faster rate than that at which the rated speed increases. Although this

realistic case does not exhibit the dramatic step-like changes obtained

for the model wind speed and load profiles, the overall behavior is

still quite similar to these model cases.

Breakeven costs can be determined from a plot of annual net savings

versus cost of electricity as shown in Fig. 3.3-18. For this farming

enterprise, the cost of electricity must be about 6.8c/kWh in order

to offset the installation cost by the savings in purchased electricity.
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This value is subject to change with changes in the interest rate and the

lifespan of the WTGS. As mentioned earlier, an interest rate of 10%

per year and a lifetime of 20 years were assumed. These values are

typical for today's economy and used in order to get an indication of the

feasibility of the WTGS. For more accurate results, more precise values

of interest rates and useful life costs should be used, as well as more

accurate cost models for the type of WTGS to be installed.

For this realistic example and with the stated economic assumptions,

the breakeven cost of electricity is well above the current price charged

for purchasing electricity. However, conclusions as to the feasibility of

a WTGS are dependent upon the technical and economic assumptions made.

A lower cost model for the WTGS will definitely alter the results towards

making the WTGS economically more attractive. Similar results would

be obtained if low interest loans become a reality (e.g., through

government subsidies). Decisions concerning these economic parameters

and questions must be made before any definite statement is made as to

the economic feasibility of the WTGS.

Although the results for this realistic case show the WTGS to

be currently economically infeasible, a more important result is the

observation that wind speed and load data must be supplied on a multiple

season basis in order to get an accurate value for the optimum size

WTGS. As less data are supplied, the more inaccurate is the optimization

procedure and the calculated optimization results. The interaction of
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one season with another is as important as the interaction of diurnal

variations. Therefore, for the optimization methodology to yield

accurate results, the input data should be as complete as possible if

the methodology described in this chapter is to be used for analysis

of actual wind energy applications.
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4. CONCLUSIONS AND RECOMMENDATIONS

In this research, two important aspects of the extraction of energy

from the wind were analyzed. First, as an aid to help predict the power

available from the wind, analytical wind speed distribution models were

examined along with methods to estimate the model parameters. Three

techniques were presented for the estimation of the parameters of a

modeling Weibull distribution, which is the most commonly used analytical

representation of observed wind speed data. In addition, the beta distri-

bution was introduced as an alternative wind speed distribution model.

Two goodness of fit tests were performed on each analytical distribution

to test the appropriateness of each model in describing observed wind

speed distributions. Second, a methodology was described, whereby, given

wind speed distribution models for a particular location and power demand

data for a particular energy-consuming enterprise, the economically optimal

size WTGS could be determined such that the net annual economic savings

realized with the WTGS are maximized. It was assumed that the WTGS produced

utility-compatible electric power, and furthermore was connected into the

utility grid so that when the WTGS could not generate all the required

power, the deficit could be purchased from the power grid.

It has been shown that for parameter estimation of the Weibull

distribution, the matching-moments technique yielded a Weibull distribution

that represents the wind speed data much more closely than least squares

fitting techniques. From the results of the analyses of 544 observed
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2
wind speed distributions, the x goodness of fit test indicated little

as to the accuracy of either of the parameter estimation techniques

(matching-moments or least square) in modeling most of the observed

wind speed distributions. However, the large x values obtained for

approximating Weibull distributions fit by the matching-moments method

were found to be almost totally a result of poor fits at very low

speeds, i.e., below four knots. At intermediate and high wind speeds

(the regions most important for a WTGS), the Weibull matching-moments

fits generally produced excellent approximations of the observed distri-

butions. The beta distribution, whose parameters were also estimated

by a matching-moments technique, exhibited a similar result - poor fits

at very low speeds but excellent fits at intermediate and high speeds.

The second procedure developed to test the fitted Weibull and beta

distributions, the power ratio test, confirmed the observation that the

matching-moments parameter estimation technique represented the wind speeds

greater than four knots very accurately. With this test, the ratio was

calculated of the power obtained from a given size WTGS when the analytical

(fit) wind speed distribution was used to the power generated by the same

WTGS when the discrete (observed) wind speed distribution was used.

Application of this test to 544 observed wind speed distributions showed

that the matching-moments technique yielded Weibull and beta distributions

with power ratios that were very close to the ideal value of unity. The

least squares techniques, however, produced Weibull distributions that,

when the power ratio test was performed, yielded discrepanies of as much
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as 70% from unity. Consequently, for both the Weibull and beta

distributions, the matching-moments technique of parameter estimation

provided distributions that accurately model observed wind speed distri-

butions.

It was also seen that because only two wind speed statistics, i.e.,

the mean wind speed and variance of wind speeds about this mean are needed

to calculate the parameters of the Weibull or beta distribution using the

matching-moments technique, the need for detailed historical wind speed

information is eliminated. Since detailed meteorological wind speed

distribution data are not readily available for most locations, much

simpler and less time-consuming measurements or analysis of meteorological

data tapes to obtain the mean wind speed and the variance of wind speeds

need be performed. Although both Weibull and beta distributions give

accurate fits of the wind speed distributions when the parameters are

estimated by the matching-moment technique, the beta distribution is

particularly attractive since its two parameters can be calculated directly

from the mean and variance of the wind speed. Calculation of the Weibull

parameters, on the other hand, requires the numerical solution of trans-

cendental equations

.

From the sensitivity studies performed on the optimization methodology

in part two of this work, it was seen, that in addition to supplying de-

tailed wind speed distributions and load demands to characterize accurately

diurnal variations in wind speeds and load requirements, seasonal variations

need to be represented also. If only a single season is used, the optimal

WTGS size as a function of cost of purchased electricity does not vary
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smoothly as expected, but exhibits very rapid changes in size. However,

as more seasons are added to the analysis, the trajectories of the

optimal WTGS size as a function of cost of electricity vary in a much

smoother fashion. Besides needing detailed diurnal wind speed distri-

bution and load demand requirements, seasonal variations in these two

inputs must also be characterized. However, single season sensitivity

analyses are useful in identifying the general trends of the optimization

methodology.

Of all the sensitivity studies analyzed, the parameter that had the

largest effect on the optimum WTGS was, as expected, the mean speed at

the WTGS site. For even the single season case, locations that have mean

speeds of 20 knots were capable of producing electricity on a competitive

basis with utility supplied energy. Another parameter which affects

significantly the size of the optimum WTGS was the size of the load

served by the WTGS. For large loads, more money can be saved from the

installation of an optimum WTGS, and consequently, power can be produced

more cheaply. This preference for larger loads is a direct result of the

lower unit capacity costs for larger UTGSs inherent in the WTGS cost

model. Although the unit capacity cost ($/kWh) generally decreases as

the rated power of a WTGS increases, a power level is eventually reached

(a. 40-60 kW) above which this observation is no longer true and the

cost ($/kW) actually increases. This is caused by the fact that for

large rated powers, the complexity and sophistication of the WTGS must

increase compared to smaller machines in order to handle the large amount
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of power. Consequently, this transition power must be clearly noted so

that a different cost model can be assumed to account for this added

system complexity.

Another parameter that was shown to have only a slight effect on

the optimum WTGS was the relative magnitude of the peaks in the load

demand. As long as the load peaks coincide or are inphase with the

daily wind speed peaks, only marginally more net savings and lower

breakeven costs are achieved if the load varies smoothly about an

average wind speed than a load with large or flashy variations about

the same average wind speed. However, a constant load demand throughout

the day has lower net savings and a higher breakeven cost than the

smoothly varying load with the same average load demand as the constant

load. Hence, load peaks whether large or small, which are inphase with

the wind speed peaks tend to favor the development of wind power by

lowering the breakeven value.

The relative magnitude of diurnal wind speed variations were found

to affect the size of the optimum WTGS to a lesser degree. The optimum

WTGS produces a greater net savings and lower breakeven costs for a

wind with large diurnal variations than a wind with small diurnal

variations about the same daily mean speed. As was true in the load

variation cases, as long as the peaks in the wind speed and load variations

are inphase, the magnitude of either do not affect the optimum WTGS

significantly.

The variance of wind speeds about a mean wind speed exhibited a

detrimental and also an advantageous effect depending upon the cost of

purchased electricity. Wind speed distributions with small variances,
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i.e., highly peaked around a mean speed, had large net savings for high

costs of purchased electricity, but the net savings decreased sharply

with decreasing purchased energy costs. The breakeven value was

higher for wind speed distributions with a small variance than the

distributions with a large variance. However, the self-sufficiency

of the optimal WTGS was enhanced when the location site had wind

speed distribution with a small variance. Consequently, if a greater

self-sufficiency is required, sites with almost constant speeds should be

chosen, whereas, if net savings is to be maximized, sites which have

wind speed distributions with large variances are more attractive.

Finally, the investigation of the effect of credit for surplus

electricity on the optimum WTGS showed the optimum rated power was

most affected. The WTGS rated power increased greatly compared to

similar cases which received no credit for surplus power. This increase

is reasonable since as more surplus power is generated , more money is

made. For the small credits which are likely to be given (if any credit

is given at all), no significant effect on annual net savings, self-

sufficiency, or breakeven value is realized. However, as noted earlier,

if the WTGS rated power increases beyond a certain critical value, a

higher cost model needs to be applied. Hence, this greater WTGS cost

may overshadow any profit from selling surplus power.

Many areas for further study have emerged during the course of this

work. For instance, when modeling observed wind speed distributions, the

effect of bin size (speed subintervals) used in the histogram of observed
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wind speed distributions should be investigated. This study used

rather large speed subintervals when characterizing wind speed data.

To reduce the bin size, analysis of the meteorological data tapes would

be required. Furthermore, the bin size can be reduced only so far before

statistical fluctuations (caused by the paucity of wind speed data) will

begin to mask actual detail in the wind speed distribution. The whole

area of extracting the most information about the wind speed distribution

from finite amounts of observed data is a very important one if accurate

analysis of wind energy is desired.

Although only two analytical distributions, the Weibull and beta,

were examined in this study, many more can be tried. For example, the

beta-prime distribution could be used as a fitting distribution. The

beta distribution used in this study is defined over a finite interval,

while the beta-prime distribution is defined over the entire positive

axis [29]. Other distributions worthy of further study are the gamma

distribution [9] and the single parameter Rayleigh distribution [7,8,9].

The optimization methodology investigated in this work considered

only several basic features of WTGS to obtain an optimum match between

wind energy production and demand load. Extensions to this model could

be made to incorporate many additional features. For example, a logical

extension would be to assume a distribution function about a given mean

value which would give the variation of the demand load rather than

assuming a constant or mean load during every time interval. Such a

change would require only slight modifications in the optimization

methodology.
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An additional sensitivity study would involve the investigation of

load management. In this study, the load demand peaks were assumed

a priori, and no attempt was made to manage the load, within given con-

straints, to improve further the savings afforded by the optimum WTGS.

Such load management as part of the optimization procedure would require

the inclusion of linear programming techniques into the present

methodology.

Because the availability of low cost loans would affect the

feasibility of a WTGS, the exact nature of such loans is yet another

parameter which could be incorporated easily into the objective function

of the present methodology. Similarly, much more detailed economic

models for WTGS costs, amortization incentives, tax credits, surplus

WTGS energy credits, etc. should be investigated. Such investigation

would require only minor modifications of the present methodology which

has been written in a highly modularized fashion to facilitate alterations

in components of the methodology. As previously noted, the high wind

speeds favor the economic viability of a WTGS. Because wind speeds

generally increase with height above ground [3], a WTGS at a greater

height could potentially produce larger amounts of power. However,

as WTGS height increases, the tower cost also increases. Consequently,

with a cost model for tower costs and a model for increasing wind

speed with height, the optimization methodology could be easily modified

to include WTGS height as a variable to be optimized in the selection

of the economically optimal WTGS.

This study assumed no storage of excess power. Conceivably the

inclusion of battery storage could improve the economic attractiveness
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of wind systems, and the effects of battery storage should be investigated.

Because the optimum amount of battery storage capacity can be expected to

be very sensitive to the amount of surplus energy generated, much more

detailed wind speed information is needed so that an accurate estimate of

optimal capacity can be made. This would require either model wind

speed data for every day in the year or correlations which describe

how wind speeds depend on earlier wind speeds.

Finally, this same optimization methodology used in this work

can be applied directly to solar energy studies of electrical energy

generation. The wind speed distributions would be replaced by solar

insolation distributions, i.e., the probability a particular amount of

radiant energy will strike a surface in a given time interval. The WTGS

response function can be replaced by the solar cell response to the radiant

energy that strikes it. If solar collectors are used to produce thermal

energy, then storage capacity would have to be included in the optimization

procedure (analogous to battery storage for the wind energy problem)

.

Hence, the optimization methodology used in this study can be expected

to be applicable to the selection of optimal solar energy systems which

maximize the system parameters so as to produce the maximum economic

savings.

In conclusion, this research was two-fold. The first part studied

the modeling of observed wind speed distributions by analytical distri-

butions. The second part applied the wind speed models to match the

available wind power from a WTGS with the load demand requirements to
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compute the size of an optimal WTGS, i.e., a WTGS that saves the user

the most amount of money by replacing normally purchased power with that

generated by a WTGS. This type of detailed investigation is needed in

order to determine the impact wind generated power can have on future

energy policies.
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APPENDIX A

The Program CURVEFIT

The code CURVEFIT calculates the parameters of analytical wind

model distributions (the three Weibull distributions and the beta

distribution) by fitting these distributions to observed discrete

2
wind speed distributions. In addition, the x and power ratio

statistics are generated as a measure of the goodness of fit of the

analytical distributions. The program input requires the roots and

weights of any even order Gauss-Legendre quadrature desired. For the

computation of the power ratio, the parameters of the WTGS (i.e., rated

power, rated speed, cut-in speed) are needed. Finally, the boundaries

of the wind speed subintervals used in the discrete distribution are

required along with the frequency of wind speed observations in each

subinterval and the total number of wind speed observations made.

Detailed input requirements are described by comment cards in the

FORTRAN IV program listing which is included in this Appendix.

Estimation of the parameters of the fitting distributions is

performed according to the methods described in subsections 2.3.1 and

2.4.1. The numerical procedure used to solve Eq. (2.3-18) for the

parameters of the Weibull distribution using the matching-moments

method is the subroutine RTMI [30], The subroutines WBLFIT and F

compute the initial points for the Mueller's iteration technique used

in RTMI.



152

The calculations required for the x and power ratio tests

described in Section 2.5 are performed by the subroutine CH1SQ and

POWER, respectively. Any Weibull or beta distribution values needed

by CHISQ and POWER are computed by the subprograms WB or FI, respectively.

The necessary integrals are computed by the subroutine GAUSS which uses

a specified even order Gauss-Legendre quadrature

.

The output of CURVEFIT is either a table of model distribution

parameter values or a table of goodness of fit statistics (similar to

Tables 2.6-1 and 2.6-2) depending upon the values of program option

parameters. The program is written in FORTRAN IV for the Kansas State

university ITEL Advanced System 5 (which is equivalent operationally to

an IBM 370/158 system). Liberal use of comment cards and variable names

with high mneomic content assist the user in deciphering the program

logic.
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***** CURVEFIT **»* ****** **********

THIS PROGRAM CCHPUTES THE PARAMETERS OF THE WEIBULL CI STRI BUTICNSI LEAST
SCUARES, WEIGHTED LEAST SQUARES, AND HATCHING-MGHENT5 TECHNICJES) ANC THE
BETA DISTRIBUTICNIMATCHING-HCHENTS TECHNIQUE]. CHI-SQUARE AND POWER RATIO
STATISTICS ARE ALSO COMPUTED.

INPUT DATA!

CARD 1 FORMAT (12)
NHALF = THE HALF VALUE OF THE EVEN ORCER GAUSS-LEGENDRE QUADRATURE

USED TO EVALUATE THE NECESSARY INTEGRALS

C* CARD 2 FORMAT (4G20.7)
C* ROOTII) " QUADRATURE ORD1NATES (ONLY POSITIVE VALUES)

C* (MAY BE MANY CAROS)
C»
C* CARD 3 FORMAT (4G20.7)
C* WEIGHT! I I = QUADRATURE WEIGHTS
C* (MAY BE MANY CARDS)
C*
C* CARD 4 FORMAT (415)
C* INN * TOTAL NUMBER OF POSSIBLE SPEED SUBI NTERVALS (USUALLY ID
C* IPR * RATED POWER OF WIND TURBINE(KH)
C* IVR = RATED SPEED OF WIND TURBINE(MPH)
C* IVC CUT-IN 5PEEO OF WIND TURBINEIMPH]

OOOl

0002
0003
0004
0005
OOOt

0007
0008

C*
C»
C*
C*
c«
c*

MM! 5 rO^'AT[12FS.2l
IVINT(I) - ENDPCINTS OF WIND SPEED SUE INTERVALSIKHOTS)

CARD 6 FCRMATI20A4)
TITLE - TITLE CARD FOR WIND SPEED DATA SET ANALYZEO

(HAY BE MANY CAROS)

CARD 7 FORMAT! 12, 13,1014,16,151
MONTH * MONTH FROM WHICH KIND SPEED DATA IS OBTAINED
NTIME = DAILY TIME PERIOD FROM WHICH WIND SPEED DATA IS OBTAINED
IFREQ(I) = FREOUENCYtX 1000) OF OBSERVATIONS If. I-TH SPEED SUBINTERVAL*

(BEGINNING WITH FREQUENCY IN 2ND SPEED SUBINTERVAL)
NUMKY * SPACE FOR DATA I CENT IF ICAT ICN PURPCSEStCAN ALSO BE USED TO

ADD TWO MORE SPEED SUB INTERVALS)
NOBS = TOTAL NUMBER OF WIND SPEED DATA OBSERVATIONS

(HAY BE MANY CARDS)

C»
C*
c»
C»
c*
c*
C* WRITTEN BY L. A. POCH, KANSAS STATE UNIVERSITY, DECEMBER 1977.
C»

***************
P.EAL*4 FREC(41l,TITLE(40l,VINT(4i),Y(41],X(41),'V(4I),FRECN(41) t

1 F(41),RCGT(20] , WEI GHT ( 20 I , FREYl 41)
REAL* 4 MMEAN,IVINT<41) ,K,MEAN
iNTEGEP*4 IFREC141) , DF1 ,DF2 ,DF3 ,DF4 '

.

CCMMCN/LINK1/K,C,AA,BB,VMAX, VRATED.FCTR
COMMON/ LI NK3 /NHALF, ROOT, WEI GHT
EXTERNAL W6 ,F I , V3F I , V3WB

«*» READ IN GAUSS-LEGENDRE QUADRATURE ORDINATES AND WEIGHTS
READ(5,112INHALF

113 FCRMATII2) ' '
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009
0010
0011

0012
0013
0014
0015

0016
0017

0018
0019
0020
0021
0022
023
024

0025
0026
0027

0028
0029

0030
0031

0033
003*
0035
0036
0037
0038

039
0040
0041
0042

PECIFICATIONS

READ (5, 12}IR00T(I),I=1,NHALFI
READ t 5, 12

M

WEIGHT (II , I*1,KHALFI
12 FORMATI4G20.7I

C*** READ IN NUMBER OF SPEED SUSINTERVALS AND WIND TLRBINE
READ(5,2)INN,IPR,IVR,IVC

2 F0RHAII4I51
NI\*INN*1
PRATED«=IPR

C*** CCNVERT MPH TO KNOTS
VRATED=IVR/1.15
VCUTIN-IVC/1.1S

C**» READ IN ENDPUNTS OF SPEED SUSINTERVALS AND TITLE
READ! 5t II ( IVINT(I) , I*1,NN>

1 FORMAT! 12F5. 21
3 PEAD(5,100) TITLE

100 FORMATI20A4)
WRITE 16, 110

1

(TITLE I 11,1-1,331
110 FCRMAT!'1'////,33A4I

PRINT 1001
C--* REMOVE COMMENT TO LIST CHI-SQUARE AND POWER RATIO TABLE
C1001 FORMAT! '0' ,1181 •-')

J

1001 FORMAT! 'C ,113! •-))
PRINT 102

102 FORMATIT52. 'WEIBULL DISTRIBUTION PARAMETERS * ,T98, 'BETA D1STRIBUTI0
IN'/' MONTH TIME MEAN SPEED SID. OEV. LST. SOS.-UNWTD. LST
2. SOS.-WTD. HATCHING-MOMENTS PARAMETERS'/TV, 'IHRSI (UNO
3TSI (KNOTS! ' ,3I6X,'K C 'J, EX, 'ALPHA BETA')

C«*» REMOVE COMMENT TO LIST CHl-SCUARE AND POWER RAT1C TABLE
C 102 FCRMATIT27, 'RESULTS OF CHi-SOUARED TEST ' ,T8 1, 'RESULTS OF POWER RAT
C 1IC TEST*'/T24, 'WEIBULL DI STRI BUTICN* ,T79 , 'WEI BULL DISTRIBUTION'/
C 2 • MCNTH TIME LST. SOS. LST. SOS. MATCHING- ', 7X, ' BETA'

,

C 3 9X,'LST. SCS. LST. SCS. M4TCMI NG-' .7X,

'

BETA'/
C 4T9, MHRS) IUNWTC.) ' ,6X, '£ WTO. I ', 6X ,' MOMENTS' ,5X , 'DISTRIBUTION'

,

C 5 6X,

•

(UNWTC.)' ,5X,' IWTD.) ' , 4X , 'MOMENTS' ,5X, 'DISTRIBUTION »1

PRINT 1001
99 N=INN

C»«» READ IN FRECUENCY OF OBSERVATIONS
READi5,101,END-98)HONTH,NTIME,(lFREC(I> , 1-2,N| ,NUMMY, NOES

101 FCRMATCI2,I3,10I4,I8,15I
C-" IF MOPE THAN CNE LOCATION IS TO BE ANALYZED A BLANK CARD FDR DATA CARD 7

C WILL CAUSE THE PROGRAM TO INCREMENT TO THE TITLE CARD OF THE NEXT DATA SET
IFINOES .NE. 0) GO TO 13

C»** REMOVE COMMENT TO LIST CHI-SQUARE AND POWER RATIO TABLE
C PRINT 997, IPR,IVR,IVC
C 997 FORMAT! '-» POWER RATIO COMPUTED FOR RATED POWER * ',13,
C 1 ' KW, RATED SPEED = ',12,' MPH, CUT-IN SPEED « ',12,' MPH'/
C 2 • ',1181 '-"II

GO TO 3

13 DO 172 I-l.NN
172 VINTIII-IVINTUI

DC 401 1=2,

N

401 FREQ(II«IFREO(I>/1000.
SUM=0.0

C-»* COMPUTE FREQUENCY CF OBSERVATIONS IN INITIAL SPEED SUBINTERVAL
DO 54 l»2,N

54 SUM»SUM*FREOIII
FRE0.I1I-1.0-SUN
SUM«SUH»FREO(l)
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0043
0044
0045
0046
0047
048

0049
0050
0051
0052
0053

0054
0055
0056
057

0058
0059

0060
0061
062

0063
0064
0065
0066

0067
0066
069

0070
0071
0072
0073
0074
0075
0076
0077
0078

0079
OOSO

0081
0082
0083
0064
0085
0086

0087
0088

c ».» COMMUTE DISCRETE CUMULATIVE DISTRIBUTION FUNCTION
SUK1-0.0
00 41 I-l.N
FRE0(1I»FRE0(1I/SUN
SL'».l»SUfll»FRECm

41 FCII-SUH1
DC 130 1-1, N
I F I F 1 1 1 .GE. .999999JG0 TO 131

130 CONTINUE
131 N-I

VMAX-VINTIN+11
SUM2=0.0

C ... COMPUTE DISCRETE PRDBAEILITY DENSITY FUNCTION
DO 46 IK=1,N
SUK2 = SU.W.2*FREQ(IK)
FIIK1-SUK2
Y1IK1-VINT! IK<1I-VINTCIK)
FRECM1K) = FREG(IK)/YCIK)

46 V1!M=0.5>I VINTUK+11+VINTI IKH
C««» COMPUTE MEAN, VARIANCE, ANC STANDARD DEVIATION CF NINO DAT*

HEAN-0.0
VAR-0.0
DC 30 1=1,

N

3C HEAN=MEAN+VII1*FREQIII
DO 31 I-l.N

21 VAR-VAR * (V(II-NEAN)*
STDEV-SOP.TIVAR)

c ».» COMPUTE WIND TURBINE GENERATOR POWER USING DISCRETE PROBABILITY DENSITY

C FUNCTION
HPOWER=0.0
DC 300 1-1,

N

IFtVINTU+ll .LT. VCUTIN) GO TO 300
IF(VINTII) -GT. VRATEDI GO TO 304

VCUTIN .AND, VINT (1*1

1

VINTII+11
V I NT [ 1*11
VINT 11 + 1

1

»2»FRE0(II

. LT. VCUTIN .AND.
VCUTIN .AND.
VCUTIN .AND.

.GT. VRATEDI GO TO 302

.LT. VRATEDI GO TO 303
-LT. VRATEDI GO TO 305
.GT. VRATECI GO TO 333

332

IFIVINTI I 1

IF(VINTU)
I F I V 1 NT (I)
IFtVINT! I)

PRINT 332,1
FCRMATl'OINTERVAL DOES NOT FIT ANY CATEGORY ', 5>, INTERVAL"" ,151

GO TO 300
333 FFDWER-HPCWER-MC.25»(VR1TED»»4-VINTII>»»4)/VRATED»«3

1 VINTU+W - VRATEDI*FREO.N(II
GO TO 300

302 HPCWEP-MPOWER 10.25*1 VRATED**4 - VCUT IN**4] /VRATE0**3 +

1 VINTU+1) - VF.ATED1-FRECMI]
GO TO 300

303 hPDWER-HPOWER » 0.25»FRECN( 1 1 <( VINTt 1*1 ) «»4 - VCUTIN»»4! /VRATE0»»3

GO TO 300
304 HPO;iER=HPOHER « FREONI 1 l»l VINT1 I*1I-VINTI II )

GC TO 300
305 HPCHER-HPCHER » 0.25»FRECM 1 1 •( VI NT 1 1*1 )*»4 - VINTII)»«4I/

1 VRATE0**3
300 CONTINUE '

HPCWER=PRATED»HPOWER

C*** WEIEULL FITTING
C»»» LEAST SOUARES SOLUTION FOR THE HEIBULL FIT

SUNX-0.0
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0090 SUHY=0.0
0091 SUMXY=0.0
0092 SUMX2=0.0
0093 N1=N
009* DD 20 1=1, Nl
0095 YU]=ALGG(-ALOG( l.OOOl-FC 1) )J

0096 X(I.=ALGG(V(I>)
0097 SUMX2=SUMX2 X(I)**2
0098 SUMX=SUMX + Xt I)

099 SUMY=SUMY + Y(II
0100 20 SUMXY=SUMXY + X(1)*YIIJ
0101 K=(SUMXY - SUMX»SUMY/Nl I/.SUMX2 - SUMX**2/Nll
0102 6=(SUMY - K*SUMX)/N1
0103 C=EXP(-B/K>
0104 UWTK=K
0105 UWTC=C
136 MMEAN=C*GAMMA( 1.0+1.0/K)

0107 VVAR*C=*2aGAMNA( WQ + 2.0/K) - MMEAN*»2
0108 FCTR=1.0

C*.* CCMPUTE CHl-SCUARE AND POWER RATIO STATISTICS
0109 CALL CHISCIVINT,FREC,W&,NCBS.CHI2L.N,2,DFlf
0110

c
c»

CALL POWER 1 PRAT ED ,HPOWS R , VRATED , VCUTI l\ , VMAX ,V3hfi , WB ,WP1 iCAPFCll

»* WEIBULL FIT WITH A LEAST SQUARES WElGhTEC BY OBSERVED FREQUENCY
0111 SUMX-0.0
0112 SUMY* 0.0
0113 SUMXY-0.0
0114 SUMX2-0.G
0115 D3 iO I-»li'i

0116 Y(I)=ALOG(-AL05(1.0001-F( I)))
0117 X(II*ALGG(VU))
011S SUMX2=SUf'.X2 + FREGI I)*XU)**2
0119 SUMX=SUMX + FREQ(n*XIIl
0120 SUHY=SUMY + FREQtI)*Y(l)
0121 6C SUMXY=SUMXY + FREQI I)*X(I )*Y( I)

0122 K=(SUMXY - SUMX«SUMY)/(SUMX2 - SUMX**2)
0123 B=SUKY - K*SUHX
0124 C=EXP(-S/K»
0125 WTK*K
0126 WTC-C
0127 HM=AN=C* GAMMA, 1.0+1.0/K)
out VVA«=C**2»GAHMAI 1.0+2. 0/K) - HMEAN**2
0129 FCTR=1.0

c»** COMPUTE CHI-SQUARE AND POWER RATIC STATISTICS
0130 CALL CHlSC(VINT,FREQ,WB,NG3SrCHI22.N,2,DF2)
0131 CALL POWER ( PRATED, HPOwER, VRAT ED. VCUTIN, VM4X.V3WB, W8, WP2 .CAPFC2)

c
c»*• CALCULATION BY MATCHING MEAN AND VARIANCE TO KEISULL DISTRIBUTION

0132 CALL W3LFIT(HEAN,VAR,C,K,IER>
0133 IFUER.NE.01 GO TO 35
0134 XHKK-K
0135 XHMC*C
136 MMEAN=C*GAMMAI 1.0+1.0/K)

0137 VVAR=C**2*GAMKAll.O*2.0/K) - NMEAN**2
0138 FCTR = 1.0

c» ft* COMPUTE CHI-SQUARE AND POWER RATIO STATISTICS
0139 CALL CHISQ(VlNT,FRE6iWB,NCBSrCH123,Ni2,0F3I
0140 CALL POWEMPRATED,hPC.iER,VRATED,VCUTIN,Vf'AX,V3W5,WB#WP3»CAPFC3J
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01*1 GO TO 50
0142 35 PRINT 36.IER
01*3 36 FCRMATC FIT BY HATCHING MEAN AND VARIANCE COULC NOT EE ACHIEVED.

1 RETURN ERROR CODE*' #131

C

C*** FIT DATA TO A BETA DISTRIBUTION BY MATCHING MEAN AND VARIANCE
014* 50 VMAX*VINTIN+1)
01*5 AA=<MEAN/VKAX1*(MEAN*(VKAX-MEAN)/VAR - l.C)

Oi*6 BB=(VMAX-MEAN]»AA/MEAN.
01*7 r*MEAN=AA*VKAX/(AA+BB)
0148 VVAP=AA*fiB*VMAX**2/{ ( AA*BE) **2* ( AA*BS+1 .0 1

»

01*9 FCTR=GAMMA(AA + BB 3 / ( VMAX*G AKMA ( A A) »GAHKA tBBl

)

C*** COMPUTE CHI-SCUARE AND POWER RATIO STATISTICS
0150 CALL CHISCtVINT.FREQ.fi ,NCBS ,CH12* ,N

(
2, DF*»

0151 CAlL POWER I PRATED, HPOwER, VRATED, VCUT IN, VMAX ,V3FI .FI , HP*, CAPFC4I

0152 NTIME=NTIME*1
0153 NTIME1=NTI ME-3

C *»» REMOVE COMMENT TC LIST CHI-SOUARE AND POWER RATIC TABLE

C PRINT 160,MCNTH,NTIMEI .NT1ME.CF1 ,CHI2 1 , CF2, CHl 22, CF 3 , CHI 23. Of

4

C 1 , CH I 24, CAP FC1, CAPFC 2, CAPFC 3. CAPFC*

C 160 FORMAT 1 1 4, 3X. 1 2. •-',I2.3X,4C' I M2, • > ', G9 .3 1 , 5X,G 10. 3 ,2X,G10. 3, IX,

C 1 G10.3.4X.G10.3I
0154 PR TNT 160,MONTH,NTIMEl,NTIME,MEAN,STDEV,UhTK,UVTC,WTK,HTC,XHHK,

1 XMMC,AA,BB
0155 160 FCRMATU4,3X,I2.'-' . 12, 4X , F7-3 ,6X , F7.3 , IX ,3 13X , F7 .3 , IX, F7.3) ,3X,

1 2F9.3)
0156 GC TC 99

C**« REMDVE COMMENT TO LIST CHI-SOUARE AND POWER RATIC TABLE

C 98 PRINT 97,IPR,1VR,IVC
r 97 FHSM4T( >-* POWPR RATIO CPMPIITED FHR RATFC POWER * *.I3,

C 1 KM, RATED SPEED = '.12,' MPHi CUT-IN SPEED * *,I2,' MPH« /

C 3 ' ' ,118('-'l/'l*i
0157 98 PRINT 97
015B 97 FORMAT (• , 113 ( '-' 1 /'l 1

I

0159 STOP
0160 END
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0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012

FUNCTION GICUAO (A.BtFN)
•• GAUSS-LEGENDRE QUADRATURE CF FUNCTION FN CVER INTERVAL (A,B1
«* INTEGRAL IS SET TC 1ERG IF LOWER LIMIT LARGER ThAN UPPER LIMIT

REAL** ROOT120] ,WE1GKTI20>
COPMCN/ LINK It NH ALE i ROOT, HEIGHT
GLOUAD.0.0
IF IA.GE.8) RETURN
EA«0.5»(B-AI
AB=0.5*IA*B1
00 10 I-l.NHALF

10 GLGUAD=GLQUAD+WEIGHT(I)»IFNtAe+8A»R00Tt I) > + FNUB-8A»RC0T( 11 I)

GLOUAD=BA*GLO.UAO
RETURN
EHO

0001 FUNCTION F1(V>
C«»« SUBROUTINE CALCULATES VALUES GF EITHER 1 V/VRATEC)»*»3»EETA OR JUST BETA

C DISTRIBUTION
0002 COMHON/LINKl/K,C.AIJiEIJ,VMAXIJ,VRATEG.FCTR
0003 FI = IV/VHAXIJ)»(AIJ-1.)»I1.-V/VHAXIJI»«1B1J-1.1
0004 FI«FCTR»FI
0005 RETURN
nn(16 ENTRY V3FKV1
0007 V3FI=(V/VRATE0I»«3»IV/VHAXIJI»«IAIJ-1.I»(1.-V/VHAXIJ)»»(B1J-1.)
0008 V3FI*FCTR*V3FI
0009 RETURN
0010 ENO

0002
0003

0004
0005
0006

SUBROUTINE POWER ( PRAT EO.HFOWER, VRATED, VCLTIN, VKAX.V3FC, FC ,GEN,
1 CAPFCI
SUBROUTINE COMPUTES GENERATED WIND TUREINE PCWER FROK ANALYTICAL
DISTRIBUTION. ALSO COMPUTES POWER RATIO
EXTERNAL V3FC.FC
GEN=PRATED*(GLQUADIVCUTIN,AKIN11VRATED,VKAXI iV2FCI*

1 GLQUA01 VRATED, VMAX,FC)

)

CAPFC=GEN/HPOW£R
RETURN
ENO
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C

0001 SUBROUTINE CHISCI Z. FREQ, FT, J, CHI, N, ESTPAR ,DF)

C«*» SUBROUTINE COMPUTES CHI-SCUARE VALUE
C ESTPAR • NO. OF PARAMETERS OF A DISTRIBUTION ESTIMATED FROM THE DATA.

C DF = DEGREES CF FREEDOM OF CH-SCUARE DISTRIBUTION
0002 REAL** Z(41) .FREQKll ,FCT(4l) .FREY14U
0003 INTEGER** DF, ESTPAR
000* EXTERNAL FT
0005 CHl'0.0
0006 CO 400 1=1,

N

0007 FREY(I)=FRECU)
0C08 403 FCT(

I

)=GLQUAD(2( I) ,2(1*1) ,FT)
0009 1N0EX1-0
0010 INDEX2*Q
0011 DC 401 II*ltN
0012 JJ=N*1-II
0013 XNUM=J*FCT( JJ)
0014 IFIXNUM .GE. 1.01 GO TO 401
0015 IFUJ .EO. 1> GO TO 402
0016 INDEX2=INDEX2*1
0017 FCT( JJ-II=FCT(JJ-1)+FCTUJI
3 018 FFEY( JJ-l)=FF.£Y(JJ-l)*FREYt JJ)
0019 NNN=N-JNDEXi-IN0EX2
0020 GO TC 401
0021 402 FKEY<21=FSEY( 1)*FREY(2I
0022 FCT(2)=FCT(1)+FCTI2»
0023 INDEX1=INDEX1+1
0024 NNN=N-INDEX1-IN0EX2
00<;5 DL -rUi ill=l,ftrm
0026 FCTIMIJ=FCT(IUH)
0027 403 FREYIII I ) = FREY 1 111*1

1

0026 401 CONTINUE
029 NN-N-INDEX1-INDEX2

0030 CO 405 1*1 ,NN
0031 CH12=(FCTI II-FREYd J)**2/FCT(II
0032 CHI2=CHI2*J
0033 405 CHI=CHI+CHI2
0034 IFdNOEXl .GE. 1 )IN0EX1 = I N0EX1*1
0035 IFI1NDEX2 .GE. 1 U.\0EX2=INDEX2+1
0036 DF=tJN-l-ESTPAR
0037 RETURN
003S END
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0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018

0019
0020
0021

0022
0023
:::-.

0025
0026
0027
0028

0029
0030
0031

0032
0033
034

0035

SUBROUTINE WBLFIT(MEAN,SI02,C.K,IER1
C»»» SUBROUTINE COMPUTES STARTING POINTS FOR KUELLER'S ITERATION

REAL*4 K,MEAN
CCMMCN/KBL/ALPHA
EXTERNAL F
IER=0
ALPHA* 1.0+SIG2/MEAN**2
IF (ALPHA. GT. 0.01 GO TO 12
PRINT 13, ALPHA

13 FORMAT! ALPHA IS NEGATI VE>' ,G15. 7, l>C SOLUTION PCSSIELE'l
IER»4
RETURN

C»*« CALCULATE INITIAL STARTING POINTS WHICH BRACKET SOLUTION FOR K

C«»« SEARCH FOR THE LEFT HAND STARTING POINT
12 00 10 1-1,100,2

X=l.oool/I
AA*F(XI
IF(AA.GT.O.O) GO TO 15

10 CONTINUE
PRINT 11, X.AA, ALPHA

11 FORMAT!' CCULO NOT FINO LEFT HAND STARTING POINT OR RAN OUT OF IT£

1RATI0NS',/' X«',G12.4i' F(XI=',G12.4,' ALPhA= • ,G12.4I
IER»3
RETURN

15 Xl-X
C*** SEARCH FOR RIGHT HANO STARTING POINT

00 20 1*1,50
X-XL+I
>'.-F!X)
IF (AA.LT.O.O) GO TO 25

20 CONTINUE
PRINT 21, X.AA, ALPHA

21 FORMAT!' COUCO NOT FINO RIGHT HANO STARTING POINT OR RAN OUT OF IT

1ERATICNS',/' X=',G12.4,' F( X) ' ,G12.4, ' ALPHA" ,G12.4)
I£R»3
RETURN

25 XR»X
C

C*»* SOLVE FOR C ANO K
CALL RTMI(K,FN,F,XL,XR,O.COQOOI,100,IERI
C=MEAN/GAMMA( 1.0+1.0/X)
RETURN ;

ENO
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0001 FUNCTION WBCV)
C*»* SUBROUTINE CALCULATES VALUES OF EITHER ( V/VRATEC)**»3*WSIBJLL OR JUST

C V.E1BULL DISTRIBUTION
0002 C0MMCN/LINK1/AIJ,BIJ,AA,BE,VMAXU»VRAT€C,FCTR
0003 XN*tV/BU)**AU
000* IFIX8 -ST. 170.) GO TO 370
0005 Ke=IAIJ/eiJ)»lV/BIJ)**<AIJ-ll*EXP<-XN)
0006 RETURN
0007 ENTRY V3V.BCV1

0008 XN=(V/BIJ)**AU
0009 IFtXN .GT. 170.) GO TO 370
0010 V3WB»IV/VKATSD}*»3»UIJ/aiJ)*(V/BIJ)**( A I J- I ) «EXP(-XN)

0011 GC TO 371
0012 370 *B=0.0
0013 V3WB=0.0
0014 371 RETURN
0015 END

0001 REAL FUNCTION F*4(XI
0002 COMMON/ WBL/ ALPHA
0003 REAL** FF.XX

C**» EXTERNAL FUNCTION NEEDED BY SUBROUTINE RTNl
000* xx=x
005 FF=GAKMAt 1.0+2.0/XX) / I G AMMA I 1.C+ 1 . U/XXJ 1 "*

0006 F«FF-ALPHA
0007 RETURN
0008 ENO
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SUBROUTINE RTH1

PURPOSE
TO SOLVE GENERAL NONLINEAR EQUATIONS OF THE FORM FCTIXI-0

BY MEANS OF MUELLER'S ITERATION METHOD.

USAGE
CALL RTMI (X,F,FCT,XLI,XRI,EPS,IENO,IERl
PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT.

10
20
30
40
50
60
70
80
90

DESCRIPTION OF PARAMETERS
X - RESULTANT ROCT CF EQUATION FCTIXI-O.

F - RESULTANT FUNCTION VALUE AT ROOT X.

FCT - NAME OF THE EXTERNAL FUNCTION SL3PRCGRAM USED.

XLI - INPUT VALUE WHICH SPECIFIES THE INITIAL LEFT

OF THE ROOT

RTH1
RTMI
RTMI
RTHI
RTMI
RTMI
RTMI
RTMI
RTHI
RTHI 100
RTMI 110
RTMI 120
RTMI 130
RTMI 140
RTMI 150
RTMI 160
RTHI 170

BOUND RTMI 180
RTMI 190

XRI

I END
IER

- INPUT VALUE WHICH SPECIFIES THE INITIAL RIGHT BOUNDRTMI 200

OF THE ROOT X. "MI 210
- INPUT VALUE WHICH SPECIFIES THE UPPER BOUND CF THE RTHI 220

ERROR CF RESULT X. R™I 230
- MAXIMUM NUMBER OF ITERATION STEPS SPECIFIED. RTMI 240
- RESULTANT ERROR PARAMETER CODED AS FCLLOWS RTHI 250

IER=0 - NC ERROR, RTTII 260

I£R*1 - NC CONVERGENCE AFTER I END ITERATION STEPS RTMI 270

FOLLOWED BY IEHD SUCCESSIVE STEPS OF RTHI 280

BISECTION,
TFP = ? - BASIC ASSUMPTION FC T ( X L 1 1 »FCT I XR 1 1 LESS

ThAN CR ECUAL TO ZERO IS NOT SATISFIED.

RTMI 290
RTMI 300
RTMI 310
RTMI 320
RTMI 330
RTMI 340
RTHI 350

THERTMI 360
RTHI 370
RTMI 380
RTMI 390
RTMI 400
RTMI 410
RTMI 420

METHOD RTMI * 3 °

SOLUTION OF EQUATION FCT(XI=0 IS CCNE BY HEANS CF MUELLER'S RTMI 440

ITERATION METHOD OF SUCCESSIVE BISECTIONS AND INVERSE RTHI 450

PARABOLIC INTERPOLATION, WHICH STARTS AT THE INITIAL BOUNDS RTMI 460

XLI AND XRI. CONVERGENCE IS 5UADRAT IC IF THE DERIVATIVE OF RTMI 470

FCTIXI AT ROOT X IS NCT EQUAL TC 2ERC. ONE ITERATION STEP RTMI 480

REQUIRES TWO EVALUATIONS OF FCTIXI. FOR TEST ON SATI SF ACTORYRTMI 490

ACCURACY SEE FORMULAE (3,41 OF MATHEMATICAL DESCRIPTION. RTMI 500

FOR REFERENCE, SEE G. K. KRISTIANSEN, 2EPC CF ARBITRARY RTMI 510

BIT, VOL. 3 119631, PP. 205-206. RTMI 520
RTHI 530

'. RTMI 540

REMARKS
THE PRCCECURE ASSUMES THAT FUNCTION VALUES AT INITIAL

BOUNDS XLI AND XRI HAVE NOT THE SAfE SIGN. IF THIS BASIC

ASSUKPT1CN IS NCT SATISFIED SY INPUT VALUES XLI AND XRI,

PROCEDURE IS BYPASSED AND GIVES THE ERROR MESSAGE IER=2.

SUBROUTINES AND FUNCTION SUBPROGRAHS REQUIRED

THE EXTERNAL FUNCTION SUBPROGRAM FCTIXI MUST BE FURNISKE

BY THE USER.

FUNCTION,

SUBROUTINE RTHI I X ,F .FCT ,XLI ,XRI .EPS ,1 END, IER)

RTHI 550
RTMI 560
RTMI 570
RTMI 580
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C PREPARE ITERATION RTMI 590

0002 1ER="0 RTHI 600

0003 XL-XLI RTMI 610

0004 XR=XRI RTNI 620

0005 X=XL RTMI 630

006 TOL = X RTMI 640

0007 F=FCTITOLI RTMI 650

OOOS IF(F)lil6,l RTMI 660

0001 1 FL-F RTMI 670

0010 X=-XR RTMI 680

0011 TCL=X RTMI 690

0012 F»FCT(TOLI RTMI 700

0013 'IF 12,16,2 RTHI 710

0014 2 FR»F RTMI 720

0015
c

IF(SIGN(1.,FD-»SIGNI1.,FRII25,3,25 RTMI 730
RTMI 740

c eASIC ASSUMPTION FL*FR LESS THAN IS SATISFIEC. RTMI 750

c GENERATE TOLERANCE FOR FUNCTION VALUES. RTHI 760

0016 3 1-0 RTHI 770

0017
c
c

TOLF»100.»EPS RTHI 780
RTHI 790
RTHI 800

c START ITERATION LOOP RTHI 810

ooia
c

4 1-1*1 RTMI 820
RTHI 830

c START BISECTION LOOP RTMI 840

0019 DC 13 K«1,1EN0 RTHI 850

0020 X=.5»CXL«XRI RTMI 860

0021 TOL»X RTMI 8f0

0022 F»FCT(TOLI RTHI 880

023 IF(FI5,16,5 RTMI 890

0024
c

5 IFISIGNI1.,FI+SIGN(1.,FR))T,6,7 RTHI 900
RTHI 910

c INTERCHANGE XL ANO XR IN CROER TO GET THE SAKE SIGN IN F AND FR RTMI 920

0025 6 TOL=XL RTMI 930

0026 XL=>XR RTHI 940

0027 XR»TOl RTHI 950

0028 TOL'FL RTHI 960

0029 FL=FR RTMI 970

0030 FR»TCL RTHI 980

0031 7 TOL»F-Fl RTHI 990

0032 A=F*TGL RTMI1000

0033 A=A*A RTHI1010

0034 IFtA-FRMFR-FL) 18,9,9 RTMI1020

0035 S 1F(I-IENDI17,17>9 RTHI1030

0036 9 XR«X RTMU040
0037

c
FR-F RTHI1050

RTMI1060

c TEST ON SATISFACTORY ACCURACY IN BISECTION LOOP RTMU070
0038 TCL=EPS RTHI1080

0039 A.ABSIXRI RTHII090

0040 IFIA-1. 111,11,10 R7NI1100

0041 10 TCL=TOL»A RTHU110
0042 11 IF(ABS(XR-XL>-TOL 112,12,13 RTMIU20
0043 12 IF(AES(FR-FL)-T0LF)14,14,13 RTMU130
0044 13 CONTINUE RTHU140

c END OF BISECTION LOOP RTHU150
c RTM1U60
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C NO CONVERGENCE AFTER IEN0 ITERATION STEPS FCLLCWED EY I END RTMIH70
c SUCCESSIVE STEPS OF BISECTION OR STEADILY INCREASING FUNCTION RTMI1180
c VALUES AT RIGHT BOUNDS. ERRCR RETURN. RTMI1190

0045 IER.l RTNI1200

0046 14 IF (ABSIFRI-ABStFDI 16,16,15 RTMI1210
047 15 X-XL RTHU220

0046 F.FL RTHI1230
0049 16 RETURN RTMI1240

c RTM1250
c COMPUTATION OF ITERATED X-VALUE BY INVERSE PARASOLIC INTERPOLATIONS TMI1260

0050 17 A=FR-F RTNI1270
0051 DX«[X-XL]*FL»II.»F»IA-TCL)/[A»IFR-FLIII/TQ. RTNI1280
0052 XN-X RTMI1290
0053 FH»F RTHI1300
0054 X.XL-OX RTMU310
0055 TOL-X RTNU320
005b F-FCTITOLI RTNI1330
0057 IFIFI18,16,18 RTMI1340

c RTHI1350
c TEST CN SATISFACTORY ACCURACY IN ITERATION LOOP RTNI1360

0058 18 TOL-EPS RTHU370
0059 A-ABS(X) RTMI1380
0060 IFIA-1. 120,20,19 RTHI1390
0061 19 T0L>70L»A RTM 11400
0062 20 IF(AESICXI-T0L)21,21,22 RTHU410
0063 21 IF(ABSIFI-T0LF)16,16,22 RTHI1420

c RTKI1430
c PREPARATION OF NEXT EISECTICN LOOP RTMU440

0064 22 IF;ClCN!l.,r;:SI0N:i.,rL!I24,23,24 RTMI1150
0065 23 XR.X RTHI1460
0066 FR»F RTHI1470
0067 GO TO 4 RTHI1480
0068 24 Xl-X RTHI1490
069 FL"F RTHU500

i

0070 XR-XN RTNU510
0071 FR-FN RTBII520
0072 GO TO 4 RTMI1530

c END OF ITERATION LOOP RTHI1540
c RTHI1550
c RTHU560
c ERROR RETURN IN CASE OF WRONG INPUT DATA RTK11570

0073 25 IER=2 RTHI1580
0074 RETURN RTBI1590
O075 ENO RTHI1600



165

APPENDIX B

2
X and Power Ratio Tables

2
This appendix lists the remainder of the tables showing the %

and power ratio statistics for the remaining 16 locations. The table

format is identical to the format used in Table 2.6-2.
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APPENDIX C

The Program BLOHARD

The purpose of this program is to find the economically optimum

WTGS to serve a particular demand load given sufficient wind speed

data. There are two versions of BLOHARD which differ only in the

input wind speed data. Version A uses the observed wind speed data in

its calculations, while version B assumes the wind speed distributions

are given by a beta distribution. The program is written in FORTRAN IV

for use on the Kansas State University ITEL AS/5 System (equivalent

operationally to an IBM 370/158) . Because of the liberal amount of

comment cards in the listing which follows and the variable names of

high mnemoic content, only a brief modular description of the program

is given. Following the program listing is a sample output.

BLOHARD maximizes the objective function of Eq. (3.2-22) according

to the methodology described in Section 3.2. The subroutine OBJN per-

forms the calculations necessary for the optimization methodology. The

WTGS cost model is calculated in the subroutine MONEY. Although only

one cost function is specified, MONEY is capable of using another cost

function of the same form as the functions given by Eqs. (3.2-20) and

(3.2-21). The calculations required in the simplex search pattern are

performed by the subroutine SIMPLEX. Finally, the BREZE subroutine

determines the maximum and minimum power requirements and maximum

wind speed of the input data.
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FORTRAN IV G LEVEL 21 HAIN DATE - 78135 23/29/01

C*******»t*w*»***«t«*»t****>*i»i* Bl CHARD *•»«»**»***'*•*****»*»*«***•**»#*»*
c»
C» THIS PROGS AN MATCHES DAILY HINT SPEED 01 STRi BUTIChS TC THE REOUIREO DAILY
C» LOAO DEMAND. THE WTGS IS OPTIMIZED TG FIND THE BEST SUED SYSTEMU.E.
C* OPTIMUM RATED PD.EP. AND RATEC SPEED) SO AS TC MAXIHI2E THE ELECTRICAL
C» SAVINGS. BETA DISTRIBUTION OR OBSERVED HIND SPEED DISTRIBUTION CAN BE USEO
C»
C«
C» INPUT DATA: (VERSION A - EETA DISTRIBUTION AS KIND SPEED MCDEL)
C«
C» CAPO I FORHAT (12)
C» NHALF . THE HALF VALUE OF THE EVEN ORDER GAL'SS-LEGENDRE OUADRATURE
C* USED TO EVALUATE THE NECESSARY INTEGRALS.
C»
C* CARC 2 FORHAT (4920*01
C* ROOTMi - CUADRATURE ORDINATESIONLY POSITIVE VALUESI
C» (HAY BE MANY CAROS)
C»
C* CARD 3 FORHAT (AG20.01
C» HEIGHT! II = CUADRATURE HEIGHTS
C* (HAY BE MANY CAROS

I

C»
C* CARD A FORMAT (£I5,2G10.0I
C» NDINT • NUMBER CF DAILY SUBINTERVALS FCR HUE AND LOAD DATA
C* NYINT a NUMBER CF SEASONS FOR WHICH HIND AND LEAD DATA ARE GIVEN
C* NYEARS * NUMBER CF YEARS HTGS IS AMORTIZES
C* INT = YEARLY INTEREST RATE
C» ICCST « NUMBER CF WIGS COST FUNCTION LSEOCTkO ARE POSSIBLE!
C* VREFU1 t REFERENCE RATED SPEED HF FIRST WTfS CrKT FUNCTIONIKNOTSI
C* VREFI2) REFERENCE RATEC SPEED CF SECOND HTGS CCST FUNCTICNIKNOTS

J

C»
C* CARD 5 FORMAT IBG10.01
C» 2(1) - INITIAL SIMPLEX POINT RATED PCWER(KU)
C* Z(2) = INITIAL SIMPLEX PCINT RATED SPEED(KNCTS)
C» EPSI « CONVERGENCE CRITERION OP SIMPLEX TECFNICUE
L* FRACT1 = FRACTION OP LOAD MAXIMUM PDkER DEMAND USEO AS STEP SUE IN
C» SIMPLEX TEChNIQUE
C» FRACT2 = FRACTION OF MAXIMUM HIND SPEED USED AS STEP SIZE IN SIMPLEX
C» TECHNIQUE
C*
C» CARD 6 FORMAT (20AAI
C« TITLE - TITLE CARD FCR PROBLEM TO BE ANALYZED
C»
C* CARD 7 FORMAT (8G10.0)
C» MEAN » MEAN HIND SPEEO IN M-TH DAILY INTERVAL OF MM-TH SE4S0NIKN0TSI
C* VAR « VARIANCE IN HIND SPEEDS IN M-TH DAILY INTERVAL CF MM-Th SEASON
C» [KU!ITS**21
C» VMAX(K,MM1 • HAXIMJM HIND SPEED IN M-TH DAILY INTERVAL OF HM-TH SEASON'
C* (KNGTSI
C* (MAY BE MANY CAROS)
C»
C* CARD 8 FORMAT (8010.41
C» PLCAOIl.JI = AVERAGE POWER REQUIREMENT FOR THE I-TH DAILY INTERVAL IN
C« J-TH SEASCN(tCk). (HAY EE MANY CARDS)
C*
C* CARD 9 FORMAT (2G10.0)
C* SBUY « COST OF PURCHASED ELECTRICI TY I i/KWHI
C» tSEL ' VALUE CF ELECTRICITY SOLDIJ/KWHI
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FORTRAN IV G LEVEL 21

C»
C»
C» INPUT DATA
C»
C» CARD 1

c» INN
c»
c» CARD 2

c> ivin
c«
c» CARO 3

c»
c»
c* CARD A

c«
c«
c» CARD 5

c»
c*

HAIN DATE 78135

tVERSION 6 - OBSERVED HINO SPEED CISTRIEUTION USED)

SUBINTERVALSIUSUALLY 11')

FORMAT 1131
TOTAL NUMBER OF POSSIBLE SPEE

FORMAT (12F5.2)
(II = ENDPOINTS OF WIND SPEED SUB INTERVALSIKNCTS)

FORMAT I5I5.ZG10.SI
(SAME AS CARO A - VERSION Al

FORMAT (8G10.0I
(SAME AS CARD 5 - VERSION Al

FORMAT (20A4)
[SAME AS CARD 6 VERSION A)

CARD 6 FORMAT 1 12, 13, 1014 , 1 E, IS!
MCNTH = MONTH FROM WHICH SPEED DATA IS OBTAINED
NTIME = DAILY TiME PERIOD FROM WHICH WIND SPEED CATA IS OBTAINED
IFREQ(I) = FRECUENCYU 1C00I OF CBSERVATICNS IN l-TH SPEED SU5INTERVAL*

(BEGINNING WITH FREQUENCY IN 2ND SPEED SUB1NTERVAL1
NUKMY = SPACE FOR DATA IDENTIFICATION PURPCSES1CAN ALSO BE USEC TO ACO»

TWO MORE SPEED SU3 INTERVALS)
NCES TOTAL NUMEER OF WING SPEED DATA OBSERVATIONS

(MAY BE MANY CARDS)

0001
0002

0003
000*
0005
0006

0007
oooe
ooos
0010

c* (SAME AS CARD 3 • VERSION A)
C»
c« CARO 8 FORMAT (2G10.0)
C* ISAME AS CARD 9 - VERSION A)

C*
C* WRITTEN BY L. A. PCCH , KANSAS STATE UNIVERSITY, JANUARY 1978
C*
£*=*** *********************************************** ft*************************:
C

IMPLICIT REAL»8(A-H,0-Z,$)
P.SAL* S FRECK1) , VI 4 1 ) , FIS1 ) ,T ITLEI20I , I VINT (41 J

,

X FCTM6»4) .A(8,4)tS(8»4),Z<2> .STEP ( 2 ) , PLCAO ( 5 , < J ,V:J.AX(8,4)
REAL*8 Y(41),RC0T(20) ,WEI GHlf 20 1 ,X( 41 J ,HN(6 ,i) , VR ( 3 , 4) , VREF (2)

REAL*6 HKEAf,,HAXSAV|MEAN»K
INTEGER** IFREQI21)
CQMMCN/i.INKl/A,S.PL0AD|FCTR ( VMAX,VSEF,SDYS|HRS,*3L

,

Y f SSELtCRFf
1 VCUTIN,NYINT,NDINT,ICOST
CCKMCN/LINK2/AIJ,£lJ,VMAXIJ,VRATED,PfiATED,FRACT3 ( FRACT4
CCMMCN/LINK3/RCCT,WEIGHT,NHALF
REAL* 5 FRECNf 12,8,4) , VI NT ( 12 , 8 ,41 ,MIM<8,4)
C0MMCN/LINK4/FREQN,V1NT,MIN

C*** REMOVE COMMENT IF VERSION A IS TO fiE USEC ANC ACC COMMENT TO APPROPRIATE
C VERSION B CARDS
C READ15,113JNHALF
C 113 F0RMATU21
C READ (5, 12HR00TII),I = 1,NHALFI
C READ I 5, 12 J (HEIGHT! I ) , I=l,NHALFI
C 12 FQRHATI4G20.0)
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FORTRAN IV G LEVEL 21 MAIN DATE = 76135

0011
0012
0013
0014
0015
0016
0017
0016
001?
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
034

0035
0036
0037
0C3S
0039
0040
0041
0042
0043
0044
045

0046
0047
004»

C

c***
c

c

c

c

C READ 10,NDlNT,NYH,T,NYEARS,INT,ICCST,VREF(ll,VREFt2J
C 10 FCRMAT15I5.2G10.0I
C READ l,Z(lliZI2i ,ERSI.FRACT1,FRACT2
C 111 READI5.100I TITLE
C 100 FCRMAT(20A4>
C kRITE{6,110) TITLE
C 110 FCRMATl '1' ,20A4I
C DC 170 MM=1,NYINT
C DO 170 H-l.NDINT
C READ1,MEAN,VAR,VHAX(H,MN)

1 FORMATI8G10.0I
FIT DATA TO A BETA DISTRIBUTION BY HATCHING MEAN AND VARIANCE
A[M,HM)=(MEAN/VMAX(M,MM1)*IMEAN*(VMAX(M,MM)-MEAN)/VAR-1.0DO)
6(M,MK)=f VMAXIM,MV1-MEAN)«AIM,MM)/MEAN
VVAR=AtM,MK>»BlK,M-l)»VKAX(M,MMI»«2/[(A(«,MKl»Bll'.,HM>l»»2»<A<H,MM)

X *B(F,HH)+I. 000)1
MMEAN=A(M,MM)*VMAX(H,MM)/ [AM,MM]+8IM,HK))
FCTR(M,MM] = DGAM,".A(A(M,MH)-»B(M,MH) 1 / ( VMAX( M, MH1 »DGAMMA( A I H.HNI )

X »DG-AKMA(BtH,HH) ))

*** BEGIN VERSION B

READ(5,2) INN
2 FCRMATII3I

NN-INN+1
READ! 5,111 [IVINTU),I-1,NM

11 F0RHATI12F5.21
READ 10. KD1 NT, NY INT, NYE ARE, INT, ICDST.VREFUJ ,VREF{2)

10 FCRKAT(5I5,2G10.0I
READ 1,2( 11,21 21, EPSI,FRACT1,FRACT2

1 FCR MAT '.8GI0;01
111 READ(5,1001 TITLE
100 FCRMAT(20A4)

kRITE(t,110> TITLE
110 FCRMATl '1' ,20A41

OC 170 MK=1,NY1NT
DO 170 M-l.NOINT

99 N-INN
DC 172 I-l.NN

172 VINT<I,M,MKI«IVINTUI
VMAXtF.MHI* IVINT(NN)
READ!5,101>MGNTH,N7IM£,(IFRE0(I),I-2,NI,NUMMY, NOBS

101 FCRMATl 12,12,1014,18,151
DC 401 1-2,

N

401 FREQIII-OFLOATUFREQIIH/IOOO.OO
SUM-O.OOO
DC 54 1-2,

N

54 SL'M-SUMIFREOII)
FP£0(1)-1.0D0-SUH
SUH-SUH»FREC(1>
SUMI-O.ODO
DC 41 1-1,

N

5UMl=SUMl»FRE0tI>
41 Ftll-SOMI

OC 130 I-l.N
IF(FII) .GE.

130 CCNTINUE
131 N-I

MIM<M,MM)*N
SUM2-0.000

9.9999990-01) GO TO 131
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0049
O050
0051
0052
0053
0054

0055
0C5t
0057
0058
0059
0040
0061
0062

0063

064
0065
0066
0067
0066
0069
0070
0071

072
0073
0074
0075

0076
0077
0078

0079
0080
0081
0082
0083
0064
0085
0086
00S7
0C88

0089
0090
0091
0092
0093
094

0095

CO 46 IK=1,N
SUM2=SUM2+FREQtIKl
FI1K]»SUN2
Y! 1K)=V!NT( 1K+1 ,M,MK1-VINT( IK,H,MN>
V<m=C.5D0*(VINT(IX*l,M,PMl+VINTUK,N,KK))

46 FREQN[IK,M,HMI = FREQII!0/YC1K»
C

C*»* CALCULATE MEAN AND VARIANCE OF HIND DATA

MEAN=0.0DO
VAR=0.000
CO 30 I'liN

30 NEAN=HEAN+V11>*FRE0I II

DO 31 I-l.N
31 VAR=VAR + (V(I>-M£AN)**2*FREQIII

MNIM,fMI=H£AN
VPtM^HI-VAR

C*** END VERSION B

170 CONTINUE
C

C*»* READ IN LOAO DATA
HRS=24.0DO/NDINT
SDYS=365.OD0/NYINT
SHRS=24.0D0*S0YS
00 21 J*1,NYINT

21 READ 112, CPLOACIl,J],I=liNDINTJ
112 FCRMAT18G10.4I

PRINT 22.HRS
22 F0RMATI//'0AVERAGE VELOCITY FOR ENTERPRISE DURING EACH',G10.3,

1 'HOUR INTERVAL BEGINNING AT MIDNIGHT (IN KN0TS1:'!

00 26 J=1,NYINT
26 PRINT 16,J,IKN(I,J> ,I»l.NUNTI

PRINT 23, HRS
23 FORMAT! // ' CELECTRICAL POKER DEMAND FCfi ENTERPRISE DURING EACH'

1,G10.3,'HOUR INTERVAL BEGINNING AT MICNI.hT UN KWI :
" I

DO 25 J=1,NYINT
25 PRINT 16,J,(FLCAD(1,J>,I=1,NDINT>
It FORMAT! SEASON', 12,': • , 10G1 1.4 ,/( 13X.10G11 .4)

I

C
C**» CALCULATE AVERAGE POWER NEEDS

HAV=0.0DO
PAV=O.ODO
DC 300 J-l.NYINT
DO 300 I-l.NDINT
WAV=WAV+MN( I, J)

300 PAV=PAV+ PL0A0U,JI
WAV=WAV/(NDINT*NYINTI
PAV=PAV/(N01NT«NYINTI
PRINT 311,P»V,kAV

311 FORMAT I //'OAVERAGE POWER REQUIREMENT* ,G12. 5 , KW. ' ,5X,

! 'AVERAGE WINE SPEED= ' , G12.5 , 'KNOTS '

I

CALL en = ZE(PLOAD,NaINT,NYINT,PMAX.,PMIN,VMAX,VMAXX)
ppiNT *4, PMAX,PH1N

34 FOHUTC EXTREMA CF POWER RECUI REMENTS^ ARE' ,2G15.8, "KW. I

1111 REAOI5,3S0,EN0-98) 5BUY,»SEL
350 FCRMATI2G10.0I

PRINT 35,iBUY,$SEl
35 FORMAT!//' ASSUMED COST OF ELECTRICITY - '.G10.3,' [J/XWH1V

1 ' VALUE OF ELECTRICITY SCLD - '.G10.3,' (S/KWM'I
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C
C** CALCULATE OPTIMUM SAVINGS AND fcTGS PARAMETERS

0096 PRINT 33
0097 33 FORMAT(//'OGEN. RATING VRATEO VCUTIN ANN. WIND

XCOST GEN. ELECT. PURCH. ELECT. SCLO/UASTED ANN. NET SA
XVINGS' ,/,5X,MKWI« ,T18, ( KT S I ' ,T2E, '(KTS) ', T53, »(il »
X T6S,'tKUH> I ,T65,'(KUH)" ,7101,' UWril' ,T120."(1I'I

0098 SPCAF=(1.DO»INT/1CO.DOI»»NYEARS
0099 CRF=SPCAF»INT/100.DO/(SPCAF-1.DO>
oioo ziii-zin
0101 2(21=212)
0102 S7EPI n=PMAX*FRACTl
0103 S7EP

[

2)=VMAXX*FRACT2
010* CALL SIMPXI Z,MAXSAV,2,STEP,1CC,100, EPSI ,1 .000,0. 5D0, 2. 0001

C

C».« PRINT FINAL ANSWERS
0105 VCUTIN=A. 6*15890-01*2(21
0106 MAXSAV=-MAXSAV
0107 PRINT 4*, 2(11, ZI2I, VCUTIN, MAXSAV
0108 ** FCRMATCO' .//'ODPTIMUM GENERATOR SI 2E=' , G10 .3, 'KW* , SX, 'RATEO SPEEO

1 = '.G10.3,UKTS)',5X,'CUT-IN SPEEDs'.GlO.S.'IKTSI'.SXi
2 /' MAXIMUM SAVINGS ($}=*, G15. 8)

0109 GO TO 1111
0110 98 S1CP
0111 END
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0002
0003

000*
0005

0006
0007
O008
0009
0010
0011
0012
0013
0014
0015
001b
0017

0016
0019
0020
0021
0022
0023
0024
0025
0026

SUBROUTINE OB JN[ X.NETSAV.NI
>• SUBROUTINE COMPUTES VALUES NEEDED IN ECONOMIC OBJECTIVE FUNCTION

IMPLICIT REAL"8IA-H,C-Z,*I
REAL*£ X(2),A[a,4),Bi6,41 »PIGA01S,*) , FCTP. (8,4) ,DEFICTIB,4),

1 BUY(e,4),SELIE,4l,£XC£SS(8,4],GENCB,4l,VMAXl6,4I,VREF(2l
R£AL»6 NETSAV, LIMIT
CCMMCN/LINKl/A,B,PLOAD,FCTR,VMAX,VKEF,S&rS,HRS,»BUY,»SEL>CRF t

1 VCUTIN,NYlNT,t.DINT,ICOST
COMMOK/LINK2/AIJ,B1J,VMAX1J,VRAT£0,PRATED,FRACT3,FR«CT*
REAL»6 FRECNI 12,8,41 ,VINT ( 12, 8, 41 ,MIM( 8,4)
C0MM0N/LINK4/FRECN,VINT,MIM
PRATED=X( 1)

VRATED-XI2I
IFIVRATEO .GT. O.DO .AND. PRATED .GT. O.DOI GO TO 10

NETSAV 1.0010
RETURN

10 VCUTIN=4.641589D-01*VRATED
SUMBUY=C.OD0
SUMSEL=0.OD0
SUMGEN=C.OD0

«• REMOVE COMMENT IF VERSION A IS TO BE USED AND ACC COMHENT TO APPROPRIATE

VERSION B CARDS
EXTERNAL FI.V3FI
DC 40 I=1,NDINT
CO 40 J*1,NYINT
AIJ'AII.JI
r? ij=bi I . j>

VMAXIJ-VHAXII.JI
1FIPRATED .GT. PlOADIl.J)) GO TO 20
BUY! I, J! 'PLCADII. J)-PRATEO»FCTRI I , Jl »1 GLCUACIVCUTIN, 0MIN1

1 (VRATED,VMAXIJI,V3FIlfGLCUAD(VRATED,VMAXlJ,FII)
SELIl.JI'O.ODO
GO TO 30

20 VO=VRATED»(PLOAD 1 1, J I /PRATED) «»3. 3333333223333330-01
LIM1T=DM!N1(V0,VMAXIJ)
IFIVO .LT. VCUTIMLIMIT=DPAX1(V0,VCUTINI
IFIVCUTIN .GE- VMAXIJI LIMIT = VMAXU
BUYII.JI .FCTRU,JI»(PLCAC(I,J)»GLCL'«C!C.000,LIHIT,F1I

1 -PRATED*GLCUAD( VCUTIN.DMINU VO .VMAXU) , V2F 1 1 )

SELII.JI .FCTR(l,JI*lPRATED»IGLuU.\DlOMAXl(VC,VCUTINI,DMINl
1 (VRATED.VMAX1J) ,V3FI)
2 ,GL0UA3IVRATED,VBAXIJ,Fll>-PL0Aull , JI«GLCUAD( CM.AX1

1

VD, VCUTINI ,

3 VMAXIJ,FII)
30 GENII,J)=PLCAD(I,J>-euYU,JI

5UMBUY=SUMBUY+8UY(I ,J)

SUKS£L"SUKSEL+SEL(I,J1
40 SUMGEN=SUMGEN+GENU ,J1

** BEGIN VERSION 8

DC 306 H=l ,NDINT
CO 306 MM=1,NY!NT '

MI=MIMH,MH)
H3UY=O.0DO
HSEL»0.000
IFtPRATED .GT. PLCADIM.MM)) GG TO 320
CO 300 1-1 .HI

IF(V INTl 1 + 1,M,MM) .LE. VCUTIN1G0 TO 300
1FIVINTC1 ,K,MM) .GE. VRATEOI GO TO 304
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0027

0028

0029

OO30

0031
0032
0033
0034

0035
0036

0037
0036

0039
0040
0041
0042

0043
0044
0045
046

0047
0048
0049
0050
0051

0052

0053

0054

0055

0056

0057

0058

0059
0060
0061
0062

IV G LEVEL 21 OBJN DATE - 7E135

.LE. VCUTIN .ANO. VINT! J*li N,MM .GE.

.LT. VCUTIN .AND. V IN7I 1*1, K,MK] .LT.

.LE.

.07.

23/29/01

VRATEO)

VRATEOI

VRA7E0I

VRATEOI

IF(VIN7U,M,MMI
1 GO TO 302
IFIVINTII ,M,MM]

1 GO TO 303
IFIVINTII, K.MHI .GE. VCUTIN .AND. VINTI 1*1. KtHp.l

1 GC TC 305
IFIVINTII ,M,MM) .GT. VCUTIN .AND. V1NTI 1*1 ,K,M* )

1G0 TG 333
PRINT 32, i ,M, MM, PRATED, VRATED

32 FORMAT! 'OINTERVAL ODES NOT FIT ANY CATEGORY' ,/ ,315,2G15.7J
GC TC 300

333 HBUY=HBUY+( 0.2 5DO*(VR A7ED**4- VINT ( I,M, MM 1**41 /VRA7EC**3*
1 VINT (I+1,M,MM)-VRATED)*FREQNII ,M,HHI
GC TC 300

30 2 HBUY =H5UYM0.25D0*I VRATED**4-VCUTIN**4) /VRATED**3*VINT( I+1,M,MN)-
1 VRATED)*FREQN(I,M,HM
GO TO 300

303 HBUY = HBUY-*.25DO*FREOHU,M,MK)*(VINT1I*1,N 1 MM)*»4-VCUTIN**4I/VRATEO
1 **3
GO TO 300

304 HBUY=KBUY*FRE0NI!,H,MM)*(VINT!H-1,M,MM)-VIN7II ,M,M1I
GC 70 300

335 HB>JY=HEUY + 0.25D0*FREQN(I , M , MM)* I VINTI 1*1 ,*, MM 1**4-
1 VINTtl.M f MM)**4)/VRATED**3

300 CONTINUE
BUYIM,MH)=PLCADtM,MM)-HBUY«PRAT£D
SELIK,MM)*HSEL
GO TO 330

320 VD=VKAI tU'l^LUA^lM.MMj/CRArtU)**^. iiiiiiU-(il
DO 301 1 = 1 ,MI

IF(VINT[I+1,M,MM) .LE. VCUTIN) GO TO 311
IFIVINTI I,K,MM) .GE. VRATED) GO TO 318
IFIVINTI I. M, MM) .LE. VCUTIN .AND. V INTI I*1,H,MM) .GE. VO .AND.

1 VINT(!+1,M,MM) .LE. VRATED) GC TO 312
IFIVINTII, M, MM) .LT. VCUTIN .AND. VJKTC 1*1, M, MM) .LE. VO)

1 GO TO 313
IF(VINT(I,H,MM) .GT. VCUTIN .AND. VINTI 1+ l.M.MK) .L£. VO)

1 GO TC 314
IFIV1NTI I,M,KM) .LE. VD .ANC. VINTI 1*1, H,KM) .LE. VRATEDI

1 GC TC 319
IFIVINTII ,M, MM) .LT. VCUTIN .AND. V INTI Hl.M.MF I .GT. VO .ANO.

1 VINTU + 1,M,MM] .GT. VRATED) GO TC 321
IFIVINTII ,N, KM .GT. VO .ANC, V INT 1 1*1, M, MM I .LE. VRATEOI

1 GO TO 315
IFIVINTII, H, MM) .GT. VD .ANC. V 1NTI 1*1, M, MM I .GT. VRATEDI

1 GO TO 316
IFIVINTII,M,MH] .L7. VO .AND. VINTI 1*1 ,N, MM1 .GT. VRATEOI

1 GO 7C 317
PRINT 31,1 ,M, MM, PRAT EO, VRATED, VD

31 FCRMATI 'OINTERVAL DOES NOT FIT ANY CATEGORY' ,/ ,31 5, 3G15.7I
GC TC 301

321 HBUY=HBUY*FREONtl,M,MM)*(FLCADlM,MMJ*{DMA*l I VO, VCUTIN )-

1 VI NT II ,M,MM))-PRAT£0*0.2SDC°IDMAX1[VD,VCUTIN)*»4-VCUTIN**4)/
2 VRATED**3)
HS£L«=HSEL+FREON< I ,M ,MM) *( PRATED*! 0. 25D0* I VRATED**4-
lDMAXl!VD,VCUTINl*»4)/VRATED»*3+ViNTll*l ,M ,MM1-VRATEC)-PL0A0(M,MMI*
2 I VINTI I*1,M,MM)-DMAX1( VD, VCUTIN) ))

GC TO 301
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0065
066

0067

0069
O07O

0071
0072

0073
074

0075
0076

0077
0078

0060
0081

0082
0083

0084

OC85
0086
0087
0086
0089
0090
0091

0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102

311 HBUY«HBUY»FREON(I,H,KM>*PLOAD(M,MM)*(VINT[I*1,I<,MMI-V1NT(1,M,HM1I
GC TO 301

312 HBUY=HCUY+FREQNI I,M,MM)»tFLCAClM,MM)*(OMAXl(VC,VCuflN>-
1 VINT II ,M,HM) )-PRATED*C.2500*(DMAXl[VCUTIN,VD)**4-VCUTIh+*41/
2 VRATED**3)
HSEL=HEEL +FREeNU,M,MM)*IPRATED*O.25D0*( V1NTU-,1,K,HHI*«4-

1 DMAX1(V0,VCUTINI**4)/VRAT£C»*3-PL0ACIM,MK]*( VINT (1*1,H,MHI-
2 DMAX1I VC, VCUTIN)))
GG TG 301

313 H6UY=H5UY+FRE0NII ,M,MM)*{ FLGADI M, MM )* [V INT( 1+1 ,M, MM )-VINT( I ,M,MH>

)

1 -PRATEC»0.25DC*(VINTU»l,M,MMJ**.,-VCUTIt>**4l/VRATED*»31
GC TC 301

314 H8UY=HSUY+FRECN(I ,M f MMI * ( FLCADt H , MM ) * 1 V INT ( 1+ 1 , M , MM)-V I NT ( I , M, MN> I

1 -PRATEC*0.25D0*tVINTU-*l,M,MM)*»4-VINTII ,H ,MH)»*4I /VRATED**3)
GO TC 301

315 HSEL=KSEL+FREQNII,M,MM)*(PRATED*0.25D0* I VINT ( 1 + 1 ,H,MM)**4-
1 vlNT(I,H,MMI*»4)/VRATEC*»3-PL0AD(M.,MM)*IVINTIl»l,N t MNl-
2 V1NTU ,M,MMI I I

GC TO 301
316 HSEL=HSEL + FRECN( I ,M,M.MJ*t PRATED*! .25D0*( VRATED**4-\'INT( I, M, MM 1**41

1 /VRATED** 3 + VI NT C 1 + 1, M, MM I- VRATED I-PLCAC I *, MM)* (VINT II*1,M, HK)-
2 VINTII,M,MM)I)
GO TC 301

217 HBUY«H£UY*FREON(I ,M ,MM) »( PLCAD( M,"M)*(VD-VINT ( I ,M,MM) l-PRATEO*
1 C. 2 500* IV 0**4- VI NT I I , M,HM) **4) /VR ATE 0**3 I

HSEL=HSEL+FRECN( I . M, MM) *( PRATED* 1 .2 5 00* ( VRATE0**4-V 0**4 )/VRATE0«*3
1 +VINTE 1+1,M,MM>-VRATED)-PLGAD(M,KH)*(V1NT[I+1 ,."., MM1-VD) I

GC TC 30i
213 HSEL=HSEL+FREQNl I ,M , MM) *l PRATED-PLCAOIH.HM )*IVINT(I+1,M,MMI-

1 VINT(I,M,MM1I
GO TO 301

319 H5UY=HEUY*FRE0N( I ,M , MM) *( PLGADI M, "Ml* t VC-VINT ( I ,N,MM) I -PRATED*
1 Q.2SB&*(V0**4-VINT

(

I,M,MM)*»4»/VRATEO*»3)
KSEL-HSEL+FRECM1 , M, KM) »( PRAT ED* 0.2 5 DO* I VINT I 1*1, H,MM )**4-VD**4)/

1 VRATED**3-PL0AD[M,MM)*(VINTtI*l,M,MM)-V0>)
301 CONTINUE

SEL(M,MM)=HSEL
BUY{K,MM»*HBUY

330 GENIM,MM]=PLCADIM,MM)-BUY(H,MM
SUMEUY=3UMBLY+BUYIM,MHI
SUMSEL=SUMSEL+SEL(M,MH1

306 SUM&EN- SUMGEN*GEN(H,MMI
*** END VERSION 8

SEAHRS=SDYS*HRS
SUMBUY=SUMBUY*SEAHRS
SUMSEL=SUMSEL*SEAHRS
SL'MGEN = SUMGEN*SEAHRS
CALL MG;,EY(PRATED,VRATEC, VREF. ANCC5T,CM,CRF, ICOST)
NETSAV=-SUMGEN*SBUY + ANCCST-S'JMSEL*SSEL*CN
ANS=-NETSAV '

PRINT 4 3. PR AT ED, VR AT ED, VCUTIN.ANCCST, SUMGEN.SUKBUY ,SUMSEl,ANS
43 F0RHAT(2X,3G11.5,11X,G13.£, 5X,G13.6,4X,G13.6,2X,G13.6,5X,G13.61

RETURN
END
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0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
OOU
0015

SUBROUTINE EP.EZE ( PL AC, NO INT, NY I NT ,FMAX ,PMIN, VMAX ,VMAXX)
SUBROUTINE CALCULATES THE MAXIMUM AND MINIMUM PCkER PECUIREHENTS
AND MAXIMUM KIND SPEED
IMPLICIT REAL*8IA-H,0-Z>
REAL'S PLCAD(8,4>,VMAX1S,41
PMAX=0.000
VMAXX=0.000
PMIN=1.0013
DO 10 J=1,NVINT
DO 10 I=1,NDINT
A=PLCADI I,JI
B=VKAX(I,JI
IFtA.GT.PMAXI PMAX-A
IF t B .GT. VMAXXI VMAXX-8
IFIA.LT.PMINI PNIN»A
RETURN
END

0001 SUBROUTINE Mi'NEY I PRATED, VRATECVREF , ANCCST, CM.CRF , ICOST)
C*»* SUBROUTINE CALCULATES COST Op NTGS (CAN ACC AOCITICNAL COST FUNCTION IF
C DES1REC

0002 IMPLICIT REAL*8(A-H,0-ZI
0003 DIMENSION VREFI2I
0004 REAL'S C0EF<4,2l/22S7.8CO,-0.465782C0,7.7 39710O,2.57327O-2,

1 4*0. ODO/
0005 IF (PRATED. GE. 1.0001 GO TO 10
0006 UNTCST«CCEFU,ICCST>»PRATE0>»C0EF(2,ICOST)
0007 GO TO 20
0008 10 PRATLN=DLOG(PRATEDI
0009 UNTCST.DEXP(CCEF(3,ICCST>»CCEF(2,IC0STI»PRATLN»C0EF(4,IC0STj«

X PRATLN**2)
0010 20 CCST»FRATEC«UNTCST»IVREFI ICCST1/VRATECI »»2
0011 ANC0ST«C0ST«CRF
0012 CM=0.03DO«CCST
0013 RETURN
0014 END
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C

0001 FUNCTION C-LCUAC U,B,FN)
C*«* GfiUSS-LEGE\DRE CUADRATURE CF FUNCTION FN CVER INTERVAL 1 A, B)
C*** INTEGRAL IS SET TC ZERO IF LOWER LIMIT LARGER THAN UPPER LIMIT

0002 IMPLICIT R?AL*3(A-H,C-Z1
0003 REAL*8 ROOT (201

.

WEIGHT(20I
004 COMMON/ L 1NK3/RC0T, HE IGHT»NHALF

0005 GLQUAC=O.OD0
0006 IF (A.GE.51 RETURN
000? BA=0.5D0*(B-A1
00C8 AB = C.5DC»(A*-B)
0009 DO 10 I=1,NHALF
0010 10 GLQUAD=GLJUAD*-NEIGHT( I J *l FN( AE*BA*RQOT( I l) + FN( AB-SA*RGOT(II 11
011 GLCUAD=eA*GLgUAO

0012 RETURN
0013 ENO

0001 FUNCTION FHV1
C*** SUBROUTINE COMPUTES VALUES CF EITHER { V/VRATEO ) **3»BETA OR JUST BETA
C DISTRIBUTION

0002 IMPLICIT PEAL*e(A-H,G-Z)
0003 C0NHCN/L!NK2/AU,BIJ»VHAXIJ,VRATED, PRATED,PRACT3»FRACT4
0004 FI=(V/VMAXIJ)**IAIJ-1.DO)*(1.CO -V/VMAXI J J**(BJ J-l.CO )

0005 RETURN
0006 ENTRY V3FI{V1
0007 V3FI=(V/VRATEDJ**3*(V/VMAXIJ]**IAIJ-1.D0)*(1.D0-V/VHAXIJJ**IBIJ-

1 1.001
0008 RETURN
0009 END
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00000300
TO FIND THE UNCONSTRAINED MINIMUM CF A FUNCTION OF MANY 00300500
VARIABLES BY SIMPLEX PATTERN SEARCH METHOD STARTING FRCM DOD00600
AN ARBITRARY PCINT ENTERED. OOOCO700

oooooaoo
00000900

DESCRIPTION OF PARAMETERS 00001000
FX - WITH (Nl DIMENSIONS, THE ENTERING PCINT WHEN 00001100

CALLING AND THE MINIMUM PCINT WHEN RETLRNING. 00001200
FY - FUNCTION VALUE AT RETURNING PCINT IN RETURN. 00001300
N - NUMBER OF VARIABLES CF THE PROBLEM. 00001400

- WITH (Nl DIMENSIONS, THE STEF-SIZES FOR EACH 00001500
OIHENSICN FOR INITIAL SIMFLEX SET-UP. 00301600

ITOUT - FREOUENCY CF W1THI N-SEARCH INTERMEDIATE PRINT-OUT 00001700
DESIRED. WHEN PUT 1T0UT=THE NUMEER IN ITMAX, 00001800
NO INTERMEDIATE PRINT-OUT WILL EE OUTPUT. 00001900

ITMAX - MAXIMUM NUMBER SEARCH ITERATION ASSIGNEO. WHEN OOOC2000
EXCEEDED, THE SEARCH WILL EE TERMINATED AND RETURN 03002100
THE LAST MINIMUM DATA SEARCHED. 00002200

EPSI - STOPPING CRITERION. WHEN EPSI -CE. SY, STANDARD 00302300
DEVIATION CF FUNCTION VALUES EVALUATED AT CURRENT 00002400
SIMPLEX VERT ICES, RETURN THE MINIMUM DATA . 00002500

ALPHA - REFLECTION COEFFICIENT, SUGGESTED VALUE IS 1.0 . 00002600
BETA - CONTRACTION COEFFICIENT, SUGGESTED VALUE IS 0.5 . 00002700
GAMMA - EXPANSION COEFFICIENT, SUGCESTEC VALUE IS 2.0 . 000C2800

00002900
SUBROUTINE NEEDED OC003000

SUBROUTINE 0BJN(X,Y,N1 - FOR COMPUTE FUNCTION VALUE Y 00003100
* T Y!I » , W^EPE; 1 = 1.?: :N .

OO003300
00003400

OOOl SUBROUTINE S IMPXIFX ,FY,N , D, I TOUT, ITMAX.EPSI ,ALFHA,BETA, GAMMA! 00000400
000035CO

0002 IMPLICIT REAL*8(A-H,0-Z)
)

0003 REAL*E XI9,8),YI9I ,FX(N».0iN) 00003600
0004 1003 FCRMAT(3X,fc5(lH*M 00003700
0005 1011 FORMATI 5X.5H0Y = ,E11.5,9H ITER - ,!4,1CH NOFT. » .I4.10H NOCVN00003800

I « ,141 00CC39O0
0006 1012 F0RMAT(7X,8HN0RFT - ,14 ,4X, 8HN0EXP • ,14,10H NCCNT = ,14,10H NOC00004000

1UT « ,141 00004100
0007 1C13 FCRMATI7X.24HCURRENT SEARCHED DATA ../10X.3FY* ,E11.5,1H.I 00004200
9008 1014 FORMAT(10X,2HX{ ,13, 4H) = ,£11 .5 ,1H , .5X.3HCX ( , 13 ,4H) = ,EU.5,1H,1 00004300
0009 1015 FCRMAT(7X,8HYMEAN = ,E15.E,9H , SY * ,El!.8,2h .i 00004400
0010 1016 F0RHAT(5Xi24H**CtJT STEP-SIZES TIMES ,I3,2H .) 00304500
0011 1023 F0RMAT(5X,26H»» ITERATION NO. EXCEEDED ,I5,2H .) 00004600
0012 KULT-1 O0C047C0
0013 NOPT«0 00004800
0014 NDCUT«0 00004900
0015 NCCVN-0 00005000
0016 I1ER-0 00005100
0017 NORFT-0 00005200
001! NOEXP-0 00005300
0019 NOCNT-6 00005400
0020 FN=N OC0C55O0
0021 NN=-N*1 00005600
0022 CALL CBJN(FX,YF,NI 00005700
0023 LCCAT*! C0005800
002* IWAY»1 00305900
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C SET UP INITIAL SIMPLEX . 00006000
0025 2 00 6 J=1,N 00006100
0026 00 3 1-l.J 00006200
002T 3 X(I,JI= FX{J»-D(J> 00006300
002B FJ»J 00006400
0029 XUMiJI* FX(J)»FJ«0(JI 00006500
0030 IFI J-N)4,6,6 00006600
0031 4 JH*J*2 00006700
0032 DO 5 I*JM.NH 00006800
0033 5 XII, J>- FXIJI 00006930
0034 6 CONTINUE 00007000
0035 00 8 1=1. NN 00007100
0036 DO 7 J«1,N 00007200
0037 7 FX(JI'X(I>JI 00007300
0038 CALL C6JNCFX,YF,NI 00007400
0039 8 YIII-YF 00007500
0040 INI = 1 00007600

C REARRANGE ORDER (OVERALLI . 00007700
0041 9 I"l 00007800
0042 NS=NH 00007900
0043 10 IF(Y(I)-r{NS>)13,U.lI 00008000
0044 11 YTE*«YCNSI 00008100
0045 YINS)=YCI) 00003200
0046 Y(1I»YTE« 00008300
04T DO 12 J-l.N 00008400

0048 FXIJ)-XiNS,JI 00008500
0049 X(NS, Jt-XU.J! 00008600
0050 12 XU»JI* FX(J) 00008700
0051 13 IFINS-I-1) 15,15,14 00008800
"052 14 NS=N5-I CO0CS5CC
0053 GO TO 10 00009000
0054 15 I«t*l 00009100
0055 IF(!-N-1I16,17,17 00009200
0056 16 NS«Nfl 00009300
0057 GO TC 10 00009400 )

0058 17 IFdNII 65,65,501 00009500
0059 501 LGCAT=2 00009600
0060 IWAY=2 00009700
0061 GO TO 120 00009800

C CCKPt 00009900
0062 16 DC 20 J=1,N 00010000
0063 PXT»X(1,JI 00010100
0064 00 19 1=2,

N

00010200
0065 19 PXT=PXT+X(I ,J) 00010300
0066 20 X(W-2,JI = PXT/FN 00010400

C »• ."AKE REFLECTION HOVE . 00010500
0067 DO 21 J«1,N 00010600
0068 X(N+3,JI = XIN+2,J» + ALPHAMXIN«-2,JI-X(N+1,J)I 00010700
069 21 FX( JI=XtN+3,JI 00010800

0070 CALL CSJN(FX,YF,N) 00010900
0071 YCN»3I=YF 00011000
0072 N0PT=N0PT+1 C0011100
0073 LCCAT»3 00011200
0074 IWAY*3 00011300
00'5 GO TO 500 00011400
0076 22 1F(Y(N«3I-YI1II29,23,23 00011500
0077 23 IF(YIN*3)-Y(N>]24,26,26 00011600
078 244 IWAY«7 00011700
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0079 24 DO 25 I»1,N 00011800
0080 25 X(N*1,I)=X(N+3,II 00011900
0081 Y(N*1I»Y(N»3I 00012000
0082 ITER=ITER»1 . 00012100
0083 NCRFT«NORPT*l 00012200
0064 GO TO 100 0C012300
0085 26 IFtY(N+3>-Y[N*ll>27,49,49 00012400
0086 27 DO 28 1-1.

N

00012500
0037 28 X(N<-1,I>=X(N»3,I) 00012600
0088 Y(NH>=Y(»»3) 00012700
089 I7ER=ITER*1 00012800

0090 NDRFT*NORFT*l 00012900
0091 GO TO 49 00013000

C **HAKE EXPANSION HOVE f 00013100
0092 29 DC 30 J = 1,N 00013200
0093 X[NM.JI =X(N+2,JKGAKMA*(X(N+3,JI -X[N*2,J1) 00013300
09* 30 FXIJI«XIN»4,J> 00013400

0C95 CALL CBJMFX,YF,N1 00013500
0096 Y(H*4)*YF 00013600
0097 NCPT-N0PT*1 00013700
0098 LOCAT-4 00013800
099 IWAY-4 00013900

0100 GC TO 500 00014000
0101 31 IF(Y[N<-41-Y(1>>32,244,244 00014100
0102 32 DO 33 1=1,

N

00014200
0103 33 X<N»1,1)«XI(H-*,I1 00014300
0104 Y(N*11-Y1N»4I 00014400
0105 ITER=ITERH OOC14500
0106 NCEXP=NOEXP*i 00014600
0107 GO TO 100 onol47nn

C "MAKE CONTRACTION MOVE . 00014300
0108 49 DO 50 J-l.N 00014900
0109 XfN+5,J»=X(N+2,J]+BETA*{XtN+l,J)-XIN+2,J)l 00015000
0110 50 FXI JI=X(N+5.JI 00015100
0111 CALL C8JN(FX,YF,N) 00015200
0112 Y(N+5)=YF 00015300
0113 N0PT*N0PT+1 00015400
0114 LOCAT-5 00015500
0115 IhAY-5 00015600
0116 GO TO 500 00015700
0117 51 IFIY<Nt51-YINH)>52,6C,60 00015800
0118 52 DC 53 I-l.N 00015900
0119 53 X(N*1,II=X(N*5,1I 0D016000
0120 YIN»1).Y(N«5I 00016100
0121 ITER=ITER»1 00016200
0122 N0CNT=NCCNT*1 00016300
0123 NCCVN=N0CVN*1 00016400
0124 GO TO 110 00016500

C «*CUT DOWN STEP-SUES . 00016600
0125 60 00 62 1=2, NN 00016700
0126 DO 61 J=1,N 00016800
0127 XII,JI<[Xll,JI«X<I,JJ)/2.OD0 00016900
0128 61 FX(J)=X(I,J1 00017000
0129 CALL CBJN(FX,YF,N) 00017100
0130 62 Y( I)*YF 00017200

C "REARRANGE ORDER (OVERALL ) . 00017300
0131 IN!=0 00017400
0132 GO TO 9 00017500
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0133 65 NOCUT=NOCUT+l 00017600

0134 NOPT=NOPT*N 00017700

0135 NCCVN=NOCVN*l 00017600

0136 IGCAT=6 00017900

0137 IWAY=6 00018COO

0138 GC TO 120 00018100

0139 100 NOCVN=0 00018200

C PREARRANGE CROER I SMOT-OOWN 1. 00018300

0140 110 JOR-N 00018400

0141 111 IF(Y(IOR*11-Y(IOR)I112,120,120 00018500

0142 112 YTEM=Y( ICRUI 00018600

0143 Y( I0R+1I=YII0R> 00018700

0144 YUCR) = YTEM 00016800

, 0145 00 113 J=liN 00016500

0146 FX{ Jl=XUOR + l r JI 03019000

0147 XdOR+1 » J 1=X( I0R.J1 00019100

0148 113 XUOR,JI=FX(JI 00019200

0149 IFUOR-11120,120,114 00019300

0150 114 !CR=ICR-1 00019400

0151 GO TO 111 00019500

C *'UEST FOR OPTIHALITY . 00019600

0152 120 FNM-NR ' C0019700

0153 YN=Y(1) 00019600

0154 00 121 1=2. NH 00015500

0155 121 YH=YH+Yl II 0C020000

0156 YM=YM/FNH 00020100

0157 SY=(Y(1>-YMI**2 00020200

0158 00 122 1-2, NH 00020300

0159 122 SY«SY*1YU!-Y«1»«2 00020400

0160 SY=(SY/FN)**0.500 0002CSOO

0161 IFIL0CAT-6I 123,500,123 00020600

0162 123 IFILGCAT-21 500,500,124 00C2C700 1

0163 124 IF(SY-EPSI) 125,125,18 0002C800

164 125 LOCAT-8 0OO2O500

0165 500 1FJNCPT-ITMAX) 505,505,560 00021000

0166 505 GO TO (2,16,530,530,530,540,560,5601 .LOCAT 00021100

0167 530 1F(N0PT-IT0UT*MULT) 533,521,531 00021200

0168 531 fULT=KULT+l 00C21300

0169 IF{N0PT-1T0UT*MULTJ 532,531,531 00021400

0170 522 WRIT E16, 1011 IYI11,ITER,N0PT,NCCVN 00021500

0171 hRITE(6,10121NCRFT,N0EXP,NCCNT,NOCUT 00021600

0172 WRITE(6,10151YM,SY 0C021700

0173 WRITE16.1013IYF 00021800

0174 DO 534 IN-l.N 00021900

0175 534 V,RITE(6,1014)IN,FX1INI,IN,X(1.IN) 00022000

0176 hRlTEI6,1003) 00022100

0177 533 IWAY=IWAY-2 00022200

0178 GO TO (22, 31, 51, 123, 181, IUAY 00022300

0179 540 WRITE(6,10161NOCUT 00022400

0180 GO TO 123 00022500

0181 560 IFILCCAT-81 561,562,562 00022600

0182 561 KRITE(6,!023IITNAX 00022700

0183 562 DO 564 1=1,

N

00022300

0184 564 F)I1|.H1,1I 0OC22500

0185 FY-Y111 00023000

0186 RETURN 00023100

0187 END 0023200
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ABSTRACT

To obtain accurate estimates of extractable energy from the wind at

a given location, it is first necessary to obtain an accurate description

of the expected distribution of wind speeds. For such analyses, the use

of analytical representations for the wind speed distributions often

simplifies the calculation as well as smooths out statistical fluctuations

in the observed wind speed data. In the first phase of this study, three

techniques for fitting a Weibull distribution to observed wind speed data

are examined. In addition, the beta distribution is introduced as an

alternative wind speed distribution model and a mat chin g-moments scheme

is presented to obtain the beta distribution's parameters. Two goodness

of fit tests are performed on each analytical distribution to test the

appropriateness of each model in describing 544 observed wind speed

distributions. It was found that least squares fitting techniques pro-

duce Weibull distributions which poorly represent wind data, but that

both Weibull and beta distributions give excellent fits to the data when

the parameters are obtained with a matching-moments technique.

In the second phase of this work, the analytically fit wind speed

distributions are used in a methodology to select the optimally sized wind

turbine generator system for given demand power requirements. Such an

optimally sized system will yield the maximum net economic savings for

an enterprise which uses the system. In particular, the sensitivity of

the optimal wind system to various problem parameters such as electricity

cost and wind and load characteristics are investigated. It was found



that to accurately estimate the capability of a particular wind turbine

system to supply the energy needs of a specified demand load, daily and

seasonal wind speeds and demand loads as well as diurnal variations in

these characteristics must be known.


