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Abstract 

As semiconductor technologies advance, the smallest feature sizes that can be fabricated get 

smaller. This has led to the development of high density FPGAs capable of supporting high clock 

speeds, which allows for the implementation of larger more complex designs on a single chip. 

Over the past decade the technology market has shifted toward mobile devices with low power 

consumption at or near the top of design considerations. By reducing power consumption in 

FPGAs we can achieve greater reliability, lower cooling cost, simpler power supply and delivery, 

and longer battery life.   

In this thesis, FPGA technology is discussed for the design and commercial implementation of 

low power systems as compared to ASICs or microprocessors, and a few techniques are 

suggested for lowering power consumption in FPGA designs. The objective of this research is to 

implement some of these approaches and attempt to design a low power signal acquisition 

module. 

Designing for low power consumption without compromising performance requires a power-

efficient FPGA architecture and good design practices to leverage the architectural features. 

With various power conservation techniques suggested for every stage of the FPGA design flow, 

the following approach was used in the design process implementation: the switching activity is 

addressed in the design entry, and synthesis level and software tools are utilized to get an initial 

estimate of and optimize the design’s power consumption. Finally, the device choice is made 

based on its features that will enhance the optimization achieved in the previous stages; it is 

configured and real time board level power measurements are made to verify the 

implementation’s efficacy 
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Chapter 1  

Introduction 

A Field Programmable Gate Array, FPGA, is a digital device that is hardware programmable 

by the user so that a specific design can be configured for a task. Depending on the device used, 

the design can be either burned temporarily, semi-permanently or loaded from an external 

memory every time during device power up. FPGAs have found immense application potential 

in fields of communication, computing and consumer electronics due to the design flexibility that 

it provides. The FPGA platform allows for the design to be modified even after the system has 

been manufactured. This is a highly desirable trait for applications that need to have a fast time 

to market and it has enabled system engineers to cope with changing market requirements. 

Application Specific Integrated Circuits (ASICs), fuse programmed Custom Gate Arrays 

(CGAs), Programmable Array Logic (PAL), Programmable Logic Array (PLA) and 

Programmable Logic Devices (PLDs) [1] are the other Integrated Circuit technologies available 

to designers for implementing digital logic. ASICs have always been preferred by the industry 

for design and implementation of digital systems, but over the last decade we have seen FPGA 

technology come a long way from a few thousand gates to more than a million gates in recent 

times. It is this increase in the gate density and the capability to operate at high clock frequencies 

that has enabled the use of FPGAs in many applications for which ASICs were preferred earlier. 

With the industry requirement of making the systems as small and portable as possible, the 

factors on top of every design team are the size and power considerations. These portable 

systems need to have high functionality and are expected to have battery lives lasting weeks or 

even months at a time. While ASICs have been successfully used in the past to provide such a 

requirement, an increased need for a fast time to market has proven the use of FPGAs to be more 
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beneficial. Table 1-1 below [2] summarizes the design choices available for electronic module 

design. The factors used to make the comparison are the cost, time to market and the flexibility 

offered by the platform. The platform referred to as custom processor is defined as a product 

designed for a particular application while the generic microprocessor refers to a general off-the-

shelf microprocessor. The speed of the technology is decreasing while its design flexibility 

increases as you go down the table 

Technology 
Performance/

cost 

Time until 

running 

Time to high 

performance 

Time to alter 

functionality 

ASIC Very High Very Long Very Long Impossible 

Custom processor/        

DSP 
Medium Long Long Long 

FPGA Low-Medium Short Short Short 

Generic 

microprocessor 
Low-Medium Short Not attainable Short 

Table 1-1: Available technology choices [2] 

With all of the technologies available, it is up to the designers to choose the platform most 

suited for the application they are designing. This choice has to be made considering all the 

features of a particular technology that will allow the designers to meet design specifications and 

market requirements. Bio-medical devices are one field that has utilized these technologies. 

Systems have been implemented in ASICs and microprocessors, and in this thesis we explore the 

viability of an FPGA based system design of a module for application in this field.  In this 

chapter, I have provided an overview of the FPGA device architecture, applications, design flow 

and described the objectives of this thesis work. 

1.1 FPGA architecture 

The FPGA is made up of a large number of identical logic cells also known as logic elements 

(LE) [l]. The term logic cell (LC) is used by Xilinx while Altera refers to them as logic elements; 
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both describing the same elemental component of the FPGA architecture. The LEs or LCs are 

grouped to from a slice; there are two LEs in a slice. These logic elements or logic cells are the 

core building blocks of an FPGA. The number of logic cells/elements has increased from 64 in 

the Xilinx XC2064 to 200,000 in the Altera Cyclone III device family and this value is 

increasing with every new device family introduced. 

These individual cells are interconnected by a matrix of wires and programmable switches. 

The user defined operation is implemented by specifying each block with a simple logic function 

and closing the programmable switches and combining these basic blocks to get the desired 

functional logic block. A more complex design is implemented by interconnecting these blocks 

to create the desired digital logic circuit. The three configurable components of an FPGA are 

shown in the figure below: 

Configurable 

Logic Blocks

Input/output 

Blocks 

Programmable 

Interconnects

 

Figure 1-1: Configurable elements of a FPGA [3] 

 Configurable Logic Blocks (CLBs) or Logical Array Blocks (LABs) 

 Programmable Interconnects 
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 Input/output Blocks (I/O)  

1.1.1 Configurable Logic Blocks 

CLBs (as referred to by Xilinx) are the basic logic units of the FPGA [1]. Logic array blocks 

or LABs as referred to by Altera, have the same concept as the CLBs. Every CLB consists of a 

number of slices, each slice consisting of functional blocks called Logic Cells. These Logic Cells 

have in them Lookup Tables (LUTs) which are configurable switch matrices with 4 or 6 inputs, 

multiplexers and flip-flops.  

LUT FF

A

B

C

D

Rst
Clk

out

 

Figure 1-2: FPGA logic cell 

Two of these logic cells make up a slice and a CLB consists of 1, 2 or 4 slices depending on 

the FPGA vendor and a particular FPGA family. The basic difference between CLBs and LABs 

is the definition of what components constitute a logic cell. 

LUT FF

A

B

C

D

Rst
Clk

out

LUT FF

A

B

C

D

Rst
Clk

out

 

Figure 1-3: FPGA slice 
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As the name suggests the LUT stores the truth table of the combinational logic function to be 

performed [1]. Every combination of the input signals points to a particular cell in the look up 

table, which contains the desired value. In certain earlier architectures, it was suggested that the 

use of multiplexers (MUX) instead of LUTs was more advantageous. This approach however 

was not adopted because the MUX-based architecture did not provide high speed carry logic 

chains that help speed up arithmetic processing. The LUT can be formed using SRAM cells, 

EEPROM cells, anti-fuses or FLASH cells. They are SRAM based in many devices which 

allows for the use of a 4-bit LUT as a 16x1 RAM block or a 16 bit shift register. 

1.1.2  Programmable Interconnects 

 While the CLBs perform the required logic functions, the programmable interconnects are 

responsible for routing the signals between CLBs or from the CLBs to and from the I/O blocks. 

The responsibility of performing this routing function is handled by the design software, which 

greatly reduces the complexity of the design procedure. These interconnects are either local 

interconnects available to individual CLBs or global interconnects that route signals between the 

CLBs. Some FPGAs are also provided with dedicated interconnects for improving device 

performance like a global clock network to route critical clock paths and carry chain logic 

between the LEs to assist in speeding up arithmetic operations. 

1.1.3  Input/output Blocks 

I/O blocks contain circuitry that facilitates transfer of signals to and from package pins to the 

internal signal lines. These blocks are distributed on the periphery of the FPGA architecture and 

are provided with registers to achieve glitch free signal switching. Devices that are provided with 

high speed I/O blocks and embedded transceiver modules are a great advantage in 
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communication applications. Current FPGA devices support many I/O standards such as 3.3V 

LVTTL, 3.3V LVCMOS, 1.5V etc in the Cyclone II device family [4]. 

1.1.4  Additional Features 

In addition to the blocks described above FPGA architectures are provided with additional 

features like [1]: 

 Embedded RAM: To provide for the memory requirements of the user applications, FPGA 

architectures are provided with embedded RAM block arrays. Depending on the architecture 

these blocks can be located on the periphery of the device, arrange into columns or scattered 

within the device. These blocks can be used independently or as a single block depending on 

the application. 

 Embedded DSP blocks: Arithmetic operations like multipliers and adders are required to 

perform DSP applications. These operations, especially multiplication, when implemented by 

connecting large number of CLBs can be logic consuming and are prone to glitch errors. The 

embedded DSP blocks provide error free operation and also consume less power while taking 

up less logic area on the device.  

 Embedded Microprocessors: Some FPGA architectures have microprocessor cores embedded 

in them, referred to as microprocessor cores. These cores can be either hard microprocessor 

cores where the core is a dedicated part of the IC or soft microprocessor cores where the core 

is implemented in the general purpose logic cells. 

1.2  FPGA Applications 

ASIC designers have always used FPGAs as a resource to test and verify their system design 

before the final ASIC implementation. Nowadays with the development of advanced FPGAs, 
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they are being used for just about any application. These high-performance FPGAs contain 

features like embedded processors and high-speed input/output (I/O) interfaces to name a few, 

which enable their use in the design of many Digital Signal Processing (DSP) applications and 

System on Chip (SOC) designs. FPGAs are finding their way into the following Digital Logic 

fields [1]. 

 Custom Silicon: As discussed earlier, FPGAs are being used in applications that previously 

could only be done in either custom silicon or ASICs. 

 Digital Signal Processing: Traditionally DSP has been implemented on DSP processors 

which are specialized microprocessors whose architecture has been optimized to quickly and 

efficiently perform the operations required to perform a DSP algorithm. With current FPGA 

technology enabling the embedding of dedicated arithmetic blocks and availability of large 

amounts of RAM on chip, we are seeing FPGAs being considered for many DSP 

applications.  

 Embedded microcontrollers: Microcontrollers have been used in applications that are 

required to provide simple control functions at a low cost. Generally, embedded 

microcontrollers are application specific with memories, I/O etc packaged with the processor. 

FPGAs are more than capable of providing the functionality of the microcontroller and with 

the costs falling, the end result is a more customizable and flexible system 

 Physical layer communications: In network systems FPGAs have been used to interface 

communication chips with the high level networking protocols layers.  

 Reconfigurable computing: This concept was proposed in the 1960s in a paper by Gerald 

Estrin [1]. It talked about a computer built with a standard processor and an array of 
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reconfigurable hardware. The core processor controls the functionality of the reconfigurable 

hardware i.e. FPGA which is tailor made to perform the specific task at hands such as DSP or 

image processing and after the task was done the same reconfigurable hardware could be 

used to perform any other task. 

1.3  Design Flow 

The figure here shows the standard design flow of an FPGA application design process [5] 

Design

Entry

Power

Analysis

Debugging

Engineering

Change

Management

Timing

Closure

Programming and

Configuration

Simulation

Timing Analysis

Place and

Route

Synthesis

Design

Verification

 

Figure 1-4: FPGA design flow [4] 

1.3.1 Design entry  

For the implementation of any design in an FPGA the digital design can be created with 

either a schematic digital design editor, Hardware Description Language (HDL), or a 

combination of the two. Selection of the design entry method is up to the designer and the design 

that needs to be implemented. For a complex design, the schematic design approach is 

recommended, but if the designer is comfortable with an algorithmic approach, then an HDL is 
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the better choice. HDL entry is faster and isolates the designer from the details of the hardware 

implementation, but it lags in performance and if you are hardware oriented, the schematic entry 

method is a better choice. 

1.3.2 Synthesis 

You can synthesize your design once the design files have been created. The synthesis 

process converts HDL code into a device netlist format. The device netlist is the gate level circuit 

as described by the HDL code. The synthesis process will check code syntax and analyze the 

hierarchy of your design which ensures that your design is optimized for the design architecture 

you have selected. The device netlist file generated is used in the next step. 

1.3.3 Place and Route 

 This step of the design flow matches the logic and timing requirements of the project with 

the available resources of the target device. It assigns logic functions to the best logic cell 

location to meet routing and timing requirements, and selects appropriate interconnection paths 

and pin assignments. After the place and route is done, the design is tested and debugging is 

performed if needed. The power analysis step, after place and route, helps the designer compare 

block level power consumption values to the design specifications and alter the design if he 

wishes to. This assists in power consumption control of the final design. 

1.3.4 Design Verification 

Simulation and Timing analysis of the design constitute design verification. These are 

performed using EDA simulation tools to test functional and timing validity of the design and 

compare the results to the original design requirements. Verifications can be either RTL 

simulations or post -translation simulations. In RTL or behavioral simulations the code is tested 

to check if it performs as intended. This simulation is very fast and any errors or concerns can be 
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easily traced back to the HDL code. The post translation or functional simulations are performed 

to check the logical operation of the circuit generated after the synthesis step. If the circuit 

operation is not as intended, the changes in the design are made and the design steps are 

performed again.  

1.3.5 Programming and Configuration 

Configuration is a process in which the designed circuit (a bitstream file) is downloaded into 

the FPGA. Through this method the FPGA is configured from within design software.  

1.4 Motivation and objectives 

FPGAs have been used in the development of many portable systems and the fact that the 

above mentioned features can be utilized to optimize and enhance the systems functioning as per 

the user’s requirements, have made them a very popular platform for digital logic 

implementation. With power consumption becoming a major concern in portable wireless 

devices, many researchers have studied and quantified FPGA power consumption and proposed 

strategies to reduce it. 

This thesis work was done to reduce power consumption in such an application. The 

following objectives were achieved in this research 

1. Proposed low power design methodologies were studied and their effects were 

quantified 

2. A wireless signal acquisition module was designed and tested to confirm proper 

functioning 

3. Design features were added to reduce the power consumption in the system 
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4. Simulation and power estimation was used to observe the efficacy of the design 

methods used to reduce power consumption 

5. A custom test board was designed to perform real time on-board power measurements 

6. Power estimation results were compared to real time FPGA current measurements to 

gauge the accuracy of the estimator tools and the testing approach taken.        

1.5 Thesis outline  

This thesis is organized as follows: 

In chapter 2, I provide details of related work done in the field of low power FPGA designs. 

In this chapter, the research work done on the techniques for low power design implementation is 

categorized, and the work done in each of the categories is discussed. 

In chapter 3, the various FPGA power components are described and the modes of operation 

of an FPGA device are discussed. This is followed by discussion on the standard design 

methodologies that are practiced to achieve low power FPGA design.  

In chapter 4, the hardware and software choice i.e. the device choice and the CAD software 

choices made are discussed, outlining their advantages and other features that make them 

suitable for the purposes of this thesis work 

In chapter 5, the design work done for this thesis is discussed. The HDL code written is 

described followed by the details about the process involved in designing a custom board for 

making power measurements. 

In chapter 6, the details of the low power techniques used in the HDL coding process are 

discussed along with the strategies implemented for testing purposes. The results of power 

analysis done on the individual modules using the power analyzer tool are discussed. 
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In chapter 7, the device operation is demonstrated and the strategy implemented for the 

power analysis done and the work done to allow for making real time board measurements are 

described. The real time board measurements made are provided in this chapter. 

In chapter 8, conclusions are drawn and future work is discussed. 
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Chapter 2  

Related work in Low power FPGA design  

With the development of high density FPGAs with embedded features as mentioned above, it 

is possible now to choose FPGAs for applications that in the past were primarily implemented 

using ASCIs and microprocessors. As mentioned earlier, high NRE costs associated with ASICs 

along with the difficulty in prototyping designs [1] has caused designers to choose FPGAs for 

those applications. For microprocessors, one thing that affects applications implemented on them 

is the fact that in a few years the processor will become obsolete [2]. The most radical and 

expensive solution to this problem of processor obsolescence is to design the system all over 

again around a new processor. This results in loss of hundreds of man hours which could be 

spent refining the application. Depending on the life of the application, this solution is temporary 

at best. 

 In this chapter, the research work done in the field of low power FPGA design is presented. 

As mentioned in a previous chapter, designing for low power consumption without 

compromising performance requires power-efficient FPGA architecture and good design 

practices to leverage the architectural features. Power conservation techniques are provided for 

every level of the FPGA design flow. The researchers in [6] have taken a comprehensive look at 

these techniques at every stage of the application design process. These techniques can be 

broadly classified into: device level techniques, where the manufacturing process, elemental 

circuitry and device architecture are the points of interest; system level techniques where the 

digital logic implementation and device operating conditions are targets for these techniques; and 

CAD tools at design software level that can assist designers in the optimization process. 
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2.1 Device level techniques 

Power reduction techniques have been suggested for as low as the transistor level. The affect 

of transistor gate length reduction coupled with reduction in supply voltage is shown to have a 

substantial improvement in dynamic power consumption reduction of an FPGA [7] [8]. Methods 

are suggest in [9] for controlling CMOS leakage at transistor level, and reducing switching 

power by using low voltage swing flip flops. Models generated in [10] for leakage and timing 

variations in an FPGA are used to improve the device design and architecture. This results in 

substantial improvement in leakage reduction. Improvements in routing architecture also helps 

reduce power by reducing the number of routing elements needed. Other architectural changes 

like increasing LUT size from 4 inputs to either 6 or 7 inputs reduces power, as less routing is 

needed between LUTs improving dynamic power consumption. LUTs are implemented using a 

low leakage smaller transistor which improves device static power consumption [6]. 

2.2 System level techniques 

The techniques suggested are applied on the system design to improve power efficiency 

while some alter the systems operating conditions to achieve optimization. Some of the 

techniques studied are provided in this section.  

2.2.1 Voltage scaling 

In this technique, supply voltage of the circuit is varied to reduce power consumption. This 

can lead to reduction in system performance due to an increase in circuit delay. The delay occurs 

as the gate switching speed reduces with reduction in supply voltage [11] [12]. In [12], the 

researchers have developed and tested a voltage controller that dynamically controls supply 

voltage and is responsible for ensuring that voltage is not reduced beyond a certain level which 

affects system operation and delay requirements.  
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There are two errors associated with this technique: I/O errors and delay errors [12]. In I/O 

errors, the supply voltage is at such a low value where a logic level high on an I/O line is lower 

than the threshold voltage of I/O blocks and is interpreted as logic level low. In delay errors, the 

voltage reduction brings about a reduction in the switching speed, which in turn reduces critical 

path delay. If the voltage is lowered further, this delay can become longer than the clock period, 

and the FPGA no longer meets timing requirements. I/O voltages are not varied to maintain the 

FPGAs compatibility with other components on the board level. Care should be taken in 

determining the optimal voltage so that it helps reduce power consumption and at the same time 

maintains system reliability. In [13] and [14], researchers have designed systems implementing 

these design techniques; measured and quantified the improvement in power consumption of the 

design.   

2.2.2 Clock gating 

FPGA interconnects are a major portion of the static and dynamic power consumption [11] 

[8] [15] as shown in Figure 2-1 [8].  

 

Figure 2-1: Spartan -3 core power consumption [8] 

In order to reduce the effect of interconnect power dissipation, switching activity on them needs 

to be reduced. This reduction can be achieved by methods like clock gating and clock frequency 
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scaling [16] [14] [17].Clock gating is described in this section and clock scaling is discussed in 

the next. 

 In the clock gating technique, specified synchronous components of the system are disabled 

by removing the clock to it during either idle or standby mode of operation. Experimental results 

show that clock gating technique applied to FPGAs has a higher dynamic power reduction than 

ASICS [16]. The simplest method of clock gating is by using a single AND gate with both the 

clock and enable signal as inputs. This technique, however, is not without drawbacks. This 

implementation will invariably lead to setup and hold time violations in the design due to 

improper alignment of the clock edges. Another technique is to use a flip flop to sync the enable 

signal with the clock and reduce clock misalignment [18]. Both approaches are shown in Figure 

2-2. 

Q

Q
SET

CLR

DClock enable
Clock

Clock enable 

out

Clock out

Clock enable
Clock

Clock out

Simple clock 

gating
Clock gating using 

D-flip flop  

Figure 2-2: Clock gating techniques 

2.2.3 Clock scaling 

In clock scaling, clock rates are adjusted based on the amount of computation required [17]. 

A reduction in frequency results in reduced signal activity and lower power consumption. 

Dynamic clock frequency scaling can be achieved by designing clock managers, and special care 

needs to be taken in the design. Improper design can affect both functioning and power 

consumption of the device. Two such design concerns are clock skew and clock hazards or clock 

glitching. Clock skew is when a single clock reaches different components in a design at 
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different times. This may be due to interconnect length and capacitive effects during 

transmission. This skew can lead to alignment difficulties and loss of functionality in 

applications where alignment is very important, like data communication. Glitching on signal 

lines can cause the system to go into a metastable state and compromise circuit operation 

An approach suggested to reduce skew is by introducing a PLL and using feedback from the 

logic to dynamically adjust the input frequency. Glitching during dynamic clock frequency 

adjustment is addressed by making sure that proper alignment is achieved between the current 

clock and the clock the device is switching to. While reduction in clock frequency does lower 

power consumption, it also affects the design performance. One way to account for this is by 

introducing parallelism in the design. While this can lead to increase in the logic area consumed, 

experimental results have shown that power consumption increases disproportionately to area 

occupied when operating at a lower frequency [14]. 

2.2.4 Glitch reduction 

A large fraction of FPGA power consumption is caused by glitches [19] [6]. One mitigation 

technique studied [20] is pipelining, where registers are placed in between combinational circuit 

blocks to reduce occurrence of spurious signal activity that can affect the operation of the circuit.  

Another approach to reduce glitching, is adding configurable delay elements [21] to the input of 

each logic element to align their arrival times. The experimental results showed a significant 

improvement in power reduction in both approaches. Embedded DSP and RAM blocks are an 

added advantage in the device structure. Mapping components into these blocks can help 

improve power efficiency of the design in both FPGAs and ASICs [22]. 
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2.3 FPGA CAD tools 

FPGA CAD tools are provided with techniques to further optimize the design. Power 

consumption in clock networks can be reduced by utilizing clock aware placement algorithms 

implemented in CAD tools which also optimizes the design’s speed and routability. Also, 

dividing the design into clock domains can lead to a reduction in complexity and area of a clock 

network [6]. As mentioned above, both Altera and Xilinx provide designers with power 

estimation and analysis tools. They also provide early power estimators [5] which are 

spreadsheets and can be used to estimate power consumption before the design is completed. 

These estimates as based on estimated resource utilization details generated by the design 

software and signal activity and operating condition requirements of the design.  

The power analysis, however, needs more detailed information to make power estimations 

after the design is completed. The analysis tools take into account capacitance effects, leakage 

and signal activity at each node to perform the estimations and hence are more accurate than 

early power estimates. If the simulation results are unknown, vectorless estimations can be used 

to supplement information needed in the power analysis. Vectorless estimation determines signal 

activity at a node using the estimated inputs of that node and the logic operation of the node. It is 

typically fast and does not require any input signal information. However, the fact that it does not 

take into account interactions between nodes, makes it less accurate. 

The CAD software is also responsible for placement and routing of the design on the device. 

Low power mapping algorithms [6] are implemented during this process to minimize power. 

These algorithms achieve this by reducing interconnect length between logic blocks by proper 

mapping into the device, and in general they minimize power by absorbing as many high activity 

nodes when gates are packed into LUTs and minimizing node duplication.   
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Chapter 3  

Design methodologies for Low power design  

In this section, we take a look at how the power consumption in an FPGA application is 

characterized. The FPGA operation modes are discussed and then a few proposed design 

methodologies and approaches for low power consumption are described. 

3.1 FPGA power components 

Power consumption of an FPGA is classified into four basic components. They are Power Up 

or In-Rush power, Configuration power, Static power, and Dynamic power. These factors need 

to be considered in designing the power supply for the low power application 

3.1.1 In-Rush power 

 During power-up of the device, supply voltages need to be ramped up to their operating 

values and the device voltages need to be ramped up to a stable state. To achieve this, a 

substantial amount of logic array current is needed for a specific duration. This high current is 

called the in-rush current. The amount of time it takes for the supply voltages to reach their 

steady state values depends on how high this current is, which could be in the order of a few 

amperes. 

3.1.2 Configuration power 

 In SRAM based FPGA systems where the device configuration data is stored on a non-

volatile external memory like an EEPROM or Flash memory, this power is drawn while the 

system is configured during power up. The device draws this current to load configuration data 

from memory and program the logic and I/O blocks. 
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3.1.3 Static power 

 Static power depends on the amount of static current that the device draws when it is not 

performing any operation, after the device is powered up and configured, due to inactivity in 

clock and data paths. It is dissipated either as transistor leakage current or bias current. As 

dimensions of transistors shrink, the amount of leakage current has increased. This has resulted 

in static power becoming a larger fraction of total power consumed. 

3.1.4 Dynamic power 

This power is a factor of switching capacitances and routing capacitances and is dissipated 

when signals charge the capacitive nodes present within logic blocks, routing wires in the 

interconnect logic, I/O pins and other board level traces driven by the FPGA outputs. This power 

depends on the operating frequency and signal switching activities in the devices capacitive 

nodes. Smaller transistor dimensions result in smaller capacitances and hence lower dynamic 

power dissipation. The dynamic power can be modeled as follows [17]; 

fCkVP LDDd

2
                       (1) 

Where f is clock frequency, VDD is supply voltage and C is the output capacitance of a gate.  

The graph in Figure 3-1 shows the inrush and configuration power consumption components 

described above for SRAM FPGAs [23]. These two components are important because designers 

must account for them when designing the power supplies. These components are an issue 

especially when we have multiple FPGAs drawing power from a single source. If the device 

undergoes frequent on and off cycles, these components have to be accounted for in calculating 

battery life. 
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Figure 3-1: SRAM FPGA current components 

3.2 FPGA power modes 

After classifying the power consumption components we need to take a closer look at the 

device operation for accurate total power consumption estimates. FPGA device operation can be 

divided into five modes: power-up, configuration, stand-by, active, and sleep. The amount of 

time the device spends in each of these modes can affect total power consumption.  

3.2.1 Power-up mode 

 In this mode the device is powered up and brought to a state where configuration can be 

done. In SRAM-based FPGA systems this includes the power supplies ramping up to a steady 

state and the device being reset for configuration. The in-rush current is seen in this mode and as 

mentioned above, it can be on the order of a few amps. To moderate this surge, devices are 

powered up in complex sequences which add to the cost and complexity of the system. 

3.2.2 Configuration mode 

Once the device has been powered up and reset, the device is configured. The configuration 

is done with either data stored on an external memory or with bitstream data downloaded from 

an external device. This sequence is performed every time after power-up is completed as well as 

when prototyping boards are programmed in a development environment. The amount of current 
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consumed is in the range of a few hundred milliamps which is acceptable for devices that get 

power from the electrical grid, but for portable devices this can be a power critical mode. 

3.2.3 Standby mode 

 In this mode, the device is configured but not active. In this mode, the device is either 

waiting for an input from the user or an interrupt form a coprocessor working in parallel. The 

power consumed in this mode is static power. The amount of static power consumed depends on 

the FPGA technology and the operating temperature. SRAM FPGA devices consume more static 

power than FLASH FPGA devices and this difference is higher at higher temperatures. 

3.2.4 Active mode 

In this mode the device is performing operations described by the application bitstream. The 

power consumed in this mode is not just dynamic power due to switching activities but also 

includes static power. Just as in standby mode, SRAM FPGAs consume more power than 

FLASH FPGAs and this difference is more at higher temperatures.  

3.2.5 Sleep mode 

 To conserve power in portable battery powered devices, power is turned off when the system 

is in idle state. This mode is different from standby mode. In standby mode the device is still 

consuming static power even when it is idle, while in sleep mode the device maintains only 

minimal power required to bring it back to operational mode. This has a drawback in SRAM 

FPGAs because the configuration data has to be reloaded every time the device is coming out of 

sleep mode, thus consuming the configuration power. The graph in Figure 3-2 shows the power 

profile. We know that the device operates majorly in the sleep mode. So, even though the power 

consumption is minimal in this mode, the duration spent by the design in it results in the power 

consumed in this mode becoming a major part of the total power consumed 
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Figure 3-2 FPGA power profile [22] 

3.3 Low power design approaches 

Different low power techniques provide different percentage improvements, so used alone 

they might not provide the desired optimization; moreover power reduction achieved is based on 

the test design and test device. But these approaches used together substantially reduce overall 

design power consumption. Table 3-1 [24] shows the contribution of each of these approaches in 

a microprocessor device design’s overall power reduction. 

Technique Saving 

Low power synthesis 15% 

Clock gating 8% 

Logic/architectural 

changes 
45% 

Voltage reduction 32% 

Table 3-1: Power optimization achieved [24] 

 Now that we have an idea about the power consumption components and how this total 

power is distributed over the different modes of the device’s operation, we can make design 

decisions from the very first step that allow us to identify problem areas and mitigate them with 

appropriate technology choices and design strategies. By using low power techniques to optimize 

the design and operation, significant reduction in power consumption can be achieved. In [13] 
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the designers of an audio decoder could achieve 55% power saving compared to other available 

decoders.  

3.3.1 Proper device selection 

First step in the design process is choosing a right FPGA to run the application on. This is an 

important step in the design process. By choosing the right device, the system design can be 

tailored to achieve optimization for that particular device. The architecture and device structure 

are very important factors in device selection. Static power, as mentioned earlier, is due to 

transistor leakage and bias currents. By choosing devices that employ transistors with low 

leakage current, static power consumption can be controlled. Transistors with longer channel 

lengths and higher thresholds are also used in the device structure to address this issue. 

Researchers in [10] have shown that by tuning the device a 39% improvement in the leakage 

yield was achieved and this coupled with architectural optimization, the leakage yield improved 

by 73%. In [8] the researchers designed a 90 nm FPGA core architecture that consumes 46% less 

active power and 99% less standby power when compared to a Spartan-3 FPGA core. 

In [7], experimental results have shown that reducing gate length and operating voltage has a 

significant effect on the gate capacitance and dynamic power consumption. The findings are 

summarized in Table 3-2 below. The lower gate size has achieved a 15% reduction in gate 

capacitance while a reduction of supply voltage from 1.2V to 1V has reduced consumption by 

17%. These two techniques resulted in a 40% overall reduction of the dynamic power 

 
Virtex-4 

FPGA 90 nm 

Virtex-5 

FPGA 65nm 
% of change 

Power 

Ratio 

VCCINT 1.2 1 -16.60% 0.69 

CTOTAL 1 0.85 -15% 0.85 

Power 1.44 0.85 -40% 0.59 

Table 3-2: Results summary [6] 
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From the technology point of view, there are three main types of FPGA technologies: Anti-

fuse, SRAM and FLASH [1], In comparison, Anti-fuse technologies consumes less static power 

than SRAM and FLASH FPGAs because of its finer grained architecture while they also occupy 

less real estate. Dynamic power consumption is lower because of small switching and routing 

capacitances, smaller interconnect delays and hence they are faster than their counterparts. So 

one would think that this is the most appropriate technology for commercial use, but it has some 

drawbacks. Anti-fuse technology is more expensive to manufacture, which neutralizes its speed 

and power advantages. Moreover, anti-fuse devices are OTP (one-time programmable) devices 

(once the device is programmed, it cannot be programmed again). If any design changes need to 

be made later in the systems life cycle the entire FPGA device has to be discarded and replaced. 

During the testing process it is not economical to cycle test patterns through the system, which 

also increases the test time in a development or prototyping environment 

Even though both FLASH and SRAM FPGAs are reprogrammable devices, FLASH 

technology is not preferred over SRAM because these devices require five additional 

manufacturing process steps on top of the standard CMOS technology. FLASH devices also tend 

to consume more static power due to their vast number of pull up resistors. So depending on the 

application, proper choice of device can be made. Table 3-3 summarizes the features of these 

technologies. 
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Feature SRAM Anti-fuse 
E2PROM/           

FLASH 

Technology node State of the art 
One or more 

generations behind 
One or more 

generations behind 

Reprogrammable 
Yes                              

(in system) 
No 

Yes                           
(in system or offline) 

Reprogramming 
speed                   

(incl. erasing) 
Fast -------- 

3x slower                 
than SRAM 

Volatile (must be 
programmed on 

power-up) 
Yes No 

No                           
(but can be if 

required) 

Requires external 
configuration file 

Yes No No 

Good for prototyping 
Yes                         

(very good) 
No 

Yes                           
(reasonable) 

Instant-on No Yes Yes 

IP security 

Acceptable                    
(especially when 
using bitstream 

encryption) 

Very good Very good 

Size of configuration 
cell 

Large                        
(six transistors) 

Very small 
Medium-small          

(two transistors) 

Power consumption Medium Low Medium 

Table 3-3: FPGA technology summary [1] 

3.3.2 Voltage and temperature control 

As mentioned above, transistor leakage current increases with an increase in temperature and 

lowering the supply voltage has significant effect on leakage current. In Virtex-5 devices [7] it 

has been shown than a ±5% variation in core voltages causes an approximate ±15% change in 

static power consumption and ±10% change in dynamic power consumption. FPGAs are 

designed to meet performance requirements within ±5% variation in the supply voltages from the 

nominal. In the case of junction temperature for the same family of devices, a decrease in the 

temperature form 100°C to 85°C causes an approximate 20% reduction in static power 

consumption while also increasing device reliability.  



 

  27 

3.3.3 Supply voltage scaling and Power switching 

As mentioned earlier, dynamic power is proportional to the square of the supply voltage. So 

by scaling it down the dynamic power can be reduced. But a reduction in supply voltage affects 

the device performance as CMOS gates run slower at a lower voltage. The design can be 

modified to overcome this performance degradation. Having more logic running in parallel to 

boost performance at a lower supply voltage does not have a big impact on the dynamic power 

consumption and the advantage of the scaled down power can be observed. In [12] experimental 

results have shown that dynamic voltage gating of the device voltage performed by a voltage 

controller resulted in a power consumption reduction of 4% to 54% on average. Typical 

reduction values were 20% to 30%.  

In power switching, any unused on-chip resources are independently turned off to save 

power. The device can be divided into blocks based on the power consumption and each block is 

separately switched to conserve power. The block size can be as small as an individual CLB, 

controlled by the user directly or by configuring the device using an appropriate bitstream. 

3.3.4 Reducing clock activity and signal activity 

As mentioned earlier, dynamic power consumption depends on the clock frequency and 

amount of signal activity in the design. Signal gating can be used to reduce the activity on design 

interconnects, but existence of large clock distribution networks can diminish any gain achieved 

with signal gating alone [17]. Due to high capacitances of these global interconnects, 25% of the 

overall dissipation is due to clock signals and this value can go as high as 50% in highly 

pipelined circuits. This can be controlled by turning the clock off when the circuit is idle and 

turning it back on when required, which is called clock gating. The designer needs to be careful 

because this can lead to set-up and hold time violations in the design.  
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Spurious activity in interconnects, known as glitching, can also cause an increase in dynamic 

power consumption. In combinational circuits like adders and multipliers with multiple stages, 

testing has shown that glitching accounts for 80% of the signal activity [19]. Pipelining is shown 

to reduce the energy per operation by 40% to 90% [20] by reducing glitching. Adding 

configurable delay elements in the device architecture can also reduce glitching by 87% [21] and 

reduce the overall FPGA power consumption by 17%. Glitching in logic block interconnects can 

also be reduced by either gating or pipelining. 

Another type of switching activity that can be controlled is the change in states of finite state 

machines (FSM). By encoding the FSM states, number of toggles of flip flops during state 

transitions can be reduced. FSMs are usually encoded in standard binary format but by using 

gray code the number of toggles during state transitions is reduced. In larger designs that 

extensively use state machines, this technique does have a valuable impact. The table below 

shows the differences in number of toggles between binary and gray code. 

Binary code # of Toggles Gray code # of Toggles 

000 3 000 1 

001 1 001 1 

010 2 011 1 

011 1 010 1 

100 3 110 1 

101 1 111 1 

110 2 101 1 

111 1 100 1 

Table 3-4: Comparing toggle rates of binary and gray code 

Another form of FSM encoding is called one-hot state machine encoding. In this type of 

encoding, each state uses one flip-flop. For example, a four state FSM will need a 4 bit register 

to be declared as shown in Table 3-5. 
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State[0] 4’b0001 

State[1] 4’b0010 

State[2] 4’b0100 

State[3] 4’b1000 

Table 3-5: One hot FSM encoding method 

The advantage of one hot encoding is that they are typically faster. The speed does not 

depend on the number of states. A design with many encoded states can slow down. This type of 

encoding is easy to design and synthesize. The logic is larger when compared to either gray 

coding or binary, but in larger designs the logic occupied is comparable and this encoding makes 

it easier to debug.  

3.3.5 Clock frequency scaling 

The clock frequency has a direct effect on power, as mentioned above in the model for 

dynamic power consumption. A significant reduction in power consumption due to a reduction 

of only the signal activities is seen in asynchronous circuits. To be more effective in synchronous 

circuits, the clock also needs to be controlled. FPGAs, when compared to ASICS, have shown to 

achieve a dynamic power saving of 50% to 80% [16]. When compared to their ASIC 

counterparts, the total power saving ranged only from 6% to 30% due to the effect of high static 

power consumption in FPGAs. Though clock gating is one way to reduce the clock signal 

activity, clock frequency scaling is another method to control dynamic power consumption. In 

devices with higher capacitances in clock distribution circuits, this technique helps reduce the 

power lost at output capacitances of these lines. Lowering clock frequency affects the system 

performance, but in [14] the researchers have demonstrated the tradeoff between logic 

implemented and clock frequency in respect to power consumption. They have shown 

experimentally that at low frequencies a 5 fold increase in occupied area resulted in a 1.5 times 
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increase in dynamic power while the same factor of increase in area at a higher frequency 

resulted in a 3.8 times increase in dynamic power. 

 In cases where the design sub-systems are in idle state or the computational needs have 

reduced, the clock to these modules can be reduces without affecting the application throughput. 

This method is called dynamic clock scaling and has been successfully implemented in [17]. 

This method in conjunction with dynamic voltage scaling can be very effective in reducing the 

dynamic and overall power consumption. The device at lower clock speeds maintains switching 

speeds due to the lowered supply voltage levels [17]. 

3.3.6 CAD tools 

Both Altera and Xilinx provide users with power estimation tools which can be used either 

during the design process or after the final design is done to get an idea about the device power 

consumption [5]. During the design process, early power estimators, provided as a spreadsheet, 

can be used to estimate power consumption of that part of the design. After the design process is 

done, power analyzer tools utilize detailed switching activities provided by the user. The device 

routing and placement information along with detailed device temperature and cooling 

information is also used to estimate the power consumed. Although the most accurate way to 

measure power consumption of the device is by hardware measurements, power estimators are a 

convenient way to determine the power budget. This along with power efficient routing 

algorithms implemented during the place and route step of the design process, help enhance the 

devices architectural features. 
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Chapter 4  

Hardware and Software 

This section describes the need for proper device selection for a design and the steps taken in 

making the choice for this thesis are discussed. The device features are presented along with 

some details about the Quartus II design software and PowerPlay power optimization tool. 

4.1 Device Selection 

A wide variety of FPGA devices are available in the market today, each with one or more of 

the features that were discussed in Chapter 1. Using a desired design entry method with 

appropriate power conservation techniques is only half of the job. It is equally important to 

choose the right device to run the application on, and it should provide the designer with the 

required resources while being flexible enough to accommodate any future design and resource 

requirement changes. 

For this thesis design, Altera’s FPGA devices were chosen for implementation due to the 

availability and the author’s familiarity with the design software. The Altera FPGA families 

chosen to perform the analysis on are given below:  

 Stratix series: High bandwidth, high density FPGAs 

 Arria series: Midrange FPGAs with transceivers, optimized for mainstream protocols 

 Cyclone series: Built from ground up for low cost, low power consumption 

  Preliminary power analysis measurements were made using the PowerPlay power analyzer. 

Steps taken in performing the device power estimations and their results are provided and 

discussed in a later chapter. The FPGA EP2C35F672 which belongs to the Cyclone II device 

family of Altera was chosen based on these estimation results. 
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4.2 Cyclone II FPGA Architecture 

For this thesis, HDL code implementation was done on the Cyclone II device family. The 

device architecture is described below [4]. 

 

Figure 4-1: Cyclone II FPGA architecture [3] 

In Figure 4-1, the area denoted as Logic Array is the array of CLBs (Altera LABs), where 

each LAB consists of 16 logic elements. The Interconnect structures are not shown here, but the 

special function blocks are shown. The Cyclone II FPGA has embedded in it multiplier blocks, 

RAM blocks (shown as M4K blocks), and Phase Locked Loops denoted as PLL in the figure. As 

labeled, the IOEs are the input/output elements or input/output blocks. 

4.2.1 Interconnect structures 

The architecture of cyclone II is a two-dimensional row and column based architecture. The 

row and column interconnects provide the required connectivity between different CLBs, 

multipliers and RAM blocks. These interconnects are of varying speeds. Along with 4 PLLs, the 
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cyclone II device is also provided with a global clock network. The clock network consists of up 

to 16 global clocks running through the entire device, and it is used to provide clock to all device 

resources like multipliers, memory blocks along with the CLBs and IOEs.  

The device architecture has special performance enhanced routing lines called multi-track 

interconnects. They consist of routing lines of different speeds, used to achieve connectivity 

within a design block or between design blocks. Depending on how critical a certain interconnect 

path is, the compiler decides if it needs to be on the faster lines or not, in order to boost the 

design performance.  

4.2.2 Embedded multipliers 

Each of the embedded multipliers can be used to implement either two independent 9x9 bit 

multipliers or one 18x18 bit multiplier. These multipliers have been optimized for multiplication 

intensive DSP functions like Finite Impulse Response (FIR) filters, Fast Fourier Transform 

(FFT) etc. The number of embedded multiplier columns depends on the device; between 1 and 3; 

and these columns are the same length as the LAB column. For example, in the EP2C35 device, 

we have 1 embedded multiplier column with 35 multipliers which can be used to implement 

either 70 9x9 multipliers or 35 18x18 multipliers. These multipliers operate at a maximum 

frequency of 250 MHz at the highest speed grade. 

4.2.3  Embedded memory blocks 

Each of the embedded memory blocks has a size of 4068 RAM bits. These blocks can be 

used to implement different types of memory such as true Dual port memory (dual port RAM has 

ability to simultaneously read and write different memory cells at different addresses), simple 

dual port, single port RAM, ROM and first-in-first-out (FIFO) buffers with or without parity.  

The M4K blocks also support the following features: 



 

  34 

 Byte enable: The byte enable allows input data to be masked so the device can write to 

specific bytes. 

 Parity bits: One parity bit for each byte can be used to implement parity checking for 

error detection 

 Shift register: Using RAM based first in first out (FIFO) buffers instead of LE registers 

saves general logic resources, increases overall speed and reduces power consumption. 

 Various clock modes: The input and output registers can be clocked in different modes 

either independent of each other, one clock controlling the two ports or one clock and 

clock enable to provide register control. 

 Address clock enable: This allows for the address busses to hold the previous address 

value for as long as the enable signal is given. 

 Global clock networks and Phase locked loops 

The global clock network has a clock control block that can be used to select between the 

PLL clock outputs, dedicated clock inputs and dual purpose clock inputs. Every device has a 

different number of the above resources available in them to select from. If the dedicated clock 

pins are not used as clock inputs, they can be used as general purpose I/O pins. As mentioned 

before, the global clock network provides clocks for all resources within the device, like the 

CLBs, IOEs, memory blocks, and embedded multipliers. 

The global clock lines can also be used for control signals, such as clock enables and 

synchronous or asynchronous clears fed from the external pin. Internal logic can also drive the 

global clock network for internally generated global clocks and asynchronous clears, clock 

enables, or other control signals. Cyclone II devices have up to 4 PLLs that can be used for clock 
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multiplication and division, phase shifting. Some of the other features supported by the PLLS are 

programmable phase shifting, clock outputs for differential I/O support etc. 

4.2.4  Cyclone II Logic Element structure 

Figure shows the structure of the logic element of the FPGA device [4]. 

 

Figure 4-2: Cyclone II FPGA Logic Element [3] 

Each LE in the cyclone II device consists of: 

 A four-input look-up table (LUT), which is a function generator that can implement any 

function of four variables 

 A programmable register which can be configured for D, T, JK or SR operation 

 Carry chain connections for implementing fast carry logic. The Quartus II compiler 

creates carry chain logic during the design processing.  
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 A register chain connection. This feature allows the registers in a CLB to be cascaded 

together for shift register implementation.  

 The ability to drive all types of interconnects: local, row, column, register chain, and 

direct link interconnect. Each LE has 3 of outputs that allow for driving these routing 

resources. The LUT and the register outputs can drive these interconnects independently 

 Support for register packing. The high routability feature of the FPGA architecture and 

ability of the synthesis tool and place and route tool to utilize this feature allows the 

efficient use of the LEs. This allows the LUT in a CLB to be utilized independently of the 

registers i.e. the LUT can be used to perform one operation while the register available in 

that CLB can be used, either individually or in conjunction with other registers, to 

perform a completely different task. This reduces the size of a design and usually fits a 

design into a smaller device 

 Support for register feedback. This is when the output of the programmable register is fed 

back as an input to the LUT.  

4.3  Quartus II and Power Play power analyzer 

Quartus II design software is one of the design and synthesis tools available to designers [5] 

[25]. These tools are designed to take advantage of device architecture and special features to 

map the design into logic and help achieve the designer’s optimization requirements. The 

designer can choose to optimize for area, timing or power of the design. Area driven synthesis 

will reduce the amount of logic used. This also helps reduce dynamic power consumption due to 

optimized and reduced logic levels. Timing driven synthesis uses timing constraint information 

provided by the user to determine the design’s routing. This is done at the cost of consuming 

extra logic on the FPGA device. In power driven synthesis the main objective is to reduce the 
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power consumption. Reduction in area and power driven synthesis go hand in hand. For 

example, using embedded features of the FPGA like multipliers, embedded RAM and special 

interconnect structures are very effective in reducing power consumption [22]. 

The software allows the designer to select the factor that needs to be optimized at both the 

analysis and synthesis step and fitter step. In the analysis and synthesis step, the design is 

compiled to check for syntax, logical completeness and inconsistencies. The design is 

synthesized and resource utilization decisions such as using embedded multipliers or memory 

blocks are taken. The last step of the compilation process is generating the files necessary to 

program the device and this process is called “fitting”. Quartus II fitter places and routes the 

design. Using the database file created during analysis and synthesis step of the design 

compilation, the fitter assigns resources on the selected device to match the logic and project 

requirements of area, timing or power. The logic functions are assigned to optimal logic cell 

locations and appropriate interconnection paths are chosen. The final result of the fitting process 

is a bitstream file that is used to program the FPGA. 

Signal activity files (.saf) or value change dump files (.vcd) help the fitter fully optimize 

design routing for power conservation. These files contain the signal activities of all signals in 

the design and are determined after a full design simulation performed on the post-fit netlist. If 

the input vectors used to perform simulation represent the typical behavior expected at the 

system inputs, the .saf file or .vcd file will reflect the actual behavior at every design node. If the 

user does not provide either of these files, Quartus II software uses vectorless estimation [6] [5] 

[25]to estimate the signal activities. This involves estimating the switching activity at each node 

based on the activity of its inputs and the logical function performed at that node [6]. This 
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information is used to optimize the post-fit design for power consumption. The figure below is 

the recommended design flow for power driven compilation 

 

Figure 4-3: Quartus II power driven synthesis flow [24] 

4.3.1 Power estimation and analysis 

Altera allows for estimating power consumption at different stages of the design process. The 

early power estimator is a Microsoft excel spreadsheet that allows for estimating power 

consumption and heat dissipation on a design that is not ready for full compilation. The 

environmental conditions and estimated logic consumption are used to make these early 

estimations. For a accurate estimation of the completed design’s power consumption, the Power 

Play power analyzer tool is utilized. This tool uses information given by the user to make power 

consumption and heat dissipation estimates. The analyzer takes into account the following 

factors: 
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 Device selected: FPGA families differ in power consumption mainly due to the 

difference in architecture. A larger device tends to consume more static power because of 

its higher transistor count.  

 Environmental Conditions: 

1. Air flow: It can be specified as either “still air” where no fan is used to remove heated 

air away from the device or a foot per minute rating of a fan used is specified. 

2. Heat sink: The heat sink’s cooling capacity is entered as the case to ambient thermal 

resistance. The thermal compound that interfaces the heat sink to the device also 

affects heat dissipation. 

3. Board thermal model: Junction to board thermal resistance determines the thermal 

resistance of the paths through the board. 

 Device resources used: 

1. The type of output pin determines the output capacitances. Output pins that drive off-

chip component have high load capacitances leading to higher dynamic power 

consumption. I/O pins have pull up resistors which draw static power 

2. If the number of logic elements and embedded features in the device are more, it 

tends to draw more power than a device with a smaller number of such elements. 

3. Global signal networks consume more dynamic power due to high capacitance 

associated with the routing interconnect. 

 The final factor that the analyzer considers is signal activity at each node of the design. 

The two statistics that are used are the toggle rate and static probability of signals in the 

individual nodes. Toggle rate is the average number of signal changes per unit of time 
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and static probability is the fraction of time the signal is at logic level high. Static power 

consumption majorly depends on routing and logic, and it can be affected by high static 

probabilities due to state dependent leakage.  

In summary, device and device resource data reports are generated by the Quartus II software 

during the compilation process. The board’s thermal model and ambient cooling conditions are 

specified by the user. The signal activity is generated by performing a full design simulation on 

the design post-fit netlist generated by Quartus II. The simulator generates a file indicating the 

signal activity in the design. The PowerPlay power analyzer tool uses all of this information to 

perform the power analysis. In the next section I describe the sections of the analyzer 

compilation report. 

4.3.2 Compilation report 

The Power Play power analyzer tools compilation report is divided into the following 

sections 

 Summary: This section of the report has details of the results obtained from the analysis. 

It has the total thermal power dissipation, core dynamic and static power dissipation and 

I/O thermal power dissipation values. It also provides the user with a confidence metric. 

If the metric is low, it means that the toggle rate data that was provided was insufficient 

and either the vectorless estimated values or default values for toggle rates were used for 

the nodes missing this information. 

 Settings: This sections has the details of the settings for the operating conditions, toggle 

rates etc.  

 Simulation files read: This section shows the various simulation files used for the 

simulation purposes. If using a .vcd file, you can, in this section, specify a block of time 
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from the simulation results you want to use to perform the analysis for, by specifying the 

VCD start and end time.   

 Operating conditions used: This shows the settings used for the ambient conditions and 

also the estimated values for conditions not set by the user. 

 Thermal power dissipation by block type: The static and dynamic power dissipated by the 

different blocks in the design is shown here along with the average toggle rate by block 

type. 

 Thermal power dissipation by hierarchy: The static and dynamic power dissipated by 

design hierarchy is shown here along with the average toggle rate of the blocks routed in 

that hierarchy. 

 Core dynamic thermal power dissipation by clock domain: The power dissipated for each 

clock domain is shown here. For domains with no clock specified, a value of zero is 

assigned 

 Current drawn from voltage supplies: The current drawn from each of the voltage 

supplies is shown here. It is further categorized by the I/O bank and voltage. 

 Confidence metric: If the analyzer considers the toggle rate data to be from a source 

which is poor predictor of real time toggle rate data, for example using vectorless 

estimation for the toggle rates or using default values, the confidence metric is low.  
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Chapter 5  

Design Work 

The design work done for this thesis is described in this section. The desired functionality is 

described followed by a discussion of the code written. Later in the chapter, details of the custom 

board designed for testing purposes is discussed and the issues faced during the design process 

and the approach taken to resolve them is also described. The techniques used to reduce power 

consumption in the design are presented in a later chapter along with the power estimation 

results and real time measurements. 

5.1 HDL design code 

 The primary objective of this thesis design is to study the power consumption of an FPGA 

device for an application in which input signal from different sources is taken, signal processing 

is performed, and the resulting information is stored in an external memory. For this thesis, the 

input sources selected were a single channel of digital data and a single channel of analog data. 

In the testing process, the digital data would be provided by the means of a RS232 connection to 

a computer. For the analog data an arbitrary waveform generator would be used. An SRAM 

memory was chosen as the external memory. It was not critical for the memory to be non-

volatile, so SRAM memory was chosen over FLASH memory. SDRAM was not selected 

because some additional power would be needed to constantly refresh the data in the memory. 

A low pass FIR filter was implemented to serve as the signal processing requirement in the 

analog data path. The block diagram of the preliminary design is shown below. The design is 

subdivided into the serial module, an analog module consisting of the analog-to-digital and 

digital-to-analog converters, a signal processing module consisting of the FIR filter, a memory 
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module consisting of a memory controller writing to an external memory, and the user interface 

for the user to give input commands to the application and receive output.  

Serial 
Module

Serial 
Transceiver

Analog 
Module

Audio
Codec

DSP 
Module

Memory Controller

SR
A

M

User
Interface

Serial input Analog input

To memory 
controller

Pushbutton 
input

LED output

Serial 
data

ADC 
data

DAC 
data

Implemented on FPGA

 

Figure 5-1: Design block diagram 

The serial, DSP and memory modules are implemented in verilog HDL. The serial module 

gets its input from a serial transceiver like MAX-232, while the memory module sets up the data, 

address and control signals for the external SRAM memory. An audio codec is the central part of 

the design of the analog module. In the analog module, HDL code is written for components 

needed to program the audio codec for desired operation and data formatting modules like serial-

to-parallel converters and parallel-to-serial converters. 

5.1.1 Serial Module 

The serial module is designed to read data sent from a computer via a serial RS232 

connection. It reads the data sent serially and sends it to the memory controller to be stored in the 

external memory. The RS232 frame structure shown in Figure 5-2. 
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Figure 5-2: RS232 frame structure 

The serial input line is always high, except when there is a frame put on the line in which 

case it first drives the line low to indicate that data is available. This is called the start bit, after 

which the data bits are sent. To indicate the end of transfer, the serial line is forced high. For the 

purposes of this design, a 16 bit word was chosen as the width of the data written to and read 

from the memory. Shown in Figure 5-3 is the finite state machine (FSM) implemented to read 

the serial data in. The three states are idle, receive and hold. In the idle state the state machine 

waits for the occurrence of the start bit. When the start bit is seen the state machine goes in to the 

receive state where the 8 data bits are stored into a register and after all the 8 bits are received, 

the FSM goes back to the idle state. After two frames are received, the FSM sends the 16 bit data 

to the memory controller to be written to the memory. 

 

Figure 5-3: Serial module FSM flow 

When the 16 bits are received in the receive state, the FSM asserts a ready signal to the 

memory controller indicating that the 16 bit data is available to be written and it goes into a 

temporary hold state before going to the idle state. The HDL code for the serial module is 

provided in the appendices. 
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5.1.2 Analog module 

The central part of the analog module is the Wolfson WM8731 audio codec [26]. This codec 

has many features that make it a good choice for this design implementation. It is a low power IC 

with variable sampling frequencies from 8 kHz to 96 kHz which allow for flexibility in the 

design implementation. To program the audio codec for the desired functionality, appropriate 

control words need to be written to control registers. The control words can be written using 

either the 2-wire or 3-wire serial interface mode and the codec can be configured to format the 

audio data in either I
2
S, right justified, left justified or DSP modes with the multi-bit sigma delta 

ADCs and DACs of the device capable of supporting 16/20/24/32 bit word lengths. 

 The audio codec allows for three analog inputs and a single analog output. The inputs are 

configured as two line inputs for stereo and a mono microphone input. The IC can be put into 

either a standby mode or power down mode to save power by means of software control. The 

device has a register called the power down control register that needs to be written to in order to 

power down either the entire device or individual sections. By changing the control words 

written to the control registers, the volume levels of the inputs can be changed and also muted, 

sections of the device be powered off and built in filters can be enabled to provide noise 

reduction and reduction in the dc component from the audio signal. The codec can be operated in 

either slave mode or master mode. In slave mode, the clocks required for the codec operations 

are provided by external inputs while in master mode, the codec’s built in crystal oscillator is 

invoked for all of the devices clock requirements. The datasheet of the codec describes the 

following clocks as the ones that are generated or given as inputs depending on the mode: 

 ADCLRC clock that controls whether right channel or left channel data is present on the 

output line of the ADC, the frequency of the clock in this design is 48.8 kHz 
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 DACLRC clock that controls whether the right channel or left channel data is present on 

the input line of the DAC, the frequency of the clock in this design is 48.8 kHz 

 BCLK is the clock on whose negative edge the data bits are put on the output line of the 

ADC or need to be put on the input line of the DAC, the frequency of this clock in the 

design is 3.125 MHz 

 XCK is the clock that needs to be given as input to the codec and its default value is 12.5 

MHz 

The output of the ADC and the input to the DAC is serial data of length as configured by the 

user is in 2’s complement form.  

 

Figure 5-4: Data formatting modules 

For this design, intermediate signal formatting modules were implemented to convert the 

data output of the ADC from serial data to parallel format, and vice versa for the parallel data 

output read from the memory into serial data input to the codec DAC. The serial to parallel uses 

the ADCLRC clock and the BCLK clock for the conversion process, while the parallel to serial 

converter uses the DACLRC clock and BCLK clock to properly clock the data into the DAC 

input line of the codec. The HDL code for the data formatting modules is provided in the 

appendices. The next section describes the signal processing module to which the input and 
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output data is 16 bits long. In this application, the user is provided with the data stored in the 

external memory via the DAC on the output line of the codec. 

The codec configuration is provided below. 

 The mono microphone input is selected to the ADC and the device DAC is enabled 

 The right and left channels of the stereo input are muted. 

 The codec is programmed to operate in master mode with the audio data set to 16 bit 

length available in the I
2
S mode 

 For the sampling control of the device, normal mode of operation is chosen over the 

USB mode, which gives flexibility in setting the frequency of the master clock  

 The sampling frequency is for the ADC and DAC is set to 48 kHz 

The analog module consists of two entities, one is responsible to write the command words to 

the codec and the other entity sets up the command words needed based on internal signals. The 

entity writing to the codec is called codec_prgm using two-wire serial interface, and the entity 

setting up the data is data_setup. When the device is done powering up, data_setup generated the 

first control word to be written by appending the address of the control register with the control 

word appropriate for the desired operation. This data word is sent to codec_prgm that programs 

the codec. After each control word is written to the appropriate register, and codec_prgm 

indicates to data_setup that the operation is done. A new data word is sent to codec_prgm to 

program the codec. Once the control words are written, they are not to be refreshed again unless 

the analog module gets the input indicating that the application wants to turn off the codec. At 

that time the codec is written to again with the appropriate control words. The HDL code for the 

analog module is provided in the appendices. 
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Figure 5-5: Analog module operation flow 

5.1.3 Filter Module 

An N-tap low pass FIR filter was designed for the application. The filter block diagram is 

shown in Figure 5-6 below. Value N denotes the number of filter coefficients or the length of the 

filter with N+1 taps. A low pass filter with a filter of length 32 was designed for the purpose of 

this thesis design. The filter coefficients denoted by h0 to hN are stored in an internal memory 

block and read into the entity performing the filtering process. The input data and the filter 

coefficients are passed through a multiply accumulate operation and the final result is the filtered 

output. As seen in the figure, each sample is multiplied by a filter coefficient and after a delay is 

sent to the next stage, all the products obtained from each of the stages is added up and the result 

is the sample of the filter output. This process is called multiply – accumulate or MAC. 

 

Figure 5-6: FIR filter block diagram 
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The filter module block diagram is shown below 

 

Figure 5-7: Filter module block diagram 

The input data is available to the filter at edge of the ADCLRC clock. If the data is stereo i.e. 

information is available on both the channels, the filter would need to run at twice the ADCLRC 

clock speed. Since we are using the mono microphone input the data is available only on one of 

the channels while the other channel is mute, hence the filter is run at 48.8 kHz which is the rate 

of the ADCLRC clock. The HDL code for the filter module is provided in the appendices. The 

multiply accumulate (MAC) process is a widely used operation in digital signal processing. 

While there are a number of microprocessors and microcontrollers that use special dedicated 

units that are designed to perform this task fast and efficiently they still have a draw back when 

compared to FPGAs. 

In a processor environment this task is performed in a loop, where it takes at least one clock 

cycle to perform each of the MAC operations. For example [2] a 256 tap filter means that 256 

MAC operations need to be performed on each sample and this takes 256 clock cycles. In an 

FPGA, due to the fundamentally parallel processing structure all of the 256 MAC operations are 

performed in one clock cycle making the FPGA platform a favorable choice for such 

applications. 

The filter coefficients were generated in MATLAB using the Parks-McClellan method for 

designing an FIR filter. The filter pass band is from 0 to 5 kHz, where 5 kHz to 7 kHz is the 
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transition band and the stop band is all frequencies higher than 7 kHz. The memory instantiated 

in the design is initialized with the coefficients generated in MATLAB for the filter. The 

coefficients need to be in a format that the synthesis software can use to load the values in. The 

file is called a memory initialization file and is of the extension .mif. A MATLAB function is 

used to convert the generated floating point filter coefficients into 2’s complement form. The 

code for the filter and the code used for the format conversion are provided in the appendices. 

The MATLAB plot of the filter designed is shown in Figure 5-8. 

 

Figure 5-8: FIR filter magnitude and phase plots 

5.1.4 Memory module 

The memory module is used to facilitate the writing of data to the external SRAM memory. 

The memory module is comprised of a resolver module that is responsible to provide the 

memory controller module with appropriate data and control signals while the memory controller 

is responsible for generating the right output signals that drive the external memory. The 
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resolver’s duties are generating the read or write addresses, and it signals the memory controller 

as to whether a read or write action needs to be performed. 

In this design we have 16 bit data coming from the serial module as well as the analog 

module to be stored in the memory. In order to differentiate the two data sets, the memory was 

split into two banks, one for each set. So depending on the source of the input data, the resolver 

generates the appropriate bank address and signals the memory controller. To assist the resolver 

in deciding the data source, a bank select multiplexing module is used. The received serial and 

analog data are given as inputs to this module which then multiplexes the data onto a single 

output line and indicates the data source to the resolver. If data from both the sources are 

available, higher priority is given to the analog data because that data is generated at a faster 

clock. The block diagram of the multiplexer is shown in Figure 5-9. 

 

Figure 5-9: Bank select module 

The resolver in its idle state waits for the input signal indicating a read or write operation. If a 

write operation is present, it also waits to see what bank it needs to write to based on the input 

from the bank select multiplexer module. When it knows what memory bank is selected, the 

address is generated along with a signal indicating the memory controller of the operation to be 

performed and the corresponding address. If read input is seen, the FSM goes into a loop 

flushing out all of the external memory contents. The resolver in this loop increments the read 
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addresses beginning from address 0 after each successful read operation, until all the memory 

locations have been read. After all the data from the memory is read out, the resolver goes back 

into the idle state and normal operation is resumed. The state flow diagram is shown in Figure 5-

10. 

 

Figure 5-10: Memory module state flow diagram 

The memory controller takes as inputs the data and address for a write operation or just the 

address for a read operation. It sets up the required interface signals for the external memory, 

meeting the timing requirements of the read and write operations. This module indicates to 

components higher in the hierarchy when a read or write operation are done. The HDL code for 

the resolver and memory controller module are provided in the appendices. 

5.1.5 User interface 

The interface in this design includes the user input indicating to the application that it needs 

to perform a burst transfer of all of the data stored in the external memory. In this design 

application, this input is given via a pushbutton. The user is also provided with the option of 

resetting the device asynchronously using an external reset input also given via a pushbutton. 
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The design approaches taken to optimize the application’s power consumption will be discussed 

in the next chapter. As discussed in the previous chapters, clock and signal gating are very 

effective techniques. To indicate the user of the device’s mode of operation, a LED is lit up or 

turned off indicating the mode to be a power save mode or normal operating mode respectively.  

5.2 Test board design 

Reduction of power consumed being the critical point in this thesis, it is important to have a 

means of taking detailed measurements to describe the total and individual block level power 

consumption profile of the application and quantify the affects of the different low power design 

approaches taken. For this purpose a test PCB was designed that would house the desired FPGA 

device and all of the IC components needed to execute the designed application. While the 

process is running, there are various interest points in the design which need to be probed for 

making the power measurements. For example, isolating the power consumption of the device by 

each voltage source can help in choosing better and power efficient components in the design of 

the supply circuitry. 

While the FPGA power consumption is optimized in the design process, power consumption 

on the system level also needs to be addressed. By using techniques to properly regulate the 

power given to the other system components, we can supplement the FPGA power conservation 

and achieve a highly desired system level power consumption reduction. To allow for the power 

testing on the PCB, test points are provided that make the process of taking measurements using 

test equipment more convenient. Current sense resistors are used to measure the power drawn 

from the various supply voltages and these voltages have been isolated from each other on the 

PCB to allow for testing the affect of the voltage being scaled to the different system components 

on the total power consumption.  
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5.2.1 Design schematic 

Every design process begins with first building the schematic of the circuit. For this thesis 

work Cadence Allegro’s schematic capture tool, Design Entry CIS was used to do the schematic 

design. The CIS stands for component information system that allows the user to reuse known 

components and parts data in their design. This tool has a design rules check (DRC) feature that 

allows the user to check the design for any of the defined physical or electrical design rules and 

avoid any potential costly engineering errors. 

Before beginning the design, the FPGA device selection is an important decision. The power 

analysis comparison of the different FPGA devices as discussed earlier showed that Altera’s 

cyclone II FPGA device family was an appropriate choice. The results of the power analysis 

simulations are provided in a later chapter. The Altera DE2 board development kit provided by 

Terasic was used as the base design for the system schematic. The DE2 board has a number of 

components on it that were not needed for this design, components like LCD display, seven 

segment displays, Ethernet controller, DRAM memory, FLASH memory, SD card reader, video 

decoder and video DAC. It also provided the ability to connect to a USB device and a PS/2 serial 

interface to connect a PS/2 keyboard or mouse. 

 The components needed were the push buttons, toggle switches, LEDs, on board oscillators 

and an external clock input via a SMA connector, RS232 serial interface, audio codec, SRAM 

memory and USB blaster to program the FPGA device. The DE2 board has two 40 pin 

expansion headers, to provide for debugging one of the 40 pin headers was provided in this 

board design.  

The schematics provided by the manufacturer were followed and minor modifications and 

additions were done to build the schematic for the test board with the required components. The 



 

  55 

power supply design for the DE2 board was modified to generate only the required voltages 

needed for the system. Along with the regulated power supply generated from the power grid 

input to the device, an alternate way of powering the device was provided. The user had the 

choice to either power the device either through the grid or by giving individual external voltage 

inputs. This choice would be made by connecting the appropriate header pins using a jumper. 

The external voltage supply was provided to allow for powering down idle system components 

and also quantify power drawn from each source independently. Current sense resistors were 

used in the voltage path to allow for making voltage measurements across them in order to 

calculate the power. These resistors have low resistance values and high current tolerances. 

The DE2 board was provided with a USB blaster to program the FPGA. Cyclone II FPGA 

supports the following configurations modes: Active serial (AS) mode, Passive serial (PS) mode 

and JTAG mode [4]. In AS mode, the device is programmed by a simple low cost serial 

configuration device where the device reads in the configuration data and generates the control 

signals on its own. In PS mode, the device is programmed by an intelligent host i.e. a 

microprocessor that provides the configuration data as well as the control signals. An intelligent 

host provides the data and control signals in JATG mode as well but the data is downloaded into 

the device via a JTAG cable. The DE2 board gave the user the ability to program via the 

computers USB port and also in conjunction with a CPLD provides the ability to store a design 

that gets loaded into the FPGA during device power up. This feature was not required for this 

thesis design, so it was decided that the simple JTAG programming mode would be 

implemented. Section VI of the cyclone II handbook [4] was referred to for the circuit diagram to 

implement this mode. Apart from being simple, all that you needed for implementing this mode 

was a header to connect the programmer cable to the board while the use of the USB blaster 
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meant that additional components that needed to be powered by the on board supply were 

required. 

For the schematic building process, the part symbol of the FPGA was downloaded from the 

Altera website and all the other part symbols not available in the software’s symbol library were 

created using the create part option of the software’s part manager tool. With a lot of the 

components in the original schematic not being utilized, there were a large number of FPGA I/O 

pins that were now unused. The cyclone II datasheet suggested that the unused pins not be left 

floating. The unused pins need to be either tied to ground or to the supply voltage. It was decided 

to ground all of the unused FPGA pins. After the schematic for the entire design was built, it was 

exported to begin the layout process.  

5.2.2 Preparing for layout 

After the schematic is built and checked for design errors, it is time to move on to the next 

design step and layout the circuit and design the PCB. The tool used to perform the circuit layout 

and design the PCB was Cadence – Orcad’s layout tool; Layout Plus. The schematic capture 

program generates a netlist file that is read into layout plus to perform the layout process. 

Analogous to the part symbol in a schematic, every component in a layout is represented by its 

“footprint”. The foot print is the copper area on the circuit board onto which a component will be 

soldered to when the PCB is assembled; these are sometimes referred to as land patterns. It is 

very critical that the footprint be correct, any discrepancy can lead to improper connection of the 

component to the rest of the circuit and result in improper system functioning.  

So the first step after finishing the schematic design and before beginning to layout the 

circuit is to make sure that you have footprints defined for all of the components that you are 

going to use in your design and have them assigned to their respective components before 
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generating the netlist. The layout tools have libraries that contain many of the standard footprints 

for many package types. If the footprint library does not have the footprint of any of your 

components you can do one of three things. First, you can go to the device manufacturer’s 

website and download the footprint if they have it available for your layout tool. Second, you can 

modify an existing footprint in the program’s library if it matches the package type but it does 

not have the same dimensions. Or third, you can create the footprint from scratch. 

The fist method is not suggested and even if the manufacturer does have the footprints 

available for download, the chances of a version compatible to your program depends on the 

program you are using i.e. if it is a program widely used in the industry or a program meant for a 

hobby designer. So if the components package type is available in the library, the second method 

is the easy solution. Fig 5.11 shows the footprint for a standard 676 pin BGA which needs to be 

modified to a 674 pin footprint. 
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Figure 5-11: 676 pin BGA foot print in the standard library 

If the component package type is not in the library, most of the time an existing footprint of a 

package similar to it can be modified, to avoid errors it is advised you start the footprint from 

scratch. The component’s datasheet have the components mechanical information that you can 

use to make the correct footprint. Some datasheets also have a recommended land pattern 

defined in them to help the designer. Shown in fig 5.12 is the package outline for the cyclone II 

FPGA [4] used in this thesis work. It is a 672 pin fine line Ball Grid Array (BGA) package and 

the package outline has information like distance between the centers of the pins, width of the 

pin, length of the device package, width of the device, its clearance from the flat PCB surface 

and other such mechanical information to help the designer design the appropriate footprint to 

house the component on. These dimensions are given in inches or millimeters and all the 

dimensions are in the same units. If manufacturer provides the dimensions in both metrics, one 
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of them is in parenthesis, for example, if in the datasheet, the two metrics indicated are inches 

and millimeter and millimeter is given in parenthesis, it is denoted in the legend as inches (mm). 

 

Figure 5-12: 674 pin BGA package outline [25] 

In the datasheet of the FPGA, the manufacturer provides the designer with the numeric 

values for the package outline dimensions denoted by e, b, D and E in a table format similar to 

the one shown below. The units of the dimensions are also provided in the table. 

Symbol Symbol 

 Min. Nom. Max. 

D 23.00 BSC 

E 23.00 BSC 

b 0.5 0.6 0.7 

e 1.00 BSC 

Table 5-1: Package dimensions [25] 

This information is used to modify the existing footprint. The corner four pads in the 

standard BGA are removed to get the arrangement of the pads as shown in the outline and the 

distances between the pads are modified along with the size of the pads to the value given in the 

table to create the desired 674 pin BGA footprint required for the cyclone II FPGA. 
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Figure 5-13: Modified 674 pin BGA footprint 

Another thing a designer needs to keep in mind is having a proper padstack. A padstack is the 

dimensions of a footprint pad defined on each of the layers of a PCB. When making footprints 

you have to make sure the padstack is compliant with the standards for PCB tolerances of the 

PCB manufacturing company. The company’s website will have a list of minimum specification 

for spacing and other considerations that they can manufacture. For example, PCB manufacturers 

require a minimum of 10 mils or 0.010 inches of inner layer clearance i.e. if you have a through 

hole on a circular pad to mount a component and the hole goes from the top layer of the PCB 

down to the bottom layer through an inner layer, the radius of the pad in the inner layer must be 

10 mils larger than the one on the top and bottom layers.  

In summary, before the netlist file can be generated for the design process to move on to the 

next step i.e. the board layout, the designer, keeping the fabrication specifications and the device 
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mechanical dimensions in mind, needs to create the footprints of all the components and assign 

them to their respective parts in the schematic. 

5.2.3 Design layout 

In this section, I will describe the steps that I took in performing the layout process. 

Individual layer and layer stack details and the details of component placement and interconnect 

routing done will be discussed in this section. 

5.2.3.1 Layer stack 

After all of the footprint assignments have been made and the schematic has been checked 

for any design errors, the netlist is generated and imported into Layout Plus to begin the layout 

process. Before you start placing components and routing any interconnects, the layer structure 

of the PCB needs to be defined. The designer has to decide the number of layers the PCB is 

going to have and what purpose each of those layers is going to serve. Each layer can be used for 

one of four purposes. 

 The layer can be used to route the signals between the board components 

 The layer can be used as a power layer used to route power to the entire board (usually 

the inner layers) 

 The layer can be used as a ground layer (usually the inner layers but sometimes on two 

layer boards the bottom layer is the ground layer) 

 The layer can have the components placed on them with some minor routing (usually the 

top and bottom layers) 

The layer stack up is also important for designs with high frequency digital or analog signals. 

For example, in a multi layer board where an inner layer is used for routing, a power layer or 
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ground layer is stacked close to it to reduce the signal loop. Also, interference between high 

frequency signals routed on two layers is prevented by placing a power or ground layer between 

them isolating them from each other. Stacking a power plane over a ground plane utilizes the 

distributed capacitance between the two planes, functioning as a decoupling capacitor. The 

distributed capacitance is used for decoupling in cases where the frequency is greater than 50 

MHz. At these high frequencies, discrete capacitors become ineffective at providing decoupling. 

The layer stack up for the test board is shown below. The PCB has 6 layers with the top layer 

housing all of the components and the some routing between the components is done on this 

layer. The inner layers serve as power and ground layers; the power layers are primarily used as 

voltage supply for the BGA, so any area on the layers that is not serving the BGA is used for 

routing. The bottom layer is mainly a routing layer but also has some the decoupling capacitors 

housed on it. 

 

Figure 5-14: Test board layer stack up 

The BGA needs to be supplied with two voltages; VCCIO which is 3.3 V and VCCINT 

which is 1.2 V. Inner layers 1 and 3 were used to supply the BGA with these voltages. The area 

of the board where the power needs to be delivered is small, so the rest of the layer was chosen 

to perform some of the signal routing for the other components on the board. Inner layer 2 was 

split and designated as the digital and analog ground layer because as mentioned earlier, it 
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reduces signal loop for the digital signal and analog signal traces that are routed on the layers 

above it. And finally, inner layer 4 and the bottom layer are used primarily for routing the BGA 

pins. The table below summarizes the layer stack of the PCB designed. 

Layer Order Function 

Top 1 Component placement and routing 

Inner 1 2 Supply plane for the BGA and routing 

Inner 2 3 Split ground plane 

Inner 3 4 Supply plane for the BGA and routing 

Inner 4 5 Routing layer 

Bottom 6 Routing layer 

Table 5-2: Test board layer functions 
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5.2.3.2 Component placement 

After the layer stack has been defined; we can start the layout process by placing the 

components onto the top layer of the board area. The top layer of the PCB is shown below 

 

Figure 5-15: PCB Top layer 

The components are placed in a manner that allows for efficient routing of the interconnect 

signals. The component placement is up to the designer and there are not many rules that need to 

be followed except for the pad to pad spacing specification of the fabrication company and the 

fact that it should make the routing easy. The PCB top layer can have text and line art printed on 

it by screen printing, this is called the silk screen. The silk screen is used to indicate the 

component reference designators, test points and other information which can be helpful in 

assembling and testing the circuit board.  
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On the top layer you can see the FPGA near the center of the board and the SRAM memory 

with reference designator U1 near the FPGAs bottom right corner. The analog inputs are on the 

left edge of the board, the push buttons the SMA connector are on the right edge along with the 

expansion header on the top right corner of the board. The top left area of the board has the 

power supply circuitry and top center of the board we have the serial port. The bottom layer is 

also used for component placement. Here you can see the bypass capacitors near the board center 

and schottky diodes on the top right corner of the board. 

 

Figure 5-16: PCB Bottom layer component placement 

5.2.3.3 Defining power planes 

Now that the components have been placed, it is time to begin routing. It is suggested to start 

routing the power and ground signals before the other interconnects, or at least have the power 

and ground planes defined (If you have any) before the other signals are routed. The BGA needs 

two voltages; 3.3 V and 1.2 V; to be supplied to many pins distributed throughout the BGA 

package. The BGA is a fine line BGA and it is not advisable to route the power to each pin via a 
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separate power line. So, the power is supplied to a copper plane underneath the BGA and the 

pins that need the 3.3 V or 1.2 V are connected to the corresponding plane. Inner layer 1 is used 

to provide the VCCIO voltage to the BGA. The figure here has the plane layer defined as the 

rectangle near the board center; you can also see the routing done on the layer’s unused region.                              

 

 

 

 

 

 

 

 

 

 

The plane is defined in layout plus by drawing an obstacle. The obstacle type is a copper 

pour which indicates that when the board is being fabricated this region needs to be filled with 

copper, forming the plane layer. The voltage is supplied to the layer by burying a trace carrying 

the desired voltage into the plane. This floods the entire copper plane with the desired voltage 

and any pins connected to the plane can draw that voltage. 

When the copper pour area is created, there are a few specifications to keep in mind. They 

are the copper pour’s width and clearance. Let’s look the clearance first. When a via is used to 

Figure 5-17: PCB Inner layer 1 
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route a trace to an inner plane layer or ground layer, it connects to the layer via a thermal relief, 

these are the protrusions connecting the circular inner pad to the plane layer in the figure below, 

and if it has to pass through other inner layers, there has to be a separation between the 

intermediate inner layers and the via pad on that layer. This is seen as the gap between the three 

circular pads and the plane layer. This separation is called inner layer clearance or just clearance. 

This clearance is important and it prevents the vias from connecting to the wrong inner layers. 

Every fabrication company has a minimum clearance value that they can fabricate. 

 

Figure 5-18: Via thermal relief and inner clearance 

In width value is more of a program directive. In the case of two adjacent vias, the width is 

the distance between clearance area outer circles of the vias. These two specifications are given 

in mils or inches. The minimum clearance value is 5 mils or 0.005 inches and the width can be as 

low as 1 mil. Having low clearance values can lead to improper fabrication result in vias 

connecting to the wrong layers while larger clearance values can lead to the formation of islands 

in cases where there are a large number of via holes in a small are in the board. 
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Figure 5-19: Copper pour islands 

The figure below shows a section of the VCCIO plane layer created in the design layout with 

a clearance value of 5 mils and a width value of 1 mil. 

 

Figure 5-20: Copper pour with proper clearance and width 

 

The connection to a plane layer can be made either through the thermal reliefs or the plane 

can be flooded. When the plane is flooded, the clearance area is filled with copper; as shown 

below. Flooding is not suggested for vias connecting to a large plane layer because heat applied 

for soldering is dissipated into the large conducting layer leading to improper soldering of 

components. If more heat is applied to perform the soldering, it might damage the component. 
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Figure 5-21: Via connection flooded onto the plane 

The VCCINT supply is given to the BGA in the same manner on inner layer 3 near the center 

of the board and a 3.3 V supply is provided to the dual schottky diode packs in the top right area. 

 

Figure 5-22: PCB inner layer 3 
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5.2.3.4 Ground planes 

The design uses the audio codec for the application’s analog module [26], so there is a need 

to have a separate analog and digital ground. This is recommended because; digital signals are 

characterized by rail to rail voltage switching, while the analog signals vary between the rails. So 

if they share the same ground, the digital switching injects noise into the analog part of the 

circuit. A single layer can be split to form the analog and digital ground planes or the two planes 

can be on separate layers. In the case of a split ground plane, care must be taken during routing 

because, if a digital signal is routed over a split ground plane, the return loop path changes from 

the digital ground to the analog ground adding switching noise into the analog ground plane. 

This can be prevented by proper routing of the signals by making sure all the digital signals are 

routed over the digital ground plane and the analog signals are router over the analog ground 

plane. The figure shows the split ground plane design on the PCB inner layer 2. 

 

Figure 5-23: PCB Inner layer 2 
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It is important from the circuit’s point of view that the analog and digital ground be 

connected at a point to prevent the analog and digital signals from floating relative to each other 

causing undesired effects. So the two grounds are connected together by a ferrite bead which acts 

as choke to the switching noise. Separating the analog and digital voltage supplies with the 

ferrite bead is also a god idea. Any variation in the digital supply voltages can adversely affect 

the signal quality in the analog circuit. 

5.2.3.5 Interconnect routing 

After all the components are placed and the plane and ground layers are defined, all that 

needs to be done is the interconnect routing. As seen in fig 5.15, the routing for most of the 

components was achieved on the top layer itself. The routing process for most of the components 

was pretty straightforward and also the analog signals were routed over the analog ground and 

the digital signals were routed over the digital ground successfully; achieving the desired signal 

loop isolation between the two interconnect groups. 

The only challenging component to route was the FPGA. The FPGA is a 674 pin Ball Grid 

Array with all of the pins located underneath the package. This particular package was a very 

fine line BGA package with 1 mm distance between the pins whose diameter was 0.6 mm 

nominally [4]. This made it impossible to route the pins out laterally on a single layer. To 

address this, it was decided to first bring out the pins to different lower layers and then try to 

route them out to the other components laterally. With the plane and ground layers being inner 

layers, all the pins of the BGA ended up being routed to inner layers. 

For each of the layers that a pin needed to be routed to, a unique via was created. Every layer 

required a unique via, because a general purpose via meant for all the layers would occupy pad 

space even on the layers it was not connected to. So the via needed to start at the top and end at 
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the inner layer it needs to route the trace to. A via hole that does not go through all of the board 

layers, but terminates in an inner layer is a blind via. A via that starts in an inner layer and ends 

in another inner layer without reaching either the top or bottom layer of the board is called a 

buried via. 

 

Figure 5-24: Blind and Buried vias 

Five sets of blind vias were created in order to route the BGA pins from the top layer to all of 

the inner layers and through via for the pins routed all the way to the bottom layer. To save 

component space on the top layer, some of the decoupling capacitors for the FPGA’s voltage 

supply were placed on the bottom layer. To connect them to the appropriate power plane and 

also to the ground plane, two more sets of blind vias were created. 

 

Figure 5-25: Vias created for BGA routing 

This via shown in fig 5.26 is BGA_VCCINT and it is used to route a BGA pin from the top 

layer down to inner layer 3 where it connects the pin to the plane layer used to supply the 1.2V 

VCCINT voltage to the BGA. You can see in the figure that on the layers the net does not 
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connect to, there is a clearance area between the pad and the intermediate layers and on inner 

layer 3 the pad connects to the plane using thermal reliefs as described earlier. 

 

Figure 5-26: Via BGA_VCCINT 

After the power and ground pins were attached to their respective plane layers, the I/O pins 

were routed. The figure below shows the location of the I/O pins that need to be routed on the 

package. The traces in pink were routed on inner layer 4 while the traces in red were routed on 

the bottom layer. While there are a few pins that needed to be routed out of the middle of the 

package, the fact that a majority of the pins were in the edges reduced the routing difficulty a 

little. Ideally, it would take 5 layers (3 for routing and 2 ground planes isolating the routing 

layers) to route these pins. The reason for all those layers is to avoid routing two traces; on 

adjacent layers; on top of each other. The switching activity of the signals on these traces will 

cause capacitive coupling between the two, interfering with the signals on the traces. This 

capacitive coupling depends on the frequencies of the signals travelling on the traces. But as the 

number of layers increase, the cost of fabrication increases as well. 
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Figure 5-27: FPGA routing on Inner layer 4 and Bottom layer 

In this design, the I/O pins that need to be routed on these two layers are used to connect the 

FPGA to the SRAM and the expansion header. It can be safely assumed that these signals are not 

very high frequency; in fact the 50 MHz signal is the highest frequency in the entire design. At 

this low frequency, the capacitance effect can be ignored and hence these traces are routed very 

close to each other adjacent layers and in some cases they run parallel on top of each other as 

shown in figure 5-28.  

The interconnect routing to the other components that could not be done on the top layer 

were performed in the inner layers. A few other sets of buried vias were designed to assist in 

their routing. In the routing purposes, the trace width and the trace spacing are two important 
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specifications. The trace width needs to be small enough to allow the BGA pins; located a few 

rows in from the edges; to be able to rout them out successfully. The fabrication companies 

specify the min trace width that they manufacture as 5 mils wide. This was chosen as the signal 

trace width for the routing purposes in this layout. The traces that route the power are usually 

wider than the other signal traces; a width of 10 mils was used. For proper fabrication of the 

traces and pads, the fabrication companies provide specifications for the minimum spacing 

between traces as 5 mils and 6 mils is the standard value. The spacing between a trace and an 

adjacent pad should be a minimum of 5 mils and 8 mils is the standard value. For vias we have to 

consider two spacing values. The clearance value of 5 mils as mentioned above is one of them, 

and the other is spacing. The size of the pad on a layer should be made larger than the size of the 

via drill hole; the standard value being 5 mils. These two dimensions together are called inner 

layer clearance, with 10 mils being the minimum value. 

 

Figure 5-28: Parallel trace routes on adjacent layers 
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Chapter 6  

Design power optimization and preliminary analysis 

In this chapter I will discuss the low power design methodologies implemented in the design 

process. The implementation on each individual module is discussed and the optimization 

achieved is shown. First I will describe the simulation strategy and how it was used to test each 

of the modules, followed by a comparison of the power analysis results. 

6.1 Design power analysis strategy 

As discussed in an earlier chapter, the PowerPlay power analyzer in the Quartus II software 

is an efficient tool for device power consumption analysis. The designer needs to provide the tool 

with the design’s complete signal activity details and the environmental and operating 

conditions. As mentioned earlier, if the complete signal activity is not available to the tool, 

vectorless estimation is used to supplement the missing activity information.  

The signal activity information is gathered by performing simulation on the post fit netlist 

generated by the design software and saving this information in either a .saf or a .vcd file. It is 

suggested to use a .saf file because .vcd files of moderately complex designs can end up being 

very large in size. Third party simulation software compatible with Quartus II can be used to 

generate the .vcd file needed for this purpose. Quartus II design software is provided with a 

simulator that can be used to generate the .saf file. A good gauge of the accuracy of the power 

analyzer results is the confidence metric calculated during the power analysis. This is provided in 

the analysis reports; a high confidence metric is ideal.  

For this thesis work it was decided to generate .saf files to be used for the power analysis. 

The Quartus II simulator was used to perform the simulation and generate the desired signal 

activity file. In the Quartus II simulator the simulation inputs are user generated waveforms that 
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represent the input signals. The waveforms are called test vectors and Quartus II software 

generates a vector waveform file (.vwf) that is given as input to the simulator. This simulator 

does not support the use of testbenches to generate the inputs but it supports the use of a .vcd file 

describing the input test vectors and the simulation output can be exported as either a ,saf or .vcd 

file.  

Creating the input test vectors in Quartus II is a tedious task and for this thesis work it would 

not be practical to draw out the high frequency input waveforms lasting enough time to perform 

a proper simulation. For this reason, Modelsim-Altera simulation tool was used to generate the 

input vectors. Testbenches were written in verilog describing the input vectors and a .vcd file 

was generated that described the input signal activities. This .vcd file was read into the simulator 

and the simulation was performed to generate the .saf simulation output file, containing the 

signal activity information of all of the nodes in the design. This file was then read into the 

power analyzer to perform the analysis.  

The testbenches used to generate the input vectors that were used to make the preliminary 

device tests and final design power analyses are provided in the appendices. All of the 

aforementioned operating modes of a FPGA device were simulated and their resulting signal 

activity files used to perform the power analysis. The different operating modes that were 

simulated and their power analysis results are discussed in the next chapter. The individual 

modules were also simulated and the effectiveness of the power conservation technique 

implemented in them is checked. The results of these tests on the individual modules are 

discussed in a later section and the testbenches used to generate the input vectors are provided in 

the appendices.  
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Figure 6-1 shows the flow of the test strategy described above. 

 

Figure 6-1: Design power analysis flow implemented 

The device’s operating temperature conditions set for the power analysis are given below. 

The power analyzer uses this information along with the signal activity data to perform a 

complete power analysis.  

 Junction temperature range: 0 °C to 85 °C 

 Ambient temperature: 25 °C 

 Cooling solution: 23mm heat sink with 200 LFpM airflow, with 

1. Junction to case thermal resistance: 3.1 °C/W 

2. Case to heat sink thermal resistance: 0.10 °C/w 

3. Heat sink to ambient thermal resistance: 2/80 °C/W 

 Board thermal model: Typical model used, with 

1. Junction to board thermal resistance: 5.50 °C/W 

2. Board temperature: 25 °C 
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6.2 Preliminary device analysis 

This strategy was used to test different FPGA devices and choose the FPGA best suited for 

the purpose of this thesis based on the results. The table below summarizes the results obtained. 

 

Device 

family 

 

Device 

Core dynamic 

thermal power 

dissipation(mW) 

Core static 

thermal power 

dissipation(mW) 

I/O thermal 

power 

dissipation(mW) 

Total thermal 

power 

dissipation(mW) 

Stratix 

II 
EP2S180F1020C3 

36.99 1360.47 42.74 1440.19 

Stratix 

III 
EP3SL340F1517C2 

29.3 1177.73 76.94 1283.97 

Arria 

GX 
EP1AGX90EF1152C6 

28.93 791.31 30.87 851.11 

Arria II 

GX 
EP2AGX260FF3515 

12.69 807.78 54.48 874.95 

Cyclone EP1C12F256C6 
9.69 82.64 4.94 97.24 

Cyclone 

II 
EP2C35F672C6 

7.97 76.76 41.48 129.21 

Table 6-1: Preliminary FPGA device power test results 

The results show that the Cyclone II FPGA family’s device EP2C35F672C6 consumes the 

lowest dynamic power when compared to the other devices tested using the same design. While 

the results show that the Cyclone EP1C FPGA tested consumes the least total power of all of the 

devices. Compilation summary showed that 99% of the available logic resources of this device 

were consumed for this design and the device chosen was the biggest in the family. This means 

that there is no room left in the device for any future design changes or addition of any new 

features. Also, an interesting point to notice is the very low I/O power dissipation. The reason for 

such loe power dissipation is that the 99% resource utilization So, The Cyclone II family’s 

EP2c35F672 FPGA was chosen for the purposes of this thesis work. The confidence metric was 

high for all of these simulations. 
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6.3 Individual module analysis 

In this section I will describe the low power design technique used in each of the modules 

and discuss the results of the power analysis done on those modules. These modules are 

implemented on the Cyclone-II EP2C35F672 FPGA.  

6.3.1 Serial module 

This module is responsible for receiving data transferred on the serial input line to the design 

and set up the signals so it can be written into the memory. The technique suited for this module 

is clock gating where the clock to the module is turned off when the module is inactive.  

If no input data is being sent, the serial data line is set high. This condition can be used to see 

if the design is inactive or not. In this design, a clock control module is implemented that waits 

for a specific amount of time for data to be sent on the input line. If no new data is seen on the 

line in that time interval, the clock to the module is turned off. The block diagram of this 

implementation is shown below. During normal operation, if there is no data on the serial line, 

the clock to the module is turned off. If new data is seen on the input line, the module is enabled 

and normal operation is resumed. 

 

Figure 6-2: Serial module clock control block diagram 

This technique is designed to reduce the dynamic power consumption of the module. This 

module is tested by performing two sets of simulations. The first is the serial module 

implemented without any clock gating logic and in the second simulation, the module was 
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implemented with clock gating logic and the clock to the module turned off to see the saving in 

dynamic power. The table below summarizes the simulation results: 

 

Logic 

Utilization 

Core 

Dynamic 

power (mW) 

Core Static 

power (mW) 

I/O thermal 

power (mW) 

Total Thermal 

power (mW) 

Serial module 

without clock 

gating 

74 / 33,216 

<1% 
1.75 79.69 2.38 83.82 

Serial module 

with clock gating 

121 / 33,216 

<1% 
0.31 79.69 2.56 82.56 

Table 6-2 : Serial module power analysis results 

In table 6-2 we see a small increase in the logic occupied on the device by adding the clock 

gating logic, while the dynamic power has reduced by 82.3 % when the clock to the module is 

gated. 

An example application could be a data logger that reads serial data from sensors and sends it 

to a memory module to be stored. Let us assume that serial module is active only for five 

minutes every hour to take the sensor readings and is idle for the remaining time. If no clock 

gating is performed for when the module is idle, over the course of a thirty day month, the 

module would have consumed 1.26 watt hours of dynamic energy. If clock gating is 

implemented, the module consumes 0.3096 watt hours of dynamic energy which is a saving of 

75.4% in the dynamic power consumption over the thirty day period.  

6.3.2 DSP module 

This module consists of the FIR filter which requires the MAC operation to be implemented. 

The use of the DSP block available in today’s FPGA devices is said to help in the reduction of 
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the logic area consumed by the design and also reduce the power consumption of the design. The 

effect of clock gating on the dynamic power consumption is also studied for this module. 

 

Figure 6-3: DSP module clock control block diagram 

For this module the first set of simulations were done to see the effect of using the embedded 

DSP blocks on the logic area occupied by the design. The results are shown in the table below. 

 

Total logic elements 

utilized 

Total registers 

utilized 

Embedded 

multipliers utilized 

Filter of length 32 

implemented in logic 
11,533 / 33,216 (35 %) 999 0 / 70 (0 %) 

Filter of length 32 

implemented in DSP blocks 
1,563 / 33,216 (5 %) 503 62 / 70 (89 %) 

Filter of length 64 

implemented in DSP blocks 
1,624 / 33,216 (5 %) 524 64 / 70 (91 %) 

Table 6-3: Filter module device utilization test results 

It is evident from the table that using DSP blocks for the MAC function implementation of 

the FIR filter has significant effect on the logic area occupied by the design and the number of 

registers used. A 30% reduction of logic element utilization is seen and a 49.6% reduction in the 

register utilization is seen. The filter module with double the length was also implemented and it 

can be seen from the table that the increase in resource utilization is minimal. 

Power analysis of the three cases mentioned above was also done and the results are shown 

in table 6-4. It is seen that there is not a significant reduction in the total power consumption with 

the design mapped in DSP blocks as compared to the design mapped in logic. The reduction in 
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dynamic power is 17%. Also, there isn’t any change in the power consumption values for the 32 

length FIR filter and the 64 length FIR filter implemented in the DSP blocks of the device. These 

results show that while mapping logic in DSP blocks might not improve the power consumption 

significantly, they do reduce the logic element utilization which can be very helpful in large and 

complex designs 

 

Core dynamic 

power(mW) 

Core static 

power(mW) 

I/O thermal 

power(mW) 

Total thermal 

power(mW) 

Filter of length 

32 implemented 

in logic 

2.05 79.74 34.61 116.41 

Filter of length 

32 implemented 

in DSP blocks 

1.69 79.74 34.61 116.04 

Filter of length 

64 implemented 

in DSP blocks 

1.7 79.74 34.61 116.05 

Table 6-4: Filter module power consumption 

The next set of simulations and power tests were done to see the effect of clock gating on the 

module’s dynamic power consumption. The clock gating logic was implemented on the 32 

length FIR filter implemented in the DSP blocks. The results of the power analysis are shown in 

Table 6-5. 

 

Core dynamic 

power(mW) 

Core static 

power(mW) 

I/O thermal 

power(mW) 

Total thermal 

power(mW) 

Filter of length 32 

implemented in DSP blocks 

without clock gating 

1.69 79.74 34.61 116.04 

Filter of length 32 

implemented in DSP blocks 

with clock gating 

0.19 79.74 34.50 114.43 

Table 6-5: Effect of clock gating on filter module dynamic power consumption 
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The effect of clock gating is significant as seen in the table above. There is an 88.75% 

reduction in the dynamic power consumption with the implementation of clock gating i.e. 

88.75% of the power was saved by turning off the idle module. 

An example application would be a module that is looking for a wireless control signal in a 

certain frequency band that utilizes this module to filter out the unwanted frequencies. The 

module operates for only five minutes in every hour looking for the control signal and is idle the 

rest of the hour. The length of the filter would not drastically affect the power consumption as 

seen in table 6-4. The module would consume 1.22 watt hours of dynamic energy over a period 

of thirty days. If clock gating is implemented to shut down the module when it is idle, the 

dynamic energy consumed reduces to 0.23 watt hours of dynamic energy for the same duration 

which is a saving of 81.2%. 

6.3.3 Memory module 

This module is responsible to set up all the signals required to successfully read and write to 

the external SRAM. Clock gating was implemented in this module and its effects on the dynamic 

power consumption are studied.  

 

Figure 6-4: Memory module clock control block diagram 
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The results of the power analysis done are shown below: 

 

Core dynamic 

power(mW) 

Core static 

power(mW) 

I/O thermal 

power(mW) 

Total thermal 

power(mW) 

Memory module 

without clock gating 
1.6 79.75 41.59 122.94 

Memory module with 

clock gating 
0.01 79.75 41.52 121.29 

Table 6-6: Effect of clock gating on memory module 

The effect of clock gating is very evident from the values in the table above, the reduction is 

99.4%. The other thing to notice is the high I/O thermal power compared to the other modules. 

This is because of the constant activity of the address, data and control signal lines going to the 

SRAM chip from the FPGA via the device’s I/O pins. 

An example application could be the data logger where the data that needs to be stored is 

acquired for only five minutes every hour. The memory module is operational in this time, but it 

is in idle state for the rest of the hour. Without clock gating, the module will consume 1.15 watt 

hours of dynamic energy over a period of thirty days. If clock gating is implemented and the 

clock to the module is turned off when in idle state, the dynamic power consumption reduces to 

0.1026 watt hours of energy for the same 30 day period, which is a 91% reduction in the 

dynamic power consumption. 

6.3.4 Analog module 

The main components of this module are the ones responsible for programming the audio 

codec, while the others are the data formatting components i.e. the serial to parallel and the 

parallel to serial converters. The power save in this module is achieved by powering off the 

audio codec when the appropriate disable signal is received. The table below shows the power 

analysis done for this module. The first simulation done is for the normal operation of the 
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module. In the second simulation, the disable signal is given, which turns off the clocks to the 

data formatting components. The table shows that disabling the clock has resulted in very little 

power saving; only 2.5%. The reason this is so low is the fact that in the analog module the 

power reduction is achieved on the board level by powering off the audio codec which in turn 

powers down the data formatting components. 

 

Core dynamic 

power(mW) 

Core static 

power(mW) 

I/O thermal 

power(mW) 

Total thermal 

power(mW) 

Analog module 

normal operation 
2.71 79.75 40.56 123.02 

Analog module 

device disabled 
2.64 79.75 40.1 122.49 

Table 6-7: Analog module power analysis result 

When the signal activity files were studied, they showed no activity in the data formatting 

components as expected but the signal activity seen is mainly due to the clocks required to 

reprogram the codec and bring it out of sleep mode. These clocks are responsible for the 

dynamic power consumption observed in the power analysis results in the disabled mode of the 

module. The high I/O power consumption is due to the activity on the I/O lines that are used to 

communicate between the audio codec and the FPGA.  
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Chapter 7  

Final design operation and analysis 

In this chapter, I will describe the working of the thesis design and provide details of the 

strategy implemented to carry out the power analysis and the difficulties faced in making on-

board measurements. The results of the power analysis and on-board measurements made are 

also discussed.  

7.1 Design operation 

As described earlier, this design was done to receive and store analog and digital data. The 

digital data is sent to the module via a RS232 serial connection and the analog data is received 

and converted to into digital data using an audio codec. These data sets are stored in an external 

SRAM memory and if the user wishes to retrieve this data (which is indicated via a pushbutton 

for this design), it is sent out through the digital to analog converter of the audio codec. The DSP 

module is used to provide filtering of the incoming analog data.  

The design’s complete operation is summarized below: 

 The serial module receives the data via the serial input and converts it into a 16 bit data 

word to be stored into the external memory. When this module receives the 16 bits of 

data, it indicates to the memory module that valid serial input data, ready to be written, is 

available on the data line. 

 The analog module programs the audio codec on power up and the codec’s A2D 

converter converts the analog signal to digital which is outputted in serial format. The 

module’s data formatting component converts the serial data into 16 bit data word. This 

data is sent to the DSP module to be filtered. The module has another data formatting 



 

  88 

component that converts the 16 bit parallel data sent from the memory into serial form so 

that it can be sent out to the user in analog form via the D2A converter of the codec. 

 The DSP module takes the data sent from the analog module and filters it. When the filter 

has finished filtering a sample, it indicates to the memory module that a valid filter output 

data is available to be written and the output is paced on the data line. 

 The memory module receives the data and control signals from the serial and DSP 

modules and writes the data into their respective banks in the memory. This module 

generates the appropriate addresses and control signals needed by the external memory to 

successfully perform a write operation. When the user gives the external read input, the 

memory module starts at address 0 and serially reads all of the SRAM addresses. The 

data read is sent to the analog module and from there it is provided as output to the user. 

After the analog module outputs a 16 bit data word, it indicates to the memory module 

that it is ready to send another 16 bits. The memory module then sends the data available 

on the next address location to the analog module until all of the memory locations have 

been read. 

To test the signal acquisition module design, a 1 kHz analog signal was given as input to the 

design. The serial data given was a sine wave generated in MATLAB. The sine wave of 5 kHz 

frequency was converted to 2’s complement form and sent to the device serially using a PC. The 

read input was then given to study the memory contents on an oscilloscope. 
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The images shown here are the output waveforms of the design seen on an oscilloscope: 

 

Figure 7-1: Analog output for 1 kHz input frequency 

The image in figure 7-1 is the analog output of the device. A sine wave of 1 kHz frequency 

and 300 mVP-P amplitude was given as input to the design. The audio codec provides amplifies 

the signal to 3.28 VP-P. The image below is the 5 kHz signal sent from MATLAB. 

 

Figure 7-2: 5 kHz sine wave data sent over serial interface 
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The stop band of the FIR filter implemented in the design begins at 7 kHz. To verify its 

operation a 13 kHz analog signal was given as analog input and the following output was seen on 

the oscilloscope. This confirms that the filter is operating as expected.  

 

Figure 7-3: Analog output for 13 kHz input frequency 

The power conservation logic as described in the previous chapter works as follows: 

 IF no new data is seen on the serial input line for 3 seconds, the clock to the serial 

module is turned off and a LED lights up to indicate this. The module comes back to 

normal operation if any serial data is seen.  

 In the analog module the audio codec is disabled via software if a disable signal is 

received. The disable signal also turns off the clock to the module components that 

program the audio codec but the clocks needed for programming when it needs be 

enabled remain active. In this design, the disable signal is provided via a toggle 

switch and a LED lights up to indicate that it has been asserted. The module resumes 

normal operation when the disable signal is removed or if the user asserts the external 
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signal to output the memory contents via the codec’s D2A converter. For wireless 

applications an example for this disable signal could be a signal that indicates 

insufficient input signal strength. When the analog module is power down, the DSP 

module operating on the clock generated by the codec is powered down too. 

 If both the serial and analog modules are disabled, the memory module is powered 

down resulting in the power down of the entire device. If either of the two modules 

were to resume normal operation, this module does so too. The read input also causes 

this module to come out of the disable mode.  

7.2 Design simulation and power analysis 

After the design operation was verified, power analysis was performed. For a more detailed 

analysis, the design’s operation was divided into modes: input mode, output mode, serial 

shutdown mode, and analog shutdown mode and device power down mode. The design 

operation in each of these modes is discussed along with the power analysis results.  

7.2.1 Input mode 

Like the name suggests, the input mode is when both the serial and analog data are being 

received and written to the external memory. The strategy for the power analysis of this mode 

was the same as described in earlier chapters; Modelsim-Altera was used to generate the input 

vectors and the Quartus II simulator was used to simulate the design and generate the signal 

activity file which is used by the PowerPlay power analyzer to perform the power analysis. The 

testbench generated all of the required clocks including the ones provided by the audio codec and 

the input data signals were provided at the correct data rate. A sine wave was generated in 

verilog and converted into 2’s complement form which represented the A2D converter output of 

the audio codec and an 8 bit counter was implemented representing the serial data which 
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incremented after each byte was sent on the serial input line. Though this simulation does not 

represent every possible input combination, it is a sufficient representation of the expected inputs 

to the design. The testbench used to generate this vector input file is provided in the appendix. 

The power analysis results of this mode are as follows: 

Total Thermal Power Dissipation 131.76 mW 

Core Dynamic Thermal Power 

Dissipation 
10.07 mW 

Core Static Thermal Power Dissipation 79.77 mW 

I/O Thermal Power Dissipation 41.93 mW 

Power Estimation Confidence High: user provided sufficient toggle rate data 
Table 7-1: Design input mode power analysis results 

The high dynamic power consumption is as expected and the reason for I/O power being 

high is all of the activity on the I/O pins carrying data and control signals to the audio codec and 

the external memory. 

7.2.2 Output mode 

In this mode, the read input was asserted in the vector input file which would cause the 

design to read all of the external memory contents and send them out on the digital output line 

going to the audio codec’s D2A converter. The testbench provided all of the required clocks; also 

all of the data on the serial and analog inputs were still made available. In the output mode, the 

read operation results in the memory outputting a valid 16 bit data corresponding to the read 

address generated. So it is required that the data bus reading from the memory be provided with 

data representing the ones outputted by the external memory. This needs to be done at the proper 

rate in the vector file so that the output operation may be properly simulated. The testbench used 

to generate this vector input file is provided in the appendix. The power analysis results of this 

mode are shown in table 7-2. 
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Total Thermal Power Dissipation 131.47 mW 

Core Dynamic Thermal Power 

Dissipation 
9.88 mW 

Core Static Thermal Power Dissipation 79.77 mW 

I/O Thermal Power Dissipation 41.83 mW 

Power Estimation Confidence High: user provided sufficient toggle rate data 
Table 7-2: Design output mode power analysis results 

Just like in the input mode the high dynamic power consumption is as expected and the 

reason the I/O power is so high is because of all of the activity on the I/O pins carrying data and 

control signals etc to the audio codec and the external memory. 

The .saf files from the above two modes were used together to generate a power analysis 

report that represents the input and output as one single benchmark to compare the other modes 

against. The power analysis results are as follows: 

Total Thermal Power Dissipation 131.39 mW 

Core Dynamic Thermal Power 

Dissipation 
9.94 mW 

Core Static Thermal Power Dissipation 79.77 mW 

I/O Thermal Power Dissipation 41.68 mW 

Power Estimation Confidence High: user provided sufficient toggle rate data 
Table 7-3: Design normal operation power analysis results 

7.2.3 Serial shutdown mode 

In this mode the serial module is shutdown by tying the serial input line high in the input 

vectors. The data going to the analog module is unaltered and all the clocks required are also 

active in the vector input file. The clock controller in the serial module will see that the input line 

is high and turn off the clock to the module. In the design, this process occurs if the serial line is 

tied to high for three seconds, but for simulation purposes this happens after 50 ns in the vector 

input file. The testbench used to generate this vector input file is provided in the appendix. The 

power analysis results of this mode are as follows: 
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Total Thermal Power Dissipation 128.96 mW 

Core Dynamic Thermal Power 

Dissipation 
7.22 mW 

Core Static Thermal Power Dissipation 79.76 mW 

I/O Thermal Power Dissipation 41.97 mW 

Power Estimation Confidence High: user provided sufficient toggle rate data 
Table 7-4: Device serial module shut down power analysis results 

As shown in the above table, the disabling of the serial module has resulted in reduction of 

signal activity in the design and hence the dynamic power consumption is lower than the normal 

operation mode. Compared to the design’s normal operation, we see a 27.36% reduction in the 

dynamic power consumption. 

7.2.4 Analog shutdown mode  

In this mode the input signal to the analog module that instructs the module to power down 

the audio codec is asserted in the input vectors. In real time, this causes the clock outputs of the 

audio codec to be turned off. To simulate this in the testbench, the clocks that represent the audio 

codec clock outputs are tied low. As seen in the previous chapter, this does not affect the analog 

module very significantly. The data input given to the serial input is not altered and the data line 

representing the audio codec’s A2D output is tied low. The testbench used to generate this vector 

input file is provided in the appendix. The power analysis results of this mode are as follows: 

Total Thermal Power Dissipation 131.33 mW 

Core Dynamic Thermal Power 

Dissipation 
9.83mW 

Core Static Thermal Power Dissipation 79.77 mW 

I/O Thermal Power Dissipation 41.73 mW 

Power Estimation Confidence High: user provided sufficient toggle rate data 
Table 7-5: Design codec shutdown mode power analysis results 

As seen in the table of values, this mode did not affect the total power consumption at all. 

This is rather interesting because in the previous section we see that the filter module shows 

significant dynamic power reduction when clock gating is implemented. The signal activity files 
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were studied and the signal activity of the signals in these modules was zero as expected and still 

had no effect on the dynamic power consumption. This is because the power reduction is 

achieved in the previous section by reducing signal activity. But in this design I have clock 

signals active in the module to enable the module when needed. So the power consumption 

reduction achieved on the logic interconnects is nullified by the higher consumption on the clock 

lines as they have higher switching capacitances [17]. Also, in the previous section it was shown 

that the clock gating in the serial module has a higher power saving than the analog module 

which can is seen here as well. 

7.2.5 Device power down mode 

This mode of operation is when both the analog and serial modules are powered down which 

results in the memory module to be powered down as well. To simulate this mode, the serial 

input line is tied high to turn off the module as in the serial shutdown mode and like in the codec 

shutdown mode the clocks are tied to low along with the codec A2D converter output. With 

these two modules turned off, the clock distribution modules turns off the clock to the DSP and 

memory modules which results in the entire device being power down. The dynamic power 

consumption of this mode can be expected to be the lowest one of all of the modes. The 

testbench used to generate this vector input file is provided in the appendix. The power analysis 

results of this mode are as follows: 

Total Thermal Power Dissipation 124.58 mW 

Core Dynamic Thermal Power 

Dissipation 
3.10 mW 

Core Static Thermal Power Dissipation 79.76 mW 

I/O Thermal Power Dissipation 41.73 mW 

Power Estimation Confidence High: user provided sufficient toggle rate data 
Table 7-6: Design power down mode power analysis results 
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From the table it is clear that the device powering down results in significant dynamic power 

consumption reduction. The percentage dynamic power saving is 68.8% compared to the normal 

operation mode; compared to the serial shutdown mode the dynamic power saving observed is 

41.4% and compared to the analog shutdown mode the dynamic power saving is 67.7%.  

Now that we have characterized the power saving achieved in each of these modes, let us 

now see how they affect the total power consumption of an example application. Let us consider 

a data logging application where the modules operate for the following percentage of time during 

the day 

1. Serial module operates independently for 35% 

2. Analog module operates independently for 20% 

3. Both the modules operate together for 15% 

4. Device is powered off for the remaining 30% 

Based on the estimated power consumption values, over a period of 30 days 

1. With no power down modes the devices consumes 7.25 watt hours of dynamic energy 

2. With the power down modes implemented, this value reduces to 4.99 watt hours of 

dynamic energy. This is a 31% reduction in consumption 

7.3 Real time board measurement challenges 

The test board design was done to facilitate detailed power consumption measurements on 

the design. After the design process was completed, the board design files were sent to 

manufacturing companies to be fabricated and assembled with the required components. The 

motivation in designing the board was to be able to study each of the device supply voltages 

independently. The board design provided the user with two options for supplying the required 
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voltages to the board components. One of the options was the conventional power supply option 

where the voltage from the power grid is regulated and provided to all of the components on the 

board. The other option was that the user could provide the required voltages using laboratory 

voltage generators. This would allow to test the effects of voltage scaling and voltage control on 

the device’s total power consumption. Current sensing resistors in the voltage supply paths were 

added to allow for the independent measurement of the current drawn from each of the voltage 

sources. These design features would provide us with an opportunity to study and characterize 

the power consumption of this design and possibly many others in detail.  

This however could be put into practice due to high manufacturing cost of the printed circuit 

board alone. The PCB fabrication was quoted to cost in the range of $8,000 to $15,000 by the 

manufacturing companies. The reason for this PCB price was the routing method used for the 

BGA. As explained earlier, the 674 pin BGA is a very fine line BGA and routing its pins out to 

the other components on the on only the top and bottom layers of the board could not be 

achieved. The layer stack as described in chapter 5 was implemented to perform the routing. The 

manufacturing companies informed that the fabrication of blind vias designed for this purpose 

were the factor that resulted in such a high manufacturing cost. To create a blind via during 

manufacturing, the etched layers were laminated and then the holes were drilled in the proper 

locations. And in this design the buried vias go from the top layer to all of the inner layers, which 

meant that multiple lamination and drilling steps would be performed. This and the fact that two 

sets of those buried vias started from the bottom layer into an inner layer increased the 

manufacturing complexity causing the high board manufacturing cost. 

Other options had to be researched in order to perform real time measurements. The Altera 

DE2 development board for the Cyclone II FPGA by Terasic was used in the design process to 



 

  98 

test and debug the design operation. The board’s schematic showed that the regulated power 

supply was distributed to different power nets on the board through zero ohm resistors. It was 

decided that these resistors would be a good location for current measurements in the current 

path of the device. The figure below shows a section of the power supply schematic page of the 

DE2 board [27], where we can see the power distribution nodes of the board. These nodes are 

used to provide the different nets with the required 5V, 3.3V, 1.8V and 1.2V regulated supply 

voltages. The inductor BEAD as described in earlier chapters is used as a choke preventing any 

noise from the analog circuitry to enter the digital part.   

 

Figure 7-4: Power supply section of the DE2 board schematic [27] 
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For making real time FPGA device power measurements it was decided to measure the 

currents at R50 and R52 which are the zero ohm resistors carrying the 3.3 V VCCIO voltage and 

1.2 V VCCINT voltage respectively to the FPGA device. To make the current measurements 

convenient, these resistors were desoldered and brought out to header pins using wires soldered 

to the resistor pads. The header pins were mounted to the side of the board to allow for making 

current measurements during the device operation as shown in the image below. 

 

Figure 7-5: Modified DE2 board to allow FPGA current measurements 
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Figure 7-6: Ammeter probes connected to the header pins for current measurements 

The current drawn by the FPGA on the VCCINT and VCCIO power supplies can now be 

measured with ammeters connected to the header pins. The measurement and test setup for this 

design are discussed in the next section. 

7.4 Measurement and Test setup 

7.4.1 Establishing a baseline 

Before performing the current measurements, a simple design was implemented on the 

FPGA and the design power analysis was done. The on-board measurements of the currents 

drawn by the FPGA from the VCCIO and VCCINT will be made and observe if these values 

corroborate with values obtained by simulation. 

The baseline design was a simple 30 bit counter which increments on every positive edge of 

the 50 MHz master clock. The counter output of the module and is connected to I/O pins that 

bring the signals out onto header pins on the test board. The power analysis results for this design 

are provided here.   
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Total Thermal Power Dissipation 131.89 mW 

Core Dynamic Thermal Power 

Dissipation 
1.75 mW 

Core Static Thermal Power Dissipation 79.77 mW 

I/O Thermal Power Dissipation 50.37 mW 

Power Estimation Confidence High: user provided sufficient toggle rate data 
Table 7-7: Base line test power analysis result 

The power analysis report file contains more information than just the summary of the power 

analysis results. It provides information like: 

 Thermal Power Dissipation by Block Type 

 Thermal Power Dissipation by Hierarchy 

 Current Drawn from Voltage Supplies Summary   

 VCCIO Supply Current Drawn by Voltage 

Among the available values, the one metric that can be compared to the on-board 

measurements is the “VCCIO Supply Current Drawn by Voltage”. The estimated values for this 

metric are shown in table 7-8. 

Current Drawn from Voltage Supplies Summary 

Voltage Supply 
Total Current 

Drawn 

Dynamic Current 

Drawn 

Static Current 

Drawn 

Minimum Power 

Supply Current 

VCCINT 70.04 mA 1.59 mA 68.45 mA 70.04 mA 

VCCIO 14.48 mA 5.06 mA 9.42 mA 14.48 mA 

Table 7-8: Power analysis report on the current drawn from voltage supplies 

The baseline counter design is programmed onto the FPGA and the measurements of the 

currents drawn from VCCIO and VCCINT are taken. The measurements were taken as follows; 

 The asynchronous reset button was pressed to disable the clock. The current drawn 

values can be approximated as the base static current drawn values. 
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 After the reset is released the maximum value of the current drawn is the maximum 

mode current consumption value. 

The measurements obtained by performing these steps are shown in Table 7-9. 

 
IVCCINT IVCCIO 

Base static current 22.87 9.82 

Maximum mode current 23.05 15.58 

Table 7-9: Baseline design real time current measurements 

When the FPGA finished programming the current drawn from the VCCINT supply was 

measured as 23 mA, which is different than the estimated 70 mA by a pretty large margin. While 

the estimates of static current and dynamic current drawn from VCCIO and VCCINT appear to 

be good metrics to compare, their very high values appear to be worst case current drawn 

estimates that the device power supply circuitry can to be designed to. 

The table shows that the increase in dynamic power in the two cases is 5.76 mA, this is close to 

the 5.06 mA estimated dynamic current drawn from the FPGA. So from the study of this design 

we can say that while an exact comparison cannot be made for the current consumption values, 

the values for IVCCIO agree closely in the two cases. For the IVCCINT measurements one 

observation that can be made is if an increase or decrease in the reported value corresponded to 

an increase or decrease of the measured values. 

7.4.2 Design test setup and measurements 

As discussed in a previous chapter, the digital data input to the device was given via a RS232 

serial interface link and the analog input was generated using an arbitrary waveform generator. 

The memory contents outputted through the D2A converter of the audio codec is seen on an 

oscilloscope and for the current measurements, the header pins are connected to digital 

multimeters. Figure 7-7 shows the board setup for testing the operation of the design and making 
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real time current measurements. The USB blaster is used to configure the FPGA device with the 

bitstream generated by the design software. Analog input coming from the waveform generator 

and analog output going to the oscilloscope is shown. The serial interface provides the digital 

data and the header pins allow the user to make current measurements. The cyclone II FPGA is 

shown along with two pushbutton inputs to the design. Key1 is the asynchronous reset while 

Key2 is the external input which when asserted outputs the memory contents through the audio 

codec’s analog D2A converter output. SW1 is the toggle switch used as the disable signal for the 

audio codec. Two LEDs (not shown in the figure) are used to indicate when the design goes into 

serial shutdown and analog shutdown modes. 

 

Figure 7-7: Altera DE2 board setup 
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The procedure followed in making the measurements after programming the FPGA is 

provided below: 

 The asynchronous reset button is pressed to take the base static current measurements 

without any inputs given. 

 The reset is released and both the analog and digital inputs are given to the board. The 

mode current values are measured. This mode is the input mode. 

 The read input is given with the inputs active and the mode current values for this 

mode are measured. This mode is the output mode. 

 The audio codec is disabled by asserting the disable toggle input of the design. The 

mode current values in this case are measured. This mode is the analog shutdown 

mode. 

 The serial is also disabled and the current values are measured. This is the device 

power down mode. 

 Keeping the serial disabled, the codec is enabled by de-asserting the disable toggle 

input and the current measurements are made. This is the serial shutdown mode. 

The table below summarizes the reported values of dynamic current for the different FPGA 

device operating modes. The static current drawn is the first row of the table while the other rows 

show the values for dynamic current estimations for the particular mode. 
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Operating mode 
Reported values 

IVCCINT (mA) IVCCIO (mA) 

Estimated static current 70.26 9.71 

Input mode 1.59 5.06 

Output mode 8.3 1.54 

Serial shutdown 6.19 1.52 

Analog shutdown 8.36 1.44 

Device power down 2.74 1.44 
Table 7-10: Reported voltage supply current drawn values 

The table below shows the measured values of the supply current for the different modes. 

 

Operating mode 
Measured values 

IVCCINT (mA) IVCCIO (mA) 

Base static current 25.15 9.544 

Input mode 26.37 11.4 

Output mode 26.28 11.56 

Serial shutdown 26.05 14.75 

Analog shutdown 26.47 14.77 

Device power down 25.07 17.84 
Table 7-11: Measured voltage supply current drawn values 

The table below shows the increase in the IVCCIO supply current drawn from the base static 

current. 

Operating mode 
IVCCIO dynamic 

current drawn (mA) 

Input mode 1.856 

Output mode 2.016 

Serial shutdown 5.206 

Analog shutdown 5.226 

Device power down 8.296 
Table 7-12: Change in current value from base static current for each mode 
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Operating mode 
Reported IVCCIO 

total current drawn 

Measured IVCCIO 

total current drawn 

Input mode 14.77 11.4 

Output mode 11.25 11.56 

Serial shutdown 11.23 14.75 

Codec shutdown 11.15 14.77 

Device power down 11.15 17.84 
Table 7-13: Comparing the measure and reported VCCIO supply total current drawn for each mode 

The first thing you will notice is while in Table 7-10 the dynamic power reported in the 

device power down mode is 1.44 mA but in table 7-12 the measured current has increased by 

8.296 mA when compared to the base static current. This increase is because, in this mode the 

FPGA device has to illuminate two LEDs, hence drawing a higher current. This is also the reason 

for serial shutdown mode and analog shutdown mode having higher current increase. From the 

measured values we observe that this causes an addition of roughly 3 mA increase in current 

consumption per LED illuminated. When this value is factored out in table 7-13 we see that the 

IVCCIO values in the two sets agree closely for most cases.  

Apart from this, while the reported values show a decrease in the dynamic consumption of 

IVCCIO form input mode to output mode, the measured values indicate a higher dynamic 

consumption in the output mode when compared to the input mode. The two set of values agree 

when comparing the fact that in both the cases serial shutdown consumes less dynamic current 

compared to analog shutdown. 

7.4.3 Analyzing results  

Comparison of the power consumption estimates and the values measured on the board was 

done as a means to validate the simulation results for the low power design approach 

implemented. Due to the board limitations, it was not possible to indentify each of the device’s 

power consumption components in the measured value. By comparing the available data, it is 
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observed that the FPGA draws a third of the current specified in the simulation and still operates 

correctly. Hence, it can be safely assumed that the IVCCIO value reported is a worst case scenario 

calculation for the device current.  

The IVCCINT current drawn data measured on the board and reported by the analyzer are found 

to be comparable to each other for a majority of the modes. The fact that for the measured values 

for IVCCINT, serial shutdown mode draws less current when compared to analog shutdown mode. 

This is also the case in the simulation results. So, we can safely state that the simulation results 

can be used to obtain a first order estimation of the designs power consumption and study the 

efficacy of the design approach used. The measured results have shown that the power saving 

observed in the analysis results do appear in the on-board device operation. 
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Chapter 8  

Conclusions 

FPGAs are fast becoming a popular technology platform for many system designers because 

of the flexibility and robustness they provide. For low power implementations, ASICs and 

microprocessors have always been preferred in the past over FPGAs. This is due to their 

architectural nature of drawing substantial amounts of static power. Continued research in 

improving the device architecture, device process techniques of the FPGA resulting in low 

leakage devices and device architecture allowing for power efficient routing have reduced the 

technology gap that previously existed. This in conjunction with design techniques aimed at 

power reduction and the availability of tools to help optimize the designs have allowed the use of 

FPGAs in applications for which ASICs were preferred.  

For this thesis, results of preliminary design power analysis done on various FPGA devices 

are used to select the appropriate one. The EP2C35F672 device of Altera’s Cyclone II family is 

chosen because its power consumption was low as desired, which was achieved without having 

to compromise on device resource availability for future improvements.  

The system design is successfully completed and its operation verified. The design is divided 

into functional modules and methods to improve individual module power efficiency are 

implemented in the designing process. Techniques like clock gating and mapping logic into 

embedded structures on the FPGA are utilized to optimize the design’s power and logic area 

consumption. Mapping the MAC operations of the DSP module into DSP blocks resulted in a 

30% reduction of the device logic area consumed and 49.6% reduction in the register 

consumption. Clock gating was effective in reducing 82.3%, 88.75% and 99.4% of dynamic 

power consumption for the serial, DSP and memory modules respectively. The power reduction 
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achieved on the system level with these optimized modules is analyzed. The device operation is 

divided into modes and power consumption in each mode is estimated. The serial shutdown 

mode showed a 27.36% decrease in the dynamic power consumption compared to normal 

operation. The analog shutdown mode did not show any improvement because in this mode the 

signal activities on the logic interconnects are reduced using clock gating, but the clocks, on the 

higher capacitance global interconnects, used to enable these modules when required are the 

predominant cause of the dynamic power consumption and nullify the gain achieved by clock 

gating. 

The layout for the test board is done but it could not be fabricated due to high manufacturing 

cost. The DE2 development board was modified to allow for real time measurements, but the 

limited knowledge of the board’s design and limitations on how detailed these measurements are 

did not allow for a complete analysis of these measured values. The measurements on the 

baseline design showed that the IVCCIO measurements made were comparable to the estimated 

values, while for the IVCCINT measurements the observation made was weather a variation in the 

measured value corresponded to a similar variation of the measured value. The comparison of 

the values showed that they agree with each other for a majority of the operating modes and with 

the available data it can be stated that the simulation results can be used to justify the design 

methodology implemented and the low power implementation is achieved for this design. 

8.1 Future work 

The lack of a detailed analysis of the current measurements needs to be addressed. 

Improvements on the test board layout to allow for more fine grained measurements than 

designed for initially can be done and if its fabrication is feasible, this limitation can be 

overcome. If the board fabrication is not feasible, the current test board needs to be studied more 
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closely to gain a better understanding of the measured values. Different designs can be 

implemented to help gain this understanding. Details of the algorithm implemented to perform 

the power analysis can be used to help correlate the measure values with the estimated ones. 

With this detailed data the low power design approaches used can be further optimized, and the 

effect of other approaches like dynamic clock scaling and voltage scaling need to be studied for 

this design.  
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Appendix A - Design top level HDL code 

//Signal acquisition module Top level HDL design 

//Author: Ravi Thakur 

 

module sig_acqmod( 

input clk_50, 

input ar, 

//codec signals 

inout SDAT, 

output SCLK, 

output AUD_DACDAT, 

input AUD_ADCDAT, 

output AUD_XCK, 

input AUD_BCLK, 

input AUD_DACLRCK, 

input AUD_ADCLRCK, 

//codec disable input 

input codec_pwrdwn, 

//read input from the user 

input read, 

//serial port  

input sl_in, 

output sl_sleep, 

//codec_ctrl 

output codec_disable, 

//sram 

inout [15:0] sram_dq, 

output [17:0] sram_a, 

output sram_oe, 

output sram_ce,   

output sram_we, 

output sram_ub, 

output sram_lb 

); 

 

//analog module 

wire clk_amod;//50MHz clk goin to data_setup 

wire clk_datarate;//48.8 kHz clock going to serial clk ctrl 

wire [15:0] filter_in;//going to the dsp module 

wire rd_begin;//read signals to the memory module 

wire read_capture; 

 

//DSP module 

wire clk_DSP;//50 MHZ clock to set write signals to the memory module 

wire [15:0] filter_out;//going to the memory module 

wire filter_wr; 

 

//memory module 

wire clk_mmod; 

wire sram_empty;//indicating the analog module to stop sending read signals 

wire [15:0] sram_out;//data to be sent to the analog module 

 

//serial module 

wire [15:0] serial_data;//data sent to the memory module 
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wire serial_wr;//write signal sent to the memory module 

 

//device control 

wire device_disable;//when both codec and serial are off the this signal turns off the device 

wire codec_reset;//brings the device out of sleep when read input is given 

 

//instantiations 

 

analog_module   mod1 (ar,clk_50,clk_amod,clk_datarate,read,sram_empty,codec_pwrdwn,SDAT,SCLK, 

                                        AUD_ADCDAT,AUD_DACDAT,AUD_XCK,AUD_BCLK,AUD_ADCLRCK, 

                                        AUD_DACLRCK,filter_in,ram_out,rd_begin,codec_reset,codec_disable,read_capture); 

 

DSP_module      mod2 (AUD_ADCLRCK,clk_DSP,ar,filter_in,read_capture,filter_out,filter_wr); 

 

serial_module   mod3 (ar,clk_50,clk_datarate,sl_in,serial_data,serial_wr,sl_sleep); 

 

memory_module   mod4 (clk_mmod,ar,filter_wr,filter_out,serial_wr,serial_data,rd_begin,sram_empty, sram_out, 

                                          sram_dq,sram_a,sram_oe,sram_ce,sram_we,sram_ub,sram_lb); 

         

device_pwrdwn   inst0 (clk_50,ar,codec_disable,sl_sleep,device_disable); 

 

clk_distributor inst1 (clk_50,ar,codec_reset,device_disable,clk_amod,clk_DSP,clk_mmod); 

 

endmodule  
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Appendix B - Analog module HDL code 

Analog module top level: 

//Analog module Top level design 

//Author: Ravi Thakur 

 

module analog_module( 

input ar, 

input clk_50, 

input clk_codec, 

output clk_datarate, 

input read, 

input sram_empty, 

input codec_pwrdwn, 

inout SDAT, 

output SCLK, 

input AUD_ADCDAT, 

output AUD_DACDAT, 

output AUD_XCK, 

input AUD_BCLK, 

input AUD_ADCLRCK, 

input AUD_DACLRCK, 

output [15:0] filter_in, 

input [15:0] sram_out,  

output rd_begin, 

output codec_reset, 

output codec_disable, 

output read_capture 

); 

 

wire [23:0] data_codec; 

wire done,activate; 

wire reset; 

wire read_edge; 

 

assign codec_reset = ~(~ar|reset); 

 

data_setup inst2 (clk_codec,data_codec,done,codec_reset,activate,codec_disable); 

 

codec_prgm inst3 (clk_datarate,codec_reset,SCLK,SDAT,data_codec,activate,done); 

 

serial2parallel inst4 (ar,AUD_ADCDAT,AUD_BCLK,AUD_ADCLRCK,filter_in); 

 

parallel2serial inst6 (ar,sram_out,AUD_BCLK,AUD_DACLRCK,clk_50,read,sram_empty,AUD_DACDAT, 

                                  read_edge,rd_begin,read_capture); 

         

codec_ctrl inst10 (clk_50,ar,codec_pwrdwn,read_edge,reset,codec_disable,clk_datarate,AUD_XCK); 

 

endmodule 
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data_setup HDL code: 

//Design component to set up the control words for the audio codec 

//Author: Ravi Thakur 

 

module data_setup ( 

clk_50, 

data_codec, 

done, 

ar, 

activate, 

codec_disable 

); 

input  clk_50; 

input  done; 

input  ar; 

output [23:0]data_codec; 

output activate; 

input codec_disable; 

 

reg  [15:0]ctrl_word[6:0];//data to write to the codec registers 

reg  [5:0]address;//address of the registers 

 

wire [23:0]data_codec={8'h34,ctrl_word[address]}; 

  

wire  activate =((address < 6'd7) && (done==1'b1))? 1'b0:1'b1; 

 

always @(negedge ar or posedge done) begin 

 if (~ar)  

  address=0; 

 else  

  if (address < 6'd7)  

   address=address+6'd1; 

end 

 

always @ (posedge clk_50) 

begin 

 ctrl_word[0]= 16'h0e42;      //master mode, bit clk not inverted, I2S, 16 bit 

 ctrl_word[1]= 16'h0814;      //sound select: mic input given to adc. 

 ctrl_word[2]= 16'h1000;   //mclk  

 ctrl_word[3]= 16'h0080;   //LLine in muted 

 ctrl_word[4]= 16'h0280;   //RLine in muted 

 ctrl_word[5]= 16'h1201;   //active 

    ctrl_word[6]= codec_disable? 16'h0ce0:16'h0c01;//power down if true  

end 

 

endmodule 
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codec_prgm HDL code: 

//Design component to program the audio codec 

//Author: Ravi Thakur 

 

module codec_prgm ( 

 clk_br, 

 ar, 

 SCLK,//I2C CLOCK 

  SDAT,//I2C DATA 

 data_codec, 

 activate,  

 done 

); 

 input  clk_br,ar; 

 input  [23:0]data_codec;  

 input  activate;   

  inout  SDAT;  

 output SCLK; 

 output done; 

 

reg ack_enable; 

reg bit_sent; 

reg sclk_enable; 

reg done; 

reg [23:0]data_sent; 

reg [5:0]counter; 

 

wire SCLK=sclk_enable | ( ((counter >= 4) & (counter <=30))? ~clk_br :1'b0 ); 

wire SDAT=ack_enable?1'bz:bit_sent ; 

 

always @(posedge clk_br or negedge ar ) 

 begin 

 if(~ar) 

  counter=0; 

 else 

  if (activate==0)  

   counter=0; 

  else  

   if (counter < 6'd33) 

    counter=counter+6'd1;  

end 

 

always @(posedge clk_br ) 

 begin 

case (counter) 

 6'd0  : begin  done=0;bit_sent=1; sclk_enable=1;ack_enable=1'b0;end 

 //start 

 6'd1  : begin data_sent=data_codec;bit_sent=0;ack_enable=1'b0;end 

 6'd2  : sclk_enable=0; 

 //SLAVE ADDR 

 6'd3  : bit_sent=data_sent[23]; 
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 6'd4  : bit_sent=data_sent[22]; 

 6'd5  : bit_sent=data_sent[21]; 

 6'd6  : bit_sent=data_sent[20]; 

 6'd7  : bit_sent=data_sent[19]; 

 6'd8  : bit_sent=data_sent[18]; 

 6'd9  : bit_sent=data_sent[17]; 

 6'd10 : bit_sent=data_sent[16];  

 6'd11 : ack_enable=1'b1;//ACK 

 

 //SUB ADDR 

 6'd12  : begin bit_sent=data_sent[15];ack_enable=1'b0; end 

 6'd13  : bit_sent=data_sent[14]; 

 6'd14  : bit_sent=data_sent[13]; 

 6'd15  : bit_sent=data_sent[12]; 

 6'd16  : bit_sent=data_sent[11]; 

 6'd17  : bit_sent=data_sent[10]; 

 6'd18  : bit_sent=data_sent[9]; 

 6'd19  : bit_sent=data_sent[8];  

 6'd20  : ack_enable=1'b1;//ACK 

 

 //DATA 

 6'd21  : begin bit_sent=data_sent[7];ack_enable=1'b0;end 

 6'd22  : bit_sent=data_sent[6]; 

 6'd23  : bit_sent=data_sent[5]; 

 6'd24  : bit_sent=data_sent[4]; 

 6'd25  : bit_sent=data_sent[3]; 

 6'd26  : bit_sent=data_sent[2]; 

 6'd27  : bit_sent=data_sent[1]; 

 6'd28  : bit_sent=data_sent[0];  

 6'd29  : ack_enable=1'b1;//ACK 

  

 //stop 

    6'd30 : begin bit_sent=1'b0;sclk_enable=1'b0; ack_enable=1'b0; end  

    6'd31 : sclk_enable=1'b1;  

    6'd32 : begin bit_sent=1'b1; done=1; end  

endcase 

end 

endmodule 

serial2parallel converter HDL code: 

//serial-to-parallel converter design 

//Author: Ravi Thakur 

 

module serial2parallel( 

input ar, 

input adc_out, 

input bclk, 

input adclrck, 

output reg [15:0] parallel_out 

); 

 

reg lrck_prev;//stores the prev value 

reg lrck_capture; 

reg done;//to reset the capture signal to default 0 value 
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parameter N=5'd15; 

 

//edge capture of adclrck 

always @ (negedge bclk or negedge ar) 

begin 

 if(~ar) 

 lrck_prev = 1'b0;//ADCLRCK is default 0 signal 

 else 

 lrck_prev = adclrck; 

end 

 

wire lrck_edge = adclrck & ~lrck_prev;//captures both the neg and pos edge using xor operation 

 

always @ (negedge bclk or negedge ar) 

begin 

 if(~ar) 

  lrck_capture = 1'b0; 

 else 

  if(lrck_edge) 

   lrck_capture = 1'b1;//active high signal 

  else 

   if(done) 

    lrck_capture = 1'b0; 

end  

 

//serial to parallel conversion 

 

reg [4:0]counter; 

 

always @ (negedge bclk or negedge ar) 

begin 

 if(~ar) 

  begin 

   counter = 5'd0; 

   done = 1'd0; 

  end 

 else 

  begin 

   if(lrck_capture==1'b1 && done==1'b0) 

    begin         

     if(counter<=5'd15) 

      begin 

       parallel_out[N-counter]=adc_out; 

       counter = counter+5'd1;    

    

         if(counter==5'd16) 

            begin 

             done=1'd1;     

        

            end 

      end 

    end 

   else 

    begin 

     counter=5'd0; 

     done=1'd0;      
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    end 

  end//end else 

end//end always 

 

endmodule 

parallel2serial converter HDL code  

//parallel-to-serial converter design 

//Author: Ravi Thakur 

 

module parallel2serial( 

input ar, 

input [15:0] parallel_in, 

input bclk, 

input daclrck, 

input clk_50, 

input read, 

input sram_empty, 

output dac_in, 

output read_edge, 

output reg rd_begin, 

output reg read_capture 

); 

 

reg lrck_prev;//stores the prev value 

reg lrck_capture; 

reg done;//to reset the capture signal to default 0 value 

 

//edge capture of adclrck 

always @ (negedge bclk or negedge ar) 

begin 

 if(~ar) 

 lrck_prev = 1'b0;//ADCLRCK is default 0 signal 

 else 

 lrck_prev = daclrck; 

end 

 

wire lrck_edge = daclrck ^ lrck_prev;//captures both the neg and pos edge using xor operation 

 

always @ (negedge bclk or negedge ar) 

begin 

 if(~ar) 

  lrck_capture = 1'b0; 

 else 

  if(lrck_edge) 

   lrck_capture = 1'b1;//active high signal 

  else 

   if(done) 

    lrck_capture = 1'b0; 

end  

 

//parallel to serial conversion 

 

reg [4:0]counter; 



 

  122 

assign dac_in = lrck_capture? parallel_in[5'd15-counter]: 1'b0; 

 

always @ (negedge bclk or negedge ar) 

begin 

 if(~ar) 

  begin 

   counter = 5'd0; 

   done = 1'd0; 

  end 

 else 

  begin 

   if(lrck_capture==1'b1 && done==1'b0) 

    begin 

     if(counter<=5'd15) 

      begin        

       counter = counter+5'd1; 

       if(counter==5'd16) 

       begin 

          done=1'd1; 

       end 

      end 

    end 

   else 

    begin 

     counter=5'd0; 

     done=1'd0; 

    end 

  end//end else 

end//end always 

 

reg pass; 

//the rd_begin signal is given to the sram controller only when the external read input 

// is given by the user 

reg read_prev; 

 

//FSM to capture the read input edge 

always @ (posedge clk_50 or negedge ar) 

 if(~ar) 

 read_prev=1'b1; 

 else 

 read_prev=read;  

 

assign read_edge = ~read & read_prev; 

 

always @ (posedge clk_50 or negedge ar) 

 begin 

              if(~ar) 

    read_capture=1'b0; 

              else 

    if(read_edge) 

     read_capture=1'b1; 

    else 

     if(sram_empty) 

      read_capture=1'b0;//change to 1'b0 

 end 
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always @ (posedge clk_50 or negedge ar) 

 begin 

  if(~ar) 

   rd_begin = 1'b0; 

  else 

   begin 

    if(daclrck && pass==1'b0 && read_capture==1'b1) 

     begin 

      rd_begin=1'b1; 

      pass=1'b1; 

     end 

    else 

     begin 

      rd_begin=1'b0; 

      if(~daclrck) 

       pass=1'b0; 

     end 

   end 

 end 

endmodule 

 

codec_ctrl HDL code: 

//Design component to power down the audio codec 

//Author: Ravi Thakur 

 

module codec_ctrl( 

 input clk, 

 input ar, 

 input codec_pwrdwn, 

 input read_edge, 

 output reg reset,//active high 

 output reg codec_disable,//active high 

 output clk_br, 

 output clk_xck 

 ); 

 

reg  [9:0]counter; 

 

assign  clk_br=counter[9];//48.8KHz 

assign  clk_xck=counter[1];//12.5 MHz 

 

reg codec_pwrdwn_prev; 

  

//posedge capture of codec_pwrdwn 

always @(negedge ar or posedge clk) 

 if(~ar) 

  codec_pwrdwn_prev = 1'b0; 

    else 

        codec_pwrdwn_prev = codec_pwrdwn; 

   

wire codec_pwrdwn_posedge; 

wire codec_pwrdwn_negedge; 
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assign codec_pwrdwn_posedge = codec_pwrdwn & ~codec_pwrdwn_prev;//posedge capture 

assign codec_pwrdwn_negedge = ~codec_pwrdwn & codec_pwrdwn_prev;//negedge capture 

 

always @(negedge ar or posedge clk) 

 if(~ar) 

  begin 

   codec_disable = 1'b0;    

  end 

    else 

        if(codec_pwrdwn_posedge) 

   begin 

    codec_disable = 1'b1;     

   end 

        else 

   if(codec_pwrdwn_negedge||read_edge) 

    begin 

     codec_disable = 1'b0;      

    end 

   

 

always @ (posedge clk or negedge ar) 

 if(~ar) 

   reset = 1'b0;    

  else 

   if(codec_pwrdwn_posedge||codec_pwrdwn_negedge||read_edge) 

    reset = 1'b1; 

   else 

    reset = 1'b0; 

      

always @(posedge clk or negedge ar) 

begin 

 if(~ar) 

  counter = 10'd0; 

 else 

  counter=counter+10'd1; 

end 

endmodule  
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Appendix C - DSP module HDL code 

DSP module top level: 

//DSP module Top level design 

//Author: Ravi Thakur 

 

module DSP_module( 

input AUD_ADCLRCK, 

input clk_filter, 

input ar, 

input [15:0] filter_in, 

input read_capture, 

output [15:0] filter_out, 

output wr_begin 

); 

 

wire ADCLRCK_G; 

 

fir_filter inst1 (ADCLRCK_G,clk_filter,ar,filter_in,filter_out,wr_begin); 

filter_clkctrl inst2 (AUD_ADCLRCK,read_capture,ADCLRCK_G); 

 

endmodule 

 

fir_filter HDL code: 

//FIR-filter design 

//Author: Ravi Thakur 

 

module fir_filter(clk,clk_50,ar,adc_in,dac_out,wr_begin); 

     

input clk,clk_50,ar; 

input signed [15:0]adc_in;   

output signed [15:0]dac_out; 

output reg wr_begin;  

     

//memory interface 

reg [15:0]data_in=16'h0; 

wire [4:0]rd_addr; 

reg wr_en=1'b0; 

wire [15:0]q_out;     

   

reg signed [15:0] filt_coeff[31:0];   

reg [4:0] index; 

integer counter; 

integer count;  

reg signed [15:0] adc_shift[31:0]; 

reg signed [35:0]sum; 

reg signed [32:0]multiply; 

  

parameter N=6'd30; 

  

//instantiations 
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memory  inst1 (rd_addr,clk,data_in,wr_en,q_out); 

 

assign rd_addr=index; 

 

//read from the memory 

always @ (posedge clk )  

   begin   

   if(index<=31) 

 begin 

   filt_coeff[index-6'h1]=q_out;   

   index=index+5'h1; 

 end 

   else 

  begin 

   index=0; 

  end 

   end 

 

//Filtering  

  

assign dac_out = {sum[35],sum [31:17]} ; 

  

always @ (posedge clk or negedge ar) 

 begin 

  if(~ar) 

   begin 

    sum=36'd0;   

   end  

  else 

   begin   

    sum=36'b0;      

    for(count=6'h0;count<6'd31;count=count+6'h1)//shifting 

     begin 

      adc_shift[N-count+1]=adc_shift[N-count];   

   

     end 

      adc_shift[0]=adc_in;  

        

    for(counter=0;counter<=6'd31;counter=counter+6'h1) 

     begin 

         multiply=adc_shift[counter]*filt_coeff[counter]; 

      sum=sum+multiply; 

     end        

   

  end//end else 

 end//end always  

  

 reg pass; 

  

always @ (posedge clk_50 or negedge ar) 

 begin 

  if(~ar) 

   wr_begin = 1'b0; 

  else 

   begin 

    if(clk && pass==1'b0) 
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     begin 

      wr_begin=1'b1; 

      pass=1'b1; 

     end 

    else 

     begin 

      wr_begin=1'b0; 

      if(~clk) 

       pass=1'b0; 

     end 

    end 

  end 

endmodule 

filter_clkctrl HDL code: 

//Filter clock controller design 

//Author: Ravi Thakur 

 

module filter_clkctrl( 

input AUD_ADCLRCK, 

input read_capture, 

output ADCLRCK_G 

); 

 

assign ADCLRCK_G = ~read_capture && AUD_ADCLRCK; 

 

endmodule 
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Appendix D - Serial module HDL code 

serial_module top level: 

//Serial module Top level design 

//Author: Ravi Thakur 

 

module serial_module( 

input ar, 

input clk_50, 

input clk_datarate, 

input sl_in, 

output [15:0] serial_data, 

output wr_ready, 

output sl_sleep 

); 

 

wire gated_clk_sl; 

wire clk_br; 

 

clk_div inst7 (gated_clk_sl,clk_br,ar);       

serial_rx inst8 (ar,gated_clk_sl,clk_br,sl_in,serial_data,wr_ready); 

serial_clk_ctrl inst9 (clk_50,ar,sl_in,clk_datarate,gated_clk_sl,sl_sleep); 

 

endmodule 

 

clk_div HDL code: 

//Baud rate clock generator design 

//Author: Ravi Thakur 

 

module clk_div(clk_in,clk_out,ar); 

input clk_in,ar;//clk in is 50 MHz 

output reg clk_out; 

       

reg clks=1'b0; 

     

parameter n=12; 

parameter reset=1'b0,cont=1'b1; 

parameter [n-1:0]limit=12'd2605;//count value to generate the desired clock 

reg [n-1:0]counter; 

 

always @ (posedge clk_in or negedge ar) 

    begin 

        if(~ar) 

          begin 

            clks=reset; 

            clk_out=0; 

            counter=0; 

          end 

        else 

          begin 
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              case(clks) 

                  reset: begin 

                           counter=0; 

                           clks=cont; 

                           clk_out=0; 

                       end 

                        

                  cont: begin 

                      if(counter==limit-1) 

                        begin 

                           clk_out=~clk_out; 

                           counter=0; 

                        end 

                      else 

                        begin 

                      counter=counter+12'd1; 

                   end 

                   end 

              endcase 

            end 

          end 

endmodule 

 

serial_rx HDL code: 

//Design component that receives the serial data 

//Author: Ravi Thakur 

 

module serial_rx(ar,clk,clk_br,sl_in,data_16,wr_ready); 

 

// module external interface 

input ar,clk,clk_br,sl_in; 

output reg [15:0]data_16;   //the 16 bit word going to the sram block and the filter/encoder block 

output reg wr_ready; //wr_ready to the sram block  

  

reg [4:0]count=5'd0;//counter for the 16 bit data going to the sram. 

               //It is reset to zero only when the ar is pressed or if the 36th bit is received. 

reg [3:0]counter=4'd0;//counter to keep track of no of bits received in each packet 

reg [1:0]cs=2'd0;//current state of the FSM 

 

reg flag=1'b0;//sets or resets wr_ready at 50MHz 

wire flagstate; 

 

assign flagstate=flag;//wire between sl_rx running at clk_br and the FSM that sets and resets wr_ready at 80MHz 

 

parameter idle=2'b00,receive=2'b01,hold=2'b10; 

 

always @ (posedge clk_br or negedge ar) 

 begin 

  if(~ar) 

   begin 

    data_16=16'b0; 

    count=5'b0; 

    counter=4'b0; 
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    cs=idle; 

    flag=1'b0;//assuming sram wr_ready active high 

   end 

  else 

   begin 

    case(cs) 

     idle: begin 

       flag=1'b0; 

       if(sl_in) 

        begin 

         flag=1'b0;           

         cs=idle; 

        end     

       else    

        begin 

         cs=receive;             

         counter=4'b0; 

        end 

        end 

    

     receive: begin   

       data_16[count]=sl_in; 

       count=count+5'b1; 

       counter=counter+4'b1;    

       if(count>15)//16 bits of data has been read 

        begin     

         flag=1'b1; 

         cs=hold; 

        end      

       else 

         begin      

         if(counter<8)                                                                                                     

          begin 

           cs=receive; 

          end 

         else 

          begin   

               cs=idle;  

          end 

         end 

        end 

     

     hold: begin 

                cs=idle; 

      count=5'b0; 

              end  

    endcase 

end//end else 

end//end always        

       

 

reg pass;//counter to reset wr_ready after 1 clk cycle. 

 always @ (posedge clk) 

 begin  

  if(flagstate==0)//flag not set in main FSM 

   begin 
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    pass=1'b0; 

    wr_ready=1'b0; 

   end  

  else 

   begin   

    if(~(pass&&flagstate))//if flag is set and this is the first  

                          //time the control is passing through this state 

     begin 

      wr_ready=1'b1;//write start is active high    

      pass=1;//indicating that one pass has been made 

     end    

    else 

     begin 

      wr_ready=1'b0;//all consequent passes send the control here                           

                               // until flag is reset in the main FSM  

     end  

   end  

 end//end always 

endmodule 

 

serial_clk_ctrl HDL code: 

//serial module clock controller design 

//Author: Ravi Thakur 

 

module serial_clk_ctrl( 

 input clk_50, 

 input ar, 

 input sl_in, 

 input count_clk,//48.8KHz clk for counting the wait counter upto 3 sec 

 output gated_clk_50, 

 output reg sl_sleep//led is active high 

 );  

reg [18:0] count; 

reg clk_disable; 

assign gated_clk_50 = ~clk_disable && clk_50; 

always @ (posedge count_clk or negedge ar) 

 begin 

  if(~ar) 

   begin 

    clk_disable=1'b0; 

    count = 19'h0; 

    sl_sleep = 1'b0; 

   end 

  else 

   begin 

    if(sl_in) 

     begin 

      count = count + 19'h1; 

      if(count == 19'h477c0)// the fsm waits for 3 sec 

       begin 

        clk_disable = 1'b1; 

        sl_sleep = 1'b1; 

       end 
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     end 

    else 

     begin 

      clk_disable = 1'b0; 

      count = 19'h0; 

      sl_sleep = 1'b0; 

     end 

   end//end else 

  end//end always 

endmodule   
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Appendix E - Memory module HDL code 

memory_module HDL code: 

//Memory module Top level design 

//Author: Ravi Thakur 

 

module memory_module( 

input clk_mmod, 

input ar, 

input wr_begin, 

input [15:0] filter_out, 

input wr_ready, 

input [15:0] serial_data, 

input rd_begin, 

output sram_empty, 

output [15:0] sram_out, 

inout [15:0] sram_dq, 

output [17:0] sram_a, 

output sram_oe, 

output sram_ce,   

output sram_we, 

output sram_ub, 

output sram_lb 

); 

wire wr_enable; 

wire bank; 

wire [15:0] sram_in; 

wire rd_fin,wr_fin; 

wire rd_start, wr_start; 

wire [17:0] addr_rd; 

wire [17:0] addr_wr; 

 

bank_select inst11 (clk_mmod,ar,wr_begin,filter_out,wr_ready,serial_data,wr_enable,bank,sram_in,wr_fin); 

 

resolver inst12 (clk_mmod,ar,bank,rd_begin,wr_enable,rd_fin,wr_fin,addr_rd,rd_start,addr_wr,wr_start, 

sram_empty); 

                  

sram_cntrl inst13 (ar,clk_mmod,rd_start,rd_fin,addr_rd,wr_start,wr_fin,addr_wr,sram_in,sram_out,  

   /*Internal (SRAM) interface*/ sram_dq,sram_a,sram_oe,sram_ce,sram_we,sram_ub,sram_lb); 

endmodule 

 

bank_select HDL code: 

//Design component to select the memory bank the data needs to be written to 

//Author: Ravi Thakur 

 

module bank_select( 

input clk, 

input ar, 

input filter_wr, 

input [15:0] filter_data, 
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input serial_wr, 

input [15:0] serial_data, 

output reg wr_begin,//active high 

output reg bank,//0-audio data bank,1-serial data bank 

output [15:0] sram_in, 

input wr_done, 

output state0, 

output state1, 

output state2, 

output bank_debug); 

 

//capture the filter write edge 

reg filter_wr_prev; 

reg filter_wr_captured; 

reg filter_wr_clear; 

reg [15:0] filter_data_captured; 

  

always @(negedge ar or posedge clk) 

 if(~ar) 

  filter_wr_prev = 1'b0; 

     else 

        filter_wr_prev = filter_wr; 

   

wire filter_wr_posedge; 

 

assign filter_wr_posedge = filter_wr & ~filter_wr_prev;//posedge capture 

 

always @(negedge ar or posedge clk) 

        if(~ar) 

           begin 

            filter_wr_captured = 1'b0;   

            filter_data_captured = 16'd0;          

           end 

        else 

           if(filter_wr_posedge)  

              begin 

                filter_wr_captured = 1'b1; 

                filter_data_captured = filter_data; 

              end 

           else  

              if(filter_wr_clear) 

                 filter_wr_captured = 1'b0; 

 

//capture the serial write edge 

reg serial_wr_prev; 

reg serial_wr_captured; 

reg serial_wr_clear; 

reg [15:0] serial_data_captured; 

  

always @(negedge ar or posedge clk) 

 if(~ar) 

  serial_wr_prev = 1'b0; 

    else 

        serial_wr_prev = serial_wr; 

    

wire serial_wr_posedge; 
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assign serial_wr_posedge = serial_wr & ~serial_wr_prev;//posedge capture 

 

always @(negedge ar or posedge clk) 

        if(~ar) 

           begin 

            serial_wr_captured = 1'b0;  

            serial_data_captured = 16'd0;           

           end 

        else 

           if(serial_wr_posedge)  

              begin 

                serial_wr_captured = 1'b1; 

                serial_data_captured = serial_data; 

              end 

           else  

              if(serial_wr_clear) 

                 serial_wr_captured = 1'b0; 

 

 

assign bank_debug = bank; 

reg select; 

assign sram_in = select ? serial_data_captured : filter_data_captured; 

 

reg [2:0]state; 

assign state0 = state[0]; 

assign state1 = state[1]; 

assign state2 = state[2]; 

parameter idle=3'b000, filterinput=3'b001, filterwait = 3'b010, serialinput=3'b011, serialwait =3'b100; 

 

always @ (posedge clk or negedge ar) 

begin 

  if(~ar) 

    begin 

      state=idle; 

      wr_begin=1'b0; 

      select=1'b0; 

      bank=1'b0; 

      filter_wr_clear=1'b0; 

      serial_wr_clear=1'b0; 

    end 

   else 

     begin 

       case(state) 

         idle: begin 

              if(filter_wr_captured) 

                state=filterinput; 

              else 

                if(serial_wr_captured) 

                  state=serialinput; 

                else 

                  begin 

                    state=idle; 

                    wr_begin=1'b0; 

                    select=1'b0; 

                    bank=1'b0; 
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                    filter_wr_clear=1'b0; 

                    serial_wr_clear=1'b0; 

                  end 

              end//end idle 

 

         

         filterinput: begin 

                         wr_begin=1'b1; 

                             filter_wr_clear=1'b1; 

                             bank=1'b0; 

                             select=1'b0;  

                             state = filterwait;                                  

              end 

       

         filterwait: begin 

  wr_begin=1'b0; 

  if(~wr_done) 

                  begin                             

                     state=idle; 

                  end 

               else 

    begin 

                     state=filterwait; 

                  end 

                    end  

 

         serialinput: begin 

                         wr_begin=1'b1; 

                 serial_wr_clear=1'b1; 

                 bank=1'b1; 

                   select=1'b1; 

                 state=serialwait; 

                            end 

 

          serialwait: begin 

    wr_begin=1'b0; 

     if(~wr_done) 

                      begin                             

                           state=idle; 

                      end 

                                else 

        begin 

                         state=filterwait; 

                                   end 

             end 

 

          default:begin 

                          state=idle; 

            wr_begin=1'b0; 

                           select=1'b0; 

             bank=1'b0; 

                           filter_wr_clear=1'b0; 

             serial_wr_clear=1'b0; 

                       end 

     endcase 

   end //end else 
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end//end always                        

                                

endmodule 

 

 

resolver HDL code: 

//Design component that is responsible to generate the addresses for the memory controller 

//Author: Ravi Thakur 

 

module resolver( 

input clk, 

input ar, 

input bank_sel,//to select which bank of the sram to write to 

input rd_begin,//active high. this indicates when the p2s is ready to send a new 16 bit word 

input wr_begin,//signal from bank select indicating a new 16 bit work is ready to be written 

input rd_fin,//active low input from the sram controller 

input wr_fin,//active low input from the sram controller 

output reg [17:0]addr_rd, 

output reg rd_start,//active low 

output reg [17:0] addr_wr, 

output reg wr_start,//active low 

output reg sram_empty 

); 

 

reg [16:0] bank1_addr_count; 

reg [16:0] bank2_addr_count; 

reg [17:0] rd_addr_count; 

reg [2:0]state; 

reg fin;//indicates if all memory addresses have been read once 

 

parameter  idle=3'b000,writeidle1=3'b001,writeidle2=3'b010,emptymem=3'b011,emptyidle=3'b100, 

                readwait=3'b101; 

 

parameter bank1 = 18'h00000;//starting address of the memory 

parameter bank2 = 18'h20000;//this is binary 100000000000000000 which points to first memory 

//location after half of the size of the sram. the first half is for the serial data 

 

always @ (posedge clk or negedge ar) 

begin 

 if(~ar) 

  begin 

   rd_addr_count=18'b0; 

   bank1_addr_count=17'b0; 

   bank2_addr_count=17'b0; 

   wr_start=1'b1; 

   rd_start=1'b1; 

   state=idle; 

   sram_empty=1'b0; 

   fin=1'b0; 

  end 

 else 

  begin 

  case(state) 
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   idle: begin 

      sram_empty=1'b0; 

        if(rd_begin==1'b1) 

     begin 

      state=emptymem; 

      rd_addr_count=18'h0;     

     end 

       else 

     begin 

      if( wr_begin==1'b1 && rd_begin==1'b0) 

       begin 

       if(~bank_sel) 

       begin 

        wr_start = 1'b0; 

        addr_wr = bank2 + bank2_addr_count; 

        state=writeidle2; 

       end 

       else 

       begin 

        wr_start = 1'b0; 

        addr_wr = bank1 + bank1_addr_count; 

        state=writeidle1; 

       end      

       end 

      else 

       begin  

        state=idle; 

       end 

      end    

      end 

    

   writeidle1:begin  

     wr_start=1'b1;  

     if(~wr_fin) 

     begin        

      state=idle; 

      bank1_addr_count = bank1_addr_count + 17'h1; 

     end 

     else 

     begin 

      state=writeidle1; 

     end 

    end 

     

   writeidle2:begin 

     wr_start=1'b1;  

     if(~wr_fin) 

     begin        

      state=idle; 

      bank2_addr_count = bank2_addr_count + 17'h1; 

     end 

     else 

     begin 

      state=writeidle2; 

     end 

      end    
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   emptymem: begin 

     addr_rd = rd_addr_count;       

     rd_start=1'b0; 

     if(rd_addr_count==18'h3FFFF) 

      fin=1'b0; 

     else 

      fin=1'b0; 

      state=emptyidle; 

        end 

      

      emptyidle: begin 

     rd_start=1'b1;  

     if(~rd_fin)       

     begin 

      rd_addr_count=rd_addr_count+18'h1;   

      state=readwait; 

     end 

     else 

     begin 

      state=emptyidle; 

     end 

               end 

        

      readwait: begin            

                  if(rd_begin) 

                     begin 

     if(fin==1'b1) 

     begin 

      sram_empty=1'b1; 

      state=idle; 

     fin=1'b0; 

     end 

             else 

     state=emptymem; 

                               end 

                 end 

                

      default: begin 

     state=idle; 

     rd_addr_count=18'b0; 

     bank1_addr_count=17'b0; 

     bank2_addr_count=17'b0; 

     wr_start=1'b1; 

     rd_start=1'b1; 

     state=idle; 

     sram_empty=1'b0; 

     fin=1'b0; 

    end 

  endcase 

 end//end else 

 end//end always 

 endmodule 
 

      

        



 

  140 

sram_cntrl HDL code: 

//Design component to set up the data, address and control signals to the memory 

//Author: Ravi Thakur 

 

module sram_cntrl( 

   input ar,          // External interface 

   input clk,  

   input rd_start,  

   output reg rd_done,  

   input [17:0] rd_a, 

   input wr_start,  

   output reg wr_done,  

   input [17:0] wr_a, 

   input [15:0] d_in,  

   output reg [15:0] q_out,  

       

   // Internal (SRAM) interface 

   inout [15:0] sram_dq, 

   output [17:0] sram_a, 

   output sram_oe, 

   output sram_ce,   

   output sram_we, 

   output sram_ub, 

   output sram_lb 

    

   ); 

 

/*  Section to capture or clear start edges */ 

   reg      wr_start_prev; 

   reg      wr_start_captured; 

   reg      wr_start_clear; 

   reg [17:0] wr_a_captured; 

   reg [15:0] d_in_captured;    

   reg      rd_start_prev; 

   reg      rd_start_captured; 

   reg      rd_start_clear; 

   reg [17:0] rd_a_captured;    

    

// FF to allow edge detection on wr_start   

   always @(negedge ar or posedge clk) 

       if(~ar) 

          wr_start_prev = 1'b1; 

       else 

          wr_start_prev = wr_start; 

   

  wire wr_start_edge; 

  assign wr_start_edge = ~wr_start & wr_start_prev; 

   

  // Simple FSM to hold or clear captured wr start edges 

  always @(negedge ar or posedge clk) 

        if(~ar) 

           begin 

           wr_start_captured = 1'b1; 

           wr_a_captured = 18'b0; 
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           d_in_captured = 16'b0; 

           end 

        else 

         if(wr_start_edge) 

            begin 

              wr_start_captured = 1'b0; 

              wr_a_captured = wr_a; 

              d_in_captured = d_in; 

            end 

           else   

              if(wr_start_clear) 

                 wr_start_captured = 1'b1;  

                

  

  wire rd_start_edge; 

  assign rd_start_edge = ~rd_start & rd_start_prev; 

         

// FF to allow edge detection on rd_start   

   always @(negedge ar or posedge clk) 

       if(~ar) 

          rd_start_prev = 1'b1; 

       else 

          rd_start_prev = rd_start; 

   

  // Simple FSM to hold or clear captured rd start edges 

  always @(negedge ar or posedge clk) 

        if(~ar) 

           begin 

           rd_start_captured = 1'b1; 

           rd_a_captured = 18'b0; 

           end 

        else 

           if(rd_start_edge)  

              begin 

              rd_start_captured = 1'b0; 

              rd_a_captured = rd_a; 

              end 

           else  

              if(rd_start_clear) 

                 rd_start_captured = 1'b1; 

                    

 

                    

   /*  Section to define and control main FSM */ 

  

 parameter [2:0] Idle=3'o0, Begin_Write=3'o1, /*Write_En=3'o2,*/ Write_Fin=3'o3,  

                 Begin_Read=3'o4, Read_En=3'o5, Read_Fin=3'o6; 

 

   reg [3:0]  cs; 

    

   // Declare simple control lines to be replicated 

   reg      oe; 

   reg      ce; 

   reg      we; 

   reg      be;//for the upper and lower byte enable signal 
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   reg      addr_sel;   // = wr_addr if 0, = rd_addr = 1 

   assign   sram_a = addr_sel ? rd_a_captured : wr_a_captured; 

       

   assign sram_dq = oe ? d_in_captured : 16'bz;  

   

  

   assign sram_oe = oe;  

   assign sram_ce = ce; 

   assign sram_we = we; 

   assign sram_ub = be; 

   assign sram_lb = be; 

   

 always @(negedge ar or posedge clk) 

 if(~ar) 

   begin 

  cs = Idle; 

  oe = 1'b1; 

  ce = 1'b1; 

  we = 1'b1;  

  be = 1'b1;         

              addr_sel = 1'b0; 

              wr_done = 1'b1; 

              rd_done = 1'b1; 

              wr_start_clear = 1'b0; 

              rd_start_clear = 1'b0; 

              q_out = 16'b0; 

      end 

 else 

 case(cs) 

  Idle : 

     if(~wr_start_captured) 

          begin 

           cs = Begin_Write; 

           oe = 1'b1; 

              ce = 1'b0; 

           we = 1'b0;  

           be = 1'b0;                  

                           addr_sel = 1'b0; 

                       wr_done = 1'b1; 

                       rd_done = 1'b1; 

                       wr_start_clear = 1'b0; 

                       rd_start_clear = 1'b0; 

                       end 

               else if(~rd_start_captured) 

           begin 

            cs = Begin_Read; 

            oe = 1'b0; 

            ce = 1'b0; 

            we = 1'b1; 

            be = 1'b0;                  

                          addr_sel = 1'b1; 

                        wr_done = 1'b1;  

                        rd_done = 1'b1; 

                        wr_start_clear = 1'b0; 

                        rd_start_clear = 1'b0; 

                end 
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               else 

        begin 

            cs = Idle; 

            oe = 1'b1; 

            ce = 1'b1; 

            we = 1'b1;    

            be = 1'b1;                

                         addr_sel = 1'b0; 

                       wr_done = 1'b1; 

                       rd_done = 1'b1; 

                       wr_start_clear = 1'b0; 

                       rd_start_clear = 1'b0; 

                 end 

                 

  Begin_Read : 

                    begin 

                   cs = Read_Fin; 

                   oe = 1'b0; 

                   ce = 1'b0; 

                   we = 1'b1;  

                   be = 1'b0;                    

                   addr_sel = 1'b1; 

                   wr_done = 1'b1; 

                   rd_done = 1'b1; 

                   wr_start_clear = 1'b0; 

                   rd_start_clear = 1'b1;                    

      end 

         

   Read_Fin : 

                  begin 

                   cs = Idle; 

                   oe = 1'b0; 

                   ce = 1'b0; 

                   we = 1'b1;  

                   be = 1'b0;                     

                   addr_sel = 1'b1; 

                   wr_done = 1'b1; 

                   rd_done = 1'b0; 

                   wr_start_clear = 1'b0; 

                   rd_start_clear = 1'b0;  

                   q_out = sram_dq; // Grab SRAM Q output                   

      end 

 

  Begin_Write : 

                 begin 

                  cs = Write_Fin; 

                  oe = 1'b1; 

                  ce = 1'b0; 

                  we = 1'b0;  

                  be = 1'b0;                   

                  addr_sel = 1'b0; 

                  wr_done = 1'b1; 

                  rd_done = 1'b1; 

                  wr_start_clear = 1'b1; 

                  rd_start_clear = 1'b0; 

   end        
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  Write_Fin : 

                 begin 

                  cs = Idle; 

                  oe = 1'b1; 

                  ce = 1'b0; 

                  we = 1'b0;                   

                  be = 1'b0;  

                  addr_sel = 1'b0; 

                  wr_done = 1'b0; 

                  rd_done = 1'b1; 

                  wr_start_clear = 1'b0; 

                  rd_start_clear = 1'b0; 

     end 

        

  default : 

                 begin 

                  cs = Idle; 

                  oe = 1'b1; 

                  ce = 1'b1; 

                  we = 1'b1;                  

                  addr_sel = 1'b0; 

                  wr_done = 1'b1; 

                  rd_done = 1'b1; 

                  wr_start_clear = 1'b0; 

                  rd_start_clear = 1'b0; 

     end 

      

 endcase  

 endmodule 
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Appendix F - Clock distributor and device power down components 

HDL code 

Clk_distributor HDL code: 

//Design clock distributor 

//Author: Ravi Thakur 

 

module clk_distributor( 

input clk_50, 

input ar, 

input codec_reset, 

input disable_clk, 

output clk_codec, 

output clk_filter, 

output clk_mmod 

); 

 

assign clk_codec = (~codec_reset|disable_clk) ? 1'b0 : clk_50; 

assign clk_filter = (~ar|disable_clk) ? 1'b0 : clk_50; 

assign clk_mmod = (~ar|disable_clk) ? 1'b0 : clk_50; 

 

endmodule 

 

device_pwrdwn HDL code: 

//Design clock controller 

//Author: Ravi Thakur 

 

module device_pwrdwn( 

input clk, 

input ar, 

input codec_disable, 

input sl_sleep, 

output reg device_disable 

); 

 

always @ (posedge clk or negedge ar) 

 begin 

  if(~ar) 

   device_disable=1'b0; 

  else 

   if(sl_sleep==1'b1&codec_disable==1'b1) 

     device_disable=1'b1; 

    else 

     device_disable=1'b0; 

 end//end always 

endmodule 
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Appendix E - MATLAB code for generating the filter coefficients 

%Generating Filter Coefficients for FIR Filter 

%Ravi Thakur 

fs=16e3;%Half of the 48kHz sampling frequency 

[n,f0,a0,w]=firpmord([5.2e3,5.4e3],[1,0],[0.0001,0.1],fs); 

%The stopband edge frequencies are taken to be beyond 5.4kHz 

%0.01 ripple in the passband and stopband 

b=firpm(31,f0,a0,w);%filter length of 31 

freqz(b,1,1024,fs);%the response is plotted 

coeff_to_mif(b,16,'memory.mif');%the coefficients are generated in signed format 

%this code provided by the instructor converts them into two’s complement 

%from to be %used in the verilog code. 

%% 

b=firpm(30,[0 0.205 0.287 1],[1 1 0 0]); 

figure(1); 

freqz(b,1,512,48e3); 

[h,w]=freqz(b,1,512,48e3); 

figure(2); 

plot(w,abs(h)); 

coeff_to_mif(b,16,'memory.mif'); 

coeff_to_mif function: 

function coeff_to_mif(b, k, filename) 

% 

%  Use:  coeff_to_mif(b, k, filename) 

%           b = floating point coefficients 

%           k = # of bits (assuming 2's complement format) 

%           filename = name of file (in single quotes) 

% 

%  Author:  D. Gruenbacher 

%    

%   Created:  Feb. 28, 2006 

% 

 

n = length(b); 

 

b_int = b./abs(max(b))*(2^(k-1)-1); 

b_int = round(b_int); 

 

for i=1:n           % Go through negative numbers and convert to 2's comp 

    if (b_int(i) < 0) 

        b_int(i) = 2^k + b_int(i); 

    end 

end 

 

fid = fopen(filename, 'wt');    % Open the output file 

 

fprintf(fid, 'DEPTH = %d;\n', n); 

fprintf(fid, 'WIDTH = %d;\n', k); 

fprintf(fid, 'ADDRESS_RADIX = DEC;\n'); 

fprintf(fid, 'DATA_RADIX = DEC;\n \n'); 

 

fprintf(fid, 'CONTENT\n'); 
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fprintf(fid, '\t BEGIN \n'); 

 

for i=1:n 

    fprintf(fid, '%d : %d;\n', i-1, b_int(i)); 

end 

 

fprintf(fid, 'END;\n'); 

fclose(fid); 

 

% End of function 
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Appendix F - Analog module testbenches 

Analog module input operation: 

`timescale 1ns/1ns 

 

//Analog module input operation test bench 

//Author: Ravi Thakur 

 

module analog_module_tb; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter clk_bclk_pulse=160;//3.125 MHz clock 

  parameter bclk_negedge_pulse=320; 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter padding = 5126; 

   

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg AUD_ADCDAT; 

  reg AUD_BCLK; 

  reg AUD_ADCLRCK; 

  reg AUD_DACLRCK; 

  reg codec_pwrdwn; 

  reg read; 

  reg [15:0] parallel_in;    

 

  //intermediate signals 

  wire [15:0] a2d_bits; 

   

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 
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      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768); 

  

//initial block 

 

  initial 

    begin 

      $dumpfile("codec_innorop.vcd"); 

      $dumpvars(0,analog_module_tb); 

      #50000000; 

      $finish; 

    end  

 

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      clk_50=1'b1; 

      AUD_BCLK=1'b0; 

      AUD_ADCLRCK=1'b0; 

      AUD_DACLRCK=1'b0; 

      codec_pwrdwn=1'b0; 

      read=1'b1; 

      parallel_in = 16'd0;           

             

      #10 ar =1'b0;       

      #30 ar = 1'b1; 

           

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

   

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50; 

   

//3.125 MHz clock 

always 

  #clk_bclk_pulse AUD_BCLK = ~AUD_BCLK; 
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//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_ADCLRCK = ~AUD_ADCLRCK; 

 

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_DACLRCK = ~AUD_DACLRCK; 

 

 

always 

begin 

    #clk_lrclk_pulse     AUD_ADCDAT = a2d_bits[15]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[14]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[13]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[12]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[11]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[10]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[9]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[8]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[7]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[6]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[5]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[4]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[3]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[2]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[1]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[0]; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #padding AUD_ADCDAT = 1'b0;     

end  

endmodule 

 

Analog module output operation: 

`timescale 1ns/1ns 

 

//Analog module output operation test bench 

//Author: Ravi Thakur 

 

module analog_module_tb; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter clk_bclk_pulse=160;//3.125 MHz clock 

  parameter bclk_negedge_pulse=320; 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter padding = 5126; 

   

  //Input signals 
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  reg clk_50; 

  reg ar; 

  reg AUD_ADCDAT; 

  reg AUD_BCLK; 

  reg AUD_ADCLRCK; 

  reg AUD_DACLRCK; 

  reg codec_pwrdwn; 

  reg read; 

  reg [15:0] parallel_in;  

 

  //intermediate signals 

  wire [15:0] a2d_bits; 

 

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768); 

  

//initial block 

 

  initial 

    begin 

      $dumpfile("codec_opnorop.vcd"); 

      $dumpvars(0,analog_module_tb); 

      #50000000; 

      $finish; 

    end  

 

  initial 
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    begin 

      t=0; 

      ar=1'b1; 

      clk_50=1'b1; 

      AUD_BCLK=1'b0; 

      AUD_ADCLRCK=1'b0; 

      AUD_DACLRCK=1'b0; 

      codec_pwrdwn=1'b0; 

      read=1'b1;        

             

      #10 ar =1'b0;       

      #30 ar = 1'b1; 

      #20452 read = 1'b0; 

      #30 read = 1'b1;     

       

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

   

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50; 

   

//3.125 MHz clock 

always 

  #clk_bclk_pulse AUD_BCLK = ~AUD_BCLK; 

   

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_ADCLRCK = ~AUD_ADCLRCK; 

 

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_DACLRCK = ~AUD_DACLRCK; 

 

always 

begin 

    #clk_lrclk_pulse     AUD_ADCDAT = a2d_bits[15]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[14]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[13]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[12]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[11]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[10]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[9]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[8]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[7]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[6]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[5]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[4]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[3]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[2]; 
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    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[1]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[0]; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #padding AUD_ADCDAT = 1'b0;     

end 

 

always 

begin 

  #clk_lrclk_pulse  parallel_in = a2d_bits; 

end 

  

endmodule 

Analog module shutdown: 

`timescale 1ns/1ns 

 

//Analog module shutdown test bench 

//Author: Ravi Thakur 

 

module analog_module;   

 parameter clk_pulse=10;//50 MHz clock    

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg AUD_ADCDAT; 

  reg AUD_BCLK; 

  reg AUD_ADCLRCK; 

  reg AUD_DACLRCK; 

  reg codec_pwrdwn; 

  reg read; 

  wire [15:0] parallel_in;   

//initial block 

  initial 

    begin 

      $dumpfile("codec_pwrdwnop.vcd"); 

      $dumpvars(0,analog_module_tb); 

      #50000000; 

      $finish; 

    end 

 

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      clk_50=1'b0; 

      AUD_ADCDAT=1'b0; 

      AUD_BCLK=1'b1; 

      AUD_ADCLRCK=1'b1; 

      AUD_DACLRCK=1'b1; 

      codec_pwrdwn=1'b0; 

      read=1'b1;                 

      #10 ar =1'b0;       

      #30 ar = 1'b1; 
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      #20 codec_pwrdwn=1'b0;       

   end//end initial block   

 

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50;   

Endmodule 
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Appendix G - Serial module testbenches 

Serial module normal operation: 

`timescale 1ns/1ns 

 

//Serial module normal operation test bench 

//Author: Ravi Thakur 

 

module serial_module_tb; 

  reg ar; 

  reg clk_in; 

  reg sl_in; 

  reg [7:0] sl_count; 

  wire [9:0] serial_in; 

 

parameter clk_pulse=10;//50 MHz clock 

parameter serial_rate_posedge = 104167;//9600 serial datarate clock 

parameter serial_word_rate = 1145837; 

assign serial_in = {1'b1,sl_count,1'b0};//stop bit, 8 bit word, stop bit 

 

  initial 

    begin 

      $dumpfile("smtb.vcd"); 

      $dumpvars(0,serial_module_tb); 

      #100000000; 

      $finish; 

    end 

     

//initial block 

  initial 

    begin 

      ar=1'b1; 

      sl_in=1'b1; 

      clk_in=1'b1; 

      sl_count = 8'd64; 

              

             

      #10 ar =1'b0;       

      #30 ar = 1'b1; 

            

    end//end initial block 

 

//50 MHz clock 

always 

  #clk_pulse clk_in = ~clk_in; 

 

//serial data in   

always 

  begin 

  #serial_rate_posedge sl_in = serial_in[0];                        

  #serial_rate_posedge sl_in = serial_in[1];                       

  #serial_rate_posedge sl_in = serial_in[2];                       

  #serial_rate_posedge sl_in = serial_in[3];                       



 

  156 

  #serial_rate_posedge sl_in = serial_in[4];                                                                                                            

  #serial_rate_posedge sl_in = serial_in[5];                        

  #serial_rate_posedge sl_in = serial_in[6];                        

  #serial_rate_posedge sl_in = serial_in[7];                        

  #serial_rate_posedge sl_in = serial_in[8];                        

  #serial_rate_posedge sl_in = serial_in[9];                                                                                                                                           

  end 

 

//serial word increment   

always 

  #serial_word_rate sl_count = sl_count + 8; 

 

endmodule 

Serial module shutdown: 

`timescale 1ns/1ns 

 

//Serial module shutdown test bench 

//Author: Ravi Thakur 

 

module serial_module_tb; 

  reg ar; 

  reg slclk; 

  reg count_clk; 

  reg sl_in; 

parameter clk_pulse=10;//50 MHz clock 

parameter serial_rate_posedge = 104167;//9600 serial datarate clock 

parameter count_clk_pulse = 10246;//48.8 kHz clock for counting 

parameter serial_word_rate = 1145837; 

  

//initial block 

 initial 

    begin 

      $dumpfile("smtb_wclkg.vcd"); 

      $dumpvars(0,serial_module_tb); 

      #100000000; 

      $finish; 

    end   

   

  initial 

    begin 

      ar=1'b1; 

      sl_in=1'b1; 

      slclk=1'b1; 

      count_clk=1'b1;              

      #10 ar =1'b0;       

      #30 ar = 1'b1;            

    end//end initial block 

 

//50 MHz clock 

always  

  #clk_pulse slclk = ~slclk; 

   

//48.8 kHz clock 
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always 

  #count_clk_pulse count_clk = ~count_clk; 

endmodule 
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Appendix H - DSP module testbenches 

DSP module normal operation: 

`timescale 1ns/1ns 

 

//DSP module normal operation test bench 

//Author: Ravi Thakur 

 

module filter_module; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

   

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg clk; 

  wire [15:0] adc_in; 

  wire [15:0] dac_out; 

  wire wr_begin; 

                       

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 
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 endfunction 

  

 assign adc_in = $rtoi(xin * 32768); 

 

//initial block 

 

  initial 

    begin 

      $dumpfile("fmdsp.vcd"); 

      $dumpvars(0,filter_module); 

      #50000000; 

      $finish; 

    end 

     

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      clk_50=1'b1; 

      clk=1'b1;              

             

      #10 ar =1'b0;       

      #30 ar = 1'b1; 

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50; 

   

//48.8 KHz clock 

always 

  #clk_lrclk_pulse clk = ~clk; 

 

endmodule 

DSP module shutdown: 

`timescale 1ns/1ns 

 

//DSP module shutdown test bench 

//Author: Ravi Thakur 

 

module fm_dsp; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 



 

  160 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

   

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg clk; 

  reg disable1; 

  wire [15:0] adc_in;   

                       

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign adc_in = $rtoi(xin * 32768); 

 

//initial block 

 

 initial 

    begin 

      $dumpfile("fmdsp32_dis.vcd"); 

      $dumpvars(0,fm_dsp); 

      #50000000; 

      $finish; 

    end 

     

     

  initial 

    begin 

      t=0; 

      ar=1'b1; 



 

  161 

      clk_50=1'b1; 

      clk=1'b1;  

      disable1=1'b0;             

             

      #10 ar =1'b0;       

      #30 ar = 1'b1;       

      #60 disable1 = 1'b1; 

       

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50; 

   

//48.8 KHz clock 

always 

  #clk_lrclk_pulse clk = ~clk; 

 

endmodule 
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Appendix I - Memory module testbenches 

Memory module write operation: 

`timescale 1ns/1ns 

 

//Memory module write operation test bench 

//Author: Ravi Thakur 

 

module memory_module_tb; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter serial_word_rate = 1145837; 

  parameter serial_2word_rate = 21875074;   

   

  //Input signals 

  reg clk; 

  reg ar; 

  reg filter_wr; 

  wire [15:0] filter_data; 

  reg serial_wr; 

  wire [15:0] serial_data; 

  reg rd_begin; 

  reg device_pwrdwn;       

   

  //inout signals 

  wire [15:0] sram_dq;   

  wire [15:0]q;  

   

  //intermediate signals 

  wire [15:0] a2d_bits; 

  reg [15:0] serial_bits = 16'd64; 

  reg oe; 

   

  assign sram_dq = oe ? 16'bz : a2d_bits; 

  assign q=sram_dq; 

                       

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 
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        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768);  

 assign filter_data = a2d_bits; 

 assign serial_data = serial_bits; 

   

//initial block 

  initial 

    begin 

      $dumpfile("mem_nwrop.vcd"); 

      $dumpvars(0,memory_module_tb); 

      #50000000; 

      $finish; 

    end 

     

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      clk=1'b1; 

      oe=1'b0;//sram_dq is output 

      filter_wr=1'b0; 

      serial_wr=1'b0; 

      rd_begin=1'b0; 

      device_pwrdwn=1'b0;         

             

      #10 ar =1'b0;       

      #30 ar = 1'b1;      

 

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end   

   

//50 MHz clock 

always 
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  #clk_pulse clk = ~clk; 

   

//filter wr_ready pulse 

always 

begin 

  #lrclk_posedge_pulse filter_wr=1'b1;  

  #30 filter_wr=1'b0; 

end 

 

//serial wr_ready pulse 

always 

begin 

  #serial_2word_rate serial_wr=1'b1; 

  #30 serial_wr=1'b0; 

end 

     

always 

  begin 

  #serial_word_rate serial_bits = serial_bits+6;                                                                                                                                                               

  end 

  

endmodule 

Memory module read operation: 

`timescale 1ns/1ns 

 

//Memory module read operation test bench 

//Author: Ravi Thakur 

 

module memory_module_tb; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter serial_word_rate = 1145837; 

  parameter serial_2word_rate = 21875074;   

   

  //Input signals 

  reg clk; 

  reg ar; 

  reg filter_wr; 

  wire [15:0] filter_data; 

  reg serial_wr; 

  wire [15:0] serial_data; 

  reg rd_begin; 

  reg device_pwrdwn;         

   

  //inout signals  

  wire [15:0] sram_dq;   

  wire [15:0]q;    
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  //intermediate signals 

  wire [15:0] a2d_bits; 

  reg [15:0] serial_bits = 16'd64; 

  reg oe; 

   

  assign sram_dq = oe ? 16'bz : a2d_bits; 

  assign q=sram_dq; 

                          

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768); 

  

 assign filter_data = a2d_bits; 

 assign serial_data = serial_bits; 

 

//initial block 

 

  initial 

    begin 

      $dumpfile("mem_nrdrop.vcd"); 

      $dumpvars(0,memory_module_tb); 

      #50000000; 

      $finish; 

    end 

     

  initial 

    begin 

      t=0; 
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      ar=1'b1; 

      clk=1'b1; 

      oe=1'b0;//sram_dq is output 

      filter_wr=1'b0; 

      serial_wr=1'b0; 

      rd_begin=1'b0; 

      device_pwrdwn=1'b0;         

             

      #10 ar =1'b0;       

      #30 ar = 1'b1;      

 

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

     

//50 MHz clock 

always 

  #clk_pulse clk = ~clk; 

   

//filter wr_ready pulse 

always 

begin 

  #lrclk_posedge_pulse filter_wr=1'b1;  

  #30 filter_wr=1'b0; 

end 

 

//serial wr_ready pulse 

always 

begin 

  #serial_2word_rate serial_wr=1'b1; 

  #30 serial_wr=1'b0; 

end 

  

//incrementing serial data    

always 

  begin 

  #serial_word_rate serial_bits = serial_bits+6;                                                                                                                                                               

  end 

 

//generating rd_start signals 

always 

  begin 

    #lrclk_posedge_pulse rd_begin = 1'b1; 

    #30 rd_begin = 1'b0;     

  end     

  

endmodule 
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Memory module shutdown: 

`timescale 1ns/1ns 

 

//Memory module shutdown operation test bench 

//Author: Ravi Thakur 

 

module memory_module_tb; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter serial_word_rate = 1145837; 

  parameter serial_2word_rate = 21875074;   

   

  //Input signals 

  reg clk; 

  reg ar; 

  reg filter_wr; 

  wire [15:0] filter_data; 

  reg serial_wr; 

  wire [15:0] serial_data; 

  reg rd_begin; 

  reg device_pwrdwn;      

   

  //inout signals  

  wire [15:0] sram_dq;   

  wire [15:0]q;   

 

  //intermediate signals 

  wire [15:0] a2d_bits; 

  reg [15:0] serial_bits = 16'd64; 

  reg oe; 

   

  assign sram_dq = oe ? 16'bz : a2d_bits; 

  assign q=sram_dq;   

                       

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 
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      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768);  

 assign filter_data = a2d_bits; 

 assign serial_data = serial_bits;  

  

//initial block 

 

  initial 

    begin 

      $dumpfile("mem_dpwrdwn.vcd"); 

      $dumpvars(0,memory_module_tb); 

      #50000000; 

      $finish; 

    end 

     

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      clk=1'b1; 

      oe=1'b0;//sram_dq is output 

      filter_wr=1'b0; 

      serial_wr=1'b0; 

      rd_begin=1'b0; 

      device_pwrdwn=1'b0; 

                     

      #10 ar =1'b0;       

      #30 ar = 1'b1; 

      #20 device_pwrdwn = 1'b1;     

 

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end   

   

//50 MHz clock 

always 

  #clk_pulse clk = ~clk; 
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//filter wr_ready pulse 

always 

begin 

  #lrclk_posedge_pulse filter_wr=1'b1;  

  #30 filter_wr=1'b0; 

end 

 

//serial wr_ready pulse 

always 

begin 

  #serial_2word_rate serial_wr=1'b1; 

  #30 serial_wr=1'b0; 

end 

  

//incrementing serial data    

always 

  begin 

  #serial_word_rate serial_bits = serial_bits+6;                                                                                                                                                               

  end 

 

//generating rd_start signals 

always 

  begin 

    #lrclk_posedge_pulse rd_begin = 1'b1; 

    #30 rd_begin = 1'b0; 

  end   

  

endmodule 
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Appendix I - Signal acquisition module operating modes testbenches 

Normal operation input: 

`timescale 1ns/1ns 

 

//Final design input operation test bench 

//Author: Ravi Thakur 

 

module normal_op_in; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter clk_bclk_pulse=160;//3.125 MHz clock 

  parameter bclk_negedge_pulse=320; 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter padding = 5126; 

  parameter serial_rate_posedge = 104167; 

  parameter serial_word_rate = 1145837;   

   

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg AUD_ADCDAT; 

  reg AUD_BCLK; 

  reg AUD_ADCLRCK; 

  reg AUD_DACLRCK; 

  reg codec_pwrdwn; 

  reg read; 

  reg sl_in; 

  reg [7:0] sl_count = 8'd64; 

  wire [9:0] serial_in; 

  reg enable; 

 

  //intermediate signals 

  wire [15:0] a2d_bits; 

                       

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 
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      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768); 

 assign serial_in = ~enable ?{1'b1,sl_count,1'b0} : 10'b1111111111; 

  

//initial block 

 

  initial 

    begin 

      $dumpfile("nopin.vcd"); 

      $dumpvars(0,normal_op_in); 

      #50000000; 

      $finish; 

    end 

     

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      sl_in=1'b1; 

      clk_50=1'b1; 

      AUD_BCLK=1'b0; 

      AUD_ADCLRCK=1'b0; 

      AUD_DACLRCK=1'b0; 

      codec_pwrdwn=1'b0; 

      read=1'b1; 

      enable = 1'b0;         

             

      #10 ar =1'b0;       

      #30 ar = 1'b1;       

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50; 
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//3.125 MHz clock 

always 

  #clk_bclk_pulse AUD_BCLK = ~AUD_BCLK; 

   

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_ADCLRCK = ~AUD_ADCLRCK; 

 

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_DACLRCK = ~AUD_DACLRCK; 

 

always 

begin 

    #clk_lrclk_pulse     AUD_ADCDAT = a2d_bits[15]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[14]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[13]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[12]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[11]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[10]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[9]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[8]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[7]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[6]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[5]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[4]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[3]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[2]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[1]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[0]; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #padding AUD_ADCDAT = 1'b0;     

end 

 

always 

  begin 

  #serial_word_rate sl_count = sl_count + 1; 

  end 

   

always 

  begin 

  #52084 sl_in = 1'b1; 

  #serial_rate_posedge sl_in = serial_in[0];                        

  #serial_rate_posedge sl_in = serial_in[1];                       

  #serial_rate_posedge sl_in = serial_in[2];                       

  #serial_rate_posedge sl_in = serial_in[3];                       

  #serial_rate_posedge sl_in = serial_in[4];                                                                                                            

  #serial_rate_posedge sl_in = serial_in[5];                        

  #serial_rate_posedge sl_in = serial_in[6];                        

  #serial_rate_posedge sl_in = serial_in[7];                        

  #serial_rate_posedge sl_in = serial_in[8];                        

  #serial_rate_posedge sl_in = serial_in[9]; 

  #52084 sl_in = 1'b1;                                                                                                                                           

  end  
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endmodule 

Normal operation output: 

`timescale 1ns/1ns 

 

//Final design output operation test bench 

//Author: Ravi Thakur 

 

module normal_op_out; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter clk_bclk_pulse=160;//3.125 MHz clock 

  parameter bclk_negedge_pulse=320; 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter padding = 5126; 

  parameter serial_rate_posedge = 104167; 

  parameter serial_word_rate = 1145837;   

   

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg AUD_ADCDAT; 

  reg AUD_BCLK; 

  reg AUD_ADCLRCK; 

  reg AUD_DACLRCK; 

  reg codec_pwrdwn; 

  reg read; 

  reg sl_in; 

  reg [7:0] sl_count = 8'd64; 

  wire [9:0] serial_in; 

  reg enable; 

  reg oe; 

 

  wire [15:0] sram_dq;   

  wire [15:0]q;  

   

  //intermediate signals 

  wire [15:0] a2d_bits; 

   

  assign sram_dq = oe ? 16'bz : a2d_bits; 

  assign q=sram_dq; 

                       

 

 

 

 //sine wave generator 

 

 function real sin; 

   input x; 
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   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768); 

 assign serial_in = ~enable ?{1'b1,sl_count,1'b0} : 10'b1111111111; 

  

//initial block 

 

  initial 

   begin 

     $dumpfile("nopout.vcd"); 

     $dumpvars(0,normal_op_out); 

     #50000000; 

     $finish; 

   end 

    

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      sl_in=1'b1; 

      clk_50=1'b1; 

      AUD_BCLK=1'b0; 

      AUD_ADCLRCK=1'b0; 

      AUD_DACLRCK=1'b0; 

      codec_pwrdwn=1'b0; 

      read=1'b1; 

      enable = 1'b0;  

      oe=1'b0;          

             

      #10 ar =1'b0;       

      #30 ar = 1'b1;             

      #50 read=1'b0;  
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          oe=1'b0;                              

      #40 read=1'b1; 

       

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

 

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50; 

   

//3.125 MHz clock 

always 

  #clk_bclk_pulse AUD_BCLK = ~AUD_BCLK; 

   

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_ADCLRCK = ~AUD_ADCLRCK; 

 

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_DACLRCK = ~AUD_DACLRCK; 

 

always 

begin 

    #clk_lrclk_pulse     AUD_ADCDAT = a2d_bits[15]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[14]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[13]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[12]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[11]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[10]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[9]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[8]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[7]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[6]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[5]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[4]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[3]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[2]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[1]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[0]; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #padding AUD_ADCDAT = 1'b0;     

end 

 

 

always 

  begin 

  #serial_word_rate sl_count = sl_count + 1; 

  end 
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always 

  begin 

  #52084 sl_in = 1'b1; 

  #serial_rate_posedge sl_in = serial_in[0];                        

  #serial_rate_posedge sl_in = serial_in[1];                       

  #serial_rate_posedge sl_in = serial_in[2];                       

  #serial_rate_posedge sl_in = serial_in[3];                       

  #serial_rate_posedge sl_in = serial_in[4];                                                                                                            

  #serial_rate_posedge sl_in = serial_in[5];                        

  #serial_rate_posedge sl_in = serial_in[6];                        

  #serial_rate_posedge sl_in = serial_in[7];                        

  #serial_rate_posedge sl_in = serial_in[8];                        

  #serial_rate_posedge sl_in = serial_in[9]; 

  #52084 sl_in = 1'b1;                                                                                                                                           

  end  

endmodule 

Serial powerdown: 

`timescale 1ns/1ns 

 

//Final design serial powerdown test bench 

//Author: Ravi Thakur 

 

module sl_pwrdwn; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter clk_bclk_pulse=160;//3.125 MHz clock 

  parameter bclk_negedge_pulse=320; 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter padding = 5126; 

  parameter serial_rate_posedge = 104167; 

  parameter serial_word_rate = 1145837;   

   

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg AUD_ADCDAT; 

  reg AUD_BCLK; 

  reg AUD_ADCLRCK; 

  reg AUD_DACLRCK; 

  reg codec_pwrdwn; 

  reg read; 

  reg sl_in; 

  reg [7:0] sl_count = 8'd64; 

  wire [9:0] serial_in; 

  reg enable; 

   

  //intermediate signals 
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  wire [15:0] a2d_bits; 

                       

  //sine wave generator 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768); 

 assign serial_in = ~enable ?{1'b1,sl_count,1'b0} : 10'b1111111111; 

  

//initial block 

 

  initial 

   begin 

     $dumpfile("slpwrdwn.vcd"); 

     $dumpvars(0,sl_pwrdwn); 

     #50000000; 

     $finish; 

   end 

     

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      sl_in=1'b1; 

      clk_50=1'b1; 

      AUD_BCLK=1'b0; 

      AUD_ADCLRCK=1'b0; 

      AUD_DACLRCK=1'b0; 

      codec_pwrdwn=1'b0; 

      read=1'b1; 

      enable = 1'b0;          
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      #10 ar =1'b0;       

      #30 ar = 1'b1;       

      #50 enable = 1'b1; 

       

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

 

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50; 

   

//3.125 MHz clock 

always 

  #clk_bclk_pulse AUD_BCLK = ~AUD_BCLK; 

   

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_ADCLRCK = ~AUD_ADCLRCK; 

 

//48.8 KHz clock 

always 

  #clk_lrclk_pulse AUD_DACLRCK = ~AUD_DACLRCK; 

 

always 

begin 

    #clk_lrclk_pulse     AUD_ADCDAT = a2d_bits[15]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[14]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[13]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[12]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[11]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[10]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[9]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[8]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[7]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[6]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[5]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[4]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[3]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[2]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[1]; 

    #bclk_negedge_pulse  AUD_ADCDAT = a2d_bits[0]; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #clk_bclk_pulse AUD_ADCDAT = 1'b0; 

    #padding AUD_ADCDAT = 1'b0;     

end 

 

always 

  begin 

  #serial_word_rate sl_count = sl_count + 1; 
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  end 

   

always 

  begin 

  #52084 sl_in = 1'b1; 

  #serial_rate_posedge sl_in = serial_in[0];                        

  #serial_rate_posedge sl_in = serial_in[1];                       

  #serial_rate_posedge sl_in = serial_in[2];                       

  #serial_rate_posedge sl_in = serial_in[3];                       

  #serial_rate_posedge sl_in = serial_in[4];                                                                                                            

  #serial_rate_posedge sl_in = serial_in[5];                        

  #serial_rate_posedge sl_in = serial_in[6];                        

  #serial_rate_posedge sl_in = serial_in[7];                        

  #serial_rate_posedge sl_in = serial_in[8];                        

  #serial_rate_posedge sl_in = serial_in[9]; 

  #52084 sl_in = 1'b1;                                                                                                                                           

  end  

endmodule 

Analog powerdown: 

`timescale 1ns/1ns 

 

//Final design analog powerdown test bench 

//Author: Ravi Thakur 

 

module analog_powerdown; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 

  parameter clk_pulse=10;//50 MHz clock 

  parameter clk_bclk_pulse=160;//3.125 MHz clock 

  parameter bclk_negedge_pulse=320; 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter padding = 5126; 

  parameter serial_rate_posedge = 104167; 

  parameter serial_word_rate = 1145837;   

   

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg AUD_ADCDAT; 

  reg AUD_BCLK; 

  reg AUD_ADCLRCK; 

  reg AUD_DACLRCK; 

  reg codec_pwrdwn; 

  reg read; 

  reg sl_in; 

  reg [7:0] sl_count = 8'd64; 

  wire [9:0] serial_in; 

  reg enable; 
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  //intermediate signals 

  wire [15:0] a2d_bits; 

                        

  //sine wave generator 

 

 function real sin; 

   input x; 

   real x; 

   real x1,y,y2,y3,y5,y7,sum,sign; 

   begin 

    sign = 1.0; 

    x1 = x; 

    if (x1<0) 

      begin 

        x1 = -x1; 

        sign = -1.0; 

      end 

    while (x1 > 3.14159265/2.0) 

      begin 

        x1 = x1 - 3.14159265; 

        sign = -1.0*sign; 

      end   

    y = x1*2/3.14159265; 

    y2 = y*y; 

    y3 = y*y2; 

    y5 = y3*y2; 

    y7 = y5*y2; 

    sum = 1.570794*y - 0.645962*y3 + 

           0.079692*y5 - 0.004681712*y7; 

    sin = sign*sum; 

   end 

 endfunction 

  

 assign a2d_bits = $rtoi(xin * 32768); 

 assign serial_in = ~enable ?{1'b1,sl_count,1'b0} : 10'b1111111111; 

  

//initial block     

  initial 

    begin 

      $dumpfile("apwrdwn.vcd"); 

      $dumpvars(0,analog_powerdown); 

      #50000000; 

      $finish; 

    end    

     

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      sl_in=1'b1; 

      clk_50=1'b1; 

      AUD_BCLK=1'b0; 

      AUD_ADCLRCK=1'b0; 

      AUD_DACLRCK=1'b0; 

      codec_pwrdwn=1'b0; 

      read=1'b1; 
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      enable = 1'b0; 

      AUD_ADCDAT = 1'b0;         

             

      #10 ar =1'b0;       

      #30 ar = 1'b1;     

      #50 codec_pwrdwn = 1'b1; 

       

   end//end initial block 

   

//sine wave always block 

always 

  begin 

    #tstep t = t + tstep; 

    xin = sin(2*pi*f*t*1e-9); 

  end 

 

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50; 

   

always 

  begin 

  #serial_word_rate sl_count = sl_count + 1; 

  end 

   

always 

  begin 

  #52084 sl_in = 1'b1; 

  #serial_rate_posedge sl_in = serial_in[0];                        

  #serial_rate_posedge sl_in = serial_in[1];                       

  #serial_rate_posedge sl_in = serial_in[2];                       

  #serial_rate_posedge sl_in = serial_in[3];                       

  #serial_rate_posedge sl_in = serial_in[4];                                                                                                            

  #serial_rate_posedge sl_in = serial_in[5];                        

  #serial_rate_posedge sl_in = serial_in[6];                        

  #serial_rate_posedge sl_in = serial_in[7];                        

  #serial_rate_posedge sl_in = serial_in[8];                        

  #serial_rate_posedge sl_in = serial_in[9]; 

  #52084 sl_in = 1'b1;                                                                                                                                           

  end  

endmodule 

Device powerdown: 

`timescale 1ns/1ns 

 

//Final design device powerdown test bench 

//Author: Ravi Thakur 

 

module device_powerdown; 

   

  real t,xin; 

  parameter tstep = 20492;//for 48.8KHz sampling freq 

  parameter f=4e3;//sin wave freq 

  parameter pi=3.14159; 
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  parameter clk_pulse=10;//50 MHz clock 

  parameter clk_bclk_pulse=160;//3.125 MHz clock 

  parameter bclk_negedge_pulse=320; 

  parameter clk_lrclk_pulse=10246;//48.8 KHz clock 

  parameter lrclk_posedge_pulse = 20492; 

  parameter padding = 5126; 

  parameter serial_rate_posedge = 104167; 

  parameter serial_word_rate = 1145837;   

   

  //Input signals 

  reg clk_50; 

  reg ar; 

  reg AUD_ADCDAT; 

  reg AUD_BCLK; 

  reg AUD_ADCLRCK; 

  reg AUD_DACLRCK; 

  reg codec_pwrdwn; 

  reg read; 

  reg sl_in; 

   

//initial block 

  initial 

   begin 

     $dumpfile("dpwrdwn.vcd"); 

     $dumpvars(0,device_powerdown); 

     #50000000; 

     $finish; 

   end 

     

  initial 

    begin 

      t=0; 

      ar=1'b1; 

      sl_in=1'b1; 

      clk_50=1'b1; 

      AUD_BCLK=1'b0; 

      AUD_ADCLRCK=1'b0; 

      AUD_DACLRCK=1'b0; 

      codec_pwrdwn=1'b0; 

      read=1'b1; 

      AUD_ADCDAT = 1'b0; 

 sl_in = 1'b1;         

             

      #10 ar =1'b0;       

      #30 ar = 1'b1;       

      #50 codec_pwrdwn = 1'b1; 

       

   end//end initial block 

    

//50 MHz clock 

always 

  #clk_pulse clk_50 = ~clk_50;  

endmodule 


