THE EFFECT OF LOSSES UPON THE PROPAGATION OF SURFACE AND LEAKY WAVES OVER A GROUNDED DIELECTRIC SLAB

by
JERRY KENT SUTTON
B. S., Louisiana Polytechnic Institute, 1967
\section*{A THESIS}
submitted in partial fulfillment of the requirements for the degree
MASTER OF SCIENCE
Department of Electrical Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas

Approved by:
$\frac{\text { gary johnson }}{\text { Major Professor }}$

PREFACE

Surface waves have been found useful in many antenna applications and in some transmission line applications for the past seventy years. The surface wave transmission line is exceptionally efficient. This very fact makes the surface wave a nuisance when it is not the desired mode. Undesired coupling between components of a system, particularly at microwave frequencies and above, may occur via surface waves. Unpublished research by Dr. Gary L. Johnson into the attenuation of surface waves guided by electrically thin lossy dielectric slabs showed that the attenuation does not increase monotonically with increasing dielectric loss. This thesis extends those results to electrically thick slabs. It is found that the same effect appears for relatively thick slabs but not for extremely thick slabs, an abrupt change from decreasing to increasing attenuation occurring at some thickness. Furthermore, the existence of an extraordinary mode has been discovered.

I wish to express my gratitude to Dr. Gary L. Johnson, my thesis advisor; to the National Aeronautics and Space Administration for financial support in the form of a NASA traineeship which made this research possible; to Dr. W. W. Koepsel and Dr. F. W. Harris of my advisory committee for their assistance; to Mr. J. H. Peterson for his valuable programming assistance; and to the Collins Radio Company and Mr. G. W. Deen for the programming experience which was invaluable to me during my research.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Statement of the Problem 1
Discussion of the Terms "Surface Wave" and "Leaky Wave" 2
II. THE CHARACTERISTIC EQUATION 4
Derivation of Equations 4
Graphical Analysis of Real Roots in the Lossless Case 9
Some Notes Concerning Solutions in More General Cases 12
III. THE COMPUTER PROGRAM AND NUMERICAL TECHNIQUES 20
Development of the Program 20
Final Version of the Basic Program 23
The Monitor and Control Section of the Program 26
Comments on Programming 30
IV. INTERPRETATION OF DATA 33
Behavior of TMo Surface Wave Modes 33
The Behavior of the TM Extraordinary Surface Wave Mode 50
Behavior of the TM_{2} Leaky Wave Mode 53
Behavior of the TM_{2}^{2} Surface Wave Mode 58
V. SUMMARY AND CONCLUSIONS 62
Summary 62
Recommendations for Further Study 65
REFERENCES 67
APPENDIX A 68
APPENDIX B 77
APPENDIX C 92

LIST OF TABLES

Table Page

1. Significance of Algebraic Signs of v and k_{z} 15
2. Approximate $\varepsilon_{r 2}$ " and $t / \lambda 0$ Transition Values 42

LIST OF FIGURES

Figure

1. Geometry of the Problem 4
2. Graphical Solution for the Lossless Case 10
3. Typical Directions of Components of the Vector Propagation Constant 17
4. Illustration of the Possibility of an Erroneous Derivative Approximation Sign 23
5. z-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ 34
6. z-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ (Continued) 35
7. x-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ 37
8. Wavelength Ratio for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ 38
9. z-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=4.24$ 39
10. x-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=4.24$ 40
11. Wavelength Ratio for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=4.24$ 41
12. z-direction Attenuation for the $T M \circ$ Mode and $\varepsilon_{r 2}{ }^{\prime}=8.28$ 43
13. x-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=8.28$ 44
14. Wavelength Ratio for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=8.28$ 45
15. z-direction Attenuation for the $T M \circ$ Mode and $\varepsilon_{r 2}{ }^{\prime}=165$ 46
16. z-direction Attenuation for the $T M o$ Mode and $\varepsilon_{r 2}{ }^{\prime}=165$ (Continued) 47
17. x-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=165$ 48
18. Wavelength Ratio for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=165$ 49
19. Root Paths in the Complex U Plane for the $T M o$ and $T M_{1}$ Modes 52
20. z-direction Attenuation for the $T M_{1}$ Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ 54
21. θ_{β} for the $T M_{o}, T M_{1}$ Modes and $\varepsilon_{r 2}{ }^{\prime}=2$ 55
22. θ_{β} for the $T M_{2}$ Leaky Wave Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ 57
FigurePage
23. z-direction Attenuation for the TM_{2} Surface Wave Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ 59
24. x-direction Attenuation for the TM_{2} Surface Wave Mode and

$$
\varepsilon_{r 2}{ }^{\prime}=2
$$ 60

25. Wavelength Ratio for the TM_{2} Surface Wave Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ 61

CHAPTER I

INTRODUCTION

1.1 Statement of the problem. During the past seventy years, considerable interest has been exhibited in surface and leaky waves. Antennas utilizing surface waves and leaky waves have narrow beamwidth and can easily be scanned electronically; a large quantity of literature has appeared concerning the design and characteristics of such antennas. A rather extensive bibliography of articles published prior to 1961 is given by Zucker [1961]. There are cases of interest in which surface waves may be present but are not desirable. For example, radio frequency interference (RFI) is propagated along electric power lines by a surface wave; at microwave frequencies and above, the use of dielectric substrates with dimensions comparable to a wavelength makes the excitation of surface waves very likely. It appears that the introduction of losses should produce attenuation and thus help to eliminate such waves. Little information appears, however, concerning the lossy case for a thick dielectric coating. Goubau [1950] and Collin [1960] treat low loss cylindrical conductor cases; Barlow and Cullen [1953] and Johnson [1966] treat the thin planar slab lossy case.

It is the purpose of this research to present data from a computer aided numerical analysis to demonstrate the effect of lossy materials upon the propagation of surface waves over thick dielectric slabs. An ideal planar case is treated in which it is assumed that the structure considered is infinitely wide, that the source and other discontinuities are sufficiently
removed from the region under consideration that no reflected waves are present, and that the system is in the steady state, the source having an $\exp (j \omega t)$ time dependence. Only TM modes having no field variation along the width of the structure are considered. The materials are allowed to be lossy, but are assumed to be linear, homogeneous, isotropic, and timeinvariant.

The dielectric slab is coated onto the surface of a perfect conductor. It can be shown that the use of a good but not perfect conductor has a negligible effect. If it is desired to consider the conductor losses a perturbational analysis should be entirely satisfactory. The assumption that there is no reflection in the lengthwise or axial direction is taken merely for convenience since the case having reflection can be handled with the reflectionless fields and the usual transmission-reflection techniques. The least realistic assumption is likely to be the assumption that the slab is of infinite width, which is equivalent to the assumption of no reflection from discontinuities at the edges of a finite slab or that the region under consideration is sufficiently removed from the discontinuities that losses eliminate the reflected wave. Techniques for reducing the reflection at the edges of a finite slab are described by Zucker [1961]. The consideration of a finite slab width would make the problem a rather formidable boundary value problem.
1.2 Discussion of the terms "Surface Wave" and "Leaky Wave." It is convenient to first describe surface and leaky waves for the lossless case. At a boundary between two different media there must result reflection and transmission of any electromagnetic wave which is present. The surface wave in this lossless case is totally reflected at the boundary so that the field in the less dense medium is an evanescent field and the field in the more
dense medium exhibits a standing wave behavior. The direction of propagation is parallel to the interface. There is no energy propagating into the less dense medium from the more dense medium or vice-versa. The wave is unattenuated in the direction of propagation but decays exponentially with increasing distance from the interface in the less dense medium.

The leaky wave is one having no real critical angle so that the wave cannot be totally reflected at the interface. Instead energy now passes from the more dense medium to the less dense medium, and as a result the amplitude of the wave decreases along the interface. The wave in the less dense medium is still an evanescent wave although the direction of propagation is tilted into the less dense medium. The amplitude of the wave increases without bound as the distance into the less dense medium increases; though this is not a physically meaningful wave in this ideal case, the increasing amplitude is caused by an energy source infinitely removed from the region under consideration. Such a source is not present in physically real situations; the resulting fields from the physically real source are known to be described reasonably well by the ideal model at reasonable distances from the interface.

Qualitatively speaking, the presence of losses modifies the direction of propagation in such a direction as to support the losses. If the less dense region is lossy the wave in that region will not be evanescent. The wave will not be totally reflected at the interface except possibly for certain relations between the complex permittivities and permeabilities of the two media. In any lossy case, both the surface wave and the leaky wave must diminish in amplitude as the wave propagates along the interface. The distinction between a surface wave and a leaky wave in a lossy case is in the direction of attenuation.

CHAPTER II

THE CHARACTERISTIC EQUATION

2.1 Derivation of Equations. Consider the geometry of Figure 1, showing the dielectric slab and the perfect conductor to which the slab is attached, and the orientation of the cartesian coordinate axes. The y-axis is directed out of the page; the slab and conductor are infinite in extent in the y-direction and in the z-direction. The slab thickness is t, with the conductor-slab interface in the $y-z$ plane. Both the dielectric slab

Figure 1. Geometry of the Problem.
and the surrounding medium are linear, homogeneous, isotropic and timeinvariant; thus $\mu_{1}, \mu_{2}, \varepsilon_{1}$, and ε_{2} are scalar complex constants. It is assumed that $\mu_{2} \varepsilon_{2}>\mu_{1} \varepsilon_{1}$ and $\varepsilon_{2}>\varepsilon_{1}$.

The losses appear in the permittivity and permeability with the following notation:

$$
\begin{aligned}
& \varepsilon=\varepsilon_{r} \varepsilon_{0}=\varepsilon_{0}\left(\varepsilon_{r}^{\prime}-j \varepsilon_{r}^{\prime \prime}\right) \\
& \mu=\mu_{r} \mu_{0}=\mu_{0}\left(\mu_{r}^{\prime}-j \mu_{r}^{\prime \prime}\right)
\end{aligned}
$$

In these expressions ε and μ are the permittivity and permeability of the material while the zero subscripts denote the free space values. $\varepsilon_{r}{ }^{\prime}$ is the relative $A C$ capacitivity or dielectric constant while ε_{r} " is the relative dielectric loss factor. Similarly $\mu_{r}{ }^{\prime}$ is the relative AC inductivity and ${ }^{\mu}{ }_{r}$ " is the relative magnetic loss factor.

In writing the field quantities the conventions employed by Harrington [1961] will be used. The time variation $e^{j \omega t}$ is suppressed. Since only the sinusoidal steady state is considered, there is no requirement to consider the actual instantaneous values. As used in this thesis the vector magnetic potential \vec{A} will be defined by the relations

$$
\begin{align*}
\vec{H} & =\nabla \times \vec{A} \tag{2.1.1}\\
-j \omega \varepsilon \Phi & =\nabla \cdot \vec{A} \tag{2.1.2}
\end{align*}
$$

where Φ is a scalar electrical potential. This choice causes \vec{A} to satisfy the well-known Helmholtz equation. Subscripts 1 and 2 will be used to identify the field quantities in the surrounding medium and in the dielectric slab respectively.

Before beginning the derivation of the characteristic equation, an outline of the procedure used will be presented. An elementary plane wave function for each of the two homogeneous regions $0 \leq x \leq t, t \leq x$ will be assumed. These functions will be used for the vector magnetic potential.

The resulting field components will be calculated from Maxwell's equations, and boundary conditions will be matched at $x=t$. Finally, two additional necessary relations will be obtained from the separation equation.

It is assumed that the vector magnetic potential is given by the expressions

$$
\begin{array}{ll}
\vec{A}_{2}=c_{2} \sin (u x) e^{-j k} z^{z} \vec{a}_{z} & 0 \leq x \leq t \\
\vec{A}_{1}=c_{1} e^{-v x-j k} e^{z} \vec{a}_{z} & t \leq x \\
\vec{A}=0 & x \leq 0 \tag{2.1.5}
\end{array}
$$

where C_{1} and C_{2} are undetermined coefficients. Thus in the dielectric the x-component of the propagation constant is u, while in the surrounding medium it is $j v$. The z-component of the propagation constant is k_{z} in both regions as is required by Snell's Law. The fields are zero beneath the surface of the perfect conductor; it is immaterial how thick this conductor is or what lies below it, as any $-x$ traveling wave is totally reflected at the surface in this ideal case. \vec{H} is calculated from equation 2.1.1:

$$
\begin{align*}
& \vec{H}_{2}=\nabla x \vec{A}_{2}=-u C_{2} \cos (u x) e^{-j k_{z} z^{2}} \vec{a}_{y} \tag{2.1.6}\\
& \vec{H}_{1}=\nabla x \vec{A}_{1}=v C_{1} e^{-v x} e^{-j k_{z} z} \vec{a}_{y} \tag{2.1.7}
\end{align*}
$$

\vec{E} is calculated from Maxwell's equations for this source-free case:
$\vec{E}_{2}=\frac{1}{y_{2}} \nabla x \vec{H}_{2}=-\frac{u k_{z}}{\omega \varepsilon_{2}} c_{2} \cos (u x) e^{-j k_{z} z} \vec{a}_{x}+\frac{u^{2}}{j \omega \varepsilon_{2}} C_{2} \sin (u x) e^{-j k_{z} z} \vec{a}_{z}$
$\vec{E}_{1}=\frac{1}{y_{1}} \nabla x \vec{H}_{1}=\frac{v k_{z}}{\omega \varepsilon_{1}} C_{1} e^{-v x} e^{-j k_{z} z_{2}} \vec{a}_{x}-\frac{v^{2}}{j \omega \varepsilon} C_{1} e^{-v x} e^{-j k_{z} z} \vec{a}_{z}$.

At $x=t$, the tangential components of both \vec{E} and \vec{H} must be continuous; continuity of E_{z} requires that

$$
\begin{equation*}
\frac{C_{2}}{\varepsilon_{2}} u^{2} \sin (u t)=-\frac{C_{1}}{\varepsilon_{1}} v^{2} e^{-v t} \tag{2.1.10}
\end{equation*}
$$

while continuity of H_{y} requires that

$$
\begin{equation*}
-c_{2} u \cos (u t)=C_{1} v e^{-v t} \tag{2.1.11}
\end{equation*}
$$

The continuity of normal electric flux leads to 2.1 .11 also, so it imposes no additional constraints. The necessary boundary condition of zero tangential component of \vec{E} at the conductor surface is satisfied by $E_{z 2}$. Taking the ratio of 2.1.10 to 2.1 .11 to eliminate C_{1} and C_{2}, we have

$$
\frac{u}{\varepsilon_{2}} \tan (u t)=\frac{v}{\varepsilon_{1}}
$$

it is convenient to rearrange this to yield

$$
\begin{equation*}
v t=\frac{1}{\varepsilon_{r}} u t \tan (u t) \tag{2.1.12}
\end{equation*}
$$

In equation 2.1.12 the relative permittivity between the two media has been defined as

$$
\varepsilon_{r}=\varepsilon_{2} / \varepsilon_{1} .
$$

Equation 2.1.12 is the characteristic equation relating u and v.

Another equation relating u and v is necessary in order to obtain a solution. The Helmholtz equation is a direct consequence of Maxwell's equations, and it has been separated in the cartesian coordinate system, yielding the separation equation

$$
\begin{equation*}
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=k^{2} \tag{2.1.13}
\end{equation*}
$$

where k is the propagation constant or wave number of the medium and k_{x}, k_{y}, and k_{z} are the components of the vector propagation constant of the wave. In the case considered here, k_{y} is zero in both regions, k_{z} is the z-component in both regions, $j v$ is the x-component in the surrounding medium, and u is the x-component in the dielectric. Therefore the application of 2.1 .13 to each medium yields the two equations

$$
\begin{array}{r}
u^{2}+k_{z}^{2}=k_{2}^{2}=\omega^{2} \mu_{2} \varepsilon_{2} \\
(j v)^{2}+k_{z}^{2}=k_{1}^{2}=\omega^{2} \mu_{1} \varepsilon_{1} \tag{2.1.15}
\end{array}
$$

containing the three unknowns u, v, and $k_{z} \cdot k_{z}$ can be eliminated by subtraction of 2.1 .15 from 2.1 .14 to yield

$$
\begin{equation*}
u^{2}+v^{2}=\omega^{2}\left(\mu_{2} \varepsilon_{2}-\mu_{1} \varepsilon_{1}\right) \tag{2.1.16}
\end{equation*}
$$

It is convenient to re-write this as

$$
\begin{equation*}
(u t)^{2}+(v t)^{2}=\left(2 \pi\left[\frac{t}{\lambda_{0}}\right] \sqrt{\mu_{r 2^{\varepsilon} r 2}-\mu_{r 1}{ }^{\varepsilon} r 1}\right)^{2} \tag{2.1.17}
\end{equation*}
$$

where $\lambda 0$ is the free-space wavelength of the wave, and $\mu_{r l},{ }_{\mu_{r 2}},{ }^{\varepsilon}{ }_{r 1},{ }^{\varepsilon}{ }_{r 2}$ are the various permeabilities and permittivities normalized to the free space
values. The unknown v may be eliminated from equations 2.1.12 and 2.1.17 to yield

$$
\begin{equation*}
(u t)^{2}+\frac{1}{\varepsilon_{r}{ }^{2}}(u t)^{2} \tan ^{2}(u t)=\left(2 \pi\left[\frac{t}{\lambda_{0}}\right] \sqrt{\mu_{r 2^{\varepsilon}} \varepsilon^{2}-\mu_{r 1} \varepsilon_{r 1}}\right)^{2} . \tag{2.1.18}
\end{equation*}
$$

This is a non-linear, transcendental equation with coefficients which are in general complex. This is the equation which will be solved to obtain u.
2.2 Graphical Analysis of Real Roots in the Lossless Case. For the lossless case, the parameters of the surface wave modes can be obtained from a graphical solution. Since $\varepsilon_{r l}, \varepsilon_{r 2}, \mu_{r l}$, and $\mu_{r 2}$ are real for the lossless case, and k_{z} and v must be real for a surface wave mode in the lossless case, u is also real. This is shown by considering Equations 2.1.14 and 2.1.15. When u and v are real they represent only two unknowns whereas they would represent four unknowns in the complex case. Two simultaneous equations in two unknowns can be solved by graphing the two relationships and finding the points of intersection as is commonly known. Equations 2.1.12 and 2.1.17 are well-suited for this purpose; Equation 2.1.17 is recognized as a circle in the ut-vt plane, while Equation 2.1.12 has the general features of a tangent function.

Figure 2 demonstrates the graphical solution for $\varepsilon_{r 2}=2.0, \varepsilon_{r 1}=1.0$, $\mu_{r 2}=\mu_{r 1}=1.0$, and several values of t / λ_{0}. The radius of the circle is $2\left(t / \lambda_{0}\right) \pi$ for this set of parameters. Modes (solutions to 2.1.18) are numbered in order of increasing ut for the lossless case. The same mode number is retained as losses are added. The TMo mode refers to the real intersection of the circle and the quasi-tangent function in the interval $0 \leq u t<\pi / 2$. This mode always propagates as a surface wave regardless of how thin the slab is. Higher order modes may represent surface waves, leaky

Figure 2. Graphical Solution for the Lossless Case.
waves, or non physical waves depending upon the radius of the circle and losses.

It is clear that there is either one or no real intersection of the two curves between any two successive integral multiples of $\pi / 2$ on the ut axis. In general, there will be exactly one real intersection, and hence one surface wave mode, having a value of ut between $k \pi / 2$ and $(k+1) \pi / 2$, where k, the mode number, is an even integer, provided that the circle radius is greater than or equal to $k \pi / 2$. All higher ordered surface wave modes have a definite cutoff frequency below which they become leaky wave modes. Cutoff for the $k^{\text {th }}$ mode occurs when the circle radius is equal to $k \pi / 2$.

Obviously there may also be intersections in the intervals $m \pi / 2 \leq u t \leq(m+1) \pi / 2$ where m is an odd integer if the radius of the circle is at least $m \pi / 2$. There may be either two distinct intersections or a point of tangency in an interval in which the radius of the circle lies; for the intervals such that $m \pi / 2 \leq u t \leq(m+1) \pi / 2$ and the circle radius is at least $(m+1) \pi / 2$ there will be exactly one distinct intersection. The value of v which results in these intervals is negative, so that the fields would increase in magnitude with increasing distance from the slab. There would not be any radiation from the slab. This describes neither a surface wave nor a leaky wave, so such modes will be regarded as non-physical.

Negative values of ut are not shown in Figure 2. It is apparent from Equations 2.1.12 through 2.1.18 that if u_{1} is a solution, $-u_{1}$ is also a solution resulting in the exact same values of v and k_{z}. Inspection of Equations 2.1.6 through 2.1 .11 shows that if u changes sign but v remains unchanged then either C_{1} or C_{2} must change sign. If C_{2} changes sign there is no difference between the fields resulting from u_{1} and $-u_{1}$. If C_{1} changes sign, all field components are reversed in direction; this corresponds to the
original field pattern viewed half a guide wavelength in either direction from the original point. Therefore, the consideration of negative values of u adds no new information and is unnecessary.

Considerable insight into the behavior of the propagation constants can be obtained with this graphical technique. In order to determine the behavior of k_{z}, Equations 2.1.14 and 2.1.15 are also necessary. These two equations are easily rearranged to show that $k_{1} \leq k_{z}<k_{2}$ for the cases discussed in this section, that is, cases in which u, v, and k_{z} are real.

Consider cases in which λ_{0}, the free space wavelength, is the only parameter allowed to vary in Figure 2. As λ_{0} is changed, only the radius of the circle changes. As λ_{0} decreases, t / λ_{0} increases and $u t$ and $v t$ increase. Therefore, u, v, and k_{z} all increase since t is fixed. For very large λ_{0}, so that the radius is small compared to $\pi / 2$, ut is approximately equal to the radius and vt is small. k_{z} tends toward its lower bound k_{1}. Relatively speaking, the wave will be loosely bound, and the wavelength close to λ_{1}. For very small $\lambda 0$, so that the circle radius is much greater than $\pi / 2$, ut is approximately $\pi / 2$ for the first mode, and the corresponding $v t$ is approximately the radius of the circle. k_{z} tends toward $i t s$ upper bound k_{2}. Again, relatively speaking, the wave will be tightly bound, and the wavelength close to λ_{2}.

The behavior of any higher propagating modes is obviously similar, ut being approximately the radius and vt being small for a case slightly away from the cutoff region, ut being near (slightly less than) an odd multiple of $\pi / 2$ and $v t$ being somewhat less than the radius for a very large value of radius.
2.3 Some Notes Concerning Solutions in More General Cases. No closed form solution of Equation 2.1.18 is known. The graphical technique of
section 2.2 is not useful when the solutions are complex since there are four unknowns rather than two. An iterative numerical procedure appears to be the most straightforward method of solution. In order to use this technique it is necessary to have a reasonable estimate of the solution to use as a starting value. In particular, it would be appropriate to be able to place bounds upon the value of u for a given mode.

As a first step in examining the complex case it is convenient to introduce the substitution $z=u t$; note that this variable z is not the coordinate value z, but another distinct variable. Equation 2.1.18 then becomes

$$
\begin{equation*}
z^{2}\left(1+\frac{1}{\varepsilon_{r}^{2}} \tan ^{2}(z)\right)=\left(2 \pi\left[\frac{t}{\lambda 0}\right] \sqrt{\mu_{r} 2^{\varepsilon} r 2-\mu_{r 1}{ }^{\varepsilon} r 1}\right)^{2} \tag{2.3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
z-2 \pi \varepsilon_{r}\left[\frac{t}{\lambda 0}\right] \sqrt{\frac{{ }_{\mu} 2^{\varepsilon} r 2^{-~}{ }^{\mu} r 1^{\varepsilon} r 1}{\varepsilon_{r}{ }^{2}+\tan ^{2}(z)}}=0 . \tag{2.3.2}
\end{equation*}
$$

If $f_{p}(z)$ is defined as

$$
\begin{equation*}
f_{1}(z)=z-2 \pi \varepsilon_{r}\left[\frac{t}{\lambda_{0}}\right] \sqrt{\frac{{ }^{{ }^{\mu} 2^{\varepsilon} r 2^{2}-\mu_{r 1} \varepsilon^{\varepsilon} r 1}}{\varepsilon_{r}^{2}+\tan ^{2}(z)}} \tag{2.3.3}
\end{equation*}
$$

the solutions desired are the zeros of $f_{p}(z)$. For convenient reference, equations $2.1 .12,2.1 .14$, and 2.1 .15 are also repeated here:

$$
\begin{align*}
& v t=\frac{1}{\varepsilon_{r}} z \tan (z) \tag{2.3.4}\\
& u^{2}+k_{z}^{2}=k_{2}^{2}=\omega^{2} \mu_{2} \varepsilon_{2} \tag{2.3.5}\\
& -v^{2}+k_{z}^{2}=k_{1}^{2}=\omega^{2} \mu_{1} \varepsilon_{1} \tag{2.3.6}
\end{align*}
$$

In obtaining equation 2.3.2 from equation 2.3.1 at least one root has been ignored as a consequence of the convention that the radical sign indicates the root with the non-negative real part, or the root with the positive imaginary part if both roots are purely imaginary. This does not detract from the generality of the resulting solution as has been discussed in section 2.2; i.e., while solutions with negative real parts are distinct mathematical solutions, they are not distinct physical solutions. Having restricted the choice of z (and hence u) a single unique value of v is thus determined by equation 2.3.4; therefore one of the values which results from equation 2.3.6 is extraneous. k_{z}, however, is not so restricted mathematically; the two values $k_{z}= \pm \sqrt{k_{2}^{2}-u^{2}}$ are both valid physically. Clearly, the significance of the existence of two values is that propagation may occur in either the $+z$ or the $-z$ direction, or both (when there is reflection, say). Since the features of the two waves are identical except for the direction of propagation it will be sufficient to examine only the $+z$ propagating solution in this research; if the more general case must be considered the appropriate change of signs may be used to describe the oppositely traveling wave.

Consider now the meaning of the signs of the three propagation constants u, v, and k_{z}. As the wave inside the dielectric slab is a standing wave, the signs of the real and imaginary parts of u (and $z=u t$) do not have any physical significance. The signs of the real and imaginary parts of v and k_{z} determine the direction of propagation and the direction of attenuation as indicated in table 1. For a surface wave traveling in the $+z$ direction, it is required that k_{z} lie in the fourth quadrant of the complex k_{z} plane, and that v lie in the right half of the complex v plane. For a leaky wave mode
k_{z} must still lie in the fourth quadrant, but v must lie in the left half of the complex v plane.

TABLE 1

SIGNIFICANCE OF ALGEBRAIC SIGNS OF v AND k_{z}.

positive

phase trave	$\operatorname{Re}\left[k_{z}\right]$	in +z direction	in -z direction
attenuation	$\operatorname{Im}\left[k_{z}\right]$	in -z direction	in +z direction
attenuation	$\operatorname{Re}[v]$	in +x direction	in -x direction
phase trave1	$\operatorname{Im}[v]$	in +x direction	in -x direction

It is now informative to consider the vector propagation constant. As defined by Harrington [1961] the vector propagation constant $\vec{\gamma}=\vec{\alpha}+j \vec{\beta}$ represents a wave having equiphase surfaces normal to $\vec{\beta}$ and equiamplitude surfaces normal to $\vec{\alpha}$. In this research $\vec{\alpha}$ and $\vec{\beta}$ in region 1 are given by the expressions

$$
\begin{align*}
& \vec{\alpha}=v^{\prime} \vec{a}_{x}-k_{z}^{\prime \prime \vec{a}_{z}} \tag{2.3.7}\\
& \vec{\beta}=v^{\prime \prime} \vec{a}_{x}+k_{z}^{\prime} \vec{a}_{z} \tag{2.3.8}
\end{align*}
$$

Since these vectors are independent of the coordinates (x, y, z) the wave in region 1 is a plane wave traveling in the $\vec{\beta}$ direction and attenuating in the $\vec{\alpha}$ direction. The wave in region 2 is a standing wave composed of two plane waves which are totally reflected at the perfect conductor and are reflected also at the interface between the two media. For a lossless surface wave total reflection occurs at the dielectric interface so that the wave in region 1 is an evanescent wave. Examination of the behavior of $\vec{\alpha}$ and $\vec{\beta}$ is
of some interest, particularly their directions. The angle θ_{β} between the \vec{B} and \vec{a}_{z} directions and the angle θ_{α} between the $\vec{\alpha}$ and \vec{a}_{z} directions are given by the expressions

$$
\begin{align*}
& \theta_{\beta}=\tan ^{-1}\left(v^{\prime \prime} / k_{z^{\prime}}^{\prime}\right) \tag{2.3.9}\\
& \theta_{\alpha}=\tan ^{-1}\left(v^{\prime} /\left(-k_{z}^{\prime \prime}\right)\right), \tag{2.3.10}
\end{align*}
$$

where the notation $\tan ^{-1}$ denotes the arctangent function. Figure 3 shows $\vec{\alpha}$, \vec{B}, θ_{α}, and θ_{β} for surface waves over lossy slabs and leaky waves. As mentioned earlier, the surface wave propagates into the lossy dielectric in the \vec{B} direction to account for the losses. Since $\vec{\alpha}$ and \vec{B} are orthogonal for region 1 lossless, and $\vec{\alpha}$ must be in or on the boundary of quadrant 1 , then \vec{B} will be in quadrant 4. A similar analysis for leaky waves shows that $\vec{\alpha}$ must lie in the fourth quadrant and \vec{B} in the first quadrant.

The surface wave modes of the lossless case, i.e., the real solutions, have already been considered. The leaky wave modes of the lossless case will now be considered. If, for a given even mode number, there is no real intersection of the circle and the quasi-tangent function, the corresponding root of 2.1.18 will be complex and describe a leaky wave mode. A straightforward examination of equations 2.3.5 and 2.3.7-10 shows for this case, that u and z lie in the first quadrant, k_{z} lies in the fourth quadrant, and v lies in the second quadrant (of their respective complex planes). Although the restriction of u to the first quadrant is informative, an entire quadrant is still a rather large region to scan for a particular root. It seems intuitively obvious that a given leaky wave mode solution must lie in a relatively small region as in the case of a given surface wave mode; however,

Surface Wave Over Lossy Dielectric

Leaky Wave

Figure 3. Typical Directions of Components of the Vector Propagation Constant.
no mathematical description of such a region has been determined by the author. This region is obviously a subset of the set $[z \mid \operatorname{Re}(z \tan (z))<0]$. Similarly, it is extremely difficult to define the permissible region for the lossy surface wave case and the lossy leaky wave case, as the complex relative permeability between the two materials also enters into the determination of the sign of $\operatorname{Re}[v]$.

It is interesting to note that, in the lossless leaky wave case, if z, v, and k_{z} satisfy the equations 2.3.3 to 2.3.6, then their conjugate values z^{*}, v^{*}, and k_{z}^{*} also satisfy those equations, though the conjugate values describe a wave which is not physically meaningful. Using the first term of the Taylor series expansion of $\tan (z)$ in Equation 2.3.1, it is apparent that the lossless surface wave mode solutions are at least double roots, and one might expect the two roots to diverge and proceed along approximately conjugate paths as losses are added.

Another interesting and relevant matter is the behavior of $\tan (z)$ for arguments even moderately removed from the real axis. For $b=\pi, \tanh (b) \simeq$ $0.99595 ;$ for $b=2 \pi, \tanh (b) \simeq 0.99999 ; \tanh (b) \rightarrow 1$ monotonically as b increases from 0. Also, $\tanh (b)$ is an odd function. For $z=a+j b$,

$$
\tan (z)=\frac{\tan (a)+j \tanh (b)}{1-j \tan (a) \tanh (b)},
$$

so that for $\tanh (b) \simeq \pm 1, \tan (z) \simeq \pm j 1$. Under these conditions, $f_{p}(z)$ takes on the value

$$
f_{p}(z) \simeq z-2 \pi \varepsilon_{r}[t / \lambda 0] \sqrt{\frac{{ }_{r} 2^{\varepsilon} r^{2}-\mu_{r 1} l^{\varepsilon} r 1}{\varepsilon_{r}{ }^{2}-1}} .
$$

For the lossless case, then, the roots must clearly be "close" to the real axis, as $\left|f_{p}(z)\right|>c \simeq|\operatorname{Im}[z]|$ for z sufficiently removed from the real axis.

This is significant information for use with a numerical technique, as the region of search can be restricted to the vicinity of the real axis.

CHAPTER III

THE COMPUTER PROGRAM AND NUMERICAL TECHNIQUES

3.1 Development of the Program. The early efforts employed in this research utilized various rearrangements of Equation 2.1.18. Some of these mathematically equivalent rearrangements are:

$$
\begin{align*}
& z^{2}+\frac{1}{\varepsilon_{r}^{2}} z^{2} \tan ^{2}(z)-\left(2 \pi\left[t / \lambda_{0}\right] \sqrt{\mu_{r} 2^{\varepsilon} r 2^{-\mu_{r 1}{ }^{\varepsilon} r 1}}\right)^{2}=0 ; \tag{3.1.1}\\
& z-\sqrt{4 \pi^{2}\left[t / \lambda_{0}\right]^{2}\left(\varepsilon_{r 2^{\mu} r 2}-\varepsilon_{r} \eta^{\mu} r 1\right)-\frac{z^{2}}{\varepsilon_{r}^{2}} \tan ^{2}(z)}=0 ; \tag{3.1.2}
\end{align*}
$$

$z \tan (z)-\varepsilon_{r} \sqrt{4 \pi^{2}[t / \lambda 0]^{2}\left({ }_{r} 2^{\varepsilon} r 2-\mu_{r 1} \varepsilon_{r 1}\right)-z^{2}}=0$.

Unfortunately, such rearrangements are not equally useful with numerical techniques; whether or not a given iterative procedure converges to a valid result depends upon the expression iterated upon as well as the starting guess provided. The mathematical determination of whether or not a given expression is usuable in, say, linear iteration, is a problem of the same magnitude as the analytical solution of the original problem. It has been found to be more practical to experimentally rather than analytically test whether or not an expression is satisfactory.

Newton's method was the first technique attempted. In the earliest version the complex quantity was considered as a single variable, even
though it was realized that Newton's method is not generally valid for complex variables. Later efforts considered the problem in terms of two real variables. The algorithms used did not yield convergent solutions, so Newton's method was discarded.

The second technique attempted was linear iteration; the most satisfactory expression found for the iteration is

$$
\begin{equation*}
z=2 \pi \varepsilon_{r}[t / \lambda 0] \sqrt{\frac{\mu_{r} 2^{\varepsilon} r 2^{-\mu_{r}} 1^{\varepsilon} r 1}{\varepsilon_{r}^{2}+\tan ^{2}(z)}} . \tag{3.1.4}
\end{equation*}
$$

The basic problem with this technique is that it is not self-starting, i.e., the starting value must be quite close to the root or the procedure diverges. Also, it appears that the starting value must be in a certain direction in the complex z plane from the root, and this direction depends on all of the parameters of the case under consideration. Linear iteration was not completely abandoned, but temporarily put aside to allow investigation of other techniques.

A simple-minded form of steepest descent was next tried. In this approach, termed the "garbage can lid" approach, the error, or magnitude of the left hand side of an expression $f(z)=0$, is calculated at 24 points on a circle about some starting point z. The new point is the point on this circle having the smallest error associated with it. Once a minimum has been isolated, the circle radius is shortened and the procedure repeated until the minimum is located accurately. Hopefully, the minimum will be zero. This technique is very simple-minded, very reliable, and requires a relatively large number of iterations. It is not true steepest descent, and the ultimate accuracy is more limited by the number of points taken on the circle than by machine precision.

Steepest descent is, in general, a very attractive procedure, at least in theory. The method is widely known and documented in many texts, such as Kunz [1957]. A factor which is strongly in its favor is that it is simple to visualize. The unknowns must be real, as must the expression to be minimized. If the objective is the location of zeros, the error expression must be positive semidefinite; this requirement is easily met by using the magnitude or the square of the expression. As steepest descent is a minimizing procedure, extraneous results can be obtained if non-zero minima exist, and, possibly, if saddle points exist.

For true steepest descent it is necessary to proceed in the direction opposite the gradient; it is necessary, then, to calculate the partial derivatives of the error with respect to the unknowns, which unknowns are in this case the real and imaginary parts of z. In this particular case, the generation of analytic expressions for the derivatives is almost out of the question. The hand calculation of them is so tedious and lengthy as to be virtually impossible. An attempt to generate such expressions using PL/1 FORMAC resulted in expending two hours of System 360 computer time and obtaining expressions for both derivatives, each of which required approximately 350 cards. Therefore it was necessary to use central difference approximations for the derivatives. It is intuitively obvious that, provided the signs of the derivatives are calculated correctly, the procedure will converge, although the convergence rate may be very slow if there is a large error in the magnitude of the derivative approximations. Far from the root, or the minimum, the derivatives may be determined reasonably accurately. However, if the error is not smooth and well behaved in the vicinity of the minimum, the numerical calculation may result in an incorrect sign as
indicated in Figure 4. When finite difference derivative approximations are used, steps must be taken to deal with such cases as pictured in Figure 4, and with the possibility that the approximations may result in zero values when the gradient is not truly zero.

Figure 4. Illustration of the Possibility of an Erroneous Derivative Approximation Sign.
3.2 Final Version of the Basic Program. Linear iteration, steepest descent, and the garbage can lid procedure are all used in the final version of the program. The control section of the program, which performs such tasks as reading the input, choosing the starting guess for the unknown, and writing the output, is described in Section 3.3.

The basic program, an iteration loop, determines the value of the unknown Z, which is U*T as defined in Chapter 2. A flowchart of this iteration loop is included in Appendix A. The DO statement is indexed to allow
a maximum of 100 iterations through this main loop. Using linear iteration, a value ZCK (the left hand side of 3.1 .4) is obtained from the present value of Z (the starting value on the first pass), used in the right hand side of 3.1.4. The error expression is evaluated from Z and ZCK to obtain FERR and FCKERR respectively. If ZCK results in a smaller error than Z and ZCK is suitably close to Z so that the same root is being approached, Z and $Z C K$ are interchanged so that the better approximation to the root is used in the remainder of the pass.

The error is tested next; if it is small enough that the true root has been satisfactorily approximated, the iteration loop is exited. Otherwise, the central difference approximations to the partial derivatives, FPX and FPY, are calculated, the gradient DELF is constructed, and the magnitude of the gradient, DELMAG, is tested to be certain it is non-zero. If DELMAG is zero, control is passed to the garbage can lid section, since steepest descent will not improve the value of the unknown. If not, DELMAG is tested to be certain it is less than or equal to one, and DELF is scaled down to yield a magnitude of no more than unity if necessary. This is done to limit the maximum change in Z to a value which will prevent crossing the "ridge" between two minima. A new estimate of Z is obtained from an expression of the form

$$
Z=Z 0-D E L T A * D E L F
$$

where $Z 0$ is the present value of Z and DELTA is a small number which also limits the maximum change in Z.

If this steepest descent step reduces the error, the pass through the iteration loop is complete, and the next pass is begun. If the error is not reduced, the step distance DELTA is halved, the steepest descent step repeated, and the error checked again. The step distance may be halved
twenty-six times before steepest descent is abandoned. This results in a minimum step distance which is lost due to machine precision when DELTA and Z are within the usual limits of the program. Since it is possible that failure to find a smaller error may be due to an incorrect derivative approximation sign rather than to having located a minimum, the garbage can lid section is entered after steepest descent fails.

After calculating the error at each of twenty-four points on a circle about the present value of Z, the garbage can lid procedure obtains the minimum error of the set along with the corresponding value of Z and tests to see whether or not the error has been improved. If the error is reduced, the pass through the iteration loop is complete. If not, the circle radius is halved and so on as in the steepest descent portion of the loop. If this fails to find a smaller error, the iteration loop is exited.

Thus, there are three ways to leave the iteration loop: negligible error, inability to find a smaller error, and one hundred iterations completed without finding a minimum.

The IBM System 360 FORTRAN IV-G language does not accept complex arguments in the tangent function, so the function ZTAN was written to provide this feature. Another problem arises when the real part of the argument passed to ZTAN is too near an odd multiple of $\pi / 2$; the built in TAN function will terminate the job. To avoid this, ZTAN tests the real part and generates a large number within the range of the machine to use in place of the actual TAN value if the real part of the argument is near enough to result in job termination.

There are a number of statements in the basic program which are not described in the preceding description or in the flowchart of Appendix A
since they are not essential to the algorithm. The variable IERR is used to indicate whether or not the argument proximity to $\pi / 2$ problem occurred in ZTAN. FLAG is used to trace the flow through the loop; if FLAG is even, linear iteration did not improve the error, if odd, linear iteration did improve the error. If 0 or 1, steepest descent was used and the garbage can lid section was not; if 2 or 3 , the garbage can lid section was used and steepest descent was not; if 4 or 5 , both were used. IFORM determines the type of output format used; this will be described in Section 3.3.

3.3 The Monitor and Control Section of the Program. A flowchart of

 the monitor and control section is given in Appendix A. The program begins with a number of comment cards describing its purpose and use, followed by the non-executable statements. After the non-executable statements, the error function is defined by an arithmetic statement function. The expression used is$$
F(Z)=Z-E R * R A T * T W O P I * C S Q R T((K 2 S Q-K 1 S Q) /(E R * * 2+Z T A N(Z) * * 2)) .
$$

In this expression, $E R$ is the relative permittivity of region 2 relative to region 1, RAT is the ratio of the slab thickness to the free space wavelength, TWOPI $=2 . * 3.1415927$, and K2SQ and K1SQ are symbols standing for the product of the relative permittivity and relative permeability of regions 2 and 1 , respectively. Following this there are several replacement statements which initialize various switches and variables. A page of Hollerith output describing the output of the program is produced next. The entire set of data cards is read in next, each card being written on the printer for an echo check and on a disk file for re-reading. When end-of-file on the card read unit is encountered, the disk working unit is rewound; the data reading loop is then begun.

In this data reading loop, a record is read from the disk working unit. The format of this READ statement calls for two 4-character alphameric fields and three 10 character floating point numeric fields. The two alphameric fields are received by the variable INVARI, which is compared with alphameric character strings stored in the array LABEL. When a match is found, the values in the numeric fields are assigned to the appropriate variables. For example, if the title on the data card is 'FREQ ', the variable FGHZ is assigned the value of VALUEA, the number in the first of the three numeric fields on the data card. After such a match is found and the appropriate value or values assigned to the appropriate variable or variables, another card is read from the disk working unit. The last card of the deck (the last FORTRAN data card) should be a card containing the character string 'STOP '; this card causes subroutine EXIT to be executed. If no match is found, the erroneous character string is printed out, followed by a description of the allowable card types and formats; then execution is terminated by the statement STOP.

The appearance of a card 'RUN ' causes the remainder of the program to be executed using the parameters in effect at that time; after such execution, another card is read.

Thus, the program may produce several sets of output with a minimum of input; if all that is to be changed between two sets of parameters during the same job is the relative permittivity of the dielectric (region 2), the data cards following the first run card (that is, the data cards for the second set of parameters) need only be 1) a card containing the title 'ER2P ' and the new value in the first numeric field, and 2) the second 'RUN ' card (followed by more data sets or the 'STOP ' card). For a reasonably detailed description of the allowable data cards, refer to the
comment cards in the program listing which is contained in Appendix B. Some of the cards, which serve only control functions such as do the 'RUN and 'STOP ' cards, contain only a title; others contain one or two numeric values. A notable exception is \$DATA, the array used to set the value of the loss component of permittivity or permeability during loss parameter sweeps: the cards to determine the values of the elements of \$DATA and the number of active elements are 1) a card containing the title '\$DATA ' and the number of active elements in the first numeric field, and 2) cards containing the values of the elements in 10F8.4 format. For the mode numbers, the integers should be even since the program is valid only for even mode numbers. Note that all the numeric values on the data cards are floating point, and that some are converted to integer values. The statement "GO TO $900^{\prime \prime}$ preceding statement 924 is the last statement of the data reading loop. The appearance of a 'RUN ' card causes control to be passed to statement 924. The parameters ER, KISQ, and K2SQ are calculated. Next the mode loop is entered; this is simply a DO loop having index parameters related to the lowest and highest mode numbers requested. The variable IM contains the present mode number throughout the mode loop.

Next the starting value of Z is determined. If a starting value has been given as input data, as indicated by the variable IZSW having a value of $1, Z$ is set equal to the given value; control is passed to statement 925 , bypassing the remainder of the starting value calculations. If IZSW is zero, the program calculates a starting value for Z by the following procedure: the radius of the circle (with reference to Figure 2) is calculated using the real parts of the relative permittivities and permeabilities. If the radius is greater than or equal to IM*PI/2, the mode is assumed to be a surface wave (propagating) mode and control is passed to statement 955. If
this radius condition is not met, the mode is assumed to be a leaky wave (cutoff) mode and Z is calculated according to the statement

$$
Z=(I M-1+0.1) * P I / 2+J * 0.5
$$

where J stands for the imaginary unit and PI = 3.1415927; control is passed to statement 925. At statement 955, the radius is tested to determine whether or not it is greater than or equal to (IM+1)*PI/2. If not, then it must be between $I M * P I / 2$ and (IM+1)*PI/2, so a starting value in this range is determined from the statement

$$
Z=0.9 * R A D I U S+0.1 * I M * P I / 2 ;
$$

control is transferred to statement 925. If the test expression is true, control is transferred to statement 960 where Z is calculated from the expression

$$
Z=(I M+0.9) * P I / 2
$$

Statement 925 follows statement 960.
NPASS is a variable indicating the number of times the iteration loop has been executed. IELEC and IMAG are, respectively, indices which determine which element of \$DATA is used during electric and magnetic sweeps for ER2PP or MUR2PP, the loss components of the relative permittivity and relative permeability of region 2. IESW determines whether or not an electric sweep is requested, while IMSW performs the same function for magnetic sweeps. If both sweeps are requested, the electric sweep will be performed first. After the appropriate parameters have been modified, the iteration loop is entered. The value of Z having thus been determined, $U, V, K Z$, LRAT, ATTX, and ATTZ are calculated. U is the x-directed component of the propagation constant in region $2, V$ is the x-directed component of the propagation in region $1, K Z$ is the z-directed component of the propagation
constant in both regions, ATTX is the attenuation in the x-direction in region 1, and ATTZ is the attenuation in the z-direction; all these parameters are in nepers per free-space wavelength except ATTX and ATTZ, which are in decibels per free-space wavelength. LRAT is the ratio of the freespace wavelength to the guide wavelength. The output is written next. The format of the output is determined by the variable IFORM. IFORM $=0$ produces an output tracing the value of Z, the error, and the derivatives through the iterations and allows messages warning of the use of the approximation within ZTAN to be printed. This output is suitable for checking the proper operation of the program. IFORM $=1$ produces a tabular output of the results only, giving no indication of the magnitude of the error, the number of iterations, or other such information. After producing the output for a pass, NPASS is checked; on the first pass, Z is stored in ZSTART for use in the magnetic sweep, should one be requested. IELEC and IMAG are checked next; if one of the sweeps is finished, the appropriate parameter ER2PP or MUR2PP is reset to zero. If an electric sweep is in progress but incomplete, IELEC is incremented and the next pass performed; similarly for a magnetic sweep IMAG is incremented. After completing the sweeps or the single pass if no sweeps are requested, the process is repeated for the next mode. When the mode loop is satisfied, control is passed to the READ statement number 900 to begin the input reading loop again.
3.4 Comments on Programming. The emphasis in this program has been placed strictly upon convenience to the programmer, with no attention paid to the execution time. For this reason, the symbol J was defined to be the complex constant (0., 1.); complex expressions were then written in the form $A+J * B$. This requires the conversion of A and B to complex mode, a complex
multiplication, and a complex addition. The same result can be obtained by the use of the in-line built-in function $\operatorname{CMPLX}(A, B)$ with a very considerable reduction in execution time. Should the program be used for further research into a large number of cases, it would be highly appropriate to replace the statements using J with statements referencing $\operatorname{CMPLX}(A, B)$.

There are several peculiarities in the program which deserve discussion. The most important of these is the starting value used for Z and its relation to the mode number to which the result corresponds. For the lossless surface wave case, the value of Z is real and clearly bounded between $I M * P I / 2$ and $(I M+1) * P I / 2$. Thus, a starting value between these bounds is virtually certain to yield the desired result. For the other cases, the root cannot easily be bounded, so that a simple expression for a suitable starting value has not been determined. It is quite possible that, from a given starting value, the algorithm may converge to a root corresponding to a different mode than that which the programmer specified. It is necessary for the programmer to determine whether or not the root does correspond, and if necessary, to insert an appropriate starting value by means of a data card.

The Cutoff modes are particularly troublesome in this respect. Since, in the lossless case, the error is an even function of the imaginary part of Z, a real starting value must not be used, as the algorithm in this event will converge to a non-zero minimum on the real Z axis. For severely cutoff modes (RADIUS << IM*PI/2), the root may be so near an odd multiple of $\pi / 2$ that it is necessary to specify a small value of DELTAO to prevent the algorithm from allowing Z to jump over a "wall" in the error space.

When the sweep feature is used and the first case is a lossless surface wave case, the mode uncertainty problem is not likely to occur. That is,
the expressions used to calculate a starting value of Z generate a value in the proper interval. The program keeps the last root value as the starting value for the following case during a sweep, so appealing to some notion of continuity, the correct roots should be obtained as the losses are increased if the increments of the swept variable are not too large. For lossless cutoff cases in which the degree of cutoff is not too severe, the built-in determination of the starting value should be satisfactory.

The garbage can lid section was included in order to cope with the problem of a calculated gradient of zero when in fact the value of Z was not sufficiently close to a zero of the error. It was necessary to iterate until the root was accurate to $7+$ significant digits in order to obtain suitably accurate values of $K Z$ and V. This may in part be due to the calculation of $K Z$ from the expression

$$
K Z=\operatorname{CSQRT}(4 . * P I * P I *(M U R 2 P-J * M U R 2 P P) *(E R 2 P-J * E R 2 P P)-U * * 2)
$$

which results in taking the difference of nearly equal imaginary parts for lossy cases. Later versions of the program used the expression

$$
K Z=\operatorname{CSQRT}(4 . * P I * P I *(M U R 1 P-J * M U R 1 P P) *(E R 1 P-J * E R 1 P P)+V * * 2)
$$

which gives improved accuracy particularly when region 1 is lossless. It is still necessary to obtain the maximum single precision accuracy in the root for large relative permittivity cases.

CHAPTER IV

INTERPRETATION OF DATA

4.1 Behavior of TMo Surface Wave Modes. The TMo mode always propagates as a surface wave and is the dominant mode. It is probably the most interesting mode for practical purposes.

The results from the computer analysis for the TMo mode are presented in graphical form in Figures 5 through 18; reproductions of the computer output are contained in Appendix C. Figures 5 and 6 show the z-direction attenuation as a function of $\varepsilon_{r 2}$ " for $\varepsilon_{r 2}{ }^{\prime}=2$ and values of (t / λ_{0}) from .005 to . 50 .

The same results may be obtained in closed form for $t / \lambda o<.05$ or so by approximating $\tan (u t)$ by (ut) in Equation 2.1.18 and solving the resulting quartic for u. This has been done for the low loss case by Barlow and Cullen [1953] and Johnson [1966]. As might be expected, this approximation gives a significant error at $t / \lambda_{0}=.10$ and does not predict the interesting results which occur between $t / \lambda_{0}=.10$ and $t / \lambda_{0}=.20$.

In general, the attenuation tends to increase as $t / \lambda 0$ increases up to $t / \lambda_{0}=.10$. For $t / \lambda_{0}=.18$ and below the curves exhibit a tendency to turn downward at high losses while for $t / \lambda 0=.19$ and above the curves exhibit a tendency to turn upward. In this transition region the curves break sharply, with the actual switch occurring between $t / \lambda_{0}=.18$ and $t / \lambda_{0}=.19$, and at an ${ }^{\varepsilon} r 2$ " of approximately 2. As the ratio increases from .10 to .75 the curves indicate that for small $\varepsilon_{r 2}$ " the attenuation increases as $t / \lambda o$ increases but

Figure 5. z-direction Attenuation for the $T M \circ$ Mode and $\varepsilon_{r 2}{ }^{\prime}=2$.

Figure 6. z-direction Attenuation for the $T M \circ$ Mode and $\varepsilon_{r 2}{ }^{\prime}=2$ (Continued).
for large $\varepsilon_{r 2}$ " the attenuation decreases as $t / \lambda 0$ increases. That is, comparing two curves, the curve for the larger ratio will be above the curve for the smaller ratio when $\varepsilon_{r 2}$ " is small but the curves will cross at some value of $\varepsilon_{r 2}$ " (in the vicinity of $\varepsilon_{r 2} "^{\prime \prime}=2$ for $t / \lambda 0 \geq$.19) and reverse relative positions for larger $\varepsilon_{r 2}$ " values. Obviously this is not true for a comparison of ratios of .18 and .19 , but it is true if the two values under consideration are both between . 10 and .18 or both greater than .19. For ratios greater than .50 , at which value the second mode becomes feasible as a surface wave, there is little change in the z-direction attenuation as t / λ_{0} is increased.

Figure 7 shows the x-direction attenuation for the same cases as in Figure 5. There is a great deal of similarity between these curves and the curves of z-direction attenuation; they are related through Equation 2.1.15, the separation equation in region 1. Since the attenuation involves the real part of v and the imaginary part of k_{z}, the relation is not easy to visualize from the formula. Some curves representative of the guide wavelength along the z axis are shown in Figure 8. In the lossless case, the guide wavelength is always shorter than the free space wavelength and hence the phase velocity is less than the speed of light in free space. As losses are inserted, the guide wavelength decreases slightly for very small t/io but for $t / \lambda o$ values in the transition range initially increases in a very pronounced fashion, peaks for $\varepsilon_{r 2} 2^{\prime \prime}$ near 2 as do the attenuation curves, and drops off for further increase in $\varepsilon_{r 2}$ ". In some cases the guide wavelength and phase velocity rise above their free-space values.

Figures 9, 10, and 11 for $\varepsilon_{r 2} 2^{\prime}=4.24$ correspond to Figures 5, 7, and 8 respectively; similarly the case for $\varepsilon_{r 2}{ }^{\prime}=8.28$ is presented in Figures

Figure 7. x-direction Attenuation for the $T M \circ$ Mode and $\varepsilon_{r 2}{ }^{\prime}=2$.

Figure 8. Wavelength Ratio for the $T M o$ Mode and $\varepsilon_{r 2}{ }^{\prime}=2$.

Figure 9. z-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=4.24$.

Figure 10. x-direction Attenuation for the $T M 0$ Mode and $\varepsilon_{r 2}{ }^{\prime}=4.24$.

Figure 11. Wavelength Ratio for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=4.24$.

12, 13, and 14, while the case for $\varepsilon_{r 2}{ }^{\prime}=165$ is presented in Figures 15, 16,17 , and 18. The features of these families of curves are essentially identical to those for $\varepsilon_{r 2}{ }^{\prime}=2$. Table 2 shows the approximate values of $\varepsilon_{r 2}$ " and $t / \lambda 0$ at which the transition occurs for each value of $\varepsilon_{r 2}{ }^{\prime}$.

TABLE 2

APPROXIMATE	$\varepsilon_{r 2}{ }^{\prime \prime}$	AND $t / \lambda 0$	TRANSITION VALUES	
$\varepsilon_{r 2} 2^{\prime}$	2	4.24	8.28	165
${ }^{\varepsilon_{r 2}} 2^{\prime \prime}$	2	3	4.1	18
t / λ_{0}	.18	.115	.083	.018

Roughly speaking, the following empirical relations among the transition values hold:

$$
\begin{align*}
& \varepsilon_{r 2^{\prime \prime}} \simeq \sqrt{2 \varepsilon_{r 2}{ }^{\prime}} \tag{ו.1.1}\\
& t / \lambda 0 \simeq .24 / \sqrt{\varepsilon_{r 2}}{ }^{\prime} . \tag{4.1.2}
\end{align*}
$$

Mathematically, it appears that the transition phenomenon is due to behavior of $\tan (z)$ for $\operatorname{Re}(z)$ near $\pi / 2$; at the transition, the value of $\operatorname{Re}(z)$ is between $.43 \pi$ and $.48 \pi$. Some further physical and mathematical insight as to the mechanism of transition will be gained in later paragraphs.

In section 2.3 it was noted that conjugate pair solutions occur for the lossless leaky wave case, and it was conjectured that approximately conjugate roots might exist in the lossy surface wave case. Such roots have been encountered. For cases in which region 1 is lossy, such roots may have physical significance; they have not been examined in this research.

Figure 12. z-direction Attenuation for the $T M \circ$ Mode and $\varepsilon_{r 2}{ }^{\prime}=8.28$.

Figure 13. x-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=8.28$.

Figure 14. Wavelength Ratio for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=8.28$.

Figure 15. z-direction Attenuation for the $T M o$ Mode and $\varepsilon_{r 2}{ }^{\prime}=165$.

Figure 16. z-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=165$ (Continued).

Figure 17. x-direction Attenuation for the TMo Mode and $\varepsilon_{r 2}{ }^{\prime}=165$.

Inspection of the computer output shows that, as losses are inserted, θ_{β} enters the fourth quadrant while θ_{α} enters the first quadrant. That is, the direction of propagation tilts so as to carry energy into the slab from without; one may hypothesize that this tilt occurs in order to overcome the losses of the dielectric. If region 1 is lossless, as is true in all cases considered in this research, the wave in region 1 is still an evanescent wave, that is $\vec{\alpha} \cdot \vec{\beta}=0$ or $\theta_{\alpha}=\theta_{\beta}+\pi / 2$; this is an immediate consequence of Equation 2.1.15. The angle of incidence is $\pi / 2+\theta_{\beta}=\theta_{\alpha}$. As might be expected from the data already presented, θ_{β} is zero in the lossless case, becoming more and more negative with the insertion of losses until the transition effect sets in (see Figure 21). For $t / \lambda 0$ less than the transition value, θ_{β} reaches a maximum negative excursion for some value of $\varepsilon_{r} 2^{\prime \prime}$ and then tends again to parallel incidence as losses are further increased. For $t / \lambda 0$ greater than the transition value θ_{β} appears to tend toward a constant which tends to $-\pi / 4$ as $t / \lambda o$ increases. This may be the best explanation of decreasing attenuation with increasing $\varepsilon_{r 2}$ ".

Though a small amount of research into the behavior of dielectrics having magnetic losses has been performed, sufficient data has not been collected to discuss the behavior of such cases. Their behavior can be expected to be slightly different since the ε_{r} term is not affected by magnetic losses.
4.2 The Behavior of the $T M$ Extraordinary Surface Wave Mode. When the transition effect was first encountered, it was suspected that there was some mathematical error in the program, such as an improper choice of sign preceding a square root. A hand check indicated, however, that the values obtained were indeed valid roots of Equation 2.1.18. The value of u (per
free space wavelength) was plotted for the various values of $t / \lambda 0 ; \varepsilon_{r 2}{ }^{\prime}=2$ was being investigated at the time in question. This plot is included as Figure 19. The curves for the TMo ordinary mode, i.e., those originating on the Real u axis, were the only ones plotted at this point in time. A run was made for $t / \lambda_{0}=.19$ and .20 for an initial $\varepsilon_{r 2}$ " of 2.2 using a ZSTART near the U*RAT value previously produced by $t / \lambda_{0}=.18$ with the intention of verifying that the value of u would indeed meander away from this starting value to the values previously obtained for $t / \lambda_{0}=.19$ and .20 . The DEBUG format option was specified to obtain visibility into the path of convergence and the error magnitude. The roots which were found, however, were not the same as before--they were quite near the u values for $t / \lambda_{0}=.18$. What a revolting development. The next logical step was to sweep $\varepsilon_{r 2}$ " down to 0 and up to 6 and plot these results in order to obtain further insight. This was done for ratios of .19 and $.20 ;$ also, for $t / \lambda 0=.18$ and the single point $\varepsilon_{r 2}{ }^{\prime \prime}=6, t / \lambda 0=.16$ solutions were anticipated corresponding to the ordinary mode behavior for $t / \lambda_{0}=.19$ and .20 . All these values were indeed found; indicative curves of u values for this extraordinary mode are shown in Figure 19.

The curves extending below $\operatorname{Re}(u)=8.75$ are those of the ordinary mode while those not extending below $\operatorname{Re}(u)=8.75$ correspond to the extraordinary mode. The boundary separating the ordinary and extraordinary modes has been empirically determined. Those having decreasing $\operatorname{Im}(u)$ at high $\varepsilon_{r 2}{ }^{\prime \prime}$ produce decreasing z-direction attenuation at high $\varepsilon_{r 2}$ " while those having increasing $\operatorname{Im}(u)$ at high $\varepsilon_{r 2}$ " produce increasing z-direction attenuation at high $\varepsilon_{r 2}$ ".

Since the DEBUG format option was used during this investigation, the computer output is too bulky to include. However, tabular output for the

Figure 19. Root Paths in the Complex U Plane for the $T M o$ and $T M_{1}$ Modes.
extraordinary mode with $\varepsilon_{r 2}{ }^{\prime}=165, t / \lambda 0=.02$ is included in Appendix C (the mode subscript is incorrect, if indeed it is meaningful).

It is now apparent that this extraordinary mode corresponds to a mode numbered TM_{1}. Such modes are not physically real in the lossless case where there is a real intersection of the $z \cdot \tan (z)$ curve with the circle of radius $2 \pi\left[t / \lambda_{0}\right] \sqrt{\left.\mu_{r 2}{ }^{\varepsilon} r 2-{ }^{\mu} r 1^{\varepsilon} r\right]} ; \vec{B}$ lies in the \vec{a}_{z} direction but $\vec{\alpha}$ lies in the $-\vec{a} x$ direction. Examination of the computer results shows that this TM_{1} mode has an $\vec{\alpha}$ lying in the third quadrant or on its boundary for low or zero losses, but as losses are increased $\vec{\alpha}$ passes through zero magnitude and enters the first quadrant; \vec{B} remains in the fourth quadrant in both cases. The zero magnitude of $\vec{\alpha}$ is easy to believe for the case shown in Appendix C but may be an erroneous conclusion for the general case. That is, from the requirement $k_{z}^{\prime} k_{z}^{\prime \prime}=v^{\prime} v^{\prime \prime}$, obtained from Equation 2.1.15 with k_{1} real, and the smooth transition of v^{\prime} through zero it is apparent that $k_{z}{ }^{\prime} k_{z}^{\prime \prime}$ passes through zero. $k_{z}{ }^{\prime \prime}$ changes sign; k_{z}^{\prime} does not change sign but may approach zero, possibly allowing $k_{z}{ }^{\prime \prime}$ to be discontinuous. A closer investigation of the region $1.4<\varepsilon_{r} 2^{\prime \prime}<1.6$ should be made for $\varepsilon_{r} 2^{\prime}=2, t / \lambda_{0}=.18$ and .19 .

The absolute value of the z-direction attenuation for the TM_{1} extraordinary mode is shown in Figure 20. The dotted sections are actually negative, the change in direction of $\vec{\alpha}$ occurring between $\varepsilon_{r 2} "=1.4$ and $\varepsilon_{r 2}{ }^{\prime \prime}=1.6$. The transition effect also appears in this mode. In fact, the extraordinary mode for $t / \lambda_{0} \geq .19$ continues the trend of the TMo surface wave mode for $t / \lambda 0 \leq .18$ and the extraordinary mode for $t / \lambda 0 \leq .18$ continues the trend of the $T M o$ wave mode for $t / \lambda 0 \geq .19$. Figure 21 shows this complementary relationship for the angle θ_{B}.
4.3 Behavior of the TM_{2} Leaky Wave Mode. For a circle having a radius less than π, the $T M_{2}$ mode is a cutoff mode giving rise to a leaky wave. \vec{B}

Figure 20. z-direction Attenuation for the $T M_{1}$ Mode and $\varepsilon_{r 2}{ }^{\prime}=2$.

Figure 21. θ_{β} for the $T M_{0}, T M_{1}$ Modes and $\varepsilon_{r 2}{ }^{\prime}=2$.
lies in the first quadrant and $\vec{\alpha}$ in the fourth quadrant when region 1 is lossless.

Some representative computer output is included in Appendix C. Only cases in which region 2 is a dielectric having $\varepsilon_{r 2}{ }^{\prime}=2$ with the magnetic properties of free space and region 1 has the properties of free space were investigated. The z-direction attenuation is not of as much interest here as in the surface wave cases, so it is not plotted. In general, z-direction attenuation increases with decreasing $t / \lambda 0$, i.e., a more severe degree of cutoff. θ_{β} is a much more interesting quantity. This angle, which might appropriately be termed the angle of departure or launch angle in the leaky wave cases, is plotted in Figure 22. θ_{β} increases as the degree of cutoff increases. For $t / \lambda_{0}=.49$ the z-direction attenuation and launch angle are very nearly zero for $\varepsilon_{r 2} "^{\prime \prime}=0$ since the degree of cutoff is very mild. There may be effects of interest occurring in the range . $10<t / \lambda 0<.30$ which are not shown as evidenced by the dissimilarity of the $t / \lambda_{0}=.20$ curve to the $t / \lambda_{0}=.10$ and .30 curves. The wave seems to be affected very little by losses in severely cutoff cases.

A few notes are necessary concerning the cases $t / \lambda_{0}=.49$ and $t / \lambda 0=.01$. For $\varepsilon_{r 2} \prime \prime=0$ and $t / \lambda 0=.49$ the computer oscillated between the proper solution and the conjugate solution, finally converging to the conjugate solution. This explains the sign discrepancy; format field width explains the 0.00000 value: the imaginary part of z is only $4.5 \mathrm{E}-10$, thus the two solutions are extremely close together. It is simply fortuitous that the error surface is usually inclined such as to lead the iteration routine to the proper solution; no planning or constraints forced it. Only the first line of output is valid for $t / \lambda_{0}=.01$; the degree of cutoff is extreme so that $\operatorname{Re}(z)$ is near $\pi / 2: 1.5710928$ versus 1.5707963 . This is an example of

Figure 22. θ_{β} for the $T M_{2}$ Leaky Wave Mode and $\varepsilon_{r 2}{ }^{\prime}=2$.
the increment magnitude problem mentioned in Section 3.4. At the time of this writing, attempts to obtain valid results for $t / \lambda_{0}=.01$ have been unsuccessful.

Some conjecture about the possibility of an extraordinary cutoff mode seems appropriate. The conjugate solution to the TM_{1} extraordinary mode could exhibit the characteristics of a leaky wave; referring to the TM_{1} extraordinary mode $\varepsilon_{r 2}{ }^{\prime}=165$ computer output in Appendix C, a conjugate solution would, at low losses, give rise to a \vec{B} in the first quadrant and an $\vec{\alpha}$ in the fourth quadrant.
4.4 Behavior of the $T M_{2}$ Surface Wave Mode. The case of $\varepsilon_{r 2}{ }^{\prime}=2$ was investigated for the TM_{2} surface wave mode, the properties of region 1 and the magnetic properties of region 2 being those of free space. The $z-d i r e c-$ tion attenuation, x-direction attenuation, and wavelength ratio are plotted in Figures 23, 24, and 25 respectively. The behavior of this mode is highly similar to that of the TMo mode. There are three notable differences: first, the value of t / λ_{0} at which the transition occurs is different; second, the value of $\varepsilon_{r 2}$ " at which the transition occurs is different; third, for high losses and t/גo less than the transition value the curves for various t/גo values are so close together that it is impossible to distinguish one from another.

One might anticipate a difference in the $T M \circ$ and $T M_{2}$ modes for circle radii near the cutoff value in each case since the $z \cdot \tan (z)$ curve has zero slope at $z=0$ but non-zero slope at $z=\pi$. Such a difference is not apparent, however. On the other hand, compare the region $0<\varepsilon_{r 2} 2^{\prime \prime}<2$ for the $T M_{2}$ with the region $0<\varepsilon_{r 2}{ }^{\prime \prime}<6$ for the TMo; the TMo might exhibit the same asymptotic behavior as the TM_{2} if $\varepsilon_{r 2}$ " were increased beyond 6 . This might be the manifestation of the slope difference.

Figure 23. z-direction Attenuation for the $T M_{2}$ Surface Wave Mode and $\varepsilon_{r 2}{ }^{\prime}=2$.

Figure 24. x-direction Attenuation for the $T M_{2}$ Surface Wave Mode and $\varepsilon_{r 2}{ }^{\prime}=2$.

Figure 25. Wavelength Ratio for the $T M_{2}$ Surface Wave Mode and $\varepsilon_{r 2}{ }^{\prime}=2$.
5.1 Summary. Chapter II begins with the derivation of the characteristic equation and the elimination of variables to obtain a single equation in one unknown. A graphical analysis of the real roots is presented; this graphical solution has been presented by several other authors [Collin, 1960; Harrington, 1961] and is not a significant contribution. Chapter II is concluded with a discussion of the location and nature of complex zeros of Equation 2.1.18.

Chapter III begins with a discussion of the numerical approaches with which early experiments were carried out. The final scheme of iteration, a combination of steepest descent and linear iteration, is described and the FORTRAN IV implementation explained. The remainder of the program is described in order that other researchers may understand the details of use of the program. The chapter is concluded with a discussion of problems and limitations within the program and recommendations for improving upon them.

Chapter IV presents the data compiled and its interpretation. The quantities of interest are the attenuation in directions parallel and normal to the slab (the z and x directions, respectively), the guide wavelength, and the tilt of the wave outside the slab. These quantities are functions of the properties of both regions and the thickness of the slab in relation to the free-space wavelength. Though the computer program was written to provide for more general properties, the electric and magnetic properties of the
region above the slab and the magnetic properties of the slab were chosen to be the properties of free space in all cases presented in this research.

The TMo mode, which is the dominant mode, shows the expected decrease in z-direction attenuation at high losses for small thicknesses. Another more interesting effect occurs as the thickness is increased; this is the sudden and drastic transition from decreasing to increasing attenuation at high losses. Comparison of families of curves for different $\varepsilon_{r 2}{ }^{\prime}$ values indicates that for small $t / \lambda 0$, the higher the $\varepsilon_{r 2}{ }^{\prime}$ the lower the attenuation while for large $t / \lambda 0$, the higher the $\varepsilon_{r 2}{ }^{\prime}$ the higher the attenuation. The case $\varepsilon_{r 2}^{\prime}=165$ does not fit this pattern; the transition effects sets in at a much lower value of $t / \lambda o$ than in the other cases. Empirically, the relationship between the parameters at which transition occurs is given by the expressions

$$
\begin{aligned}
& \varepsilon_{r 2} 2^{\prime \prime} \sqrt{2 \varepsilon_{r 2} 2^{\prime}} \\
& t / \lambda_{0} \simeq .24 / \sqrt{\varepsilon_{r 2} 2^{\prime}} .
\end{aligned}
$$

Except for t / λ_{0} values in the transition range, the attenuation in the x direction tends to increase slightly as losses are inserted and, as in the lossless case, tends to increase as $t / \lambda 0$ increases. That is, as losses are added, $\vec{\alpha}$ increases in magnitude, since both components increase. $\vec{\beta}$ tends to tilt into the slab as losses are added, the degree of tilt increasing with increasing losses except near the transition $t / \lambda o$ values.

The behavior of the wave for $t / \lambda o$ in the transition range changes drastically. For $t / \lambda 0$ slightly less than the transition value, the wave first tilts into the slab as losses are inserted, then tilts back toward parallel incidence at high losses. a increases at low losses but decreases
at high losses also. The picture is that of a sufficiently high loss slab reflecting most of the wave so that it is less tightly bound and less energy is dissipated in the slab. For $t / \lambda 0$ greater than the transition value, the wave tilts into the slab, reaches some limiting angle, and continues to plow into the slab at a nearly constant angle as losses increase further; $\vec{\alpha}$ tends to increase in magnitude. Here the picture is that the thicker slab prevents the angle of incidence from returning toward zero so that a great deal of energy is concentrated in the slab and dissipated making the wave tightly bound.

It was discovered that, for sufficiently high losses, the TM_{j}-numbered solution has the proper attributes to be a surface wave. The behavior of this extraordinary mode is concisely but completely described by saying that it is complementary to the TMo mode.

Suppose that a source is designed to excite surface waves on some structure, and that the value of t / λ_{0} is larger than the transition value but small enough that the $T M_{2}$ and higher modes are cut off. The load impedance which the source sees depends upon the \vec{E} and \vec{H} of each mode. The z directed wave impedance tends to be more and more reactive as ε, μ, v, and k_{z} become more nearly pure imaginary. One would expect, then, that the TM_{1} mode would carry most of the power in the structure, and that the TMo would be difficult to detect. As frequency is increased from a small t/גo through transition, one might expect a reasonably smooth transition from the $T M o$ mode to the $T M_{1}$ mode rather than an abrupt jump in attenuation.

The TM_{2} leaky wave mode does not appear to exhibit any particularly noteworthy characteristics. It is expected that a solution complementary to the TM_{2} leaky wave mode may arise from the extraordinary $T M_{1}$ mode.

The TM_{2} surface wave mode exhibits properties very similar to those of the TMo mode. The merging of the curves at high losses might also occur for the TMo mode at higher losses.
5.2 Recommendations for Further Study. The geometry shown in Figure 1 will also support $T E_{n}$ modes where n must be odd in the lossless case. The geometry having a mirror image half-slab and surrounding medium in place of the grounded conductor will support TE and TM modes having both even and odd subscripts. The separation equations are unchanged; the characteristic equations of the other three situations differ only by the appearance of μ_{r} in place of ε_{r} and/or the cotangent function in place of the tangent function [Harrington, 1961]. These geometries could be easily investigated with a minimum of simple changes in the program.

The cases involving losses both within and without the slab may be investigated with the present program. Such cases may well yield more possible zeros to be examined. $\vec{\alpha}$ and $\vec{\beta}$ are no longer orthogonal in this case; the angle between them can never exceed $\pi / 2$, however.

Magnetic materials are extremely useful in the microwave region and are usually rather lossy. Thus, magnetic cases may well be of interest. Unfortunately, most such applications capitalize upon the anisotropy of such materials when subjected to a dc bias, so that the permeability is a tensor. A tensor permeability cannot be used with the present program.

Cylindrical geometries may also be of interest. It has been proposed that a lossy dielectric coating be used upon power lines to eliminate the propagation of RFI by surface waves. If the results of the present research are indicative, such a scheme is not practical.

To the best of the author's knowledge, there has been no experimental verification of either the transition phenomenon of the existence of the

TM ${ }_{1}$ extraordinary mode. The technology of constructing such lossy materials is available or soon will be; anechoic materials are commercially available, intended for uses such as the elimination of undesired reflections in microwave measurements. It should thus be practical to perform such experimental research.

REFERENCES

Barlow, H. M. and Cullen, A. L. (1953). "Surface Waves". Proceedings of the IEEE, Vol. 100, Part III, No. 68, November

Collin, R. E. (1960). Field Theory of Guided Waves. New York: McGraw-Hill, 1960.

Goubau, Georg. (1950). "Surface Waves and Their Application to Transmission Lines". Journal of Applied Physics. Vol. 21, November, 1950, 1119-1128.

Harrington, R. F. (1961). Time-Harmonic Electromagnetic Fields. New York: McGraw-Hi11, 1961.

Johnson, G. L. (1966). Unpublished Research.
Kunz, K. S. (1957). Numerical Analysis. New York: McGraw-Hill, 1957.

Romanovskiy, V. A. (1967). "Spectrum of 'Outflowing' and 'Inflowing' waves for a Dielectric Slab". Telecommunications and Radio Engineering (translation of RadioTekhnika), VoT. 22, June 1967, 139-140.

Zucker, F. J. (1961). "Surface and Leaky Wave Antennas." Antenna Engineering Handbook, Chapter 16, Ed. H. Jasik. New York: McGraw-Hi11, 1961.

APPENDIX A

FLOWCHARTS

APPENDIX B

PROGRAM LISTING

The "\$JOB" card at the beginning of the listing and the statement numbers at the extreme left of some lines are included by the Waterloo FORTRAN (WATFOR) compiler and are not part of the FORTRAN card deck.

```
|Jし+
C
```

 JKC.NLN=CFLCK.TINE=?,PACH!=%C
    ```
```

 JKC.NLN=CFLCK.TINE=?,PACH!=%C
    ```


```

 SLHFACI ANE LSAKY MAV: İANSVFFEE NACNETIC \becauseLIIG
    ```
                        SLHFACI ANE LSAKY MAV: İANSVFFEE NACNETIC \becauseLIIG
                    CVLH A GHLLNLHL CILLECTFIC SLAH INFINITHLY LCNG.
                    CVLH A GHLLNLHL CILLECTFIC SLAH INFINITHLY LCNG.
                    IAFINITELY UILL, ANC I CENTINETEFS TFICK. WFIDRF
                    IAFINITELY UILL, ANC I CENTINETEFS TFICK. WFIDRF
                    RCTF THE CIFI.FCTマIC ELAF ANC SUHACLACING NFE゙ILN
```

 RCTF THE CIFI.FCTマIC ELAF ANC SUHACLACING NFE゙ILN
    ```


```

 LCTr.
    ```
                    LCTr.
                    FFCICN I: SLHFCLNDINC NECIUN, FAVING HFLGIIVL
                    FFCICN I: SLHFCLNDINC NECIUN, FAVING HFLGIIVL
                        HFMNIITIVITY,NI ANL HELATIVE&F&-
                        HFMNIITIVITY,NI ANL HELATIVE&F&-
                            Wな^ビILITY NLい!。
                            Wな^ビILITY NLい!。
        x=1
        x=1
            NICICN E: DIELECTAIICELAFH&VIACFFLATIVE:FFANITTIV-
            NICICN E: DIELECTAIICELAFH&VIACFFLATIVE:FFANITTIV-
                                    ITY &Hz ANI: MRLATIVF FLRNFAPILITY NUOR.
                                    ITY &Hz ANI: MRLATIVF FLRNFAPILITY NUOR.
    x=C
    x=C
            111111111111111111111111111111111111111111111111111111/1
            111111111111111111111111111111111111111111111111111111/1
                        FEFFFFCT CCNCLCTLF
                        FEFFFFCT CCNCLCTLF
    FIGURT INDICATING THF GHENETFY CF THE cilfFACE wAVEGUIDE.
    FIGURT INDICATING THF GHENETFY CF THE cilfFACE wAVEGUIDE.
    IHFCHHTESIAN CCLFC:IAATIFAX=S AFE LUIFATELC AS FCLLCWS: THE
    IHFCHHTESIAN CCLFC:IAATIFAX=S AFE LUIFATELC AS FCLLCWS: THE
    <-^XI! IS CIHICTEC TC TFF RICFI: TFこ Y-^XIS IS CIRECTEC CUT
    <-^XI! IS CIHICTEC TC TFF RICFI: TFこ Y-^XIS IS CIRECTEC CUT
    CF THE CAGF; IHF X-AXIE IS UIFFCTEC I.FWAFC.WITH X=U AT THE
    CF THE CAGF; IHF X-AXIE IS UIFFCTEC I.FWAFC.WITH X=U AT THE
    IATELFACF HETHFEN THE CIKLFCTVIC SLAE ANC FEHFSCT CUNELCTCN.
    IATELFACF HETHFEN THE CIKLFCTVIC SLAE ANC FEHFSCT CUNELCTCN.
    IHF&TRLCTL&EIEINFINITHIN E**T'NT IA ECTH THE Y ANC L
    IHF&TRLCTL&EIEINFINITHIN E**T'NT IA ECTH THE Y ANC L
    LIHFCTICNE: THF ELAt: IG T CFNTIN%TFんG THICK.
    LIHFCTICNE: THF ELAt: IG T CFNTIN%TFんG THICK.
FELCN THF GLAH-CCNLLCTCK INTEKFACE THF FIFLLS ARF ZEFC.
```

FELCN THF GLAH-CCNLLCTCK INTEKFACE THF FIFLLS ARF ZEFC.

```


```

 H(Y)=-C゙ひ*L*CC!(LX)*FXPF(-J#K<*<)
    ```
    H(Y)=-C゙ひ*L*CC!(LX)*FXPF(-J#K<*<)
    E(x)=-C:/(CNEGA*E己)*L*K<*CCS(LX)*FXF(-J*K<#Z)
    E(x)=-C:/(CNEGA*E己)*L*K<*CCS(LX)*FXF(-J*K<#Z)
    F(<)-C2/(J#CN+CA*F?)*し**2*SIN(LX)*ビXF(一J*Kく*Z)
    F(<)-C2/(J#CN+CA*F?)*し**2*SIN(LX)*ビXF(一J*Kく*Z)
IN HPGILN I ( T <= X ) THEFFILLLCS AH:Z
IN HPGILN I ( T <= X ) THEFFILLLCS AH:Z
    H(Y)=CI*V*LXF゙(-V#Y)#!XF:(-J#KZ*L)
    H(Y)=CI*V*LXF゙(-V#Y)#!XF:(-J#KZ*L)
    F(x)=C\/(LN:GA*rI)*V*KL&EXIJ(-V*x)*FxF(-J*Kく*Z)
    F(x)=C\/(LN:GA*rI)*V*KL&EXIJ(-V*x)*FxF(-J*Kく*Z)
    F(Z)= -CI/(J*[NLCA*F:1)*V**\because*tXF(-V*X)*EXP(-J*Kく*)
    F(Z)= -CI/(J*[NLCA*F:1)*V**\because*tXF(-V*X)*EXP(-J*Kく*)
IN IFH AHOIVFLXNRF゙SSIINS.
IN IFH AHOIVFLXNRF゙SSIINS.
F(Y) IS THF Y-I:IWECIF:IOCCNFLNENT LF THF VFCTCFH.
F(Y) IS THF Y-I:IWECIF:IOCCNFLNENT LF THF VFCTCFH.
F(X) ANC E(Z) دHF゙, HFSPKCTIVFLY, THEX- ANL Z-CIFECTCC CCNFCNENTS
F(X) ANC E(Z) دHF゙, HFSPKCTIVFLY, THEX- ANL Z-CIFECTCC CCNFCNENTS
    CF THE VHCICH &.
```

 CF THE VHCICH &.
    ```
```

JIG IHF INACINARY LNIT: J = CSGET(-I.I:).
CNECA IS IWC IINES FI TINES FRIGGLENCY. IF: "ANGULAR FREDUENCY".
E゙I ANDEZ ARF IHE FFHNITTIVITIFFS CF THE TMI FRGICNS SFECIFIH:.
CI AAC C2 ANI: CCNFLIX CLIFFICILNIS AHICH DC ACT CEFFNC GN R, Y.

```

```

U. [C TRE X-CCNIECNEAT CR THE FRCHAGATICN GON=TANT IN FFGIGN?.
J*V IS THF X-CCNFLNLNT LF THF PNCFACATILN CRASTANT IN HECIGN I.
KL IS THL Z-CCNPCNEAT CF THF: PRCFACATICN CENSTANT IN ECTH ATGICNS.
THIS PROGRAN LOETRHNINESL. V. ANC KZ FCH A CIVEN SET CFF FAFA-
NFTEFS. THF VALLFS CF Z-LICLCTICN ATT!NLATICN, X-CIFECTIGN
ATTENLATION (IN REGICN 1). L. V. ANC KZ. ALL EXFRESSFC REN FREF
S口ACE WAVELFNGTH. FLLS THE FATIC CF GUICF WAVELENETH TC FRFE EVACE
WAVELENGTH, AFE PHINTEC CLT ALGNG WITH IHE FARANFTERS GF THI= CAFF.
*\#
CATA HEQLIfRC (NCTE THAT CEFALLT VALLI:S AFF FRESENT FCG ALL
FAKANFTEHS):
WITF THE EXCFDTICN LF \&OATA, ALL INPLT CARLE CCNTAIN A CHARACTHR
STHINC, IIILE IN CCLLNNS ? - G. ANL FLCATING FCINT NUNEFRS IN
CCLUNNS 20-2S. 4C-4G. ANC 6U-ES; SCN:- CF ALL CF THE NUNFERS
NAY HE ZERC. ANE TITLES NUST ELL LFFT JUSTIFIED.
THE FCSSIBLE INPLT CANCS AHE:

```
CCLLNNS \(2-G\)
2C-2゙9
                                    40-49
                                    \(60-60\)
        FREG (FGEGLENCY INGHLP)
        SIZE (THICKNESC IN CN.)
        NODCHNGF (LCMEK NOCE NU.) (UFFFF NCDE NC.) *SER NCTE I
        ER1P (HEAL(EHI))
        FPIPP (-AINAG(ERI))
        ER2P (HLAL(E゙ゃう))

        MUHIF (RE.AL(NLAI))
        NURIFP (-AINAG(NLEI))
        Nしマ2P (HEAL(NLRI))
        NLK2FP (-AINAT(NLK2))
        HATIC (T/LANHDA_C)
        \(\angle S T A H T\) (FEAL(<)) (AINAG(Z)) \#SEENOTE?
        EDATA (NC. (F VALUFS) ©‘「 NCTF 3
        DELTA (DELTA)
        DEIUC
        TABLF
        ELECTMIC
        MAGNETIC
        NCELECTH
        NONAGNET
        RUN
```

ECC REAC (1, ECCC, ENC={Cl) (CFAR(I), I=1, 2r.)
\#LITF (4. ECCC) (CFAR(I), I= = \. 2C)
WHITF (3. とCC1) (CrAF(I),I=I. 2C)
CC TE MOC
ECI HEWINC4
ECC HEAL (4, GCGE) INVAMI(I), INVAFI(C), VAILVFA, VALLIEV, VALLEFC
c
C
\cap

```
```

 FEAL LAMGDA. LHAT
 INILCEW FLAC
 CIMTASITIN ERN(24)
 R.IMFNSION CHAH(2C)
 LIMEASIGN INVARI(2), LAE:FL(4わ), ILATA(/`)
 CRNNCN IN, ITRG
    ```






```

 &/
 CEIALLT HAGANI.THRS
 CATAFCHZ/ミ.C/. T/I.C/.NL/I/.NF/I/. FKIF/1.C/. LHIFF/U.C/.
    ```

```

 \varepsilon NLHEPP/C.r,
    ```


```

 & Sこ*C.r
 CEFIN: FLNCTICA ITGHATFL; LPCN
    ```

```

 INITIALI/E CCNSTANTS ANL SNITCFES
 IESh=0
 INSK=O
 1\angleSH=C
 AFASS=0
 IFEFN = I
 NCT=23
 J=(C.. 1.)
 ThしFI=:.*3.14I&G27
 PI=ミ. |4 1%`9<7
    ```

```

 RAT = FT,H\angle*T/2C.c7Gご
 WNITF (3, S4GC)
 WHITF (3, G4GI)
 Hit1tF (こ. G4G\ddot{c})
 WHITt (.3. 5453)
 WHITF (3, FCCZ)
 IF THIS PRGGRAN IE LSFC IN FERTHAN IV, A LL CAFC NUST EE ULMPLIGO
 & FO:R UNIJ,
 & FO:R UNIJ,
 NUQF T: ETS NAY EE ACLEG: IF THF LATA STATGNrNT LIST IS ADLEL TC
 \varepsilon AND THE CINEASICA ANGLNENT CF LAREL IS INCREASEC ACCEHCINGLY
 IF (INVARI(I) .LC. LAHrL(C1).ANC. INVAFI(2).EG. LAEEL(CZ),
    ```

    C
    C
1こ!
12t
127
```

```
    SC?NL = VALUEA + 1.CDI
```

```
    SC?NL = VALUEA + 1.CDI
        AH = VALUFI + I.CCI
        AH = VALUFI + I.CCI
        CC TC YCC
        CC TC YCC
    SC4 IESM=I
    SC4 IESM=I
        CC TC SCO
        CC TC SCO
    SCE INSM=1
    SCE INSM=1
    GC TC SCC
    GC TC SCC
    GCEFHIF = VALLFA
    GCEFHIF = VALLFA
    CO ic cco
    CO ic cco
    SC7ERIFF = VALLFA
    SC7ERIFF = VALLFA
    CC TC SCC
    CC TC SCC
    SCEFHFF = VALLEA
    SCEFHFF = VALLEA
    GU TC SCC
    GU TC SCC
    SCS ENTFF= VALLIA
    SCS ENTFF= VALLIA
        CL TC GCC
        CL TC GCC
    SIO NUHIF = VALLEA
    SIO NUHIF = VALLEA
    GO TC SOO
    GO TC SOO
    SII NUHIFF = VALLEA
    SII NUHIFF = VALLEA
    CC TC &CC
    CC TC &CC
    S12 MLLこF = VALLFA
    S12 MLLこF = VALLFA
    GC TC SCC
    GC TC SCC
    S1こ NUHEFF = VALLEA
    S1こ NUHEFF = VALLEA
    GG TC GCR
    GG TC GCR
    S14 QAT = VALLFA
    S14 QAT = VALLFA
    CC TC SCC
    CC TC SCC
    SIS RSIAFT = VALLIA + J*VALLRF
    SIS RSIAFT = VALLIA + J*VALLRF
        IZSM=1
        IZSM=1
        eu IC Sce
        eu IC Sce
    SIE IFOHN= C
    SIE IFOHN= C
        GC IL CCC
        GC IL CCC
    S17 IFORN = 1
    S17 IFORN = 1
        CGTC ECC
        CGTC ECC
    s1e 1tSM=C
    s1e 1tSM=C
        GCTCMCO
        GCTCMCO
    SIS INSN=0
    SIS INSN=0
    CG IC SCO
    CG IC SCO
    SEC CALL EXII
    SEC CALL EXII
    ¢Ét NCJ= VALUF.A
    ¢Ét NCJ= VALUF.A
        REAC (4. GC97) (ECATA(I), I= = NCT)
        REAC (4. GC97) (ECATA(I), I= = NCT)
        GC TC SCG
        GC TC SCG
    SEz CELTAC = VALLFA
```

```
    SEz CELTAC = VALLFA
```

```


```

```
    GO TC YCO
```

```
    GO TC YCO
        K1SC=(NUHIF-J*NLNIFF)*(ERIF-J#EHIFF)
        K1SC=(NUHIF-J*NLNIFF)*(ERIF-J#EHIFF)
        K2SG = (NURวFーJ*NLH2FF)*(EN2P-J*FHでFF)
        K2SG = (NURวFーJ*NLH2FF)*(EN2P-J*FHでFF)
        CO ב ! = NL.NH. &゙
        CO ב ! = NL.NH. &゙
        1M = 1 - 1
        1M = 1 - 1
        CHCCCE STARTINR VALLF FCH/
        CHCCCE STARTINR VALLF FCH/
        1F(1\angleSW.FG.C) CC TC G5C
        1F(1\angleSW.FG.C) CC TC G5C
        Z = TSTAKT
        Z = TSTAKT
        12SM=0
        12SM=0
        GO TC 925
        GO TC 925
```

 C TEST FCHR CLTCFF
    ```
    C TEST FCHR CLTCFF
    SSC HALILS= FACFI*HAT*SGFT(NLR2F*FH2F-NLRIF*EFIF)
    SSC HALILS= FACFI*HAT*SGFT(NLR2F*FH2F-NLRIF*EFIF)
        IF (RADIUS.GE. IN*FI/2.) GC TC G5S
        IF (RADIUS.GE. IN*FI/2.) GC TC G5S
        L=(1N-1+C.1)*FI/2. +J*O.')
```

 L=(1N-1+C.1)*FI/2. +J*O.')
    ```
```

1%E
1<¢
13C
1こ1
136
13こ
134
1こミ
1こ6
137
13E
1こc
14C
141
14%
14こ
144
145
146
147
14E
14!
15C
1E1
1E%
15ミ
1E4
15%
156
1£7
156
1=c
1\inC
l\in1
16:
16:
1\&4
1\epsilonE
l\inC
1\in7

```
    GO TC Gz5
```

```
    GO TC Gz5
```



```
        z=C.「*HA!ILS + C.I*IN*FI/?.
```

 z=C.「*HA!ILS + C.I*IN*FI/?.
 CO Tr <2S
 CO Tr <2S
 SEC Z=(1N+O.c)*W1/2.
 SEC Z=(1N+O.c)*W1/2.
 SES NHATC=1
 SES NHATC=1
 1FLTC=C
 1FLTC=C
 INAC=C
 INAC=C
 IF (lro.lC.. O) GC IC &3C
 IF (lro.lC.. O) GC IC &3C
 C
C
G<́E 1HLFC = IFLFC + 1
G<́E 1HLFC = IFLFC + 1
ENPFF = ऊDATA(1FLEC)

```
        ENPFF = ऊDATA(1FLEC)
```



```
        tH=(FR&FーJ*FRでFF)/(tRIF-J*EFIFH)
```

 tH=(FR&FーJ*FRでFF)/(tRIF-J*EFIFH)
 CO TC `35
 CO TC `35
 SミC IF (INSA OFG.C) CC TC G35
 SミC IF (INSA OFG.C) CC TC G35
 1F(NHACS -C!! 1) Z = ZETAKT
 1F(NHACS -C!! 1) Z = ZETAKT
 C
C
S31 1NAG = INAG + 1
S31 1NAG = INAG + 1
NLTEFF= \#\GammaATA(INAC)
NLTEFF= \#\GammaATA(INAC)
K2\XiC=(NLK2F-J*NLF2PRO)*(tHटF-J*FH2FP)
K2\XiC=(NLK2F-J*NLF2PRO)*(tHटF-J*FH2FP)
çE CONTINL-
çE CONTINL-
1F (IFUMN .CG. \&) WRITE (3. YG\&1)
1F (IFUMN .CG. \&) WRITE (3. YG\&1)
C
C
IC1 1 N = I. ICC
IC1 1 N = I. ICC
FLAC= ('
FLAC= ('
THY LINFAH IJEKATICA AND CHECK HFEPFFH CH NLT IT IS USEFLL
THY LINFAH IJEKATICA AND CHECK HFEPFFH CH NLT IT IS USEFLL
ZCK = (HN\#HAT\#TWCFI\#CSCHT((K2\subseteqO-K1SG)/(!K****2TAN(Z)**2))

```
    ZCK = (HN#HAT#TWCFI#CSCHT((K2\subseteqO-K1SG)/(!K****2TAN(Z)**2))
```



```
    FEHH = F(/)
```

 FEHH = F(/)
 FCKFFR=F(ICK)
 FCKFFR=F(ICK)
 IF (FCKFHH .CT. FHFF .CH. CAES(Z-ZCK) .CT. O.CJ*CAES(L))
 IF (FCKFHH .CT. FHFF .CH. CAES(Z-ZCK) .CT. O.CJ*CAES(L))
 & GC IC 7
 & GC IC 7
 STUHE = ZCK
 STUHE = ZCK
 ZCK = l
 ZCK = l
 Z = STCHF
 Z = STCHF
 FEHN = F(\angle)
 FEHN = F(\angle)
 FCKEFH = F(ZCK)
 FCKEFH = F(ZCK)
 FLAC = 1
    ```
    FLAC = 1
```



```
    IF(rEIRS -LT.1.E-CT#HAT) CR.TC4
```

 IF(rEIRS -LT.1.E-CT#HAT) CR.TC4
 c
c
GET LEHIVATIVES FCH STEEFEST LEECENT
GET LEHIVATIVES FCH STEEFEST LEECENT
FPX=(F(Z+C.CCC1)-F(\angle-U.CCOLI))/C.CCr2
FPX=(F(Z+C.CCC1)-F(\angle-U.CCOLI))/C.CCr2
FPY = (F(L+J*C.C(C1)-F(L-J*C.CCC1))/C.CCN2
FPY = (F(L+J*C.C(C1)-F(L-J*C.CCC1))/C.CCN2
CELF = FPX + J*TFY
CELF = FPX + J*TFY
[ELNAC= CAHS(CELF)
[ELNAC= CAHS(CELF)
C
C
IF CFLMAG IS LEFL, RCSCNT TC TFE \&AFE:AC: CAN LIC AFFRCACF
IF CFLMAG IS LEFL, RCSCNT TC TFE \&AFE:AC: CAN LIC AFFRCACF
IF(DFLNAG -FG.(C.) GC TCN

```
    IF( DFLNAG -FG.(C.) GC TCN
```

```
1&
17C
171
17%
17\Xi
1 7 4
175
17t
17%
17E
17¢
l&C
l\in1
1&る
1E ミ
l&a
1&!
l&E
1&7
l E E
1ヒS
1@C
151
15%
1ヶミ
1@4
1G5
lse
1G7
1sE
l`c
2C
2C1
2Cz
2Cミ
2C4
2C5
2C
2C7
2CE
2C
21C
211
21%
21\Xi
214
215
216
217
```

 RZ=FIAL(Z)
    ```
    RZ=FIAL(Z)
    AIL= = INAC(/)
```

 AIL= = INAC(/)
    ```


```

 \varepsilon FF.X,FrY
    ```
        \varepsilon FF.X,FrY
            IF( CFLNAG.UT. I.C) CELF = LFLF/CELNAG
            IF( CFLNAG.UT. I.C) CELF = LFLF/CELNAG
            CELTA = CELTAC
            CELTA = CELTAC
            KC = C
            KC = C
    20=2
    20=2
c
c
C
C
        CZ=LC - DCLTAtCFLF
        CZ=LC - DCLTAtCFLF
            1F(F(7) .LI. 「E&GR) UC IC 1
            1F(F(7) .LI. 「E&GR) UC IC 1
            CELTA = DELT^/で
            CELTA = DELT^/で
            KC = KC + 1
            KC = KC + 1
            If (KC •LF. < S) GC TC C
            If (KC •LF. < S) GC TC C
            Z=70
            Z=70
            FLAG = FLAC+ \ddot{C}
            FLAG = FLAC+ \ddot{C}
            C
            C
C
C
    F:EGIN GARHACF CAN LIC ATTENFT
    F:EGIN GARHACF CAN LIC ATTENFT
        \varepsilon FLAC = FLAC + z
        \varepsilon FLAC = FLAC + z
            KC2 = U
            KC2 = U
            RFLZ = O.CCOI
            RFLZ = O.CCOI
            IF (FIHK, LT. L:GLZ) CELL = FF2R
            IF (FIHK, LT. L:GLZ) CELL = FF2R
コ1C CC コCC 1OZ=1. 34
コ1C CC コCC 1OZ=1. 34
            THFIA=TWCPI*(1CR-1)/24
            THFIA=TWCPI*(1CR-1)/24
            CZ(IC.Z) = CEL<*(CC\subseteq(THFTA)+J*EIN(THETA))
            CZ(IC.Z) = CEL<*(CC\subseteq(THFTA)+J*EIN(THETA))
            ENH(10/)=F(/+CL(1CZ))
            ENH(10/)=F(/+CL(1CZ))
ZCC CUNTINLF
ZCC CUNTINLF
            1:% = 1
            1:% = 1
            ININ=1
            ININ=1
            F.THN1A = FH.R(1)
            F.THN1A = FH.R(1)
`C1 1DZ = ID% + 1
`C1 1DZ = ID% + 1
            IF (FRN(ICR) LLT. FRKNIN ) ININ= 1C7
            IF (FRN(ICR) LLT. FRKNIN ) ININ= 1C7
            IF (:RK(IEL) -LY, FHRNIN ) ERHNIN=H:J&(ININ)
            IF (:RK(IEL) -LY, FHRNIN ) ERHNIN=H:J&(ININ)
            1F(10L.LT. 24) GC TC 3CI
            1F(10L.LT. 24) GC TC 3CI
            F1M1N=1M\N
            F1M1N=1M\N
            IF (EKGNIN OLT. FIFFN) EC TC 302
            IF (EKGNIN OLT. FIFFN) EC TC 302
            BCLZ = DFLZ/Z
            BCLZ = DFLZ/Z
            KC2 = KC2 + 1
            KC2 = KC2 + 1
            FKCE= KCZ
            FKCE= KCZ
            IF (KC2 LH. 17) r, IC 310
            IF (KC2 LH. 17) r, IC 310
            RZ = A=AL(Z)
            RZ = A=AL(Z)
            A1L = Alvag(l)
            A1L = Alvag(l)
            1F (IFUW, -EG. 1 ) EC IC 4
            1F (IFUW, -EG. 1 ) EC IC 4
            W\ITE (3. SG&2) FとNH, FLAG, FCK:FHN.HZ, AIL,FININ.FKCZ
            W\ITE (3. SG&2) FとNH, FLAG, FCK:FHN.HZ, AIL,FININ.FKCZ
            WRITE (3, GGSI)
            WRITE (3, GGSI)
            GO TC 4
            GO TC 4
3C2 Z = 2 + 1/L(1N1N)
```

3C2 Z = 2 + 1/L(1N1N)

```


```

 RZ = HEAL(\angle)
    ```
            RZ = HEAL(\angle)
            AlL= AINAG(Z)
            AlL= AINAG(Z)
            IF (IFCKN .FO. 1 ) GC TL I
            IF (IFCKN .FO. 1 ) GC TL I
            WHITE (3.Sg&Z) FEKF, FLAG,FCK:FH, &Z, AIT, FININ,FKCZ
            WHITE (3.Sg&Z) FEKF, FLAG,FCK:FH, &Z, AIT, FININ,FKCZ
            1 CCNTINLF
            1 CCNTINLF
C
C
            ENU CF ITERATICA LCCP
            ENU CF ITERATICA LCCP
            WRITF (3. SSEO)
```

 WRITF (3. SSEO)
    ```
```

215
2二C
2:I
2<゙
2こミ
2<4
2こ!
2<́\epsilon
2こ7
2もを
2こ!
2こC
2 ` I
2こ!
2ご
2こ%
2こと
2こ!
24C
<4I
24%
24%
244
245
24t
24
24E
24!
2¢C
251
25%
2ここ
2¢4
2¢ะ
256
25%
2\&t
2E!
2CC

```
    4 CUNIINLI
```

 4 CUNIINLI
 l = L/WAT
 l = L/WAT
 v=<*/IAN(<)/(-F*FAI)
 v=<*/IAN(<)/(-F*FAI)
 K! = C`CHT(4.O*PI*PI*(NLHIF-J*NLFIFF)*(FHIF-J*FHIFP) + V**V)
 K! = C`CHT(4.O*PI*PI*(NLHIF-J*NLFIFF)*(FHIF-J*FHIFP) + V**V)
 L.HAT = HCAL(KL)/TWCFI
    ```
        L.HAT = HCAL(KL)/TWCFI
```



```
        ばこんトAL(し)
```

 ばこんトAL(し)
 Cc=AINAG(l)
 Cc=AINAG(l)
 C7=&FAL(V)
 C7=&FAL(V)
 Cと=AINA(;(V)
 Cと=AINA(;(V)
 Lg=GtAL(Kl)
 Lg=GtAL(Kl)
 C1C=AINAC(*/)
 C1C=AINAC(*/)
 CHOESR CLTFLT RCHNAT FFAK:
 CHOESR CLTFLT RCHNAT FFAK:
 IF (IFC.2! &=0. 1) EC TC 4CO
 IF (IFC.2! &=0. 1) EC TC 4CO
 x=&&:AL(/)
 x=&&:AL(/)
 Y=A INAC(L)
 Y=A INAC(L)
 WHITr (コ. SGLG)
    ```
    WHITr (コ. SGLG)
```



```
    xこK = RF:AL(LCK)
```

 xこK = RF:AL(LCK)
 YCK = AINAC(LCK)
 YCK = AINAC(LCK)
 WRITF (3. GG&5)
 WRITF (3. GG&5)
 WNITt (.3. ©C&゙4) xCK, YCK
    ```
    WNITt (.3. ©C&゙4) xCK, YCK
```



```
    FA=HFAL(<*<TAN(/))
```

 FA=HFAL(<*<TAN(/))
 FE=AINAC;(/#/TAN(/))
    ```
    FE=AINAC;(/#/TAN(/))
```



```
    hwITt (1, ¢,GE>) rA. rt. FC. 「口)
```

 hwITt (1, ¢,GE>) rA. rt. FC. 「口)
 WNITH (ב. SSS&) Ftht. FCKFF%
 WNITH (ב. SSS&) Ftht. FCKFF%
 bNITH (3. Ş5t) IN
    ```
    bNITH (3. Ş5t) IN
```



```
    ENLNEFP, HAT, LHAT
```

```
    ENLNEFP, HAT, LHAT
```



```
        CL TE 455C
```

 CL TE 455C
 4CC it (NHMAC\&.CI. 1) CC TC 4O?
4CC it (NHMAC\&.CI. 1) CC TC 4O?
WRIIF (コ. प4CG) IN.HAT

```
    WRIIF (コ. प4CG) IN.HAT
```



```
        \varepsilon
```

 \varepsilon
 IF (IILIC. ©GT. (.CH. INAE .FT. C) CC TC 4O2
    ```
        IF (IILIC. ©GT. (.CH. INAE .FT. C ) CC TC 4O2
```



```
        &L TC ASR.
```

```
        &L TC ASR.
```



```
    IF (ItLFC.GT. 1) CF. TC 403
```

 IF (ItLFC.GT. 1) CF. TC 403
 WHITE (?. racc)
    ```
    WHITE (?. racc)
```



```
    CC IC 4EO
```

```
    CC IC 4EO
```



```
    NQnsc = nrnss+1
```

 NQnsc = nrnss+1
 IF (ILLFC - &S.NCT) &YटFD=0.C
    ```
    IF (ILLFC - &S.NCT ) &YटFD=0.C
```



```
    IF (INCN.IGG. I .ANB. INAG.EC. C ) CC ICSS30
```

 IF (INCN.IGG. I .ANB. INAG.EC. C) CC ICSS30
 - CENIINU.
 - CENIINU.
 GO Tr. COC
    ```
    GO Tr. COC
```

C
c
car rf NEI：＝LLLP－－－hFAC A NEM CAIA CAIAC
ECCCFUINAT (2 CA4)
ECCIFINNAT (jx, ₹CA4)

E ETNINC. IITLLIN CCLLNAS 2-S. AND FLCATING FCINT NUNEERSIN•・ノ.
E. CCLLNNC :CO?G. $4 C-4 G$. ANC EU-6G: ELN: CN ALL CF THF NUAFCHS, MAY

EINCTE 1: THFSF VALLES AHE CCNVERTEC TL INICCERS--A FLCATING FUINT
\& NUNEFH SLIGFTLY LAHCEF THAN THE FIGCHER INTECER SHCLLC BL. $/$.
E. ISEC TC ENSLHF TFAT THE FHCFLR INTIGİR WILL IE CETAINCC. TFFIN
\&TVGIFS ALS゙TE゙! EVEN。•・ノ/。

E. AFAL (LSTAHT)
を. ムITFIN THL VLNCTICA 7TAN... ノ/.
E. NCTF 3: TFIS VALLI IS ALSC CCNVERTIE TC AN IATEGEK. SC TFR PURCA

EATFLY FOLLChING TFIS CAFD NLSTFEA CAFUCG CARDS CCNTAINIAG IFE•,
と/. VALLİ
E. FIIFF\& FRFC AND SILE CH \&ATIC NAY HE USFC. IF FREC ANC SI! \triangle IはF
E SHICIFIED, HATIE CALCLLATFC FRCN TFE゙N. ・ノノ.

E. $\angle E I A K T$ PHIJVIIFS A STAKTIAC VALLE LF TFF VAAIARLE ITFKATFE LHAIV F

と・CALCLIATHD KITHIN THF PICCGAN IF N = CESSARY。•・ノノ,

ESWiFT. NFFLECTI?IC IS CEFALLT.. ノ/.
E' MACNTTICノNCMAGNETIC CCNTRCLS WF TF:N CH NCT NACNFTIC LCSSッR ARE
ESWFFT. II ECTH TYFES CF SWFEH ARF SHFCIFIFI THE ELECTRIC•・ノ・

SCCA FCIANT (TA円L: NHCELCES A TARLLAN CLTFUT: EFELGFHCCLCFS AR EUTFU


```
    E. LFLA INCCLNTE゙RING IHE HLN CAND IFL FRCGRAN IS EXPCUTED LSING THE
    & PAUANFTFNS IN FFFFCT AT THAT TINF.'.//.
    E. UFCA ENCCLATHNIAG THE STCF CAHC SLTHCUTINR FXIT IS EXFCLTER.'.
    &/ノ. - LPIN IACCLATERIAG ANY TITLE NCT LIETLE IN TrF AFHAY LAFEL. T
```



```
    E* TAELF, AAL: , XICLTICA IS AFANLCNICL.')
SCG7 FCirMA1 (ICF.r.{)
```



```
    & •トxECLTILN INFIPITrCC!)
SCSGFCHNAT (IX, AM, MM, ICX, FIC.S,ICX,FIO.S.ICX,FIO.S)
S4CI FCHNAT (t()X. MTAN-1.H.)
```



```
    ETFNLFC TG SHCN THY FATH CF CLNVIHCINCE AAC TC GIVE CTHER IAFCHNATI
    ECA../. ARCLT TFF VALICITYCF TFF SCLLTICN.'.//.
    &. FEfH IS THF VALLf CF THE FLNCTICA frï L -- ITS ZEHCS Afot SCLLTIC
    &Nさ.".ノ.
    &. 「CKER&& IS THF VALLE CF THF FLACTICN FCH <CK.../.
    &. 
    &'FF% IS (APEISCXINATFLY) THE PANTIAL CEHIVATIVE RFF F WITH RLGPFCT
    &TC THE IRFAL FANT CF L.'./.
    &' FHY IE (APPRCXINATILY) THF PAKTIAL ORHIVATIVE CF F WITH RIGPEOT
    ETC THF INAGINANY PAKT CF Z.*./.
    &' FLAG IS HKINTEC f:INEEN FERH ANC FCKIINM. IF IIT IS EVFN. / AN! L
    ECK hHRS NU゙T INTEHCFANGED. EITHER EFCALSI'., !
    &' FFRM WAS LESS THAN FCKEIdH Cri JCK WAS NCT SUFFICIFNTLY CLLS:E
    &TO/ TG RF CFHTAIA THAT THE゙Y WENF AFFHCACHIAG., /.
    E' THF SANF: RCLT; IF CLC, I ANC LCK W!AL INTEFCHANCED. IF FLAG
    \varepsilon IS 2ERG UN CNI. CNLY STEEFEST UESC!ENT WAS., .,
    &' LSTD; If ThC CH THNCF, CNLY IF: GAHPAGE CAN LIC APFHCACH WAS
    & LSFR (THIS FAPPEN? WMEN TMF GNACIFAT IG LEFC);' )
S4SI ICHNAT 1
    E. IF FLLF CH FIVF MCTH STSFPFST CESCENT ANC TRF GAEABAGI CAN AP
    EPRUACF WFRF: LSED. IF FLAG IS TWC IFH FCUN.'./.
    \varepsilon. ININ ANU KCZ MILL FE FKINTEL IN FLACF CF FFX ANC FFY. If IL
```



```
    &. FRINTEC LLHING (NF FASS THNLLCH TMF ITFHATICA LCOP. I.F.. It
```



```
    &* THF LINL INNECIATELY FHECELCIAS IT...,
```



```
    ENATEC APPFARS.•./.
    &' K IS TH: ITLRATICN LCOH INCFX.'. /.
    E. KC INLICATES HCN NANY TINES THF: INCRLNZ̈NT WAS FALVEC DLHINGGHF
    ELAST STFRWLST RLECTNT ATTCNFT.*. /.
    E. DFLTA IS THF INCKENEAT LSEC IN THELAST STEEFEST CESCFAT AITHP!NT
    &.', ノ.
```



```
    &. CFECENT ATTIENPT.'. /.
```



```
G4S& FCINAT (
    E@ rGí IS THF CCMFLIX FRKMITYIVITY LF THF: SLAF NATLHIAL RELATIVF TU
    & FHEF SHACE.•. /.
```



```
    &C FHFR STACC.'. /.
    E. iHI ANO NLHI AHE SINILANLY ISEFINI-L FCM THF SUHFCUNCING NFDILN.'.
    \varepsilon/.
    E' T IS TMF SLAR THICKNESS.../.
    E' LAMPLA_C IS THE FHFE SPACF &AVELLNCTF... ..
    &. LANPDA_r, IS THE GLICF. MAVLLLPNGTF...,.
```

```
    E. U. V. ANC. KL AHE AS REFIAFE CN FAEF lo4 rF . TINFGFANNCNIG ILFCT
    EんCMACNITIC FIFLDS... H.t. FAKKINGTLC.., /.
    E' MCCHAr-HILL (ISEI)..)

```

 EHFAL(L) AINAG(L) NEAL(V) AINAG(V) NEAL(K/)) AIN
 EAG(KL)')


```
G4GE FENNAT (//. . FFCFFF
    EFEAL(L) AINAG(L) WEAL(V) ATNAG(V) ALAL(KL) AIN
    EAG(KZ)' )
```



```
    &AC(FZ)", /l, &x. s(:x.Fil.S)
```



```
ŞEC FLNNAT (Sうx. **** WANNING ***•。
```



```
Şge FCHNAT (7x. FI!:.7. 3x, 1I. 3x, FIE.7. 4(7x.E15.7) )
```



```
\zeta̧EEFCHNAT (/, 4EX. 'HFAL(LCK)', IJX. 'AINAG(LCK)',)
Ş\varepsilonE FOluNAT (1ヶ1)
```



```
GSES FORNAT (/, EX. 'K KCC CELIA NEAL(Z)
    E AIMAC(/) FEHN CELMAC - )
ŞSc FCRNAT (/. S4x. 'TIERNINATLEC FY SNALL FENH')
ŞG1 FORNAT (/, ङ2X. "TERNINATED EY SNALL CAFS(CL)')
```



```
            E//. ミSx. *X-LI<ECTICN ATTENLATIUN = *. FI2.5.. CE./WAVELENGTH..
```



```
                                    10X. •MLAT = •,F8.3. - - J* •.FE.3.
```



```
            \varepsilon FIC.5 )
```



```
C PLNCFFC ERCK
```


$31($
 ENO

```
311
312
31F
314
315
316
317
318
315
3こC
3<1
ぎくた
3ここ
ごム
ゴ心
ゴも
327
Зこも
369
3)C
331
3ゴ
COMPLFX FUNCTICN <TAN(?)
CUMFLEX J. /
C LTAA HFTURNS TMF TANCENT CF ^ CCNNLEX NUNERH UNLESS THE FEAL HART
C OF THE ALGGUNENT IS SLFFICIFNTLY CLESF TC FI/Z TC GEAFFATE AA
C EHHCF, IN WHICH CASF A LOLNDEU AFPRCXINAIICN IS AETUHNED.
    CUNNCN IN. IE:HN
    J = (C.. I. )
    PI=2.\4\592)
    x = \tilde{EEAL(7)}
    Y = AINAG(<)
    = IF (AHS(X) .LE. PI/2 ) GC TO 3
```



```
    GC TC <
    3 CELTA = FI/2 - AHS(X)
    IF (CELTA .LT. E.L-CE*FI ) r,C.TC
    X=FEAL(\angle)
    ZTAA = (TAN(X) + J*TAAF(Y))/(I. - J*TAN(X)*TANH(Y))
    IERR = C
    RETLFN
    1 TANX = I.t: + & (1.C-LELTA/(5.E-OG#FI)) + E0342.94
    IF (X .LT.C. ) TANX = - TANX
    LTAN = (TANX + J#TANF(Y))/(I. - J*TANX*TANH(Y))
    IENF = 1
    HETLFA
    END
```

APPENDIX C

SELECTED COMPUTER OUTPUT
IMIO) MODE
T/LAMBDA_0 $=0.0100$

MURI	$=1.000-\mathrm{J} *$
MUR2	$=1.000-\mathrm{J} *$

KEALIV)
0.19746
0.19940
0.20178
0.20502
0.20903
0.21370
0.21893
0.21893
0.22459
0.23059
0.23059
0.23680
0.26216
0.27425
0.28553
0.29587
$\sim \sim \infty$
\sim
\sim
\sim
\sim
\sim
\sim
\sim
\sim
0
0
0
35511
36204
36739
7158
37490
0.371580
0.37490
(n) 0 VWIV
0.0
REAL(U)

$1.000-\mathrm{J}$ *
ER2 $=2.000-J$

$$
\begin{aligned}
& \text { ATIEN. }-X \\
& 1.71508 \\
& 1.73200 \\
& 1.75268 \\
& 1.78081 \\
& 1.81559 \\
& 1.85617 \\
& 1.90156 \\
& 1.95077 \\
& 2.00284 \\
& 2.05684 \\
& 2.16743 \\
& 2.27716 \\
& 2.38209 \\
& 2.48007 \\
& 2.56991 \\
& 2.75793 \\
& 2.85950 \\
& 3.00513 \\
& 3.68442 \\
& 3.14467 \\
& 3.19111 \\
& 3.22747 \\
& 3.25633
\end{aligned}
$$

TM(U) MODE

AIMAG(V)	REALIKZ)	AIMAG(KZ)
-0.00000	6.27561	0.00000
-0.03956	6.29573	-0.00251
-0.05863	6.29588	-0.00376
-0.07689	6.29610	-6.00501
-0.09413	6.29639	-0.00625
-0.11019	6.29675	-0.00748
-0.12493	6.29719	-0.00664
-0.13830	6.29770	-0.00986
-0.15026	6.29828	-0.01100
-0.16082	6.29813	-0.01299
-0.17789	6.30043	-0.01408
-0.19009	6.30210	-0.01580
-0.19816	6.30390	-0.01722
-0.20288	6.30513	-0.01834
-0.20499	6.30756	-0.01919
-0.20272	6.31191	-0.02355
-0.19480	6.31541	-0.02055
-0.18501	6.31832	-0.02023
-0.17513	6.32061	-0.01966
-0.16593	6.32243	-0.01898
-0.15769	6.32386	-0.01831
-0.15047	6.32500	-0.01768
-0.14421	6.32593	-0.01709

T/LAMBDA_0 $=0.0300$
TM(O) MODE

TM(U) MODE

TM(0) MODF I/LAMBDA_0 = 0.0500

$T M(0)$ MODE \quad T/LAMBDA_0 $=0.0800$

$$
0.0 \quad \text { MUR2 }=1.000-\mathrm{J}
$$

$$
\begin{array}{lll}
0.0 & \text { MURI }= & 1.000-\mathrm{J} * \\
0.0 & \text { MUR2 }= & 1.000-\mathrm{J} *
\end{array}
$$

$$
\begin{array}{lcl}
\text { RFAL (U) } & \text { AIMAG(U) } & \text { PEAL (V) } \\
6.07486 & 0.0 & 1.60451
\end{array}
$$

$$
\begin{aligned}
& 1.60451 \\
& 1.61652 \\
& 1.63115 \\
& 1.65095 \\
& 1.67531 \\
& 1.76353 \\
& 1.73486 \\
& 1.76857 \\
& 1.80393 \\
& 1.84029 \\
& 1.91371 \\
& 1.98507 \\
& 2.05175 \\
& 2.11217 \\
& 2.16549 \\
& 2.26671 \\
& 2.32556 \\
& 2.34940 \\
& 2.34586 \\
& 2.32154 \\
& 2.28182 \\
& 2.23104 \\
& 2.17263
\end{aligned}
$$

$$
0.0
$$

$$
0.0
$$

T/LAMBDA_O $=0.1200$
tm(0) moue

				$\begin{aligned} & =1.000 \\ & =2.000 \end{aligned}$	$\begin{array}{ll} -\mathrm{j} & 0.0 \\ -\mathrm{J} * & 0.0 \end{array}$	MURI $=$ MUR2	$\begin{aligned} & 1.000 \\ & 1.000 \end{aligned}$	$\begin{aligned} & -J * \\ & -J * \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		
ER2FP	L_ratil	atten.-z		arten.-x	real (u)	AImag(u)	REAL (v)		almag (v)	REAL (KZ)	AIMAG(Kl)
$0 . \mathrm{C}$	$1.0716 t$	-0.0		21.02782	5.79806	0.0	2.42092		0.0	6.73344	0.0
0.2 CO	1.07136	0.97577		21.13205	5.82717	-0.54771	2.43292		-0.31083	6.73153	-0.11234
0.3 CO	1.07095	1.46227		21.25774	5.86261	-0.81685	2.44739		-0.46289	6.72920	-0.16835
0.450	1.07048	1.94676		21.42552	$5.91061{ }^{-1}$	-1.08080	5.46671		-0.61114	6.72606	-0.22413
$0.5 c 0$	1.06987	2.42804		21.62833	5.96984	-1.33348	2.49005		-0.75464	6.72216	-0.27954
0.610	1.06914	2.90458		21.85794	6.03888	-1.58922	2.51649		-0.83266	6.71760	-0.33440
0.770	1.06831	3.37465		22.10590	6.11637	-1.83271	2.54504		$=1.02470$	6.71242	-0.38852
0.860	1.0674 C	3.83631		22.36386	6.20104	-2.06888	2.57474		-1.15046	6.70665	-0.44167
0.910	1.06639	4.28759		22.62387	6.29180	-2.29788	2.60467		-1.26981	6.70030	-0.4.7363
1.cco	1.06528	4.72652		22.87885	6.38770	-2.51999	2.63403		-1. 38276	6.69332	-0.54416
1.2C0	1.06273	5.56003		23.34938	6.59188	-2.94495	2.68820		-1.59002	6.67731	-0.64012
1.450	1.05966	6.32383		23.73601	6.80870	-3.34681	2.73271		-1.77385	0.65805	-0.72806
1.660	1.05599	7.00781		24.01292	7.03471	-3.72854	2.76459		-1.93631	6.63498	-0.80680
1.800	1.05165	7.60461		24.16570	7.26735	-4.09302	2.78218		-2.07934	6.60771	-0.87551
$2 . \mathrm{CCO}$	1.04662	8.10930		24.18900	7.50458	-4.44247	2.78486		-2.20460	6.57611	-0.93362
2.570	1.03143	8.95241		23.70541	8.10688	-5.26324	2.72919		-2.44742	6.48069	-1.03068
3.600	1.01432	9.21138		22.59285	8.70513	-6.02620	2.60110		-2.59838	6.37317	-1.06050
3.560	0.97827	8.97192		21.11319	9.28265	-6.74420	2.43075		-2.66711	6.27230	-1.03362
4.000	0.98562	8.41566		17.52948	9.82997	-7.42186	2.24842		-2.66858	6.19283	-0.96889
4.560	0.97713	7.69900		18.02451	10.34499	-8.06038	2.07515		-2.62238	6.13949	-0.88638
$5 . \mathrm{CCO}$	0.97733	6.95694		16.68500	10.83021	-8.66123	1.92093		-2.54713	6.10915	-0.80095
5.500	0.97617	6. 26017		15.53107	11.28974	-9.22715	1.78808		-2.45694	6.09576	-0.72073
6. CCC	0.96982	5.63819		14.55048	11.72756	-9.76160	1.67519		-2.36104	6.09354	-0.64912

T/LAMBOA_O $=0.1400$
ER1 $=\begin{array}{llll}1.000-J * & 0.0 & \text { MURI }= & 1.000-J * \\ \text { ER2 }= & 2.000-J * & 0.0 & \text { MURZ }= \\ & 1.000-J * & 0.0\end{array}$

$0.0 \quad$ MUR2 $=1.000-\mathrm{J} * \quad 0.0$

I/LAMBDA_C = 0.1800
TM(0) MODE

$1.000=12$
MUR2 $=1.000-\mathrm{J} \%$
\qquad
T/LAMBDA_0 $=0.3000$

0

1
1
8
0
0

華

a oigigigigigigigo igigigigigigig

MUR2 $=$

0.0

$\stackrel{\circ}{\circ}$

REAL(U)
8.76110
8.47297
8.33728
8.21146
8.09741
7.99599
$7 . .90725$
7.83065
7.76528
7.71005
7.62543
7.56818
7.53113
7.50873
7.49683
7.49508
7.51321
7.53825
7.56449
7.58952
7.061444
7.63302
7.65135 TM(2) MODE

ATTEN.-X
-36.46402
 -40.727485
-42.92339 -4.920051
-43.92880 -44.82880
-45.72698
-46.60927 -46.60927
-47.48596
-49.24837 -49.24837
-51.04372
 -56.63683
-61.41096
-66.15659 00
0
0
0
0
0
i
i -70.80132
-75.30968
-79.66922 -79.66922 No
 ER2

[^0]

REAL (KZ)	AIMAG(KZ)
7.93120	0.00000
8.00166	-0.61077
8.06673	-0.88360
8.13717	-1.13761
8.20905	-1.37756
8.28100	-1.60706
8.35274	-1.82857
8.42442	-2.04374
8.49628	-2.25363
8.56859	-2.45896
8.71535	-2.85755
8.86572	-3.24160
9.01970	-3.61211
9.17764	-3.46971
9.33840	-4.31492
9.74945	-5.12750
10.16660	-5.87539
10.58336	-6.56769
10.94567	-7.21257
11.40118	-7.81693
11.79869	-8.38647
12.18763	-8.42587
12.56786	-9.43896

0.0
0.0

AIMAGIV)
-0.00000
0.97499
1.37905
1.73542
2.05638
2.35103
2.62559
2.88423
3.12988
3.36456
3.80661
4.21858
4.60559
4.97135
5.31864
6.11956
6.84321
7.50654
8.12125
8.69629
9.23777
9.75081
10.23945

[^1]VITA

Jerry Kent Sutton
Candidate for the Degree of

Master of Science

Thesis: THE EFFECT OF LOSSES UPON THE PROPAGATION OF SURFACE AND LEAKY WAVES OVER A GROUNDED DIELECTRIC SLAB

Major Field: Engineering
Biographical:
Personal Data: Born at Jefferson Barracks Army Post, Missouri, October 27, 1944, the son of Vivian E. and Ruth H. Sutton.

Education: Graduated from Bolton High School, Alexandria, Louisiana, in 1962; received the Bachelor of Science degree in Electrical Engineering from the Louisiana Polytechnic Institute in January, 1967; completed requirements for the Master of Science degree in June, 1969.

Professional Experience: Employed by the Department of Electrical Engineering of Kansas State University as a graduate assistant during the spring of 1967 and as an instructor from September, 1967 to June, 1968; employed by Collins Radio Company, Dallas, Texas, during the summer of 1967 and since August, 1968.

Honorary Organizations: Member of Phi Kappa Phi, Tau Beta Pi, and Eta Kappa Nu.

THE EFFECT OF LOSSES UPON THE PROPAGATION OF SURFACE AND LEAKY WAVES OVER A GROUNDED DIELECTRIC SLAB
by

JERRY KENT SUTTON
B. S., Louisiana Polytechnic Institute, 1967

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

ABSTRACT

The purpose of this research is to examine the effect of losses upon the propagation of surface waves and leaky waves over an infinitely wide, planar, electrically thick dielectric slab coated onto the surface of a perfect conductor.

A transcendental equation having complex coefficients in the general case is solved in order to obtain the propagation constants. A computer program has been written to perform this task. This program relies upon the numerical techniques of linear iteration and steepest descent.

The quantities of interest are the attenuation in directions parallel and normal to the surface of the slab, the guide wavelength, and the angle at which the wave enters or leaves the slab. The results of the computer analysis indicate that for a surface wave mode there is an abrupt transition in the behavior of each of these quantities occurring at a particular slab thickness. In the attenuation parallel to the slab, this transition is from decreasing attenuation at high losses for a thin slab to increasing attenuation at high losses for a thick slab. Furthermore, it is found that, for sufficiently high losses, odd-numbered TM modes exhibit the behavior of a surface wave though such modes describe physically unreal waves in the lossless case.

[^0]: $\stackrel{\square}{\stackrel{a}{2}} \stackrel{1}{\sim}$
 OOZOZOZOZZOZOZOZOZOZOZZOZOZO

[^1]:

