by

ANIL KUMAR GUPTA
B. Tech., Indian Institute of Technology
New Delhi, India, 1974

A THESIS
submitted in partial fulfillment of the requirement of the degree

MASTER OF SCIENCE

Department of Industrial Ingineering

ZAHSAS STATE UNIVBRSITY
Manhattan, Kansas
1978

Approved by:

DocumentLD$26 i 8$
．T4
1978 TAEDコ OF COMTコNMS
672
C 2
Easc
 i
UIST OR FIGUZコS ii
IIST OF TMSIES V
ABSTRAGT viii
CHADTER I－IIFFBRコTMIS QUADRAMURE MD SFIINE APPROKI：ATION－A HIMERATURS SURVEY
1．1 Introcu．ction 1
1．2 دifferentiel Qusjreture 3
1．3 Determinetion of Teightins Cocfficients 5
 5
1．3．2 By Analo mi fith Lenzrense＇s Intcrmoletion Formula 6
I． 4 Srline Anvro－inution 7
1．$\therefore .1$ Introcuction 7
 §
1．4．3 Carianal Suユines 10
I． 4.4 Comnutational Scheme for＂eighting Coefさicients 11
1．4．5 Construction of Gubic Splines 14
1．4．5．1 Computationel Scheme 15
1．5 Concluuins Remerks 16
CHADTER II－DIRPJRコNTIAL QUADRAMURE ATD THE ISOTHERNA REACTOR 江TH AKISL MTKITG
2．1 Introauction 18
2.2 Differential Guadrature Approsimation ユ9
2.3 Computational Scheme 21
2.4 Nunerical Results 22
2.5 Discussion 23
CHAPMZR III - DIFFERENTIAL QUADRATURE AND THE ADIABATIC REACTOR WITH AXIAL IIIXING
3.1 Introduction 32
3.2 Problem Formulation 34
3.3 Computational Scheme 35
3.4 Numerical Results 36
3.5 Discussion 38
CHADTER IV - CONCLUSIONS 66
RSESRENCES 67

```
ACHOVMJDGS\MITN
```

The Euthor takes the onportunity to ezoress his deep sense of gratituce to Dr. ت. Stanley Iee for his inspiring suicance, continual essistencc, valuable criticism and constant encouragenent throughout the course of the study.

The author acmowledees the support and encourasement from Jr. ©. A. Eonnett anc Dr. C.D. Husens.

Tho author is thenleful to Tirs. Deamne I. Nicociemus for tuァing the nanuscrint.
2.1 Isothermal Reactor with Axial Ifixing by $7^{\text {th }}$ Orāer Differential Quacrature
$z_{i}=(0,5,10,20,30,40,48)$
2.2 Isothermal Reactor with Axial Rixing by $9^{\text {th }}$

Oráer Differential Quadrature
$z_{i}=(0,2,5,6,10,20,30,40,48)$
Q. 3 Isothermal Reactor with Axial Nixine by $11^{\text {th }}$ Oraer Differential Quadrature $z_{i}=(0,2,5,6,2,10,15,20,30,40,48)$
2.4 Isothermal Resctor with Axisl IIxins by Pinite-Difference Iiethod
3.1 Transient in Denticl Eressure, Abisbetic Reactor with fuisl Mixine oy $7^{\text {th }}$ oruer

Differential Quadrature
$z_{i}=(0,5,10,20,30,40,48)$
3.2 Transient in Temperature, Aaiabatic Reactor with Axisl Mixine by $7^{\text {th }}$ order Differential Quacirature
$z_{i}=(0,5,10,20,30,40,48)$
3.3 Transient in Pertial Iressure, Aäiabatic Reactor with Axial Mixing by $9^{\text {th }}$ oraer Differential Quadrature $z_{i}=(0,2,5,6,10,20,30,40,48)$

Figure

3.4 Transient in Tempersture, AZiabatic Reactor with Axial Vixing by $9^{\text {th }}$ order Differential Quadrature
$Z_{i}=(0,2,5,6,10,20,30,40,48)$
3.5 Transient in Partial Iressure, Aäiabatic Reactor with Axial Mixing by $11^{\text {th }}$ order Differential Quaçrature
$z_{i}=(0,2,5,6,8,10,15,20,30,40,48)$
3.6 Transient in Temperature, Aäiabatic Reactor with Axial Fixing by $11^{\text {th }}$ order Differential Quadrature
$Z_{i}=(0,2,5,6,8,10,15,20,30,40,48)$
3.7 Transient in Dartial Pressure, ACiabatic Reactor with Axial Mixing by $9^{\text {th }}$ oraer

Differentiel Quadrature
$Z_{i}=(0,0.1,1,5,10,20,30,40,48)$
3.8 Transient in Temperature, Adiabatic Reactor with Axial Mixing by $9^{\text {th }}$ order Differential Quadrature
$\left.Z_{i}=0,0.1,1,5,10,20,30,40,48\right)$
3.9 Mransient in Partial Pressure, Aoiabatic Reactor with AxiEl Fixing by $9^{\text {th }}$ order Differential

Quadrature
$Z_{i}=(0,0.5,1,5,10,20,30,40,48)$

Figure
3.10 Transient in Temperature, Adiabatic Reactor with sxial lixing by $9^{\text {th }}$ oraer Differential Quacirature
$U_{i}=(0,0.5,1,5,10,20,30,40,48)$
3.11 Transient in Partial Pressure, Aaiabatic Reactor with Axial Hixing by $9^{\text {th }}$ order Differential Quadrature $Z_{i}=(0,0.8,2,6,10,20,30,30,48)$
3.12 Transient in Temperature, Abiabatic Reactor with Axial Nixing by $g^{\text {th }}$ orcier Differential Quadrature $Z_{i}=(0,0.8,2,6,10,20,30,39,48)$
3.13 Transient in Eartial Pressure, Adiabatic Reactor vith Axi三l Fizing by Finite-Difference I..etho
3.14 Transient in Temporature, AGiabatic Reactor with Axisl Zisine by Pinite-Difference
\#ethoc
2.1 Isothernal Reactor with Arial lizine by $7^{\text {in }}$
orier Diニferential Quearature
$Z_{i}-(0,5,10,20,30,40,48)$
2.2 Isothermal Reactor with Axial Nixing by $g^{\text {th }}$
order Differential Quadrature
$z_{i}=(0,2,5,6,10,20,30,40,48)$
2.3 Isothermal Reactor with Arial Irixing by 11 th order Differential Quadrature
$Z_{i}=(0,2,5,6,8,10,15,20,30,40,48)$
3.1 Transient in Dartial Pressure, Aüiabatic

Reactor with Axiel Nixing by $7^{\text {th }}$ order
Differential Quadrature
$Z_{i}=(0,5,10,20,30,40,48)$
3.2 Transient in Temperature, Adiabatic Reactor with Kixing by $7^{\text {th }}$ order Differential

Quedrature
$Z_{i}=(0,5,10,20,30,40,48)$
3.3 Transient in Partial Pressure, Adiabatic

Reactor with Axial lixing by $9^{\text {th }}$ oraer
Differential Quacrature
$z_{i}=(0,2,5,6,10,20,30,40,48)$
3.4 Transient in Penperature, Adiabatic Peactor with Axizl Nixing by $9^{\text {th }}$ order Differential Quadrature
$z_{i}=(0,2,5,5,10,20,30,40,48)$
3.4 Pransient in Partial Pressure, Adiabatic

Reactor with Axial lixing by $11^{\text {th }}$ orcier
Differential Quadirature
$Z_{i}=(0,2,5,6,8,10,15,20,30,40,48)$
3.6 Transient in Temperature, Adiabatic Reactor with Axial Mixing by $11^{\text {th }}$ order Differential Quaçrature
$Z_{i}=(0,2,5,6,8,10,15,20,30,40,48)$
3.7 Transient in Partial Pressure, Adiabatic Reactor with Axial Mixing by $9^{\text {th }}$ order Differential Quadrature
$z_{i}=(0,0.1,1,5,10,20,30,40,48)$
3.8 Transient in Temperature, Aciabatic Reactor with Axial Mixing by $9^{\text {th }}$ order Differential

Quadrature
$Z_{i}=(0,0.1,1,5,10,20,30,40,48)$
3.9 Transient in Partial Pressure, Adiabatic Reactor with Axial Nixing by $9^{\text {th }}$ oraer

Differential Quadreture
$Z_{i}=(0,0.5,1,5,10,20,30,40,48)$

Table

3.10 Transient in Memperature, Adiabatic Reactor with Axial Fixing by $9^{\text {th }}$ oraer Differential Quaçrature
$Z_{i}=(0,0.5,1,5,10,20,30,40,48)$
3.11 Transient in Dartial Pressure, Adiabatic

Reactor with Axial Nixins by $9^{t h}$ order
Differential Quecirature
$Z_{i}=(0,0.8,2,6,10,20,30,39,48)$
3.12 Transient in Temperature, AGiabatic Reactor with Arial living by $9^{t h}$ order

Difierential Quadrature
$z_{i}(0,0.8,2,6,10,20,30,39,48)$

ABSTRACT

Differential cuadrature is a useful numerical technicue for solving non-linear partial differential equations. It involves approximating the partial aerivatives by a linear combination of functional values and, therefore, provides an easy method of transformation of partial đifferential ecuations into a set of oräinary えifferentizl ecuations. The technique is employe for solvine bounciary value problems Wich cen be representea by partial cifferential equations.

Nost other methocis like the finite-differonce method involve approximation in terms of functional ¿ifferences instead of functional values and therefore, reouire functional evaluation at a large number of points for satisfactory results. It is in this respect thet cifferential cuadrature has its major aüvantages over other methocis in terms of both, the computer storage and computational time. However, the success of the metho $\hat{\alpha}$ ēependis largely upon the method of evaluetion of weighting coefficients. Three methods are considered in this rosnect viz.classical quadrature analosy, Legencire polynomial approach and spline approximation.

Differentisl ouadrature is spplied to solvins several models in engineering with both fized and moving boundary conditions. A movins boundary conzition is specified at a point which itself veries as a function of time. Differential
auad̃ュきちure is used to solve the isothermal reactor model as Well as the adiabatic reactor model．A lot of computer memory anc̉ computation time are saved by using this technique．

CEAAPMER I

DIPFERANMIU OUADRATURE AND SDLIVE SDPROKIVATIOA
 －A IITERATURE SURVEY

1．1 Introduction

Partial differential equations are frequently ercounterez in the fielis of ersineering and science．However，the numeri－ cal solution of time－cependent non－linear partial differential equations has been a complicateえ añ hisciny probiem depenaent process．In general，the solution of slightly different type of partial differential equations may require separate and completely むifferent computer programs．Thus，effective numerical technicue in this respect can be very beneficial．

The conventional numerical techniques such as the method of lincs，finite difference method，etc．require the function value to be evaluated et a large number of points to obtain satisfactory results．This recuires a lot of computer stor－ ase anç computer time anci thus an increased cost enç effort．

Quミגreture technicues like trapezoiaial rvie，Sinpson＇s rule heve been usea since carly times to estimate the area unaier curves．A more common technicue is that of Guassian quadirature which can provicie a gooc approximetion for inte－ grals．This chanter deals with a recently aevelopeć numericsl technioue monn as differential duadrature which is very much similar in princiole to that of Cuassian quadrature and
can be effectively use for polyomial approximation of partial cifferentials. The following chapters deal with some of the applications of this method in the ficle of ensineerins.

Consicier the type of approximation

$$
\begin{equation*}
L u=\sum_{i} a_{i} u_{i} \tag{1}
\end{equation*}
$$

wich is lmom as cuatrature approzination if I is an integral operator. In analocy, the same approximation was named as aifferential quadrature by Bellman (1) vinen i is an integral operator. Unlike Guassian ouaǐature, ¿ifferential cuadrature method is still at an early stase of cievelomant. The aiventages of the methoc pill be obvious after the aiscussion of the following chaoters.

Differential cuscrature gethod is cifferent from most conventional methocis in the sense that the interoolation is expressec in terms of the values of the function instead of the differences of the function. However, the aporoaimation of derivatives by differences provide the basis of many methoós of solving differential equations. Interpolation using functional values st certain selectec points has been droppe \dot{d} in pest âue to hazaris of roundoff errors, but Bellmen ance his coworieers has show that the difficulty can be overco:ae by first saoothenirg the data anc then differontiating. They heve succescfully appliea the methoc to the solution of fluic
flow ecuations, the Hodgrin-Hamley mocicl (2) anc other models. I. 2 Differential cusarature

Consiēer a linear or non-linear first orãer partial むifEerential equation of the form

$$
\begin{equation*}
U_{t}=f\left(t, x, U, U_{x}\right) \tag{2}
\end{equation*}
$$

where x lies in the finite interval (a, b) anc the boundary contitions of the problem are in eny given form. The initial condition is assumed to be lmown and is of the form

$$
\begin{equation*}
U(0, x)=U^{0}(x) \tag{3}
\end{equation*}
$$

Assumins the function U to be sufficiently smooth in the interval (a, b) we can write the following approvimate solution (3)

$$
\begin{equation*}
U_{x}\left(t, x_{i}\right)=\sum a_{i j} U\left(t, z_{j}\right), \quad=1,2, \cdot, \quad \mathbb{N} \tag{4}
\end{equation*}
$$

Where, \mathbb{N} is the number of mesh points selected and $a_{i j}$ is the matrix of weightinz coefficients of order NXN. N is also inown as the order of differential ouadrature methoc. Substitutins equation (4) into equation (2), we get,

$$
\begin{array}{r}
U\left(t, x_{i}\right)=f\left(t, x_{i}, U\left(t, x_{i}\right), \sum_{j=1}^{\mathbb{N}} 氵_{i j} U\left(t, x_{i}\right)\right), \\
i=1,2, \quad . \quad ; N \quad \text { (5) } \tag{5}
\end{array}
$$

which is a set of \mathbb{N} orainary aifferential ecuations with initial conditions

$$
\begin{equation*}
U\left(0, x_{i}\right)=U^{0}\left(y_{i}\right), i=1,2, \cdot \cdot \cdot ; 1 T \tag{6}
\end{equation*}
$$

Thus, the solution of ecuation (2) can be obtained by solving the set of ordinary differential equations (5) with Enitial conaition (6). The boundary conditions for eon. (2) can be reauced to a set of aleseric eouations by using approximation (2) ane the result can be usec in orcier to eliminate two of the IV variables, $u\left(t, x_{i}\right), i=1,2, \ldots \ldots, K$ in ecuations (5). Thus, the solution is obtained by solving
 two functional values can, therefore, be evaluatê using the boundary conditions of the problem.

For approximation of higher oraer methous, the same icea can be extendeċ. Consiēerins equation (2) as a linear transformation of U, we can write

$$
\begin{equation*}
U_{X}=4 U \tag{7}
\end{equation*}
$$

Then, the second orcier cerivatives can be anprozimated as

$$
\begin{equation*}
U_{z x}=\left(U_{X}\right)_{X}=A(A U)=A^{2} U \tag{8}
\end{equation*}
$$

The hicher order derivatives can similerly be founa by Eterating the linear transformetion A. \#riting equation (8) in the sense of ecuation (4), we have,

$$
\begin{gather*}
U_{x \sim z}\left(t, x_{i}\right)=\sum_{k=1}^{\mathbb{N}} \sum_{j=1}^{\mathbb{N}} a_{i k} a_{n z j} U_{j}(t), \\
i=1,2, \ldots, \mathbb{N} \tag{9}
\end{gather*}
$$

Similerly,

$$
\begin{array}{r}
U_{W N X}\left(t, x_{i}\right)=\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{\Pi T} a_{i I} a_{I n} \sum_{n j} U_{j}(i), \\
i=1,2, \ldots, N \tag{10}
\end{array}
$$

and so on.
Therefore, it can be seen that success of differential quadrature method depencis largely upon the values of weighting coefficients $e_{i j}$'s. The method which have been used in the past bت゙ Bellmen ana his coworkers $(4,5,6)$ are discussed in the next section.

1. 3 Determination of "eichting Coefficients $a_{i j}$'s 1.3.1 by analogy :nth the classical cuacirature case

The coefficients a a_{j} 's in the approximation,

$$
U_{z}\left(x_{i}\right)=\sum_{i=1}^{T} \varepsilon_{i j} U\left(x_{i}\right), \quad i=1,2, \ldots, \cdot, N
$$

can be easily determine a by analogy vi. th the classical cuadratore case which demands that ecuation (2) be exact for all polynomials of degree less than or equal to (N-I). Considering the test function,

$$
\begin{equation*}
S_{1}(x)=x^{r}, \quad k=1,2, \cdots, \cdots, N \tag{12}
\end{equation*}
$$

For arbitrary points $x_{i}, i=1,2$, ,N this leads to a set of linear algebric equations

$$
\begin{array}{r}
\sum_{j=1}^{N} a_{i j} \pi_{j}^{1-1}=(k-1) z_{i}^{k-1}, k=1,2, \cdot \cdots, N \tag{13}\\
i=1,2, \cdots, N
\end{array}
$$

Thus, choosing \mathbb{N} end $x_{i}, i=1,2$, . . . N the values of the $\because e i-h t i n s$ coefficients $\varepsilon_{i j}$'s cen be uniquely detemineä.
1.3.2 By analogy with Lagrange's interpolation formula

Instead of solving a set of algebric equations in the previous case, the coefficients $a_{i j}$ 'e can also be determined by properly selecting x_{i} 's i.e. if we consider x to be the root of shifted Laçencire polynomial of degree N^{*}, $D_{H^{*}}^{*}(x)$ with orthogonality range of $(0,1)$, the legendre polynomial $I_{\text {N* }}(:=)$ being えefineć as

$$
\begin{equation*}
Z_{N}{ }_{n}(x)=P_{N}(1-2 x) \tag{14}
\end{equation*}
$$

By analogy with lasrance's interpolation formula the trial function is taken of the form,

$$
\begin{equation*}
E_{2}(x)=I_{N} *(x) /\left[\left(x-x_{k}\right) P_{1 H^{*}},\left(x_{k}\right)\right] \tag{15}
\end{equation*}
$$

 be a polynomial of cesuee (N-1) such that

$$
\begin{align*}
s_{1:}\left(x_{j}\right)=\widetilde{E}_{1: j}, \quad k & =1,2, \ldots, \mathbb{K} \\
j & =1,2, \ldots, \mathbb{N} \tag{16}
\end{align*}
$$

Assuming that the equation,

$$
\begin{equation*}
U_{z i}\left(x_{i}\right)=\sum_{j=i}^{M} a_{i j} U\left(x_{j}\right), i=I, 2, \ldots, \quad, 17 \tag{17}
\end{equation*}
$$

is exact for $U(x)=\varepsilon_{g}(x)$, we have

$$
\begin{equation*}
a_{i!}=\frac{P_{N^{*}}{ }^{\prime}\left(z_{2}\right)}{\left(x_{i}-x_{V K}\right) P_{N^{*}}\left(x_{2 x}\right)} \tag{18}
\end{equation*}
$$

For $i=1=$ we vas the hospital rule and the fact that [:* ${ }^{*}\left(y^{\prime}\right)$ satizies the differential equation
mich gives,

$$
\begin{equation*}
c_{n z}=\left(1-2 x_{n}\right) /\left[2 x_{1-}\left(x_{1}-1\right)\right] \tag{20}
\end{equation*}
$$

Thus the weichtinc coefficients $\mathrm{a}_{i j}$'s can bs calculated by equation (18) and (20).

A better approach to the determination of meichtins coefficients is given by smoothening the data. Saline approximation is one of the best methods in this respect. It is discussed in the following section.
1.4 Spline Approximation
1.4.1 Introduction

A spline in its simplest for can be understood from analogy with a craftsmen spline which is $=$ thin strip of wood or some other materiel use cu for fitting smooth curves passing through certain points. These splines are anchored in place by applying lead weights alec. "curls" at points along the spline and the spline can thus be mace to pass through ertain points by acjustine the position of these weights. Resardine this spline as a simple bean, the Sernoulli-Juler law can be stated as

$$
\begin{equation*}
M(: \pi)=\frac{\Xi I}{R(z)} \tag{21}
\end{equation*}
$$

where,
:. (:r) is the bencing moment; 3 is the Youncis monulus for the material of the beam; I is the geometric moment of Enertia rihich aepeneis on the cimensions of the beam and $R(x)$ is the radius of curvature for the curve formed. Assuring small deflection

$$
\begin{equation*}
R(x)=\frac{1}{\ln (x)} \tag{22}
\end{equation*}
$$

where, $y(x)$ aenotes the beam elastica.
In enelogy, the definition of a mathematical spline can be statca in the wowes of ihlberร, Nelson and Talsh (7) as follows:
"Whe mathematical spline is the result of replacing the draftian's spline by its elastica and approrimatins the latter by a piecerise cubic (normally a different cubic between each pair of aũjacent cucks) with certain ciiscountinuities of cerivatives permittea at the junction points (the ducks where two cubic join)".

A mathematical smine is continuous and has a continuous first derivative as well as a continuous second derivative. Thus, spline interpolating functions are a class of piecewise intervolatins polynomial functions satisfying certain continuity properities at the interpolating points. The idea of spline approximation was first pointed out in 1945 by Schoenbers (8). In 1949, Sard (9) generalised the classical approach by means of searching the best approximating function
of oraer \mathbb{N}, where $1 \leq \mathbb{N} \leq \mathbb{N}$ such that equation (I) is exact for polynomials of cegree ($\because \because-1$) or less. He then fired the (IT-:- cecrees of freeaom in cieteminine the coefficients by effectively recuirins thet

$$
\begin{equation*}
\int_{a}^{b} U^{T i}(x)^{2} a u=\text { mininum } \tag{23}
\end{equation*}
$$

Where, $U^{H}(x)$ is the $:^{\text {th }}$ aerivative of the aporomimatins function. Schoenbers (8) proved anong other properties that the spline interpolation formule is the "Eect" intervolation fomule in the sense of Sand.

The simplest line of spline function for interpolation is the cubic spline. It has already provec to be of great v.se in approximation theory and systen iâentification. Its proporties are $\overline{\text { Eiscussed }}$ in (7). The concept is extenked to curves that are composed of segments of polynomicls curves of an arbitrary dearee and the spline function so fitted are bown as nolynomial splines. The theory has also been applied to epproximation in two Zimensions. For the purpose of present Ciscussion we will only consièer the spline approximation as expliea to aifferential quáriature methoá.

1.4.2 1才etursi Splines

This is a subclass of solines used by Bellman, Tashef ane Vasubevan (3) for the evaluation of weighting coefficients in equation (4). Natural spline of aesree (2n-1) is ciefined
by the followins condition.
i) S is a nolynomial of ciesmee $2 \pi-1$ in each interval $\left(x_{i}, x_{i+1}\right)$, $i=1,2, . . \quad . \quad, N-1$.
ii) \mathfrak{Z} is a polynomial of aegree $\mathbb{I}-1$ outside the region (a, b). This is the bounazary condition recuirement.
iii) $Z, Z^{\prime}, \ldots ., S^{(2 \pi-2)}$ are continuous at $x_{1}, z_{2}, \ldots \ldots, x_{N}$ iv) $S\left(x_{i}\right)=u\left(x_{i}\right)$ Ior $i=1,2$, . . . , N.

An ecuivalent aezinition in the sense of Schoenbers is siven by
i) $\int_{\varepsilon}^{b} s^{\pi}(x){ }^{2} z \pi$ exists end is minimised subject to the followins ti:o conaittions.
ii) $S, s^{1}, \ldots, \tilde{i}^{(i-1)}$ are continuous in $(\Omega, 0)$ iii) $S\left(x_{i}\right)=v\left(x_{i}\right), i=1,2, \ldots \ldots, I T$

Both the above 玉efinitions of spline unicuely suecify function $S(z)$ on the interval (a, b). As can be seen these functions have strons convergence properties and for this reason, these can be effectively employea in the approzimate nrocess of internolation, intesration and differentiation.
1.4.3 Carainal Solino

Terainal soline is also callea "funciamental spline" and is a spline for minich exactly one ciefinins value is one anc 2II others are zero i.e. carc̄inal spline is a natumal spline function :ith the internolating concitions,

$$
\begin{equation*}
c_{i}\left(z_{j}\right)=\delta_{i j}, \quad i=1,2, \ldots, \ldots \tag{24}
\end{equation*}
$$

consiaer cubic spline ank $: \bar{u}=$? , then the netural spline function $S(x)$ wich intervolates $u(: 艹)$ can be expresseã as

$$
\begin{equation*}
S(x)=\sum_{i=1}^{N} U\left(x_{i}\right) c_{i}(x) \tag{25}
\end{equation*}
$$

The ambitrany function $U(x)$ can be approximated as

$$
\begin{equation*}
U(z)=\sum_{i=1}^{\pi} U\left(z_{i}\right) c_{i}(x) \tag{26}
\end{equation*}
$$

How, by operating with y on the function $S(x)$ of ecuation (25), \%e geむ

$$
\begin{equation*}
I S(x)=I \sum_{i=1}^{N} U\left(x_{i}\right) \quad c_{i}(x) \tag{27}
\end{equation*}
$$

Since $U\left(\pi_{\underline{i}}\right)$ is given for a particuler value of x_{i}, the oporator I can be taicen insiáe the sumation and therefore, $e c^{n}(27)$ con be written as

$$
\begin{align*}
I S(z) & =\sum_{i=1}^{N} U\left(z_{i}\right) I C_{i}(z) \\
& =\sum_{i=1}^{N}\left(I c_{i}(z)\right) U\left(z_{i}\right) \tag{28}
\end{align*}
$$

comparing ecuation (28) :ith ecuation (I),

$$
\begin{equation*}
\dot{A}_{i}(z)=I C_{i}(: n) \tag{29}
\end{equation*}
$$

The rrocedure can be enolied to aetemine the weighting coefficients of aifferential cuadrature methoa as follows:
1.4.4 Computational Scheme for Veighting Coefficionts $\alpha_{i j}$'s The complete set of carainal splines which spen the

Whole space aepenzes on the boundary conditions of the problem. set us assume that the bouncer conえ̇tions of the problem under consideration ere loom in the form

$$
\begin{equation*}
\left.\frac{\partial U(x)}{\partial x} \right\rvert\, x_{i}=x_{i}=b_{I} \tag{30}
\end{equation*}
$$

añ,

$$
\begin{equation*}
\left.\frac{\partial U(z)}{\partial \pi} \right\rvert\, \quad:=: \pi=b_{2} \tag{BI}
\end{equation*}
$$

Where the function $U(z)$ is approximated at the points x_{1}, z_{2}, , "N using the anzroximation

$$
\begin{equation*}
\frac{\partial U\left(z_{i}\right)}{\partial Z} \cong \sum_{j=1}^{N} z_{i j} U\left(z_{j}\right), \quad i=1,2, \cdot \operatorname{c}, \pi \tag{32}
\end{equation*}
$$

Jefinine a vector Y as

$$
\begin{equation*}
\bar{I}=\left(U_{i}{ }^{\prime}, U_{1}, U_{2}, \ldots, U_{I T}, U_{1 i}^{\prime}\right) \tag{33}
\end{equation*}
$$

where,

$$
\begin{align*}
& \left.U_{i}^{\prime}=\frac{U(z)}{Z} \right\rvert\, X_{I} \tag{34}\\
& \left.U_{N_{N}}^{\prime}=\frac{U(x)}{Z} \right\rvert\, \quad X=x_{N N} \tag{35}
\end{align*}
$$

Then, the $(I+2)$ cardinal splines which completely span the space are given as

$$
\begin{array}{ll}
C_{i}\left(z_{j}\right)=\delta_{i j} ; & C_{i}^{\prime}\left(z_{1}\right)=c_{2}^{\prime}\left(x_{\mathbb{N}}\right)=0 \\
C_{0}\left(z_{j}\right)=0 ; & c_{0}^{\prime}\left(x_{j}\right)=\delta_{i j} \\
C_{Y i+j}\left(x_{j}\right)=0 ; & C_{N i+1}\left(z_{j}\right)=\delta_{1 i j}
\end{array}
$$

for

$$
\begin{align*}
& i=1,2, \cdots \cdot \cdots, N \\
& j=1,2, \cdots \cdots, N \tag{35}
\end{align*}
$$

where $\delta_{i j}$ is the monomer delta lefinod as

$$
\begin{array}{rr}
\delta_{i j}=I \quad \text { for } i=j \tag{37}\\
0=0 & \text { otherwise }
\end{array}
$$

The spline interpolating function here is

$$
\begin{equation*}
S(x)=\sum_{i=1}^{\pi} U\left(x_{i}\right) c_{i}(x)+U_{1}{ }^{\prime} C_{0}(x)+U_{2}^{\prime} c_{1++1}(x) \tag{38}
\end{equation*}
$$

Representing the $\mathrm{H}+2$ elements of Y as $\underline{Y}_{i} ' s, i=0, I, 2$,
 $i=0$, 1, Nit eçustion (38) cm be written as

$$
\begin{equation*}
S(x)=\sum_{i=1}^{1+1} y_{i} J_{i}(x) \tag{39}
\end{equation*}
$$

Moi:, operating $S(x)$ by I, we get

$$
\begin{equation*}
I S(x)=\sum_{i=0}^{N+1}\left[I C_{i}(x)\right] v_{i} \tag{40}
\end{equation*}
$$

comparison of equation (40) with equation (4) gives $E_{i j}=\left[I C_{i}(x)\right]_{x=x_{j}} i, i=0,1, \varepsilon, \ldots, 1 \pi+1$

Similarly, if the boundary conditions are defined as

$$
\begin{align*}
& \left.\frac{\partial^{2} U(x)}{\partial x^{2}}\right|_{x=x_{0}}=B_{1} \tag{42}\\
& \left.\frac{\partial^{2} U(x)}{\partial x^{2}}\right|_{x=x_{\mathbb{N}}}=B_{2} \tag{43}
\end{align*}
$$

the complete set of cardinal splines over the whole space can be defined as

$$
c_{i}\left(x_{12}\right)=\delta_{i j} ; \quad c_{i} \prime \prime\left(x_{i}\right)=c_{i} \prime \prime\left(x_{N}\right)=0
$$

$$
\begin{align*}
& C_{0}\left(x_{j}\right)=0 ; \quad C_{0}{ }^{\prime \prime}\left(x_{j}\right)=\delta_{i j} \\
& C_{\mathbb{N}+1}\left(\pi_{j}\right)=0 ; \quad C_{N+1}\left(\pi_{j}\right)=\delta_{\mathbb{N} j} \\
& i=1,2, \cdots \cdots, N \\
& j=1,2, \cdot \cdots, \ldots \tag{44}
\end{align*}
$$

The weighting coefficients can be determined in a similar way as in the case of first order derivatives.

> I.4.5 Construction of cubic spline using raw àetz
A. cubic spline in the interval (0,1) is constructed by conziederins the $\mathbb{N}+1$ mesh points $z_{0}, x_{1}, \ldots . ., H_{\mathbb{N}}$ in the interval (0,1) such that

$$
\begin{equation*}
0=x_{0}<x_{1}<x_{2}<\cdots \cdots<x_{1}=b \tag{45}
\end{equation*}
$$

with each value of y_{1} is associated a data point y_{i} finch is assured to be given or 1 mom. Then the spline $S(x)$ with respect to interval 0 to b should have the following properties i) S (i) is continuous, together with its first and second derivatives on ($0 \leq \pi \leq b$)
ii) s (: is cubic polynomial within each subinterval

$$
x_{i-1}<x<x_{1}, \quad i=1,2, \ldots, N
$$

Analytically, the spline can be represented over each sub-interval $\left(x_{i-1}, x_{i}\right)$ as

$$
\begin{equation*}
S^{\prime \prime}(\pi)=\ddot{n}_{i-1} \frac{\left(\pi_{i}-x\right)}{\hat{h}_{i}}+\tilde{n}_{i} \frac{\left(x-x_{i}-1\right)}{\Lambda_{i}} \tag{4,6}
\end{equation*}
$$

Interratins equation (45) trice and evaluating the
constants of integration, we obtain

$$
\begin{align*}
& +\left(z_{i}-\frac{z_{i} n_{i}^{2}}{b}\right) \frac{\left(\pi-x_{i-1}\right)}{h_{i}} \tag{47}
\end{align*}
$$

From equation (46) and (47), it can be seen that $S(x)$ and $S^{\prime \prime}(x)$ are continuous on $(0, i)$. The continuity of $S(x)$ at z_{i} requires

$$
\begin{align*}
\frac{n_{i}}{v} \ddot{z}_{i-1} & +\frac{n_{i}+n_{i+1}}{} z_{i}+\frac{n_{i+1}}{5} z_{i+1} \\
& =\frac{v_{i+1}-y_{i}}{n_{i+1}}-\frac{v_{i}-y_{i-1}}{n_{i}} \tag{48}
\end{align*}
$$

1.ட.5.I Computational Scheme

From equation (47), it is clear that calculation of spline $\mathbb{S}(x)$ recuires the calculation of moments $\mathbb{N}_{i}(x), i=0$, 1, 2, ,IH. This is carried out as follows.

Step I. Define and Calculate the following parameters.

$$
\begin{align*}
& c_{i}=\frac{h_{i+1}}{h_{i}+h_{i+1}} \\
& c_{i}=1-\sigma_{i} \\
& c_{i}=\frac{6\left[\left(\mathbb{v}_{i+1}-y_{i}\right) / h_{i+1}-\left(v_{i}-y_{i-1}\right) / h_{i}\right]}{h_{i}+h_{i+1}} \\
& i=0,1,2, \ldots, \ldots \tag{49}
\end{align*}
$$

Step S. Initialize $Q_{0}=0, U_{0}=0$

Sten 3. Let $E_{2}=2+e_{2} \cdot e_{1=-1}$
then calculate $\mathrm{Q}_{1}=-\mathrm{C}_{\mathrm{k}} / \mathrm{P}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots, \mathrm{~N}$
$\sin \bar{a}$

Sten 4. The moments X_{i} can then be calculated usins the followins soustions:

Thus, the spline can be detemine usins ecuation (47). Mheoreticel discussion for the above alsorithm is given in (7) $\min (10)$.
1.5 concluãinz Remarls

Differential vacirature methoc coulc prove to be a very uceful tool for the solution of non-linear partial えifferential seuations since it yrovides approximation to partial cerivatives in terms of functional values. Noreover, it srovizes a simpler way of conversion of partiel differential ecuations to orcinamy aifferential ecuations. In most of the cases bouncary conaitions are reducible to simule aIsebraic ecuations. The method is anvlied to the solution

$$
\begin{align*}
& H_{2}=\sum_{2} \cdots+1+U_{1}, \quad \pi=\mathbb{N}-1, \quad . \quad .2,1 \\
& \because_{0}=\frac{\left(\bar{\epsilon}_{0}-\tilde{c}_{0} \tilde{I}_{1}\right)}{2} \tag{53}
\end{align*}
$$

of yaclec boc roactor probloms as vell as to a simple case of movins bounaiary value problem. the results are discussed in the following chanters. For the evaluation of weightins coefficients, the method of splines enprozimation was found to be too involvec in methematics and coule not be experimenteā vith in the prescnt stuay. therefore, the weighting coefficiont for the aifferential quacraturo arproaimation are evaluatac usins the mnalos with the classical ouacreture case.

Cindmae II

DIFFコMZIMIAS QU:DNATURE AND TRE ISOTHDRKA REAOMOR TITE AVIAL TIMING

2.1 Introcuction

To illustrate the method of previous chanter, let us consicer the case of a chemical reactor, tubuler in form and which is filloc. with a packinc material. Such a reactor is
 place inside the reactor is of the form

$$
\begin{equation*}
A+A \longrightarrow 2 B \tag{1}
\end{equation*}
$$

For tho sole of simplicity, we consicer the case of an isothemmel reactor only in this chapter. The ecuations for the aciazbstic case will be dealt with in the followins chayter. Assumina that the packing meterial has no influence on the reaction taking place insiãe the reactor except its contribution to the arial mixins. The transient ecuetions for this type of raactor can be siven as

$$
\begin{equation*}
\frac{I}{I_{c}} \frac{\partial^{2} D}{\partial z^{2}}-\frac{\partial D}{\partial z}-r v^{2}=\frac{\partial D}{\partial t} \tag{2}
\end{equation*}
$$

where p is the particl nressure of reactent A in the interstitial fluia; z is the dimensionless reactor length; t is the aimensionless time, and $\mathbb{N}_{p e}$ and r are the peclet group anc the reactor rate sroup respectively defined as follows

$$
\begin{equation*}
I_{D e}=\frac{\partial n}{\partial} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \pi=\frac{1 z}{v} \tag{4}\\
& \pi=\frac{x}{2 x} \tag{5}\\
& \pi=0 \frac{x}{2 y} \tag{6}
\end{align*}
$$

Where $D y$ is the average cismeter of the packins particle v is the everage interstitial velocity, D and k are respectiveIy the effective axial diffusion constent and the chemical rate constant, and x an θ beinz the reactor length variable end time variable respectively. The boundary conditions for $p(a, t)=r e$

$$
\begin{align*}
D e=D(0, t)-\frac{I}{D e} \frac{\partial P}{\partial Z}, & a^{t} z=0, t>0 \tag{7}\\
\frac{\partial I}{\partial Z}=0 & a^{t} z=Z_{f}, t>0 \tag{8}
\end{align*}
$$

Where z_{A} is the total Cimensionless lensth of the reactor anz D_{e} is the concontration of A before enterins the reactor. The initial condition for $p(s, t)$ is

$$
\begin{equation*}
p(z, 0)=\nu^{0}, \quad a^{t} \quad t=0,0<z<a_{f} \tag{9}
\end{equation*}
$$

The EDove problex was solved by Lee (15) usins the generalized lieriton-azphson method. The scme nuavrical àta was used in the present context for the sake of comparison oミ resul̇s.
2.2 Differential Quadrature epproximation:

Usinc approwimation (1) and (2) of Chapter I, the yartial ¿erivetives of n can be represented as

$$
\begin{equation*}
\frac{\partial P_{i}(t)}{\partial z}=\sum_{j=1}^{\mathbb{N}} e_{i j} P_{j}(t), \text { for } i=1,2, \ldots, \ldots \tag{10}
\end{equation*}
$$

Where $I N$ is the number of selected points $Z_{1} Z_{2}$, \cdot, Z_{N} and $\varepsilon_{i j}$'s are the weighting coefficients and the notation $P_{j}(t)$ refers to the function I value of $p(z, t)$ at $Z=z{ }_{j}$. Similarly, for the second order derivatives of p

$$
\frac{\partial^{2} \Phi_{i}(t)}{\partial z^{2}}=\sum_{K=1}^{N T} \sum_{i=1}^{I T} e_{i K i} E_{K j} P_{j}(t), i=1,2, \ldots, N
$$

Using (IO) an (11), ecuation (2) becomes

$$
\begin{align*}
& \sum_{\sum_{p e}}^{N} \sum_{i=1}^{N} a_{i j} a_{12 j} p_{j}(t)-\sum_{j=1}^{N} a_{i j} I_{j}(t)-r P_{i}^{2}(t) \\
& =\frac{d I_{i}(t)}{\tilde{i} t}, i=1,2, \ldots, N \quad \text { (12) } \tag{12}
\end{align*}
$$

If the points z_{2}, z_{2}, . . . , z_{17} are so selected that $J_{1}=0$ and $J_{11}=Z_{i}$ the boundary conditions (7) and (3) can be represented as

$$
\begin{equation*}
I_{e}=I_{j}(t)-\frac{1}{I_{D e}} \sum_{j=1}^{M} \varepsilon_{i j} I_{j}(t) \quad, \quad Z=\bar{L}_{1}=0, t>0 \tag{In}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{1 \pi} z_{i n j} I_{j}(t)=0, \quad E=z_{K i}=z_{f}, \quad t>0 \tag{14}
\end{equation*}
$$

ana, the initial condition is

$$
\begin{equation*}
P_{i}(0)=P_{i}^{0}, \quad i=1,2, \ldots, \ldots \tag{15}
\end{equation*}
$$

Equation (12) represents a set of it oräinary えifferenisl equations in if variables $I_{1}(t), D_{2}(2), \cdots, D_{H}(t)$ subject to the boundary conditions (13) ane (14) and the
initiai conäition Given by ecuation (15). Jquations (13) and (14) are oreinary alacoraic ecuations in $\because \because$ variables one therefore, can be solbea simultaneously for two varicibles say, $E_{1}(t)$ and $E_{2}(t)$ in terms of other (N-2) variables i.e. using (13) and (14), :Ue cen obtain

$$
\begin{align*}
& D_{1}(t)=I_{1}\left(t, I_{3}, I_{4}, \cdots, I_{11}\right) \tag{15}\\
& I_{2}(t)=I_{2}\left(t, P_{3}, I_{4}, \cdots, I_{1}\right) \tag{17}
\end{align*}
$$

Suostituting equations (16) ane (17) into eçuaiion (12), we can obtain a sot of ($\mathrm{F}-\mathrm{Z}$) orainary $\dot{\text { afferential equations }}$ in ($\mathrm{F}-2$) variables

$$
\begin{array}{r}
\frac{\sum_{i}(t)}{c_{i}}=\tilde{i}_{i}\left(t, I_{3}, I_{4}, \ldots, E_{M}\right) \tag{18}\\
i=3,4, \ldots, N
\end{array}
$$

Jauations (18) can be solve with the given initial conQitions (15). Fourth orier Rance-Zutta methoi was used for this purpose in the reresent menelysis.
2.3 Computational Proceüure

Step I. Sclect N nopropriate noints between 0 ani Z_{f} representing the values of $\mathrm{J}_{1}, \mathrm{~J}_{2}$, . . . Σ_{N} such that $\mathrm{a}_{1}=0$, $Z_{Y H}=Z_{f}$.

Sten 2. Calculate the weignting coefficients $z_{i j}$'s by solving the set of sisebraic equations

Step 3. To start, let $t=0$. Initialize D_{1}, D_{2}, . . . , P_{N} using equations (15). Let $k=1$.

Step 4. Set $t_{1 g}=t_{x}-1+1 t$. Solve equations (13) and (14) for $P_{1}(1)$ and $E_{2}(t)$ using the values of $I_{3}(t), P_{4}(t), \cdots$, $E_{\mathrm{N}}(t)$.

Step 5. Calculate the coefficients for Range-Kutta method as

$$
\begin{aligned}
& m_{i 1}=f_{i}\left(E_{3}\left(t_{1}\right), D_{4}\left(t_{1 k}\right), \cdots, D_{17}\left(t_{21}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& m_{i 3}=z_{i}\left(I_{3}\left(t_{12}\right)+\frac{1}{2} m_{32}, E_{4}\left(t_{22}\right)+\frac{1}{2} m_{42}, \ldots, E_{N T}\left(t_{15}\right)+\frac{1}{2} m_{N 2}\right) \\
& m_{i 4}=f_{i}\left(P_{3}\left(t_{12}\right)+m_{33}, P_{4}\left(t_{K K}\right)+m_{L 3}, \ldots, P_{17}\left(t_{15}\right)+m_{\mathrm{IT}}\right) \\
& i=3,4, \ldots \text {. . , } \mathrm{N} \tag{20}
\end{align*}
$$

Ster 6. $\sum_{i}\left(\dot{t}_{2}\right)=\sum_{i}\left(t_{i-1}\right)+\frac{1}{6}\left(m_{i 1}+2 m_{i}+2 m_{i 3}+m_{i 4}\right)$,

$$
\begin{equation*}
i=3,4, \cdots \cdots, \mathbb{N} \tag{RI}
\end{equation*}
$$

Step 7. Set $k=\mathfrak{r}+1$. once repeat stan 4 through 7 til a steaciy state is reached.
2.4 Numerical Results

The following numerical data was used for the problem

$$
\begin{array}{ll}
D_{e}=0.07 ; & Z_{f}=48 \\
I_{E 0}=20 ; & t_{f}=80 \\
r=1.0 ; & P_{i}(0)=P_{i}^{0}=0
\end{array}
$$

$$
t=0.2 ; \quad i=I, 2, \ldots, \ldots, I
$$

Three different experiments were conducted usins $7^{\text {th }}$, $9^{\text {th }}$, ance $11^{\text {th }}$ orcer äfferential cuacirature anproximation. The Escumed points for the three cases are as folloris:
a) $\mathrm{K}=7 ; Z_{1}=0, Z_{2}=5, Z_{3}=10, Z_{4}=20, \Sigma_{5}=30, Z_{6}=40, Z_{7}=43$
b) $I=9 ; Z_{2}=0, Z_{2}=2, Z_{3}=5, Z_{4}=6, Z_{5}=10, Z_{6}=20, Z_{7}=30$,

$$
z_{8}=40, \quad Z_{0}=49
$$

 $z_{8}=20, z_{9}=30, z_{10}=40, z_{11}=48$

Whe results from the experiments are shom in taicles 2.1, 2.2,2.3 for cases (a), (b) and (c) respectively. Fisures 2.1, 2.2, anz 2.3 show the respective plots of partial pressure in the reactor versus the cimensionless reactor lengih. The results of the finite cifference metho ${ }^{\circ}$ (20) are plotted in fizure 2.4.
2.5 Discussion

As may be seen, the results from the differential auadrature method are quite encouraginz. The results from the seventh order differential quadrature approximation differ sligintly from those of finite difference method but those from aifferential cuacrature method of order 9 very closely arree with the results of the finite difference methoc. However, finite $\bar{i} f f e r e n c e$ methoえ recuires functionel evaluation
for about 480 Eifferent points. Thus, besiaes the simplicity of differential ouecrature method, major adivantase is obtained in computation time winch is much less then that reouired by finite difference methoc. Only about helf a minute of computation time is recuirec by $9^{\text {th }}$ order differentiel cuadrature. The result from the $11^{\text {th }}$ orcer methoe are similar to those from $9^{\text {th }}$ oraer but recuired more computation time. Noreover, instability problems arises with hicher oràer methois. Thus, it cen be concluced that jifferential quacirature of orāer 9 is sooc enough for the solution of the nokel of Isothermal Reactor moãel vith axiel mirine.

Table 2.1

Isothermal Reactor with axial mixing by $7^{\text {tin }}$ order Differential Quadrature

T	$P(t, 0)$	$P(t, 5)$	$P(t, 10)$	$P(t, 20)$	$P(t, 30)$	$P(t, 40)$) $P(t, 48)$
0	0	0	0	0	0	0	0
5	0.0651	0.0280	0.0094	-0.0003	0.0001	-0.0000	0.0000
10	0.0679	0.0451	0.0241	0.0024	-0.0003	0.0001	-0.0000
20	0.0687	0.0568	0.0447	0.0197	0.0034	-0.0003	0.0020
30	0.0675	0.0502	0.0420	0.0308	0.0166	0.0039	-0.0000
40	0.0625	0.0292	0.0319	0.0315	0.0222	0.0158	0.0030
50	0.0488	-0.0401	-0.0149	0.0283	0.0208	0.0219	0.0095
60	-0.0026	-0.3410	-0.2712	-0.0229	0.0196	0.0199	0.0142

t	$P(t, 0)$	$P(t, 2)$	$P(t, 5)$	$P(t, 6)$	$P(t, 10)$	$P(t, 20)$	$P(t, 30)$	$P(t, 40)$	$P(t, 48)$
0	0	0	0	0	0				
5	0.0681	0.0535	0.0256	0.0181	0.0021	0.0009	-0.0011	0.0012	-0.0007
10	0.0688	0.0644	0.0536	0.0484	0.0245	-0.0008	0.0009	-0.0010	0.0006
20	0.0683	0.0604	0.0496	0.0470	0.0405	0.0206	-0.0003	0.0015	-0.0008
30	0.0675	0.0594	0.0517	0.0496	0.0419	0.0288	0.0168	0.0011	0.0002
40	0.0679	0.0604	0.0513	0.0488	0.0408	0.0298	0.0222	0.0144	0.0019
50	0.0675	0.0591	0.0506	0.0484	0.0411	0.0297	0.0222	0.0202	0.0091
60	0.0676	0.0594	0.0506	0.0483	0.0406	0.0297	0.0222	0.0200	0.0136
70	0.0677	0.0597	0.0509	0.0485	0.0408	0.0294	0.0225	0.0194	0.0149
80	0.0677	0.0598	0.0510	0.0487	0.0410	0.0294	0.0225	0.0192	0.0151

		Isothermal Reactor with			$\begin{aligned} & \text { Table } 2.3 \\ & \text { Axial Mixing by } 11^{\text {th }} \text { or } \end{aligned}$			Diff	rential	Quadrat	
t	$p(t, 0)$	$p(t, 2)$	$p(t, 5)$	$p(t, 6)$	$p(t, 8)$	$p(t, 10)$	$p(t, 15)$	$p(t, 20)$	$p(t, 30)$	$p(t, 40)$	$p(t, 48)$
0	0	0	0	0	0	0	0	0	0	0	0
5	0.0724	0.0619	0.0259	0.0170	0.0059	0.0014	-0.0000	0.0000	-0.0016	0.0055	-0.0055
10	0.0634	0.0533	0.0530	0.0500	0.0392	0.0255	0.0034	0.0003	0.0006	-0.0042	0.0031
20	0.0655	0.0591	0.0560	0.0531	0.0462	0.0402	0.0322	0.0203	0.0031	-0.0097	0.0080
30	0.0688	0.0652	0.0549	0.0508	0.0437	0.0392	0.0347	0.0292	0.0184	-0.0049	0.0052
40	0.0701	0.0653	0.0516	0.0478	0.0427	0.0400	0.0351	0.0291	0.0230	0.0138	0.0008
50	0.0694	0.0619	0.0494	0.0468	0.0434	0.0411	0.0347	0.0291	0.0219	0.0224	0.0049
60	0.0680	0.0588	0.0493	0.0474	0.0446	0.0418	0.0343	0.0293	0.0216	0.0227	0.0087
70	0.0670	0.0577	0.0504	0.0487	0.0454	0.0418	0.0340	0.0295	0.0221	0.0204	0.0118
80	0.0670	0.0585	0.0517	0.0496	0.0454	0.0414	0.0341	0.0296	0.0228	0.0183	0.0142

Isothermal keactor with Axial Mixing by $7^{\text {th }}$ order Differential Quadrature

$$
z_{i}=(0,5,10,20,30,40,48)
$$

Isothermal Keactor with Axial Mixing by $9^{\text {th }}$ order Differential Quadrature $Z_{i}=(0,2,5,6,10,20,30,40,48)$

Isothermal Keactor with Axial kixing by $11^{\text {th }}$ order Differential Quadrature $Z_{i}=(0,2,5,6,8,10,15,20,30,40,48)$

Isothermal Keactor with Axial Mixing by finite-Difference liethod

CHAPTER III

DIFFERENTIAL QUADRATURE AID THE ADIABATIC REACTOR "TH STEAL IITIIG

3.1 Introduction

A more general case of packed bed reactor is the one Where ensisy balance is also the criterion in addition to mess balance. Such is the case of an adiabatic reactor with axial mixing. The differential quadrature method of Ninapter I proved to be en effective tool to solve this problem for steady state line in the case of an isothermal reactor. Assuming the same chemical reaction nc the same role of the pacing material as in the case of an isothermal reactor, the equations representing the dynamics of an adiabatic reactor with axial mixing can be given as follows

$$
\begin{align*}
& \frac{1}{D_{e}} \frac{\partial^{2} P}{\partial Z^{2}}-\frac{\partial P}{\partial Z}-r_{0} p^{2} \exp (-\mathbb{R})=\frac{\partial P}{\partial t} \tag{1}\\
& \frac{1}{I_{e}} \frac{\partial^{2 T}}{\partial Z^{2}}-\frac{\partial T}{\partial Z}+C r_{0} p^{2} \exp (-\Xi / R T)=\frac{\partial T}{\partial t} \tag{2}
\end{align*}
$$

where,

$$
\begin{align*}
& r_{0}=\frac{D P r_{0}}{v} \tag{3}\\
& Q=\frac{H}{c_{f} P_{f}} \tag{4}
\end{align*}
$$

k_{0} frequency factor constant in the Arrinenious equation. ΔH Heat of the reaction.
cf Specific heat of the reaction mixture.
P_{f} Density of the reection mixture.
Other variables have the same meaning as in the case of the isothermal reactor. The mas axial diffusion co-efficient is assumed to be ecual to the thermal axial diffusion constant. The boundary conaitions for ecuation (I) and equation (2) are respectively,

$$
\begin{align*}
& P_{e}=P(0, t)-\frac{I}{F_{P e}} \frac{\partial I}{\partial Z}, \text { at } Z=0, t>0 \tag{5}\\
& \frac{\partial P}{\partial Z}=0 \quad \text { at } Z=Z_{f}, t>0 \tag{6}
\end{align*}
$$

anč,

$$
\begin{align*}
& T_{e}=T(0, t)-\frac{I}{F_{P e}} \frac{\partial T}{\partial Z}, \text { at } Z=0, t>0 \tag{7}\\
& \frac{\partial T}{\partial Z}=0 \quad \text { at } Z=Z_{f}, \quad t>0 \tag{8}
\end{align*}
$$

where, T_{e} represents the temperature of the reaction mixture before entering the reactor. The initial conditions for (1) anc (2) are

$$
\begin{align*}
& P(Z, 0)=I^{0}(Z), \text { at } 0<z<Z_{f}, t>0 \tag{9}\\
& T(Z, 0)=T^{0}(z), \text { at } 0<Z<Z_{f}, t>0 \tag{10}
\end{align*}
$$

The solution of the above problem was obtained by Liu añ Amunäson (16) using finite difference method and by Lee (15) using the generalized Nevion-Raphson method for the same numerical data. The results are show in figures 3.13 and 3.14.

The solution of this problem was obtained. using differential quadrature method following the procedure given in the next section.
3.2 Problem Formulation

By using equations (4) and (9) of Chapter I, the partial differential equations for the adiabatic reactor (equations (I) and (2), (5)-(10)) can be reduced to a set of $2 \mathbb{1}$ ordinary differential eçuation. Defining,

$$
\begin{aligned}
& P\left(Z_{i}, t\right)=I_{i}(t), i=1,2,3, \ldots, \cdots, \mathbb{N} \\
& T\left(Z_{i}, t\right)=\mathbb{T}_{i}(t), i=1,2,3, \ldots, \mathbb{N}
\end{aligned}
$$

Zçuations (1) ana (2) can be represented as

$$
\begin{align*}
& \left.\frac{I}{T_{P e}} \sum_{k=1}^{N} \sum_{j=1}^{N} a_{i k} a_{i: j} P_{j}(t)\right)-\sum_{j=1}^{N} a_{i j} P_{j}(t)- \\
& r_{0}\left(P_{i}(t)\right)^{2} \exp \left(-\sum_{T}\right)=\frac{P_{i}(t)}{i t}, i=1,2, \ldots, N \\
& \left.\frac{1}{\mathbb{N}_{D e}} \sum_{i=1}^{N} \sum_{j=1}^{1 \pi} a_{i k} a_{z j} \mathbb{T}_{j}(t)\right)-\sum_{j=1}^{N T} a_{i j} \prod_{j}(t)- \\
& =r_{0}\left(P_{i}(t)\right)^{2} \exp \left(-\frac{T}{T T}\right)=\frac{\bar{d} T_{i}(t)}{\bar{c} t}, i=1,2, \ldots, N T \tag{12}
\end{align*}
$$

Assuming $z_{1}=0$ and $z_{17}=Z_{f}$, the boundary conditions of the problem can be represented as

$$
\begin{equation*}
\left.I_{e}=I_{1}(t)-\frac{1}{N_{I e}} \sum_{j=1}^{N} \quad a_{i j} P_{j}(t)\right), \quad a i \quad Z=Z_{1}=0 t>0 \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{j=1}^{\mathbb{N}} a_{T: j} F_{j}(t)=0, \quad \text { at } Z=Z_{T H}=Z_{f}, \quad t>0 \quad \text { (14) } \tag{14}\\
& \left.T_{e}=T_{1}(t)-\frac{I}{T_{Q e e}} \sum_{j=1}^{N} \quad a_{i t} T_{j}(t)\right), \quad \text { at } Z=Z_{1}=0, \quad t>0 \tag{15}
\end{align*}
$$

$$
\begin{equation*}
\sum_{j=1}^{\mathbb{M}} \quad a_{I T j} T_{j}(t)=0, \quad \text { at } z=Z_{I T}=Z_{f}, t>0 \tag{15}
\end{equation*}
$$

which gives a set of four algebraic equations. Similarly, the initial conditions (9) and (10) can be represented as

$$
\begin{align*}
& I_{i}(z, 0)=P_{i}^{0}(z), i=1,2, \ldots \ldots, H>0 \tag{17}\\
& T_{i}(z, 0)=T_{i}^{0}(z), \quad i=1,2, \cdots, N, t>0 \tag{18}
\end{align*}
$$

The set of equations (II) an (I2) can be solved subject to boundary conditions (13)-(17) an ci initial conditions (18) and (19) by following the computational procedure as given below.
3.3 Computational Procedure

Step 1. Select if and $Z_{i}, i=1,2, \cdots, N, N$.
Step 2. Determine the weighting coefficients $a_{i j}, i=1,2$, , If an ${ }^{2} j=1,2$, . . . , il by using the selected α values of \mathbb{Z}_{i} end solving the set of following algebraic equations

$$
\begin{aligned}
& \sum_{i=1}^{M} a_{j}^{k-1} z_{i j}=(k-1) z_{i}^{k-2}, k=1,2, \cdots, N \\
& i=1,2, N
\end{aligned}
$$

Step 3. Solve equations (13)-(16) to obtain

$$
\begin{align*}
& P_{1}(t)=f_{1}\left(P_{3}, P_{4}, \ldots, P_{N}\right) \tag{20}\\
& P_{2}(t)=f_{2}\left(P_{3}, I_{4}, \cdots, P_{N}\right) \tag{21}\\
& T_{1}(t)=F_{1}\left(\mathbb{T}_{3}, \mathbb{T}_{4}, \cdots, \cdot, \mathbb{T}_{I T}\right) \tag{22}\\
& T_{2}(t)=F_{2}\left(\mathbb{T}_{3}, T_{4}, \cdots, T_{M}\right) \tag{23}
\end{align*}
$$

Step 4. Substituto equations (20)-(23) in (11) anā (12) to get a set of (2iN-K) orcinnery cifferontial equations

$$
\begin{array}{r}
\frac{\partial p_{i}(t)}{a t}=f_{i}^{\prime}\left(I_{3}, I_{4}, \ldots, F_{Y}, T_{i}\right), \\
i=3,4, \ldots, N \\
\frac{\partial T_{i}(t)}{\dot{a} t}=F_{i}^{\prime}\left(T_{3}, T_{4}, \ldots, T_{N}, I_{i}\right) \\
i=3,4, \ldots, N \tag{25}
\end{array}
$$

Step 5. Solve equations (24) anci (25) with initial conciitions given by ecuations (17) and (18).

Step 6. Calculate $I_{1}, E_{2}, T_{1}, T_{2}$, $\rangle 0$ by usins the results From step 5 and ecuations (20)-(23).

Step 7. Repeat stens 3-6 till a steaay stato is reached. 3.4 Iunerical Results

The numerical $ఓ a t a$ usec vas teken from that used by Iee (I5) añ also by Liu anà Amunaison (16) and is şiven belo ::

$$
D_{\epsilon}=0.07 \text { stu. } \quad ; \quad 3 / R=22,000^{\circ} R
$$

$$
\begin{array}{lll}
T_{e}=1250^{\circ} \mathrm{P} & ; & 0=0.1 \times 10^{4} 0_{2 / a t m} . \\
T_{e}=2.0 & ; & r_{0}=0.5 \times 10^{8}(\mathrm{~atm})^{-1} \\
t=0.2 & ; & z_{E}=48
\end{array}
$$

At $t=0$

$$
P^{0}(Z)=0 \quad ; \quad T^{0}(Z)=1270^{\circ} R
$$

A number of experiments were cone in once to analyse the behavior of these equations. The order of differential quadrature approximation used and the selected points in each case is given below:
a) $\mathbb{I}=7 ; z_{1}=0, z_{2}=5, z_{3}=10, z_{4}=20, z_{5}=30, z_{6}=40$,
$z_{7}=48$
b) $N=9 ; Z_{1}=0, z_{2}=2, Z_{3}=5, z_{4}=6, z_{5}=10, z_{6}=20$, $z_{7}=30, z_{8}=40, z_{9}=48$
c) $N=11 ; z_{1}=0, z_{2}=2, z_{3}=5, z_{4}=6, z_{5}=3, z_{6}=10$, $z_{7}=15, z_{8}=20, z_{9}=30, z_{10}=40, z_{11}=48$
a) $\mathbb{H}=9 ; z_{2}=0, z_{2}=0.5, z_{3}=1.0, z_{4}=5.0, z_{5}=10$, $z_{6}=20, z_{7}=30, z_{8}=40, z_{9}=48$
e) $N=9 ; Z_{1}=0, Z_{2}=0.1, Z_{3}=1.0, Z_{4}=5.0$,

$$
z_{5}=10, z_{6}=20, z_{7}=30, z_{8}=40, z_{0}=48
$$

f) $\mathrm{N}=12 ; z_{1}=0, Z_{2}=0.5, z_{3}=5, Z_{4}=10, z_{5}=15, Z_{5}=20$, $z_{7}=25, z_{8}=30, z_{0}=35, z_{10}=40, z_{11}=45, z_{12}=48$
e) $\mathrm{I}=12 ; Z_{2}=0, Z_{2}=0.5, Z_{3}=1, Z_{4}=5, Z_{5}=10, Z_{6}=15$, $z_{7}=20, z_{8}=25, z_{9}=30, Z_{10}=35, z_{11}=40$, $Z_{12}=48$
h) $\pi=9 ; \quad z_{1}=0, z_{2}=0.5, z_{3}=1, z_{4}=5, z_{5}=15, z_{6}=25$, $z_{7}=35, z_{8}=45, \quad z_{0}=40$,
i) $i=9 ; \quad \Sigma_{1}=0, z_{2}=0.8, \Sigma_{3}=2, \Xi_{4}=6, z_{5}=10, z_{6}=20$, $Z_{7}=30, \quad z_{8}=39, \quad Z_{9}=48$

The results froo experiments (3)-(e) and (i) are tabulated in tobles 3.1 - 3.12 respectively and the respective plots are show in fig. 3.1 - 3.12. The results of the approximation for the rest of the experiments were found to be cuite unstable and in the first few iterations only, the Iluctustions were high enough to exceed the overflow limits Of the computer. The result obtained from the finite difference method are glottod in fisures 3.13 anc 3.14.

3.5 Discussion

As \#ay be seen the same distribution of nove points as in the case of isothermal reactor, aic not prove to be eoually good here. In fact, the selection of node points plays a very important role in the case of adiabatic reactor. A seven point differenticl cuaçrature approximation was not founc̄ to be satisfactory. The results obtained by using $7^{\text {th }}$ orcer

Cifferentizl cuadrature methoci (fic. 3.1 anci 3.2) ão not agree with those from the finite difference method. Therefore, the number of points were increased to 9 in further experimentation. In emperiments (a)-(b) and (c), the initial boundary slope of the curve obtainea changes with time, as a result of which wide fluctustions are procucea as the reactor length increases. Experimentation was also done using $11^{\text {th }}$ order and $12^{\text {th }}$ oraer differential ouadrature method (exp. c, f, 5) but this was not foun to be of much help, aue to the increased rounc off and truncation errors in the computations. Therefore, the $g^{\text {th }}$ order differential quadrature method was used and the initial points were kept close to each other (cases d, e, anç i) in oraer to maintain a constant slope. Variations were consicierec based on the experimental judgement. Steady state conditions were best obtainec in experiment (i). The results obtained (fig. 3.11 and fig. 3.12) 玉むree very closely with those from the finite difference method (fig. 3.13 and fis. 3.14). The computation time reouired was found to be Iess than a minute while it requires several minutes of computation time by the finite aifference method. Thus, it cen be concluded that with the proper selection of node points, $9^{\text {th }}$ order cifferential ouairature methoa gives as accurate results as the finite difference method does.

Table 3.1

Transient in Partial Pressure, Adiabatic Reactor by $7^{\text {th }}$ order Differential quadrature

T	$P(t, 0)$	$P(t, 5)$	$P(t, 10)$	$P(t, 20)$	$P(t, 30)$	$P(t, 40)$	$P(t, 48)$
0	0	0	0	0	0	0	0
5	0.0649	0.0272	0.0093	-0.0003	0.0001	-0.0000	0.0000
10	0.0677	0.0435	0.0234	0.0023	-0.0003	0.0001	-0.0000
20	0.0677	0.0503	0.0382	0.0175	0.0032	-0.0002	0.0000
30	0.0664	0.0411	0.0299	0.0221	0.0136	0.0036	0.0000
40	0.0633	0.0292	0.0247	0.0190	0.0137	0.0124	0.0026
50	0.0564	-0.0050	0.0028	0.0191	0.0106	0.0128	0.0070

Table 3.2
Transient in Temperature, Adiabatic Reactor by $7^{\text {th }}$ order Differential Quadrature

| t | $T(t, 0)$ | $T(t, 5)$ | $T(t, 10)$ | $T(t, 20)$ | $T(t, 30)$ | $T(t, 40)$ | $T(t, 48)$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 |
| 5 | 1251.5 | 1262.4 | 1267.5 | 1270.1 | 1270.0 | 1270.0 | 1270.0 |
| 10 | 1251.1 | 1260.0 | 1265.3 | 1269.5 | 1270.0 | 1270.0 | 1270.0 |
| 20 | 1254.2 | 1277.7 | 1280.5 | 1271.7 | 1269.4 | 1270.0 | 1270.0 |
| 30 | 1254.5 | 1288.5 | 1302.9 | 1295.3 | 1276.4 | 1269.6 | 1270.0 |
| 40 | 1249.0 | 1259.9 | 1285.6 | 1314.3 | 1301.7 | 1279.9 | 1270.4 |
| 50 | 1223.5 | 1130.5 | 1191.6 | 1300.2 | 1314.5 | 1310.0 | 1278.9 |

Table 3.3
Transient in Partial Pressure, Adiabatic Reactor with Axial Mixing by $9^{\text {th }}$ order
Differential Quadrature

| t | $p(0, t)$ | $p(2, t)$ | $p(5, t)$ | $p(6, t)$ | $p(10, t)$ | $p(20, t)$ | $p(30, t)$ | $p(40, t)$ | $p(48, t)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0.0673 | 0.0511 | 0.0250 | 0.0178 | 0.0021 | 0.0009 | -0.0010 | 0.0012 | -0.0007 |
| 10 | 0.0677 | 0.0603 | 0.0487 | 0.0440 | 0.0229 | -0.0008 | 0.0009 | -0.0011 | 0.0006 |
| 20 | 0.0689 | 0.0617 | 0.0477 | 0.0434 | 0.0318 | 0.0170 | -0.0002 | 0.0012 | -0.0006 |
| 30 | 0.0659 | 0.0532 | 0.0433 | 0.0414 | 0.0356 | 0.0202 | 0.0123 | 0.0014 | -0.0001 |
| 40 | 0.0686 | 0.0622 | 0.0509 | 0.0471 | 0.0332 | 0.0202 | 0.0145 | 0.0098 | 0.0020 |
| 50 | 0.0666 | 0.0546 | 0.0427 | 0.0401 | 0.0338 | 0.0213 | 0.0127 | 0.0127 | 0.0051 |
| 60 | 0.0679 | 0.0608 | 0.0515 | 0.0484 | 0.0357 | 0.0197 | 0.0148 | 0.0101 | 0.0082 |
| 70 | 0.0675 | 0.0571 | 0.0443 | 0.0411 | 0.0334 | 0.0225 | 0.0129 | 0.0119 | 0.0074 |
| 80 | 0.0671 | 0.0582 | 0.0497 | 0.0471 | 0.0366 | 0.0200 | 0.0156 | 0.0100 | 0.0083 |

t	$p(t, 0)$	$p(t, 2)$	$p(t, 5)$	$p(t, 6)$	$p(t, 8)$	$p(t, 10)$	$p(t, 15)$	$p(t, 20)$	p(t,30)	$p(t, 40)$	$p(t, 48)$
0	0	0	0	0	0	0	0	0	0	0	0
5	0.0716	0.0620	0.0253	0.0167	0.0058	0.0014	0.0000	0.0000	-0.0014	0.0048	-0.0050
10	0.0629	0.0487	0.0460	0.0437	0.0351	0.0235	0.0033	0.0004	-0.0003	-0.0016	0.0005
20	0.0576	0.0393	0.0480	0.0488	0.0450	0.0376	0.0245	0.0166	0.0025	-0.0101	0.0061
30	0.0598	0.0634	0.0779	0.0718	0.0524	0.0350	0.0226	0.0213	0.0214	-0.0365	0.0283

Transient in Temperature, Adiabatic Reactor with Axial Mixing by $11^{\text {th }}$ orderDifferential Quadrature											
t	$T(t, 0)$	$T(t, 2)$	$T(t, 5)$	$T(t, 6)$	$T(t, 8)$	$T(t, 10)$	$T(t, 15)$	$T(t, 20)$	$T(t, 30)$	$T(t, 40)$	$T(t, 48)$
0	1270	1270	1270	1270	1270	1270	1270	1270	1270	1270	1270
5	1251.6	1257.3	1264.2	1266.0	1268.5	1269.6	1270.0	1270.1	1268.8	1268.8	1255.1
10	1253.1	1270.8	1280.3	1278.5	1273.1	1269.4	1269.4	1269.6	1272.1	1257.6	1258.6
20	1273.0	1317.1	1289.2	1277.3	1265.7	1270.1	1290.7	1278.0	1275.0	1252.3	1256.1
30	1298.1	1316.2	1211.4	1205.0	1229.7	1271.7	1308.0	1292.3	1263.8	1344.8	1152.3

$$
\text { Table } 3.8
$$

t	$T(t, 0)$	$T(t, 0.1)$	$T(t, 1)$	$T(t, 5)$	$T(t, 10)$	$T(t, 20)$	$T(t, 30)$	$T(t, 40)$	$T(t, 48)$
0	1270	1270	1270	1270	1270	1270	1270	1270	1270
5	1252.2	1252.7	1256.6	1266.6	1269.1	1274.0	1260.9	1307.4	1249.7
10	1251.7	1252.1	1256.4	1272.6	1270.2	1278.9	1252.4	1328.5	1248.5
20	1251.4	1251.7	1255.8	1275.8	1285.0	1298.1	1246.8	1336.0	1270.2
30	1251.4	1251.7	1255.8	1275.9	1285.4	1317.7	1271.5	1326.9	1285.3
40	1251.4	1251.8	1255.8	1275.6	1285.5	1319.1	1292.9	1349.9	1278.7
50	1251.3	1251.6	1255.7	1276.0	1285.2	1320.5	1292.9	1379.0	1299.7
60	1251.4	1251.6	1255.7	1275.9	1285.5	1320.5	1295.4	1377.1	1335.9
70	1251.5	1251.8	1255.9	1275.6	1285.5	1319.1	1297.1	1375.5	1335.0
80	1251.5	1251.8	1255.9	1275.6	1285.5	1318.2	1297.2	1375.5	1344.2

Table 3.9
Transient in Partial Pressure, Adiabatic Reactor with Axial Mixing by 9 th order
Differential Quadrature

| t | $\mathrm{p}(0, \mathrm{t})$ | $\mathrm{p}(0.5, \mathrm{t})$ | $\mathrm{p}(1, \mathrm{t})$ | $\mathrm{p}(5, \mathrm{t})$ | $\mathrm{p}(10, \mathrm{t})$ | $\mathrm{p}(20, \mathrm{t})$ | $\mathrm{p}(30, \mathrm{t})$ | $\mathrm{p}(40, \mathrm{t})$ | $\mathrm{p}(48, \mathrm{t})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0.0681 | 0.0656 | 0.0626 | 0.0283 | 0.0002 | 0.0023 | -0.0024 | 0.0023 | -0.0014 |
| 10 | 0.0672 | 0.0645 | 0.0622 | 0.0465 | 0.0236 | -0.0022 | 0.0019 | 0.0023 | 0.0007 |
| 20 | 0.0675 | 0.0650 | 0.0625 | 0.0466 | 0.0339 | 0.0163 | 0.0003 | 0.0002 | -0.0006 |
| 30 | 0.0674 | 0.0649 | 0.0625 | 0.0467 | 0.0337 | 0.0206 | 0.0122 | 0.0012 | -0.0007 |
| 40 | 0.0674 | 0.0649 | 0.0625 | 0.0467 | 0.0337 | 0.0203 | 0.0140 | 0.0101 | 0.0011 |
| 50 | 0.0674 | 0.0649 | 0.0625 | 0.0467 | 0.0337 | 0.0205 | 0.0134 | 0.0119 | 0.0057 |
| 60 | 0.0674 | 0.0649 | 0.0625 | 0.0467 | 0.0337 | 0.0204 | 0.0136 | 0.0109 | 0.0076 |
| 70 | 0.0674 | 0.0649 | 0.0625 | 0.0467 | 0.0337 | 0.0202 | 0.0137 | 0.0106 | 0.0078 |
| 80 | 0.0674 | 0.0649 | 0.0625 | 0.0467 | 0.0337 | 0.0203 | 0.0137 | 0.0106 | 0.0077 |

$$
\text { Table } 3.10
$$

Transient in Temperature, Adiabatic Reactor with Axial Mixing by $9^{\text {th }}$ order Differential Quadrature

| t | $T(t, 0)$ | $T(t, 0.5)$ | $T(t, 1)$ | $T(t, 5)$ | $T(t, 10)$ | $T(t, 20)$ | $T(t, 30)$ | $T(t, 40)$ | $T(t, 48)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 |
| 5 | 1252.6 | 1255.0 | 1257.2 | 1265.8 | 1269.9 | 1269.7 | 1270.3 | 1266.7 | 1267.1 |
| 10 | 1252.6 | 1255.0 | 1257.6 | 1270.9 | 1271.5 | 1268.6 | 1271.2 | 1264.7 | 1264.3 |
| 20 | 1252.7 | 1255.3 | 1257.9 | 1273.0 | 1286.1 | 1278.8 | 1268.0 | 1267.3 | 1258.9 |
| 30 | 1252.6 | 1255.1 | 1257.5 | 1273.3 | 1286.1 | 1297.1 | 1282.9 | 1264.9 | 1257.9 |
| 40 | 1252.6 | 1255.1 | 1257.5 | 1273.3 | 1286.3 | 1299.6 | 1301.8 | 1282.1 | 1258.4 |
| 50 | 1252.5 | 1255.0 | 1257.4 | 1273.5 | 1286.2 | 1300.5 | 1303.9 | 1305.2 | 1269.7 |
| 60 | 1252.4 | 1254.9 | 1257.3 | 1273.6 | 1286.2 | 1301.7 | 1303.4 | 1310.4 | 1287.1 |
| 70 | 1252.5 | 1255.0 | 1257.4 | 1273.5 | 1286.3 | 1301.2 | 1305.6 | 1307.3 | 1297.7 |
| 80 | 1252.6 | 1255.1 | 1257.5 | 1273.3 | 1286.3 | 1300.1 | 1306.7 | 1306.5 | 1299.6 |

$$
\text { Table } 3.11
$$

	Transient in Partial Pressure, Adiabatic Reactor with Axial Mixing by $9^{\text {th }}$ or Differential Quadrature								
t	$p(t, 0)$	$p(t, 0.8)$	$p(t, 2)$	$p(t, 6)$	$p(t, 10)$	$p(t, 20)$	$p(t, 30)$	$p(t, 39)$	$p(t, 48)$
0	0	0	0	0	0	0	0	0	0
5	0.0685	0.0645	0.0555	0.0191	0.0010	0.0017	-0.0018	0.0020	-0.0013
10	0.0669	0.0626	0.0576	0.0428	0.0234	-0.0017	0.0016	-0.0019	0.0012
20	0.0677	0.0640	0.0586	0.0438	0.0336	0.0164	0.0002	0.0002	-0.0002
30	0.0674	0.0634	0.0578	0.0432	0.0337	0.0206	0.0121	0.0024	-0.0001
40	0.0674	0.0633	0.0579	0.0437	0.0338	0.0201	0.0142	0.0105	0.0017
50	0.0674	0.0634	0.0579	0.0435	0.0337	0.0204	0.0134	0.0116	0.0057
60	0.0674	0.0634	0.0580	0.0437	0.0338	0.0203	0.0137	0.0109	0.0073
70	0.0674	0.0634	0.0580	0.0437	0.0338	0.0203	0.0137	0.0108	0.0076
80	0.0674	0.0634	0.0580	0.0436	0.0338	0.0204	0.0138	0.0108	0.0076

Table
ләрхо प7 6 Ка sufx

t	$T(t, 0)$	$T(t, 0.8)$	$T(t, 2)$	$T(t, 6)$	$T(t, 10)$	$T(t, 20)$	$T(t, 30)$	$T(t, 39)$	$T(t, 48)$
0	1270	1270	1270	1270	1270	1270	1270	1270	1270
5	1252.3	1255.6	1259.6	1266.6	1269.7	1270.0	1270.1	1269.8	1270.5
10	1253.4	1258.5	1264.4	1272.7	1270.4	1269.8	1270.2	1269.5	1270.9
20	1252.8	1256.8	1261.6	1274.5	1286.0	1279.8	1267.6	1272.0	1269.9
30	1252.3	1256.1	1261.9	1277.6	1286.8	1296.8	1284.5	1267.8	1272.3
40	1252.7	1256.8	1262.3	1276.1	1286.0	1300.3	1302.1	1288.6	1271.4
50	1252.3	1256.1	1261.5	1276.4	1286.4	1300.2	1305.3	1307.4	1283.1
60	1252.3	1255.9	1261.3	1275.9	1285.7	1301.1	1304.7	1311.0	1298.1
70	1252.4	1256.1	1261.5	1275.9	1285.6	1300.3	1306.0	1309.7	1307.3
80	1252.5	1256.5	1261.9	1276.2	1285.9	1299.5	1306.2	1309.5	1311.0

Hransient in Partial Pressure, Adiabatic Keactor with Axial Mixing by $7^{\text {th }}$ order Differential Quadrature

$$
z_{i}=(0,5,10,20,30,40,48)
$$

Transient in 'lemperature, Adiabatic Keactor with Axial Mixing by $7^{\text {th }}$ order Differential Quadrature

$$
Z_{i}=(0,5,10,20,30,40,48)
$$

Lransient in Partial Pressure, Adiabatic Reactor with Axial Mixing by $9^{\text {th }}$ order Differential Quadrature

$$
Z_{i}=(0,2,5,6,10,20,30,40,48)
$$

Iransient in 'l'emperature, Adiabatic Keactor with Axial Mixing by $y^{\text {th }}$ order Differential Quadrature

$$
Z_{i}=(0,2,5,6,10,20,30,40,48)
$$

Transient in Partial Fressure, Adiabatic Keactor with Axial Kixing by $11^{\text {th }}$ order Differential Quadrature

$$
z_{i}=(0,2,5,6,8,10,15,20,30,40,48)
$$

Mransient in 'lemperature, Adiabatic Reactor with Axial Mixing by $11^{\text {th }}$ order Differential Quadrature

$$
Z_{i}=(0,2,5,6,8,10,15,20,30,40,48)
$$

Transient in Partial Pressure, Adiabatic Keactor with Axial Mixing by $y^{\text {th }}$ order Differential Quadrature

$$
Z_{i}=(0,0.1,1.5,10,20,30,40,48)
$$

Transient in Temperature, Adiabatic Keactor with Axial uixing by $9^{\text {th }}$ order Differential Quadrature

$$
z_{i}=(0,0.1,1,5,10,20,30,40,48)
$$

Transient in Partial Pressure, Adiabatic Reactor with Axial Mixing by $9^{\text {th }}$ order Differential Quadrature

$$
z_{i}=(0,0.5,1,5,10,20,30,40,48)
$$

Iransient in 'Iemperature, Adiabajic Keactor with Axial Mixing by $9^{\text {th }}$ order Differential Quadrature

$$
Z_{i}=(0,0.5,1,5,10,20,30,40,48)
$$

'lransient in Partial Pressure, Adiadatic Reactor with Axial Mixing by $9^{\text {th }}$ order Differential Quadrature $Z_{i}=(0,0.8,2,6,10,20,30,39,48)$

Iransient in 'lemperature, Adiabatic Keactor with Axial Mixing by $y^{\text {th }}$ order Differential Quadrature

$$
Z_{i}=(0,0.8,2,6,10,20,30,39,48)
$$

Pransient in Partial Pressure, Adiabatic Reactor with Axial Mixing by Finite-Difference Method

H'ransient in Hemperature, Adiabatic keactor with Axial Mixing oy Finite-Difference Method


```
GHRPTDR IV
COHOLUSIONS
```

Differential duadrature vas fowad to be an excellent tool for the solution of non-linear partial aifierential equations. Results for both, the isothemsl reactor as well as the aciabatic reactor are encourasing in this respect. Althourh, much experimentation was recuired in oraer to arrive at accurate results but it is mainly aue to the values of the weightine coofficients used. in the approzimation. But in practice, these coefificients need to be determinea only once for a perticuler type of problems. Therefore, if the optimel values are lmom, the methoci can be conveniently applicd. Besides its aduantages in tems of savings in computationsl time and computer storage, the comparison of the method with finite-difference methoa shows that differential cuadrature is much easier to anply in practice. Differential cuacrature using spline approximation may enhance its chances of success anc may enable the successful solution of more general cases of nacked-bea reactors without eny instability problems. Thus, more research in this fiela may prove to be beneficial.

REPERENCSS

1. Dellman, 2., 'A New ipproach for the ICentification of Svetems', Tath. Ziosciences 5, 201(1969).
2. Sellman, R. anc. Kashef, E., 'Solution of the pertial differential equatione of the Hoagkin-Hualey fodel using Differential Quaçrature!, Nathematical Biosciences 19, I (1974) .
3. Bellman, R., Kaseff, B. and Vasuãevan, R., 'Differential Quaürature aná Spiines', Technical Report No. USGEP-PB75-3, University of Southem Califomia, April, 1975 .
4. Jee, ב.S., Bellman, R., Kasef, B. anà Vasudevan, R. 'Solving Hara Problems by Besy \#ethods. Differential and Integral Quadrature', comp. and Haths. with Appl. I, 133 (1975).
5. Bellmen, ‥, Kasef, B. and Vasuãevan, R., 'Splines via Dynamic Programing', Jour. of thath. Anal. and Appl. 38, 471 (1972).
6. Bellman, … Iascf, B.G. and Casti, J., Differential Quadrature: A Technioue for the Rapid Solution of NonDinear Dartial Differential Equations', Joumal of Computational Physics 10, 40(1972).
7. Antbers, J.ㅍ., Filson, E.工. anc Welsh, J.士. 'The Theory of Splines anc Their Applications', Acacaeqic Eress, N.Y., 1957.
8. Schoenbers, 'On 3est Approximation of Linear Operators', Inãas. Math. 26, 155(1964).
9. Sarç, A., 'تinear Approzination', (הath. Surveys iio. 9), Amer. Hath, Soc., Providence, Zhode Islend, 1963.
10. Sellman R. and Roth, R.S., 'The use of Splines with unlmom Enc Points in the ICentification of Systems', Journal of Hathematical Anelysis and Applications 34, Ho. I, April, 1971.
11. Bellman 2. Enê Angel Z., 'Dyaric Procraming and Partial Diferorentiel Jcuations', Academic Press, N.V.(1972).
12. Lanczos, C., 'Apglied Analysis', Prentice Eall, Inc., IT. J. (1956).
13. Dellman R., Nalabe, R.z. anả Lociett, J.A., 'Humorical Inversion 0 : the Laplece Mransform', Americon Ilsevier Eub. Co. Inc., M.Y.(1965).

IL. Bellman, R. anc casti, J., Differential Quadrature and jone-Tem Intearation', Journal of Tathematics Anal. and Appl. 34, NO. 2, 235 (1971).
15. Lee, ב.S., 'A Generaliseō Newton-Raphson Ifethoa for HonIinear Partial Differential Equations- Packeā-Bed Reactor with Axial Hixine', Chemical Engineering Sciences El, 143(1966).
16. Iiu, S.I. anci Amuncison, N.R., 'Stäbility of Ā̈iabatic Dacked Bed Reactors', Inc̈ustr. Ingre. Them. Funç. 2, 183 (1963).
17. Yagi, S. and Irunii D., $5^{\text {th }}$ Intemational symposium on Combustion, Reinholé, T.Y., 231(1955).
18. Vans, K., 'Bounciary Value Eroblems anà Invariant Imbedaing with Aoplications', Ph. D. Dissertation, Kansas State University (1975).
19. Ginizzetti, A. Enci Ossicini A., 'Quacrature Formulae', Accoiemic Dress, 1968.
20. Iee, Z.S', 'Quesilineariaation ane Invariant Inbeãinž', Academic Iresc, 1968.

APPIICATION OF DIPFZRENTIAI GUADRATURE
TO ENGINEERING PROBIENS

by

ANII KUhAR GUPTA
B. Tech., Indian Institute of Technology

New Delhi, India, 1974

AN ADSTRACT OF A LUSTZR'S THESIS
submitted in partial fulfillment of
the recuirements of the degree

> LASTER OF SCIENCE

Department of Incustrial Engineering KANAS STATE UNIVERSITY I.anhattan, hansas 1978

ABSTRACT

Differential quacrature is a useful numerical technique for solving non-linear partial differential equations. It involves approximating the partial derivatives by a linear combination of functional values and, therefore, provides an easy method of transformation of partial differential equations into a set of ordinary differential equations. The technique is employed for solving boundary value problems which can be reoresented by partial differential equetions.

Most other methocs like the finite-difference method involve approximation in torms of functional differences instead of functional values anc therefore, require functional evaluation at a large number of points for satisfactory results. It is in this respect thet differential quadrature has its major advantages over other methocis in terms of both, the computer storage and computational time. However, the success of the method depends largely unon the method of evaluation of weighting coefficients. Three methods are considered in this respect viz.classical quadrature analosy, Legenare polynomial approach and soline anproximation. Differentisl quadrature is apolied to solvins several nodels in engineering with both fixed and moving boundary conditions. A moving boundary condition is specified at a point which itself varies as a function of time. Differential
auadrature is used to solve the isothermal reactor model as mell as the adiabatic reactor model. A lot of computer memory and computation time are saved by using this technique.

