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ABSTRACT

Differential cuadrature is a useful numerical technique

for solving non-linear partial differential equations. It

involves approximating the partial derivatives by a linear

combination of functional values and, therefore, provides

an easy method of transformation of partial differential

equations into a set of ordinary differential equations.

The technique is employed for solving boundary value problems

which can be represented by partial differential equations.

Most other methods like the finite-difference method

involve approximation in terms of functional differences

instead of functional values and therefore, require functional

evaluation at a large number of points for satisfactory re-

sults. It is in this respect that differential quadrature

has its major advantages over other methods in terms of both,

the computer storage and computational time. However, the

success of the method depends largely upon the method of

evaluation of weighting coefficients. Three methods are con-

sidered in this respect viz. classical quadrature analogy,

Legendre polynomial approach and spline approximation.

Differential quadrature is applied to solving several

models in engineering with both fixed and moving boundary

conditions. A moving boundary condition is specified at a

ooint which itself varies as a function of time. Differential
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quadrature is used to solve the isothermal reactor model as

well as the adiabatic reactor model. A lot of computer memory

and computation time are saved "by using this technique.



CHAPT2H I

DIPPER3R2IAI C.UADRATUR3 AND SPLIK3 APPROXIMATION

- A LITERATURE SURVEY

1.1 Introduction

Fartial differential equations are frequently encountered

in the fields of engineering and science. However, the numeri-

cal solution of time-dependent non-linear partial differential

equations has been a complicated and highly problem dependent

process. In general, the solution of slightly different type

of partial differential equations may require separate and

completely different computer programs. Thus, effective

numerical technique in this respect can be very beneficial.

The conventional numerical techniques such as the method

of lines, finite difference method, etc. require the function

value to be evaluated at a large number of points to obtain

satisfactory results. This requires a lot of computer stor-

age and computer time and thus an increased cost and effort.

Quadrature techniques like trapezoidal rule, Simpson's

rule have been used since early times to estimate the area

under curves. A more common technique is that of Guassian

quadrature which can •orovide a good approximation for inte-

grals. This chanter deals with a recently developed numerical

technique loiown as differential quadrature which is very

much similar in nrinci-cle to that of Guassian cuadrature and

1.
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can be effectively use a for polynomial approximation of

partial differentials. The follovring chapters deal with some

of the applications of this method in the field of engineer-

ing.

Consider the type of approximation

Lu = y a. u. (1)

i

which is l:nor,n as quadrature approximation if L is an inte-

gral o-cerator. In analogy, the same approximation v,-as named

as differential quadrature "by Bellman (1) when L is an inte-

gral operator. Unlilie Guassian quadrature, differential

quadrature method is still at an early stage of development.

The advantages of the method will be obvious after the dis-

cussion of the follovdng chapters.

Differential cuadrature method is different from most

conventional methods in the sense that the interpolation is

expressed in terms of the values of the function instead of

the differences of the function. However, the approximation

of derivatives by differences provide the basis of many me-

thods of solving differential equations. Interpolation using

functional values at certain selected points has been dropped

in past due to hazards of roundoff errors, but Bellman and

his coworkers has shown that the difficulty can be overcome

by first smoothening the data and then differentiating. They

have successfully applied the method to the solution of fluid
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flow equations, the Kodgkin-Haxley model (2) and other models.

1.2 Differential Quadrature

Consider a linear or non-linear first order partial dif-

ferential equation of the form

U
t

= f(t, x, U, U„) (2)

where x lies in the finite interval (a,b) and the boundary

conditions of the problem are in any given form. The initial

condition is assumed to "be knovoi and is of the form

U(o,x) = U°(x) (2)

Assuming the function U to he sufficiently smooth in

the interval (a,b) we can write the following approximate

solution (3)

U„ (t, x.) = I a.. U (t,x.) , = 1, 2, . . . ;N

(A)

where, N is the number of mesh points selected and a^. is the

matrix of weighting coefficients of order NX!!. N is also

known as the order of differential quadrature method. Sub-

stituting equation (4) into equation (2), we get,

U(t,x
i

) = f(t,xif U(t,x
± ), £ a

±
. UCt.^W ,

3=1

i = 1, 2, . . . ;1"I (5)

which is a set of IT ordinary differential equations with

initial conditions

U(0,X
±

) = U° U±
), i = 1, 2, . . . ;IT (6)
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Thus, the solution of equation (2) can be obtained by

solving the set of ordinary differential equations (5) v.lth

initial condition (5). The boundary conditions for eon. (2)

can be reduced to a set of algebric equations by using ap-

proximation (2) and the result can be used in order to elimi-

nate two of the IT variables, U(t,x.), i=l, 2, ,11 in

equations (5). Thus, the solution is obtained by solving

the (IT-2) ordinary differential equations and the remaining

two functional values can, therefore, be evaluated using

the boundary conditions of the problem.

For approximation of higher order methods, the same idea

can be extended. Considering equation (2) as a linear trans-

formation of U, we can v.*rite

U
x

= AU (7)

Then, the second order derivatives can be approximated as

U.„._ = (U,,) x
= A (AU) = A

2
U (8)

The higher order derivatives can similarly be found by

iterating the linear transformation A. Writing equation (8)

in the sense of equation (4), we have,

U_(t,::, ) = X i -
ik *} . U (t),

k=l 3=1

•i - 1 V ( Q )

Similarly,
N II IT

U.__(t,r..) =Z Z Z a., ar a, U,(t),
x

i=l k=l j=l — — " d J

i = 1, 2, ,1T (10)
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anc. so on.

Therefore, it can "be seen that success of differential

quadrature method depends largely upon the values of weighting

coefficients a. . * s. The method which have been used in the

•oast by Bellman and his coworkers (4,5,6) are discussed in

the next section.

1.3 Determination of weighting Coefficients a^.'s

1.3.1 3y analog5/ with the classical quadrature case

The coefficients a. -'s in the approximation,

U„(x
s ) = -y a. • U(x. )j i = 1, -, . . . . ,-•

3=1 (11)

can be easily determined by analogy with the classical quadra-

ture case which demands that equation (2) be exact for all

polynomials of degree less than or equal to (H-l). Consider-

ing the test function,

g
1:
(x) = x

1:
, k - 1, 2, . . . . ,N (12)

For arbitrary points :•:., , i=l, 2, . . . . ,N this leads to

a set of linear algebric equations

£ a, . x,-1 = (k-l) x * X
, k = 1, 2, . . . . ,1!

3=1 D 3

i - 1 2 Nj- — j- , ^ , . • . . ,i.>

(13)

Thus, choosing I! and %.. , i = 1, 2, . . . . ,N the values

0^ the reis:htin£ coefficients a. .'s can be unicuely determined,"
13
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1.3.2 By analogy with Lagrange's interpolation formula

Instead of solving a set of algebric equations in the

previous case, the coefficients a. .*s can also he determined

by pronerly selecting x.'s i.e. if we consider :: to be the

root of shifted lagendre polynomial of degree N, ?«* (xj

with orthogonality range of (0,1), the legendre polynomial

?„* (::) being defined as

? * (::) = ? TT (l-2x) (14)

3y analog?/ v."ith lagrange's interpolation fomula the

trial function is taken of the form,

gk (x)
= PK

* (::)/ [(::-::.) PH
* •

( .j] (15)

Since P.T
* (:•:) is a polynomial of degree IT, g, (x) will

be a polynomial of degree (K-l) such that

Sk (x j) = bih » h = 1, 2, . . . . ,K

j = 1, 2, . . . . ,1T (16)

Assuming that the equation,

U
x (::

i }
= X a

ij
U(x

j
)j i = 1

»
2

' ' * ' *
,IT

^ =i (17)

is exact for U (:•:) = gv (::) , we have

*ix

T5 * »

lZ2l (18)
("

±
- x,J ?N*(x,J

For i=k we use the L* Hospital rule and the fact that

? *(x) satifies the differential equation



x(l-x
2 )v *» [x) + (l+2x)? *«(x) + N(N-l)Pw*(s) = C

(19)

whi ch give s

,

a^ = d-2r
1:)/ [2::,.( ::,.-!;] (20)

Thus the weighting coefficients a. .*s can be calculated

by equation (18) and (20).

A better approach to the determination of weighting

coefficients is given by snoothening the data. Spline ap-

proximation is one of the best methods in this respect. It

is discussed in the following section.

1.4 Spline Approximation

1.4.1 Introduction

A srline in its simplest form can be understood from

analogy with a draftsman srline which is a thin strip of wooc

or some other material used for fitting smooth curves passing

through certain -points. These splines are anchored in place

by applying lead weights called "ducks" at points along the

srsline and the snline can thus be made to pass through cer-

tain -ooints by adjusting the position of these weights. Re-

garding this saline as a simple beam, the Sernoulli-Huler

law can be stated as

Ll(x) = 31 (21)

where,
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".:(::) is the bending moment; 3 is the Young's modulus

for the material of the beam; I is the geometric moment of

inertia which depends on the dimensions of the beam and E(x)

is the radius of curvature for the curve formed. Assuming

small deflection

R(x) = 1 (22)
Y^Tx")

where, y(x) denotes the beam elastica.

In analogy, the definition of a mathematical spline can

be stated in the words of Ahlberg, Nelson and Walsh (7) as

follows:

"The mathematical saline is the result of replacing the

draftman' s spline by its elastica and approximating the

latter by a piecevri.se cubic (normally a different cubic

between each r-air of adjacent ducks) wdth certain dis-

countinuities of derivatives permitted at the junction

points (the ducks where two cubic join)".

A mathematical spline is continuous and has a continuous

first derivative as well as a continuous second derivative.

Thus, s-nline interpolating functions are a class of piecewise

interpolating polynomial functions satisfying certain con-

tinuity TjroTserities at the interpolating points. The idea

of spline a-oT>roximation was first pointed out in 1946 by

Schoenberg (3). In 1949, Sard (9) generalised the classical

abroach by means of searching the best approximating function



?.

of order 1,1, where 1 £ M < IT such that equation (1) is exact

for polynomials of degree (II—X ) or less. He then fixed the

(N-I") degrees of freedom in determining the coefficients by

effectively requiring that

U*
i

(x)'~ dx = minimum (23)

a

where, U""(x) is the II
"" derivative of the approximating

function. Schoenberg (8) proved among other properties that

the spline interpolation formula is the "Best" interpolation

formula in the sense of Sard.

The simplest l:ind of spline function for interpolation

is the cubic spline. It has already proved to be of great

use in approximation theory and system identification. Its

properties are discussed in (7). The concept is extended to

curves that are composed of segments of polynomials curves

of an arbitrary degree and the spline function so fitted are

hnov.n as polynomial splines. The theory has also been applied

to approximation in two dimensions. For the purpose of present

discussion we will only consider the spline approximation as

applied to differential quadrature method.

1.4.2 Natural Splines

This is a subclass of splines used by Bellman, Hashef

and Vasudevan (3) for the evaluation of weighting coefficients

in equation (4). Natural spline of degree (211-1) is defined
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by the following condition.

i) S is a polynomial of decree 2!.:-l in each interval ( XT»xi+i)»

I s i, £, . . . . , i\—X

.

ii) Z is a polynomial of decree I.I-1 outside the region (a,b).

This is the boundary condition requirement,

( 2M 2
")

iii) £,2 f
,

,S^~" ; are continuous at n »"2' '"K

iv) S(x
i
)=u(x

i
) for i=l, 2, . . . . ,K.

An ecuivalent definition in the sense of Schoenberg is

given by

i) f° 3**(x) ~d:: exists and is minimised subject to the

following two conditions.

ii) SjS
1

,

,3^-'-' are continuous in (a,b)

iii) S(x
i
)=u(x

i
), i=l, 2, IT

Both the above definitions of saline uniquely specify

function 3(::) on the interval (a,b). As can be seen these

functions have strong convergence properties and for this

reason, these can be effectively employed in the approximate

•crocess of interpolation, integration and differentiation.

1.4.3 Cardinal Spline

Cardinal srline is also called "fundamental spline" and

is a saline for which exactly one defining value is one and

all others ar3 sero i.e. cardinal spline is a natural spline

function with the interpolating conditions,
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G,(::.) =&
i

. , i = 1, 2, . . . . ,K (24)

consider cubic spline and 1,1=2, -then the natural spline function

S(x) which interpolates u(::) can be expressed as

N
S(x) = X U(x.) C. (::) (25)

i=l "
x

The arbitrary function U(x) can be approximated as

U(x) =2 U(x.) C.(x) (26)
i=l

How, by operating with L on the function S(::) of equation

(25), we get
N

L S(x) = 1 X U(x. ) C.(x) (27)
i=l

x

Since U(x 4 ) is given for a particular value of x
s , the

operator L can be taken inside the summation and therefore,

ec"(27) can be written as

w

L 3(x) = X U(x. )1 C. (::)

i=l
x

= X (I'C.tx)) U(x.) (28)
i=l

comparing equation (23) with equation (1),

k
±
(::) = L C

±
(x) (23)

The procedure can be applied to determine the weighting

coefficients of differential quadrature method as follows:

1.4.4 Computational Scheme for '.veighting Coefficients a^. 's

The complete set of cardinal splines which span the



whole space depends on the boundary conditions of the problem,

Let us assume that the boundary conditions of the problem

under consideration are hnown in the form

3u(x)
b x

:-:=::.; = b-, (30)

•

aU(::)
X— X»T ~ 0^

(3D

"here the function U(x) is approximated at the points x,

,s„ using the approximation

» •"""> »

N
7bU(::-i) = X a, . U(x .), i = 1, 2, . . .

o :: i=l
13 3

Defining a vector Y as

Y = (U. • , U-,, U? , . . . . , U„. UN '

)

-'

»

where

,

U
i

' = U(::)

"1

U' = U(x)

(32)

(33)

(34)

(35)

Then, the (11+2) cardinal splines which completely span

the st) ace are .given as

Ci (x.) .
6jLJ ;

o
v

2

C 7,,,(x ) = ;

C
i

, (x1 ) = G
2
'(x

N ) =

V (x.) =
6id

for ^ — X , i-
f • . • . ,-*

= 1, d , . . . . , x. (36)
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where g. . is the hronoher delta defined

for i=jS- •= 1
13 (37)

o txiervase

The spline interpolating function here is

3(::) = 1 U(x. ) C (x) + U ' C (x) + UP
' C„A , (::)

iv+1
(33)

Representing the "+2 elements of Y as Y. 's, i= > - * - >

. . . . ,K+1 raid considering the I*+2 cardinal snlines as C.(::),

i=0, 1, . . . . I'-rl equation (33) can be written as

K+l
S(s) = X ?i M*)

1=1
ITow, operating S(x) by 1, we get

TJ+1

:(::) = J [LC.(x)] yllOl

(39)

(40)
l=u

comparison of equation (40) with equation (4) gives

a.. = [LC^x)] i,i=0, 1, 2, ... . ,N+1 (41)
J

Similarly, if the boundary conditions are defined as

b* U(x)

b?
2 , v

a u(x)

- JO
1

x=x.

(42)

(43)

X— <*Wr — —5^J

the complete set of cardinal splines over the whole space

can be defined as

C
i
(x

l:
} " Sij 5

C.«(x.) = C^Cxjj) =
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(*,) = ; C «(x.) =5,,
3

CK+1
(x.) = ; *W*j> = 5

NJ

i = 1, 2, . . . . ,K

3 = 1, 2, . . . . ,!! (44)

The weighting coefficients can be determined in a similar

way as in the case of first order derivatives.

1.4.5 Construction of cubic spline using raw data

A cubic saline in the interval (0,1) is constructed by

considering the N+l nesh points Xq,x-, ,
,x^ in the inter-

val (0,1) such that

0=x
Q

< x
x < ::

2 < < x^b (45)

with each value of x, is associated a data point yi
which is

assumed to be given or known. Then the spline S(x) with

respect to interval to b should have the following properties

i) 3 (x) is continuous, together with its first and second

derivatives on (0 < x < b)

ii) 3 (::) is cubic polynomial within each subinterval

x. -, < x < x1? i=l, 2, . . . . ,H

Analytically, the saline can be represented over each

sub-interval (*4 -j >- :
5_)

-s

S*( V ) - - ^ - x
> + p ( ;: - ::i-l)

" x
-*i " -i (46)

Integrating equation (45) twice and evaluating the
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constants of into -ration, v;e obtain

on. on, -g-
o i

::,hr
%

(;c-x. x )

(7, - -^ )1 (47)

Prom equation (46) and (47), it can be seen that S (::) and

S" (::) are continuous on (0,b). The continuity of S (::) at

~]
recuires

i
"'"i-1

+
a
i
+ai*l

*'"i
+

h
i+l „

"""i+1

= V _1T'
" i+1 i -

•""
. — ~r . ..

° 1 1—1
h
i+l "*i

(48)

1.4.5.1 Corrcutational Scheme

Prom equation (47), it is clear that calculation of

saline S(x) recuires the calculation of moments M.(x), i=0,

1, 2, . . . . ,11, This is carried out as follov.-s.

btet- 1. Define and Calculate the folio"ins parameters,

n _ Nxl
i n. + n. -,

i i+l

a
i " x u

i

[("i+1 - yi)/
hi+l "

(
yi " yi-l)/

h
i^o

1
h. + h. ,
i i+l

i = 0, 1, 2, . . . . ,N (43)

Step 2. Initialise Q =0,U
c
=0 (50)
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il 1- ll— i.

then calculate Qn ,
= - "k/Pv , 1c = 1, 2,

(51)

n = L ii_^ , > = 1, 2, . . . . ,!:

D
(52)

Ste^ 4. The moments M- can then be calculated using the

follov.dng eouations:
U.TT

— o.T.T V> ?» -1

ri i> ;.<— -L

ai 1;— -1

1!k = Qh
::v+l

+ Uv •
k = N-l, . . . . 2 f 1

,- = (

d
o - °o

I!D (53)
o ^

Thus, the st)line can be determined using equation (47).

Theoretical discussion for the above algorithm is given in

(7) and (10).

1.5 Concluding Remarks

Differential Quadrature method could prove to be a

very useful tool for the solution of non-linear partial dif-

ferential eouations since it provides approximation to mar-

tial derivatives in terns of functional values. Moreover,

it provides a simpler way of conversion of partial differen-

tial eouations to ordinary differential equations. In most

of the cases boundary conditions are reducible to simple

algebraic ecuations. The method is applied to the solution
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of nacked "bed reactor -oroblems as well as to a simple case

of moving boundary value problem, The results are discussed

in the following chapters. For the evaluation of weighting

coefficients, the method of splines approximation was found

to be too involved in mathematics and could not be experimented

with in the present study. Therefore, the weighting coeffi-

cient for the differential quadrature approximation are e-

valuated using the analogy with the classical quadrature case.



HAPT3H II

-J 1.2 2 —>-i-i~J.!.i i. J-ii-U «JU.-_l.'ii..-.iUIi J --ii'.—.' _u i ijlli^jii:...ijj

pts a rtmnp •.•TTrnt? avt/it T "T" rTT"'"'

2.1 Introduction

To illustrate the method of previous chapter, let us

consider the case of a chemical reactor, tubular in ion and

which is filled with a packing material. Such a reactor is

called a fixed bed reactor. The transient reaction taking

place inside the reactor is of the form

A + A > 23 (1)

For the sake of simplicity, we consider the case of an

isothermal reactor only in this chapter. The equations for

the adiabatic case •.Till be dealt with in the following

chapter. Assuming that the packing material has no influence

on the reaction taking place inside the reactor except its

contribution to the axial mixing. The transient equations

for this type of reactor can be given as

2
1 d P> o p.

- ^ ^2 _ b v

* e

where p is the partial pressure of reactant A in the inter-

stitial fluid; s is the dimensionless reactor length; t is

the dimensionless time, and N^ and r are the peclet group

and the reactor rate group respectively defined as follows

"Pe ^T" (3)

18.
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-L-2L. (4)

JT!
(5)

c = « » v ~ j

where Dn is the average diameter of the packing particle

v is the average interstitial velocity, D and k are respective-

ly the effective axial diffusion constant and the chemical

rate constant, and x and © being the reactor length variable

and tine variable respectively. The boundary conditions for

?(z,t) are

> ( rs -\ 1 B - r, t n _ A + > o

^^ - (S)

v.
There s~ is the total dimensionless length of the reactor

and ~° is the concentration of A before entering the reactor.

The initial condition for p(s,t) is

p(s,0) = p° , a* t=0, 0<2<zf (8)

The above "oroblea was solved by lee (15) using the

generalised Nevrfcon-Haphson method. The sane numerical data

was used in the present context for the sake of comparison

of results.

2.2 Differential Quadrature approximation:

Using approximation (1) and (2) of Chapter I, the partial

derivatives of v can be represented as



on

d^iV"^ ) _ v" P r ft) -Pn-^ i — 1 P T'

D
"

do)

Where 1" is the nuiaber of selected points Z-,Z 9 , . . . , Z,.
T

and a. .'s are the weighting coefficients and the notation

p.(t) refers to the function 1 value of p(Z,t) at Z=Z ..

J J

Similarly , for the second order derivatives of pV TT

s= "

(11)

using (10) and (11), equation (2) b 9 cones

X a a P,(t) - Z a F,(t) - r?,
2
(t)

i=i «•'
**"« ° i=l « "

s
!:=1

Pe

= ^ pi^ t)
, i * 1, 2, S (12)

dt

If the points 21 ,Z 2 » .... ,Z,T
are so selected that

Z-=0 and Z--=Z. the boundary conditions (7) and (S) can be
j. r> o

.* v^ — C t~. — U ^ W- ~~ —

Pe = P .(t) - 3. S a. .P.(t) , S=Z
1
=0, t>0

>TDo 3=1

(13)

N
£ a,T

. P.(t) = 0, Z=Z
7
.=Z f , t > (14)

.1=1

and, the initial condition is

p
i
(o) = ?

i° , i = 1, 2, . . . . ,N (15)

Squation (12) represents a set of K ordinary differen-

tial equations in IT variables P-
L
(t), P

2
(2), .... ,?T.

f
(t)

subject to the boundary conditions (15) and (14) and the
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initial condition given by equation (15). Satiations (13) and

(14) are ordinary algebraic equations in IT variables and

therefore, can be solbed simultaneously for two variables say,

P-,(t) and ? ? (t) in terms of other (N-2) variables i.e. using

(13) and (14), we can obtain

?
n
(t) = i\(t, P., P., .... ,?r ) (16)

? c (t) = fc (t, P., PA , ... . ,P«) (17)

Substituting equations (16) and (17) into equation (12),

we can obtain a set of (N-2) ordinary differential equations

in (N-2) variables

d?,(t)

u.

- ±
± K C, £y -4, • • • • J-jW

*
i = 3, 4, . . . . ,N (13)

Ecuations (1?) can be solved with the given initial con-

ditions (15). Fourth order Range-Nutta method was used for

this -ournose in the present analysis.

2.3 Computational Procedure

Step 1. Select N appropriate points between and Z
f

repre-

senting the values of S-, , 3p» » • • • r^T such that '^^=0,

z
N
=s

f
.

Ste^ 2. Calculate the weighting coefficients ^.'s by solving

the set of algebraic equations

1 ZT 1
- a.. = (l:-i) zr fc

, l: = 1, -,.... ,

3=1

v_i . \
1:-2

'ij

9 _ JT

i = 1, 2, . . . > •

(19)
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Step 3. To start, let t = 0. Initialise P, , ? , .... ,?

using equations (15). Let k = 1.

Step 4. Set t
T
,=tv-l+At. Solve equations (13) and (14) for

Ml) and ? (t) using the values of ?,(t), PA (t), . . . . ,

?T,T ( t ) .

Step 5. Calculate the co-efficients for Range-Eutta method as

n
il = M^V' P^V' .... .W)

n
i2 = ^^V + ^31' F

4 (V + *n41' ' ' »W+Ha 5

21.,= f. (P^t-.J+ihu,,, ?A (t1
_)+-|-nA p, . . fPwCtv^+^nwo)

m.,= f. (?.(t nJ+n,,, P/(t. )+mA , f . . . ,PN(tk )+s.n )

- — jj 1 1 • • . • ,i<
(20)

Ste- 6. p (t,J=P, (t
lr

,)+l (n. 1
+2n,..+2ri . +n,J,

o

i = }. 4,-> » . » • • • • > (21)

Step. 7. Set !:=>+!. and repeat step 4 through 7 til a steady-

state is reached.

2 . 4 Numeri cal Re sult s

The following numerical data was used for the problem

P
e

= 0.07 ; Z
f

= 48

Kpe = 20 ; t
f

= 30

r = 1.0
; P.( ) = v

±
° = o



23.

t = 0.2 |
i = 1 » - >

. . „xa ~tn
Three different experiments were conducted using 7 » 9 »

pyi **( 11 ^ order differential quadrature approximation. The

assumed points for the three cases are as follows:

a)N=7; C1= 0, Z
2
=5, Z

3
«10, Z

4
=20, 3

5
=20, S

6
=40, 3

?
=43

b)N=9; Z
x
=0, Z

2
=2, S

3
=5, S

4
=6, 2^=10, S

6
=20, 2

?
=30,

Z o=40, S Q=43

c)H=ll; 3-,=C, Zio=2, ^y^* Z.s=o, u^=o f ig-xu, ^-_>,

i-g-^U, £lg-j\J, ^10-4Uf -H-^°

The re stilts from the experiments are shown in tables 2.1,

2.2,2.3 for cases (a), (b) and (c) respectively. Pig-ares 2.1,

2.2, and 2.3 show the respective plots of partial pressure in

the reactor versus the dimensionless reactor length. The re-

sults of the finite difference method (20) arc plotted in

fi sure 2.4,

2.5 Discussion

As may be seen, the results from the differential ouad-

rature method are quite encouraging. The results from the

seventh order differential quadrature approximation differ

slightly from those of finite difference method but those

from differential cuadrature method of order 9 very closely

agree with the results of the finite difference method. How-

ever, finite difference method requires functional evaluation
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for about 480 different points. Thus, besides the simplicity

of differential quadrature method, major advantage is obtained

in con-nutation tine which is much less than that required by

finite difference method. Only about half a ninute of con-

putation tine is required by 9° * order differential quadrature.

4-V,

The result from the 11 order nethod are similar to those

Hi
from 9

u" order but required more computation time, iloreover,

instability problems arises with higher order methods. Thus,

it can be concluded that differential quadrature of order 9

is good enough for the solution of the model of Isothermal

Reactor model vvith axial miming.
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Table 2.1

Isothermal Reactor with azial mixing "by 7™ order Differential

Quadrature

T P(t,0) P(t,5) P(t,10) P(t,20) P(t,30) P(t,40) P(t,48)

00
5 0.0651 0.0280 C.0094 -0.0003 0.0001 -0.0000 0.0000

10 0.0679 0.0451 0.0241 0.0024 -0.0003 0.0001 -0.0000

20 0.0687 0.0568 0.0447 0.0197 0.0034 -0.0003 0.0050

30 0.0675 0.0502 0.0420 0.0308 0.0166 0.0039 -0.0000

40 0.0625 0.0292 0.0319 0.0315 0.0222 0.0158 0.0030

50 0.0488 -0.0401 -0.0149 0.0283 0.0208 0.0219 0.0095

60 -0.0026 -0.3410 -0.2712 -0.0229 0.0196 0.0199 0.0142
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Isothermal Reactor with Axial Mixing by 7

order Differential Quadrature

Z, =(0,5, 10,20,30,40,48)
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Isothermal Reactor with Axial Mixing by 9

order Differential Quadrature

Z, =(0,2, 5, 6, 10, 20, 30, 40, 48)
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Isothermal Keactor with Axial Mixing Dy 11

order Differential Quadrature

Z
±
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Isothermal Reactor with Axial Mixing by

Finite-Difference Method
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CHAPT3R III

DIFFERENTIAL QUADRATURE AND THE ADIABATIC

REACTOR WITH AXIAL MIXING

3.1 Introduction

A more general case of pached bed reactor is the one

where enerrw balance is also the criterion in addition to mass

balance. Such is the case of an adiabatic reactor with axial

mixing. The differential quadrature method of Chapter I

nroved to be an effective tool to solve this problem for

steady state lihe in the case of an isothermal reactor. As-

suming the same chemical reaction and the same role of the

packing material as in the case of an isothermal reactor, the

equations representing the dynamics of an adiabatic reactor

with axial mixing can be given as follows

1 z
2v _ a? _ r v

2
exu (-

3/RT) = 3? (1)

1__ 3
2T _ 3T + r T)

2
exT>(-E/HT) = aT (2)

N
Pe I? 8S 8t

v.he re

,

r = DP 1:
(3)

v

Q = K_ (4)

c
f pf

kn frequency factor constant in the Arrhenious equation.

AH Heat of the reaction.

32.
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c^ Specific heat of the reaction mixture.

P.P Density of the resection mixture.

Other variables have the sane meaning as in the case of

the isothermal reactor. [The mas axial diffusion co-efficient

is assumed to be ecual to the thermal axial diffusion con-

stant. The boundary conditions for equation (1) and equation

(2) are respectively,

P = ?(0,t) - _L_ a? , at 3=0, t > (5)
x
'Pe a "

S?_ = at Z=Z~, t> (6)

32

T = T(0,t) - 1 21 , at Z=0, t >0 (7)
1J
Pe a;

3T = at Z=Z f , t> (8)

as

where. T represents the temperature of the reaction mixture

before entering the reactor. The initial conditions for (1)

and (2) are

P(Z,0) = P°(Z), at 0<S<Z f , t>0 (9)

T(Z,0) = T°(Z), at 0<Z<Z
f , t>0 (10)

The solution of the above problem was obtained by Liu

and Amundson (15) using finite difference method and by Lee (15)

using the generalised Uevrton-Raphson method for the same nu-

merical data. The results are shovn in figures 3.13 and 3.14.
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itt't rttiyiT

The solution of this nroblem was obtained using; differential

Quadrature method follov.-ing the procedure given in the next

section.

3.2 Problem Formulation

By using equations (4) and (9) of Chapter I, the partial

differential equations for the adiabatic reactor (equations

(1) and (2), (5)-(lC)) can be reduced to a set of 21: ordin;

differential equation. Defining,

?(2
i
,t) = ?

i
(t) , i = 1, 2, 3, . . . . ,K

?(S
i
,t) = T

±
(t) , i = 1, 2, 3, . . . . ,N

Equations (1) and (2) can be represented as

L?e k=l 3=1 3=1

r (?, (t))
2

exT3(-S ) = ?i(t) , i=l, 2, . . . ,N01 RT —ra

—

(11)

"?e h=l 3=1 3=1

, 9
•a i" (P.(t))" exiD(-E ) = dTi(t) , i = 1, 2, . . . ,1!

x ^T at
(12)

issuminq Z n =0 and Z TT=Z.r, the boundary conditions of the

problem can be represented as

Pe-PiC*) " 1 1 a
i3

P
3
(t)) '

aUs2r0t> °

^e j=l

(13)
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4 a,.. P.(t) = 0, at 2=Z,j=Z.p, t > (14)

3=1

T = T-(t) - 1 2 £u x ?.(t)), at Z=Z,=0, t >
x m— 2- - u 3 -

"?e j=l
(15)

35 a,,, T,(t) = 0, at Z=Z,T=Z^, t > (16)

j=l

which gives a set of four algebraic eo_uations. Similarly,

the initial conditions (9) and (10) can be represented as

?
i
(3,0) = ?

i
°(Z), i = 1, 2, . . . . ,11, t >

(17)

^(2,0) = T
i
°(S), i = 1, 2, . . . . ,N, t >

(18)

She set of equations (11) and (12) can be solved subject

to boundary conditions (13)-(17) and initial conditions (18)

and (19) by following the computational procedure as given

belov;.

3.3 Computational Procedure

Step 1. Select IT and Z^,i=l, 2, . . . . ,N.

Ste-n 2. Determine the weighting co-efficients a. -,i=l, 2,

.... ,IT and 3=1, 2, ... . ,N by using the selected

values of Z. and solving the set of following algebraic

eouations

= (k-D z.
z

A. a.. = (L-l) Z« , L- 1, 2, . . . ,H

j=l i = 1, 2, . ,N

(19)
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Step 3. Solve equations (13)-(16) to obtain

?
1
(t) = i-l (?

3
, P

4
,?N ) .

(20)

?
2
(t) = f

2 (P3
, ?

4
,PN ) (21)

E
1
(t) = P1

(T
3

, T
4

, .... ,T
n ) (22)

T
2
(t) = P

2 (53
, T

4
, . . . . ,T

n ) (23)

Step 4. Substitute equations (20)-(23) in (11) and (12) to

get a set of (2IT-4) ordinary differential equations

a M*) - f ' rp -d .p.. t.).
C. u

i = 3, 4, . . . . ,H (24)

dT. (t) — T?
'

f»P T «p-p^
1

dt 1 3 4 .. i

i = 3, 4, . . . . ,» (25)

Step 5. Solve equations (24) and (25) rath, initial conditions

given by equations (17) and (18).

Step 6. Calculate P
1 ,? 2

,T-
L
,T

2
, t > by using the results

from step 5 and equations (20)-(23).

Step 7. Repeat steps 3-6 till a steady state is reached.

3.4 Numerical Results

The numerical data used was taken from that used by

Lee (15) and also by Liu and Amundson (15) and is given below:

P
e

= 0.07 atm. ;

3/R = 22,000°R
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T = 1250°?. ; Q = 0.1 :: 104 °R/atm.
e

!L =2.0 ; r = 0.5 x 10
S

(ata)"
1

= 0.2 ; Zx- = 43

.lb l/=W

P°(Z) = ; T°(Z) = 1270°P.

A number of experiments were done in order to analyse

the behavior of these equations. The order of differential

quadrature approximation used and the selected points in

each case is given below:

a) K=7; Z-^0, Z
2
=5, Z

3
=10, Z

4
=20, 2^=30, Z

g
=40,

Z
7
=48

b) N=9; S1= 0, Z
2
=2, Z

3
=5, S

4
=6, Z

5
=10, Z

6
=20,

Z 7=30, Z
fi
=40, ZQ=48

c) N=ll; Z-^0, Z
2
=2, Z

3
=5, Z

4
=6, Z

5
=3, Z

6
=10,

^rj=±Sf £g-<-U| iQ-jU, £^Q—ifvJ,
^T_2.

—*W

d) n=9; 2^=0, z
2
=o.5, z

3
=i.o, z

4
=5.o, z

5
=io,

Z
6
=20, Z

7
=30, Z

8
=40, Z

g
=48

e) N=9; 31=0, Z
2
=0.1, Z

3
=1.0, Z^ag.0,

7 in n —OO 7 — "5 7-— ^ fi 7 =ZLfi

r\ w to. 7 _n 7 — r> - 7 — ^ ^ —1 " -l ^ 7.^=20.
I J I\=lii; _.-,=0, j 9= 0. >f Zi -j— •, ±i£— ±'J f tie—13| ''6 u »

^=0, og=3^, «g=j-/f ~io " , ij
i]_-^-'» "12~^ W
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rr\ TJ—1 ?• 7 —0 7, — D R 7. —1 7 — R 7 —1 Pi 7 _T c
— — J *f ^ C

S
?
=20, z

8
=25, Z

g
=30, S

10=35, S
i:L

=40,

h) I;=9; Z^O, Z
2
=0.5, Z^l, 2

4
=5, 2

5
=15, Sg=25,

•7 _)' 7 —/ CJ " —fir,;Jr-r-J>, iJg—<r>, ZJq-^-U,

i ^ "— O • 7 _n 7 —C R 7 _9 7 — £ 7 — T fi 7 _on

zr-=30, S P=39, S Q=43

The results iron experiments (a)-(e) and (i) ere tabu-

lated in tables 3.1 - 3.12 respectively and the respective

plots are shorn in fig. 3.1 - 3.12. The results of the ap-

proximation for the rest of the experiments were found to be

quite unstable and in the first few iterations only, the

fluctuations were high enough to exceed the overflow limits

of the computer. The result obtained from the finite dif-

ference method are plotted in figures 3.13 2-nd 3.14.

3.5 Discussion

As may be seen the same distribution of node points as

in the case of isothermal reactor, did not prove to be equally

good here. In fact, the selection of node points plays a very

important role in the case of adiabatic reactor. A seven

point differential quadrature approximation was not found

th
to be satisfactory. The results obtained by using 7 " order



39.

differential quadrature method (fig. 3.1 and 3.2) do not agree

with those from the finite difference method. Therefore, the

number of points were increased to 9 in further experimenta-

tion. In experiments (a)-(b) and (c), the initial boundary

slope of the curve obtained changes with time, as a result

of which wide fluctuations are produced as the reactor length

fcVi

increases. Experimentation was also done using 11 order

tl~
and 12

u
" order differential quadrature method (exp. c, f, g)

but this was not found to be of much help, due to the increased

round off and truncation errors in the computations. Therefore,

the 9
~ L order differential quadrature method was used and the

initial points were kept close to each other (cases d, e,

and i) in order to maintain a constant slope. Variations

were considered based on the experimental judgement. Steady

state conditions were best obtained in experiment (i). The

results obtained (fig. 3.11 and fig. 3.12) agree very closely

with those from the finite difference method (fig. 3.13 snd

fig. 3.14). The computation time required was found to be

less than a minute while it requires several minutes of corn-

nutation time by the finite difference method. Thus, it can

be concluded that with the proper selection of node points,

fcVi

9 order differential quadrature method gives as accurate

results as the finite difference method does.
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Table 3.1

Transient in Partial Pressure, Adiabatic Reactor by 7

order Differential Quadrature

T P(t,0) P(t,5) P(t,10) P(t,20) P(t,30) P(t,40) P(t,48)

00
5 0.06*19 0.0272 0.0093 -0.0003 0.0001 -0.0000 0.0000

10 0.0677 0.0435 0.023^ 0.0023 -0.0003 0.0001 -0.0000

20 0.0677 0.0503 0.0382 0.0175 0.0032 -0.0002 0.0000

30 0.0664 0.0411 0.0299 0.0221 0.0136 0.0036 0.0000

40 0.0633 0.0292 0.0247 0.0190 0.0137 0.0124 0.0026

50 0.0564 -0.0050 0.0028 0.0191 0.0106 0.0128 0.0070
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Table 3-2

Transient in Temperature, Adiabatic Reactor by 7
th order

Differential Quadrature

t T(t,0) T(t,5) T(t,10) T(t,20) T(t,30) T(t,40) T(t,48)

1270 1270 1270 1270 1270 1270 1270

5 1251.5 1262.4 1267.5 1270.1 1270.0 1270.0 1270.0

10 1251.1 1260.0 1265.3 1269.5 1270.0 1270.0 1270.0

20 1254.2 1277.7 1280.5 1271.7 1269.4 1270.0 1270.0

30 1254.5 1288.5 1302.9 1295.3 1276.4 1269.6 1270.0

40 1249.0 1259-9 1235.6 1314.3 1301.7 1279-9 1270.4

50 1223.5 1130.5 1191.6 1300.2 1314.5 1310.0 1278.9
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Transient in Partial Pressure, Adiabatic Keactor with

Axial Mixing by 7
th order Differential Quadrature
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Transient in Temperature, Adiabatic Keactor with Axial

Mixing by 7 order Differential Quadrature
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Transient in Partial Pressure, Adiabatic Reactor with

Axial Mixing by 9 order Differential Quadrature
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Transient in Temperature, Adiabatic Keactor with Axial

Mixing by y
tl:1 order Differential Quadrature
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Transient in Partial Pressure, Adiabatic Keactor with

Axial Mixing by 11
th order Differential Quadrature

Z. =(0,2, 5, 6, 8, 10, 15, 20, 30, 40, 48)
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Transient in Temperature, Adiabatic Reactor with Axial

Mixing by 11
th order Differential Quadrature

2^(0,2,5,6,8,10,15,20,30,4-0,48)
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Transient in Partial Pressure, Adiabatic Keactor with

Axial Mixing by y
th order Differential Quadrature

2^(0,0.1,1.5,10,20,30,40,48)
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Transient in Temperature, Adiabatic Keactor with Axial

Mixing by 9 order Differential Quadrature

Z^Co, 0.1, 1,5, 10, 20, 30, 40, 48)
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Transient in Partial Pressure, Adiabatic Reactor with

Axial Mixing by 9 order Differential Quadrature
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Transient in Temperature, Adiabatic Reactor with Axial

Mixing by 9 order Differential Quadrature
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Transient in Partial Pressure, Adiabatic Reactor with

Axial Mixing by 9
th

order Differential Quadrature
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Transient in Temperature, Adiabatic Reactor with Axial

Mixing by 9 order Difi'erentiai Quadrature
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Transient in Partial Pressure, Adiabatic Reactor with

Axial Mixing by J?inite-Di±*i'erence Method
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Transient in Temperature, Adiabatic neactor with Axiai

Mixing Dy Finite-Difference Method
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CHAPTZR IV

CONCLUSIONS

Differential quadrature was found to be an excellent

tool for the solution of non-linear partial differential

equations. Results for both, the isothermal reactor as well

as the adiabatic reactor are encouraging in this respect.

Although, much experimentation was required in order to arrive

at accurate results but it is mainly due to the values of the

weighting coefficients used in the approximation. But in

practice, these coefficients need to be determined only once

for a -oerticular tyne of -croblems. Therefore, if the optimal

values are known, the method can be conveniently applied.

Besides its advantages in terms of savings in computational

time and computer storage, the comparison of the method with.

finite-difference method shows that differential quadrature

is much easier to arj-oly in practice. Differential quadrature

using s-nline approximation may enhance its chances of success

and may enable the successful solution of more general cases

of packed-bed reactors without any instability problems. Thus,

more research in this field may prove to be beneficial.
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ABSTRACT

Differential quadrature is a useful numerical technique

for solving non-linear partial differential equations. It

involves approximating the partial derivatives by a linear

combination of functional values and, therefore, provides

an easy method of transformation of partial differential

equations into a set of ordinary differential equations.

The technique is employed for solving boundary value problems

which can be represented by partial differential equations.

Host other methods like the finite-difference method

involve approximation in terms of functional differences

instead of functional values and therefore, require functional

evaluation at a large number of points for satisfactory re-

sults. It is in this respect that differential quadrature

has its major advantages over other methods in terms of both,

the computer storage and computational time. However, the

success of the method depends largely upon the method of

evaluation of weighting coefficients. Three methods are con-

sidered in this respect viz. classical quadrature analogy,

Legendre polynomial approach and spline approximation.

Differential quadrature is applied to solving several

models in engineering with both fixed and moving boundary

conditions. A moving boundary condition is specified at a

T3oint which itself varies as a function of time. Differential



Quadrature is used to solve the isothermal reactor model as

well as the adiabatic reactor model. A lot of computer memory

and commutation time are saved by using this technique.


