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Introduction

Programming may be defined as the construction of a schedule

of actions by means of* which an organization or complex of activ-

ities may move from a defined state toward some specifically de-

fined objective. Such a schedule should explicitly prescribe the

resources and the goods and services utilized, consumed, or pro-

duced in the accomplishment of the programmed actions. The re-

sources and the goods and services utilized, consumed, or pro-

duced by the activities may be referred to as "commodities".

Linear Programming is the search for a program which will,

in some sense, most nearly accomplish the desired objectives

without exceeding stated resource limitations. To accomplish

this, all interrelationships in the organization or complex of

activities must be represented by a system of simultaneous linear

relations in which the variables are the quantities of the activ-

ities to be performed, the coefficients are the requirements of

each activity for each commodity, and each linear relation ex-

presses the relationship between the sum of the requirements of

all activities for a single commodity and the outputs of that

commodity from all activities. In preparing such a program, it

is necessary to insert in the system a specification of the ini-

tial status in terms of the quantities of each commodity on hand,

any subsequent limitations, and a statement of the objectives.

Thus, the determination of the desired program mathematically in-

volves the solution of a system of linear relations, and hence,

is called Linear Programming.



It is generally possible to determine the linear program us-

.

irig a mathematical model which will maximize the accomplishment

of given objectives within those stated resource limitations.

Alternately, it will be possible to determine the program which

will minimize the requirements for any group of commodities need-

ed to accomplish any fixed objective.

The origin and background of linear programming has been

primarily in the field of econometrics and research into economic

relationships. The history of linear programming dates from the

publication of work of the methematical economist Leon W'alras in

1874-". V/alras showed that the price .of any number of commodities

at a single time can be determined by solving simultaneously the

correct number of equations in terms of the number of unknowns

for which a solution is sought. At that time, the concept was

revolutionary, but present-day methods of linear programming are

completely different from those used by w'alras. However, it was

this first attempt to solve programming problems by stating the

problem conditions in equation form that provides the connection

between itfalras and linear programming.

Linear programming, as it is known today, began with the in-

put-output method of analysis developed by the economist Wassily

V. Leontief in the 1920's. The present-day development stems

primarily from the work of George B. Dantzig. Dantzig is credited

with developing the Simplex Method of linear programming, which

is essentially a method of solving simultaneous equations and in-

equalities Tor an optimum or best solution (a proof of the Simplex

Method is given in the Appendix). Since Dantzig announced his



development in 194-7 > the adaptation and application of the simplex

method to solving linear programming problems has been fostered

by simultaneous computational advances through high-speed digital

computing machines.

It is to be emphasized that the simplex method is not the

only linear-programming method. However, most known methods are

derived or have evolved from the simplex mechod, which is consid-

ered to be the fundamental linear-programming method. Some of

these methods are: the Index, the Modi, the Ratio Analysis, and

the Symmetric Methods.

The aim of this report is to give a presentation of the

theory of linear programming utilizing the concept of duality

with respect to the maximization and minimization problems. A

purely algebraic approach has been employed. Whenever possible,

the more convenient matrix notation has been used to represent

systems of linear relations. No attempt has been made to give a

complete geometric interpretation of any result.
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Dual Linear Progx'ams

The following constitute a pair of dual linear programs (or

dual linear programming problt3ms)

:

I Maximize
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Here the a.

.

'
b
i'

l,nd c .

J
are giv an real nu iibers. The in-

equalitie 3 of (1. 2) are callec row constraints .since they in-

volve the rows of the ma trix c•*•«•- ; t hose of (1.5) are called

column CO) istraint -i. Problems of this type vn.11 later be I'eferred



to as problems in canonical form .

An interpretation of the maximization problem may be given

iii terms of Activity Analysis of Production. Let there be n

activities, i.e., ways of making a single desired commodity from

available stocks of m primary materials. Let a . . be the amount
J

of the i-th material used in one unit of the ,j-th activity, b.

the available stock of the i-th material, c. the quantity of the
J

desired commodity made by one unity of the j-th activity, and x.
J

the number of units of the j-th activity to be undertaken. The

maximization problem is then a search for an activity vector

(*]_ ,
x
2 , . . . , x

n ) which will yield the greatest possible out-

put (1.1) of the desired commodity, subject to the constraints

(1.2) set by available stocks of the m materials and by the natu-

ral impossibility (1.3) of negative activity levels.

The dual problem pertains to accounting (fictitious or shad-

ow) prices attached to the m materials, on a scale whose unit is

the price of the desired commodity. In solving this problem, one

seeks a price vector (u
x , u

2 , ... , u
m ) that minimizes the total

accounting value (1.4) of the available stocks of materials, sub-

ject to the requirement (1.5) that the accounting values of the

quantity of the desired commodity made by one unit of an activity

can never exceed the total accounting value of the materials used

in that unit, and to the natural requirement (1.6) that all

accounting prices be nonnegative.
.

Returning to the mathematical discussion, the dual linear

programming problems will now be stated in the more compact matrix



notation to be employed in the development of the theory in this

report. All vectors will be from an n-dimensional real vector

space v
n

and will be denoted by upper case letters. The compo-

nents of a vector will be denoted by lower case letters. The

transpose of a matrix X will be denoted by X
T

. In particular,

let U = (\i-j_ , u
2 , ... , u

m ) and C = ( C;L , c
2 , ... , c ) be row

vectors and let X = (x-, , x
2 , . . . , x

n ) and a = (t^ , t>
2 , . . .

,

b
m ) be column vectors. However, vectors U, B, and C will be used

interchangeably as row and column vectors. The use of inequality

signs in terms of vectors will be as follows:

X>Y means x
±
> ;/ ±

for all i,

X^Y means x.^ y . for all i,

XSY means x^ 7.±
for all i, :<

i> y± for some i.

The basic problems for initial discussion then can be written in

canonical form using matrix notation as:

(1*7) I Maximize CX, subject to AXiB, X50.

(1.8) II Minimize UB, subject to UA^C, U^O.

A vector X satisfying the m + n constraints (1.2) and (1.3)

without necessarily yielding the maximum in (1.1) will be called

a feasible vector or solution for the maximization problem. A

feasible vector X which provides the desired maximum for CX will

be called an optimal vector or solution for the maximization

problem.

The terms feasible solution and optimal solution are defined



analogously for the minimization problem.

Lemma 1.1. If X and U are feasible, then CX^UB.

Proof: Consider the constraints of the problems (1.7) and (1.8).

Upon substituting and re-associating, it follows that

CXt=(UA)X = U(AX)^UE.

Lemma 1.2. If X° and U° are feasible, and CX° = U°B,

then X and U° are optimal.

Proof: If CX° = U°B, then by Lemma 1.1, U°B = CX°£ UB for

all feasible vectors U. Thus U° is optimal. If CX° = U°B,

by Lemma 1.1, CX g U°B = CX° for all feasible vectors X. Thus

X is optimal.

According to Lemma 1.2, the assertion that X° and U° are

a pair of optimal vectors can be checked directly in the schematic

form of the dual programs:

1. One checks the feasibility of X° by making sure that

all its components are nonnegative and that the inner product of

each row of the matrix A with X° is not greater than the

corresponding b..

2. One checks the feasibility of U° by making sure that

al3 its components are nonegative and that its inner product with

each column of A
T with U° is not less than the corresponding

V
3. Finally, one checks the equality of the inner product

of _ and X° with that of U° and B
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Lemma 1.3. If B|0, then the maximization problem has fea-

sible constraints. I et the n columns of the matrix A be

denoted by A,,..., A . Then, if A.S for each i, the minimiza-

tion problem has feasible constraints.

Proof: The validity of the first statement is seen by noting

that the zero vector is feasible for the maximization problem.

The second statement is proved by noting that under the hypothe-

sis, any vector U will be feasible if all its •components are

sufficiently large

.

The fallowing two examples illustrate the possibility that

constraints in one or both of the dual
'

problems may not be

feasible.

Example 1.

x
l " 5x2~ 2 u

1 + 4u P
"g3

4oc, - 2x^-^0 -3u
x

- 2u
2
^l

x
x
§ 0, x 9 ^0. ul=°> u2~ 0.

Here, X = (1,2)
T

is feasible but the column constraints clearly

cannot l>« met, so the minimization has no feasible solution

vector.

Example 2.

0x
1

+ Xp^-1 Ou-j^ + 0u
2
^ 1

0x
1

+ 4x2
< 3 u

1
+ 4u

2
"5 2

x,£ 0, x o 5-0. u
1
S 0, u

2
^ 0.



Here, neither the row constraints or the column constraints can

be satisfied, so neither problem has a feasible solution vector,
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Dual Systems of Homogeneous Linear Relations

In this section, theorems concerning dual systems of homo-

neous linear relations are derived. These theorems play an

important role in the development of duality and existence

theorems of the next section. Throughout this section, the

letters A, 3, C, and D will denote m x n matrices with arbitrary

real elements. Also, the letters U and V will denote

m-dimensional vectors from the vector space V while the

letters X and Y will denote n-dimensional vectors from V .

TFirst, consider the pair of dual systems A U^O and

AX=0, X^O where A = (A
1

,

A

2 , . . . »A ) is an n-columned

matrix with arbitrary real elements.

Lemma 2.1. The dual systems A U2T0 and aX=0, X^O
Tpossess solutions U and X such that A.U + x.>0, where

A. is any one of the n columns of A.

Proof: The proof is by induction on n, the number of columns

in A. The initial case, n 1, is trivial: If A. = 0, take

U = and x
±

= 1: if A^O, take U = A. and x. = 0.

wow assuming that the Lemma holds for a matrix A of n

columns, it will be shown that the Lemma holds for a matrix

A = ( A »
A
n+ ]_) = (A^, . . . »

A
n » An+i) of n + 1 columns. Applying

the Lemma to A, one obtains vectors U and X such that

A
1 U10, AX = 0, X5 0, and aTu + x.>0.

If A
n+l U -°> take 7

-
= ( X >°)

T
- ^en aTU£0, 3X = 0,

- m
X =0, A

i
T

J + x.^> 0, which extends the Lemma to the matrix X.
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. THowever, if A
n 1

U<0, an application of Lemma 2.1 to a

r n x ra matrix 3 = (B^Bg, . .> ,B ) will again extend

the Lemi a to the matrix A.

Lct B = < B1>— »V '- (A
1

+ k
l
Antl-'-' An + knVl>>

where the constants k. are given by k. = -A~U/A™ ,U
J J J n+1

for j = l,...,n. Note that the k. are nonnegative since
m J

A UfcO. This application of the Lemma to the matrix B

yields vectors V and Y such that B
TV£0, 3Y = 0, YfcO,

m
and B

±
V + y ±

> 0. Then, if i is chosen to be

~
= (Y

' SrVd^' U follov;s ^0, since Y sL and ilk.y.^O.

Furthermore, AY = BY = 0. This can be seen by writing

I?
- ( g *l/j + %n*l ^yd-- £ an/j + a

m,n.l £ *//

- BY,

and by noting that BY = by hypothesis.

Now, let W = V + rU
, so that if r is chosen to be

~A
n+lV/An+lU >

then A W»Q. The latter relation follows by

» •'< (AjW A^V.')
1

(a^v - &£ aTu,...,a;v - ClT A)I
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rn*l

«T „ ,T„ A
T
UA

n+lV'"" AnV "
§VlU

n-rl '

rn m m mm
= (A(V + k,Ar n

V,.' A„V + k A* , v)
1

1 1 n+1 ' ' n n n-*-l
'

= BTV 2 ,

and by noting that

_ _ T> m
T m

'
x

\T m J. -57-

A
n+1

W - A;
t1 (V -W U) = A'

+ 1
V - ^1V

A
n.l U VlU

.T
-n,l U " °«

Therefore, ATW + y i
= B

i
V + v

i
>0 for i = l,...,n.

Thus; by means of £he vectors W Y, the Lemma has

been extended to the matrix S = (A, A , )

.

' n+l y Therefore , the

indueti on Ox. n is fully established and the Lemma must hold

for all n.

The following corollary is a statemen t of a theorem first

roved in 1902 by J. Parkas (9).

Corollary 2.1.
m

If the inequality A JSO holds for all

solutions U of the system A UiO, then A
Q

= AX for some

XfcO.

Proof: Consider the Tmatrix (-A
Q
,A) whose first column

is -A , and the dual systems (-A ,A)%8 and

C-A ,A) Cxoi X)
T«0

>

m
(x ,X) £0.' Note that -A„ and xw o o

assume the roles of A. and x. with i = 1 in Lemma 2.1.
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By bhi; ..a, one is assured of some solution U and

(x
Q
,X)

T such that -iV?U£0, A
TU£0, -Ax + AX = 0,

x^^O, X^'S 0, and -A^U.+ x > 0. The relation -A^U + x >00' o o o o

implies that x > 0, since by hypothesis of the Corollary,

..:U*0 for all solutions, U of the system. Thus, from the

relations -A x^ + AX = and x > 0, it follows thato o o

= kX , where X = X/x ^ 0.

It is to be emphasized that the vector A in the above
o

corollary is actually a nonnegative linear combination of the

vectors A, , . .
.

, A , that is,

A
Q

= AlXl/x + A
2
x
2
/x

Q
i-\.\ Anxn/xQ ,

- A
l7l + A

2y2
+... + A

nyn ,

with y^O, for i = l,...,n.

With this remark, the corollary may be interpreted as

follows: if a linear inequality is dependent upon a system of

linear inequalities, in the sense that it is satisfied by all

solutions of the system, then the coefficients of -chat inequality

depend linearly on the coefficients of the system, and further-

more, in this dependence only nonnegative coefficients need be

used.

The following theorem is a key result because from it

virtually all of the results in duality theory follow.

Theorem 2.1. The dual systems A
T
U 5 and AX = 0, X§0
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* * <p * *

possess solutions U and X such that A*U + X > 0.

Proof: By Lemma 2.1,, there exist pairs of solutions U^

and XJ such bhat aV S 0, AX^=0, X^SO, and

A^UJ + x J
;

>0. Let \J*=i£vJ and X*= it X J'
. Then,

sZ2ATuJ^0, AX**SAX^»0, and X*= ^T X^G.
« j j

io, for j = 1,. .. ,n,

n * * H mi. i m -; -:

A^U + x = 2Z (A:Uk + x*) S A
T
U J + x^ > 0,

since A*U >0 and X& iO for k = l,...,n. Therefore,

A X
U + X > 0.

It is interesting to note that the solutions U and X

of Theorem 2.1 have the property that for J = l,...,n, the

j-th component of one of the vectors X* and ATU* is zero if,

and only if, the j-th component of the other is positive.

Corollary 2.2. The system of equations AX = has (i)

a solution X>0 if there is no solution U such that
T

A U>0, and (ii) a solution X> if there is no solution

U such that A
T
U > 0.

Proof: By Theorem 2.1, there exist solutions U* and X*

T * * * m * *
suen that A U £0, AX =0, X £ 0, and A l

\] + X > 0.

From the hypothesis of Theorem 2.1, every solution U must

satisfy Lhe relation A UgO. Thus, if it is not true that
T

A UiO for every solution U, then the mutually exclusive

alternative A U = must be true. In particular, A J =

T * *
if A U > does not hold. Gince U also satisfies
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A
X
U + X > 0, it follows bhat >:*>0. This establishes part

(i). Now, if any solution X of the system AX - 0, X£0

does . t satisfy the relation X> 0, then X must be zero.
*

the particular solution X
,

this implies , that A
rp *
X
U > 0,

m * *

since A U + X > 0. The contrapc sitive of tl" is result

esta blishes part (ii), and hence, completes t'r e proof.

Theorem 2.2. The dual systei:is A
TU£0, B

X
U = and

.... + BY = 0, XgO possess solutions U and
* *

X
, Y such that

*

+ X > 0.

Proof: The application of the res ults of Theorem 2.1 to the

dual systems (A,B,-B) Ufc and- (A,B,-B)(X,Y v )T _ o,

(
'' Y

T ' *pY^) fc implies the existence of solutions U and
*

-• »
Y-, , Yp such that

,.-'J £ 0, B^U > 0, -BUT £ 0,
* *

+ BY,--3Yp=0,
and

X*** 0, Y^O, Yp^O,
and

•T * * m * *

A
A
U + X > 0, B

X
U + y,> 0, -B

X
U + Yp> 0.

If o.
* * *

te dhooses Y = Y, - Yp, then

A
X
U > 0, B X

U - 0, AX + BY

, clear!;.',

= 0, X*3E 0,

m * *

A
X
U + X > 0.

Corollary 2.3. Let the dual

ATU£0, B
T
U = and AX + BY =

systems

o, XfcO

have the partitioned representation
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ITLi
j 0, A

2T£0, B
TU=0 and A

1
X
1

+ A
1
X
2

+ BY=0, Xj* o,

XP$ 0, where A is any nonvacuous set of columns of A and

A is the set (possibly vacuous) of remaining columns of A.

Then (i) either the left system has a solution U a,uch that

IT
A
X1

U ^0 or the right system has a solution X suck t that

X, > 0. Also, (ii) either the left; system has a scilution U

such
IT

that A
XU>0 or the right system has a solut;ion X

such that X, i 0.

*

Proof: Theorem 2.2 asserts the existence of solutions U

and
* * *

X,, X , Y such that

AXi U 5 0, A^ 1
U fcQ, B

X
U - 0, A X

±
+ A^X

2
+ BY = 0,

and

X^g'O, X-^O, A
±1

U + X,>0, A^U + X
2
>0.

?or i

IT
iny solution U to satisfy the relation A U = 0, one

1 rp

of the mutually exclusive alternatives, A ~ = or
1 T

A11 2 0,

must
* 11hold. If for the particular solution U , A U 0,

then X, > , since A 1tJ + X, >0. This establishess part

(i). Also, any solution X must satisfy the relati.on X2E0,

and hence, must satisfy either X^O or X = 0. It follows

that either L^O or Xv= 0, and, in particular,
*

X,£0

or }:^ = must hold. If X* = 0, then A
ITU*> 0, since

IT *

A
X1

U + X, >0. This establishes part (ii).

Theorem 2.5. The dual systems V^O, C
T
V ^ and

-CX2
* *

0, X&O possess solutions V and X such that
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* * m * *
V - CX >0 and C*V + X > 0.

Proof: Let I denote the m x n identity matrix and apply

the results of Theorem 2.1 to the dual systems

(I,C)TV§0 and (I,C)(,/,X) T =0, (W,X) T = 0,

where W is an ra x 1 column vector. This application implies

the existence of solutions X*,.W*, and V* such that
m

Cl,C> AViO, (I,C)(V/-,X') 1 = 0, (W*,X*)T*0, and

(±,C; V + (W ,X )

x
> 0. These relations when simplified, yield

(2.Q) V*fcO, cV§o, _cx*=V/*so, xVo, V*-CX*>0,
and C

T
V* + X*> 0.

Corollary 2. 4-. The dual system

V g 0, C
T
V 1 and -CX £ Q, X £

possess solutions V and X for which the follov/ing

alternatives hold:

(i) either G V >0 or X > 0,

(ii) either C
TV*> or X*2 0,

(iii) either V > or -CX*>

(iv) either V > or -CX*> 0.

Proof: Statements (i) through (iv) are immediate consequences

of relations in statement (-2.9). It should be noted, however,

that from the first and third relations of (2.9), it follows

t 0*(CTV) TX=VT(CX)£0, and hence, V
TCX=0 for all

solutions V and X*. Therefore, the alternatives (i)

through (iv) are mutually exclusive.



Theorer;; 2. A. The general dual systems

18

(U unrestricted)

V £0
m rn

.,-;; + crvfco

-AX - EY =

-CX - DY^O

x£o

(Y unrestricted)

possess solutions U ., V and X , Y such that

* * * rn m * *

V - CX - DY >0 and A
X
U + C*V + X > 0.

Proof: Applying the results of Theorem 2.3 to the dual systems

n

*0,
-A -B 3
A 3 -3

L
C D-D

T1 r

Up

c j

*0 and -
A -3 3 X X

"

_._ 3 -3 Y-, *o, V

2
C J -3 Y^

. -J
,

JO,

where U-, and Up are m x 1 column vectors, and where

Y, and Yp are n x 1 column vectors, in.plies that there

exist solutions

U£<rO, Up 5 0, V'fcO and X S.O, Y,fcO, Yp5 0,

uch that

rn * rn w "• *

-A-U
1

+ A^U + (TV £

-31
U
1

+ 3
X
U2 + 3

X
V *

3 i
u
1

- iru
?

- 3 x
y 50

V*- CX* - DY* + DY* >0

AX* + .bY*_ - BYp 5

-AX* - BY* + 3Y*5

-OX* - DY*_ + DY*S0
m * rn * .rn * *

-A^U, + A iT
Jp + CTV + X > 0.

Choose U = U] - Up and Y * Y, - i . Then,
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m *

A-U + C
1V £ -AX*- BY*=

B
1
U

m *

+ zrv = o
* *

-CX - 2Y g
m * *

r C V + A > V* - CX*- DY*>

Therefore , the vectors
*

u
*

and Y are the desired solutions.

Let the matrix C of Theorem 2.3 he a skew-symmetric

trix, i
m

.e., C --C. The n, the dual systems of Theorem 2.3

become v SO, CViO and X^O, CX t with solutions
*

V

*

and X
*

such that V -
*

CX
* *

> and X -' CV > 0. Since these

two dual systems are th e sa me, the systems corresponding to a

skew-symn.etric matrix i S CI. lied self-dual.

Theorem 2.5. The self
*

W

-dual system KW£ 0, W£0 w

* . *

such that KW + W. ">0.

here

T
has a solution

Proof: T . e proof invol ves an application o£ .the results of

Theorem 2 .3 to the skew-syn T
metric matrix C-K —-K. Ace ording

to Theore m 2.3, there exist
* *

solutions. V and Irf such that

*

0, KV*S 0, KX** 0, X*S 0, V* + KX*> 0, KV*
*

+ X > 0.

Hence

,

K(V* + X*)fcO, (v
*

+ X*)£0, and K(V* + X*) + (V* + X*)>0.

.
If W* i s taken to be

*

V
*

+ X , the Theorem follows.

More specifically, the
* *

two vectors W and KV/ have the

property that for each J = l,...,n, the j-th component of one

vector i s positive if, and only if, the j-th component of the



other is zero. Indeed, Theorem 2.5 shows their sum is positive,

but their inner product (W ) (KW ) is zero, since the transpose

of (W ) KW is its own negative.

Definition . A slack inequality in a system of inequalities

is an inequality (fc 0) which is satisfied as a strict inequal-

ity C** 0) by some solution of the system.

Now, consider the system A U^O, b U~ of Theorem 2.2.

Let U be a solution of this system. It may happen that

T TA
±
U>0 for some i = l,...,m. That is, A£U fe may be a slack

T1

inequality for some row AT. If there does exist a .solution U

such that A
i
U2?0 is satisfied as a strict inequality, let this

solution be denoted by bh, i.e., A?IL> 0. Now, let I denote

the set of indices i such that A?U
i
> for some solution U

of the system. Then Zluh, summed for all i in I, is a

solution of the system. Indeed, AT ( "ZIU.) = and B
T

( 5~ U ) =
i — i

since each bh for i in I is a solution of the system.

Furthermore, A;r{ EU^O for all i in I since at least

one of the summands is positive. This shows that the slack in-

equalities in a system can be characterized collectively as the

maximum set of inequalities of .the system which are satisfied as

strick inequalities by some solution of the system. Hence, the

remaining inequalities in the system are those which are satisfied

as equations by all solutions of the system.
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Theorem 2.6. In the general dual systems

(2.10) (U unrestricted) -AX - BY =

V?C _CX - DY £

A
T
u + c

r
v |o x ^ o

B U + j*Vsq (Y unrestricted),

of Theorem 2.4, each of the m + n pairs of corresponding

inequalities

b

^
a
hj

u
h

+ S c
ij

vi=° *i^° (J = 1 n)

contains exactly one inequality that is slack relative to the

system.

Proof: Let U, V and X, Y be any solution of the given dual

system, Then, by multiplying together corresponding terms in

bhe dual systems and summing, the relations

(2.12) U
T
(-AX - BY). -U

T
AX - U

T
BY = 0,

(2.1^) V
T
(-CX - DY)= -VTCX - ^DY*0,

(2.14) (A
T
U + C

T
V) TX = U

T
AX + VTCX*0,

(2.15) (3
T
U + D

T
V) TY = U

T
3Y + V

TDY=0,

are obtained. Adding (2.12) to (2.14) and (2.13) to (2.15),

one obtains -UTBY + VTCX > and U
T
3Y - V

TCX£o'.

hence, U
TBY - VTCX = 0. Using this result, equations (2.12) and

(2.15) yield the equations,

(2. 16) -UTAX = U
T
3Y = VTCX = -V

T
DY.
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ibstituting from (2.16) into (2.13) -'-nd (2.14), it is evident

(2.17) v-(-o:< - m . ?v . f Ci jX . . Z dikyk) .0>

Equation (2.17) shows that in each pair of corresponding in-

alities of (2.11), at least one sign of equality must hold

for all solutions of the systems; otherwise, V(-CX - DY)'^0

or (A + C V; X^O for some solutions. Therefore, each

pair of dual inequalities in (2.11) contains at most one

inequality that is slack.

By Theorem 2.4, there exists solutions U*, V* and X*

Y of the dual systems such that

,m),V e? ci^r?^kyk>
+

>0 ci.i f .

(¥ a
-

J

U
n

f |Ic ij v i ) + x
l>° (j = l,...,n).

Hence, each pair of corresponding inequalities contains at

3t one inequality that is slack.

Taken together, the last two paragraphs imply that each

pair of corresponding inequalities in bhe general dual systems

(2.10) contains exactly one inequality that is slack relative
to the system.

The property of the system (2.10) exhibited in Theorem

2.6 can be described collectively as complementary slackness, i.e.,

the set ox sxacic inequalities in the one system is exactlv
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complementary to the set of slack inequalities in the other system.

The property o.f complementary slackness applies, of course, to

fc] e pairs of dual systems in Theorems 2.1, 2.2, and 2. 3. Indeed,

Theorem 2.6 can be reduced to these pairs of dual systems by

letting certain of the matrices A, 3, C, and D become vacuous.

In particular, this property shows that the alternatives in the

various parts of Corollaries 2.2, 2.j>, and 2.4 are mutually

exclusive.

Theorem 2.7. - In the self-dual system KW£0, W^O,
m

K a -K; each of the n pairs of corresponding inequalities

*F
k
ij

W0~° an(i wi~ °' ^ = 3->---> n ), contains exactly

one inequality that is slack relative to the self-dual system.

Proof: For any solution W of the given system, W
TKW-0,

because tf KV«'s -W KW. Hence, in each of the -airs of corre-

sponding inequalities 21k. .w.^0 and w.^0, (i = l,...,n),

at least one sign of equality must hold for all solutions ./.

Therefore, each pair of cox^responding inequalities contains at

most one inequality that is slack.

By Theorem 2.5, there exists a solution W* such that

?-". k..w. + w* >0, (i = l,...,n).

Hence, each pair of corresponding inequalities of the self-dual

system contains exactly one inequality that is slack relative

to the self-dual system.

It should be emphasized that a system of inequalities,

AX£B, in which are included the inequalities, X, £0,...,

X
n § 0, restricting the unknown of a solution to nonnegative
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values is necessarily n :e no linear ce

of column: brix A can occur. Therefore, linear pro-

i-iiij C0]
i

'mally formulated, are nonsingular

systems. However, the solution of bhe basic system of inequali-

ties may be viewed in two ways: (1) to solve a system (A,I)X4B

of m + n linear relations in n unknown, or alternately, (2)

to find nonnegative solutions of a system, AX£ B, X^O, of

m linea relations in n unknowns. The problem has been studies

in this section from the latter viewpoint.
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Duality and Existence Theorem

Two or the fundamental results in linear programming theory

are the Duality Theorem and the Existence Theorem. The essential

steo in the derivation of these theorems is the use of Theroem

2.5 to p-.v;e z:;o lemmas that lead at once to the basic theorems

ut the aual pair of linear programming problems (1.7) and

(l.o):

(3.D-

(3.2)

Maximize CX, 'subject to AX<B, X^O.

Minimize UB, subject to UAfcC, U^O.

The first step is to use matrices A, 3, and C to con-

struct a skew-symmetric matrix of order m + n + 1:

K-

-A B
'

A
T

-C
T

-3T C
J

-K
T

.

3y Theorem 2.5, there is an (m + n + 1) x I column vector
= (U

o'
Xo'V

T
*°> where t

ft
is

(3.5)

.s some scalar, such that

': * 0, KW^O, and KW + W >0.

When the expressions for K and W are substituted in (3.3),
the following six inequalities in nonnegative variables are

obtained:
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(3.*) (i)

(ii)

(iii)

(iv)

(v)

(vi)

.AX * Bt
o o

U A 5 t C
o o

CX ^ BU
o

kX< fcB f l/
O

m rn rn

t c^< A^-uj; + x oo
m m
B^U^< CX

rt
+ t .

O

Throuf;hout th is section, the symbols v.', U , X , t ,0' o' o'

and ine qua].iti< s ( i) through (vi) will have t he meanings just

desij ;;. :

- ted. .•o alternatives occur in (3»4): either t >

or t„.: 0. ..'he ther or not the systems .(3.1) and (3.2) have

optj sol.utions depends on whether t > or t = 0. The

effects of these two possibilities will be investigated sepa-

rately in Lemmas 3 .1 and 3.2.

Lemma ?.l. I f t > 0, then the dual programs (3.1) and

(3.2) have optimal vectors X and U° such that CX°=U°B,

(U°)
T

t 3 > AX°, and U°A + (X°) T >C.

Proof: Sir:ce t
Q
> • 0, the nonnegative vector ./ = (U ,X

T
,t )

T
v o' o' o y

car. be normalized so that t = 1 without affecting the validity

of re la tioi is (J.4) Then, (i) and (ii) with t„- 1 show that
c

arid V^o are feasible vectors for their respective pro-

grams, while (iii) and Lemma 1.1 show that C
<V*o> ' <VVB -

Hence, Lemnja 1.2 implies that X /t and U /t are optimal

solutions. Thus, one can choose X /t and
o o

U
Q
/t to be the

desired vec;tors X and U°. The strict inequalities of the

Lemma follow respe ctively from (iv) and (v) with t = 1.
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Lemma y.2. Suppose t =0. Then at least one of the dual

programs has no feasible vector. If the maximization problem

has a feasible vector, then the set F of all feasible vectors

is unbounded and bhe function CX is not bounded above on F.

Dually, if the minimization problem has a feasible vector,- then

? is unbounded and UB is not bounded below on P.' Neith*

of the dual problems has an optimal vector.

of": Lssume that X and U are feasible vectors for the

maximization and minimization problems respectively. With

t s 0, inequalities (i),(ii), and (vi) read AX &.0, i U A,

CX > U B". It follows from (ii), (vi), the fact that

UqS 0, and the maximization problem constraints AX^B, that

C3.5) O^U AXSU B<CX
o

.

Now, with the aid of (i), the fact that X
Q
^ 0, and the minimi-

zation problem constraints UA5C, it follows that

0lUAX
o
5CX

o
. This clearly contradicts (2.5). So, t - <D

precludes the possibility that both of the dual programs are

feasible. Sometimes, neither program is feasible.

Now, the situation where one, and hence, only one, of the

dual programs is feasible must be studied. Suppose, for example,

that X is a feasible vector for the maximization problem. To

prove the second statement of the Lemma, one must examine the

infinite ray consisting of the vectors X + rX , where r is

a positive scalar. It is a straightforward calculation to show



that X + rX
Q

are feasible. Indeed, X + rX
Q
i= 0, and using (i)

with t = °' il is evident that A(X + rX ) § AX ^ B. Thus,

" : -° entir 'inite ray consists of feasible vectors. Further-

more, the fact that CX
Q
> 0, as was s' own in (3-5), makes it

clear that C(X + rX
Q
)= CX + rCX

Q
can be made arbitrarily larg

by choosing r large enough. Thus, the maximization problerr

wit}: a feasible solution has an infinite number of feasible

solutions, but has no maximum when t
Q
» 0. An analogous discus-

sion shows that if the minimization problem is the only feasible

one, then the desired minimum is not attainable.

In summary, if t
Q

= 0, then at least one of the dual

programs is not feasible and neither has an optimal solution.

£££°ll§£XJLJki Either both the maximization and minimi-

zation problems have optimal vectors or neither does. In the

first case, the attained maximum and minimum are equal; their

common magnitude is called the optimal value of the dual pro-

grams.

Proof: If one of the dual programs has an optimal vector, then

the last statement of Lemma 3.2 implies that t > 0, and then

Lemma 3.1 implies that both programs have optimal vectors X°
.0and U such that the maximum GX° is equal to the minimun

U°B.

9^olj-ai-y_2^2_L The dual programs have an optimal value if,

and only if, either CX or UB is bounded on the corresponding

nonvacuous set of feasible vectors.
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Proof: the necessity of the condition is clear. To prove the

sufficiency, suppose that the maximization problem has a non-

vacuous set ? of feasible vectors and that CX is bounded

on ?.

The second statement of Lemma 3.2 implies that t > 0. Thus,

by Lemma 3.1, both of the dual programs have optimal vectors,

and according to Corollary 3.1, they have an optimal value.

Theore m ;>.! (Duality Theorem). A feasible vector X°

for the maximization problem is optimal if, and only if, there

is a feasible vector U for the minimization problem with

U 3= OX . Alternately, a feasible vector U° for the minimiza-

tion problem is optimal if, and only if, there is a feasible vector

X for the minimization problem with CX°=U°B.-

Proof: To prove the necessity of .the first stated condition,

suppose that X is an optimal vector for the maximization prob-

lem. Then, the last statement of Lemma' 3.2 implies that t > 0.

Thus, by Lemma 3.1, the minimization problem also has an optimal

vector. According to Corollary 3.1, the' attained maximum, CX°

and the minimum U°B are equal. That the first stated condi-

tion is also sufficient follows immediately from Lemma 3.2.

Proof of the second statement of the Theorem is similar.

Theorem 3.2 (Existence Theorem). A necessary and suffi-

cient condition that one, and hence both, of the dual problems

have optimal vectors is that each px^oblem has a feasible vector.
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Proof: The necessity of the stated condition is evident from

the Duality Theorem.

If each of the dual problems has a feasible vector, it follows

from the fir.ru statement of Lemma 3.2 that t > 0. If t > 0.o o '

Lemma 5.1 implies the existence of optimal vectors X° and U°.

This proves the sufficiency of the condition.

The following corollary deals with the way in which a pair,

X and U
, of optimal vectors satisfy the 2m + 2n feasibil-

i ty c ons braints

AX £B, X * and UA fc 6, U ^ 0.

There is a convenient way to pair off. the constraints

associated with the two dual problems. Let the i-th relations

in the system AX SB, U|0 be called a pair of dual constraints ,

as well as the j-th relations in the system UA^C, X2 0.

Corollary
^..ft. If both the minimization and maximization

problems have feasible vectors, then they have optimal vectors

such that the dual constraints are complementary slack inequali-

ties. That is, m + n on the constraints are satisfied as

equations and the remaining m + n constraints are satisfied

a.i strict inequalities.

Proof: Theorem 3. 2 implies that both problems have optimal

vectors. The last statement can be seen by substituting appro-

priately into the general dual system of Theorem 2.6. To relieve

the problem of nomenclature, let the two systems of the Corolla
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(3.6) A'XJB', U'^0 and- XfeO, U'A'^C.

Then in the general dual system of Theorem 2.6, since vectors

U and Y are unrestricted, choose U, Y, A, and U such that

-U
TA=C and -JY=B'. Let v=(U') T and C=A f

. After making

br.ese substitutions, it is readily seen that the m + n pairs

of inequalities referred to in Theorem 2.6 are those in (3.6).

Hence, each of the m + n pairs of dual constraints contains

exactly one inequality that is slack.

Corollary 3«3 may be stated more explicitly so that its

implications will be readily available for use in later proofs.

The restatement will require the following two corollaries.

Corollary 3.4. If both of the dual problems have feasible

vectors, then they have optimal vectors X° and U° such that

if X satisfies a row constraint as- an equation, then U°

satisfies the dual constraint as a strict inequality; and if U°

satisfies a column constraint as an equation, then X° satisfies

the dual constraint as a strict inequality.

Proof: By Theorem 3.2, both problems have optimal vectors so

that Lemma 3.2 implies that t > 0. Therefore, Lemma 3.1 implies

that there exist optimal vectors X° and U° such that

(U )
1

+ 3>AX° and U°A + (X°)-
L >C. The vectors thus exhibited

have the required properties.

Corollary 3.3. If both of the dual problems have feasible

vectors, then for any row index i, either (AX°).<b. for some
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optimal vector X and u. =0 for every optimal vector U, or

(AX). = b. for every optimal' vector X and u. >0 for some
'i 1 J 1 i

imal vector U . The- dual statement is also true.

i'rcof:. By Theorem 5.2, both of the dual problems have optimal

vectors. Corollary 5.4 implies that if (AX). = b. for every

optimal vector X, then u? > for some optimal vector U°.

However, if (AX)^ b
i

, then (AX°) . < b. for some optimal

vector X . To complete the proof, it must be shown that

U. = for every optimal vector U. Assume this not ture,

i.e., u. > when (AX ) i
<-'^

i
for some optimal vector X .

This implies that u.(AX). < u.b. for some index i. Since X

is feasible, CX°£ UAX°, or in particular, (CX°) . 5 u.(AX°) .

.

:;ence, (CX ) i
<u.b.. But, Corollary 3.1 implies that

(CX ). » u
i
b
i

since X° and U are optimal vectors. Thus,

the contradiction implies that u. = for every optimal vector

U.
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Systems With Mixed Constraints

Linear programining problems involving mixed constraints

(both equalities and inequalities) frequently arise in practice.

A method due to A. v.'. Tucker (8), for reducing such a problem to

canonical form is presented in this section.

Let N be the set of indices (1,2,..., n), and let M

be the set of indices (l,2,...,m). Suppose that N-j and IT
?

are complementary subsets of N with n, and n
2

elements

respectively, and that M^ and M~ are complementary subsets

of M with m
1

and" m elements respectively. The dual linear

programming problems with mixed constraints that will be investi-

gated in this section may now be stated:

(4.1) Maximize 0^+...+ c
n
x
n

subject to the constraints

a
il

x
l
+ '" + a

in
xn" b

i
for each i in M.,

a
il
x
l
+ ' *

'

+ a
in

x
n
= b

i
for each i in

•

M2»

x.SO for each j in W,,

x. unrestricted for each j in N .
J c

(4.2) Minimize u^+.-.h- u
n
b
n

subject to the constraints

u
l
a
lj

+ '-' + u
m
amj« c

j
for each J in N

i»

.

U
l
a
lj

+ + u
m
a
mj

= c
j

for each J in N2»

u
i
^0 for each i in M,,

u
i

unrestricted for each i in T-i l

Note that the constraints which are equations correspond

to variables -/hich are unrestricted.
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If the matrix A and the vectors B, C, X, and U are

par titioned into clocks corresponding to the decomposition of

.'. and N into M, + K P and N, + Mp respectively, then,

the problems (4.1) and (4.2) may be written in matrix form as

ToHow 3:

Maximize C,X, + CUX subject to the constraints

A
11

X
1

+ A
12

X
P = B

1

A
21

X
1

+ A
?2

X
?
= 3

2

X,£0, X., unrestricted.

Minimise U-.B.. + tUB^ subject to the constraints

U
1
A
11

+ U
2
A
21

^C
1

'

U']_A ]_2
+ '-p-^p-^2

U, 5 0, Up unrestricted.

The definition of feasible and optimal vectors, as pre-

vio usly riven, ap Ty -.3 wel] to the more, general problem in this

sec tion. That is, X or U is feasible if it satisfies the

constraints and is optimal if it is feasible and achieves the

d^s ired maximum or minimum.

It should be emphasized that the problems (4.1) and (4.2)

are essentially no more general than the problems (1.7) and

(l.J3) » which are in canonical form. Indeed, (4.1) and (4.2)

reduce to (1.7) and (1.8) respectively, if the sets M.D and

are vacuous. Furthermore, the metiu>u of replacing each

equation of a system by two inequalities and each unrestricted

variable of the system by the difference of two nonnegative
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variable.', results Ln prol Lems in canonical form. However, the

new maximization problem, Tor example, will have m'=2m -
~

i::equalities and n'=2n - f^ nonnegative variables, where

lo denotes the number of elements in M
x

and FT. denotes

the number of elements in N,

.

The method of the preceding paragraph can be implemented

formally by first setting.

(4.3) Xi=max(0,X
2 ) U

2
=max(0,U

2 )

X^amax(0,-X
2 ) Ug«max(0,-U

2 )

where maxCY1
, Y

2
) is the vector whose components are

•i-naxCyJ.yf). Prom (4. J), it follows that XP»xl - x" and

U
?
=U

2 - U
2 . Secondly, each equation E=G is replaced by

the equivalent pair- of inequalities, 3^0 and -E§0.

After- performing these two steps, the problems (4.1) and (4.2)

will be reduced to canonical form and may be stated as follows:

0.4) Maximize C^ + C^ + C-C2)j£ subject to the

constraints

A
11

X
1

+ A
12

X
2

+ ("A
i2 ) X2 = B

1

A
21

X + h?4 + C-A22 )X2

?

t B
2

(-A
21 )X1 + (-A

22>X2
+ A

22X2 i(-B
2 )

x
1
^o, x2^o, x2 so.
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(4.5) Minimize U
1
B
1

+ u
2
B
2

+ U
2
(-B

2 ) subject to the

constraints

U
1
A
11

+ U
2
A
21 + V"A

2l)
C
l

U
1
A12 + U

2
A22 + U

2
(-A

22 ) C
2

U
1
(-A

12 ) + U^C-Agg) + U
2
A
22

^~C2^

u
x

0, u
2 0, u

2
0.

As previously noted, the dual problems (4.4) and (4. 5)

contain :,ore constraints than the dual pair (4.1) and (4.2).

however, the two "problem pairs are equivalent in the sense that
• it

(U
1
,U

2
,U

2 ) is feasible. (optimal) if, and 'only if, (l^Up) is

feasible (optimal), and similarly for the dual problem. There-

fore, the Duality and Existence Theorems of the last section are

valid for the systems (4.1) and (4.2).

An al orithm for reducing a pair of linear programming

problems with mixed constraints to canonical form will now be

given. This method, mentioned in the opening paragraph of this

section, does not have the disadvantage of the reduced canonical

form containing more inequalities than the original problem.

The method eliminates the equalities and unrestricted variables

while the sum of che number of inequalities and the number of

nonnegative variables remains constant under the reduction. The

method utilizes the fact that any equation of the system con-

taining a variable with non-zero coefficient can be used as a

defining relation to eliminate that variable from the system.

Suppose, for example, that the m-th constraint is the

equation a^ + + a^-b^ with a
mn 0. That is m is in
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M* ana the variable U is unrestricted. ?Tow, two situations

c m occur; either n is in N» or in Np .

If n is in Np, the n-th column constraint is an equa-

tion and the variable x
n

is unrestricted. Then, the variables

x
n

and u
m

can be eliminated from the systems by the relations

mn ml 1 m,n-l n-l y '

"
m= ^ (C

J
" Ul&ln U

m-lam-l,r>

Mheii these variables are eliminated, the elements a.., b.

and c. will be replaced by

(4.?) a. .=a. . - \fi*
ij

•
ij a 'u ° mn

b a.
b>b. - n

'

in
,11 a '

mn

V°j " -f
1^' for

.

i=l,-v.,m-l; j=l,...,n-l.
u u mn

Npte that the m-th row constraint and the n-th column constraint

will also be eliminated.

The new dual problems, given by the matrics of lower decree

which contain the elements ('(-.7), are equivalent to the old

problems, (4.1) and (4.2;, in the sense that (x,,...,x)' or

Culf ...,um ) is feasible (optimal) for the old problem if, and

only if, (x
x
,.. .,x

n_ 1 ) • or (.U;L , ... . ,u
d-1 ) is feasible (optimal)

for the new problem.

If, however, n is in r^, the n-th column constraint is

an inequality and the variable x
n is nonnegative. Then, by

cing the same substitution for x as given by (4.6)
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replacing the m-th equation by

_ml x, + ...+ am,n-l xn , K °m ,

a
mn •

*
amn

and the unrestricted variable u by the nonnegative variable

u =u-,a., +...+ u a - e ,m 1 In m mn n'

a:, equivalent problem is obtained. The maximization problem

has one ;;iore inequality and one less nonnegative variable while

in the minimization problem, an inequality has been replaced

by demanding that another variable be' nonnegative.

Again, the new dual problems obtained have feasible (optimal)

vectors (x
1 , . . . ,xn-1 ) and (i^ , . . . ,u

m_ 1
,u"

Tfl
) if, and only if,

(x
1
,...,x

n ) and (u
]
,...,u

n ) are feasible (optimal) for the

old problems. In either case (n in PL or in Np ), the func-

tions CX and U3 are changed by the same constant b c /a
.

_

m n mn

Evidently, a similar elimination reduces the number of

equalities and unrestricted variables when applied to the column

constraints that are equations. After a finite sequence of such

operations, applied to both rows and column, one reaches a situation

in which all constraint equations (if any exist) have only zero

coefficients. If all of the constant terms (the b.'s and

c j' s ) i:i these equations are zero, then the associated rows

and columns of zeros may be deleted. This yields a problem-

pair in canonical form, i.e., m?«np
'«0.

If any of the constant terms are, nonzero, then the
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corresponding member of the original problem-pair, is exhibited

as unfeasible.
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Systems of Equated Constraints

In the theory of linear programming, many significant re-

sults pertain to associated systems of the canonical form sys-

tems (1.7). and (1.8). The associated systems that will be dis-

cussed in this section contain only equations, namely, aystems

of equated constraints.

Let the systems of inequalities under consideration be

the systems (1.7) and (1.8). Consider the various subsets of

the m + n inequalities in each system that ax*e satisfied as

equations. It will be convenient to describe these systems in-

bhe following manner. Let M, and M
2

be arbitrary subsets

of the set M of indices (l,...,m), and let N, and N
2

be arbitrax-y subsets of the set h of indices (l,...,n).

Then, each of the systems

(6.1) (AX)
i
=b

i
for all i in M^

x.=0 for all j in Np,

and

(6.2) (UA). = c. for all j in N,,
J J

u.=0 for all i in M~,

in called a system of equated constraints.

With the maximization problem in mind, consider the set 5

of its feasible vectox-s X. The set S '
i.-; defined by the finite

system (1.7). It is the simple fact that an individual feasible

vector *'. of S must satisfy an individual inequality (AX) . ^ b.
l
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of (1.7) either as an equation (AX).=b., or as a strict in-

equality (AX)
i
<b

i , that, Rives structure to 8. That is, each

feasible vector In the set 8 may be classified according to

which inequalities it satisfies strictly and which it satisfies

as equations. This leads to a partitioning of the set S into

d uj-sjomu subsets S.A The subsets 3
r./ are indexed by

means of the set M of all indices i that specify the. inequal-

ities that, are satisfied as equations. That is, the set 8..'

consists of all feasible vectors X that satisfy

(AX)
i
«b

i
for each i in w', and

(AX)
i
<b

i
for each i not in M. '.

It should be noted that some, or even all of the sets SM
'

may be vacuous. Cf course, similar statements could be made

about the dual problem.

The systems (6.1) and (6.2) are said to dual systems of

equated constraints if Vi
±

and \\
?

are complementary subsets

of M and if N^ and N
2

are complementary subsets of N.

If the systems (6.1) and (6.2) are dual, the equations may be

renumbered, if necessary, so that M
1
=(l,...,p) and

K
1
=(l,...,q) and the systems written as

(6.?) an x1+ ... + a
lq

x
q
= b

1
u
l
a
ll

+ + Vpr c
i

and

a
pl

x
l
+ + a^x =b

pq q p
u-,a-, +- .. + u a =c
1 lq q oq q

Vi'° V ' Vl =°'-'" U
m
=0
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If a system of equated constraints, after, being written in the

form (6.3) is such that the coefficient matrix

nr

.a."11 clif-"i q

>1 *22' -•q

a
pl

ap2"- a
pq

is square and nonsin, -ular , then the system is said to be a

nonsinrular square system of equated constraints.

Theorem 5.1. Feasible vectors are optimal if, and only if,

they satisfy dual systems of equated constraints.

Proof: To prove the necessity of the condition, suppose that the

vectors X and U are optimal. Define M, to be the subset

of indices contained in M such that (AX).=b. and define M
-L A. £

to be the complementary subset of M, i.e., MD*M - M . Then

by Corollary 3.5, the u^O for all i in Mg. If . N, and

N
2

are defined analogously, then it follows from the same

corollary that X..-0 for all j in Ng. Therefore, the vectors

X and U satisfy the dual systems of equated constraints indexed

by Mlf M2 , N-p and N
2 .

To prove the sufficiency of the condition, suppose that

feasible vectors X and U satisfy the dual systems (6.3). Then

UB= -b
i=
£u

i
(Z:a

i
.x.) = ^(£u

i
a
i
.)x. = rfc.x. = CX.

Thus, by Lemma 1.2, X and U are optimal vectors.
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Theorem 5.2. There exists a unique pair of dual systems of

equated constraints such that each is the maximal system of equa-

ted constraints satisfied b.y all optimal vectors.

Proof: Let M^ denote the maximal set of row indices such that

(AX)
i
»b

i
for every optimal vector X. Similarly., let N, denote

the maximal set of column indices such thai, (UA) .=c . for all
J J

optimal vectors U. By Corollary 3.5, the row and column con-

straints indexed by elements, of. • M^ and N, respectively,

determine dual system's of equated constraints which have the

desired maximal property. It is also evident from Corollary 3.5

tnat the dual systems so determined are unique.

The concluding theorems deal with extreme solution vectors.

An extreme feasible vector 'is a feasible vector which is not

the mean, #(X + X
2

) or ^(U 1
+ U

2
), of the two other feasible

vectors. An extreme optimal vector is an optimal vector which

is not the mean, ^(X 1
+ X

2
) or ^(U 1

+ U
2

) , of the two other

optimal vectox's.

Theorem 5.3. A feasible vector X (or U) . is an extreme

feasible vector- if, and only if, it satisfies a nonsingular

square system o£ equated constraints.

Proof: To prove the sufficiency of the condition, suppose that

a feasible- vector X satisfies the nonsingular square system

with the associated matrix A,. Assume that X is not an

extreme feasible vector, i.e., {^(X 1
+ X

2
), where X

1
and

X are feasible. Since, x.=0, x*£0, and x
2 ^ for
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j>p, x.^Kx1
+ x?)«0. hence, x^=x?=0 for j > p. now, if

Y=(y 1 , . . . ,y , . . . ,y ) is any n-dimensional vector, define

] 2
7=(yi»«»»»y )• Then, since X and X are feasible,

.,,7:
1 ^B

1
, A

1
X
2^B

]
_, and ^(X1

+ X
2
)=B

1
, where B^lbp... ,b

p
)r

Therefore, A,X «A,X »B,. Since A^ is nonsingular, % =X .

furthermore, X%=X , since the last n-p components of both

X and X are zero. It then follows that X=#(X + X )=X »X

is not the mean of other feasible vectors. Hence, X is an
'

extreme feasible vector of the given system.

To prove the necessity of the condition, a nonsingular

square system of equated constraints satisfied by a given extreme

feasible vector must be exhibited. Suppose that X is a nonzero

extreme feasible vector of the system (1.7). Let M' denote the

set of row indices for which (AX)
i
=b

i
» The set M' is not

vacuous, for the assumption that M' is vacuous leads to a

contradiction. The nonzero vector X has at least one component

1 2
x . > and the vectors X and X obtained from X by replac-

ing x. with x. + € and x. - € respectively, have X as
J J J

their mean. If M' were vacuous, i.e., if (AX).< b. for every

1 2
i, then X and X would be feasible for sufficiently small

6>0. This contradicts the fact that X is an extreme .feasible

vector. Hence, !

v
:

' is not vacuous.

Now, let l\'p be the set of column indices such that when

j is in Np, x.=0, and let iM-, be the complementary subset of

N, the set of all column indices in the system (1.7) • Note

that N, is not vacuous because X^O. Let A" be she submatrix



45

of the matrix A obtained by deleting from A the rows whose

indices are not in M' and the columns whose indices are in N P .

Let X be the vector X with those zero components deleted

whose indices are in N
2

arid let E be the vector b with

those components deleted whose indices are not in M' . Then

cle-.rl.y, JM.
The linear independence of columns of I can now be easily

established. If this were not true, there would exist a vector

X r-0 such that AT =0.- Now, consider the vectors a\ =7 +£"*

and X
2
=X -«*._, which have dimension equal to n minus the

number of indices in N^ '

If zero components are adjoined to

a
1

and X
2 ,

to obtain n-dimensional vectors X, and X p , the

mean of X
]_

and X
2

is X, while for' sufficiently small €> 0,

X
x

and X
2 are feasible. This contradicts the fact that X

is an extreme feasible vector. Hence, the columns of A are

linearly independent.

The matrix A which has linearly independent columns is not

necessarily square. However, the number of rows of A must be
equal to or greater than the number of columns of A. This

can be seen by noting that a set of ^-dimensional vectors is

linear ,• dependent "if the set contains more than
. w

±
vectoi-s.

Thus, by deleting a suitable number of rows of the matrix a,

a square nonsinCular submatrix A
±

is obtained. Since, SxV5,

clearly, the extreme feasible vector X satisfies the system
of equated constraints whose associated matrix is A

In the above proof of the necessity of the condition, the

vector was assumed to be nonzero. If, however, X=0, it is
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cleaa that X is an extreme feasible vector, if it is feasible.

The parenthetical assertion of the Theorem can be proved in a

similar manner.

Theox-em 5.4. Feasible nonzero vectors X and U are

extreme optimal vectors if, and only if, they satisfy dual

nonsingular square systems of equated constraints.

Proof: The sufficiency of the condition follows immediately

from Theorems 5.1 and 5.3. To prove the necessity of the condi-

tion, suppose that X and U are extreme optimal vectors. Let

the sets of indices M^,' M
2 , N,, and N~ be renumbered, if

necessary, so that (AX)
i
=b

i
for i in M

1
=(l , . .

. ,p)

,

(AX)
i
<b

i
for i in M

2»(p + 1, . . . ,m), (UA).=c. for j in

a
]
_=(1,. . . ,q), and (UA).>c, for j in N =(q+1, . . . ,n) . That

the sets M^ and N, are not vacuous follows from the same

argument given in the proof of Theorem 5.3. By Corollary 3.5,

x.=0 for j > q and u^O for i>p. However, some of the

x. with j < q or some of the u^ with i$p may also equal

zero; in this case, let the sets of indices be renumbered again

so that x.> for lijtqfq, x.=0 for j > q ,

'

u . > fc

l€i€?^p, and u^O for i > p. Since X * and U^O,

p>0 and q>0, and hence, p>0 and q>0.

Let A denote the submitrix of the matrix A in (1.7)

which contains as elements the intersection of the first p

rows and the first q columns of A.

The linear independence of the first q columns of A"

.or
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can be established using an argument similar' to the one used in

the proof of Theorem 5«3« If the first q columns of A are

_ +

linearly dependent, there must exist a q-dimensional vector X ^0

such that hX =0. Consider the vectors JL-X +&* and X
2
=X - el*

where X is the vector with the last n - q zero components de-

leted. If zero components are adjoined to X, and 1
? to obtain

n-dimensional vectors X, and X~, the mean of X, and X
? is

X while for sufficiently small€>0, X, and X~ are feasible.

The fact that the vectors X-
L

and X^ are also optimal follows

readily from the relations CX, fr UB, CXp = UB, and

GX=;^C(X
1

+ X
2
)=UB, which are valid because X, and X

p are

feasible and X is optimal. Indeed, CX + UBSCX, + CX = 2UB

or CX-jg UB. Hence, CX
1
=UB, and similarly, CXp=U3. By Lemma

1.2, the vectors X, and X~ are optimal. Thus, the fact that

the vectors X.^ and Xp are optimal with mean X contradicts

the fact that X is an extreme optimal vector and leads one to

the conclusion that the first q columns of A* are linearly

independent. Similarly, the first p rows of A* are linearly

independent.

Now, consider the maximal set of rows and the maximal set

of columns of A. Let the sets of indices indicating these rows

and columns be renumbered so thab the first p' rows of

£ (p's p) are linearly independent and the first q' columns

of. ,\ (q
1

q) are linearly independent. Denote the submatrix

which contains as elements, the intersection of the first p'

rows and the first o' columns of I by A,. The last q - q'
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columns of A are linearly dependent on the first q' columns

and, therefore, any linear combination of the p' rows of A,

can be extended to a linear combination of the p' rows of A"

by virtue of this linear dependence.. Now, the p' rows of A"

are linearly independent. Therefore, the rows of A,, which

contain only parts of the components of linearly independent

vectors, must be linearly independent. Similarly, the columns

of A^ are linearly independent. Hence, A, is square and

nonsingular. Clearly, the vectors X and U satisfy the dual

nonsingular square. system of equated constraints with associated

matrix A,

.

Corollary 5.1. The sets of feasible and optimal vectors

of dual linear programs have a finite number of extreme vectors.

Proof: This statement follows immediately from Theorem 5.5 and

5.4.

It is easily seen that Theorem 5.4 provides a method for

finding extreme optimal vectors. However, to use this method,

one must determine all square systems of equated constraints

with nonsingular associated matrices and find the feasible

solutions of these systems. This procedure would, in general,

require a tremendous amount of work.
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Optimal Rays

An optical ray (X°;X) for the maximization problem (1.7)

is a set of optimal vectors of the form X° + \X, where X

takes >n all nonnegative values, X° is a fixed optimal vector,

and X is any fixed vector which has been normalized so that the

sum of its components is one. Optimal rays for the minimization

problem are defined analogously. The vectors, X, are called

directions of the optimal rays and the following Lemma character-

izes them.

Lemma 6.1. Suppose the sum of the components of the vector

X is one, and that X is an optimal vector for the maximization

problem (1.7). Then, (X°,X) is an optimal ray if, and only if,

(1) XfcO

(2) AX^O

(3) CX=0.

The dual statement holds as well; (2) becomes UA5 0.

Proof: The set of optimal vectors (X°;X) is an optimal ray if,

and only if,

(i) AX° + XAX SB

(ii) CX° + XCX=CX°

(iii) X° + AXkO for all XfcO.

Clearly, these conditions are satisfied if, and only if, (1),

(2), and (3) hold.



50

Ler,.;;ia 6.2. The set of directions of optimal rays of a

linear-programming problem has a finite number of extreme vectors

:
Jroof: According to Lemma 6.1» X is the direction of an

optimal ray for the maximization problem if, and only if,

(i) Ex.^1

di) E(-x.)£i

(iii) AXiO

(iv) CX=0

(v) (-CX)iO.

Relations (i) through (v) can be considered the row constraints

of a suitable new maximization problem. The desired conclusion

follows by applying Corollary 3.1 to this problem, of course,

an analogous argument holds for the minimization problem.

The discussion of the theory necessary to prove the follow-

in,:;; theorems is quite lengthy and involves concepts which

have not been considered in- this report. For this reason,

these theorems will be stat< d without proof. Theorem 6.1 is

needed to prove Theorem 6.2, a statement which characterizes

trie set of all optimal vectors of a linear-programming. problem.

A proof of Theorem 6.1 can be found in (7) and a proof of

Theorem^ 6.2 can be found in (3).

Theorem 6.1. Let 3= (x
|
AX ^ Bj be a nonvacuous set with

the matrix A having linearly independent columns. Then 3

has a minimal basis (?
1

, . .
.
,? •Q

1 , . .
. ,Q ) which is unique



51

(up to positive multiples of the Q.'s). Here, (P, ,...,1" ) is

the set of extreme vectors of S, and (Q,,... ,Q ) is the set

of directions of the extreme vectors of S.

:meTheorem 6.2. Let |Xr j- be- the finite set of extrei

optimal vectors for the maximization problem and {x s
} be the

finite set of extreme directions of optimal rays for the maximi-

zation problem. Then, the set of all optimal vectors X is

the set of all vectors of the form X=H~\Xr +H/U Xs with
i- o

all Xr ^0, all /^iO, and ZT^-1. Of course, the dual state-

ment holds for the minimization problem.
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Lagrange Multipliers

The traditional calculus procedure for finding a constrained

maximum or minimum employs Lagrange Multipliers. This procedure

may be adapted to linear programming problems to derive a necessary

and sufficient condition for the vectors X and U to be optimal

vectors for the dual programs (1.7) and (1.8).

The general procedure of Lagrange's method will now be sum-

marized. If a given function G(x-,,...,x )=G(X) is to be maxi-

mized or minimized subject to the constraints, ?-, (X)=0, . . . ,F (X)=G,

then the first step is to form the Lagrangian function

K(X,u, , . .. ,ii )=H(X,U)=G(X). + £_u.F.(X). Then, the necessary

conditions that H(X,U) have an unconstrained extremum are that

the n first partial derivations of H(X,U) vanish. These con-

ditions are also necessary for G(X,U) to have a constrained

extremum, so that the free extreme values of K(X,U) are sought,

among which will be the extreme values of G(X,U).

A similar situation arises in linear programming, where the

object is to eoetremize a linear, function subject to constraints

which are linear inequalities, rather than equations. To develop

a technique analogous to Lagrange's method, the Lagrangian func-

tion

(7.1) L(X,U) = CX + UB - UAX

cx + fu
i
(b

i -pW

is formed. The second form of L(X,U) in (7.1) exhibits a



53

sibuation analogous to that described above. The problem described

here is a maximization problem with G(X) = CX, F.(X) = (b. -V a. .x.).

and the u^ regarded as multipliers. Similarly, the third form

of L(X,U) in (?.l) exhibit;: the analogy for the minimization

problem. The following theoi^em justifies this analogy.

Theorem 7.1- A necessary and sufficient condition that X°^0

and U =0 be optimal" vectors for the dual programs (1.7) and (1.8)

is that (X°,U°) be a "saddle point" for L(X,U) in the sense

that

L(X,U )^L(X°,U )iL(X°,U)

for all X^O and U^O. If
.
X° and U° are optimal vectors,

then L(X , U ) is the optimal value of the dual programs.

Proof: To prove the necessity of the condition, suppose that

X and U° are optimal vectors. By Corollary 3.1, CX°=U°B.

Since CX ^ U°AX°^ U°3, it follows from (7.1) that

L(X°,U°) = CX° = U°B. Thus, for any XSO, U^O,

L(X,U°) =U°B + (C - U°A)XtU B=L(X°,IJ ) and

L(X°,U) =CX° + U(B - AX )* CX°=L(X°,U ).

Therefore, the. point (X°,U°) is a saddle point.

To prove the sufficiency of the condition, suppose that

(X ,U ) is a saddle point with X ^ and U°S0. Then,

for any XlO,

U°3 - (U°A - C)X = L(X,U°)1L(X°,U°) -U°B - (U°A - C)X°
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or

(7.2) (U°A - C)(X - X°) *0.

Now, since X is arbitrary, choose X = X° + F
.

, where S.

is the j-th unit vector. The::, (7.2) yields (U°A - C),.£ 0.
J

Let j = l,...,n, and it follows that U°A£C. Hence, U°

is feasible. Similarly, for any vector USO,

CX° + U°(B - AX°)=L(X°,U°)1=L(X ,U)=CX + U(3 -, AX°)

or

Ot(U - U°)(B - AX°).

Therefore, choose U = U° + E^'j let i-l,...,m, and it follows,

as above, that B£AX°. Hence, X° is feasible.

Since L(0,U°)tL(X o
,U°) = L(Xo ,0), U°B*CX°. By Lemma 1.1,

CX | U B. .Hence, U°B=CX° and by Lemma 1.2, vectors X° and

U° are optimal. Therefore, U°B=L(X ,U )=CX°.

It is to be noted that the situation involving dual linear

programs to which the method of Lagrange has been applied hei-e

differs from the ordinary situation in the calculus. First, the

fact that a maximization problem and a minimization problem are

being dealt with simultaneously leads to the consideration of a

saddle point of L(X,U). Second, the conditions involved are both

necessary and sufficient. Finally, the Lagrangian function

L(X,U) is subject to the constraints X^O and U^O.
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Appendix

One of the best known and the most widely used computational

methods of solving a linear programming problem is the Simplex

Method developed by G. B. Dantzig {'}). The purpose of this

section is to discuss this method.

The linear-programming problem to be discussed in this

section will considered in the following standard form:

Find the values A.
, . . . , A which maximize the linear

function

(1) z = A c + .. .. + A coil n n

subject to the conditions that

(2)

and

(5)

A.,o

Vn + -" + Vm=b
i'

A, a t + • • - + A a = b ,1 ml n mn m'

( 3-1, ...,n)

. are constants (i-l,..,,m; j=l,...,n).where a . . , b
.

, c

The general linear-programming problem may involve con-

straints which are inequalities or a mixture of equations and

inequalities, ana variables which can have negative values,

and a linear function which is to be minimized rather than

maximized, ouch problems are easily transformed to the standard
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form stated above.

If a constraint is a less-than condition, so that

a
il

x
l

+ '* ,+ a
in

xn=^i' then tne constraint may be transformed

into an equation by adding a nonnegative slack variable s.

to the left-hand side and writing a . , x, + ••• + a, x + s.=b..° il 1 In n 11
The slack variable s, is an additional unknown that has to be

determined. Similarly, if a constraint is a greater-than condi-

tion, so that a^ +•••+ a
in

x
n
- b

i>
then one can write

a
il

x
l

+,, ' f a
in

x
n

~ s
j
a
^i»

where s, is again a nonnegative

slack variable. By introducing a nonnegative slack variable

for each constraint that is an inequality, one can always express

the constraints in the standard form of (3).

If some variables are not constrained to be nonnegative,

then those variables can always be expressed as the difference

of two nonnegative variables. Substituting the difference of

two nonnegative variables into (3) for those variables which are

not restricted in sign will result in a problem in standard form.

Finally,. if one wishes to minimize the function (1), rather

than maximize it, one may reverse the. signs of all the c. in
J

(1) and then proceed to maximize the resulting function.

iSach column of coefficients in (3) may be viewed as represent-

ing the components of a vector in the vector space V . Let Pm J

denote the j-th column of coefficients and P the column of
c

constants in (3). Then, by definition,
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(?!,...,

P

n ;
p )

a-, t a, -• • • a, b,11 12 In 1

a , a * • • a b
Eil m2 mn m

The basic problem then is to determine nonegative \ %

such that

(5)

(6)

Vl +

\c
l

+ X p =p
,n n o'

+ A c =z=max.

A set of A
i

which satisfy (.;) without necessarily

yielding the maximum in (6) will be termed a feasible solu-

tion; one which maximizes (6). will be called a maximum feasible

solution. Having defined the problem, the simplex method for

finding its solutions may now be discussed. The simplex tech-

nique consists of constructing first a'* feasible, and then a

maximum feasible, solution. Since feasible solutions are

frequently obtained by inspection' and .because an arbitrary feasible

solution can be obtained in a manner analogous to the construc-

tion of a maximum feasible solution, the construction of a maxi-

mum, feasible solution from a given feasible solution will be con-

sidered first.

To simplify the development that follows, the following

nondegeneracy assumption will be made: Every subset of m vec-

tors from the set (P^Pp. . . ,Fn ) is linearly independent.
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However, modifications to the method have been developed that will

solve any problem they may arise which is degenerate.
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Construction of a Maximum Feasible Solution

Assume as given a feasible solution consisting of exactly

m of the "X. nonzero, that is,

(7) A,P, w + ajp-p' X>0.11 m m o ' i

( Q ) ^-i c
t + ••• + Xc =z .ll m m o

The set of m vectors, P., in (7) will be referred to as a
J

hasis J
'

or P
l»

,,,
'
P
n*

In establishing the conditions for the

construction of a maximum feasible solution, it will be necessary

to express all n vectors, P., in terms of a basis, that is,

(9) x, .P, +..-+ x .P -P. • (i=l,... n).lj 1 mj m j
v»i*» * •• ».**/•

Now, define z . by

( 10 ) x, .c, +•••+ x .c =z. (i=l n )lj 1 mj m j
v j x, . .

.

taj

.

Theorem 1. If, for any fixed j, the condition

(11) c.>z.
J J

holds, then a set of feasible solutions can be constructed

such that

(12) z>z
Q

for any member of the set, where the upper bound of z is either

finite or infinite.

Case I: If finite, a feasible solution consisting of

exactly m ^> can be constructed.
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Case II: If infinite, u class of feasible solutions con-

sisting of a set of exactly (m* +1) positive A. can be con-

structed such that the upper 1 bound of z= + oo .

Proof: Multiplying equation (9) by 9 and substracting from

equation (7), and multiplying (10) by 9 and substracting from

(8), the equations

(13) (\-««y)Pi —• (\-e\,
d

) Pm
+ 9P =P

o'

(») ( \ - ityioj t->* ( 7l„, - ex
mJ

)o
m

eo
d

=z
o

e(cj - Zj ),

are obtained where the term 9c. has been added to both sides
J

of (14).

Since a^ for every i in (13), it is clear that there

is, for 92 0, either a finite range of values 9 > 0^0 or

an infinite range of values such that the coefficients of the

P
i

remain positive. It follows from (14) that the function z

of this set of feasible solutions is a strictly monotonlcally

increasing function of 9,

(15) z=z + 9(c. - z.)>z '9>0,

sinc6 c "> z
J J by hypothesis (11). This establishes (12).

Case I: If x
i
-> for at least one i=l,...,m in (9)

or (13), the largest value of 9 for which all coefficients

in (12) remain nonnegative is given by

(16) 9 =min(7L./x, .), x. .>0.
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If for some value i of i, in (16) exists, it is clear

that the coefficient corresponding to i in (13) and (14-) will

vanish. Hence, a feasible solution, given by ©=9 , has been

constructed with exactly m positive weights "X. . Further-

more, z>z
Q

. It should be noted that this new set of m vectors

consists of the new vector, P., and (m - 1) of the original m

vectors. This is a desired solution for Case I.

The new set of m vectors may now be used as a new basis,

and again, as in (9) and (10), all vectors may be expressed in

terms of the new basis and the values of the c^ compared with
<j

the values of the z. just computed. If any c> z., the value

of z can be increased. If at least one x. . > 0, another new

basis can be formed. Now, assume that this process is continued

until it is not possible to form a new basis. This must occur in

a finite number of steps because there are at most C basesn m

and none of these can recur, for in that ca.se the value of z

would also recur. This cannot happen because the function z

is strictly increasing. Thus, it is evident that the process must

terminate, either because at some stage

C 1?) Xij~° f0P a11 i = 1 >--->m and some fixed j,

or because

(13) c < z. for all j=l,...,n.

Case II: If inequality (17) occurs, then it -is clear that

6 has no finite upper bound and that a class of feasible
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solutions has been constructed consisting of a set of (m + 1)

positive A- such that the upper bound of z=+oo.

In all problems in which there is a finite upper bound to

z, the iterative process must necessarily lead to the condition

(18). However, it will be proved in the next theorem that the

feasible solution associated with the final basis, which has

the property that c.iz, for all j = l,...,m is also a maximum
J J

feasible solution. Hence, in all problems in which there is no

finite upper bound to z, the iterative process must necessarily

lead to the condition (17). Furthermore, by rewriting equation

(9) as

for the fixed j of (17), a nonnegative linear combination of

(m + 1) vectors has been shown to vanish if the upper bound of

z is +co

.

As a practical computing matter, the procedure of progressing

from one basis to the next does not involve as much computation

as would first appear, because the basis, except for the deletion

and insertion of one vector, is the same as before. In fact,

one iteration involves less than mn multiplications and an

equal number of additions. It has been observed from experience

that the number of iterations can be greatly reduced not by

arbitrarily selecting any vector, P,, satisfying c.>z., but
J <3 J

by selecting the one which ,:ives the greatest immediate increase

to the function z.
.
From (15), the criterion for the choice of
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j is such that e (c. - z.)
o j y is a maximum, where 9 is given

by (16), A criterion that involves considerably le ss computa-

tion and seems to yield just a s satisfactory result s is to

choose j such that (c. -.a.
J J

) is a maximum. In either case,

appro;-: iicately m changes in b asis are encountered in px^actice,

so that
2

about m n multiplies tions are involved in obtaining a

maximum feasible solution frorr i a feasible solution.

Theorem 2. If, for all j=l, . .
.
,n, the condi tion

holds, then equations. (?) and (3) constitut e a maximum

feasible solution •

Proof: Let

(19) MlPl + ••• + *nPn=Po. M^O,

(20) /
W
1
c
1

+
*

> " + M c =z ,n n '

constituite any other feasible solution. It will be shown that

zo= z+ -

By hypothesis, c . 1= z
.

,

J J
so that replacing c . by z . in

(20) gives

(21) A
1
z
1

+ + ^n zn^ z
*

•

On substitut.Lng the value of P. given by equa-tion (9) into

equation (19) and the value of z. given by (10) into (21),

it foliows that

(22) ( th^h *''•';* ( £ ^vvp
>
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(23) c ^/vu )c
i

+ -- ,+ ( h M
i
x
-i

)c-- z •

According to the assumption of nondegeneracy, the corresponding

coefficients of P. in equations (7) and (22) must be equal.

Hence, the ine-ualitv (23) becomes A, c, +.»«+ A c 5. z11 m m _ T

or , by O ) , z > z .

In order that another maximum feasible solution exist, it

;cessary that c .=
J

However, in this case,

is necessary that c.=z. for some P. not in the final basis.

(24) P
l

P
2 ?n<

c
l

c
2

c
n

has at least one set of (m + 1) columns which are linearly

dependent. Thus, a sufficient condition that the maximum fea-

sible solution constructed from the given feasible solution be

unique is that ever set of (m + 1) vectors defined by columns in

(24), be linearly Independent.

Construction of a Feasible Solution

Consider the (n + 1) column vectors in (4). ' Select an

arbitrary basis of (m - 1) vectors, P., and the vector t>

d o

from this set. Denote the basis by (P
Q
;P

1
, . .

.
,p ) . .Now, any

P. can be expressed in terms of this basis by

(2/° yo/o + ^l/l -•- y<»-l)jW*j, <j = l,...,n).

Theorem 3. A sufficient condition that there exist no

feasible solution is that y ,
£0 for all j.
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Proof: Assume that there does exist a feasible solution,

(25) Vl + -" + Vn-P
o- V '

On substituting the expressions for P. given by (24-) into

equation (2p) , it follows that

Vi< £v(
p.i)j)-o.

By virtue of the assumed independence of (P ;?•,,..., P _-, )

,

it is evident that each coefficient in (26) must vanish. In

particular, z_ A.y. . - 1=0. This is impossible if both

LlO and yni ^0 for all j.

To construct a feasible solution, a fixed reference vector

R is first defined. R is given by R=w, P, + ••« + w ,P ,-kP,° " 11 m-1 m-1 o o'

where w
i
> (i=l, . .

.
,m-l) and k

Q
> are arbitrarily chosen.

The above equation may be rewritten in the form

(27) R + k P =w p .•*+ wm ,P. ..
o o li m-1 m-1

In the development that follows, k will play a role analogous

to 2
Q

.

By Theorem 3, if there exists a feasible solution, there

exists at least one j (which will be considered to fixed) such

that yQ^> 0. Multiplying (24-) by 9 and substracting from (27),

it follows that
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For a rarve of >0>O, one can construct, in a manner
o '

'

similar to (13) and (14), a set of vectors of the form R + kP
,

where each is a positive linear combination of the vectors P..
J

Since k will play a role analogous to z, the problem is to

find the largest value k Cor which this construction is possible.

It should be noted that k=k + ©v . > k since y . >0 has
o "OJ o ^oj

been assumed.

If, in the equation (24), all y.-^O (i = l, . . . ,m-l) , the
* J

coefficients of P. will be positive and k -*+ co as —s> + co .

J

Also, it will be seen, by solving (24) for P , that

P
o
=(l/V P

j
+ (

-y lj
)P

l
+ -" + (

-y(m-l)A>a )P
m-l>

and that a feasible solution has been obtained. That is, P
' o

has been expressed as a positive linear combination of P, ,...,P ,
l ' ' m-1

and P.. If at least one y, .> (i=l , . .
.
,m-l) , the largest

value of is then

(2d) e =min(w./y
iJ ), y...> 0.

When is set equal to , the coefficient of at least one

vector, P^, will vanish and a new vector R + k,P , will be

formed from (27) which is expressed as 'a positive linear combi-

nation' of just (m - 1) vectors, P., where k, =k + y .>k .1 1 o o*7 OJ o

By expressing all vectors P. in terms of the new basis,

the process may be repeated, each time obtaining a larger value

of k, i.e., a feasible solution. The process must terminate

in a finite number of steps. Otherwise, since there is only a

finite number of b-:ses, the same combination of (m-1) points
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P. would appear twice. That is,

(29) R + k'P »w'P, +.-.+ W ' P ,

.

oil m-1 m-1*

(50) R + k"P =w''P, +...+ w" ,P lfo 11 m-1 m-1'

where k">k'. Subtracting equation (29) from equation (JO), a

nonvanishing expression giving P in terms of (m-1) vectors

i^, is obtained. This contradicts the nondegeneracy assumption.

There are only two conditions which will terminate the pro-

cess. That is, after a finite number of iterations, either

y • £ for all j = l,...,n, or, for some fixed j, y. . £

for all i=l,...,m. In the first case, Theorem 5 implies that

no feasible solution exists. In the latter case, -equation (?4)

may be solved for P
Q , as was done in (28), to obtain the desired

feasible solution.
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Linear programming is usually thought of as referring to

techniques for solving a general class of optimization problems

dealing with the interaction of many variables ' subject to cer-

tain linear restraining conditions. In solving these problems,

certain objectives are to be obtained in the best possible, or

optimal, fashion subject to certain restraining conditions which

may arise from a variety of sources. However, the phases of

linear programming discussed in this report are primarily exist-

ence discussions. The linear-programming problem is first de-

fiaed in terms of a system of linear inequalities, and then,

certain conditions necessary for the existence of a solution are

derived.

The concept of duality is employed whenever possible. If

the linear-programming problem is stated in terms of seeking the

maximum value of a linear function subject to a system of linear

constraints, then the dual to this problem is the search for a

minimum value for an associated linear function subject to an

associated system of linear constraints.

As background necessary to prove the fundamental Duality

and Existence Theorems, dual systems of homogeneous linear rela-

tions are first discussed. These theorems give necessary and

sufficient conditions for the existence of feasible and optimal

solutions for the dual linear-programming problems.

Dual linear programs involving systems of mixed constraints

are shown to be equivalent to the dual linear programs as origi-

nally defined.



From a study of linear programs involving systems of equated

constraints, the set of all optimal solutions is character-ized.

A modified version of the method of Lagrange Multipliers is

used to derive a necessary and sufficient condition for the exist-

ence of optimal solutions for the dual linear programs.

In the appendix, the so-called simplex method, developed

by George B. Dantzig, is discussed. It was the inability to find

an analytic solution to the linear-programming problem that led

to the development of the simplex method and various other itera-

tive methods. The simplex method is the most widely used method,

since experience has shown it to be a rather efficient method

from a computational point of view.

While it is true that the theory of convex polyhedral cones

is but a geometric interpretation of the theory of linear inequal-

ities, this theory is quite extensive, and as a result is not

emphasized in this report. Therefore, no attempt is made at

geometrical interpretation of any concept. In fact, all results

are stated and proved algebraically, as properties of linear in-

equalities.


