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1. Introduction

A traditional experimental design is to compare treatments in a

one-way treatment structure with a completely randomized design

structure where each experimental unit is subjected to one treatment.

Since each experimental unit is subjected to only one treatment, direct

treatment effects, the effect a treatment has on the subject's response,

is measured through among- subjects comparisons. In an experiment

involving t treatments, N experimental units are randomly assigned to t

groups with n. experimental units in group i, i-1, 2, ..., t and N -

t

S n. . The classical model for analyzing a one-way treatment structure
i-1

in a completely randomized design structure is

Y. . - u + r. + e.
.

,

d 1)

where ^ - overall mean,

T. - mean effect of treatment i, and

e. ,- random error.

For inference purposes, it is assumed that e.. - i.i.d. N (0, a ). The

estimate of the error variance is obtained from the variation among

subjects, within treatment groups. Often, there is a relatively large

variation among subjects within a treatment group, which can inhibit the

chance of detecting treatment differences.

An alternative experimental design, is to allow each subject to go

through a sequence of treatments, where each subject is its own

"control". Such a design is called a crossover design. This

experimental design can be used in a wide variety of applications in

experimental research, from agriculture to testing biological assays to
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marketing and sociological experimentation. A crossover design

incorporates a repeated measures design structure, where treatments are

administered in a sequence over time to each subject. Thus, comparisons

of treatments are based on within-subject comparisons. The inherent

variation among responses within a subject is often smaller than the

variation among subjects, making this class of designs more appealing to

researchers. When this is the case, the crossover design provides more

precise estimates of treatment effects than those from a one-way

treatment structure in a completely randomized design. Due to the

smaller variation fewer experimental units are required to detect

treatment differences of a fixed size with a crossover design compared

to a one-way design. However, when different treatments are applied in

succession to the same experimental unit, carryover, or residual effects

from the preceding treatment can affect the present treatment's

response. A carryover treatment effect is the effect of a treatment

which carries over beyond the period of application which can bias

subsequent estimates of direct treatment effects. The main focus of

discussion is on one-period carryover effects, i.e., where the effect of

a treatment can extend one more time period. Other residual effects

will be discussed briefly.

2. Crossover Designs

Crossover designs involve constructing s sequences of t treatments

in which subjects are randomly assigned to one of the sequences of

treatments. Treatments are applied to the subjects in a specific

sequence over periods of time. Each period should be of sufficient

length to allow expression of the treatment effects and also long enough



so that the effect of treatment does not go beyond the period. When

there is a risk of carryover effects, it is possible, in some

situations, to separate the time intervals in which treatments are

applied by enough time for carryover effects to die out, typically

called washout periods. This extends the length of the experiment and

is impractical in many situations. Treatment carryover effects may

affect future treatment responses in one of two ways . If the carryover

effects are equal, then the average treatment response will increase or

decrease by a fixed amount, resulting in the same power for detecting

treatment differences as if there were no carryover. If differential

carryover effects occur, adjusting treatment means for carryover effects

can be accomplished by using a set of sequences balanced for specified

types of carryover effects. One-period carryover, or first order

carryover, is a residual treatment effect which affects only the next

treatment's response in the sequence. A set of sequences is balanced

for a one-period carryover, if each treatment is preceded equally often

by each other treatment and each treatment occurs equally often in each

period. Similarly, second, third k*^ order carryover effects may

occur lasting for two, three, and k periods, respectively, beyond the

period of application. Unless carryover effects are equal, direct

treatment effects are biased if the analysis does not incorporate an

adjustment for the differing carryover effects.

In the simplest case, two treatments in a two-period crossover

design, involves two sequences of treatments, treatment A followed by B

and treatment B followed by A with possibly a washout between periods.

Subjects are assigned completely at random to sequences of treatments

such that one-half of the experimental units receive treatment A and the
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other one-half receive treatment B in the first period. The

experimental unit receiving treatment A (or B) in period one then

receives treatment B (or A) in period two, thus the name crossover

design. One response is obtained per subject per period in a standard

crossover experiment, although this response could be an average of

several measurements taken during the period.

Table 1 is a layout of the data for a two-period crossover design

using notation from Grizzle (1965), where S.. denotes subiect i in

sequence i and Y, ., denotes the observed response of subject j in

sequence i to the treatment administered during period k.

Table 1 . Layout of the Data for a Two-Period Crossover Design

PERIOD SEQUENCE SUBJECT

11'

111'

112'

. , S
In,

In^l

ln22

SEQUENCE

B

A

SUBJECT

^21'

212'

. , S
2n„

^211 ''2n2l

2n^

Since each treatment is observed on the sane subject, a repeated

measures design with two sizes of experimental units is generated. Each

subject, the larger experimental unit, is assigned to a treatment

sequence completely at random. The experimental design for period, the

smaller experimental unit, is a one-way treatment structure with levels

A and B in a randomized complete block design structure where the

subjects are the blocks. The appropriate model for a two -period

crossover design is,



\jkt- ''ikt ^ «j(i) ^ ^Ijkf <2.1)

where ^'^y^ - mean effect of treatment t within sequence 1 at time k,

f^/j^s - random error of subject j within sequence 1, and

fj^^j^^ - random error associated with the period within the

subject.

For inference purposes, assume ?•,.^ - i.i.d. N(0,ap, £.., - 1.1. d.

2
N(0,(T^), when i,,,^ and

'-.vt-
^re independent.

Since there are two sizes of experimental units, the subjects and

the periods, there are two types of comparisons, between- subject

comparisons and within- subject comparisons. The sequence effect, the

residual effect, and the treatment by period interaction effect are

equivalent for the two-period crossover design, each comparing the

carryover effects for the two treatments. The treatment effect, a

within- subject comparison, is equivalent to the period by sequence

Interaction effect, and the period effect, also a within- subject

comparison, is equivalent to the treatment by sequence interaction

effect.

A reparameterized model with carryover effects Is,

\jkt- '^ ^ «j(i) + -k ^ 't ^ Vi(k-1)A

^ Vi(k-1)B + 'ijkf <2-2)

where ii - overall mean,

^i/j^N ~ random effect of subject j within sequence 1,

IT, - mean effect of period k.



T =- mean direct effect of treatment t,

X^ = mean carryover effect of treatment t,

1 if k-2 and treatment t occurs in period one

i(k-l)t of sequence i,

otherwise, and

«• •,
j^
- random error associated with the period within the

subject,

where j - 1, 2 n^^; i,k - 1,2; t - A,B; f - i.i.d. N (0, ah,

2

^iiVr - i.i.d. N (0, a ), and the ^.,., are independent of the £.., .IJKC £ j(i) -
ijkt

Based on the above distributional properties and assumptions , the

sources of variation, associated degrees of freedom, and quantities

proportional to the noncentrality parameters are given in Table 2.

Table 2. ANOVA Table for the Two-Treatment Two-Period Crossover Design

Source of Variation
Between Subject Analysis

Carryover or Sequence

Subject(Sequence)

Within Subject Analysis

Period

Treatment

Error

Total

1

S (n -1)

i-1

S (n -1)

i-1 ^

2

2 2 n. -

i-1
^

Noncentrality
Parameter

<VV



The tests for direct treatment effects assumes no period by

treatment interaction. No period by treatment interaction, equivalent

to carryover effects and sequence effects , implies that the

effectiveness of one treatment does not change relative to the other as

subjects go from period one to period two. Direct treatment effects are

estimated by averaging the corresponding treatment responses of period

one and period two. If the assumption of no period by treatment

interaction is not satisfied, then there is a difference in the

reliability of the results in the different periods. Each treatment in

a two -period crossover design appears equally often in both periods and

both sequences, but each treatment does not appear in every possible

treatment-period pairing. Treatment A is in period two only in the

second sequence, so it is possible only to observe how treatment A

responds in period two when it is preceded by treatment B. If A reacts

differently in period two, it could be due to the order of testing

(sequence) or to the time of testing (period). It is impossible to

determine how much, if any, of the overall difference between the two

treatments is due to the treatments or to the treatment interaction with

period and sequence effects. In period one, the responses for

treatments A and B can be compared, even if differential carryover

exists, because of the random assignment of subjects to the two

sequences. In period two, if there is differential carryover, the

subjects in each sequence start in a dissimilar state due to the

different experience that occurred in period one. There is no way to

adjust the treatments means for the differential carryover effects from

the within-subject analysis since the carryover effects are estimated

from the between- subject analysis. In this case, an appropriate



analysis is a two sample t-test performed on data in period one only,

assuming normality. In this case, the expected treatment response is

assumed to be the same, except for a random component, for all subjects.

In addition, the expected treatment response is assumed to be the same

regardless of which period the treatment is administered in. As an

alternative, treatment comparisons can be made using a combined estimate

of between- subject and within- treatment comparisons as shown by Milliken

and Johnson (1984). The response to treatment in period one in the two

sequence groups may be compared by a Wilcoxon two sample test if non-

normality is a concern.

Crossover designs with more than two periods are similar to two

period designs in that there are two sizes of experimental units, two

error terms, and two levels of the analysis. In the following sections,

concentration is focused on designs in which three periods are used. A

model to describe a three -period crossover is,

^ijkt- /^ + «i ^ ?j(i) + -k ^ ^t ^ Vi(k-1)A

^ Vi(k-1)B ^ Vi(k-l)C ^ 'ijkf (2.3)

where ii - overall mean,

K. — mean effect of sequence i,

?j/j^s - random error of subject j within sequence i,

iTj^ - mean effect of period k,

T - effect of treatment t,

A^ - mean residual effect of treatment t,



1 if treatment t occurs in period (k-1) of

^i(k-l)t
"

\
sequence i, k - 2,3,

otherwise, and

£j^jj^
- random error associated with the period within the

subject.

3 . Latin Square

The two sequences in the two-period two-treatment crossover design

form a Latin square. The traditional Latin square design structure can

be employed in constructing crossover designs in which three or more

treatments are to be studied. For crossover designs, the row blocks of

the Latin square are the sequences and the column blocks are the

treatment periods. Treatments are then assigned to periods for each

sequence such that each treatment occurs once in each period and once in

each sequence. A standard Latin square, defined by Federer (1955), is

one in which the first row and the first column are ordered

alphabetically or numerically. The procedure to construct a standard

Latin square is as follows:

1

.

Number the treatments , i - 1 t

.

2. The first row of the square consists of a sequential ordering

of the treatments, i.e., 1 2 3 ... t.

3. A one step cyclic permutation of a sequence of treatments is

one which moves the first treatment in the sequence to the

extreme right, simultaneously moving all other treatments one



position to the left. i.e., Row two of the Latin square Is

2 3 4 t 1.

The analysis of variance model for a Latin square sequence

structure where subjects are assigned to sequences in a completely

randomized design structure is the same as that defined in model (2.3).

It is assumed that the effects of all three factors are additive and

that treatment effects do not interact with sequence and period effects.

The sources of variation and the associated degrees of freedom for the

Latin square model are given in Table 3

.

Table 3. ANOVA Table for the Latin Square Design

Source of Variation df
Between Subject Analysis

Sequence t - 1

t

Subject(Sequence) S (n.-l)
i-1 ^

Within Subject Analysis

Period t - 1

Treatment t - 1

Carryover t - 1

t
Error S n (t-1) - 3(t-l)

i-1
^

t
Total t (S n.) - 1

i-1
^

4. Williams Square

Crossover designs balanced for one-period carryover effects were

developed by E. J. Williams (1949). These designs were devised in order
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to measure both direct treatment and carryover effects from the within-

subject comparisons for three or more treatments over three or more

periods of time. Williams defines a crossover design to be balanced for

one-period carryover effects when two conditions are satisfied. First,

each treatment is preceded equally often by each other treatment.

Second, each treatment must occur equally often in each period, in order

of application to the subjects. These conditions for balancing require

the number of sequences to be a multiple of the number of treatments.

When there are t treatments, there are t(t-l) ordered pairs of

treatments. Since there are (t-1) adjacent pairs in each sequence, the

first condition requires a multiple of t sequences for all ordered pairs

to occur equally often. The second condition is also satisfied by a

multiple of t sequences.

Williams shows that when the number of treatments is even, a design

balanced for one-period carryover effects can be achieved with a minimum

of t sequences. When the number of treatments is odd, a minimum of 2t

sequences is needed to balance the design. Balanced designs can be

constructed from the cyclic Latin square of size t in which the rows

represent the sequences, the columns the periods, and the symbols the

treatments
. One square is required when the number of treatments is

even and two squares are required when the number of treatments is odd.

Williams presents methods of balancing designs for one-period and two-

period carryover effects. Two-period carryover effects occur when the

effect of a treatment carries two periods beyond the application. The

original construction of these balanced designs is fairly complicated.

A more simple method of construction for designs balanced for one-period

carryover is given in Bradley (1958) for an even ntimber of treatments.

11 .



Sheehe and Bross (1961) present the following extension of Bradley's

results in which construction of designs balanced for one-period

carryover can be created for both even and odd numbers of treatments

.

1. Number the treatments, i - 1 ... t.

2. Start with a cyclic t x t Latin square in which the sequence

of treatments in the 1 row is i, i+1 t, 1, 2

i-1.

3. Interlace each row of the cyclic Latin square with its own

reverse order sequence (its mirror image). For example, if t-3

the first row of the cyclic Latin square is 1,2,3. Its mirror

image is 3,2,1. When this is interlaced with the first row of

the original square, the structure is 1,3,2,2,3,1.

4. Form two t x t Latin squares by vertically cutting this t x 2t

rectangle down the middle. The columns of each square

represent the order of application from left to right, the rows

represent the sequences, and the treatments are the elements

within each square.

For Williams square sequence structures, the treatments are assigned

numbers at random, and the sequences are randomized. For t='3 , the

following two squares form a design balanced for one-period carryover

effects

.

Sequence 1: 1 3 2

Sequence 2 : 2 1 3

Sequence 3: 3 2 1

and

Sequence 4

Sequence 5

Sequence 6

2 3 1

3 12
12 3

12



For t-4, the following squares are formed:

Sequence 1

Sequence 2

Sequence 3

Sequence 4

14 2 3

2 13 4

3 2 4 1

4 3 12

Sequence 1

Sequence 2

Sequence 3

Sequence 4

3 2 4 1

4 3 12
14 2 3

2 13 4

Since the niomber of treatments is even, either one of the two squares

formed creates a design balanced for one -period carryover effects.

In addition to designs balanced for one-period carryover, Williams

also considers designs balanced for two-period carryover effects. This

condition of balance requires all ordered triplets of treatments to

occur equally often in the design. Williams describes a construction

method based on sets of t-1 mutually orthogonal Latin squares where t is

an odd prime number or a power of a prime.

A model for analyzing a Williams square sequence structure without

adjustment for carryover effects incorporates sources of variation for

sequence, subjects within a sequence, period, treatment, and an error

term. A model is,

(4.1)'ijkt 1 ^j(i) k t ijkt'

where the effects are defined as in model (2.3), excluding the carryover

terms.

The sources of variation with their respective degrees of freedom

for the analysis unadjusted for the carryover effects are in Table 4.

13



Table 4. ANOVA Table for Williams Square Model with Unadjusted Treatment

Source of Variation df
Between Subject Analysis

Sequence s - 1

s

Subject(Sequence) S (n.-l)
1-1 ^

Within Subject Analysis

Period t - 1

Treatment t - 1

s

Error (S n.-l) (t-1) - (t-1)
i-1

^

s

Total (S n ) t - 1

1-1
^

This analysis does not take advantage of the balanced treatment

sequence structure of the Williams square design that is valuable in

measuring the effects due to carryover.

A model for analyzing a Williams square sequence structure in which

an adjustment for carryover effects is incorporated includes a sequence

by treatment interaction term. The sequence by treatment interaction

can be partitioned into (t-1) degrees of freedom period and (t-1)

degrees of freedom for one -period carryover with the remaining degrees

of freedom associated with other residual effects. The model with

carryover effects is,

yijkm- f^ ^ \ ^ ?j(i) + "k + V + ___f/m\(k-l)m

*= * *
+ S A X., + e. ., , - (4 2)

. m ikm ijkm' i.'*-^;

m—

1

-

where ii - overall mean,

14



K. = effect of sequence i,

?.,.,- effect of subject j within sequence 1,

jr. - effect of period k,

T — effect of treatment t,

A - carryover effect of the treatment m occurring in the

previous period,

*

^mki
~ '^^si'i"^! effect (excluding one period carryover) from

period k in sequence i,

1 if treatment m occurs in period (k-1) of

^i(k-l)m -
(

sequence 1,

otherwise,

1 if treatment m occurs in period (k-2) of

I
^i(k-2)m "

\
sequence 1,

otherwise , and

«£jjj^ - random error of time period within an experimental unit.

The sources of variation and the associated degrees of freedom for the

analysis adjusted for carryover are given in Table 5.

15



Table 5. ANOVA Table for Williams Square Model with Carryover Effects

Source of Variation df
Between Subject Analysis

Sequence s - 1

s

Subject(Sequence) 2 (n. - 1)
1-1

"

Within Subject Analysis

Period t - 1

Treatment t - 1

Sequence * Treatment

One -Period Carryover t - 1

Other Carryover (s-2) (t-1) - (t-1)
s

Error [(Sn.)-l] (t-1) - (s-1) (t-1)
i-1

^

s

Total (S n ) t - 1

i-1
^

5 . Sequence by Treatment Interaction

The Williams square sequence structure was designed specifically to

address the problem of possible differential carryover effects for

experiments with three or more treatments. The sequence by treatment

interaction term in the two-period crossover design is equivalent to the

period effect. In a William square sequence structure with more than

two periods, the period effect is a partition of the sequence by

treatment interaction term. An experimenter choosing to use this

sequence structure would expect the effects of treatment to extend

beyond the period of application. Therefore, there are t-1 independent

apriorl comparisons involving one-period carryover effects. The sum of

squares associated with these t-1 comparisons is also a partition of the

16



sequence by treatment sxoms of squares. The remainder of the sequence by

treatment interaction is a lack of fit sum of squares associated with

residual effects that have not been accounted for with a design balanced

for only one-period carryover effects.

For each treatment In a three -treatment three-period crossover

design, there are six possible types of carryover effects. The

carryover effects associated with treatment A are,

i) ^A /ON • ^^^ carryover of treatment A from period one

affecting treatment B in period two

,

ii)
^f,(r)

'^^ carryover of treatment A from period one

affecting treatment C in period two

,

iii) ^AfBO ' "^^ carryover of treatment A from period one

affecting treatment C in period three with treatment

B in period two,

Iv)
\cr;R\ t^he carryover of treatment A from period one

affecting treatment B in period three with treatment

C in period two,

v)
•^(B)A('C')'

^^^ carryover of treatment A from period two

affecting treatment C in period three with

treatment B in period one, and

vi)
•^(c)A(B')'

''^^ carryover of treatment A from period two

affecting treatment B in period three with

treatment C in period one.

Incorporating a one-period carryover effect into a model assumes

that, for treatment A, X^ - X^^^^ = A^^^^ = X^^^^^^^ - A^^^^^^^

.

Similarly for treatments B and C, X^ - X^^^^ - X^^^^ - X^^^^^^^ -

\c)B(A) ^"^ ^C - ^C(B) - ^C(A) - \a)C(B) - \b)C(A)' respectively.

17



Including a two-period carryover effect into a model assumes that,

for treatment A, •^./dqn ~
^AfCBI ' Similarly for treatments B and C,

^B(AC) -
^B(CA)

^"'^ \(AB) " \(BA)' ^^^V^'^^i^^'^V The sums of squares

associated with the sequence by treatment interaction, after

partitioning out the sums of squares due to period and one -period

carryover, is a lack of fit measure of the deviation from the one-period

carryover model in (2.3).

In a Williams square sequence structure with six sequences, three

treatments, and five subjects per sequence, the sources of variation and

the degrees of freedom are given in Table 6.

Table 6. ANOVA Table for a Three-Period Williams Square Model

Source of Variation df
Between Subject Analysis

Sequence
Subject (Sequence)

Within Subject Analysis
Period

5

24

2

Treatment 2

Carryover
Sequence*Treatment
Error

2

6

48

In this example, the sequence by treatment interaction term has only six

degrees of freedom, instead of the expected ten degrees of freedom. Two

degrees of freedom correspond to the period effects and two degrees of

freedom to the one-period carryover effects. Six degrees of freedom

remain as a lack of fit test for the proposed model with one-period

carryover. If this test is insignificant, it implies that a model for

one-period carryover effects is adequate in describing the data. If

this term is significant, other carryover effects, such as two -period

18



carryover, bias the test for and the estimates of direct treatment

effects

.

5. Computer Analysis

In the preceding sections, a Williams square sequence structure

with an associated model and analysis of variance table was described in

which possible carryover effects were accounted for. In this section, a

computer code is presented for use with the SAS computer package to

conduct the analysis.

Tests of hypotheses for the main effects of sequence, period, and

treatment and the sequence by treatment interaction are obtained

directly from an application of the GLM procedure. However, a test for

differential one-period carryover effects cannot be obtained directly

since the appropriate partition of the design matrix cannot be

constructed through the CLASSES and MODEL statement. The condition of

no carryover effects in period one cannot be conveyed. A partition of

the design matrix for differential carryover is constructed outside the

GLM procedure and then passed in with the data.

Model (2.3) has more parameters than can be uniquely estimated.

One method of solving the normal equations for an overspecified model is

to constrain the parameters of the model. Three approaches for

restricting the carryover effect parameters are discussed. Each results

in the same overall test for carryover. The first method employs the

traditional sum- to-zero constraints. The second alternative is based on

set-to-zero constraints. Finally, the overparameterized model is

analyzed through contrasts. It is shown that information obtained

through the sum- to-zero and set-to-zero constraints can also be obtained

19



through the overparameterized model. A Williams square sequence

structure with three treatments is used as an example throughout the

discussions. With three treatments, there are two degrees of freedom

associated with carryover.

Sum-to-zero, the traditional constraint, requires the sum of the

t

carryover parameters to equal zero, i.e., S X. - 0. The source code to

construct the design matrix for carryover employing the sum-to-zero

restrictions is as follows, where the observed data are in a data set

called RAW_DATA.

DATA DESIGN_1; SET RAW_DATA;
RETAIN LAST_TRT;
SUM_l-0; SUM_2-0;
IF PERIOD NE 1 THEN DO;

IF LAST_TRT-1 THEN SUM_1-1

;

IF LAST_TRT-2 THEN SUM_2-1

;

IF LAST_TRT-3 THEN DO; SUM_1— 1; SUM_2— 1; END;
END;
LAST_TRT-TRT

;

For three treatments and three periods, there is a possibility of

carryover affecting treatment responses in periods two and three. The

indicator variables, SUM_1 and SUM_2 , are created to indicate the

treatment causing the carryover. SUM_1 equals 1 if the carryover is due

to treatment 1, SUM_2 equals 1 if the carryover is due to treatment 2,

and the sum-to-zero restriction forces both SUM_1 and SUM_2 to be -1 if

the carryover is caused by treatment 3. The GLM procedure is then used,

calling the DESIGN_1 data set. Since the design matrix for carryover

has been constructed in the previous data step, SUM_1 and SUM_2 are not

specified as classification variables in the CLASSES statement in GLM.

The source code is as follows.

20



PROC GLM DATA-DES1GN_1;
CLASSES SEQUENCE SUBJECT PERIOD TRT;
MODEL RESPONSE - SEQUENCE SUBJECT(SEQUENCE) PERIOD TRT SUM_1 SUM_2

;

The sum of squares corresponding to SUM_1 tests the hypothesis that

the carryover from treatment 1 is equal to the average of all the

carryover effects and the sum of squares corresponding to SUM_2 tests

the hypothesis that the carryover from treatment 2 is equal to the

average of all the carryover effects, i.e., H-iA.-A or H. : A..-1/2(A.+A,)

and K^:X^-X or Hg:A2-l/2(A^+A,) , respectively. A contrast statement is

generated to test for equal carryover effects for all treatments, i.e.,

HgrA^-Aj-A,. For the sum-to-zero restriction, the contrast is as

follows

.

CONTRAST 'CARRYOVER' SUM_1 1 SUM_2 0,

SUM 1 SUM 2 1:

Set-to-zero constraints use restrictions that equate the last

parameter in each group equal to zero. The source code to construct the

design matrix for the carryover effects with the set-to-zero restriction

Is as follows, where the observed data are in the data set RAW_DATA.

DATA DESIGN_2; SET RAW_DATA;
RETAIN LAST_TRT;
SET_l-0; SET_2-0;
IF PERIOD NE 1 THEN DO;

IF LAST_TRT-1 THEN SET_1-1;
IF LAST_TRT-2 THEN SET_2-1;

END;
LAST_TRT-TRT

;

Similar to the sum- to-zero restrictions, SET_1 equals 1 if carryover is

due to treatment 1 , SET_2 equals 1 if carryover is due to treatment 2

,
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but the set- to -zero restriction forces both SET_1 and SET_2 to be zero

if carryover is caused by treatment 3

.

The GLM procedure is then used calling, the DESIGN_2 data set.

Since the design matrix for carryover has been constructed in the

previous data step, SET_1 and SET_2 are not specified as classification

variables in the CLASSES statement in GLM. The source code is as

follows

.

PROG GLM DATA-DESIGN_2

;

GLASSES SEQUENCE SUBJECT PERIOD TRT;
MODEL RESPONSE - SEQUENCE SUBJEGT(SEQUENCE) PERIOD TRT SET_1 SET_2;

The set-to-zero contrasts compare carryover from each treatment

effect with the carryover effect from the last treatment, the highest

coded level, i.e., H^rA^-A^ and Hq:A -A^. An overall test for

differential carryover, i.e., Hg:A^-A2-A2, can be tested using the

following contrast statement.

CONTRAST 'CARRYOVER' SET_1 1 SET_2 0,

SET_1 SET_2 1;

The overparameterized model imposes no constraints on the carryover

parameters. The source code to construct the design matrix for one-

period carryover effects for the overparameterized model Is as follows,

where again the observed data are in the data set called RAW_DATA.

DATA DESIGN_3; SET RAW_DATA;
RETAIN LAST_TRT;
Cl-0; C2-0; C3-0;
IF PERIOD NE 1 THEN DO;

IF LAST_TRT-1 THEN Cl-1
IF LAST_TRT-2 THEN C2-1
IF LAST_TRT-3 THEN C3-1

END;

LAST_TRT-TRT

;
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The parameters, CI, C2 , and C3 represent the carryover effects that are

caused by treatments 1, 2, and 3, respectively.

The GLM procedure Is then used, calling the DESIGN_3 data set.

Since the design matrix for carryover has been constructed in the

previous data step, CI, C2 , and C3 are not specified as classification

variables in the CLASSES statement in GLM. The source code is shown

below.

PROC GLM DATA-DESIGN_3;
CLASSES SEQUENCE SUBJECT PERIOD TRT;
MODEL RESPONSE - SEQUENCE SUBJECT (SEQUENCE) PERIOD TRT CI C2 C3

;

An overall test for differential carryover, i.e., H. :A..-;k -A,, is

tested through the following contrast statement.

CONTRAST 'CARRYOVER' CI 1 C2 -1 C3 0,

CI 1 C2 C3 -l',

CI C2 1 C3 -1;

7 . Example

An example analysis for a three -treatment Williams square design,

balanced for one-period carryover effects, is illustrated with the

overparameterized model. The data in Table 7 were generated with

subject variation of 10, error variance of 1, /i, - 5, /i„ - 5, andA B

/ij, - 6, and with carryover effects \ - -1, A - 0, and X - 1.

23



Table 7. Data Generated with Williams Square Sequence Structure

TREATMENT PERIOD
SEQUENCE

ABC
SUBJECT 1 2 3

1 -2.127 -4.008 -0.832
2 7,778 5.976 6.862
3 9.304 7.348 11.476
4 5.495 5.900 8.063
5 2.066 0.742 3.212

1 4.160 4.684 2.647
2 -2.793 0.883 -1.706
3 8.969 8.611 10.388
4 2.169 2.207 2.263
5 10.183 12.089 12.374

1 11.196 12.655 10.228
2 3.769 5.442 1.516
3 4.910 4.333 1.757
4 7.128 7.397 4.206
5 7.363 6.955 5.252

1 1.818 4.849 1.990
2 9.109 12.065 10.098
3 0.887 -0.064 -0.539
4 7.929 8.430 6.498
5 4.205 3.813 5.285

1 8.598 7.036 10.065
2 7.458 6.977 7.922
3 -0.153 -1.197 1.241
4 3.286 1.147 3.762
5 0.968 3.509 4.184

1 9.445 6.823 8.583
2 5.698 7.125 5.971
3 4.694 4.654 5.759
4 6.966 6.956 7.259
5 3.949 2.893 2.202
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The analysis of variance table for the lack of fit test for the

data in Table 7 is reported in Table 8.

Source DF Tyoe I SS Mean Square F Value Pr > F
SEQUENCE 5 44.8624 8.9725 9.70 0.0001
SUBJECT (SEQUENCE) 24 1103.7853 45.9911 49.73 0.0001
PERIOD 2 0.2111 0.1055 0.11 0,8924
TRT 2 3.4055 1.7028 1.84 0.1697
CI 1 41.2620 41.2620 44.61 0.0001
C2 1 7.1565 7.1565 7.74 0.0077
C3 0.0000
SEQUENCE*TRT 6 4.1586 0.6931 0.75 0.6129

The hypothesis of lack of fit of the one-period carryover model is

not rejected (p - 0.6129). Thus, the one-period carryover model is

assumed to adequately describe the data.

For the analysis in Table 8, the contrast for one-period carryover

is not estimable nor are the adjusted treatment (least squares) means.

Next, a one-period carryover model without the sequence by

treatment interaction term is fit to the data in Table 7. The results

are displayed in Table 9. The Type I sum of squares for treatment is

the unadjusted treatment sum of squares while the Type III sum of

squares is the adjusted treatment sum of squares, adjusted for one-

period carryover effects.
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Table 9. ANOVA Table

Source DF Tvoe I SS Mean Sauare F Value Pr > F
SEQUENCE 5 44.8624 8.9725 9.98 0.0001
SUBJECT(SEQUENCE) 24 1103.7853 45.9911 51.15 0.0001
PERIOD 2 0.2111 0.1055 0.12 0.8895
TRT 2 3.4056 1.7028 1.89 0.1603
CI 1 41.2620 41.2620 45.89 0.0001
C2 1 7.1565 7.1565 7.96 0.0067
C3 0.0000

Source DF Tvoe III SS Mean Sauare F Value Pr > F
SEQUENCE 5 56.8253 11.3651 12.64 0.0001
SUBJECT(SEQUENCE) 24 1103.7853 45.9911 51.15 0.0001
PERIOD 1 0.0513 0.0513 0.06 0.8121
TRT 2 15.1933 7.5966 8.45 0.0006
CI 0.0000
C2 0.0000
C3 0.0000

Contrast DF Contrast SS Mean Sauare F Value Pr > F
CARRYOVER 2 48.418497 24.209249 26.93 0.0001

Significant differential one-period carryover effects (p < 0.0001)

are indicated by the contrast statement in Table 9. No significant

differences were found between the treatments before adjusting for the

carryover effects (p - 0.1603). However, significant treatment

differences (p - 0.0006) are detected using the Type III adjusted sum of

squares

.

The sum- to-zero hypotheses, i.e., B^-.X.-l/liX^+X.)
,

Ho:>2-l/2(^l+^3). and Hq:X^-1/2(.\^+X^)
, are tested using the following

contrast statements through the overparameterized model.

CONTRAST 'Cl-CBAR' CI 2 C2 -1 C3 -1
CONTRAST 'C2-CBAR' CI -1 C2 2 C3 -1
CONTRAST 'C3-CBAR' CI -1 C2 -1 C3 2

The results for the data in Table 7 are reported in Table 10.
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Table 10. Contrasts of Carryover Effects From the Average Carryover

Contrast DF Contrast SS Mean Square F Value Pr > F
Cl-CBAR 1 41.261965 41.261965 45.89 0.0001
C2-CBAR 1 0.801041 0.801041 0.89 0.3494
C3-CBAR 1 30.564739 30.564739 33.99 0.0001

The set-to-zero hypotheses, H.:A..-A„, H.:A.-A,, andH„:A„-A,, are

tested using the following contrast statements through the

overparameterized model.

CONTRAST 'C1-C2' CI 1 C2 -1 C3
CONTRAST 'C1-C3' CI 1 C2 C3 -1

CONTRAST 'C2-C3' CI C2 1 C3 -1

The results for the data in Table 7 are reported in Table 11.

Table 1 1. Contrasts Comparing the Differences of Carryover Effects

DF Contrast SS Mean Square F Value Pr > F
1 17.853758 17.853758 19.86 0.0001
1 47.617456 47.617456 52.96 0.0001
1 7.156532 7.156532 7.96 0.0067

Contrast
CI C2
CI C3

C2 C3

A complete listing of the program used to generate and analyze the

data in Table 7 with a complete analysis output is provided in Appendix

A.

8. Means and Least Squares Means

When crossover designs are used to compare treatments, a test for

differential carryover effects is conducted. If significant, treatment

effects are adjusted for the differential carryover effects. When

carryover effects exist but the test for carryover is nonsignificant or
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ignored in the estimation of treatment effects , the resulting treatment

estimates are biased for the differential carryover effects.

The expected value of the unadjusted means for treatments A, B, and

C for a Williams square involving three treatments are,

E(y^) - ;i + ^ + r^ + 1/2 (Ag+Aj,)
,

E(yj) - M + i^ + rg + 1/2 (A^+A^) , and

E(y^) - ;i + ; + r^ + 1/2 (A^+Ag) .

For the data presented in Table 7, the results of a multiple comparison

of the unadjusted means based on the ANOVA table reported in Table 9 is

given in Table 12. No significant treatment differences were detected,

agreeing with the results of the unadjusted (Type I) test for the

treatment reported in Table 9.

Table 12. Means for the Example Data

T tests (LSD) for variable: Y

Alpha- 0.05 df- 54 MSE- 0.899106
Critical Value of T- 2.00

Least Significant Difference- 0.4908

Means with the same letter are not significantly different.

T Grouping Mean N TRT

A 5.427 30 C
A
A 5.240 30 A
A
A 4.954 30 B

The expected value of the adjusted means (least square means) for

treatments A, B, and C are.
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E(y^) - M + T + r^ + 2/3 A ,

E(yg) - /J + Jr + Tg + 2/3 A , and

E(y^) ~ ^ + i + T^ + 2/3 A .

If differential carryover exists , the difference between two

adjusted means is an unbiased estimate of the difference between the

corresponding mean treatment effects. In contrast, the difference

between two unadjusted means is biased, as shown above.

For the data presented in Table 7, the results of a multiple

comparison of the adjusted least squares means based on the ANOVA table

reported in Table 9 is given in Table 13. Significant differences

between treatments A and C (p - .0002) and B and C (p - .0042) were

detected.

Table 13. Least Squares Means for the Example Data

TRT Y Std Err Pr > |T| LSMEAN
LSMEAN LSMEAN H0:LSMEAN-0 Number

A 4.76128263 0.18698995 0.0001 1

B 5.02081496 0.18698995 0.0001 2
C 5.83923682 0.18698995 0.0001 3

Pr > |T| HO: LSMEAN(i)-LSMEAN(j

)

1/j 1 2 3

1 . 0.3473 0.0002
2 0.3473 . 0.0042
3 0.0002 0.0042

9. Power Analysis - Williams Square versus Latin Square

Both a Latin square sequence structure and a Williams square

sequence structure can be used to assign treatments to sequences in
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constructing crossover designs, A Latin square sequence structure is

not balanced for one-period carryover. Thus, the power for detecting

one-period carryover effects is less than the power for a Williams

square sequence structure for the same number of subjects per design.

The sequence structures for both designs used in the power analysis are

given in Table 14.

Table 14. Sequence Structures Used in the Power Analvsls

Sequence 1

Sequence 2

Sequence 3

Williams Square

Sequence 4

Sequence 5

Sequence 6

Latin Square

Sequence 1

Sequence 2

Sequence 3

3 2 113 2

2 13

To compare the power of the Latin square sequence structure with

the Williams squares sequence structure, the following sets of treatment

means were specified with subject and error variances set to zero.

Treatment 1 Treatment 2 Treatment 3
Condition 1: 5 5 5
Condition 2: 5 5 6
Condition 3: 5 6 7

Each of these treatment combinations were paired with the following sets

of carryover effects.

Condition 1

Condition 2

Condition 3

Carryover 1

-1

-1

-1

Carryover 2

-1
-2

Carryover 3

1

2

3
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A program that computes the sums of squares necessary for the

computation of the noncentrality parameters needed for various tests of

hypotheses is given in Appendix B. The program to calculate the power

curve for detecting unadjusted treatment effects, adjusted treatment

effects, one-period carryover, and sequence by treatment interaction is

listed in Appendix C. The sums of squares obtained through the program

in Appendix B, which are given in Table 15, are used as input for the

power program in Appendix C.

Table 15 . Noncentrality Parameters With One Subject Per Sequence

Treatment Carryover Adjusted Treatment Differential Carryover
Effects Effects Williams Latin Williams Latin

5.33 0.67
16.00 2.00
37.33 4.67

5 6 -10 1 3.20 0.40 5.33 0.67
16.00 2.00
37.33 4.67

5 6 7 -10 1 9.60 1.20 5.33 0.67
16.00 2.00
37.33 4.67

Effects Williams Latin

-1 1 0.00 0.00
-1 -1 2 0.00 0.00
-1 -2 3 0.00 0.00

-1 1 3.20 0.40
-1 -1 2 3.20 0.40
-1 -2 3 3.20 0.40

-1 1 9.60 1.20
-1 -1 2 9.60 1.20
-1 -2 3 9.60 1.20

For each test of hypothesis, the sum of squares is multiplied in an

iterative manner over a range of sample sizes in order to calculate the

power curves.

The power of detecting unadjusted treatment differences, adjusted

treatment differences, and differential carryover for both the Latin

square sequence structure and the Williams square sequence structure for

the various conditions described above are reported in Tables 16 through

24 at the end of this section. The powers are graphically compared in
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Figures 1 through 15 immediately following the appropriate table. In

each case, the Williams square sequence structure is as powerful or more

powerful than the Latin square sequence structure. The 0.05 reported in

Tables 16, 17, and 18 indicate the null hypothesis of equal adjusted

treatment means is true. The 0.05 is interpreted as the level of

significance for the test. Similarly, the 0.05 reported in Table 20

indicates the null hypothesis of equal unadjusted treatment means for

the Williams square sequence structure is true. This is a consequence

of the particular combination of values chosen for treatment and

carryover effects and the balancing of the Williams square sequence

structure. Again, the 0.05 is interpreted as the level of significance

for the test.

The programs in Appendix B and C are useful for experiment planning

and as a classroom tool. Specific treatment effects, carryover effects,

and variances can be input to obtain sums of squares, which can then be

used to calculate the power of detecting treatment differences.
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Table 16

Power of Detecting Specified Effect

Treatment Means : 5 , 5 , 5

Carryover Effects: -1, 0, 1

Variance - 1.0, Alpha - 0.05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.3439 0.0500 0.1178
12 0.7702 0.0500 0.2505
18 0.9355 0.0500 0.3802
24 0.9845 0.0500 0.5007
30 0.9967 0.0500 0.6068
36 0.9993 0.0500 0.6964
42 0.9999 0.0500 0.7697
48 1.0000 0.0500 0.8279
54 1.0000 0.0500 0,8732
60 1.0000 0.0500 0.9077
66 1.0000 0.0500 0.9335
72 1.0000 0.0500 0.9526
78 1.0000 0.0500 0.9666
84 1.0000 0.0500 0.9766
90 1.0000 0.0500 0.9837
96 1.0000 0.0500 0.9888

102 1.0000 0.0500 0.9923
108 1.0000 0.0500 0.9948
114 1 . 0000 0.0500 0.9965
120 1.0000 0.0500 0.9976

Williams Square 6 0.1178 0.0500 0.3439
12 0.2505 0.0500 0.7702
18 0.3802 0.0500 0.9355
24 0.5007 0.0500 0.9845
30 0.6068 0.0500 0.9967
36 0.6964 0.0500 0.9993
42 0.7697 0.0500 0.9999
48 0.8279 0.0500 1.0000
54 0.8732 0.0500 1.0000
60 0.9077 0.0500 1.0000
66 0.9335 0.0500 1.0000
72 0.9526 0.0500 1.0000
78 0.9666 0.0500 1.0000
84 0.9766 0.0500 1.0000
90 0.9837 0.0500 1.0000
96 0.9888 0.0500 1.0000

102 0.9923 0.0500 1.0000
108 0.9948 0.0500 1.0000
114 0.9965 0.0500 1.0000
120 0.9976 0.0500 1.0000
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Table 17

Power of Detecting Specified Effect

Treatment Means : 5 , 5 , 5

Carryover Effects: -1, -1, 2

Variance - 1.0, Alpha - 0.05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.7855 0.0500 0,2682
12 0.9979 0.0500 0,6387
18 1.0000 0.0500 0,8471
24 1.0000 0.0500 0,9422
30 1.0000 0.0500 0,9800
36 1.0000 0.0500 0,9935
42 1.0000 0.0500 0,9980
48 1.0000 0.0500 0,9994
54 1.0000 0.0500 0,9998
60 1.0000 0.0500 1,0000
66 1.0000 0.0500 1,0000
72 1.0000 0.0500 1,0000
78 1.0000 0.0500 1,0000
84 1.0000 0.0500 1.0000
90 1,0000 0.0500 1,0000
96 1.0000 0.0500 1,0000

102 1.0000 0.0500 1,0000
108 1.0000 0.0500 1,0000
114 1.0000 0,0500 1,0000
120 1.0000 0,0500 1,0000

Williams Square 6 0.2682 0,0500 0,7855
12 0.6387 0,0500 0,9979
18 0.8471 0,0500 1,0000
24 0.9422 0,0500 1,0000
30 0.9800 0,0500 1,0000
36 0,9935 0,0500 1,0000
42 0.9980 0,0500 1,0000
48 0,9994 0,0500 1,0000
54 0,9998 0,0500 1,0000
60 1,0000 0,0500 1,0000
66 1,0000 0,0500 1,0000
72 1.0000 0,0500 1,0000
78 1.0000 0,0500 1,0000
84 1.0000 0.0500 1,0000
90 1.0000 0.0500 1,0000
96 1.0000 0.0500 1,0000

102 1.0000 0.0500 1,0000
108 1.0000 0.0500 1,0000
114 1.0000 0.0500 1,0000
120 1.0000 0,0500 1 , 0000
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Figure 2

Power of Detecting Differential Carryover Effect

Treatment Means : 5 , 5 , 5

Carryover Effects; -1, -1, 2

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* - Williams Square Design
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Table 18

Power of Detecting Specified Effect

Treatment Means : 5 , 5 , 5

Carryover Effects: -1, -2, 3

Variance - 1.0, Alpha - 0.05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.9880 0.0500 0.5496
12 1.0000 0.0500 0.9529
18 1.0000 0.0500 0.9967
24 1.0000 0.0500 0.9998
30 1.0000 0.0500 1.0000
36 1.0000 0.0500 1.0000
42 1.0000 0.0500 1.0000
48 1.0000 0.0500 1.0000
54 1.0000 0.0500 1.0000
60 1.0000 0.0500 1.0000
66 1.0000 0.0500 1.0000
72 1.0000 0.0500 1.0000
78 1.0000 0.0500 1.0000
84 1.0000 0.0500 1.0000
90 1.0000 0.0500 1.0000
96 1.0000 0.0500 1.0000

102 1.0000 0.0500 1.0000
108 1.0000 0.0500 1.0000
114 1.0000 0.0500 1 . 0000
120 1.0000 0.0500 1.0000

Williams Square 6 0.5496 0.0500 0.9880
12 0.9529 0.0500 1.0000
18 0.9967 0.0500 1.0000
24 0.9998 0.0500 1.0000
30 1.0000 0.0500 1.0000
36 1.0000 0.0500 1.0000
42 1.0000 0.0500 1.0000
48 1.0000 0.0500 1.0000
54 1.0000 0.0500 1.0000
60 1.0000 0.0500 1 . 0000
66 1.0000 0.0500 1.0000
72 1.0000 0.0500 1.0000
78 1.0000 0.0500 1.0000
84 1.0000 0.0500 1.0000
90 1.0000 0.0500 1.0000
96 1.0000 0.0500 1.0000

102 1.0000 0.0500 1.0000
108 1.0000 0.0500 1.0000
114 1.0000 0.0500 1 . 0000
120 1.0000 0.0500 1.0000
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Power of Detecting Differential Carryover Effect

Treatment Means : 5 , 5 , 5

Carryover Effects: -1, -2, 3

Variance - 1.0, Alpha - 0.05
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Table 19

Power of Detecting Specified Effect

Treatment Means: 5, 5, 6

Carryover Effects: -1, 0, 1

Variance - 1.0, Alpha - 0.05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.5496 0.0897 0.1178
12 0.9529 0.1652 0.2505
18 0.9967 0.2421 0.3802
24 0.9998 0.3196 0.5007
30 1.0000 0.3955 0.6068
36 1,0000 0.4680 0.6964
42 1.0000 0.5359 0.7697
48 1.0000 0.5983 0.8279
54 1.0000 0.6548 0.8732
60 1.0000 0.7054 0.9077
66 1.0000 0.7501 0,9335
72 I. 0000 0.7892 0.9526
78 1.0000 0.8232 0.9666
84 1.0000 0.8524 0.9766
90 1.0000 0.8774 0.9837
96 1.0000 0,8986 0.9888

102 1.0000 0.9164 0.9923
108 1.0000 0.9314 0.9948
114 1.0000 0.9439 0.9965
120 1.0000 0.9543 0.9976

Williams Square 6 0.1178 0.2223 0.3439
12 0.2505 0.5375 0.7702
18 0.3802 0.7543 0.9355
24 0.5007 0.8805 0.9845
30 0.6068 0.9457 0.9967
36 0.6964 0.9767 0.9993
42 0.7697 0,9904 0.9999
48 0.8279 0,9962 1.0000
54 0.8732 0,9985 1.0000
60 0.9077 0,9995 1.0000
66 0.9335 0,9998 1.0000
72 0.9526 0,9999 1.0000
78 0.9666 1,0000 1.0000
84 0.9766 1,0000 1.0000
90 0.9837 1,0000 1.0000
96 0.9888 1,0000 1.0000

102 0.9923 1.0000 1 . 0000
108 0.9948 1.0000 1,0000
114 0.9965 1.0000 1,0000
120 0.9976 1.0000 1,0000
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Figure 4

Power of Detecting Adjusted Treatment Effect

Treatment Means : 5 , 5 , 6

Carryover Effects: -1, 0, 1

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* - Williams Square Design
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Power of Detecting Differential Carryover Effect

Treatment Means : 5 , 5 , 5

Carryover Effects: -1, 0, 1

Variance - 1.0, Alpha - 0.05
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Table 20

Power of Detecting Specified Effect

Treatment Means : 5 , 5 , 6

Carryover Effects: -1, -1, 2

Variance - 1.0, Alpha - 0,05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.6604 0.0897 0.2682
12 0.9857 0.1652 0.6387
18 0.9996 0.2421 0.8471
24 1.0000 0.3196 0.9422
30 1.0000 0.3955 0.9800
36 1.0000 0.4680 0.9935
42 1.0000 0.5359 0.9980
48 1.0000 0.5983 0.9994
54 1.0000 0.6548 0.9998
60 1.0000 0.7054 1.0000
66 1.0000 0.7501 1.0000
72 1.0000 0.7892 1.0000
78 1.0000 0.8232 1.0000
84 1.0000 0.8524 1.0000
90 1.0000 0.8774 1.0000
96 1.0000 0.8986 1.0000

102 1.0000 0.9164 1.0000
108 1.0000 0,9314 1.0000
114 1.0000 0,9439 1.0000
120 1.0000 0,9543 1.0000

Williams Square 6 0.0500 0,2223 0.7855
12 0.0500 0,5375 0.9979
18 0.0500 0,7543 1.0000
24 0.0500 0,8805 1.0000
30 0.0500 0,9457 1.0000
36 0.0500 0,9767 1.0000
42 0.0500 0,9904 1.0000
48 0.0500 0,9962 1.0000
54 0.0500 0,9985 1.0000
60 0.0500 0,9995 1.0000
66 0,0500 0,9998 1.0000
72 0.0500 0,9999 1,0000
78 0.0500 1,0000 1,0000
84 0.0500 1,0000 1,0000
90 0,0500 1,0000 1,0000
96 0.0500 1.0000 1,0000

102 0.0500 1,0000 1.0000
108 0.0500 1,0000 1.0000
114 0.0500 1,0000 1.0000
120 0.0500 1.0000 1.0000
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Figure 6

Power of Detecting Adjusted Treatment Effect

Treatment Means : 5 , 5 , 6

Carryover Effects: -1, -1, 2

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* — Williams Square Design
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Figure 7

Power of Detecting Differential Carryover Effect

Treatment Means : 5 , 5 , 6

Carryover Effects: -1, -1, 2

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* — Williams Square Design
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Table 21

Power of Detecting Specified Effect

Treatment Means ; 5 , 5 , 6

Carryover Effects; -1, -2, 3

Variance - 1.0, Alpha - 0.05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.9349 0.0897 0,5496
12 1.0000 0.1652 0,9529
18 1.0000 0.2421 0,9967
24 1.0000 0.3196 0,9998
30 1.0000 0.3955 1,0000
36 1.0000 0.4680 1,0000
42 1.0000 0.5359 1,0000
48 1.0000 0.5983 1,0000
54 1.0000 0.6548 1,0000
60 1.0000 0.7054 1.0000
66 1.0000 0.7501 1.0000
72 1.0000 0.7892 1.0000
78 1.0000 0,8232 1.0000
84 1.0000 0,8524 1.0000
90 1.0000 0,8774 1.0000
96 1.0000 0,8986 1.0000

102 1.0000 0,9154 1.0000
108 1.0000 0.9314 1.0000
114 1.0000 0.9439 1.0000
120 1.0000 0.9543 1,0000

Williams Square 6 0.1178 0.2223 0.9880
12 0.2505 0.5375 1.0000
18 0.3802 0.7543 1.0000
24 0.5007 0.8805 1.0000
30 0.6068 0.9457 1.0000
36 0.6964 0.9767 1.0000
42 0.7697 0.9904 1.0000
48 0.8279 0.9962 1.0000
54 0.8732 0.9985 1.0000
60 0,9077 0,9995 1.0000
66 0.9335 0,9998 1,0000
72 0.9526 0,9999 1,0000
78 0.9666 1,0000 1,0000
84 0.9766 1,0000 1,0000
90 0.9837 1,0000 1,0000
96 0.9888 1,0000 1,0000

102 0.9923 1,0000 1,0000
108 0.9948 1,0000 1.0000
114 0.9965 1,0000 1.0000
120 0.9976 1.0000 1.0000
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Power of Detecting Adjusted Treatment Effect
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Figure 9

Power of Detecting Differential Carryover Effect

Treatment Means : 5 , 5 , 6

Carryover Effects: -1, -2, 3

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* - Williams Square Design
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Table 22

Power of Detecting Specified Effect

Treatment Means : 5 , 6 , 7

Carryover Effects: -1, 0, 1

Variance - 1.0, Alpha - 0.05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.5496 0.1768 0.1178
12 0.9529 0.4210 0.2505
18 0.9957 0.6216 0.3802
24 0.9998 0.7673 0.5007
30 1.0000 0.8639 0.6068
36 1.0000 0.9235 0.6964
42 1.0000 0.9584 0.7697
48 1.0000 0.9781 0.8279
54 1.0000 0.9887 0.8732
60 1.0000 0.9943 0.9077
66 1.0000 0.9972 0.9335
72 1.0000 0.9986 0.9526
78 1.0000 0.9993 0.9666
84 1.0000 0.9997 0.9766
90 1.0000 0.9999 0.9837
96 1.0000 0.9999 0.9888

102 1.0000 1.0000 0.9923
108 1.0000 1.0000 0.9948
114 1.0000 1.0000 0.9965
120 1.0000 1.0000 0,9976

Williams Square 6 0.3439 0.5617 0,3439
12 0.7702 0,9580 0,7702
18 0.9355 0.9973 0,9355
24 0.9845 0.9999 0,9845
30 0.9967 1.0000 0,9967
36 0.9993 1.0000 0.9993
42 0.9999 1.0000 0.9999
48 1.0000 1.0000 1.0000
54 1.0000 1.0000 1.0000
60 1.0000 1.0000 1.0000
66 1.0000 1.0000 1.0000
72 1.0000 1.0000 1.0000
78 1.0000 1.0000 1.0000
84 1.0000 1.0000 1.0000
90 1.0000 1.0000 1.0000
96 1.0000 1.0000 1.0000

102 1.0000 1.0000 1.0000
108 1.0000 1.0000 1.0000
114 1,0000 1.0000 1,0000
120 1.0000 1.0000 1,0000
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Figure 10

Power of Detecting Adjusted Treatment Effect

Treatment Means : 5 , 6 , 7

Carryover Effects: -1, 0, 1

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* - Williams Square Design
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Figure 11

Power of Detecting Differential Carryover Effect

Treatment Means : 5 , 6 , 7

Carryover Effects: -1, 0, 1

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* - Williams Square Design
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Table 23

Power of Detecting Specified Effect

Treatment Means : 5 , 6 , 7

Carryover Effects: -1, -1, 2

Variance - 1.0, Alpha - 0.05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.2682 0.1768 0.2682
12 0.6387 0.4210 0.6387
18 0.8471 0.6216 0.8471
24 0.9422 0.7673 0.9422
30 0.9800 0.8639 0.9800
36 0.9935 0.9235 0.9935
42 0.9980 0.9584 0.9980
48 0.9994 0.9781 0.9994
54 0.9998 0.9887 0.9998
60 1.0000 0.9943 1.0000
66 1.0000 0.9972 1.0000
72 1.0000 0.9986 1.0000
78 1.0000 0.9993 1.0000
84 1.0000 0.9997 1.0000
90 1.0000 0.9999 1.0000
96 1.0000 0.9999 1.0000

102 1.0000 1.0000 1.0000
108 1.0000 1.0000 1.0000
114 1.0000 1.0000 1.0000
120 1.0000 1.0000 1.0000

Williams Square 6 0.2682 0.5617 0.7855
12 0.6387 0.9580 0.9979
18 0.8471 0.9973 1.0000
24 0.9422 0.9999 1.0000
30 0.9800 1 . 0000 1.0000
36 0.9935 1.0000 1.0000
42 0.9980 1.0000 1.0000
48 0.9994 1.0000 1.0000
54 0.9998 1.0000 1.0000
60 1.0000 1.0000 1.0000
66 1.0000 1.0000 1.0000
72 1.0000 1.0000 1.0000
78 1.0000 1.0000 1.0000
84 1.0000 1.0000 1.0000
90 1.0000 1.0000 1.0000
96 1.0000 1.0000 1.0000

102 1.0000 1.0000 1.0000
108 1.0000 1.0000 1.0000
114 1.0000 1.0000 1.0000
120 1.0000 1.0000 1.0000
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Figure 12

Power of Detecting Adjusted Treatment Effect

Treatment Means : 5 , 6 , 7

Carryover Effects: -1, -1, 2

Variance - 1.0, Alpha - 0.05

Legend; — Latin Square Design
* - Williams Square Design
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Figure 13

Power of Detecting Differential Carryover Effect

Treatment Means : 5 , 6 , 7

Carryover Effects: -1, -1, 2

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* - Williams Square Design
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Table 24

Power of Detecting Specified Effect

Treatment Means ; 5 , 6 , 7

Carryover Effects: -1, -2, 3

Variance - 1.0, Alpha - 0.05

Experimental Total Unadjusted Adjusted
Design Subjects Treatment Treatment Carryover

Latin Square 6 0.5496 0.1768 0.5496
12 0.9529 0.4210 0.9529
18 0.9967 0.6216 0.9967
24 0.9998 0.7673 0.9998
30 1.0000 0.8639 1.0000
36 1.0000 0.9235 1.0000
42 1.0000 0.9584 1.0000
48 1.0000 0.9781 1.0000
54 1.0000 0.9887 1.0000
60 1.0000 0.9943 1.0000
66 1.0000 0.9972 1.0000
72 1.0000 0.9986 1.0000
78 1.0000 0.9993 1.0000
84 1.0000 0.9997 1.0000
90 1.0000 0.9999 1.0000
96 1.0000 0.9999 1.0000

102 1.0000 1.0000 1.0000
108 1.0000 1.0000 1.0000
114 1.0000 1.0000 1.0000
120 1.0000 1.0000 1.0000

Williams Square 6 0.3439 0.5617 0.9880
12 0.7702 0.9580 1.0000
18 0.9355 0.9973 1.0000
24 0.9845 0.9999 1.0000
30 0.9967 1.0000 1.0000
36 0.9993 1.0000 1.0000
42 0.9999 1.0000 1.0000
48 1.0000 1.0000 1.0000
54 1.0000 1.0000 1.0000
60 1.0000 1 . 0000 1.0000
66 1.0000 1.0000 1.0000
72 1.0000 1.0000 1.0000
78 1.0000 1.0000 1.0000
84 1.0000 1.0000 1.0000
90 1.0000 1.0000 1.0000
96 1.0000 1.0000 1.0000

102 1.0000 1.0000 1.0000
108 1.0000 1.0000 1.0000
114 1.0000 1.0000 1.0000
120 1.0000 1.0000 1.0000
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Power of Detecting Adjusted Treatment Effect

Treatment Means : 5 , 6 , 7

Carryover Effects: -1, -2, 3

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* - Williams Square Design
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Figure 15

Power of Detecting Differential Carryover Effect

Treatment Means : 5 , 6 , 7

Carryover Effects: -1, -2, 3

Variance - 1.0, Alpha - 0.05

Legend: - Latin Square Design
* — Williams Square Design
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10 . Summary

To analyze a Williams square sequence structure balanced for one-

period carryover, the design matrix for the carryover effects must be

constructed. The first step in the analysis is to include a lack of fit

test for the one-period carryover model. A model fit using sequence,

subjects within sequence, period, treatment, carryover, and a sequence

by treatment interaction is appropriate for the lack of fit test. The

significance of this interaction term indicates whether the one-period

carryover model is adequate to describe the data. When the interaction

is significant a one-period analysis is appropriate. However, when the

interaction is insignificant the next step in the analysis is to check

the equality of the carryover effects through contrast statements. This

test for carryover determines the proper treatment comparisons. When

carryover effects are equal, treatment comparisons may be made using the

unadjusted treatment means. When differential carryover effects exist,

the least squares means provide the appropriate treatment comparisons.

A power analysis shows that experiments using the Williams square

sequence structure are more powerful than experiments using the Latin

square sequence structure for detecting adjusted treatment differences

and differential carryover effects where each experiment utilizes the

same total number of subjects.
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NOTE: Copyright(c) 1985,86,87 SAS Institute Inc., Gary, NC 27512-8000,
U.S.A.
NOTE: SAS (r) Proprietary Software Release 6.03

Licensed to KANSAS STATE UNIVERSITY, Site 11175001.

NOTE: AUTOEXEC processing completed.

1

2

3

4

5

6

7

8

9

10

11
12

13
14
15
16
17

18

19

20
21
22

23

24
25
26

27

28
29
30
31
32

33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48

option nonumber nodate ls-72 ps-56 missing-
TITLEl 'Williams Square Analysis';
DATA A;

SEED_SEQ-0
SEED_SUB-98442
SEED_PER-0
SEED ERR-56613

VAR_SEQ- 0;
VAR_SUB- 10;
VAR_PER- 0;
VAR ERR- 1;

N_SUBJ-5

;

TRT_l-5
TRT_2-5
TRT 3-6

FC_1—

1

FC_2-
FC 3- 1

SC_l-0
SC_2-0
SC 3-0

ARRAY TRT_MEAN (3) TRT_1 TRT_2 TRT_3

;

ARRAY FC_OVER (3) FC_1 FC_2 FC_3

;

ARRAY SC_OVER (3) SC_1 SC_2 SC_3;
DO SEQUENCE-1 TO 6;

IF VAR_SEQ NE THEN E_SEQ-RANNOR(SEED
ELSE E_SEQ-0;
DO SUBJECT-1 TO N_SUBJ

;

IF VAR_SUB NE THEN E_SUBJ-RANNOR(SEED
ELSE E_SUBJ-0;
DO PERIOD-1 TO 3;

IF VAR_ERR NE THEN ERROR-RANNOR(SEED
ELSE ERROR-0;
IF SEQUENCE-1 THEN DO;

IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;

IF PERIOD-3 THEN DO;
END;
IF SEQUENCE-2 THEN DO;

IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;
IF PERIOD-3 THEN DO;

END;
IF SEQUENCE-3 THEN DO;

IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;
IF PERIOD-3 THEN DO;

END;
IF SEqUENCE-4 THEN DO;

IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;
IF PERIOD-3 THEN DO;

END;
IF SEQUENCE-5 THEN DO;

IF PERIOD-1 THEN

SEQ)*SQRT(VAR_SEQ)

;

i_SUB)*SQRT(VAR_SUB)
;

ERR)*SQRT(VAR_ERR)

;

TRT-1
TRT-2 RESID-1; END;
TRT-3 RESID-2; RESID2-1; END;

TRT-2
TRT-3 RESID-2; END;
TRT-1 RESID-3

;

RESID2-2; END;

TRT-3
TRT-1 RESID-3; END;
TRT-2 RESID-1; RESID2-3; END;

TRT-3
TRT-2 RESID-3; END;
TRT-1 RESID-2; RESID2-3; END;

TRT-1
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90 observations and 28 variables.
1.63 minutes.

49 , IF PERIOD-2 THEN DO; TRT-3 ; RESID-1; END;

50 IF PERIOD-3 THEN DO; TRT-2 ; RESID-3; RESID2-1; END;

51 END;

52 IF SEQUENCE-6 THEN DO;

53 IF PERI0D=1 THEN TRT-2;

54 IF PERIOD-2 THEN DO; TRT-1 ; RESlD-2; END;
55 IF PERIOD-3 THEN DO; TRT-3; RESID-1; RESID2-2; END;

56 END;
57 IF PERIOD-1 THEN Y-E_SEq+E_SUBJ+TRT_MEAN{TRT)+ERROR;
58 ELSE IF PERIOD-2 THEN
59 Y-E_SEQ+E_SUBJ+TRT_MEAN ( TRT ) +FC_OVER ( RES ID ) +ERROR

;

60 ELSE IF PERIOD-3 THEN
61

Y-E_SEQ+E_SUBJ+TRT_MEAN ( TRT ) +FC_OVER ( RES ID ) +SC_OVER { RESID2 ) +ERROR

;

62 OUTPUT;
63 END;
64 END;
65 END;
66 run;

NOTE: The data set WORK. A has
NOTE: The DATA statement used

67 PROG SORT; BY PERIOD;
68 run;

NOTE: The data set WORK. A has 90 observations and 28 variables.
NOTE: The PROCEDURE SORT used 23.00 seconds.

69 DATA B; SET A; BY PERIOD;
70 RETAIN E_PER;
71 IF FIRST. PERIOD THEN DO;

72 IF VAR_PER NE THEN E_PER-RANNOR(SEED_PER)*SQRT(VAR_PER)
;

73 ELSE E_PER-0;
74 Y-Y+E_PER;
75 END;
76 run;

NOTE: The data set WORK.B has 90 observations and 29 variables.
NOTE: The DATA statement used 33.00 seconds.

77 PROC SORT DATA-B; BY SEQUENCE SUBJECT PERIOD;
78 run;

NOTE: The data set WOEtK.B has 90 observations and 29 variables.
NOTE: The PROCEDURE SORT used 23.00 seconds.

79 PROC PRINT SPLIT-'*'; BY SEQUENCE SUBJECT;
80 ID SEQUENCE SUBJECT;
81 VAR PERIOD TRT Y;

82 LABEL SEQUENCE- 'SEQUENCE* '

83 SUBJECT-' SUBJECT* '

84 PERIOD-' PERIOD* '

85 TRT- ' TREATMENT* '

86 Y-'RESPONSE* ';

87 FORMAT Y 7.3;
88 run;

NOTE: The PROCEDURE PRINT used 1,07 minutes.
89 PROC SORT DATA-B; BY SEQUENCE TRT;
90 run;

NOTE: The data set WORK.B has 90 observations and 29 variables.
NOTE: The PROCEDURE SORT used 22.00 seconds.

91 PROC SORT DATA-B; BY SEQUENCE SUBJECT PERIOD;
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92 run;
NOTE: The data set UORK.B has 90 observations and 29 variables.
NOTE: The PROCEDURE SORT used 22.00 seconds.

93 DATA C; SET B;

94 RETAIN LAST_TRT;
95 Cl-0; C2-0; C3-0;
96 IF PERIOD NE 1 THEN DO;
97 IF LAST_TRT-1 THEN Cl-1;
98 IF LAST_TRT-2 THEN C2-1
99 IF LAST_TRT-3 THEN C3-1

100 END;
101 LAST_TRT-TRT;
102 run;

NOTE: The data set WORK.C has
NOTE: The DATA statement used 46.

103 PROC GLM DATA-C;
104 TITLE3 'Analysis Adjusted for Carryover Effects';
105 TITLE4 'Overparameterized Model'

;

106 CLASSES SEQUENCE SUBJECT PERIOD TRT;
107 MODEL Y - SEQUENCE SUBJECT(SEQUENCE) PERIOD TRT CI C2 C3

SEQUENCE*TRT;

90 observations
00 seconds.

and 33 variables.

108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE

127
NOTE:

TEST H-SEQUENCE
run;
CONTRAST

E-SUBJECT(SEQUENCE)

;

CARRYOVER' CI
CI

1

1

1

1

'C1-C2' CI 1 C2
'C1-C3' CI 1 C2
'C2-C3' CI C2
'Cl-CBAR' CI 2 C2
'C2-CBAR' CI -1 C2
'C3-CBAR' CI -1 C2
'C1-C2' CI 1 C2
'C1-C3' CI 1

'C2-C3' CI
'Cl-CBAR' CI
'C2-CBAR' CI
'C3-CBAR' CI

/ LSD;

/ STDERR PDIFF

C2

C2
2 C2

-1 C2
-1 C2 -1 C3

CONTRAST
CONTRAST
CONTRAST
CONTRAST
CONTRAST
CONTRAST
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
MEANS TRT
LSMEANS TRT
run;

CONTRAST CARRYOVER is not estimable.
CONTRAST C1-C2 is not estimable.
CONTRAST C1-C3 is not estimable.
CONTRAST C2-C3 is not estimable.
CONTRAST Cl-CBAR is not estimable.
CONTRAST C2-CBAR is not estimable.
CONTRAST C3-CBAR is not estimable.
C1-C2 is not estimable.
C1-C3 is not estimable.
C2-C3 is not estimable.
Cl-CBAR is not estimable.
C2-CBAR is not estimable.
C3-CBAR is not estimable.

quit;
The PROCEDURE GLM used 4.17 minutes.
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C3
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DIVISOR-3
DIVISOR-3
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128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

NOTE:

PROC GLM DATA-C;
TITLE3 'Analysis Adjusted for One-Period Carryover'

;

TITLE4 'Overparameterized Model'

;

CLASSES SEQUENCE SUBJECT PERIOD TRT

;

MODEL Y - SEQUENCE SUBJECT(SEQUENCE) PERIOD TRT CI C2 C3

;

TEST H-SEQUENCE E-SUBJECT(SEQUENCE)

;

run;

1 C2 -1 C3 0,

1 C2 C3 -1;

C2 -1 C3
C2

C2
2 C2
1 C2

CONTRAST 'CARRYOVER' CI
CI
1

1

CONTRAST 'C1-C2' CI
CONTRAST 'C1-C3' CI
CONTRAST 'C2-C3' CI
CONTRAST 'Cl-CBAR' CI
CONTRAST 'C2-CBAR' CI
CONTRAST 'C3-CBAR' CI -1 C2 -1

ESTIMATE 'C1-C2' CI 1 C2 -1

ESTIMATE 'C1-C3' CI 1 C2
ESTIMATE 'C2-C3' CI C2 1

ESTIMATE 'Cl-CBAR' CI 2 C2 -1

ESTIMATE 'C2-CBAR' CI -1 C2 2

ESTIMATE 'C3-CBAR' CI -1 C2 -1 C3

MEANS TRT / LSD;
LSMEANS TRT / STDERR PDIFF;
run;
quit;

The PROCEDURE GLM used 3.82 minutes.

-1

-1
-1

-1

2

-1

-1

-1 / DIVISOR-3
-1 / DIVISOR-3
2 / DIVISOR-3

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

NOTE:
NOTE:

168
169

Effects
170
171
172
173
174
175
176
177
178

DATA D; SET B; BY SEQUENCE SUBJECT;
RETAIN N MEAN;
IF FIRST. SUBJECT THEN DO;

N-0; MEAN-O;
END;

N-N+1

;

MEAN-MEAN+Y;
IF PERIOD-3 THEN DO;

MEAN-MEAN/N

;

IF TRT-1 THEN DO; Ll-O;
ELSE IF TRT-2 THEN DO; Ll-1/3

;

THEN DO; Ll-1/3;

L2-1/3; L3-1/3; END;

L2-0; L3-1/3; END;
L2-1/3; L3-0; END;ELSE IF TRT-

OUTPUT

;

END;
run;

The data set WORK.D
The DATA statement used 41.

PROC GLM DATA-D;
TITLE3 'Between Subject Estimation of One -Period Carryover

has 30 observations and 34 variables.
.00 seconds.

MODEL MEAN-Ll L2 L3 / SOLUTION;
run;

' CARRYOVERCONTRAST

CONTRAST
CONTRAST
CONTRAST
ESTIMATE
ESTIMATE

'L1-L2'
'L1-L3'
'L2-L3'
'L1-L2'
'L1-L3'

LI
LI
LI
LI
LI

LI
LI
L2
L2
L2
L2
L2 L3
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L2
L2

-1

-1

-1

L3
L3 -1



179 ESTIMATE 'L2-L3' LI L2 1 L3 -1;

180 run;
181 quit;

NOTE: The PROCEDURE GLM used 1.42 minutes.
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Williams Square Analysis

SEQUENCE SUBJECT PERIOD TREATMENT RESPONSE

1 1
2

3

1

2

3

-2.127
-4.008
-0.832

2 1
2

3

1
2

3

7.778
5.976
6.862

3 1

2

3

1
2
3

9.304
7.348

11.476

4 1
2

3

1

2

3

5.495
5.900
8.063

5 1
2

3

1

2

3

2.066
0.742
3.212

2 1 1

2

3

2

3

1

4.160
4.684
2.647

2 2 1
2

3

2

3

1

-2.793
0.883
-1.706

2 3 1

2

3

2

3

1

8.969
8.611

10.388

2 4 1

2

3

2

3

1

2.169
2.207
2,263

2 5 1

2

3

2

3

1

10.183
12.089
12.374

3 1 1

2

3

3

1
2

11.196
12.655
10.228

3 2 1

2

3

3

1

2

3.769
5.442
1.516
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Williams Square Analysis

SEQUENCE SUBJECT

3

PERIOD

1
2

3

TREATMENT RESPONSE

3 3

1

2

4.910
4.333
1.757

3 4 1
2

3

3

1

2

7.128
7.397
4.206

3 5 1
2

3

3
1

2

7.363
6.955
5.252

4 1 1
2
3

3

2

1

1.818
4.849
1.990

4 2 1
2

3

3

2

1

9.109
12.065
10.098

4 3 1
2

3

3

2

0.887
-0.064
-0.539

4 4 1
2

3

3

2

1

7.929
8.430
6.498

4 5 X
2

3

3

2

1

4.205
3.813
5.285

5 1 1
2

3

1

3

2

8.598
7.036

10.065

5 2 1
2

3

1
3

2

7.458
6.977
7.922

5 3 1

2

3

1

3

2

-0.153
-1.197
1.241

5 4 1

2

3

1
3

2

3.286
1.147
3.762
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Williams Square Analysis

SEQUENCE SUBJECT

5

PERIOD

1
2

3

TREATMENT RESPONSE

5 1
3

2

0.968
3.509
4.184

6 1 1

2
3

2
1
3

9.445
6.823
8.583

6 2 1
2

3

2

1

3

5.698
7.125
5.971

6 3 1

2

3

2
1

3

4.694
4.654
5.759

6 4 1
2

3

2

1

3

6.966
6.956
7.259

6 5 1
2

3

2
1
3

3.949
2.893
2.202

67



Williams Square Analysis

Analysis Adjusted for Carryover Effects
Overpararaeterized Model

General Linear Models Procedure
Class Level Information

Class Levels Values

SEQUENCE 6 12 3 4 5 6

SUBJECT 5 12 3 4 5

PERIOD 3 12 3

TRT 3 12 3

Number of observations in data set — 90
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Williams Square Analysis

Analysis Adjusted for Carryover Effects
Overparameterized Model

General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 41 1204.8416 29.3864 31.77 0.0001

Error 48 44.3931 0.9249

Corrected Total 89 1249.2347

R -Square C.V. Root MSE Y Mean

.964464 18.46886 0.9617 5.207111

Source DF Type I SS Mean Square F Value Pr > F

SEQUENCE 5 44.8624 8.9725 9.70 0.0001
SUBJECT(SEQUENCE) 24 1103.7853 45.9911 49.73 0.0001
PERIOD 2 0.2111 0.1055 0.11 0.8924
TRT 2 3.4056 1.7028 1.84 0.1697
CI 1 41.2620 41.2620 44.61 0.0001
C2 1 7.1565 7.1565 7.74 0.0077
C3 0.0000
SEQUENCE*TRT 6 4.1586 0,5931 0.75 0.6129

Source DF Type III SS Mean Square F Value Pr > F

SEQUENCE 5 56.8253 11.3651 12.29 0.0001
SUBJECT(SEQUENCE) 24 1103.7853 45.9911 49.73 0.0001
PERIOD 0.0000
TRT 2 15.1933 7.5966 8.21 0,0009
CI 0.0000
C2 0.0000
C3 0.0000
SEQUENCE*TRT 6 4.1586 0.6931 0.75 0.6129

Tests of Hypotheses using the Type III MS for
SUBJECT (SEQUENCE) as an error term

Source

SEQUENCE

DF Type III SS Mean Square F Value

5 56.825306 11.365061 0.25

Pr > F

0.9372
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Williams Square Analysis

Analysis Adjusted for Carryover Effects
Overparameterized Model

General Linear Models Procedure

T tests (LSD) for variable: Y

NOTE: This test controls the type I coniparlsonwise error rate not
the experimentwise error rate.

Alpha- 0.05 df- 48 MSE- 0.924856
Critical Value of T- 2.01

Least Significant Difference- 0.4993

Means with the same letter are not significantly different.

T Grouping Mean N TRT

A 5.427 30 3

A
A 5.240 30 1

A
A 4.954 30 2
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Williams Square Analysis

Analysis Adjusted for Carryover Effects
Overparameterized Model

General Linear Models Procedure
Least Squares Means

TRT Y
LSMEAN

1
2

3

Non-est
Non-est
Non-est
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Williams Square Analysis

Analysis Adjusted for One-Period Carryover
Overparameterized Model

General Linear Models Procedure
Class Level Information

Class Levels Values

SEQUENCE 6 12 3 4 5 6

SUBJECT 5 12 3 4 5

PERIOD 3 12 3

TRT 3 12 3

Number of observations in data set - 90
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Williams Square Analysis

Analysis Adjusted for One-Period Carryover
Overparameterized Model

General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 35 1200.6830 34.3052 38.15 0.0001

Error 54 48.5517 0.8991

Corrected Total 89 1249.2347

R -Square C.V. Root MSE Y Mean

.961135 18.20994 0.9482 5.207111

Source DF Type I SS Mean Square F Value Pr > F

SEQUENCE
SUBJECT (SEQUENCE)
PERIOD
TRT
CI
C2
C3

5

24
2

2

1

1

44.8624
1103.7853

0.2111
3.4056

41.2620
7.1565
0.0000

8.9725
45.9911
0.1055
1.7028

41.2620
7.1565

9.98
51.15
0.12
1.89

45.89
7.96

0.0001
0.0001
0,8895
0.1603
0.0001
0.0067

Source DF Type III SS Mean Square F Value Pr > F

SEQUENCE
SUBJECT (SEQUENCE)
PERIOD
TRT
CI
C2
C3

5

24
1

2

56.8253
1103.7853

0.0513
15.1933
0.0000
0.0000
0.0000

11.3651
45.9911
0.0513
7.5966

12.64
51.15
0.06
8.45

0.0001
0.0001
0.8121
0.0006

Tests of Hypotheses using the Type III MS for
SUBJECT(SEQUENCE) as an error term

Source

SEQUENCE

DF Type III SS Mean Square F Value

5 56.825306 11.365061 0.25

Pr > F

0.9372
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Williams Square Analysis

Analysis Adjusted for One-Period Carryover
Overparameterized Model

General Linear Models Procedure

T tests (LSD) for variable: Y

NOTE: This test controls the type I comparisonwise error rate not
the experimentwise error rate.

Alpha- 0,05 df- 54 MSE- 0.899106
Critical Value of T- 2.00

Least Significant Difference- 0.4908

Means with the same letter are not significantly different.

T Grouping Mean N TRT

A 5.427 30 3

A
A 5.240 30 1
A
A 4.954 30 2
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Williams Square Analysis

Analysis Adjusted for One-Period Carryover
Overparameterized Model

General Linear Models Procedure
Least Squares Means

TRT Y Std Err Pr > |T| LSMEAN
LSMEAN LSMEAN HO:LSMEAN-0 Number

1 4.76128263 0.18698995 0.0001 1
2 5.02081496 0.18698995 0.0001 2

3 5.83923682 0.18698995 0.0001 3

Pr > |T| HO: LSMEAN(i)-LSMEAN(J

)

i/j 1 2 3

1 . 0.3473 0.0002
2 0.3473 . 0.0042
3 0.0002 0.0042

NOTE: To ensure overall protection level, only probabilities associated
with pre-planned comparisons should be used.
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Williams Square Analysis

Analysis Adjusted for One-Period Carryover
Overparameterized Model

General Linear Models Procedure

Dependent Variable

Contrast

CARRYOVER
C1-C2
C1-C3
C2-C3
Cl-CBAR
C2-CBAR
C3-CBAR

Contrast SS Mean Square F Value Pr > F

48.418497
17.853758
47.617456
7.156532

41.261965
0.801041

30.564739

24.209249
17.853758
47.617456
7.156532

41.261965
0.801041
30.564739

26.93
19.86
52.96
7.96

45.89
0.89

33.99

0001
0001
0001
0067
0001
3494
0001

Parameter

C1-C2
C1-C3
C2-C3
Cl-CBAR
C2-CBAR
C3-CBAR

Estimate

-1.63647905
-2.67256776
-1.03608871
-1.43634894
0.20013011
1.23621882

T for HO:
Parameter—

-4.46
-7.28
-2.82
-6.77
0.94
5.83

Pr > |T|

0.0001
0.0001
0.0067
0.0001
0.3494
0.0001

Std Error of
Estimate

0.36724097
0.36724097
0.36724097
0.21202667
0.21202667
0.21202667
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Williams Square Analysis

Between Subject Estimation of One-Period Carryover Effects

General Linear Models Procedure

Number of observations in data set - 30
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Williams Square Analysis

Between Subject Estimation of One-Period Carryover Effects

General Linear Models Procedure

Dependent Variable: MEAN
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 0.1626086 0.0813043 0.01 0.9943

Error 27 382.7199843 14.1748142

Corrected Total 29 382.8825929

R Square C.V. Root MSE MEAN Mean

000425 72.30391 3.7649 5.207111

Source

LI
L2
L3

Source

LI
L2
L3

Type I SS Mean Square F Value

0.1226750
0.0399336
0.0000000

0.1226750
0.0399336

0.01
0.00

Pr > F

0.9266
0.9581

Type III SS Mean Square F Value Pr > F

Parameter

INTERCEPT
LI
L2
L3

Estimate

5.206045778 B
0.272900963 B
-0.268105346 B
0.000000000 B

T for HO:
Parameter-0

2.52
0.05
-0.05

Pr > |T|

0.0178
0.9573
0.9581

Std Error of
Estimate

2.06214555
5.05120437
5.05120437

NOTE: The X'X matrix has been found to be singular and a generalized
inverse was used to solve the normal equations. Estimates
followed by the letter 'B' are biased, and are not unique
estimators of the parameters.
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Williams Square Analysis

Between Subject Estimation of One-Period Carryover Effects

General Linear Models Procedure

Dependent Variable: MEAN

Contrast DF Contrast SS Mean Square F Value Pr > F

CARRYOVER 2 0.1626086 0.,0813043 0.01 0.9943
L1-L2 1 0.1626043 0,,1626043 0.01 0.9155
L1-L3 1 0.0413750 0.,0413750 0.00 0.9573
L2-L3 1 0.0399336

T for HO1

;

0,,0399336

Pr > |T|

0.00

Std

0.9581

Error of
Parameter Estimate Parameter•-0 Estimate

L1-L2 .54100631 0. 11 0.9155 5. 05120437
L1-L3 .27290096 0. 05 0.9573 5. 05120437
L2-L3 -0 .26810535 -0. 05 0.9581 5. 05120437
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Appendix B
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option nornjmber nodate Is—72 ps=-56 missing-
TITLEl 'Williams Square Analysis';
DATA A;

SEED_SEQ-0; VAR_SEQ-
SEED_SUB-0; VAR_SUB-
SEED_PER-0; VAR_PER-
SEED ERR-0: VAR ERR-

N SUBJ-1;
TRT 1-5; FC 1—1; SC 1-0
TRT 2-5; FC 2- 0; SC 2-0
TRT 3-6; FC 3- 1; SC 3-0

ARRAY TRT_MEAN (3) TRT_1 TRT_2 TRT_3

;

ARRAY FC_OVER (3) FC_1 FC_2 FC_3

;

ARRAY SC_OVER (3) SC_1 SC_2 SC_3

;

DO SEQUENCE-1 TO 6;

IF VAR_SEQ NE THEN E_SEQ-RANNOR(SEED
ELSE E_SEQ-0;
DO SUBJECT-1 TO N_SUBJ

;

IF VAR_SUB NE THEN E_SUBJ-RANNOR(SEED
ELSE E_SUBJ-0;
DO PERIOD-1 TO 3;

IF VAR_ERR NE THEN ERROR-RANNOR(SEED
ELSE ERROR-0;
IF SEQUENCE-1 THEN DO;

IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;
IF PERIOD-3 THEN DO;

END;

IF SEQUENCE-2 THEN DO;
IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;
IF PERIOD-3 THEN DO;

END;
IF SEQUENCE-3 THEN DO;

IF PERIOD-1 THEN
IF PERIOD-2 THEN DO; TRT-1
IF PERIOD-3 THEN DO;

END;

IF SEQUENCE-4 THEN DO;
IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;
IF PERIOD-3 THEN DO;

END;
IF SEQUENCE-5 THEN DO;

IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;
IF PERIOD-3 THEN DO;

END;

IF SEQUENCE-6 THEN DO;
IF PERIOD-1 THEN
IF PERIOD-2 THEN DO;
IF PERIOD-3 THEN DO;

SEQ)*SQRT(VAR_SEQ)
;

SUB)*SQRT(VAR_SUB)

;

ERR)*SQRT(VAR_ERR)
;

TRT-1
TRT-2 RESID-1; END;
TRT-3 RESID-2; RESID2-1; END;

TRT-2
TRT-3 RESID-2; END;
TRT-1 RESID-3; RESID2-2; END;

TRT-3
TRT-1 RESID-3; END;
TRT-2 RESID-1; RESID2-3; END;

TRT-3
TRT-2 RESID-3; END;
TRT-1 RESID-2

;

RESID2-3; END;

TRT-1
TRT-3 RESID-1; END;
TRT-2 RESID-3; RESID2-1; END;

TRT-2
TRT-1 RESID-2; END;
TRT-3 RESID-1;
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END;

IF PERIOD-1 THEN Y-E_SEQ+E_SUBJ+TRT_MEAN(TRT)+ERROR;
ELSE IF PERIOD-2 THEN
Y-E_SEQ+E_SUBJ+TRT_MEAN { TRT ) +FC_OVER ( RES ID ) +ERROR

;

ELSE IF PERIOD-3 THEN
Y-E_SEQ+E_SUBJ+TRT_MEAN { TRT ) +FC_OVER ( RES ID ) +SC_OVER ( RES ID2 ) +ERROR

;

OUTPUT;
END;
END;

END;
run;
PROC SORT; BY PERIOD;
run;

DATA B; SET A; BY PERIOD;
RETAIN E_PER;
IF FIRST. PERIOD THEN DO;
IF VAR_PER NE THEN E_PER-RANNOR(SEED_PER)*SQRT(VAR_PER)

;

ELSE E_PER-0;
Y-Y+E_PER;
END;
run;
FROG SORT DATA-B; BY SEQUENCE SUBJECT PERIOD;
run;
PROC PRINT SPLIT-'*'; BY SEQUENCE SUBJECT;
ID SEQUENCE SUBJECT;
VAR PERIOD TRT Y;

LABEL SEQUENCE-' SEQUENCE* '

SUBJECT-' SUBJECT* '

PERIOD- ' PERIOD* '

TRT- ' TREATMENT* '

Y-'RESPONSE* ';

FORMAT Y 7.3;
run;

PROC SORT DATA-B; BY SEQUENCE TRT;
run;

PROC SORT DATA-B; BY SEQUENCE SUBJECT PERIOD;
run;
DATA C; SET B;

RETAIN LAST_TRT;
Cl-0; C2-0; C3-0;
IF PERIOD NE 1 THEN DO;

IF LAST_TRT-1 THEN Cl-1;
IF LAST_TRT-2 THEN C2-1;
IF LAST_TRT-3 THEN C3-1;

END;
LAST_TRT-TRT

;

run;
PROC GLM DATA-C;
TITLES 'Analysis Adjusted for Carryover Effects';
TITLE4 'Overparameterized Model'

;

CLASSES SEQUENCE SUBJECT PERIOD TRT;
MODEL Y - SEQUENCE SUBJECT(SEQUENCE) PERIOD TRT CI C2 C3 SEQUENCE*TRT;
TEST H-SEQUENCE E-SUBJECT(SEQUENCE)

;

run;
CONTRAST 'CARRYOVER' CI 1 C2 -1 C3 0,
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CI 1 C2 C3 1

CONTRAST 'C1-C2' CI 1 C2 -1 C3

CONTRAST 'C1-C3' CI 1 C2 C3 -1

CONTRAST 'C2-C3' CI C2 1 C3 -1

CONTRAST 'Cl-CBAR' CI 2 C2 -1 C3 -1

CONTRAST 'C2-CBAR' CI 1 C2 2 C3 -1

CONTRAST 'C3-CBAR' CI 1 C2 -1 C3 2

ESTIMATE 'C1-C2' CI 1 C2 -1 C3
ESTIMATE 'C1-C3' CI 1 C2 C3 -1

ESTIMATE 'C2-C3' CI C2 1 C3 -1

ESTIMATE 'Cl-CBAR' CI 2 C2 -1 C3 -1 / DIVIS0R=3
ESTIMATE 'C2-CBAR' CI 1 C2 2 C3 -1 / DIVISOR-3
ESTIMATE 'C3-CBAR' CI 1 C2 -1 C3 2 / DIVISOR-3
MEANS TRT / LSD;
LSMEANS TRT / STDERR PDIFF;
run;
quit;
PROC GLM DATA-C;
TITLE3 'Analysis Adjusted for One-Period Carryover'

;

TITLE4 'Overparameterlzed Model'

;

CLASSES SEQUENCE SUBJECT PERIOD TRT;
MODEL Y - SEQUENCE SUBJECT(SEQUENCE) PERIOD TRT CI C2 C3

;

TEST H-SEQUENCE E-SUBJECT(SEQUENCE)

;

run;

CI 1 C2 -1 C3 0,

CI 1 C2 C3 -1;

'C1-C2' CI 1 C2 -1 C3
'C1-C3' CI 1 C2
'C2-C3' CI C2 1

'Cl-CBAR' CI 2 C2 -1

CONTRAST 'CARRYOVER'

CONTRAST
CONTRAST
CONTRAST
CONTRAST
CONTRAST
CONTRAST
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE

CI -1

-1
C2

C2 -

C2 -1

C2
C2 1

2 C2 -

1 C2

1 02 -

'C2-CBAR
'C3-CBAR' CI
'C1-C2' CI 1

'C1-C3' CI 1

'C2-C3' CI
'Cl-CBAR' CI
'C2-CBAR' CI
'C3-CBAR' CI

MEANS TRT / LSD;
LSMEANS TRT / STDERR PDIFF
run;

quit;
DATA D; SET B
RETAIN N MEAN;
IF FIRST. SUBJECT THEN DO;

N-0; MEAN-0;
END;
N-N+1

;

MEAN-MEAN+Y;
IF PERIOD-3 THEN DO;

MEAN-MEAN/N;
IF TRT-1 THEN DO; Ll-0

;

ELSE IF TRT-2 THEN DO; Ll-1/3
ELSE IF TRT-3 THEN DO; Ll-1/3
OUTPUT

;

DIVISOR-3
DIVISOR-3
DIVISOR-3

BY SEQUENCE SUBJECT;

-1/3; L3-1/3

;

END
-0; L3-1/3; END
-1/3; L3-0; END
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END;
run;

PROC GLM DATA-D;
TITLE3 'Between Subject Estimation of One-Period Carryover Effects'
MODEL MEAN-Ll L2 L3 / SOLUTION;
run;
CONTRAST ' CARRYOVER LI 1 L2 -1

Li 1 L2
L3 ,

L3 -1;

CONTRAST 'L1-L2' LI 1 L2 -1 L3
CONTRAST 'L1-L3' LI 1 L2 L3 -1

CONTRAST 'L2-L3' LI L2 1 L3 -1

ESTIMATE 'L1-L2' LI 1 L2 -1 L3
ESTIMATE 'L1-L3' LI 1 L2 L3 -1

ESTIMATE 'L2-L3' LI L2 1 L3 -1

run;
quit;

84



Appendix C
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titlel 'Power Analysis';

%let trt-%str( 5, 5, 6);

%let carry-%str(-l, -1, 2);
%let var-1.0;
%let alpha-0.05;

option nodate nonumber Is—72 ps-58 missing=' '

;

proc format;
value t_code l-'Unadjusted Treatment'

2-'Adjusted Treatment'
3-' Carryover'
4-' Sequence by Treatment';

value $d_code '0'— 'Latin Square'
'*'-'Williams Square'

;

run;
data a;

var — &var;
alpha — &alpha;
input test num_df ws Is;
label-'O'

;

n_seq — 3

;

n_per - 3

;

n_trt - 3;

If Is ne 0.0 then do n_subj - 2 to 40 by 2

;

n_total — n_seq*n_subj

;

err_df - n_total*(n_trt-l) - (n_per-l) - 2*(n_trt-l);
lambda - n_subj*ls/var;
if lambda gt 44.0 then lambda-44.0;
f - flnv( (1.0- alpha), num_df,err_df,0);
power - l-probf(f,num_df,err_df, lambda)

;

if lambda-44.0 then power - 1.0;
output;
end;
label-'*'
n_seq - 6

n_per - 3

;

n_trt - 3;

if ws ne 0.0 then do n_subj - 1 to 20;
n_total - n_seq*n_subj

;

resid_df - (n_seq-l)*(n_trt-l) - (n_per-l) - (n_trt-l)

;

err_df - n_total*(n_trt-l) - (n_per-l) - 2*(n_trt-l);
if test eq 4 then err_df - err_df - resid_df;
lambda - n_subj *ws/var

;

if lambda gt 44,0 then lambda-44.0;
f - finv((1.0-alpha) ,num_df,err_df ,0);
power - l-probf(f,num_df,err_df .lambda)

;

if lambda-44.0 then power — 1.0;
output

;

end;

keep test label n_total power;

* test l-'Unadjusted Treatment'
2- 'Adjusted Treatment'
3- 'Carryover'
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4-' Sequence by Treatment';

cards

;

1 2

2 2

3 2

4 6

run;
data al; set a;

if test-1;
rename power—unadj

;

run;
data a2 ; set a;

if test-2;
rename power-adj

;

run;
data a3; set a;

if test-3;
rename power-carry;
run;
data a4; set a;

if test-4;
rename power-seq_trt;
run;
data aa; merge al a2 a3 a4;
by label n_total notsorted;
run;

proc print split-'*' data-aa; by label notsorted;
tltlel 'Table ##'

;

title3 'Power of Detecting Specified Effect';
titles " Treatment Means: itrt"

;

title6 "Carryover Effects: Scarry";
title? " Variance - &var, Alpha - &alpha"

;

id label;
var n_total unadj adj carry seq_trt;
label label-' Experimental*Design* '

n_total-' Total*Subj ects* '

unadj -'Unadj usted*Treatment* '

adj - ' Adj usted*Treatment* '

carry-' Carryover* '

seq_trt-' Sequence by*Treatment* '

;

format label $d_code. unadj adj carry seq_trt 6.4;
run;

proc plot data-a nolegend; by test;
titlel 'Figure ##'

;

titles 'Power of Detecting Specified Effect';
titles " Treatment Means: &trt"

;

title6 "Carryover Effects: Scarry";
title? " Variance - &var, Alpha - &alpha"

;

title9 'Legend: - Latin Square Design ';

titlelO ' * - Williams Square Design'

;

plot power*n_total-label / vaxis-0.0 to 1.0 by .2;
label power-' Power'

n_total-'Total Number of Subjects';
format test t_code.;
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run;

quit;
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When different treatments are applied in succession to the same

subject, it is necessary to determine if there is carryover effect, an

effect of the preceding treatment on the current treatment, A Williams

square sequence structure, which is balanced for one-period carryover

effects, is defined with a discussion of a detailed analysis using the

SAS system. A power analysis shows that experiments using the Williams

square sequence structure are more powerful than experiments using the

Latin square sequence structure for detecting adjusted treatment

differences and differential carryover effects where each experiment

utilizes the same total niimber of subjects.


