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INTRODUCTION

Since the introduction of modern experimental design by the late Sir R.

A. Fisher in 1925 a great deal of effort and ingenuity went into inventing

methods by which heterogeneity could be satisfactorily controlled even with

large number of treatments. The non-orthogonality of experimental data has,

however, often presented a great deal of difficulty in the analysis of vari-

ance. Several non-orthogonal designs have been presented which all possess

some degree of symmetry (e.g. partially balanced incomplete blocks), which

makes it possible to give a fairly simple formula for statistical treatment

of the data. In this presentation such designs will not be discussed.

The type of non-orthogonal experiments which will be the subject of

this presentation will be those which have no balance or symmetry whatso-

ever. The topic of this report may therefore be rightly called "the analy-

sis of messy data." These types of non-orthogonality are often encountered

in animal breeding experiments where disproportionate subclass frequencies

are often found. They may also be encountered in plant breeding experiments

such as experiments with fruit trees where some of the trees may die off.

The result of such unequal subclass frequencies is that different classes of

effects become non-orthogonal. That is, the different kinds of effects,

such as years, sex, sire or dam (in animal breeding), cannot be separated

directly without entanglement.

In this presentation an attempt will be made to bring together the cur-

rent procedures for analyzing these types of messy data.



THE ANALYSIS OF VARIANCE PROCEDURE AND THE
LEAST SQUARE PRINCIPLE

The analysis of variance can be considered in various ways, which,

although all lead to the same result, place different emphasis on particu-

lar points and require different computational techniques.

The analysis of variance could be viewed as a special case of multiple

regression (Graybill, 1960). This, although useful as an expository method,

has not been favored by those concerned with practical computation of

results.

The analysis of variance may be approached by way of the Gauss-Markoff

theorem and the method of least squares. This is only multiple regression

viewed from a different aspect, but is an aspect from which it is easier to

see what the analysis of variance does. The method of least squares leads

to a variety of ways by which the analysis of variance can be computed, all

of which require, at least implicitly, the solution of a set of normal

equations.

All the procedures for the analysis of the non-orthogonal experiments

that will be presented here will be based wholly on the least square prin-

ciple. These procedures will be presented under three headings: (1) the

direct solution of normal equations as was given by Harvey (I960), (2) the

general analytic method using the variance-covariance matrix in the notation

of Tocher (1952) and Plackett (I960), and (3) the iterative procedure using

vector spaces language as was given by Kuiper (1952), Justasen and Keuls

(1958).



1. THE DIRECT SOLUTION TO NORMAL EQUATIONS AND THE ANALYSIS OF VARIANCE

The normal equations give insight into the way observed values are

related to the parameters, and as such, they are of intrinsic interest.

For orthogonal designs the equations fall into sets each of which can be

solved independent of the others, and in the simpler non-orthogonal

(balanced) designs, standard linear operations (which can be found in stand-

ard experimental design textbooks) can be performed on the equations to make

them soluble. However, in the case of the non-balanced non-orthogonal

designs, there is no simple solution to the normal equations particularly

when there are several treatments and treatment levels involved. In a simple

case with only very few unknown the simultaneous equations can be solved

without much difficulty. With several unknown parameters the process

becomes quite complicated. A process will be presented which involves using

a matrix approach in solving the normal equations after certain restrictions

have been imposed on the parameter estimates.

Two-way Classifications Without Interaction

Mathematical model : In the case of a two-way classification with

treatments A and B when interaction, AB, is assumed non-existent, the usual

model is as follows: , ^

IJk >* * «i * ?j * ^jk

i = 1, 2, . . . p ,

j «= 1, 2, . . . q ,

k ~ 1,2, ...n. , f
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«;..' .. ',A> * - '
;;v''

^ijk
= the k-th observation in the j-th B class and i--th A class,

y = overall mean when equal number of subclass exists,

e^i
= effect of the i-th A -class.

h = effect of the j-th B 1class, -

^jk
= random error. assumed to be NID(o

. «^>.

The or^ and
^j

may either be regarded as either fixed random or mixed

effects,, Whether OC and jj. are fixed (or random would not affect; the solu-

tlon of the normal equations.

No]nmal equations: Bv least-•square imethods it i s possible to obtain the

following norma 1 equations which will be presented i n tabular fornI (Table 1).

Table 1, Norma 1 Equations

fi

A

li
RHM

)"'' n.

.

"i-
n.j Y..

' "i- "i-

The equations may be rewritten as follows:

F'
A

n,. ;li +
q p

Z 2 n

j=l i=l ^J

A

^i^
q p A

2 2 n L =

j=l i=l ^J ^^

q p
2 2 Y
j=l i=l ^J

•

• : .

j=l

A q

i^ ^
"ij Aj =

q
2 Y .

j=l ^J
(2)

A

"ij ^
p

i ^ ^
i=i

A P
2 Y .

i=l ^-'



where
q p

n.. = L Z n ,

j=l i=l ^'

q

"i-
' 2 n .

P

n.j = 2 n ,

i=l ••

q P "ij

Y.. = Z L Y , Y = 2 Y .

j=l i=l ^J ^^ k=l
^^^

Looking at equations (2), It will be noted that the sum of the coefficients

for the o<' in the ^: equation equals the sura of the coefficients for the S,

and the coefficients for the^. In addition, the sum of the coefficients

for the A. in an o( : equation equals the coefficient for the OC. while the

total of the RHM' s for the OC. equations and the A. equations equals the

grand total of Y. . . These equalities indicate that there are some linear

relations between the rows and columns of the coefficient matrix of the

equations. Thus in order to solve these equations or to invert the coef-

flclent matrix it is necessary to impose restrictions on otj and fi. since

the matrix Is not of full rank.
,

•

Restrictions : A common restriction on these equations is to set

^ a A A
0{ = t> = and delete the equations and columns for OC and A . The
p rq ^

P rq

Inverse of the resulting reduced coefficient matrix (variance-covarlance)

A A A ^
must be transformed if the standard errors of the p + OC or the /i + &, are

desired, or if the coefficients of the variance components in the expecta-

tion of mean-squares are to be obtained by means of a short-cut procedure

(Henderson, 1953). Because of these requirements, it is often generally

preferred to Impose the following restrictions:



P A

i=l

1 "

1=1 '^J

=

These restrictions lead to certain subtractions in the variance-covariance

matrix before inversion. If say ^ : equation is deleted, then the coeffi-

A
cients of the Q( equation must be subtracted from other coefficients by

A
columns and rows within the o<^ columns. Similarly for the jg : equation,

A A
the coefficient of the A equation is subtracted from within A. columns by

columns and rows. The same operation is used for the RHM's. The RHM ele-

ment for the cC, equation is subtracted from the RHM elements of the CC.

equation. The same operation is used for RHM's of the A and A equa-

tions. Finally, the resulting reduced variance-covariance matrix is of

order (l+p-l+q-l=) p+q-1 and it is symmetric. The number of

the remaining equations is also the number of degrees of freedom among the

C(. and among the A. and one additional for^.

Obtaining parameter estimates : The reduced equations could be

rewritten in the following form (Matrix Notation)

Ce = P'Y (3)

where Cis (p+q-l)x (p+q-1) matrix

'11 C, , p+q-1

S + q - 1. 1 * • * S + q - 1, p + 1 - 1 J



A
)^

A
Oil

A

A

h

K. P--'^

P'Y is the (p + q - 1) X 1 matrix, the reduced RHM's.

is now given by

* -1
e = c P'Y .

The most important part of the solution of these normal equations is the

inversion of the C matrix. Several standard methods are available for

inverting the matrix C (Fryer, 1965). For the purpose of finding standard

errors of the parameter estimates and testing differences among parameter

means, it is always useful to obtain the complete inverse elements of the

variance-covariance matrix. In order to obtain the inverse elements for

s ^ A
d and A > o"e makes use of the fact that the restrictions, Z Of < ~

^ ^ 1=1
and Z p = were used in order to obtain the other inverse elements in

j J

the reduced matrix.

Thus, for C^
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ci. p-1 =

1

c'^]

•

•

cP+1. P+1 = - [c^'P^^ + c^'P^i + . . .
cP.P+1]

and for
Pq

^l,(p+q+l)
= - [C^'P*^ + C^'P^l + . . .

cP.p+qj

•

^p+q+1, p+q+1 ^ _ [ci. P+q+1 + c2,
p+q+1

+ . . . cP+q. p+q+l-j

where C^^ is l,j -th element of c"" .

Analysis of Variance and Sums of Squares

The total reduction in sum of squares is
,

given by:

R (M* Ot^.
A P-1

^.) = J Y.. + 2
^ i=l

«i "i- - V *
q-i
2
j=l

A

i
- w-
(4)

Error sum oj

p q
E squares = X L

i=l j=l
- R (;. or,. ^j'

If these sums of squares are written in matrix notation of equation (3),

then it is found that:

R(©) == 9 • pt Y

,-
= (C"^ P' Y)' Y

- ..^

•'
.-

' '
: Y» P C~^ P' Y ,

and
.

.'--•-

'
- /'

Error S.S. =: Y« Y - Y' P C"^ P* Y .

,."

V :*-: (4)«

In order to obtal n the suras of squares for A and B treatments, the following
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general procedure proposed by Harvey (1960) is used. These are as follows:

*•
A S.sq. = e

A

-1 *

.;.

1

(5)

B S.sq. = ©„
-1 *

^B % •

where 6 is the row vector of the constant estimates of the ^'s; that is,

*< A

A

A, A
1' «2' • • • ^p-i'' h' ' ;̂ the inverse of the square symmetrical

segment o f the reduced inverse variance-covariance matrix corresponding to

the «'s. Similarly, © - ' k- t^,_> • •
• K-^'

and Z-^ is the inverse

of the square symmetrical segment of
A

the reduced inverse variance-covariance

matrix corresponding to the p's.

The usual sums of squares for A and B iIs given by
'

-

A S.sq. = K(y,
«l- ?j'

- R(>i.
fj) .

(5)'

B S.sq. = R(^, «!• ?]' - R(>i, «,) .

Equations (5) and (5)' will give exactly the same result except for rounding

errors.

Fina lly the analysis of variance\ table is as follows:

Table 2. Analysis of Variance for Model in (1)

Sources D.F. S.S. M.S.

A p-1
*• -1 *

\ \ \
• 1 _i *

^A \ ®A/p-l

B q-1
*• _i *

^B V^B ®B \ ®B/q-l

Error -^ -'/: ' n.. - p-q+1 • y Y-Y' PC~^P'Y
Y« Y-Y'

n. .
-

ipC-lpiy

- p-q+1

i
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The standard errors of the least squares means are obtained as follows;

.\
;,' -•

. !.

where C^ = (Y'Y - Y'PC"S'Y)/ ^,*^ e n. . - p-q+1 .

The standard error between two constant estimates Is given by

Two-way Classification With Interaction /

Whenever a two-way classification is considered it is always necessary

to think of a possibility of interaction. This is of course only possible

when there is more than one observation per cell. For two-way classifica-

tion, when all cells are filled (even though not equally), there are some

simplified methods like the weighted method (Snedecor, 1958) which have been

described in standard statistical methods books. When all the cells or sub-

classes are not filled then these standard methods are inapplicable. The

least squares principle fits most appropriately.

The mathematical model : The model for this is just like that given in

(1) except for the extra interaction ^C(^) which is added.

That is, '
; .

^Uk = /^^ «i-^ ^j - <^^ij *«ijk • • • ' ^6>

where

)i. Of,, A. and e , are as defined in (1) ,

(^p)^. = effect of the ij-th AB subclass after the averages



II

of A and B have been removed. These are the individ-

ual interaction effects expressed as deviations from

the general mean ja.

The Ci's and p's may be regarded as fixed effects (Model I) and so only an

analysis of variance for the test of significance will be considered in this

section.

Normal equations : Using the least squares principle the following

normal equations, presented in tabular form, are obtained.

Table 3. Normal equations for the model in (6).

A

&i
A

RHM

J" n..
"i- "i "ij

Y.

.

"i'- "i* "i- "ij "iJ ^i-

h- .;^ "-J "ij "i "ij ^•J

'"^.j :-^
: "ij "ij ^ij

p q
where n.. = E Z n , Y. . = 2 2 Z y ,

i=l j=l ^J
i j k ^J^

.

The zero beside an element indicates that off-diagonals of that element are

zeroes.
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Restrictions : In order to obtain a unique solution to the least

squares equations It is necessary to impose some restriction on the con-

stants. Numerous restrictions have been proposed but only the one found

most appropriate for the purpose of complete analysis of the data will be

mentioned here. This restriction is just an extension of that proposed for

the "two-way" without interaction. The restrictions are as follows:

Pa q^ P \ qA
= .

i=l ^ j - i ^J j=l
ij

These restrictions are equivalent to certain subtractions and additions

within the coefficient matrix and the right hand members (RHM's). The sub-

traction required within the 0( . and & . equations are the same by rows and

A
columns as previously explained. For (.0($)^. coefficients, the subtractions

I ij

and additions which may be conveniently chosen for the rows are as follows:

n . , - n - n . + n .

ij iq pj pq

Similar subtraction and addition is made on the RHM's. That is,

Y,, - Y, - Y , + Y .
ij iq pj pq

The final reduced equations gives a reduced variance-covariance matrix of

order p + q - 1 + (p - 1) (q - 1)

.

.

-

As before the reduced equations may be rewritten using matrix notation

as

C3e* = P'Y . . . , (7)

where .^ .' • -

'

>~ 'v ./ /
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C is a [p + q - 1 + (p - I) (q - 1)] X [p + q - 1 (p - 1) (q - 1)]

matrix, and

*
e =

A

A

A
0(p-l

#1

A

A-

r p-1, q-l

P'Y =

Y.,

Y, . - Y .

1 P

Y ,. - Y .

P-1 P .

Y., - Y.
1 q

Y. , - Y.
p-1 q ,

-.

Y, ,
- Y, - Y , + Y

11 Iq pi pq

Y - Y - Y + Y
p-1, q-l p-l,q p,q-l pq

>
The most difficult part of solving these normal equations is finding the

inverse C" . Once the inverse C~ is obtained, then

A

?

C"^ P'Y ,

P-1 A

i=i

^ pj ,

q=l
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•

P-1
- Z

1=1
«??

>,i
.

•

1 pq

p-1
- z

1=1
' 'K

4>iq =
q-1

- z 4>i,

.

4Vl.q =

q-l
- Z

1=1 4 v-i.

The Inverse elements for the rows of OC (or 2 ) may be obtained by adding

A
p q

the inverse elements of the 0( columns (or rows) and then reversing the

signs as was previously explained. The same type of procedure is used for

the Inverse of the interaction columns and rows which were deleted.

For example ;

/«?i
C '^^ = C^^^'

q-
= - z

j=

flrio(?iq^ c^^fiq^i. _^:

J

c PJ = c

/•^o . ,''K^

p-
= - z

i=

p-
= - z

1=

^^?iq *!-! A^«^i4
c ^ = - z c '



15

Analysis of Variance and Sums of Squares

Using the notation of (5), the following sums of squares are obtained;

Error S. sq. = Z 2 Z y\ - RO) ,

'
*» • ',-,.,'

RO) = e P Y ,

*• _1 •
/. AS. sq. = e^ z^ e^ .

*• -1 *
B S. sq. = 9g Zg Gg ,

AB S. sq. = e^; Z;J 6*3 .

This gives the following analysis of variance table:

Table 4. Analysis of variance.

Sources D.F. s.s. M.S.

A (p-1)
^A

-1 *
Za ®aA A

*•

^A h!-
</^p-i>

B k-1
-1 *

Z
B B ^B

z-^ e;/(q-i)

AB (p-l)(k-l) ^B
-1 *

^AB ®AB

*•

«AB ^Ib W^P-i^^*'-!^

Error n.. - p-q+1
- (p-l)(k-•1)

Y'Y - R(;;. <y ,0, Y'Y - e*'p'Y
n. .-p-q+l-(p-l)(q-l)
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Ve*'p'Y = R(^, <s^, ^y ^^hi_p = >^ Y

p-1 A

*
J?^

"^1 "i- - '^p-'

p-l q-l A,

A A '^ A '*

The standard errors for^, y + ^ , and ^ + ^ are computed in a similar

way as previously shown for the "two-way" classification without interaction.

In order to find the interaction effects It would be useful to examine more

carefully the least square subclass mean S
ij

A A A
s

A A

,i
' ^* ",* ^r^^^'a-

4 =/f/^C-'«'.C^^''i.c'"''^U2/^i
ij

(8)

where
A 2 _ Y'Y - e*'p'Y
Oe " n..-p-q+l-(p-l)(q-l)

*

When all the subclasses are filled up this long formula for the subclass

;ll 1 ^2
standard error reduces to O't = • Formula (8) therefore gives

'iJ "ij "

the general standard error for the subclass mean S .

Three-way Classifications

Suppose in an experiment with three treatments A, B and C, there

exists an unequal number of observations per cell, then the least square
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procedure for the "1two-way" is naturally extended to the "three-way." If

two order and three order interactions are considered then the mathematical

model is as follows:

^Ijkl
= ^. a^.

^(^^>jk*<<^K>ijk*^jki

1 = 1. 2. . . . p ,

'-.j'v
-

J
= 1. 2, . . • q .

'

c-'-'

„
k = 1, 2, . . . r ,

••; • :.,----.-^- 1 = 1. 2, . .
• "ijk '

where
^ijkl

= the 1-th observation in the k-th C class, j-th B class

r, .

and i-th A class,

M = overall mean with equal subclass number.

.-. '

«i
e effect of the i-th A class.

h = effect of the j-th B class,

Vk
= effect of the k-th C class.

idf>
^iJ

= effect of the ij-th (AB) subclass after the effects of

A and B have been removed,

«<y
>lk

= effect of ik-(AC) subclass after the effects of A and C

/*

.

have been removed.

(($r
^Jk

= effect of the jk-(BC) subclass after the effects of B

and C have been removed.

(rt^r
^jlc

= effect of

after the

These are

deviation

the ijk-th observation within subclass (cell)

average of A, B and C have been removed,

individual interaction effects expressed as

from the general mean/i.
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2
e

, ,
- random error. Assumed NID(o, /T ),

The noimal equations for this becomes more involved. It is summarized in

the table below.

Table 5. Normal equations for model in (9).

A A A A A A A
A

^i h Vk ^^?>ij Wi, ^J^^jk ^-^^>ijk
RHM's

y n. .

.

"i"

\" „-r "••k "•j- "i-k "-jk "ijk
Y...

Ki \" "ij- "i-k "ij- "i-k "ijk "ijk \-

?i "•j- "ij-
0„,.«

"•jk
n

"ijk "-jk "ijk V.J.

tk "••k "i-k "•jk "••k "ijk "i-k "•jk "ijk "•k

^\y "ij- "ij- "iJ- "iJk -.; "ijk "ijk "ijk ^ij-

'^If'iv "i-k "i-k "ijk "i-k "ijk "i-k
n. ,,ijk "ij 'l-k

iH>.,:
"•Jk "ijk "•Jk "•jk "ijk "ijk "ij ^•Jk

^%.-- "ijk "ijk "iJk "ijk "ijk "ijk "a^
n. .,
^^^ ''ijk

p q r

n... = 2 Z Z n ,

i=l j=l k=l ^J**

"i- =
] I

"ijk •

"•Jk
"

I
"ijk '

"i-k =
^ "ijk '

Y... = 2 2 2 2 y
i j k 1

-^^J^l »
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n ., is the number of observations in the ijk-th cell.
Ijk

In order to obtain a unique solution the following restrictions are

imposed on the parameter estimates:

= 5<«Kk =
i^'*^h^ j</>''j,c - f'A'jk

A similar operation of subtraction and addition as before is carried on the

coefficient (variance-covariance) matrix and the RHM's before the reduced

variance-covariance matrix is inverted to obtain the parameter estimates.

The analysis of variance procedure is quite similar to that discussed

for the two-way with interaction. This least squares procedure can be

extended to more than three-ways but interactions of order greater than

three may not be of much meaning. As was seen from the normal equations in

Table 5, the matrix becomes quite large. For example when p = 5, q = 3,

n = 2, the coefficient matrix of the normal equations would be of order

72 X 72. After the restrictions are imposed the reduced matrix would be of

order 30 x 30 (non-singular) which is still quite large. Most computers may

not be able to handle more than 40 x 40 matrix. With the availability of

large storage computers, a much larger size of experiment with unbalanced

data could be handled.
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Estimation of Variance Components

All the presentations given so far have assumed that the treatment

effects were fixed. \:fhen there are random or mixed treatment effects in

the type of non-orthogonal experiments under consideration the estimation

of variance components is not quite simple. Henderson (1953) has proposed

three techniques, two of which will be presented here. Both of these two

methods are based on least-squares principles.

Method I (Henderson, 1953). This involves the computation of sums of

squares as in a standard analysis of variance of corresponding orthogonal

data. Then the sums of squares are equated to their expectations under the

assumption of Model II (random effects) to solve for the unknown variance

components.

Method III (Henderson, 1953). This method which Henderson calls Method

III involves the computation of mean squares analysis of non-orthogonal data

as already discussed. These mean squares are then equated to their expecta-

tions and solve for the unknown variance components. Method III was much

more laborious than method 11 but now with the availability of digital com-

puters the method can be used with less difficulty.

Illustration of methods using Henderson's example .
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Table 6. Butter Fat Records.

Sire
Year

Herd 1 2 3 4 Total

1 1 3-1414 2-981 5-2395

1 2 4-1766 2-862 2-2628

1 3
'

-
: . , ' " ''

;

5-1609 5-1609

2 1 1-404 3-1270 4-1674

2 2 5-2109 5-2109

2 3 ^ 4-1563 2-740 6-2303

3 1 3-1705 3-1705

3 ;
2 4-2310 2-1134 6-3444

4 I 3-1113 5-1951 8-3064

A 3 3-1291 6-2457 9-3748

Total 7-2931 21-9983 16-6959 13-4806 57-24679

The data in Table 6 shows the number of butterfat records in each of the

year x herd x sire subclasses and also the sum of the records for each of

V
these subclasses.

It is noted that two major classifications of the data are sire and

herd. The number of observations per herd-sire subclass varies; the majority

being 0. This condition of the data is bound to present difficulties when

an attempt is made to estimate the pertinent variance components.

The linear model proposed for this data is as follows:

(10)
yhijk

' ^*\^\*''i* (hs).. + e
ij hijk

h = 1, . P »
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1 = 1, . . . q ,

K — If • • • n, ,, J
— l)..«ri

N = 2 X 2 n, _ .

h i j
^^^

,

Total number of filled subclasses = s.

y, , = the record made in the h-th year by k-th daughter of the

j-th sire in the i-th herd,

u = overall mean common to all observations,

: v' a, = effect common to all observations in the h-year,

h = effect common to all observations in the i-th herd,

s. = effect common to all records made by daughters of the J-th

sire,

(hs) . = effects peculiar to all records made by daughters of the

j-th sire in the i-th herd,

e. ... = random error element assumed to have mean zero and variance
hijk

Illustration of Method I . This method is proposed for the case when it

is assumed that except for the p., all elements of the model are uncorrelated

o o o O O

variables with mean zero and variances $ , S,, ^ , ^T and CT . This is
a h s ns e

the usual Eisenhart Model II (Random).

The following quantities are computed

h i J k •*

H = Z (—^=—
) ,

i "-i-

(11)
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A = 2 c^^--) . "' ^

h "h--

'

\:r'r :
s =

2

2 ( 1-)
,

< '.^

2 ' ^^^^

HS = y-n« ;

2 2 (—i^)
,

i j "-ij

2 .

'-.;'"

CF = y? -.-.r . V •

Using the assumptions of model II the expectation of the above quantities

are computed. For example,

2

E (HS) = [E 2 2 (—^^)], ;

i j "-ij

= 2 2 E [n.^^ ;, + n^^^a^ * ... * n^^^a^ *

'

' "-ij^^^-ij ^j* • • •^"•ij ^^^^ij

•'-"'' '
•"^ ^ ^ijk^^^"-ij •

':'"
.

-"
= 2 2 E [n.2^ /^nl^^^l* . . .

'' ''''':'

* "pij ^p * -ij ^i * -ij '] * -ij ^^«>ij

2
+ 22 e._,,, + Cross products all of which have

h k ^^^^

^

'

''":
zero expectation] /n.. »

'
"

'.

-.
- ,

'
.

'
^ ^:t:/
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i j ^J '^
h=l J ij ^ h IJ V s

'. : h k •'

.-. e[hs] = Nu^ + Z 2 (hJ!hll)/C2

+ N ( tf? + tf ^ + <J^) + S (y^ . (12)
n ns s e

. (where S is the number of subclasses filled),

2Similarly, the others could be found. The coefficient of ii and the vari-

ance components in the expectations are as shown in the table below.

Table 7. Variance-component Coefficients.

/ <s\ < (^ < el

T N N N N N N

A N N h ^ S P

HS N ^4 N M N S

H N S N =6 h q

S N h •^8 N \ r

C N s ^10 • -^u hi 1

From the expectations as shown by relation (12) values of K , K

K are as follows:
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2 ^2

Z 2

"^ h "h*-

2 Z 2

^ h "h"

2 ^2

V = 2 2 (IiALL)
,

2 ^2

K = 2 (i^-^)
.

5 ^ n.^.

2 ^2

K = 2 (V-^> »6 ^ n.^.

2 ^2

2 ^2

o . n. .

.

J J

K = 2 (n^..)/N ,

^ h "

K = 2 (n? .)/N ,

1

K = 2 (n?. )/N ,

K = 2 2 (n? )/N

i j
^J

(13)

If the data were orthogonal, the sum of squares in the analysis of variance



26

would be

Among Years = A-CF ,

Among Herds = H-CF ,

. Among Sires = S-CF ,

Herds x Sires = HS-H-S + CF ,

Error = T-A-HS + CF .

If these same quantities are computed in spite of the non-orthogonality and

are equated to their expectations, unbiased estimates of the variances can

be obtained by solving the resulting equations. The necessary expectations

are derived from Table 7.

In order to compute the K's, other tables have to be reconstructed from

Table 6. The following two way tables give the subclass numbers.

Table 8. Herd x Year.

Year
Herd 1 2 3 4 Total

1 3 6 2 5 16

2 1 3 9 2 15

3 7 2 '
'

,, 9

4 3 5 3 6 17

Totals 7 21 16 13 57



Table 9. Sire x Year.
.

"•
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Year

Sire 1 2 3 4 Total

1 7

2

3

13

8 9

7

20

17

13 20

Totals i 21 16 13 57

Table 10. Herd x Sire.

Sire

Herd 1 2 3 Total

1 5

2 4

3 3

A 8

6

5

6 .

'.--''
'

5 16

6 15

b 9

9 17

Totals 20 17 20 57

The following table

Table 11. Year x Herd.

shows certain totals computed from Table 6.

Year Herd Sire

1. 2931

2. 9983

3. 6959

A. A806

1. 6632

2. 6086

3. 5149

4. 6812

'9 '

''^-^

1. 8838

2. 8181

\ 3. 7660

Total 24,679 Total 24,67 Total 24,679

•

:
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Using the totals In Table 11 and Table 6,

: ::; , ._ 2m\
. . . , 4226^ , X0.776,451 .

n - ^\. .
.,im' , 10,893.666.

,2 o,„,2 ^,^7
= 8838

_^ 8181 ^ 7660
'

20 17 20
S = -^rr- + -r^ + '^^ = 10,776,278 ,

CF = 24,679^/57 = 10,685,141 .

The computations of the K' s are as follows;

From Table 8:

K^ = _ + . . . + ^
2 = 19.51 ,

From Table 9 ;

If - 2^ ^ 13^ + 8 ^ ^ 9i+7^ 13^
K„ = _ + + * + =^ = "30 99
2 7 21 16 13 -^^"^^ •

From Table 6 :

K3 - -^ + . . . + J3— = 15.10 .

From Table 6 ;

K^ = i— + . . . + ~ = 37.35 .

From Table 8;

^5 16 + . . .
+ = 21.49
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From Table 10:
1

h 16 "^ • • • ^ 17
24.04 .

From Table 9: '

7^ + 13^ 8^ + 9^ 7^ + 13^

^ ~ 20 " 17 " 20
30.33 .

1

• From Table 10: i

32 ^ ,2 , 32 , ^2 _ 32 ^

8
" 20 P^' " ^-" •

• >

:

From Table 8:
:.

2 2 2 2

K, " 7 - ''
3;

'^ * » = 16.05 .

From Table 8:

2 7 2 2
= 16 + ir + 9^ + 17^ ^ 1^ 93'•^10 57 ^^-^^ •

From Table 9:

2 2 2
» 20l4_i2l±_20^ _

•^11 57 ^^'^^ •

\

From Table 6:

= 5^ + 6^+
. . . + 9^

K^2
57

^'^^
'

1

The table below gives the expectation of the quantities T, A,
\

HS)•••^CF.
;

-

1

1

:
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Table 12. Variance Component Coefficients.

2 < ^l cl
^ 2

iTe

T 57 51 57 51 57 57 11,124,007

A 57 57 19.51 39.22 15.10 4 10,776,451

HS 57 37.35 57 57 57 10 10,970,369

H 57 21.49 57 24.04 24.04 4 10,893,666

S 57 30.33 18.51 57 18.51 3 10,776,278

OF 57 16.05 14.93 19.11 6.19 1 10,685,141

In order to solve the equations the following table must be obtained;

Table 13. Equations for the Variance Components.

<5\ Si G\ < <s\

A-CF 40.95 4.58 20.11 8.91 3 91,310

H-CF 5.44 42.07 4.93 17.85 3 208,525

S-CF 14.28 3.58 37.89 12.32 2 91,137

HS-H-•S+CF 1.58 -3.58 -4.93 20.64 4 -14,434

T-A-HS+CF -21.30 -4.58 -20.11 -8.91 44 62,328

Table 13 now becomes five equations in five unknowns ( (T , (T, , ff , 0, ,an s ns

On solving these equations the following estimates of ^ • s are

obtained

.
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(Tf
= 763 ,

;

ffl = 4531 . :

• .<.'.--. '<

Cl = 1587 , -
-'-'/

(^' - -164,
hs '

.-"'''. "'

„ ,,.:,
\

ff^ = 2950 .

If (T is set equal to zero then

i

J

the solution is:

: Ca ' 756, Cl = 4468. rfj^ = 1542, X^ = 2952 .vs ^e

These estimates have no practical value for p, q, r and s are much too

small for accurate estimation of the corresponding variance component. The

method is however very important.

The difficulty with this method (Method I) is that it is inappropriate

when one of the effects is fixed. For the example considered above it may

be inappropriate to regard the years as random variable and so the estimates

of C,, (T and V, are bound to be biased.^ n '' 8 hs

Illustration of Method III. Usin g the model of equation (10), by the

least squares procedure already given the following sum of squares can be

computed

:

Total reduction = R (;i, a. , h , S., (hs) ) ,

Among years "= R (^, a, , h , S , (hs)^ ) - R (ji, h^, S , (hs) ) ,

Among herds = R (/i, a, , h , S , (hs)^ ) - R (.ji, Sl^, S , (hs)^.) ,

Among sires = R (^, a, , h , S., (hs)^ ) - R (.y, a^, h^, (hS)^ ) ,

Herds x Sires = R (;i, a, , h , S , (hS)^ ) - R (|j, a^, h^, S ) .

-'.,..•.
;
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Error 55 =2222 y^^ - R (|i, a^^. h^, S , (hS) ) .
j^ ij

h i j k

The last four of these quantities can be used to estimate y . i (T » C.

and respectively. The present assumption Is that the year effects are

fixed. As before, taking the expectations of these sums of squares and

equating them to their corresponding calculated sums of squares results in

the following table of coefficients for the variance components.

Table 14. Variance Component Coefficients.

s.s.
<yl

Among herds N-K

Among sires

Herds x sire

Residual

f. <^h^ 0-e^

h-S q-1

N-K^ h-h r-1

N-Kj^ s-q-r+1

N-q-s+1

The difficulty of this method is in obtaining the coefficients

K , . , ., K . Henderson (1953) has shown how the K's can be obtained

theoretically and he also gives the application of the method to the data

given above.

2. THE GENERAL ANALYTIC METHOD USING VARIANCE-COVARIANCE MATRIX

In this section a more general approach to the least squares method

already obtained will be given.

Several general methods have been proposed since Tocher (1952) presented

his matrix approach to the analysis of variance. Most of these methods are

based on least squares principles. Freeman and Jeffers (1962) produced a
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general method for the analysis of variance of non-orthogonal experiments

for three-way classification. Clarke (1963) has described the analysis of

four-way classification design with two independent non-orthogonalities.

Bradau (1965) has given a computational scheme for estimating main effects

for any number of treatments and finally Rees (1966) has also given a com-

putational scheme for the analysis of variance of designs with many non-

orthogonal classifications. An attempt will be made to present these

methods in a general form based on a model by Plackett (1960).

Model ; The basic model is essentially that adopted by Plackett (I960).

An experiment with N observations forming a vector Y, whose values are

linear combinations of p unknown parameters forming a vector 9. Thus

Y = Ae + 5 ,
(1^)

where Y is N x 1 vector ,

t is N X 1 vector ,

E (6) = ,

E (ife') = (T^ I . V

A is N X p matrix and assumed to be of rank p-m (m > 0). Since A is of

rank p-m (m > 0), then there must exist a p x (p-m) matrix D of rank m such

that AD = 0. Therefore, an m x p matrix B must be defined, such that

|BD| ?< 0, and the restriction B& = imposed. Then the best estimate of

e is

* —1
G = (A' A + B' B) A'Y with variance-covariance matrix

^^ \\ - D(BD)"^ BJ (A' a + B'B)"^ .

That the above statement is true will be shown in the following proof.
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Proof: Using the model given In (14), the normal equation is as follows

(Grayblll, 1960):

A'A 9 = A'Y (15)

Suppose 6 = LY is an unbiased estimation of 9, then '

E(e ) L5(Y) " lAe • e

only if U = I.

This implies D = LAD = (since AD » 0). But this contradicts the assump-

tlon that E(6 ) = e. Hence LA = 1 cannot hold. We therefore add the con-

straint

B0 = where B is m x p and

BD ?< 0, => BD ?* .

*
Let us again assume that E(& ) = 9, subject to B9 = 0, where as before

e = LY.

Therefore,

E(LY) = LA9 = 9 (if unbiased) , ' ; „

"'

.-'* '•

9 = LAe + MB9 (since Be = 0) ,
- j.

9 = (LA + MB) 9
,

, .

It follows, , ,

' I = LA + MB

and

,

.

'
'

D = LAD + M3D = MBD (since AD = 0) .

Therefore,

M = 0(60)""^

i
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Thus,

1 = LA + D(BD)"^B . (16)

Alternatively:

(A«A+B'B)D = B'(BD) (since AD = 0)

and

D(BD)~^ = (A'A + B'B)~^B' .

Therefore, using equation 16,

LA = I - (A'A + B'B)"^ B'B

= (A'A + B'B)"^ (A'A + B'B) - (A'A + B'B)"^ B'B

; , = (A'A + B'B)"^ A'A . (17)

Now, using the least squares principle and imposing the restriction B6 = 0,

one finds the minimum of (Y-AO) ' (Y-A©)

.

Let -:

S = (Y-Ae)' (Y-^e) + A'B9

where A is a Lagrange vector multiplier.

Then,

-J^
= -2(Y-Ae)'A + A'B = ,

and multiplying by D, it is found that

-2Y'AD + 29'A'AD + A'BD = ,

or
.

. '.-;-';'

' ,, A'BD =
.;

'

But

BD y - ,
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Thus

.
:, A=

This implies that the absolute minimum of (Y-A6)' (Y-A©) is equivalent to

conditional minimum subject to B& = 0. That is,

A'Ae* = A'Y , Be* = .

Thus,

and,

Now

(A'A + B'B) ©* = A'Y ,

e* = (A'A + B'B)"^ A'Y .

E [Ce* - ©) (e* - 6)'] =

= (T^ (A'A + B'B)"^ A'A (A'A + B'B)"^

^vvi?\ = <r^ LA (A'A + B'B)"''- (using (17))

= <r^ {l - D(BD)"^ BJ|(A'A + B'B)"^ (using (16)) . (18)

Thus the best estimate is that subject to Be =0, and = (A'A + B'B) A'Y

it

while (18) gives the variance-covariance of 9 . :

'

*
Note ; The restriction B© = justifies the restriction used when we

were dealing with the direct solution of the normal equations.

Residual sum of squares is given by Y'Y - Y'A© and

E
f Y'Y - Y'AQ*1 ^ ^2

n-p+m

Application to Two-way Non-orthogonal Design

Using the notation of Freeman and Jeffers (1962), we suppose that we
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have two-way classifications, treatments and blocks and there Is no general

parameter, the rank of A Is p-1, so that one constraint is necessary. Let

be partitioned Into

[!-] (19)

Let the experiment have Incidence matrlce n whose column corresponds to

blocks and rows to treatments. Then the elements of n represent the number

of times a particular treatment occurs In a particular block. ..'

Let r represent a vector of replication and k represent a vector of

block sizes. Also let _1 be a unit vector. Then the following relations

hold:

n 1. = r

n' i = k

We can choose

B = [g K']

and

(20)

• [-s- (21)

Using last relation in (20)

(BD) 1/N

-1.
.*. 1 - D(BD)"*B = I - 1/N

1 —Ik'

-^ik.

f -1 k' 1

[p 1 k' J

(22)
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Let r , k* be the diagonal matrices of r and k respectively.

The coefficient matrix of the normal equations is:

A'A =

(A'A + B'B) =

(23)

(24)

The most important part of the computational procedure now is to find the

inverse of (A'A + B'B). For the two-way classification this will be easily

found using a desk calculator if the number of treatment levels is not too

large. Of course this can easily be programmed for the digital computers.

In order to find (A'A + B' B) , we make use of the following relations. Let

"& "^ = £ - n k n' + (^) L L'

and

ii-'i r - r + r = r (25)

or

il r = 1

The inverse is now given as:

(A'A + B'B)
-1

Sl^ (i(-.) 11
N
2' - - -^nk-^* (^)il

N

-k~ n' ^ + (^) i i' k~ + k" n'Si n k"

- (^) 1 i'
N

(26)

Finally, from (22) and (26), the variance-covariance matrix of 9 is given

as:
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/l - D(BD)"^S'l(A«A + B'B)"^ " -

I

-kA'^+ ^11- -^1 k'_ n k"^ + k-^n'J>n k"^ - (^)l
. N

J
(27)

The above gives us the variance-covarlance matrix for testing treatment
I

contrasts. Since ' ^

e* = (A'A + B'B)"^ A'Y , •: .
=.. .

;

\
-

. v-v. ;' -
:

-- J

and ;

...,©= 1 t•- LO-
, .:W..-::.

then, _ .

- t* = [^.iri r ; -^nk-^.^1 1.] -
.

n"^ ' N^^ R
i

where T and R are vectors of treatment and block totals.
i

i

1

Thus i

* o -5 1

i = J*- (T - n k R) + ^ 1 i' T
~

• N^ :>'-

-(V)iiR.

= "?!'(T - n k"^ R) + (|) 1 (28)

where G is grand total.

i

Q = T - n k R . \ ^
i

Then

t* = SIq + (G/N) 1 . (28)'
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Similarly,

-6 *
k (R - n' t ) . (29)

The %QL defined in (22) has been shown by Tocher (1952) to be the variance-

*
covariance matrix for Jt .

Error sum of squares
_; f

= Y'Y - Y'Ae* = Y'Y - (Q't* + R'k" R) . (30)

If the main concern is to test differences between treatment parameter

*
estimates, use the variance-covariance matrix for t which is given by

*
V(t ) 6' SI

,

If

SI .
"ii • • • "it

Lw
tl •

•
'tt J •

then V(T - t, ) is given by

C^ ^^i - 2 «ij + "jj) •

The standard error of estimate is:

^t*i - t*j =J^
where

-.2 _ Y'Y - (Q't* 1- R'k" R)
:'/ ' e ~ N - p + 1

The complete analysis of variance is given in Table 15,



Sources S.S.

Mean G^/N

Blocks R'Jc" R - G^/N

*
Treatments ,-• Q't ;,

"*
-5

Residual Y'Y - Q't - R'k R

Total Y'Y

Application to Many Non-orthogonal Classifications

The two-way classification can be extended to the case of t-classlfi-

cations. Basically the linear model is as given in (14). The parameter

vector 9 and the matrix A may now be partitioned to correspond with the

t-classifications. Thus the model may now read

E(Y) = [i A^A^ . . . A^] [u e| e^ . . . e|.] oi)

where A is an n x 1 design matrix, and 6 an 1 x 1 vector, and 1 is the

number of levels of the i-th treatment (classification), p is the general

parameter which was considered null in the last section for the two-way

classifications. JL is the unit vector. Interaction is not considered. It

may be assumed that m = t so that certain confounded factorial designs are

excluded.

D' may then be defined by
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D' =
f-i 1' 0' ... a'

-1 0' 1' . . . 6'

-1 I m

(32)

and B, by
,,

-;

'/
.

^0
^1

0' 0' . . . 0'

B = 1

N
0'

^2 • . . . 0'

0' 0'
^3 . . . 0'

^i^

(33)

where r. is the vector of replications of the i-th classification.

Define n, . (= A'. A.) as the incidence matrice of the i-th classifica-

tion with regard to the j-th. Then, n . is analogous to the n defined for

the two-way classification.

Similarly r = (A' A ) is r expressed as diagonal matrix. Let r~

be its inverse, and N the total number of elements in the entire experiment.

From (32) and (33)

A'A + B'B = N

^1 '^l
-^ ^1 ^1^^^ ^12

^t ^It -2t

and

^t

It

t "^ ~t
/N'

(34)

A'Y = T = (G T
1

• T') .
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where T is the vector of totals for the 1-th classification, and G is

overall total. The most difficult aspect of the numerical procedure now is

the calculation of (A'A + B' B) , Two methods have been proposed by Bradau

(1965) and Rees (1966) respectively. Both of these methods involves a sys-

tematic procedure for the inversion of the matrix (A'A + B' B) .

With a large computer the inversion of this matrix is done without much

—1 *
difficulty. Once (A'A + B' B) is found we can find 9 and then proceed

with the analysis as was done for the two-way classification.

3. A GEOMETRICAL APPROACH TO THE ANALYSIS OF NON-ORTHOGONAL EXPERIMENTS

This method was proposed by Kuiper (1952). Basically it involves the

method of vector spaces.

The Orthogonal Case ...

In order to appreciate the geometrical approach, one should first

examine its application to the orthogonal experiment. A two-way table

with n rows and m columns, of which the element X (1 = 1, ... n;

j = 1, 2, . . . m) represents the yield of treatment 1 in block j, may be

represented as a vector in space E of nm dimension. The usual model for

this is

^ij
= > -

«fe
- ^j * 6ij (35)

where the/i, ^, p and fe are defined as in equation (1), The vector

X can be resolved in the following way. Let

X = Ji+ X* ff
* £ (35)'
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where u, ^ and p are vectors In subspaces L, T, and B; respectively, and

defined as follows:

(a) L is the 1-dimensional space of yield levels, which is spanned by

a vector with number 1 in all cells of the table.

(b) The n-dimensional space T of treatment effects is spanned by a

set of n vectors each of which contains 1 in all cells of one

row and in all other cells.

(c) The m-dimensional space B of block effects is spanned by a set of

. m vectors containing 1 in the cells of one column and zero in all

other cells.

At the same time C is a stochastic vector in E (nm dimension). It has com-

ponents in L, T, and B as well as in R, where R is the (n-1) (m-1) dimen-

sional space of random effects which is orthogonal to the spaces L, T, and B,

E(X) =>i+'t+p.

When the experiment is completed the vector X is obtained. The maximum

likelihood estimate (which is the same as a least squares estimate under

normal assumption), of the expectation vector E(X) = ^ + 'T' + j5 is obtained

by an orthogonal projection of X on the subspaces spanned by L, T, and B.

This leads to finding the orthogonal projections of X into each subspace.

If i = (1, . . . 1) is chosen as a base in L and the projection of X into L

is denoted by Xj^, then we have Xj^ = A(l, . . . 1) = Ai (where A is a

scalar). Since X - Al is perpendicular to 1, then (X - Ai) • (i' ) =

Xl« - Ai i' = (inner product). This implies that A = —7 ; so that the

XI

'

component for X in L, X^ = — (1, . . . 1) with the vector of means

(general mean X) common to all cells in the table.

In a similar way the arbitrary vector in the n-dimensional space T can
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be denoted by t, where t = (t, , . . . t ). Here, t^ is the number that
' - — 1 n i

occurs in each cell o£ the row i. The orthogonal projection of X into

T(X_) is characterized by the numbers t. = X., the mean of the elements of

X in row i.

*
By definition L is a subspace of B as well as of T. If therefore T is

*
defined as a subspace of T orthogonal to L, and B analogically, then it is

found that X_ = X, + X_* and X„ = X, + X_*. From these two relations it is
T L 1 O Li o

seen that ;, .,

and (35)

^B* ' ^E~ \ '

Then T and B are called pure treatment and pure block effects respectively.

Also one can speak of the classification being in rows according to treat-

ments and in columns according to blocks. If each class of T (rows) is pro-

portionally represented in each class of B (columns) which is the case when

orthogonality holds for the experiment, then (X^*, X^*) = (inner product),

* *
the elements of rows of X_* add to zero. It therefore follows that T and B

*
are perpendicular to each other. On subtracting the components of L, T and

B from X, a vector in the space of random effects R is obtained. The

equation

X = X^^ + X^* + Xg* + Xj^ (36)

expresses the fact that X may be resolved into mutually orthogonal com-

ponents. This is analogous to the X expressed as
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X = X + (X^. - X) + (X. - X) + (X^ - X^. - X. + X)

The following Illustrates how the relation in (36) can be expressed.

Ut

9 3

1 3

^11 3

X = X,

5 5

5 5

5 5
I

X.

1
r
1

<

1 1 1

+ -3 -3 + -3 +3

^ l2 2, 12 -2 J

VE "L

Dimension
6 1 1

(= D.F.)

where X is the vector of data from 3x2 table.

Further, because of orthogonality:

^T*

2 2 2 2 2
r- = X^ + Xg* + X^* + X^ .

Each tezm represents the square of the length of the component and equals

the sum of squares in the analysis of variance.

2X^/d (where d is the dimension of the space concerned) is the treat-

2
ment mean square. On dividing it by the error mean square X /d^ the result-

Ing variate, will under the null hypothesis, have the F distribution.

The Non-orthogonal Case

Suppose the data presented in the table below is obtained from a

randomized block experiment in which several plots are missing. The dashes

indicate the missing plots.
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Table 16. 3x5 Randomized Block Experiment,

B

T
'l '2 ^3 '4 ^5

"i ^11 "21 hi / . hi

\
•'

»22 **»
" X

"3 "13
;<

']
^33

—— V ^33

Table 16 is an element (point) in 10-dimensional space. The aim is now

* *
to express X as a sum of components in spaces L(l), T (4), B (2) and R(3),

where the number in brackets gives the dimension (=DF). R is chosen

* *
orthogonal to the joint space generated by L, T and B to obtain least

squares estimates of the component T and D in the spaces T and B of pure

* *
treatment and pure block effects respectively. The spaces T and B are,

however, not orthogonal because each class of T is not proportionally repre-

sented in each class of B. Thus these spaces can no longer be obtained as

was done for the orthogonal design.

Kuiper has suggested a procedure by which approximate estimates of the

components in these spaces could be obtained. He suggested parallel projec-

tions (skew components) into T and B . His procedure for obtaining the

parallel projections is by an iterative process which is outlined below.

(1) Project X orthogonally into T (it is convenient to denote X by r^

as the first one in a series of vectors) giving r_ (= X ). Obtain

r. = r - r _ as a vector orthogonal to T.

(2) .Project r. into B giving r and obtain ^^2 *
'^l

"
'iB*

(3) Project r^ into T, giving r^^ and obtain r^ = r^ - r^^.
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(4) Project r_ Into B giving r,„ and obtain r, = r_ - r^„.

This process is continued until r or '^/j^+iso becomes negligible. In

that case r or r is practically orthogonal to T and B. It will be seen

more clearly from the numerical example that will later be presented that

the series of the length r , r., r , . . . is now increasing. L. C. A.

Corseten (1958) has shown that r. converges to the vector X . The diagram

of Fig. 1 helps to illustrate the procedure.

(Treatment Space)

X (Vector of Observation)

->
(Block Space)

STB

Fig. 1. Geometrical representation of the analysis of variance of two-
way classification.

In Fig. 1, X is a vector decomposed into two non-orthogonal spaces T and B,

the space T being orthogonal to that of the general mean. There will also
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be random components in a space orthogonal to B and T combined, but the

figure represents the projections in the space of B and T. The vector X is

projected on the space T to form X and then again onto B to form X^^. The

vector X is also projected directly onto B to form X . All projections are

for the moment assumed orthogonal. The vector X - X^^ is found by subtrac-

tion. By successive projection of X - X onto the spaces T and B in turn

as shown by the dotted broken lines, the vector X is eventually found.

This represents the skew projection of X on B.

The actual computation is simplified by the following relations:

"^jT
" ' '^j-l.BT » J^ 2 ,

:"'
'^jB

= - '^j-l.TB ' ^^ ^- ;

Writing

: "o
"

"^OT
" ^T

;
^0 = r^B = ^B-^TB » - %

then

ST
= E U,

^SB*
= 2: V

° J

with

- U

U. = - V

iB

i :j.

i-l«T

Analysis of Variance Test

One may wish to test the null hypothesis H : "difference of treatments

does not affect yield."
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E(X) = >i +T + ^

now reduces to

E(X) = Ji + ^

under H-. If the joint space of L, B and T is denoted by T. the subspace

it

perpendicular to L and B , then the orthogonal decomposition of X gives:

where X_ /d is an unbiased estimate of ^ only if the null hypothesis holds.

Then

F = -f-^ : (37)

yields a test of treatment effects.

2
Using Fig. 1, X is computed as follows:

2 2 2

^To " ^ST " ^STB ^^^^

By subtraction,

2 2 2 2 2
^ - \ - V - 4o = ^R • <^>

. ' 4. NUMERICAL EXAMPLES

(1) Direct Solution to Normal Equation and Analysis of Variance

The table of data below is taken from an example of Harvey (1960).
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1

Table 17. Gains In Weight of Individual Barrows.

Ration Pig
No. No.

Sire No.

1 2 3

1 5 2 3

2 6 3 -

1 3 - 5 - ,:

.,:.-
,

U •."
:

:

6

''--^5--'- - 7

Subtotals 11(2) 23(5) 3(1) 37(8)

I 2 8 ,. 4

2 3 8 ' '4 1

2 3 .

^

- 9 6
J

1

•- ^''''.\:
,
- 6

5 - 7

Subtotals 5(2) 25(3) 27(5) 57(10)

Totals 16(4) 48(8) 30(6) 94(18)

Means 4 6 5

(a) Two-way without interactions

I£ it is assumed that there was no Interaction between the rations and

the sires shown in Table 17, then the basi«: model is of the form

^Uk = M^h '
'i ' ^jk '

i = 1. 2, 3,
i- ^ , V

J
= 1, 2,

.
' ' .

;..: ,k = 1, 2, . . . n^. 1

^'-

_

' :;
•'

^- -'

,,
.

•
:
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where

'ijk

/«
=

'Ijk

the gain of the k-th barrow on the j-th ration by the i-th

sire,

the overall mean with equal subclass frequencies,

the effect of the 1-th sire,
.

the effect of the j-th ration,

2
random errors which may be assumed NID(0, (f ).

Least squares equations

A A A A
^1

A
""2 RHM

F 18 4 8 6 8 10 94

h 4 4 ': 2 . 2 16

h 8 8 -:." 5-. / [' 3 ,; 48

h 6 6 1 5 30

h 8
• r^ - 5 1 8 37

'2 10
'

2 3 5 10 57

In matrix form:

18 4 8 6 8 10
A

94

4 4 2 2
A

16

8 8 5 3 K 48

6 6 I 5
A

s 30

8 2 5 1 8 ^1 37

10 2 3 5

"J t'i
57

. J
k'k / s s A'Y

(40)
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It is now seen that the matrix A (rank A = rank A'A) Is not of full

since the first column of A'A is a linear combination of the 2nd to

columns. It is thus necessary to impose the restrictions

rank,

4th

Z S

1=1
.

The reduced form of equation (4) is of the form

r
18

-2

2

-2

-2

10

6

4

2

6

14

6

-2

4

6

18

'^

A
S2

s:

J

A.

A
'^l

to •
or C e = P'Y .

On Inverting the matrix C, one obtains

,-1 f
.061486

.021848

-.022160

.009363

* -1
& = C P'Y

,

.021848

.144819

-.061174

-.009363

and

^1

A

-.022160

-.061174

.112047

-.026217

94

-14

18

20

(40)'

(41)
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Then

S, = - 2 S = - (-.8876 + 1.3146)
** i=l

^

= -.4270
,

r = - (-.8090)

= .8090 .

A A
The inverse elements for S^ and r are as follows:

uS uS uS
C -^ = - [C ^ + C "^J

= - [.021848 - .022160] = .000312 ,

S S S S S S

C^-^= -[c^^ + C^^] = - [.144819 - .061174] = -.083645 ,

S S S S
0^^= -[C^^] = - .112047 .

-

r r r r

C ^ ^ = -[C^'^] = - [-.067416] = .067416

The complete inverse is as shown:

y^ .061486

A
^1

.02188

A

-.022160

A
h

.000312

A
: '^i

.009363

A

-.009363

h .021848 .144819 -.061174 -.083645 -.009363 +.009363

^2 -.022160 -.061174 .112047 -.050873 -.026217 +.026217

s .000312 -.083645 -.050873 .134518 .026217 -.026217

h .009363 -.009363 -.026217 .026217 .067416 -.067416

^o -.009363 .009363 .026217 -.02617 -.067416 .067416

The inverse elements for the column and row for S_ are obtained by add-

ing the inverse elements for the S (1^3) column and reversing the sign.

Similarly the r columns and rows are found.
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;

Sum of squares for the analysis of variance.

Let

',"- '-94^

RCjl. S^. rj) =(>i. ^1^2^ -14

18

s 511.7036 .

t

20.

The total uncorrected sum of squares is
.

''
'

'-

Y'Y = 568.0000 ,

Error S. sqs. = Y'Y - R(/i, S , r )

= 568 - 511.7036

= 56.2964 .

S. sqs. Ration (R) = R (ii, S , r.) -Z
^ J

i

2

^i-

"i-

•= 511.7036 - 502.00 = 9.7036 •

S. sqs. Sires (S) = R (/|, S , r ) - 2 1

"•J

«= 15.6786 .

Using the general method for finding the different sums of squares, one

obtains the following:

For Ration: ••

Z^^ = [.067416]"^ = 14.83274 ,

•'

.

;

.'. »R^Z^^»R = (-.8090)' (14,83274) (-.8090) = 9,708 .

•',• - \

"

; :.
-, '
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For Sires:

; [.144819 -.061174]"^

Zg^ . U. 061174 .II2047J

[8.975050 4.900084"!

4.900084 II.6OOII2J ,

.-. 9*'z;^&* = [-.8876 1.3146] Z^^ 6*
,

= [-1.5246 10.9002]

L1.3146J

= 15.683 .

Except for the rounding errors, the two methods give the same results.

Analysis of Variance Table

Source DF SS MS F

Sires (S) 2 15.6786 7.8393 1.95 NS

Ration (R) 1 9.7036 9.7036 2.45 NS

Error 14 56.2964 4.0212

For the purpose of illustration some of the standard errors and individual

comparisons of the parameter estimates will be given.

Standard error of least square means

S» = .061486 X (4.20212) = .50 ,

Sa <J = (.061486 + .144819) + 2 (.021848) 4.0212 = 1.00 ,

;i+S^

Sa /» = .061486 + .134518 + 2 (.000312) (4.0212) = .89 .
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Mean Separation with Duncan's Multiple Range Test (.05 level)

sons
^i.

-^j

2 Product of
Difference

A
tCompari (C^^ .C^^ - 2 c'h »• "2

S,vs. h 1,,7416 2.396 4.17 6.,08

S^ vs. h 2.,2292 2.297 5.12 6,.38

S^ vs. h -
,4606 2.116 .97 6,.08

(b) Two-wav with interactions

Suppose that interaction is considered, then the model is as follows:

^ijk
= >^* S^* rj+ (Sr)^j^e^^j^ .

i = 1, 2, 3, .;:;;

"
"'

'

j = 1, 2,

.J' k = 1, 2, . . . n . ,

where u, S. and r. are as defined before and (Sr) . = the interaction

effects.

M. ..

''.Jvr-'
' fj
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The Normal equations:

A A
^2

A
^1 ^2 ^^""^^1 ^'"'"^2 ^^'''>21 itr)^^

;

^"^>31 <^2 RHM

jx 18 4 8 6 8 10 2 2 5 3 1 5 94

h ^ 4 2 2 2 2 16

^2 «
8 5 3 5 3 48

^3 ^
6 15 1 5 30

'^l «
2 5 1 8 2 5 1 37

^2 ^°
2 3 5 10 2 3 5 57

^S'^^ll 2 2 2 2 5

(Sr)^2 2 2 2 2 11

(Sr)^^ 5 5 5 5 23

(Sr)^^ 3 3 3 3 25

(Sr)3^ 1 1 10 . 1 3

(Sr)3^ 5 5 5 5 27

or, in matrix form

A^A 1» = A'Y • . .

'*')'' '"- '

Impose thet restrlctions
• -;

''. '-

— -- 3

1=1

A
^1 =

=

2 . 3' A
= Z r, = 2 (Sr) =

j=l J 1=1 ^'

2

2
'^^hi

= .

These lead to the following reduced normal equations:

% '

. •..

'^ ':-;- •,:.-••- :
. ;

'''
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-2

-2

10

-2

6

-2

4

4

-4

6*^

-4
A
^1

2 6 14 6 -4 -2
A
^2

4 -4 6 18 -2 2
A
^1

6 -4 -2 2 6 1^.
11

21'

r
94

^

-14

18

-20

30

22
V ^

or, in general.

C» = P'Y

The synunetrlc inverse C (excluding the elements to the left of the diagonal)

is given as:

.075926 .007407 -.031481 .018519 -.018519 -.029630

.159259 -.051852 -.018519 +.018519 .029630

——

-

.120370 -.029630 .029630 .007407

.075926 .007407 -.031481

-. : i:-:
' ':. ': .159259 -.051852

-^'^^": ; ; -•

.120370

or, in general,

C"^ P'Y

Then
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and

2 A

1=1

= - (.8889 + 1.5778) = -.6889

r = - (-.5222) = .5222 ,

(si)^2 ' -2.0222 ,
'

-^

iSx) = - (-1.3444) = 1.3444 ,

(^) = _ (2.0222 - 1.3444) = - .6778 ,

(^) = _ (-2.0222 + 1.3444) = .6778 .

Analysis of variance and sums of squares

Now

Error S. sqs. = i. 2 2 yj.j^ - R (p, S , r (Sr) ) = 26.0652 ,

1=1 j=i k=i ^ -^ V
When constants are fitted for all degrees of freedom among the subclasses

the error sum of square may be computed from

L Z 2 V -2 2 -^ = 568 -541.9333 = 26.0667 ,

i j k "^^J^ 1 j "ij
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which checks (within rounding error) with the error sum of squares when the

general method Is used. -
, v-

*• -1 *
S. sqs. for Sires (S) = ©^ Z„ »_ ,

^ o o

r .159259 -.051852
I

"^

[-.051852 .I20370J

= [-.8889 1.5778]
| | ^g ,

= 21.0015 .

*1 -1 *
S. sqs. for Rations (R) = © Zj^ e ,

(-5222)^ - q SQlfi
.075926 - hM^ '

S. sqs. for Sires x Ration (SR)

*1 -1 *

®SR ^SR ^SR »

= [2.0222 -1.3A44]
r. 159259 -.0518521"^ f 2.0222

j

[-.051852 .I20370J [-1.3444 I ,

~ 30.2245 .

This may be found by using the formula . ;•>

R (>i, S^, r , (Sr)^ ) - R (^, S^, r ) = 541.9348 - 511.7036

= 30.2312 .

This checks (except for rounding error) with that obtained using the general

procedure.
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ANOVA Table

Sources DF SS MS

s 2

R I

SR 2

Error 12

21.0015 10.5008 4.83

3.5916 3.5916 1.65 NS

30.2245 ,,: 15.1122 > 6.96*

26.0652 2.1721

*
Indicates significance at 57. level. .

In order to find the standard errors and test differences between sire

effects, the inverse elements for the parameters deleted before finding the

inverse of the reduced variance-covariance matrix, are obtained according to

the procedures already given in the last example.

The least-squares means, which may be of interest in an analysis such

as this are given below:

^ + S. = 4.0 Sire no. 1 mean,

^ + S = 6.5 Sire no. 2 mean, '
."•

A A
/i + S = 4.2 Sire no. 3 mean,

yj + r. = 4.4 Ration no. 1 mean,

A A
JA + V = 5.4 Ration no. 2 mean, .

» A A A
^ + S. + r. + (Sr).. = 5.5 Sire 1 x Ration 1 subclass mean,

A ^ A A
)i + S. + r. + (Sr) = 2.5 Sire 1 x Ration 2 subclass mean,

>i + S + r. + (Sr) . = 4.6 Sire 2 x Ration 1 subclass mean,

ju + S + r + ^^^^22 " ®'^ ^^^^ ^ ^ Ration 2 subclass mean,AAA A
>! + S + r + (Sr) = 3.0 Sire 3 x Ration 1 subclass mean.

* ^ A , A
>i + S + r, + (Sr(Sr)-- = 5.4 Sire 3 x Ration 2 subclass mean.
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The standard errors for these means may be computed using the same procedure

as the last example. All that is needed is the complete inverse of the

variance-covariance matrix and C" which is 2.1721.
e

Example ; i

Sa = (.075926) (2.1721) .

= 0.44 .

Sa + 5. = [(0.75926) + (.120370) + 2(-.03148)] (2.1721) ,

= 0.53 .
;

%^^*^* (^),,

- [.075926 + .159259 + .075926 + .159259 + 2(.007407)

+ 2(.018519) + 2(-. 018519) + 2(-. 018519) + 2(. 018519

X (2.1721)^

./^

= 0.69 .

The procedure for pairwise testing of significance among sire means or among

subclass means is quite similar to that already given for the two-ways with-

out interaction.

The examples given above can easily be extended to three-way and with

the aid of digital computer the procedures are quite straightforward.

(2) The General Analytic Method Applied to Two-way
Without Interaction

Using the data in Table 17, we have
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^^18 4 8 6 8 10

A'A = 4 4 2 2

8 8 5 3

6 6 15
, ^y -.

8 2 5 18

With -,.-...

10 2 3 5 loj .

; ;, ^1
=

8 » ^V'\-.,-- -•'?

PI ro

•

s

4

8

6

C 8

"^ 10 .

2-2
, 3,

, .^-^ ;

%2 ' 5 3
i ^'

,

*

- [l 5j »

jo 4 8 6

''^ 8 10 ,

• r. .:. fll 1 1 1 ]

' D' = /

-1 1 ^J •

BD =

18][::] ?* ,
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•''''-'- f 1

B'B - ^

18

16 32 24

» .'.-'' 32 6A 48

••
• •

' 24 48 36

64 80

'--'-.-
c•-^• ; • :-

'
. 80 looj .

A'A + B'B = 18 4 8 6 8 10

1312 32
^ 324 324

2^
2

324
^ 2

.-''..''
'^.,

32 2688
324 324

""^
5

324
•" 3

*
. .

'

, 24 48

324 324
1980

324
5

.. .,. \v ,-,; ;, > 8 2 5
2688

^ 324
80

324

1 M ^ n
5 ^°^ 324

3340

«

:'-:-r^|:;;;;:,,^ ;:;..•. ^^ . .
324

We proceed to obtain (A'A + B" B) . Let
,;. -.

94
•

A'Y = 16

48

30 : ; . .
:

'.::,. :' -

37

-
.'•.'

',
'..'. .

57 .

-^

^ J
Then /.

e = (A'A + B'B)"^ A'Y .

''-'''..

The procedure for the analysis of variance is continued as that in the last

section.

*.

:

- . ;\i
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(3) The Geometrical Approach (Iterative Procedure)

The data below shows an actual example of what may happen in experi-

ments on tree crops (cocoa in this example) after many years. This experi-

ment was carried on for 16 years to see the effects of certain treatments on

yield of cocoa. The experiment was a randomized block experiment but quite

a number of the trees died off before the end of the experiment. The data

gives the annual mean yield in pounds per tree.

Since the only test required here Is on the treatments the geometrical

method looks quite reasonable. This example will help to illustrate the use-

fulness of this approach.

Table 18. Annual Mean Yield of Cocoa per Tree.

Blocks

Treatments 1 2 3 4 5 6 7 8 Totals

1 .. •« 29 39 31 34 ~ 27 160 (5)

2 — — 27 34 30 — 31 29 151 (5)

3 33 30 ~ 34 30 31 29 28 215 (7)

4 33 31 26 35 26 27 31 — 209 (7)

5 33 — 26 35 27 31 31 27 210 (7)

6 34 32 28 36 27 32 31 30 250 (8)

7 30 — . — 31 26 27 26 — 140 (5)

8 35 33 31 38 29 31 33 29 259 (8)

9 34 33 27 — — — — — 94 (3)

10 38 34 — — — 34 35 30 171 (5)

11 — 34 30 — — — — — 64 (2)

Totals 270(8) 227(7) 224(8) 282(8) 226(8) 247(8) 247(8) 200(7) 1923(62)
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Computational Procedure

^ST

^0T="0 '"l "o-"i "2 "o-"r"2 "3 "o-"r"2-"3

1 (5) 32.00 .73 32.73 -.03 32.76 .02 32.74

2 (5) 30.20 .68 30.88 -.03 30.91 .02 30.89

3 (7) 30.71 + .40 30.31 .07 30.24 .03 30.21

4 (7) 29.86 + .42 29.44 .05 29.39 .03 29.36

5 (7) 30.00 .11 30.11 .04 30.07 .03 30.04

6 (8) 31.25 .01 31.26 .03 31.23 .02 31.21

7 (5) 28.00 1 .01 26.99 .13 26.86 .04 26.82

8 (8) 32.38 .01 32.39 .03 32.36 .02 32.34

9 (3) 31.33 .22 31.11 .01 31.10 .02 31.08

10 (5) 34.20 .09 34.11 .09 34.02 .03 33.99

11 (2) 32.00 -1 .06 33.06 -.10 33.16 .01 33.15

1 (8) 2 (7) 3 (8) 4 (8) 5 (8) 6 (8) 7 (8) 8 (7)

^B
33.75 32 .43 28.25 35.25 28.25 30.88 30.88 28.57

^TB
30.97 31 .68 31.13 30.55 30.55 31.05 30.82 31.53

T>Vq(=X
B-^TB^ 2.78 .75 -2.88 4.70 -2.30 -.17 .06 -2.98

"oT
30.71 31 .66 31.37 30.51 30.51 30.92 30.69 31.63

r3=V^(=Sb-"0T^ -26 .02 -.24 .04 .04 .13 .13 -.10

'3B
30.66 31 .64 31.37 30.48 30.48 30.87 30.64 31.66

^^5=^2 .05 .02 .00 .03 .03 .05 .05 -.03

'^SB
30.63 31 .62 31.37 30.45 30.45 30.84 30.66 31.63

V^3 .03 .02 .00 .03 .03 .03 .03 .03

Z V

i=0

3.12 .81 -3.12 4.80 -2.20 .04 .24 -3.08

•

']
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Under H^: i^ = 0)

X^
ST

= 10662.62 ,

''' —

X^
STB

7769.94 ,

^ X^
. ^TO

2 2= X - X
ST STB •

2892.68 .

Error S.S.
V-

'

.:
< = x'-\-4*- X^

^To .. -

'

'

'

.'. ' - H x^ - x|^ - x^g*

; , . .
.

= 60291 - 10662.62 - 57.55

'''.'; •

= 49570.83 .

ANOVA (Under H^)

Sources DF S.S. M.S. F

Treatraente1 10 2892.68 289.27 ^l

Error 44 49570.83 1126.60

In the ca]Iculation of U' s and V s we note that U and 1/- become negli-

glble. In order to obtain U. for <example, consider the first treatment and

add all the X„ - X_,„ for which no observation is
lo

milssing in the first treat-

raent and then divide by 5, Continue in this way until the :last treatment is

reached. This is what is meant by projecting X^ - ^TB
""'^^ T. Similar

operations go on for the projectioiis onto B.

•
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V'';'. 5. DISCUSSION AND CONCLUSION

Of the three methods presented for handling non-orthogonal data, the

first is apparently the most straightforward to use. It can easily be pro-

grammed for the computer once the reduced normal equations are found. When

the restrictions are imposed the size of the variance-covariance matrix is

greatly reduced. The method of finding the sums of squares for the differ-

ent treatment components is quite easy and interesting in that when a null

hypothesis is to be tested it does not require the solution of another set

of normal equations under the null hypothesis. All that is needed is the

formula Z~ 9 as the sura of squares for the t-th treatment. This
t t t

greatly reduces the amount of work. Also the method is very valuable in

handling any type of non-orthogonal design. It can be used to handle treat-

ments with interactions and it can be extended to handling all types of

nested and multiple classifications. The normal equations or the variance-

covariance matrices are very easy to write down as long as the appropriate

mathematical model is used.

The general analytic method provides a theoretical basis and an under-

standing for all the least squares procedures we use in handling the non-

orthogonal data.

The restriction B9 = is quite essential in order to obtain the best

estimate. This is analogous to the restrictions imposed in the first method

in order to obtain a unique solution to the normal equations. The general

method can be used in handling designs with many non-orthogonal classifica-

tions but it is best used for handling balanced non-orthogonal designs.

When interaction is considered the first method is definitely preferred.

The restriction B9 = does not decrease the size of the variance-covariance
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matrix. The matrix (A'A + B'B), as shown in the example, is of full rank.

For example, when the restrictions were imposed using the first method, the

*
rank of A'A was reduced to 4 but when B9 = is used in the general method

the rank is 6. One great advantage of the general method is when it is

applied to randomized block designs and one is only interested in the stand-

ard errors of the treatment effects then the most fundamental part of the

calculation is that of ^ which is already defined with a simple relation-

ship. Tocher (1952) has shown that 3* is the variance-covariance matrix of

t . The method of computer programming to obtain AJ* for tvra and three way

classifications has been given by Freeman and Jeffers (1962).

The iterative (geometric) procedure is very useful for the case of

randomized block experiments in which many plots are missing and a test must

be made on the treatment effects. The computational procedure is quite easy

and fairly fast because no higher terms of U, and V, are usually needed.

This method is quite interesting in that it illustrates how the analysis of

variance can be interpreted geometrically. The use of this method is how-

ever very limited. The only thing that recommends it is its simplicity.

When components of variance are required the first method is definitely the

best approach. Except for Henderson's first method, all the other methods

of finding components of variance in non-orthogonal design is fairly

involved.
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Standard methods for analyzing balanced non-orthogonal experiments have

been given in several experimental design text books. In non-orthogonal

designs where there is no balance whatsoever, there has been a great diffi-

culty in presenting a general method of analysis.

The most appropriate method so far is the least squares procedure.

This may be given in three parts. The first method involves writing down a

set of normal equations which gives an insight into the way observed values

are related to the parameters. In order to obtain unique solutions to the

parameter estimates a set of restrictions are imposed on the parameters.

This leads to a reduced variance-covariance matrix which can now be inverted

in order to obtain the parameter estimates. The various treatment sums of

squares for the analysis of variance test are quite easy to obtain by the

general formula 6 Z 9 . 9 is a column vector of the t-th treatment

parameter estimates and Z is the square symmetrical segment of the Inverse

reduced variance-covariance matrix corresponding to the t-th treatment.

This method can be applied to all types of unbalanced data and is most use-

ful when interactions are of interest. The inverse of the variance-covari-

ance matrix Is used to obtain the standard errors and palrwlse comparisons

of the treatment effects.

The second method is based on Plackett's (1960) notation. It is given

that Y = A9 + £ , where Y and 6 are n x 1 vectors, E( ^ ) = 0, and A an

n X p matrix. The matrix A is assumed of rank p - m so that a matrix D

exists, of rank m, such that AD = 0. Therefore an m x p matrix B must be

defined, such that |bd| ^ 0, and the restriction B9 = Imposed. Then the

best estimate of 9 is given by

9 = (A'A + B'B)""^ A'Y ,



with varlance-covarlance matrix

^^ \l - D(BD)"^ b3 (A 'A + B'B)"^ .

The greatest computational problem is to obtain (A'A + B* B) . With a large

digital computer this will no longer be a problem. ?;

The third method is a geometrical iterative approach based on the con-

cept of vector spaces which was first proposed by Kulper (1952). It is very

useful in analyzing a randomized block experiment in which several plots are

missing and a test must be made on the treatment effects. The model in

terms of vectors is of the form:

X = t.f *e .

X is the vector of elements in the two-way table. Kulper suggested a method

whereby approximate estimates of the components of 'C and p in T and B

spaces respectively, could be found. This involves parallel projections of

X into T and B spaces by iterative procedures to give:

^ = \* V*^To*\' K^

where ,'; ;

'"

X = the general mean space (1 dimensional) component,

X * = the block space component, ,.

X = the treatment space component (under the null hypothesis),

X = random effect space component.

— 2 2An unbiased estimate of is given by X /d while the variate

2 2
(X /d )/(X /d ) gives the F-test under the null hypothesis "that treatment

effects are nill," where d and d are the degrees of freedom for treat-

ments and error respectively.


