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Abstract

In the Fermi Lectures on the obstacle problem in 1998, Caffarelli gave a proof of the

mean value theorem which extends to general divergence form uniformly elliptic operators.

In the general setting, the result shows that for any such operator L and at any point x0 in

the domain, there exists a nested family of sets {Dr(x0)} where the average over any of those

sets is related to the value of the function at x0. Although it is known that the {Dr(x0)}

are nested and are comparable to balls in the sense that there exists c, C depending only

on L such that Bcr(x0) ⊂ Dr(x0) ⊂ BCr(x0) for all r > 0 and x0 in the domain, otherwise

their geometric and topological properties are largely unknown. In this work we begin the

study of these topics and we prove a few results about the geometry of these sets and give

a couple of applications of the theorems.
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Chapter 1

Introduction

Based on the great importance of the mean value theorem in understanding harmonic func-

tions, it is clear that analogues for operators other than the Laplacian are automatically of

interest. In 1963, Littman, Stampacchia, and Weinberger showed that if µ is any nonneg-

ative measure on Ω, L is any uniformly elliptic divergence form operator, u is the solution

to

Lu = µ in Ω

u = 0 on ∂Ω ,

(1.1)

and G(x, y) is the Green’s function for L on Ω, then u(y) enjoys the following mean value

property: We have

u(y) = lim
r→∞

1

2r

∫
r≤G≤3r

u(x)aij(x)DxiG(x, y)DxjG(x, y) dx (1.2)

almost everywhere, and this limit is nondecreasing. (See Equation 8.3 in the paper by

Littman, Stampacchia, and Weinberger.1) (Note that we will use the Einstein summation

convention throughout this work, so if the same index is subscripted and superscripted

within an equation, then we assume that it is being summed.) On the other hand, this
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formula is not as nice as the basic mean value formulas for Laplace’s equation for a number

of reasons. First, it is an average with weights, and not merely a simple average. Indeed,

the weights in question are not even easy to estimate. Second, it is not an average over a

ball or something which is even homeomorphic to a ball, but rather an average over a union

of level sets of the Green’s function which do not include the central point being estimated.

Finally, it is also clear that the sets in question are not nested.

The following simpler mean value theorem was stated by Caffarelli2,3 and proved carefully

by Blank and Hao.4

Theorem 1.1 (Mean Value Theorem for Divergence Form Elliptic PDE). Let L be any

divergence form elliptic operator with ellipticity λ, Λ. For any x0 ∈ Ω, there exists an

increasing family of open sets Dr(x0) which satisfies the following:

1. Bcr(x0) ⊂ Dr(x0) ⊂ BCr(x0), with c, C depending only on n, λ and Λ.

2. For any v satisfying Lv ≥ 0 and r < s, we have

v(x0) ≤ 1

|Dr(x0)|

∫
Dr(x0)

v(y) dy ≤ 1

|Ds(x0)|

∫
Ds(x0)

v(y) dy. (1.3)

Finally, the sets Dr(x0) are noncontact sets of the following obstacle problem:

u ≤ G(·, x0) such that

L(u) = −χ{u<G}r−n in BM(x0)

u = G(·, x0) on ∂BM(x0)

(1.4)

where BM(x0) ⊂ IRn and M > 0 is sufficiently large.

Blank and Hao also observed in the course of their work that ∂Dr(x0) was always a set with

dimension strictly less than n. (See Remark 3.11 of their paper.4) Although the theorem

above has already been shown to be useful (see for example the paper by Caffarelli and

Roquejoffre5 as one place where it has already been applied in this form), it is clear that the
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more that is known about the Dr(x0) the more useful the theorem is. It is also clear that

although the fact that Bcr(x0) ⊂ Dr(x0) ⊂ BCr(x0) for all r > 0 gives us some information

about these sets, there is still much more that is unknown.

The idea of the theorem can perhaps be understood better with some pictures. In

Figure 1.1 we see three Euclidean balls (Br1(x1), Br2(x2), Br3(x3)), and observe that if ∆u =

0 then it follows that

u(xj) =
1

|Brj(xj)|

∫
Brj (xj)

u(y) dy

for each j, and of course, this works for any harmonic function. Of course, this statement is

simply a consequence of the standard MVT for harmonic functions. Similarly, the general-

ized MVT guarantees that if we are given a fixed operator L, then at any point in the domain

(and in particular at x1, x2, and x3 in the figure) and for any r > 0 there is a mean value

set which is characterized as the noncontact set of the obstacle problem given in Equation

(1.4). Now without being given the matrix valued function A(x), there is certainly no way

to produce these sets. On the other hand, if we assume that the sets Drj(xj) in the figure

are three mean value sets for a given operator L, then any L-harmonic function u (i.e. any

function that obeys Lu = 0) will satisfy the mean value property:

u(xj) =
1

|Drj(xj)|

∫
Drj (xj)

u(y) dy

for each j. Although the Drj(xj) that we have drawn are just guesses that might be mean

value sets for a given operator, we do already know the following properties:

1. Each Dr(x) contains a ball centered at x with a radius proportional to r, and where

that proportion depends on nothing other than λ,Λ, and n, and similarly each Dr(x)

is contained within a ball centered at x with a radius proportional to r, and with the

same dependencies.
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2. If 0 < r < s, then we always have the inclusion:

Dr(x) ⊂ Ds(x).

(a) Euclidean balls (b) MV balls for L

Figure 1.1: Mean value balls for ∆u = 0 and for Lu = 0

The present work actually originated as an attempt to better understand the solutions

of a free boundary problem of Bernoulli type. In the celebrated paper of Alt and Caffarelli

in 1981, nonnegative local minimizers of the functional

J(u) :=

∫
D

(|∇u|2 + χ{u>0}Q
2) (1.5)

are studied.6 They are shown to exist and satisfy certain Lipschitz regularity estimates,

and they obey a linear nondegeneracy statement along their free boundary. From there,

Alt and Caffarelli turn to a study of the free boundary. This problem is also found (with

Q ≡ 1) in the first chapter of the text by Caffarelli and Salsa,7 and this work originated as

an attempt to generalize the work done on that problem. In particular, we were considering

the functional

Ja(u) :=

∫
D

(aijDiuDju+ χ{u>0}) (1.6)
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with uniformly elliptic aij, and that will certainly color some aspects of the current work.

Unfortunately, after we started our project we learned of very nice and very recent work

of dos Prazeres and Teixeira which solved some of the problems8 that we had intended to

publish. Nevertheless, their work had nothing to do with the MVT, and so we can now

describe the purposes of the current work: First, we wish to state some theorems related to

the geometry of the Dr(x0). Second, we wish to show two applications in particular which

illustrate both the usefulness of the MVT, and the usefulness of our own results which give

a more detailed view of properties of the Dr(x0). Finally, we wish to work toward getting

a surface MVT for some generalized divergence form operators by using appropriate test

functions constructed by solving the associated Bernoulli problem that we study, but we

will see that this program probably cannot be carried out in the same generality as the solid

MVT.

The two biggest contributions that we make within this work regarding the properties

of the Dr(x0) appear to be the following:

Lemma 1.2 (Density Result). Assume y0 ∈ ∂Dr(x0), and assume that c and C are the

constants given in Theorem 2.6. There exists a constant τ > 0 such that for all h ∈ (0, 1/2],

we have
|Bchr(y0) ∩Dr(x0)|

|Bchr(y0)|
≥ τ , (1.7)

and furthermore, τ is independent of x0, y0, and r.

This result prevents the Dr(x0) from having what might be described as an “outward point-

ing cusp.”

Lemma 1.3 (Continuous Expansion). Fix x0, y0 ∈ Ω and assume that there exists t > 0 so

that y0 is compactly contained within Dt(x0), and then choose s ∈ (0, t) so that y0 /∈Ds(x0) .

Then there exists a unique r ∈ (s, t) such that y0 ∈ ∂Dr(x0).

This result allows us to state that the boundary of the mean value sets will move in a

5



continuous fashion in the sense that the boundary will never “jump past” any of the points

in the domain. (We cannot currently prove any sort of continuity of the boundaries with

respect to Hausdorff distance, however.)

We were able to use the mean value theorem above in order to prove positive density

of the contact set along the free boundary. Originally, we needed our two lemmas just

mentioned in order to prove a nondegeneracy lemma for the Bernoulli problem above. Very

recently, Benson, Blank, and LeCrone, have extended many of the results within this work

to Riemannian manifolds in the case where L is the Laplace-Beltrami operator.9 Indeed,

all of the results from Chapter 2 can be extended to this case, and when dealing with the

obstacle problem on a compact Riemannian manifoldM with boundary, in order to be sure

that the Dr(x0) can be extended until an r0 where ∂Dr0(x0) collides with ∂M, we need the

analogue of Lemma 1.3. (See in particular Corollary 4.9 of the aforementioned paper.9)
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Chapter 2

Solid MVT for divergence form

elliptic operators

2.1 Background and Proof of the MVT for the Lapla-

cian

One of the most fundamental theorems in elliptic PDE is the mean value theorem for

Laplace’s equation. It can be stated as follows:

Theorem 2.1 (Mean Value Theorem). Assume that u ∈ C2(Ω), that ∆u ≥ (≤) 0 in Ω, and

that Br(x0) ⊂ Ω, then

u(x0) ≤ (≥)
1

Hn−1(∂Br)

∫
∂Br(x0)

u(y)dSy =:

∫
∂Br(x0)

u(y)dSy (2.1)

and

u(x0) ≤ (≥)
1

|Br|

∫
Br(x0)

u(y)dy =:

∫
Br(x0)

u(y)dy (2.2)

This theorem is the first thing which is proven in Gilbarg and Trudinger’s text,10 which
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is viewed by many as the bible of elliptic PDE. When we wish to distinguish between the

results which are contained within Equations (2.1) and (2.2) we will refer to the results

of Equation (2.1) as a “surface” or “spherical MVT,” and we will refer to the results of

Equation (2.2) as a “solid MVT” or a “MVT on balls.”

The standard proof of the MVT found in most references involves computing the deriva-

tive with respect to r of the quantity

∫
∂Br(x0)

u(y)dSy

in order to get the surface formula, and then integrating in r in order to get the formula

on the solid ball. This method has two obvious drawbacks: First, it is necessary to assume

that u is twice differentiable, and second, the computation is very confusing. In his Fermi

lectures,3 Caffarelli gave a proof of the solid MVT which does not require differentiability

and is much more elegant.

In order to state Caffarelli’s proof we need a couple of standard definitions.

Definition 2.2 (Weakly Superharmonic). A function u ∈ L1
loc(Ω) is said to be weakly

superharmonic if for every φ ∈ C2
0(Ω) with φ ≥ 0 we have:

∫
Ω

u(x)∆φ(x) dx ≤ 0 .

Obviously one can define weakly subharmonic functions similarly.

Definition 2.3 (Fundamental Solution for the Laplacian). The function defined by:

Γ(x) = Γ(|x|) :=


−
(

ln |x|
2π

)
n = 2

1

n(n− 2)ωn
|x|2−n n > 2

8



is called the fundamental solution for the Laplacian.

The fundamental solution has the following basic properties:

• ∆Γ(x) = 0 in IRn \ {0}, and

• The following formula holds for any harmonic function, u, in Ω :

u(x) =

∫
∂Ω

[
Γ(y − x)

∂

∂n
u(y)− u(y)

∂

∂n
Γ(y − x)

]
dSy

Theorem 2.4. If v is weakly superharmonic then its average is a decreasing function of r.

More precisely, if 0 < s < r

v(x0) ≥ 1

|Bs|

∫
Bs(x0)

v(y)dy ≥ 1

|Br|

∫
Br(x0)

v(y)dy

The key step in the proof that Caffarelli gives is to create a test function with desirable

properties and use it in the definition of superharmonic function.

Proof. Let x0 ∈ Ω. We can assume without loss of generality that x0 = 0.

For r > 0 we define Pr to be the polynomial of the form

Pr(x) = −α(r)|x|2 + β(r)

which is tangent to Γ(x) on the sphere ∂Br, and satisfies Pr(x) ≤ Γ(x) in IRn. Next we

define

Ψr(x) :=


Γ(x) for x ∈ Bc

r

Pr(x) for x ∈ Br

9



and observe that

∆Ψr(x) =


0 for x ∈ Bc

r

−2nα(r) for x ∈ Br .

It is also not too hard to show that if 0 ≤ s ≤ r, then Ψs ≥ Ψr in IRn.

A picture of what is going can be seen in the figures below.

(a) Touch from below

(b) The membrane Ψs

Figure 2.1: Smooth obstacle

Let Φs,r := Ψs −Ψr, and observe:

i) Φs,r ≥ 0 in IRn,
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ii) Φs,r ≡ 0 outside Br, and

iii) Φs,r ∈ C1,1
0 (Br)

Using the fact that u is weakly superharmonic:

0 ≥
∫

Ω

u∆Φs,r

=

∫
Br

u∆Ψs −
∫
Br

u∆Ψr

=

∫
Bs

u∆Ψs −
∫
Br

u∆Ψr

= −
∫
Bs

2nα(s)u+

∫
Br

2nα(r)u .

Therefore

2nα(r)

∫
Br

u ≤ 2nα(s)

∫
Bs

u ,

or

2nα(r)|Br|
∫
Br

u ≤ 2nα(s)|Bs|
∫
Bs

u . (2.3)

Now by using the fact that u ≡ 1 is both weakly superharmonic and weakly subharmonic,

we can observe:

0 =

∫
Ω

1∆Φs,r =

∫
Br

∆Ψs −
∫
Br

∆Ψr

=

∫
Bs

∆Ψs −
∫
Br

∆Ψr = −
∫
Bs

2nα(s) +

∫
Br

2nα(r)

= 2nα(r)|Br| − 2nα(s)|Bs|

which obviously implies α(r)|Br| = α(s)|Bs|.

Plugging the last equality into Equation (2.3) we obtain:

11



∫
Br

u ≤
∫
Bs

u .

Hence, letting s go to zero, we get

u(x0) ≥
∫
Br(x0)

u,

which gives us what we need.

One may think that the test function we just constructed relies heavily on the symmetry

properties of the Laplacian. Another way to look at it, however, is that one is producing a

function which is supported on a ball whose Laplacian is a negative constant on a smaller

concentric ball, and is a positive constant on the rest of its support. With this, the test

function can be viewed as a solution to an obstacle-type free boundary problem. One the

other hand, Caffarelli noted in the Fermi lectures3 that for any divergence form elliptic PDE

one could reconstruct a workable analogue of the key test function by solving an appropriate

obstacle problem. Blank and Hao filled in the details in their paper.4

2.2 Generalization of MVT

Let Ω be an open connected set in IRn, and let A(x) = (aij(x)) be a symmetric uniformly

elliptic matrix. That is for each x ∈ Ω we have a unique matrix aij(x) satisfying:

aij ≡ aji (i.e. symmetry) (2.4)

12



and there exist 0 < λ ≤ µ <∞ such that

0 < λ|ξ|2 ≤ aij(x)ξiξj ≤ µ|ξ|2 for all ξ ∈ IRn \ {0}, and x ∈ Ω, (2.5)

which is called uniform ellipticity in this setting. Although there are certainly very interest-

ing operators which are not uniformly elliptic, we will content ourselves to assume uniform

ellipticity throughout this entire work.

Remark 2.5 (Analyst’s Convention). Notice that with our definition we can have L = ∆,

but we won’t have L = −∆.

We consider the divergence form operator L := div(A(x)∇(u)). For any f ∈ L2(Ω), we

will say that u is a subsolution of Lu = f (or more simply Lu ≥ f), whenever u ∈ W 1,2(Ω)

and for every φ ∈ W 1,2
0 (Ω), φ ≥ 0, we have

−
∫

Ω

aijDiuDjφ ≥
∫

Ω

fφ . (2.6)

Of course, supersolutions are defined in the same way, but with the inequality in Equation

(2.6) reversed.

We recall here the main MVT that is the focus of our attention (Stated by Caffarelli,2

and proved in detail by Blank and Hao4):

Theorem 2.6 (MVT for divergence form elliptic PDE). Let L be a divergence form elliptic

operator as described above. For any x0 ∈ Ω, there exists an increasing family of open sets

Dr(x0) which satisfies the following:

1. There exists c and C depending only on n, λ, and µ, such that for all r > 0 such that

BCr(x0) ⊂ Ω we have Bcr(x0) ⊂ Dr(x0) ⊂ BCr(x0).

13



2. For any v satisfying Lv ≥ 0 in Ω and any 0 < r < s, we have

v(x0) ≤ 1

|Dr(x0)|

∫
Dr(x0)

v(y) dy ≤ 1

|Ds(x0)|

∫
Ds(x0)

v(y) dy. (2.7)

Finally, the sets Dr(x0) are noncontact sets of the following obstacle problem:

u ≤ G(·, x0) such that

Lu = −χ{u<G}r
−n in BM(x0)

u = G(·, x0) on ∂BM(x0)

(2.8)

where BM(x0) ⊂ IRn and M > 0 is sufficiently large.

Remark 2.7 (Dependencies). It is shown in the paper by Blank and Hao4 that for any

r > 0, the solution of the obstacle problem above becomes independent of the choice of M

as long as it is sufficiently large, and we will always assume that that is the case. (It will

be identically equal to the Green’s function outside of the compact set Dr(x0).) We will

frequently want to stress the dependence of the solution on r, and so, accordingly, we will

refer to it as “ur.” We will also use “wr := G − ur” when we wish to look at a function

which, at least away from x0 satisfies the usual equations obeyed by the height function for

an obstacle problem.

Remark 2.8 (Technicality). Technically, we cannot use the function G(x, x0) as boundary

values in the sense of having a difference in W 1,2
0 until we suitably remove the singularity at

x0, so in their paper4 Blank and Hao use a function that they call Gsm which agrees with

G within a neighborhood of the boundary but which has no singularity in order to bypass

this difficulty.

The function ur is also the minimizer of

Jr(u,Ω) :=

∫
Ω

(aijDiuDju− 2r−nu)dx (2.9)

14



among functions less than or equal to G with boundary values equal to G. Note that the

Green’s function G of the general divergence form elliptic operator L is the analogue of

the classical obstacle and ur is that of the membrane, and here the obstacle constrains the

membrane from above.

Although, as Caffarelli observed, the sets Dr(x0) are nested and comparable to balls in

the sense that:

Bcr(x0) ⊂ Dr(x0) ⊂ BCr(x0) ,

we know very little about the topology of the sets. As a first small step in this direction we

offer the following lemma:

Lemma 2.9 (Structure of Dr(x0)). For any x0 ∈ Ω and for any r > 0 such that BCr(x0) ⊂

Ω, the set Dr(x0) is connected and it contains x0. In particular, the set Dr(x0) is always a

domain.

Proof. Since x0 ∈ Bcr(x0) ⊂ Dr(x0), it is immediate that x0 ∈ Dr(x0). Although this

statement is certainly trivial, we include it because of the observation that the MVT given

by Littman, Stampacchia, and Weinberger does not have this property. (See Equation (1.2)

above.)

Now for the next part, without loss of generality we can assume x0 = 0. Assume for the

sake of obtaining a contradiciton that Dr(0) has a component that we will call E which

does not contain 0. Within E we have LG = 0, Lu0 ≤ 0, and u0 < G. On the other hand,

it follows from the paper4 by Blank and Hao that E is a bounded set, and since u0 = G on

∂E, we contradict the weak maximum principle.

Lemma 2.10 (Density Result). Assume y0 ∈ ∂Dr(x0), and assume that c and C are the

constants given in Theorem 2.6. There exists a constant τ > 0 such that for all h ∈ (0, 1/2],
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we have
|Bchr(y0) ∩Dr(x0)|

|Bchr(y0)|
≥ τ , (2.10)

and furthermore, τ is independent of x0, y0, and r.

Figure 2.2: Not possible according to the lemma.

Proof. Without loss of generality we can rescale so that r = 1. Observe that Theorem 2.6

implies that that x0 belongs to the complement of Bch(y0). Using the characterization of

D1(x0) as the noncontact set for an obstacle problem (see Equation (2.8)) that there exists

a function u satisfying:

Lu = −χ{u<G} = −χ
D1(x0)

in BM(x0)

u = G(·, x0) on ∂BM(x0)

(2.11)

on a large ball BM(x0). Next observe that the height function

w(x) := G(x, x0)− u(x)

satisfies

Lw = χ{w>0}

in any neighborhood not containing x0.

Now we can apply the nondegeneracy theorem for this situation (see Theorem 3.9 of the

paper by Blank and Hao4) to get the existence of a point z0 at a distance of ch/2 to y0 where
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w has grown by an amount ∼ h2 > 0. Next, by applying optimal regularity (see Theorem

3.2 of paper by Blank and Hao4) we can be sure that there is a ball with a radius bounded

from below by a constant times h which is centered at z0 which is not in the contact set.

Lemma 2.11 (Convergence of Minimizers). For any q > 0, we let uq minimize Jq within

the set:

KM,G := {u ∈ W 1,2(BM) : u−G ∈ W 1,2
0 (BM), and u ≤ G a.e.} (2.12)

where Jq is as given in Equation (2.9) above. Now fix r > 0. Then

us ⇀ ur in W 1,2(BM) (2.13)

and

lim
s→r
||us − ur||Cα(BM )

= 0 (2.14)

for some α > 0.

Proof. It is not hard to show that if sm is a sequence of positive numbers converging to

r, and if we let um := usm , then the sequence {um} is uniformly bounded in W 1,2(BM)

and uniformly bounded in Cα(BM). (See section 4 of the first paper by Blank and Hao4

for details.) Thus, by using standard functional analysis we can be sure that there is a

subsequence of sm which we will denote by sj such that we have

uj ⇀ ũ in W 1,2(BM) and lim
j→∞
||uj − ũ||Cα(BM )

= 0 (2.15)

for some function ũ ∈ W 1,2(BM)∩Cα(BM). Since the original sequence {sm} was arbitrary,

it remains only to show that ũ = ur.
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First note that for all of the um in our sequence, we have:

|Jr(um)− Jsm(um)| ≤
∫
BM

∣∣2(sm)−n − 2r−n
∣∣um ≤ ∣∣2(sm)−n − 2r−n

∣∣ C̃ (2.16)

where C̃ is the maximum of the L1 norms of the um. Of course, as we let m→∞ the right

hand side goes to zero. We know

Jr(ur) ≤ Jr(ũ) because ur minimizes Jr

≤ lim inf
j→∞

Jr(uj) by weak lower semicontinuity

= lim inf
j→∞

Jsj(uj) by using Equation (2.16).

Now we claim that

lim inf
j→∞

Jsj(uj) ≤ Jr(ur) (2.17)

which we can combine with the chain of inequalities in the previous paragraph along with

uniqueness of minimizers to show that ũ = ur. Suppose that this is not the case. Then there

exists sk → r and an ε > 0 such that

Jsk(uk) ≥ Jr(ur) + ε . (2.18)

On the other hand, for sufficiently large k, by using Equation (2.16) again and then Equation

(2.18) we have

Jsk(ur) ≤ Jr(ur) + ε/2 ≤ Jsk(uk)− ε/2 < Jsk(uk)

which contradicts the fact that uk is the minimizer of Jsk .

Remark 2.12 (Statement for the wr). Of course in the language of the height functions
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wr, as long as K is compactly contained in the complement of {x0} we have

lim
r→s
||wr − ws||Cα(K) = 0 . (2.19)

Lemma 2.13 (Continuous Expansion). Fix x0, y0 ∈ Ω and assume that there exists t > 0 so

that y0 is compactly contained within Dt(x0), and then choose s ∈ (0, t) so that y0 /∈Ds(x0) .

Then there exists a unique r ∈ (s, t) such that y0 ∈ ∂Dr(x0).

Proof. We borrow some of the ideas used in the proof of the counter-example within the

paper by Blank and Teka.11 Define the set of real numbers:

S := { t ∈ IR : y0 /∈ Dt(x0) } ,

and let r0 be the supremum of S. Because the Dr(x0) are an increasing family of sets

with respect to r, the set S is an interval. We claim that y0 ∈ ∂Dr0(x0). Assuming that

y0 /∈ ∂Dr0(x0), then there exists a ρ > 0 so that

dist(y0, ∂Dr0(x0)) = ρ . (2.20)

At this point there are two possible cases: In the first case Bρ(y0) ⊂ Dr0(x0), and in the

second case Bρ(y0) ⊂ Dr0(x0)c.

Suppose first that Bρ(y0) ⊂ Dr0(x0). In this case, we have Π :=Bρ/2(y0) ⊂ Dr0(x0) =

{wr0 > 0}, and so if

γ := min
Π
wr0 ,

then γ > 0. By Lemma 2.11 , there exists a sufficiently small δ > 0 such that |r − r0| < δ

implies

||wr − wr0||L∞(Π) ≤ γ/2 . (2.21)
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Then the triangle inequality implies wr ≥ γ/2 > 0 in all of Π ⊂ Dr0(x0) which contradicts

the definition of r0.

Next suppose that Bρ(y0) ⊂ Dr0(x0)c = {wr0 = 0}. Within Bρ(y0) the function wr

satisfies the obstacle problem:

Lwr = χ{wr>0}r
−n (2.22)

and therefore wr enjoys the quadratic nondegeneracy property. (See section 3 of the first

paper by Blank and Hao4) Because of this nondegeneracy, as long as r > r0, (and by using

the definition of r0,) we can guarantee that there is a point within Π := Bρ/2(y0) where wr

is greater than a constant γ > 0. On the other hand, by Lemma 2.11 again, there exists a

sufficiently small δ > 0 such that |r − r0| < δ implies

||wr − wr0||L∞(Π) ≤ γ/2 . (2.23)

Thus

0 < γ ≤ ||wr||L∞(Π) = ||wr − wr0||L∞(Π) ≤ γ/2

which gives us a contradiction for this case. Hence we must have y0 ∈ ∂Dr0(x0).
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Chapter 3

A Bernoulli-type free boundary

problem and applications of the

generalized solid MVT

We turn now to applications of the mean value results to the following problem: Given

aij(x) as above, and boundary data, ϕ ≥ 0 given on ∂B1, we consider minimizers of the

functional:

Ja(u) :=

∫
B1

(aijDiuDju+ χ{u>0}) (3.1)

which we gave above in Equation (1.6) for a general domain D. Now in the case where

aij ≡ δij the functional Ja(u) simplifies to:

J(u) :=

∫
B1

(|∇u|2 + χ{u>0}). (3.2)

Alt and Caffarelli considered local minimizers of this functional, and indeed this problem

was used as a model problem within the text by Caffarelli and Salsa.7 We will say that u0
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is a local minimizer of J, if given any subdomain D0 of B1 the value of

J(u0;D0) :=

∫
D0

(|∇u0|2 + χ{u0>0}),

is less than or equal to the value of J(v;D0) for any v which is equal to u0 on ∂D0.

The functional in Equation (3.1) appears in a variety of mathematical models. For

example Bernoulli problems, jet flows, and cavity problems can all be formulated as a

search for variational minimizers of that functional. In order to study these minimizers we

follow the ideas adopted in the text by Caffarelli and Salsa.7 As in their work we find that

it is convenient to produce a minimizer of

JA(u) =

∫
Ω

(
(A(x)∇u) · ∇u+ χ{u0>0}

)
dx, (3.3)

within Kψ, := {u ∈ W 1,2(Ω) : u− ψ ∈ W 1,2
0 (Ω)} , by creating it as a limit of minimizers of

the following approximating problems. We define:

JA,ε(u) :=

∫
Ω

((A(x)∇u) · ∇u+ Φε(u)) dx, (3.4)

and minimize this variational integral within Kψ, := {u ∈ W 1,2(Ω) : u − ψ ∈ W 1,2
0 (Ω)} ,

where Φε is smooth monotone function satisfying:

1. Φε(s) ≡ 0 if s ≤ 0,

2. Φε(s) ≡ 1 if s ≥ ε, and

3. 0 ≤ Φ ′ε(s) ≤ 2/ε for all s.

4. Φε(s) > 0 for all s > 0.

Since Kψ is a convex set and since (A(x)∇u)·∇u is convex in ∇u, the standard existence

theorem in the calculus of variations applies. Thus we are guaranteed that there exists a
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minimizer of Jε within Kψ. It will occasionally be convenient to compute energies on subsets

of the domain, so if D ⊂ Ω then we define:

JA,ε,D(u) =

∫
D

((A(x)∇u) · ∇u+ Φε(u)) dx . (3.5)

We would like to highlight some notable properties of the variational integral (3.5)

and its minimizers. Since we are studying an elliptic problem, it makes sense to discuss the

maximum principle and uniqueness. On the other hand, unlike most elliptic problems, these

topics are not quite as straightforward as usual. Indeed, in the interior problem studied by

Caffarelli and Salsa,7 both of these properties fail in certain key ways. Considering the

minimizer of

J̃0,B1 :=

∫
B1

(
|∇u|2 + χ{u>0}

)
dx

among functions with constant boundary data, it is clear that for a large enough constant

the minimizer is simply the constant function. If the constant is small enough, however,

then a smaller value of J̃0,B1 can be achieved with a function that vanishes on a ball which

is centered at the origin and is equal to a suitable shifting and scaling of the fundamental

solution between that ball and ∂B1. By raising the boundary constant to the right value,

one can engineer a “tie” between these two functions thereby contradicting uniqueness.

Based on the discussion above, one might expect nonuniqueness in the exterior problem

as well, until one considers that the constant function automatically has infinite energy

on our exterior domain. Indeed, we conjecture that the Dirichlet problem for the exterior

domain has a unique solution. We will establish some partial results toward proving that

conjecture here, and we will establish a weak version of the weak comparison principle, but

first, since we will struggle with uniqueness issues, we introduce the following notation and

make the following definition:

Definition 3.1 (Solution Set). Given a functional J̃ that is minimized in the class Kψ, we
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define the solution set to be all of the functions u ∈ Kψ which are absolute minimizers of J̃

within Kψ, and we denote this set by “AJ̃ ,ψ.”

With our new notation, the following lemma says that the set AJ̃ ,ψ is closed under taking

a maximum or a minimum.

Lemma 3.2 (Ordering Lemma). We assume that Ω ⊂ IRn is open with Lipschitz boundary,

that ψ ∈ W 1,2(Ω), that A(x) satisfies Equations (2.4) and (2.5), and that

J̃(u) :=

∫
Ω

((A(x)∇u) · ∇u+G(u)) dx (3.6)

where G(u) is either equal to χ{u>0} or Φε(u).

Then, if uj ∈ AJ̃ ,ψ then v1 := min{u1, u2}, and v2 := max{u1, u2} also belong to AJ̃ ,ψ.

Furthermore, if AJ̃ ,ψ is an infinite set, then it is closed under supremums and infimums as

well.

Proof. Let u1 and u2 be any two minimizers of J̃(u) and assume m := J̃(u1) = J̃(u2). Let

v1 := min{u1, u2}, and v2 := max{u1, u2}. Then v1, v2 ∈ Kψ. We claim that v1, v2 ∈ AJ̃ ,ψ.

Since u1 and u2 are minimizers we have, J̃(u1) = J̃(u2) ≤ J̃(v1) and J̃(u1) = J̃(u2) ≤ J̃(v2).

Let D1 := {u1 > u2} and D2 := {u2 ≥ u1}, and let J̃(u,D) be defined to be the functional

obtained by restricting the integration in the definition of J̃ to the set D. Then

J̃(u1, D1) + J̃(u1, D2) = J̃(u1)

≤ J̃(v1)

= J̃(v1, D1) + J̃(v1, D2)

= J̃(u2, D1) + J̃(u1, D2)

which gives J̃(u1, D1) ≤ J̃(u2, D1). By a similar computation, we can show that J̃(u2, D1) ≤
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J̃(u1, D1) which implies

J̃(u1, D1) = J̃(u2, D1) . (3.7)

Now by using Equation (3.7) we have,

m = J̃(u1) = J̃(u1, D1) + J̃(u1, D2) = J̃(u2, D1) + J̃(u1, D2) = J̃(v1)

and

m = J̃(u2) = J̃(u2, D1) + J̃(u2, D2) = J̃(u1, D1) + J̃(u2, D2) = J̃(v2)

which proves our claims for the finite case.

Before we prove our claims for the infinite case, we introduce the following notation:

T(AJ̃ ,ψ) := sup{AJ̃ ,ψ}

B(AJ̃ ,ψ) := inf{AJ̃ ,ψ} .
(3.8)

With this notation we need to show that T(AJ̃ ,ψ) ∈ AJ̃ ,ψ, and B(AJ̃ ,ψ) ∈ AJ̃ ,ψ. We will

show the result for the supremum, the infimum case will follow similarly.

We will prove this result in two steps. We start by letting {xk} be a countable dense

subset of Ω, and in the first step we will show that there exists an element Uxk of AJ̃ ,ψ such

that

Uxk(xk) = T(AJ̃ ,ψ)(xk) . (3.9)

We recall

AJ̃ ,ψ = {u ∈ Kψ : J̃(u) is an absolute minimum }.

Let un be a sequence of elements in AJ̃ ,ψ such that

lim
n→∞

un(xk) = T(AJ̃ ,ψ)(xk).
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By taking a subsequence and using Arzela-Ascoli, we can get uniform convergence of the

un to a function Uk. We can also use the standard weak compactness theorem for W 1,2 to

be sure that that sequence converges weakly there. Since Kψ is a closed under uniform

limits, we have Uk ∈ Kψ. Then lower semicontinuity of our functional with respect to weak

convergence in W 1,2 guarantees that Uk ∈ AJ̃ ,ψ.

Now for the second step we define

T1(x) := U1(x) for all x ∈ Ω

Tj+1(x) := max{Uj+1(x), Tj(x)} for j ≥ 1 and for all x ∈ Ω .
(3.10)

It follows from the finite case that all Tj ∈ AJ̃ ,ψ. Now we simply take the limit of the Tj

and exactly as in the first step we have a function that belongs to AJ̃ ,ψ, but by its construc-

tion we know that it agrees with T(AJ̃ ,ψ) on our countable dense subset of Ω. By uniform

continuity of all of the functions in question we know that the limit must equal T(AJ̃ ,ψ)

everywhere in Ω.

We have the following weak version of the weak comparison principle:

Proposition 3.3 (Partial Weak Comparison Principle). Assume that Ω, A(x), and J̃ have

the same definitions and assumptions as in Lemma 3.2. Furthermore, assume that ψ` ∈

W 1,2(Ω) with ψ1 ≤ ψ2 almost everywhere.

Then if u` ∈ AJ̃ ,ψ` then we have the following inequalities almost everywhere:

u1 ≤ T(AJ̃ ,ψ2
) and u2 ≥ B(AJ̃ ,ψ1

) . (3.11)

Proof. The idea here is identical to the idea for the proof of Lemma 3.2, so we omit it.
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Lemma 3.4. For any D ⊂ Bc
δ the variational integral

Jε,D(u) =

∫
D

(A(x)∇u) · ∇u+ Φε(u)) dx

increases as ε decreases for any fixed u.

Proof. Note that {Φε(u)} is a monotone decreasing family of functions in ε so, if ε1 ≤ ε2,

then we have

Jε2 ,D(u) =

∫
D

(A(x)∇u) · ∇u)dx+

∫
D

Φε2(u) dx

≤
∫
D

(A(x)∇u) · ∇u)dx+

∫
D

Φε1(u) dx

=: Jε1 ,D(u) .

Proposition 3.5 (Euler-Lagrange Equation). A minimizer u of Jε(u) satisfies the Euler

Equation

2Lu = fε(u) =: Φ ′ε(u) (3.12)

in Ω.

Proof. Let η ∈ C∞c (Ω) and let t ≥ 0. Set

g(t) := Jε(u+ tη)

=

∫
Ω

[(A(x)∇(u+ tη)) · ∇(u+ tη) + Φε(u+ tη)] dx

=

∫
Ω

[(A(x)(∇u+ t∇η)) · (∇u+ t∇η) + Φε(u+ tη)] dx

=

∫
Ω

[
(A(x)∇u) · ∇u+ 2t(A(x)∇u) · ∇η + t2((A(x)∇η) · ∇η) + Φε(u+ tη)

]
dx .
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Then

g ′(t) =

∫
Ω

[2(A(x)∇u) · ∇η + 2t((A(x)∇η) · ∇η) + Φ ′ε(u+ tη)η] dx ,

and so

0 = g ′(0) =

∫
Ω

[2(A(x)∇u) · ∇η + Φ ′ε(u)η] dx (3.13)

which is

−2div(A(x)∇u) + Φ ′ε(u) = 0

by definition. Thus, 2Lu = fε(u).

Some highlights of what is known about functions u0 which locally minimize J(u) in B1

include the following:

Theorem 3.6 (Basic Facts for Minimizers of J). Within any D0 ⊂⊂ B1 we have:

1. u0 is Lipschitz.

2. If z0 ∈ D0 ∩ ∂{u0 > 0}, then there is a constant C > 0 depending only on n and

||u0||L2(B1) such that

C−1r ≤ sup
Br(z0)

u0 ≤ Cr . (3.14)

3. With z0 ∈ D0 ∩ ∂{u0 > 0} again, there is a universal θ > 0 such that

Ln({u0 > 0} ∩Br(z0)) ≥ θrn and Ln({u0 = 0} ∩Br(z0)) ≥ θrn (3.15)

where we use Ln(S) to denote the n-dimensional Lebesgue measure of S.

4. Using Hγ(S) to denote the γ-dimensional Hausdorff measure of S, then given D0 ⊂⊂

B1 there is a universal C such that

Hn−1(∂{u0 > 0} ∩D0) ≤ C. (3.16)
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5. |∇u0| = 1 in a suitable sense on almost all of the free boundary.

Everything in the theorem above was proven by Alt and Caffarelli.6,7

More recently, dos Prazeres and Teixeira studied the local minimizers of the more gen-

eral functional Ja where the aij which appear are assumed to be no more than bounded,

symmetric, and uniformly elliptic.8 Now in this case, there is no hope of proving that min-

imizers are better than the Hölder regularity given by the famous result of De Giorgi and

Nash. On the other hand dos Prazeres and Teixeira proved that functions u0 which locally

minimize Ja(u) in B1 satisfy the following:

Theorem 3.7 (Basic Facts for Minimizers of Ja). Within any D0 ⊂⊂ B1 we have:

1. If z0 ∈ D0 ∩ ∂{u0 > 0}, then there is a constant C > 0 depending only on n, λ,Λ, and

||u0||L2(B1) such that

C−1r ≤ sup
Br(z0)

u0 ≤ Cr . (3.17)

2. With g ∈ D0 ∩ ∂{u0 > 0} again, there is a universal θ > 0 such that

Ln({u0 > 0} ∩Br(z0)) ≥ θrn. (3.18)

We can find these facts in Theorem 1.1 by dos Prazeres and Teixeira.8

Also considered by dos Prazeres and Teixeira were aij satisfying what they called the

“K-Lip” property which do allow for Lipschitz estimates of the minimizers, but we never

make this assumption. (For those details, we can see the definition 3.3 in the paper by dos

Prazeres and Teixeira.8) Of course, even without any further hypotheses, one can reasonably

view Equation (3.17) as saying that “at the free boundary” the solutions enjoy a Lipschitz-

type behavior. On the other hand, for general aij one can construct a counter-example to

the statement: “The one sided gradient exists at the free boundary”.

Thus, it seems very difficult to get a successful analogue of the fifth statement in Theorem
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3.6 above. It also seems difficult or impossible to prove Equation (3.16) in the general case,

although as dos Prazeres and Teixeira observed,8 the free boundary is necessarily porous,

and so if one is willing to weaken Hn−1 measure to Hn−ζ measure for a ζ which is between

0 and 1, then one can assert the analogue. From a certain point of view, the upshot is that

the biggest gap between Theorem 3.6 and Theorem 3.7 that we can hope to close is the fact

that Equation (3.18) is only giving half of what Equation (3.15) gave, and that leads to our

first application.

3.1 Application 1: Positive Density of the Contact Set

on the Free Boundary

Theorem 3.8 (Positive Density of the Contact Set on the Free Boundary). In the same

setting as in Theorem 3.7 and with x0 ∈ D0∩ ∂{u0 > 0} there exists a θ > 0 depending only

on n, λ,Λ, and ||u0||L2(B1) such that

Ln({u0 = 0} ∩Br(x0)) ≥ θrn. (3.19)

Proof. Let v be a solution of the equation Lu = 0 in Br(x0) with v = u0 on ∂Br(x0). Since

x0 is in the free boundary we know that u0 and therefore v is positive on a nontrivial portion

of ∂Br(x0). Then, the strong maximum principle implies v > 0 in Br(x0). Since u0 is local

minimizer we have,

∫
Br(x0)

(
(A(x)∇u0) · ∇u0 + χ{u0>0}

)
≤
∫
Br(x0)

(
(A(x)∇v) · ∇v + χ{v>0}

)
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which gives,

∫
Br(x0)

(
(A(x)∇u0) · ∇u0 − (A(x)∇v) · ∇v

)
≤
∫
Br(x0)

χ{v>0} −
∫
Br(x0)

χ{u0>0}

= |Br(x0)| − |{u0 > 0} ∩Br(x0)|

= |{u0 = 0} ∩Br(x0)|

= |Ωc
0 ∩Br(x0)| .

On the other hand we claim that,

∫
Br(x0)

(
(A(x)∇u0) · ∇u0 − (A(x)∇v) · ∇v

)
=

∫
Br(x0)

(
A(x)∇(u0 − v)

)
· ∇(u0 − v)

≥ λ

∫
Br(x0)

|∇(u0 − v)|2

≥ Cλ

r2

∫
Br(x0)

|(u0 − v)|2 .

Thus, if we grant the claim, then we obviously have

|Ωc
0 ∩Br(x0)| ≥ Cλ

r2

∫
Br(x0)

|(u0 − v)|2 . (3.20)

Turning to the proof of the claim we see immediately that the last two inequalities in

the chain of inequalities above simply use uniform ellipticity and the Poincaré inequality

respectively. Thus our claim is proved if we show the first equality. So letting ϕ := u0 − v
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and observing that ϕ ∈ W 1,2
0 (Br(x0)) we compute

∫
Br(x0)

(A(x)∇u0) · ∇u0 − (A(x)∇v) · ∇v − (A(x)∇(u0 − v)) · ∇(u0 − v)

= 2

∫
Br(x0)

(
(A(x)∇u0) · ∇v − (A(x)∇v) · ∇v

)
= 2

∫
Br(x0)

(A(x)∇v) · ∇(u0 − v)

= 2

∫
Br(x0)

(A(x)∇v) · ∇(ϕ)

= 0

since Lv = 0 in Br(x0). Thus, the claim is proved.

Now using the MVT for general divergence form operators we get,

v(x0) =
1

|Dr(x0)|

∫
Dr(x0)

v

≥ 1

|BCr(x0)|

∫
Bcr(x0)

v

=
|Bcr(x0)|
|BCr(x0)|

· 1

|Bcr(x0)|

∫
Bcr(x0)

v

≥ C̃
1

|Bcr(x0)|

∫
Bcr(x0)

u0

≥ C̄r

where in the final inequality we have used both the nondegeneracy and the optimal regularity

of u0 due to dos Prazeres and Teixeira.8 Since v is L-harmonic and nonnegative, the Harnack

inequality tells us that v(y) ≥ C̃r for all y ∈ Br/2(x0). By the Lipschitz continuity of u0 we
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see that u0(y) ≤ c1hr in Bhr(x0). By choosing h to be sufficiently small we get

v − u0 ≥ ĉr in Bhr(x0) .

Therefore by using Equation (3.20) we get,

|Ωc
0 ∩Br(x0)| ≥ cλ

r2

∫
Br(x0)

|(u0 − v)|2 ≥ cλ

r2

∫
Bhr(x0)

(ĉr)2 ≥ Crn .

By combining this last result with part (2) of Theorem 3.7 we get the following statement

simply by definition.

Corollary 3.9 (Measure Theoretic Boundary). Every point of the free boundary belongs to

the measure theoretic boundary of the zero set and/or of the positivity set.

Definitions and information about the measure theoretic boundary can be found in a variety

of references on geometric measure theory including the book by Evans, and Gariepy12 and

the book by Mattila.13 We can also observe that a consequence of the results above is the

fact that the free boundary, ∂Ω, does not admit cusps either pointing inward or outward.

Turning to the object created by applying L to u0 we will observe in the next lemma

that Lu0 is a nonnegative distribution which is supported on the Free Boundary FB(u0).

Of course, then the theorem of Laurent Schwartz tells us that Lu0 is actually a nonnegative

measure supported on FB(u0). As usual, we define Lu0 as the distribution L0 in the following

way for suitable test functions ϕ :

(Lu0)(ϕ) = L0(ϕ) := −
∫
Br(x0)

((A(x)∇u0)) · ∇ϕ . (3.21)
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Lemma 3.10 (u0 is a Subsolution). The function u0 is a subsolution of Lu = 0, and more

precisely L0 is actually a nonnegative distribution, and therefore a nonnegative measure, and

it is supported on FB(u0).

Proof. Let φ ≥ 0 be an appropriate test function. It is clear that L0 is linear and bounded

and hence a distribution.

Just as we have defined the distribution L0 using u0, we can define the distribution Lε

by replacing u0 with uε. Of course, in this case we have:

Lεφ = −
∫
Br(x0)

(A(x)∇uε) · ∇φ =

∫
Br(x0)

fε(uε)φ ≥ 0 (3.22)

whenever φ ≥ 0. Thus, Lε is a nonnegative distribution.

Now, using the fact that uε ⇀ u0 weakly in W 1,2 along with the symmetry of the matrix

A(x) we see

Lεφ = −
∫
Br(x0)

(A(x)∇uε) · ∇φ

= −
∫
Br(x0)

∇uε · (A(x)∇φ)

→ −
∫
Br(x0)

∇u0 · (A(x)∇φ)

= −
∫
Br(x0)

(A(x)∇u0) · ∇φ)

= L0φ

and this implies that L0 is also a nonnegative distribution.

Now we turn to show that L0 is supported on FB(u0). First we observe that if φ is

supported in the interior of where u0 = 0, then it is clear that L0φ = 0. On the other hand,

if φ is supported in a set of the form {u0 > β} for some β > 0, then by using the uniform

convergence of the uε to u0, by observing the fact that fε(t) ≡ 0 for all t > ε, and by repeat-
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ing the two inset computations from the last paragraph, we see that L0φ = 0. Combining

these two observations shows us that L0 must be supported on the boundary of {u0 > 0}.

In the text by Caffarelli and Salsa7 while doing the problem with A(x) ≡ I, they show

between Theorem 1.19 and the end of the first chapter that the free boundary condition

is a weak version of |∇u| ≡ 1 on the free boundary. Their weak version establishes that

∆u = Hn−1bFB. In our case we expect to get a weak version of

[A(x)∇u0(x)] · ν(x) = ∇u(x) · [A(x)ν(x)] ≡ 1 (3.23)

for x ∈ FB(u0). The hope would be µ = Hn−1bFB, where µ is the free boundary measure

given by Lu0 from Lemma 3.10 .

Theorem 3.11. Let x0 ∈ FB(u0) and let µ = Lu0. Then µ is a nonnegative measure and

suppported on F (u0) and for any r > 0 we have

∫
∂Br(x0)

[A(x)∇u0(x)] · ν(x)dHn−1 =

∫
Br(x0)

dµ ∼ rn−1 . (3.24)

Proof. We have already seen in Lemma 3.10 that µ = Lu0 is a non-negative measure and

supported on FB(u0). The leading equality in Equation (3.24) is simply the statement of

this fact. Next, as x0 is the free boundary point, using the Lipschitz continuity of u0 near

free boundary along with the uniform bound on A(x) we know that

∫
∂Br(x0)

[A(x)∇u0(x)] · ν(x)dHn−1 ≤ Crn−1 , (3.25)

so it remains to show the inequality in the opposite direction.

Using the rescaling property it is enough to prove the case for r = 1. Let x0 ∈ FB(u0),

and let w be an L-harmonic function in B1(x0) such that w = u0 on ∂B1(x0). Then L(w −
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u0) = −Lu0 = −µ ≤ 0, and by the weak comparison principle w ≥ u0. Let G be the Green’s

function for our operator L on B1(x0). Then by using Theorem 6.11 in paper by Littman,

Stampacchia, and Weinberger we have the following representation formula,

(w − u0)(y) = w(y)− u0(y) =

∫
B1(x0)

G(y, x)dµ(x).

Now since x0 is a free boundary point, we can use nondegeneracy and Lipschitz continuity

of u0 in order to guarantee the existence of a point y ∈ Bh(x0) (with small h), such that

u0 ∼ ch within Bch(y) and consequently u0 > 0 in the same ball. Thus Lu0 = µ = 0

in Bch(y) and because µ is supported on the free boundary and because G is uniformly

bounded away from the singularity, we have:

w(y)− u0(y) =

∫
B1(x0)\Bch(y)

G(y, x)dµ(x)

=

∫
B1(x0)∩{|x−y|>ch}

G(y, x)dµ(x)

≤ C

∫
B1(x0)

dµ .

On the other hand, for p > 1 using the fact that w ≥ u0 and that u0 is nondegenerate

we observe, ∫
B1(x0)

wp ≥
∫
B1(x0)

up0 ≥ C .

Then by using the Harnack Inequality we get

w(y) ≥
[ ∫

B1(x0)

wp
]1/p

≥ C ,

so that for h small enough we get

w(y)− u0(y) ≥ C − ch ≥ C̃ .
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Therefore, by chaining together the inequalities above, we get

C̃ ≤ w(y)− u0(y) ≤ C

∫
B1(x0)

dµ ,

and this implies

Ĉ ≤
∫
B1(x0)

dµ . (3.26)

By using Equations (3.25) and (3.26) we get the desired conclusion.

Remark 3.12 (Corners but not cusps). Although we have shown that FB(u0) does not

allow cusps, we cannot say whether or not it has corners.

3.2 Application 2: A Nondegeneracy Lemma

Although the previous application of the MVT gives us a new result, it does not make use

of the new properties that we have shown. On the other hand, by making use of our lemmas

in the second section, we can give a new proof of many of the results shown independently by

dos Prazeres and Teixeira. Indeed, our method of proof follows the exposition of Caffarelli

and Salsa’s text almost exactly, and so we will state here only the proof of the key lemma

that relies on our statements of the Dr(x0). This lemma is the analogue of Lemma 1.10 by

Caffrelli and Salsa.7

Lemma 3.13 (Nondegeneracy Lemma). Let Ω be an open set with 0 ∈ ∂Ω and w ≥ 0,

||w||C0,1(B2) = K̄, and Lw = 0 in Ω ∩B2. Suppose x0 ∈ Ω ∩B1 and

(i) w(x0) = σ > 0, and

(ii) in the region {w ≥ σ/3}, we have w(x) ∼ dist(x, ∂Ω).
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Then there exist positive constants η, β, γ, and σ0 which all depend on n, λ, µ, and K̄, such

that as long as σ ≤ σ0, we have

βσ ≥ sup
Bησ(x0)

w ≥ (1 + γ)σ . (3.27)

Proof. Define ρ > 0 by

ρ := sup{r ∈ IR : Dr(x0) ⊂ {w > σ/3}} , (3.28)

where Dr(x0) is the solid mean value set given in Theorem 2.6. Using Lemma 2.13 there

exists a y0 ∈ ∂Dρ(x0) with w(y0) = σ/3. By assumptions (i) and (ii) we know that ρ ∼ σ. By

the Lipschitz continuity of w, for a suitable h > 0, we have w(x) ≤ 2σ/3 for all x ∈ Bhρ(y0).

Now by using Lemma 2.10 we know that w ≤ 2σ/3 in a fixed proportion of Dρ(x0). By the

basic properties of the mean value sets Dr(x0), we have:

σ = w(x0) =

∫
Dρ(x0)

w(y)dy , (3.29)

but since there is a fixed proportion of Dρ(x0) where w is less than 2σ/3 we must have a

point in Dρ(x0) which exceeds σ by some fixed amount. Since Dρ(x0) ⊂ BCρ(x0) with C

as given in Theorem 2.6, and since as we observed above we have ρ ∼ σ, we get the right

hand side of Equation (3.27). The left hand side of Equation (3.27) follows trivially from

Lipschitz continuity so we are done.

Remark 3.14 (Necessity of Prior Lemmas). Note that both Lemma 1.3 and Lemma 1.2

were needed in the proof.

Iterating this lemma in the same fashion that Caffarelli and Salsa iterate their Lemma 1.10

leads to the key nondegeneracy theorem for solutions to this free boundary problem.
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Chapter 4

Bernoulli-type free boundary problem

for a composite of isotropic medias

Let us recall the Bernoulli type free boundary problem we want to solve: Fix δ > 0 and

x0 ∈ IRn. We have a nonnegative continuous function u defined on Ω satisfying:

• Lu = div(aij(x)∇u) = 0 in {u > 0} and in {u = 0}

• u(x) = ψ(x) (prescribed) on ∂Ω.

• (A(x)∇u) · ∇u = µ (prescribed) in ∂{u > 0} the free boundary (FB).

As we discussed earlier, the Bernoulli type free boundary problem above can be formu-

lated as the variational problem (3.1) in the case where Ω is B1. The goals that we have in

studying this problem include in particular, producing an analogue of the surface MVT by

creating an appropriate test function by solving this problem on an exterior domain. For the

Laplacian, we have carried out the proof in the appendix. Having said this, we cannot re-

ally currently hope to deal with all of the bounded, measurable, elliptic aij. Indeed, we have

good reason to expect the existence of an example of a minimizer with nonunique blowup
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limits, and in the second section of this chapter, we will start the process of producing one.

Such a function would mean that an analogue of the spherical MVT without weights would

probably be unattainable.

On the other hand, in order to produce a nonunique blowup limit, it is likely that we will

need the uniqueness of minimizers to our problem, at least with certain types of boundary

data. In the first section of this chapter we will prove a few results starting us in this

direction. Since the a(x) are just bounded and measurable we can not expect the blow

up limit of the A(x) to converge to a unique matrix, so accordingly, we cannot get the

corresponding minimizers to converge to unique blow up limits. Indeed, if the a(x) converge

to one limit along one sequence of radii and a different limit along a different sequence, then

the gradients of the respective blowup limits of the solutions will be different. Consequently

it is impossible for the gradient on the free boundary to exist if the free boundary passes

through such a point, and so trying to get a function w, such that

Lw = µHn−1b∂{w > 0}

looks difficult or impossible.

To have a chance at producing a unique blow up limit, in the third section, we will

restrict our attention to aij(x) with the specific form:

aij(x) = a(x)I

where the function a(x) satisfies:

lim
r↓0

a(r(x− x0)) converges in L∞

for all x0 in our domain without taking any subsequences. Those aij still include some

interesting cases:
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1. a(x) ∈ C0, and

2. if the domain is chopped up into disjoint pieces and a(x) is a positive constant on each

piece, then as long as the pieces are not too irregular, then the limit described above

will converge.

These situations can easily occur if we are studying a composite of isotropic materials.

4.1 Uniqueness results in specific cases

Our first uniqueness result works for the exterior problem with A(x) ≡ I and constant

boundary data.

Lemma 4.1 (Uniqueness Lemma 1). If ψ ≡ C on a ball containing Bδ, and A(x) ≡ I, and

Ω := Bc
δ , then there is a unique minimizer of the functional J(u) defined in Equation (3.2)

among functions in Kψ. Furthermore, the minimizer is radially symmetric.

Proof. By rotational symmetry of the problem, along with application of Lemma 3.2 we

easily deduce that U := T(AJ̃ ,ψ) and u := B(AJ̃ ,ψ) are rotationally symmetric. Now if they

have the same free boundary, then by uniqueness of solutions to Laplace’s equation we are

already done. Thus, we can assume that the free boundaries of U and u are concentric

spheres centered at the origin, with the radius, R, of FB(U) strictly larger than the radius,

r, of FB(u).

Next we observe that the divergence theorem implies:

∫
FB(U)

∂U

∂ν
+

∫
∂Bcδ

∂U

∂ν
=

∫
Ω(U)

∆U = 0 , (4.1)

and ∫
FB(u)

∂u

∂ν
+

∫
∂Bcδ

∂u

∂ν
=

∫
Ω(u)

∆u = 0 . (4.2)
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(Here we prefer to use ∂Bc
δ instead of simply ∂Bδ to stress that the outward unit normal ν

is pointing into the ball.) Now it is known in this case aij = I (see the paper by Alt and

Caffarelli6 or the text by Caffarelli and Salsa7) that |∇U | ≡ 1 on FB(U) and |∇u| ≡ 1 on

FB(u), so we easily derive

∫
∂Bcδ

∂u

∂ν
= nωnr

n−1 < nωnR
n−1 =

∫
∂Bcδ

∂U

∂ν
, (4.3)

where ωn is as usual the measure of the unit ball in IRn. On the other hand, since U > u

within Ω(u) we can apply the Hopf Lemma to U and to U − u on ∂Bc
δ in order to give us:

0 <
∂U

∂ν
<
∂u

∂ν
(4.4)

on all of ∂Bc
δ . When we combine Equations (4.3) and (4.4) we easily derive a contradiction.

Although the lemma above gives us our first uniqueness theorem, we are more interested

in boundary data close to x+
n for the sake of producing counter-examples. We turn to this

problem now.

Lemma 4.2. For A(x) ≡ I and given boundary data ψ = x+
n , the supremum T(AJ,ψ) of the

functional in Equation (3.2) is the minimizer u = x+
n .

Proof. Define ū := T(AJ,ψ) and suppose that ū 6= u = x+
n . Then we have {u > 0} ( {ū > 0}.

Note that the free boundary ∂{u > 0} := FB(u) is a disk which is the intersection of

{xn = 0} and a ball, while the free boundary ∂{ū > 0} := FB(ū) is an n − 1 dimensional

surface with the same boundary. Therefore, since hyperplanes are area minimizing,

Hn−1(FB(u)) < Hn−1(FB(ū)). (4.5)
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Next using the divergence theorem and the fact that on the free boundary we have

∂ū

∂ν
= −1 and

∂u

∂ν
= −1

we get:

∫
FB(ū)

−1 +

∫
∂B1

∂ū

∂ν
=

∫
Ω(ū)

∆ū = 0 , (4.6)

and ∫
FB(u)

−1 +

∫
∂B1

∂u

∂ν
=

∫
Ω(u)

∆u = 0 . (4.7)

Equations (4.6) and (4.7) imply:

Hn−1(FB(ū)) =

∫
∂B1

∂ū

∂ν
and Hn−1(FB(u)) =

∫
∂B1

∂u

∂ν
.

Therefore from Equation (4.5) we get,

∫
∂B1

∂ū

∂ν
>

∫
∂B1

∂u

∂ν
.

On the other hand, by our assumptions we have ū > u within the positivity set of u, so

since ū = u on ∂B1, we must have

∂u

∂ν
>
∂ū

∂ν
on ∂B1

which implies ∫
∂B1

∂u

∂ν
>

∫
∂B1

∂ū

∂ν
.

This contradiction proves our assertion.
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In the following Lemma we will show that the minimizer ū := T(AJ,ψ) of the functional

in Equation (3.2) over Kψ is unique when ψ = x+
n . In the proof, we will adopt an idea from

an unpublished work of Zheng Hao.14

Lemma 4.3 (Uniqueness Lemma 2). If ψ ≡ x+
n on ∂B1, and A(x) ≡ I, then x+

n is the

unique minimizer of the functional J(u) defined in Equation (3.2) among the functions in

Kψ := {u ∈ W 1,2(Ω) : u− ψ ∈ W 1,2
0 (Ω)}.

Proof. Define u := x+
n on B1, and suppose that we have another minimizer ū = x+

n on ∂B1

with the same boundary data. To prove our lemma by contradiction, we will assume that

u 6≡ ū. By the previous lemma, we know that u ≤ ū everywhere.

In the following we define,

Ω(w) := {w > 0} ,

and note that by our assumption of nonuniqueness we have

Ω(u) ( Ω(ū) .

By the strong maximum principle, we know that within Ω(u), we have u < ū and ∆u =

∆ū = 0. So ∆(ū − u) = 0 in Ω(u) and the minimum of ū − u on Ω(u) occurs and is zero

everywhere on ∂B1 ∩ {xn > 0}. Thus, by the Hopf lemma ∇u(en) 6= ∇ū(en).

On the other hand, we can define the following extensions:

U := u = x+
n in B1.1, and

Ū =


ū in B1.1

u = x+
n in B1.1 \B1
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and note the following facts:

1. When considered on all of B1.1, we have J(u) = J(ū) and therefore ū is a minimizer

of J on all of B1.1. As an immediate consequence, ū is harmonic everywhere within

Ω(ū).

2. Because ∇u(en) 6= ∇ū(en) when considered from within B1, and because u ≡ ū within

B1.1 \B1, the gradient of ū cannot exist and be continuous at en.

By the nondifferentiability of our minimizer ū at the point en ∈ Ω(ū) when considered as a

function on B1.1, we have our contradiction.

Unfortunately, my proof of uniqueness above seems to rely heavily on the assumption

that A(x) ≡ I. I have the following conjecture:

Conjecture 4.4. If A(x) is sufficiently close to the identity matrix, then there will be a

unique minimizer whenever the boundary data ψ = (xn − β)+, and β is sufficiently small.

Furthermore, the free boundary will depend continuously on β.

4.2 Counter-examples for arbitrary a(x)

As in the paper by Blank and Teka,11 we define the function fk(x) by letting fk(x) := γk(|x|)

where γk(r) is defined by

γk(r) :=


2 for r ≥ ωk

5 + cos(π log | log r|)
2

for r < ωk

(4.8)

and ωk := exp(− exp(2k + 1)) . (Note ωk ↓ 0, as k → ∞.) Now we observe the following

properties:
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1.

2 ≤ fk ≤ 3 in B1,

2.

for any q <∞, lim
k→∞
||fk − 2||Lq(B1) = 0 , and

3.

lim
r↓0

rγ′k(r) = 0 .

We refer to the paper by Blank and Teka for the definition of the space of functions of

Vanishing Mean Oscillation, and note that within their work, by using a theorem due to

Bramanti, they show that the function fk just given belongs to VMO(B1).11 We also follow

Blank and Teka by defining A(x) := fk(x)I, and aij,k(x) := fk(x)δij. Now the main idea in

constructing the counter-example is to observe that ||fk − 2||L1(B1) is arbitrarily small, and

so we expect that there should be a solution to

Lw = Hn−1b∂{w > 0}

which is arbitrarily close to the function

w(x) :=
1

2
(xn)+ .

The bad news is that because we have altered the operator slightly, if we take 1
2
(xn)+ as

the boundary data, then it would be a fantastic stroke of luck if the origin was still in the

free boundary and not merely very close to it. Thus, it is necessary to prove that we can

“wiggle” the boundary data slightly to force the free boundary back onto the origin.

Let us suppose the boundary data is wiggled by an amount β and denote pβ := 1
2
(xn −

β)+ . We observe that it solves the equation 2Lw = χ{w>0}.
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Now for −1/10 ≤ β ≤ 1/10 and k ∈ IN let wβ,k be the minimizer of

Ja(u) :=

∫
B1

(Ak(x)∇u) · ∇u+ χ{u>0})

over the set Kpβ , := {wβ,k ∈ W 1,2(B1) : wβ,k − pβ ∈ W 1,2
0 (B1)} , where Ak := (aij,k). Then

the minimizer solves the following PDE:


w ≥ 0

−Di(a
ij,k(x)Djw) = χ{w>0} in B1

w = pβ on ∂B1

The issue we have here is that without proving our conjecture in the previous section,

we can’t say that the minimizer is unique. On the other hand, if we assume that Conjecture

4.4 holds, then we have the existence of a β0 very close to zero, such that the minimizer of

Ja with boundary data pβ0 has a free boundary point at the origin.

By rescaling space along the right radii, and therefore considering the rescaled matrix:

Ãε(x) := A(εx)

we can make ||Ãε(x) − 2I||L1(B1) as small as we like. Along this set of radii, our solution

must converge to a rotation of

w(x) :=
1

2
(xn)+ .

On the other hand, along a different set of radii going to zero we can make ||Ãε(x)−3I||L1(B1)

as small as we like, and along this rescaling, the blowup limit must converge to:

w(x) :=
1

3
(xn)+ .
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4.3 Results for nicer media

Since arbitrary aij leads to nonuniqueness of blow up limits, we study the simpler case of

minimizers of the functional

J(u) =

∫
Bcδ

(
a(x)|∇u|2 +

µ2

a(x)
χ{u>0}

)
dx (4.9)

in an appropriate space with appropriate boundary data.

If w is such a function, then it should satisfy:

1. w is Lipschitz on the free boundary ∂{w > 0}.

2. w grows linearly away from the free boundary.

3. Lw = 0 in {w > 0} and Lw = 0 in {w = 0}.

4. |∇w| = µ
a(x)

on ∂{w > 0}.

5. Lw = µHn−1b ∂{w > 0} in a neighborhood of the free boundary.

Indeed, the first three items are immediate from the work of dos Prazeres and Teixeira.8

The fourth and fifth items will certainly hold when a(x) is continuous by doing a blow up

argument, but they should hold more generally as well.

We will like to establish a lemma which will give us an ordering on the minimizers with

respect to the boundary data and will give an estimate about the free boundary location.

Indeed, as should be clear from the proof of the surface MVT found in the appendix, we will

want to solve the exterior problem outside of an arbitrarily small ball, where our data on

the ball matches the data of the fundamental solution. In particular, since that data goes

to infinity as the radius of the ball goes to zero, it is not a trivial task to show that the free

boundary does not behave erratically.
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Lemma 4.5. Let uj, j = 1, 2 be the minimizers of

J(u;Bc
δ) :=

∫
Bcδ

a(x)|∇u|2 +
µ2
j

a(x)
χ{u>0} (4.10)

subject to u = hj on ∂Bc
δ. If h2 ≥ h1 and µ1 > µ2, then u2 ≥ u1.

Proof. Suppose there exists a non empty set D := {u1 > u2}. By the applicatioin of WMP

the case D ⊂ {u2 > 0} cannot happen. So we assume D also contains some parts of zero

set of u2.

Let m := min{u1, u2}, and M = max{u1, u2} then m competes with u1 and M competets

with u2. Then we get,

∫
D

a(x)|∇u1|2 +
µ2

1

a(x)
χ{u1>0} ≤

∫
D

a(x)|∇u2|2 +
µ2

1

a(x)
χ{u2>0}

which gives ∫
D

µ2
1

a(x)
(1− χ{u2>0}) ≤

∫
D

a(x)(|∇u2|2 − |∇u1|2), (4.11)

and ∫
D

a(x)|∇u2|2 +
µ2

2

a(x)
χ{u2>0} ≤

∫
D

a(x)|∇u1|2 +
µ2

2

a(x)
χ{u1>0}

which gives, ∫
D

µ2
2

a(x)
(1− χ{u2>0}) ≥

∫
D

a(x)(|∇u2|2 − |∇u1|2). (4.12)

Thus, from Equations (4.11) and (4.12) we get µ2
2 ≥ µ2

1 which is a contradiction.
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Proof of the spherical MVT

In this appendix we show how the same idea that Caffarelli used to prove the solid mean

value inequalities can be used to prove the surface mean value inequalities. The exact

inequality that we are trying to prove is found in Equation (2.1).

Proof. The test function, Φ̃r,s, that we eventually want will satisfy the following:

• Φ̃r,s is a nonnegative radial function.

• Φ̃r,s ≡ 0 outside Br(0)

• ∆Φ̃r,s = 0 in IRn \ {∂Br ∪ ∂Bs}

• ∆Φ̃r,s “picks up a distribution” on the spheres ∂Br and ∂Bs.

As before we create Φ̃r,s as a difference Ψ̃r − Ψ̃s. We define

Ψ̃s(x) := max

{
Γ(|x|)− Γ(s), 0

}
.

A picture of what is going can be seen in Figures A.1 and A.2 below.

(a) Γ shifted (b) Γ shifted: The positive part

Figure A.1: Shifting the fundamental solution

The bad news is that Φ̃r,s is not in C1,1 and so is not an admissible test function. (In fact,

it is only Lipschitz.) Therefore, unlike in the solid MVT case, now we need to approximate
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(a) Ψ̃r (b) Φ̃(s,r) := Ψ̃r − Ψ̃s

Figure A.2: Defining our test function Φ̃(s,r)

Φ̃r,s by functions which are C1,1 and which converge in a suitable way. To this end, we let

Ψ̃ε
r(x) :=



0 for r + ε ≤ |x|

|Γ′(r)|
2ε

(|x| − r − ε)2 for r ≤ |x| ≤ r + ε

Γ(|x|)− Γ(r) +
|Γ′(r)|ε

2
for |x| ≤ r

Note the following properties of Ψ̃ε
r :

• Ψ̃ε
r is radial.

• ∆Ψ̃ε
r ≡ 0 except at zero and within the annular region: Br+ε \Br.

• Ψ̃ε
r ∈ C1,1 away from zero.

• Ψ̃ε
r converges uniformly to Ψ̃r as ε ↓ 0.

Finally, observe that if 0 < s < r, then

Φ̃ε
r,s := Ψ̃ε

r − Ψ̃ε
s

is an admissible test function which converges uniformly to Φ̃r,s. It remains to plug our test
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function into the definition of weakly superharmonic and take a limit as ε ↓ 0.

0 ≥
∫

Ω

u
(

∆Φ̃ε
r,s

)
=

∫
Ω

u
(

∆
[
Ψ̃ε
r − Ψ̃ε

s

])
=

∫
Br+ε\Br

u
(

∆Ψ̃ε
r

)
−
∫
Bs+ε\Bs

u
(

∆Ψ̃ε
s

)
So we have: ∫

Br+ε\Br
u
(

∆Ψ̃ε
r

)
≤
∫
Bs+ε\Bs

u
(

∆Ψ̃ε
s

)
(A.1)

Computing the Laplacian in spherical coordinates:

∫
Br+ε\Br

u
(

∆Ψ̃ε
r

)
=

∫
r<|x|<r+ε

u(x)

(
∂2

∂|x|2
+

1

|x|
∂

∂|x|
+

1

|x|2
∆θ

)
Ψ̃ε
r

=

∫
r<|x|<r+ε

u(x)
|Γ′|
ε

(
1 +

1

|x|
(|x| − r − ε)

)
=

∫
r<|x|<r+ε

u(x)
|Γ′|
ε

(1 + o(ε))

= ωn[(r + ε)n − rn]

∫
r<|x|<r+ε

u(x)
|Γ′|
ε

(1 + o(ε))

= γ(n)[nrn−1ε+O(ε2)]
(r1−n + o(ε))

ε
·∫

r<|x|<r+ε
u(x) (1 + o(ε))

In the previous computation, the fact that

|Br+ε \Br| = ε · Hn−1(∂Br) +O(ε2)

is essential and relies on the smoothness of Br. Another essential component of the proof

was that |Γ′| was constant on ∂Br and so we were able to pull it outside of the integral while
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keeping the error small. Having the derivative constant on the free boundary is the main

requirement we will have for our free boundary problem; The point is that we need to be

able to pull the derivative outside of the integral while still having control of the error.

From the previous computation after some algebraic cancellation we see that:

∫
Br+ε\Br

u
(

∆Ψ̃ε
r

)
= C̃(n)[1 + o(ε)]

∫
r<|x|<r+ε

u(x) (1 + o(ε))

and if we let ε ↓ 0, then the right hand side converges to

C̃(n)

∫
∂Br

u(x) .

By taking the limit as ε ↓ 0 in Equation (A.1) and then dividing by the constant C̃(n), we

get: ∫
∂Br

u(x) ≤
∫
∂Bs

u(x) .

Now we can send s→ 0 to get the desired result.

Note that the key test function is the difference of two solutions to the Bernoulli prob-

lem on an exterior domain where the functional being minimized locally can be found in

Equation (3.2). Of course if you wanted to produce the test function for a more general

elliptic operator, then you would need to replace the functional in Equation (3.2) with the

functional found in Equation (3.1) .
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