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Abstract 

Because a majority of day-to-day activities rely on electricity, it plays an important role 

in daily life. In this digital world, most of the people’s life depends on electricity. Without 

electricity, the flip of a switch would no longer produce instant light, television or refrigerators 

would be nonexistent, and hundreds of conveniences often taken for granted would be 

impossible. Electricity has become a basic necessity, and so any interruption in service due to 

disturbances in power lines causes a great inconvenience to customers.  

Customers and utility commissions expect a high level of reliability. Power distribution 

systems are geographically dispersed and exposure to environment makes them highly 

vulnerable part of power systems with respect to failures and interruption of service to 

customers. Following the restructuring and increased competition in the electric utility industry, 

distribution system reliability has acquired larger significance.  Better understanding of 

causes and consequences of distribution interruptions is helpful in maintaining distribution 

systems, designing reliable systems, installing protection devices, and environmental issues. 

Various events, such as equipment failure, animal activity, tree fall, wind, and lightning, can 

negatively affect power distribution systems. Weather is one of the primary causes affecting 

distribution system reliability. Unfortunately, as weather-related outages are highly random, 

predicting their occurrence is an arduous task. To study the impact of weather on overhead 

distribution system several models, such as linear and exponential regression models, neural 

network model, and ensemble methods are presented in this dissertation. The models were 

extended to study the impact of animal activity on outages in overhead distribution system. 

Outage, lightning, and weather data for four different cities in Kansas of various sizes 

from 2005 to 2011 were provided by Westar Energy, Topeka, and state climate office at Kansas 

State University weather services. Models developed are applied to estimate daily outages. 

Performance tests shows that regression and neural network models are able to estimate outages 

well but failed to estimate well in lower and upper range of observed values. The introduction of 

committee machines inspired by the ‘divide & conquer” principle overcomes this problem. 

Simulation results shows that mixture of experts model is more effective followed by AdaBoost 

model in estimating daily outages. Similar results on performance of these models were found 

for animal-caused outages.  
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Because a majority of day-to-day activities rely on electricity, it plays an important role 

in daily life. In this digital world, most of the people’s life depends on electricity. Without 

electricity, the flip of a switch would no longer produce instant light, television or refrigerators 

would be nonexistent, and hundreds of conveniences often taken for granted would be 

impossible. Electricity has become a basic necessity, and so any interruption in service due to 

disturbances in power lines causes a great inconvenience to customers.  

Customers and utility commissions expect a high level of reliability. Power distribution 

systems are geographically dispersed and exposure to environment makes them highly 

vulnerable part of power systems with respect to failures and interruption of service to 

customers. Following the restructuring and increased competition in the electric utility industry, 

distribution system reliability has acquired larger significance.  Better understanding of 

causes and consequences of distribution interruptions is helpful in maintaining distribution 

systems, designing reliable systems, installing protection devices, and environmental issues. 

Various events, such as equipment failure, animal activity, tree fall, wind, and lightning, can 

negatively affect power distribution systems. Weather is one of the primary causes affecting 

distribution system reliability. Unfortunately, as weather-related outages are highly random, 

predicting their occurrence is an arduous task. To study the impact of weather on overhead 

distribution system several models, such as linear and exponential regression models, neural 

network model, and ensemble methods are presented in this dissertation. The models were 

extended to study the impact of animal activity on outages in overhead distribution system. 

Outage, lightning, and weather data for four different cities in Kansas of various sizes 

from 2005 to 2011 were provided by Westar Energy, Topeka, and state climate office at Kansas 

State University weather services. Models developed are applied to estimate daily outages. 

Performance tests shows that regression and neural network models are able to estimate outages 

well but failed to estimate well in lower and upper range of observed values. The introduction of 

committee machines inspired by the ‘divide & conquer” principle overcomes this problem. 

Simulation results shows that mixture of experts model is more effective followed by AdaBoost 

model in estimating daily outages. Similar results on performance of these models were found 

for animal-caused outages. 
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Chapter 1 - Introduction 

 Because a majority of day-to-day activities rely on electricity, it plays an important role 

in daily life. Without electricity, the flip of a switch would no longer produce instant light, 

television or refrigerators would be nonexistent, and hundreds of conveniences often taken for 

granted would be impossible. Households, businesses, and industry depend on electricity. In fact, 

electricity has become a basic necessity, and so any interruptions in service due to disturbances 

in power lines causes a great inconvenience to customers. Significant economic loss and business 

interruptions have been reported in the past.  

Customers expect a high level of reliability, and electric utility companies have the 

responsibility to supply the interrupted electricity to the customers [1]. Ensuring electric power 

system reliability is a particularly challenging task for electric companies because maintaining a 

high level of reliability requires constant commitment. Utility companies must report system 

performance reliability annually to the utility regulatory commission [1]. The reliability 

assessment is concerned with system performance at the customer end, which would be 

considered as the system load points. Considerable interest has been shown in the development 

of reliability modeling and evaluating techniques for power distribution system [2,3]. 

 

 

Figure 1.1 Components of the Electric Power System [1] 

    

Electric power is generated at generation stations and transferred through high voltage 

transmission lines to substations which reduce voltage levels for distribution to end-use 
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customers/demand point, as shown in Figure 1.1. The network enabling electric power to be sent 

to customers is either overhead or underground. Both the designs have advantages as well as 

disadvantages. Overhead feeders are less expensive and easy to install and maintain. In addition, 

individual faults on overhead circuits can be repaired more quickly than on underground circuits. 

The overhead feeders are vulnerable to severe weather events such as hurricanes, wind, rain, 

lightning, ice, freezing rain, and snow. Because of this vulnerability, underground circuit are 

preferred in some situations. However, underground systems are not immune to the effects of 

weather. Repairs for underground outages are typically more complex, more expensive, and 

result in longer restoration times. Since the distribution system in USA are predominantly 

overhead, reliability indices of distribution systems are more sensitive to failure rates of 

overhead feeders.  

 Power outages can result from seasonal storms which often combine strong winds, rain, 

snow, or ice. Extremely severe weather events typically cause greatest damage to electric power 

transmission and distribution infrastructure resulting in damage from trees or branches falling on 

electricity lines. While data on storm-related power outages exist, they are not generally 

considered to be complete or well characterized in relation to causes of outage events. Current 

data estimate that 90% of customer outage-minutes are due to events which affect local 

distribution systems. The remaining 10% outage-minutes stem from generation and transmission 

problems, which can cause wider-scale outages affecting more customers. [1]. These exposures 

create complications for the power distribution industry by causing interruptions in distribution 

systems.  In order to accurately analyze component reliability data and predict system 

reliabilities, better models must be found and utilized to study outages caused by environmental 

factors on overhead distribution lines. 

 1.1 Overhead Distribution System Reliability Assessment 

Because of restructuring and increased competition in the electric utility industry, 

distribution system reliability has acquired larger significance. There is an increase in demand of 

high reliability both from the digital age customers and the utility commissions. In many states, 

regulatory bodies require utility companies to annually disclose reliability related performance, 

and some states impose penalties and/or rewards based on performance [3]. Therefore, utility 

companies strive to maintain a high level of reliability.  
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 In the last 20 years, significant research has been conducted for evaluating and improving 

distribution system reliability [4-20]. Reliability, in general, is defined as the probability that a 

component or system will perform a required function for a given period of time when used 

under stated operating conditions [6]. Reliability of electric power distribution systems is defined 

as the ability to deliver uninterrupted service to customers [9]. Customer interruptions are 

divided into two major categories: sustained interruptions and momentary interruptions based on 

the length of interruption. According to IEEE standard [14, 16], five minutes is the cut-off 

between momentary and sustained interruption. Utilities typically report annual performance of 

the distribution system using the most commonly used reliability indices: SAIFI (System 

Average Interruption Frequency Index), SAIDI (System Average Interruption Duration Index), 

and MAIFI (Momentary Average Interruption Frequency Index) [14-17]. In addition to these 

three indices, other indices, such as CAIFI, CAIDI, and ASAI, are also used [18]. Since 

distribution systems are radial in nature and located in population dense areas, perfect reliability 

is nearly impossible to provide [16]; however, proper design, maintenance, upgrades, and 

monitoring of the system contribute to a very high level of reliability [16]. For over more than 30 

years, IEEE has periodically published a bibliography on power system reliability evaluation. 

For the reliability assessment of distribution systems, researchers primarily use three approaches: 

historical, predictive, and feature-based. Gui, Pahwa and Das provide a detailed review of these 

approaches and list relevant papers published over the years [21-23]. 

 

 1.2 Causes of Outages in Distribution System 

Various factors causing distribution system outages can be broadly classified into three 

categories: (i) Intrinsic factors, such as equipment age, manufacturing defects, conductor size; 

(ii) Environmental factors, such as trees, animals, wind, lightning; and (iii) Human error factors, 

such as vehicular accidents and accidents by utility crews [27-31]. Ten categories for general 

interruption causes are suggested for comparison in benchmark studies. These categories are 

intentionally broad and they make possible more precise benchmark comparisons between 

different distribution utilities. The ten categories as suggested by an IEEE Task Force are [32]: 

 equipment; 

 lightning; 
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 planned; 

 power supply; 

 public; 

 vegetation; 

 weather (other than lightning); 

 wildlife; 

 unknown; 

 other. 

 The recommended categories do not prevent a utility from collecting additional detailed 

data, and that is indeed encouraged; however, the collected data should be classified into one of 

the recommended ten categories. Figure 1.2 shows a typical pie chart of outage causes in 

Manhattan, Kansas recorded by Westar Energy from 2005 to 2011. The chart illustrates that 

approximately 31% of outages were caused by environmental. Among these causes, weather was 

a primary cause on overhead distribution systems. Environmental factors influence system 

performance in a complex way and, without knowing this influence, correct evaluation of the 

distribution system reliability cannot be made. 
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Figure 1.2 Percentage of Outages by Different Causes in Manhattan between 2005 and 

2011 

Figure 1.3 shows the impact of different weather factors on overhead transmission and 

distribution systems. Weather is typically categorized into normal weather, severe weather, and 

extreme weather. The National Weather Service defines extreme weather as any dangerous 

meteorological phenomena with the potential to cause damage, serious social disruption, or loss 

of human life. Extreme weather conditions include hurricanes, tornadoes, severe thunderstorms, 

snowstorms, and ice storms. Severe weather conditions are characterized by lightning, high 

wind, extreme temperature, and heavy rainfall. While evaluating the system performance, 

utilities usually separate outages caused by extreme weather conditions from those caused by 

severe weather conditions. 
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Figure 1.3 Weather Impacts on Power System 

 

Wind induces conductor swinging, galloping, and aeolian vibration which are reliability 

concerns [18]. On the other hand, wind blowing over trees and poles causes branches to drop or 

poles to fall causing shorts or breaks in the overhead conductors, resulting in outages. In many 

areas of the United States, lightning is a major source of distribution feeder faults [34-36], and it 

affects distribution system reliability by direct or indirect strokes in which flashovers and high 

voltages are two major products. Direct strokes on overhead feeders bring big immediate 

damages on conductors and are not easy to protect, whereas indirect strokes cause short circuits 

or open circuits by affecting trees or poles surrounding the lines.  

 

 1.3 Related Work 

Over the years, various models have been proposed to study effects of different 

environmental factors on outages with varying levels of success.  As part of prior research 

support provided by the National Science Foundation (NSF), “Investigating the Influence of 
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Environmental Factors on Reliability of Distribution Systems,” Pahwa and his team have 

developed models to study the impact of environmental factors on system reliability. Zhou, 

Pahwa and Yang researched weather impact on overhead distribution line failure rates [38]. A 

linear regression model, a Poisson model, and a Bayesian model were constructed for the 

prediction of the monthly average number of failures based on monthly weather conditions. The 

methods used wind gust speeds and lighting stroke currents as inputs for Manhattan from 1998 to 

2003 and attempted to correlate each weather state and failure level. The lightning was regarded 

as a system-wide measurement and included only failures that resulted in outages to customers. 

Simulations with historical data showed that the Bayesian model provided a good way to model 

failure rates of overhead distribution lines. Sahai and Pahwa performed research on weather 

impact on animal-related outages in overhead distribution systems [39]. Examination of 

historical data showed that animal-related outages primarily occur on fair weather days. Also, 

behavioral patterns of animal activity in different months and their impact on animal-related 

outages were discovered [39]. A Bayesian model was constructed to predict animal-related 

outages in overhead distribution systems given two factors, month type and the number of fair 

days per week [39]. This Bayesian model was applied to data of five cities in Kansas from 1998 

to 2002. Weekly and monthly estimations were obtained out and confidence intervals for the 

estimations were found. Gui, Pahwa and Das refined the Bayesian model and investigated other 

models to study the impact of animal activity on outages in distribution systems [23-25]. A 

Poison model, NN model, wavelet based NN model, and a refined Bayesian model were 

constructed for prediction of animal-related outages in overhead distribution systems. These 

methods considered the month type and the number of fair days per week as inputs for 

Manhattan, Lawrence, Topeka, and Wichita from 1998 to 2007. Weekly predictions were made, 

and experimental results showed that the WNN model performed better in predicting animal-

related outages compared to other models. 

Recently published papers related to this research are summarized next. An exponential 

model as a function of time for forecasting cumulative outages during different extreme weather 

events has been proposed in [41]. In this paper, the authors have classified storms by the 

intensity of temperature and wind speeds. Also, flash data has been considered for analysis of 

outages caused by storm with lightning activity. Similarly, statistical models predicting the 

number of outages due to hurricanes and ice storms have been developed [42, 43]. In these 
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papers, the authors have developed the hurricane and ice storm models as a function of 

explanatory variables, such as number of protective devices, maximum wind gust and duration, 

ice thickness, hurricane rainfall, storm indicator covariate, land cover type, soil drainage level, 

and soil depth. However, these methods have limitations, such as evolving power system 

inventory with time and presence of huge matrix of spatial correlation, making it 

computationally challenging. Poisson regression and Bayesian hierarchical network for risk 

management of power outages caused by extreme weather conditions is investigated in [44]. In 

this study, surface wind speed, gust speed, gust frequency, daily rainfall, daily minimum 

pressure, and daily maximum and minimum temperature have been considered, while other 

weather factors such as lightning are excluded. In [45], Poisson regression is used to study the 

significance of weather variables on outages using outage data from substations under severe 

weather conditions within 10 miles of National Weather Service sites.   

 1.4 Challenges and Motivation 

In this work, outages on distribution feeders caused by severe weather conditions are 

studied. Among various weather factors, literature has shown that wind and lightning are primary 

causes of outages in the distribution system [28, 29]. They not only cause shorts or breaks 

directly on overhead lines, but they also disrupt trees which interrupt pathways delivering 

electricity. Previous studies show that the highest correlation between system interruptions and 

weather variables occur for wind, followed by ground flashes, with little or no correlation for 

temperature and rainfall.  

To incorporate weather-caused outages in the reliability assessment, effective models are 

needed. To develop the models, understanding of how weather conditions effect power 

distribution interruptions must be gained. Weather factors influence system performance in a 

complex way and, without knowing this influence, correct evaluation of reliability performance 

of the distribution system is impossible. The complex interaction between different weather 

factors and their impact on the distribution system makes modeling of these processes very 

difficult and challenging. Modeling the effects of various weather factors on distribution system 

reliability helps utilities identify systems with high outages and provide a comparative analysis 

of actual performance with expected performance. Models are needed which are able to explain 
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reliability trends due to weather conditions and aid in developing indicators to anticipate 

interruptions. 

Unfortunately, because weather-related outages are highly random, predicting their 

occurrence is quite an arduous task. Additionally, various physical and data collection issues 

could impede performance of the models. Specifically, some possible reasons are 

1. Inconsistencies and errors in recording outages by the utilities. 

2. Although reliable weather observations exist from weather stations, they are an imperfect 

representation of weather conditions at the specific points. 

3. Weather stations may not be in optimal locations. For example, nearby buildings and 

trees can act as shields, causing inaccurate wind measurement.  

4. The distance between outage location and the airport where weather parameters are 

measured, can be large. 

In initial investigation, linear, quadratic and exponential regression models, multilayered 

neural network model are considered to study the effects of wind and lightning on power outages 

on overhead distribution feeders [47-49]. Although these methods show acceptable performance, 

they are limited in their ability in estimating outages in lower and upper range of observed 

values. This can be due to unavailability of complete information from the historical data. The 

possible solution to overcome this problem is to utilize machine learning algorithms. Ensemble 

learning or committee machines is the process in which multiple models are strategically 

generated and individual solutions/outputs are combined to obtain a final solution.  Committee 

machines are primarily used to improve the performance of a model.  

The principle of combining predictions has been of interest to several fields over many 

years. Ensemble learning refers to procedures employed to train multiple learning machines and 

combine their outputs, treating them as a “committee” of decision makers. The principle is that 

the committee decision, with individual predictions combined appropriately, should have better 

overall accuracy, on average, than any individual committee member. Numerous empirical and 

theoretical studies have demonstrated that ensemble models often attain higher accuracy than 

single models. Members of the ensemble may predict real-valued numbers, class labels, posterior 

probabilities, rankings, clustering, or any other quantity. Therefore, their decisions can be 

combined by many methods, including averaging, voting, and probabilistic approaches. The 
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majority of ensemble learning methods are generic and applicable for broad classes of model 

types and learning tasks.  

The financial forecasting community has analyzed model combination in the context of 

stock portfolios for several decades. The contribution of the Machine Learning (ML) community 

emerged in the 1990s in automatic construction (from data) of the models and the method to 

combine them. While the majority of ML literature on this topic is from 1990 onward, the 

principle has been explored briefly for historical accounts by several independent authors since 

the 1960s [50]. 

The initial motivation for selecting the Committee Machine (CM) approach was to design 

a system in which individual learners are responsible for modeling different regions in input 

space. This modularity leads to greater modeling capability and a potentially meaningful and 

interpretable segmentation of the map. 

Primary reasons for using CM are: (1) better performance, (2) statistical because the 

algorithm searches a space of hypothesis too large for the amount of available training data, (3) 

computational because the algorithm cannot guarantee finding the best hypothesis within the 

hypothesis space, (4) representational because the hypothesis space does not contain any 

hypotheses that are good approximations to true function, and (5) computational efficiency [50]. 

 1.4 Organization of the Dissertation 

The rest of this dissertation is organized as follows: 

 Chapter 2 discusses causes of outages in the distribution feeders. Characteristics of 

outage data and weather data for four cities in Kansas from 2005 to 2011 are presented. 

This chapter also discusses data pre-processing. 

 Chapter 3 presents modeling of six regression models and application of these models to 

the given data. Analysis of experimental results is discussed. Even though the models 

estimate the outages, outages are under-estimated in the higher range and over-estimated 

in the lower range. Specific discussions and results related can be found in our papers 

[47, 48]. 

 Chapter 4 presents the neural network modeling and its application to the data. The NN 

model can more accurately approximate high complexity equations. Simulation results 
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shows that NN models perform better than regression models but still have under-fitting 

and over-fitting issue [49]. 

 Chapter 5 presents the general theory of modeling based on ensemble learning. The 

modeling and parameter learning algorithms of two different AdaBoost models and a ME 

model are discussed [51, 52]. 

 Chapter 6 presents the application of ensemble models to the given data in order to 

estimate weather-related outages. 

 Chapter 7 studies the effect of separating the data into lightning and non-lightning days. 

All the models are applied separately to these datasets. The results are compared with 

those obtained previously. 

 Chapter 8 presents the modeling of simple NN model and ensemble models for the 

estimation of animal-related outages. This is an extension of the study presented in [23-

25]. 

 Chapter 9 summarizes the entire dissertation. Concluding remarks and recommendations 

for future work are presented.  

  1.5 Performance Measure of the Models 

To evaluate model performance, different criteria for comparison are used. 

 

(i) Mean Absolute Error (MAE)  

 𝑀𝐴𝐸 =  
1

𝑁
(∑|�̂�(𝑖) − 𝑌(𝑖)|

𝑁

𝑖=1

)  (1.1)  

(ii) Mean Square Error (MSE)  

(iii) Correlation Coefficient, R 

 

 𝑀𝑆𝐸 = 
1

𝑁
(∑(�̂�(𝑖) − 𝑌(𝑖))

2
𝑁

𝑖=1

) (1.2)  

  𝑅 =
∑ ∑ (𝑌(𝑖) − �̅�)(�̂�(𝑗) − �̅̂�)𝑁

𝑗=1
𝑁
𝑖=1

√∑ (𝑌(𝑖) − �̅�)2𝑁
𝑖=1 ∑ (�̂�(𝑗) − �̅̂�)

2
𝑁
𝑗=1  

 (1.3)  



12 

 

(iv) Mean Absolute Percentage Error (MAPE) 

 

 𝑀𝐴𝑃𝐸 =  
1

𝑁
(∑|�̂�(𝑖) − 𝑌(𝑖)|

𝑁

𝑖=1

) × 100  (1.4)  

 

(v) Root Mean Square Error (RMSE) 

 

 𝐸 = 𝑤𝑖∑𝑅𝑀𝑆𝐸 = √
1

𝑁
(∑(�̂�(𝑖) − 𝑌(𝑖))

2
𝑁

𝑖=1

)

𝑁

𝑖=1

 (1.5)  

(vi) Slope  

 

 𝑆 = 𝑌
′�̂�
𝑌′𝑌⁄  (1.6)  

where, 𝑌 is the desired output, �̂� is the model output, �̅� is the average of desired output, and �̅̂� is 

the average of model output.  
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Chapter 2 - Historical Data 

The data period considered in this study ranged from January 1, 2005 to December 31, 

2011. Historical lightning and outage data considered in this work were provided by Westar 

Energy, Topeka, Kansas, and wind data were provided by the State Climate Office at Kansas 

State University, Manhattan, Kansas. The four cities included in this study are Manhattan (seven 

distribution substations with 176 miles of distribution feeders at 12.47 kV), Lawrence (seven 

distribution substations with 193 miles of distribution feeders at 12.47 kV), Topeka (22 

distribution substations with 560 miles of distribution feeders mostly at 12.47 kV and a very 

small portion at 4 kV), and Wichita (42 distribution substations with 1165 miles of distribution 

feeders mostly at 12.47 kV and a very small portion at 4 kV).   

The utilities use geographical information system (GIS) to track their facilities in the 

distribution system, thus allowing for easier obtainment of information and maintenance of the 

database on system exposure to external factors. Currently, Westar Energy possesses GIS maps 

of the distribution system and maintains a log of outages caused by various factors for each 

district within their service territory. These system data include outages and causes in selected 

districts of Westar Energy, detailed layout of feeders with lengths, location and number of 

distribution transformers.  

 

 2.1 Characteristics of Weather Data 

  

 As mentioned in Chapter 1, wind and lightning are weather factors which strongly impact 

overhead feeders. Weather during an outage includes a set of weather conditions that utilities 

define based on priorities and local weather characteristics. The most reliable weather 

information can be obtained from local weather stations which record daily weather data 

including date, temperature, weather phenomenon, snow/ice, precipitation, pressure and wind on 

daily basis.  

 General weather data were provided by the state climate office, Kansas State University 

weather service. Daily weather data recorded on daily base include: 
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 Date 

 Temperature  

 Dew point 

 Weather Phenomenon 

 Snow/Ice 

 Precipitation 

 Pressure 

 Maximum wind speed 

 Wind Gust 

Figure 2.2 shows the screenshot of weather recordings from the weather station for Manhattan, 

Kansas.  Each column represents the elements recording in a day, as summarized in Table 2.1. 

 

Table 2.1 Weather Elements Description 

Code Description 

STN Station number 

WBAN Weather bureau air force nave number 

YearMODA Year-month-day 

TEMP Mean temperature for the day in degrees Fahrenheit to tenths 

COUNT Number of observations used in calculating mean temperature 

DEWP Mean dew point for the day in degrees Fahrenheit to tenths 

COUNT Number of observations used in calculating mean dew point 

SLP Mean sea level pressure for the day in millibars to tenths 

STP Mean station pressure for the day in millibars to tenths 
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VISIB Mean visibility for the day in miles to tenths 

WDSP Mean wind speed for the day in knots to tenths 

MXSPD Maximum sustained wind speed reported for the day in knots to tenths 

GUST Maximum wind gust reported for the day in knots to tenths 

MAX Maximum temperature reported during the day in Fahrenheit to tenths 

MIN Minimum temperature reported during the day in Fahrenheit to tenths 

PRCP Total precipitation (rain and/or melted snow) reported during the day in inches 

and hundredths 

 

1 knot = 1.151 miles per hour approximately. Maximum wind speed and wind gust are converted 

to miles per hour. 

 Westar Energy provided lightning stroke data upon request, which details every stroke in 

the service territory from 2005 to 2011. Figure 2.2 shows the screenshot of lightning recordings 

from Westar Energy for Manhattan, Kansas. Each column represent the 

 

 Date of the stroke event  

 Time of the stroke  

 Latitude (in decimal degrees) 

 Longitude (in decimal degrees) 

 Peak Current (in kiloAmps) 

 Equipment name 

 Length of asset (in kilometers) 

 Radius (in kilometers) 
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Lightning data within 200m, 400m and 500m around the feeder were considered. In the 

initial analysis lightning strokes within 200m and 400m on either side of the distribution feeders 

were considered and simulations were performed. Results showed that the consideration of 

lightning data within a distance of 400m around the feeders slightly improved the performance in 

comparison to data within a distance of 200m around the feeders [23-25].  Although the reported 

value for median accuracy by the North American Lightning Detection Network (NLDN) is 500 

m [36], 200m and 400m were utilized because the utility providing the data wanted to know 

whether results obtained with these distances had a significant difference. In subsequent analysis 

for this dissertation, lightning within 500m around the feeder were used to study lightning stroke 

influence on system interruptions. Figure 2.1 shows the lightning region within 500m around the 

feeder for Manhattan. 

 

 

Figure 2.1 Area of Lightning for Manhattan 
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 2.2 Characteristics of Outage Data 

 Westar Energy in Topeka, Kansas provided outage data extracted from their Outage 

Management System (OMS), which is a computer system used by operators of electric 

distribution systems to assist in restoration of power. Typical OMS in utilities record necessary 

information related to circuit outages, including service area, circuit reference number, outage 

cause, outage weather, outage duration, number of customers affected, tripped equipment, outage 

date, and outage time. Figures 2.4 and 2.5 show the screenshot of outages recorded by Westar 

Energy for Manhattan, Kansas.  Each column represents the elements recorded as summarized in 

Table 2.2. 

Table 2.2 Outage Recording Description 

Code Description 

Cause CD Outage Cause 

Customer minutes Customer without power in minutes 

OFFC Office name code 

CUST 

Number of customers on each device includes all customers downstream 

of that device 

DUR Duration of the outage 

CAUSE Outage cause code 

COMMENT Outage cause reason 

DVC Type of device failed, ex. Switch, circuit breaker, transformer 

ISOEQ Equipment isolated 

PH phase 

DT OUT Date of outage occurrence 

TM OUT Time of outage occurrence 

DT RSTRD Data of power is restored 



20 

 

TM RSTRD Time of power is restored 

NM CIRC Circuit name 

Failed Number of devices  failed 

PLND Planned outage in Yes/No 

PLND Type Planned outage type code 

RSPSYS Feeder design – overhead or underground 

RSPKV System voltage code 
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Utility crews check outaged feeders and report presumed causes based on their 

experience and on the spot circumstances. For example, if a dead squirrel is found on a 

transformer or fallen branches are found near outage feeders, “squirrel on transformer” or “tree 

burned service down” is the reasonable explanation. However, when no clue is found, crews may 

guess by giving priority to the most plausible reason. Sometimes they record unknown is a 

reason if not found conclusively. Therefore, errors cannot be avoided in determining the outage 

cause. 

Weather condition was also an important reference to analyze the true reason for outages 

in the OMS.  Table 2.1 shows weather codes with descriptions.  

 

Table 2.3 Weather Code & Description 

Code Description 

1 THUNDERSTORM 

2 LIGHTNING IN AREA 

3 WET 

5 ICE 

6 ICE AND WIND 

7 WIND 

8 HEAT 

9 COLD 

10 FAIR 

11 TORNADO 

12 MICROBURST 
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Outage causes are also recorded in the Outage Management System for each outage 

incidence. The classification of outage causes is shown in Table 2.2. 

 

Table 2.4 Cause Code & Description 

Cause Code Description 

1 CUSTOMER REQUEST 

3 EQUIPMENT FAILED 

9 OVERLOAD 

10 Trees (ALL) 

11 PUBLIC DAMAGE 

12 CUSTOMER PROBLEM 

15 ANIMALS/WILDLIFE 

16 OTHER 

17 LIGHTNING 

18 EXTREME WIND 

19 ICE STORM 

20 Trees (ALL) 

21 DEBRIS NATURE/WTHR 

22 UNKNOWN 

23 COMPANY DAMAGED 

24 PROCEDURAL ERROR 

25 NON OUTAGE 

26 LOAD TRANSFER 

27 SAFETY/HAZARD 

28 TURN-ON (VALID) 

29 LOAD SHED 

30 MAINTENANCE 

 

Figure 2.5 shows the number of outages possibly caused directly or indirectly by severe 

weather conditions in Manhattan, Kansas as recorded by Westar Energy from 2005 to 2011. Not 

all the outages caused by failed equipment or unknown causes are due to weather, but several of 
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these are caused by weather. This figure provides a clear illustration of weather impacts on 

overhead feeders. 

 

 

Figure 2.6 Total Number of Outages Caused by Different Weather Factors between 2005 

and 2011 in Manhattan 

 

Figures 2.6 and 2.7 show the histogram of outages per day in the study period for the four cities 

in Kansas. Figure 2.7 shows the histogram in higher range. These figures show that a large 

number of days occurred with zero or low number of recorded outages. Manhattan had the most 

days with zero outages and Wichita had the least number of days with zero outages, while 

Lawrence and Topeka were in the middle.  The trend reversed for one or more outages. This is 

an outcome of the spatial aggregation of outages. Since Wichita is the largest service area, 

outage probabilities at each level greater than zero is higher than cities with smaller service 

areas. 
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 2.3 Data processing 

Data processing extracts useful information from historical outage data, weather data, and 

lightning stroke data and integrates them into a single data set. Existing literature [38] suggests 

that either gust or sustained wind can be used to study outage effects, with neither being more 

advantageous.  Gust is recorded for days with high wind speeds and significant variation 

between peak and average speeds. In other words, gust is an indicator of high wind speed as well 

as large fluctuations in wind speed or conditions which are likely to cause outages.  In this work, 

maximum daily wind gusts measured on a five-second basis was used as the variable to study 

wind effects because our previous research had found it to provide the best correlation of outages 

compared to other variables.  However, for days with low wind speeds which did not have gusts 

recorded, a one-minute sustained speed was used.  Investigations to identify additional suitable 

wind related variables from available data to include in the analysis will be pursued as future 

research.    

 Daily aggregate lightning stroke currents are calculated by totaling magnitudes of all 

lightning strokes in kiloAmps (kA), including the first stroke and flashes within 500m around the 

feeders for each day of the study [36]. Since the research goal was to study combined effects of 

wind and lightning as well as just wind, all days, including those that did not have any recorded 

lightning, were included.  However, days of extreme weather conditions were excluded, 

including three such days for Lawrence, six days for Topeka, and eight days for Wichita. These 

days were considered outliers and were removed from the data for analysis, which spanned a 

period of seven years from 2005 to 2011.  
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Figure 2.7 Histogram of Outages Caused by Wind and Lightning, 2005-2011 

 

Figure 2.8 Histogram of Outages in the Higher range caused by Wind and Lightning, 2005-

2011 
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Since this work focuses on outages caused by weather, lightning, trees, wind, equipment, 

and unknown factors, outages possibly caused by lightning and wind were included in outage 

counts for the study. Weather at the time of recorded lightning, equipment failure, and unknown 

outages were manually examined to ensure that the lightning actually occurred on the feeder 

experiencing outage. Outages recorded as caused by lightning with no recorded lightning on the 

specific feeder were removed.  On the other hand, equipment and unknown outages coinciding 

with recorded lightning on the specific feeders were included. Two hour and four hour time 

window after the recorded lightning was considered during the day and night respectively for 

inclusion of these outages in the counts. Since a power outage during nighttime is typically 

reported late compared to outage report during daytime, a wider time window was considered. 
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Chapter 3 - Multiple Regression Models 

Regression models are statistical methods that offer the combined advantages of model 

simplicity and low computation overheads. To find the relation between lightning and wind with 

outages occurring on overhead distribution feeders, multiple-regression models were developed. 

The idea of a regression model came from previous work of Zhou, Pahwa and Yang in which 

they used linear regression and poison regression to predict the weather-related outages (wind 

and lightning) on a distribution system from 1998 to 2003 [38]. In their study, the lightning was 

regarded as a system-wide measurement and included only failures that resulted in outages to 

customers. The proposed models were for estimating monthly weather-related outages, and the 

regression models utilize the least square criterion to estimate the regression coefficient.  

 3.1 Introduction to Regression Model 

 Regression models are employed to find the relationship between one or many 

dependent variables and one or many independent variables.  The objective of regression models 

is to express the response variable as a function of the predictor variables. The model 

performance and conclusion drawn from model results depend on the data used. Hence, non-

representative or incomplete data result in poor fits and conclusions. Thus, for effective use of 

regression analysis the data collection process must be checked, any limitations in data collected 

must be found, and conclusions must be restricted accordingly. Once the relationship between 

response and predictor variables is obtained, the regression analysis can be used to predict values 

of the response variable, model specification, and parameter estimation [54]. 

Differences exist between multiple-regression models and multi-variate regression 

models. In multiple-regression models, only one dependent variable and one or many 

independent variables are present, whereas multi-variate regression models contain one or many 

dependent variables and one or many independent variables [55]. 

 3.1.1 Linear Regression Model 

A regression model is the linear regression model which is a linear relationship between 

response variable, 𝑌, and the predictor variable, 𝑋𝑗 = (𝑋1𝑗, 𝑋2𝑗, ⋯ , 𝑋𝑁𝑗), of the form 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝑝−1𝑋𝑖,𝑝−1 + 휀𝑖 (3.1)  
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where, 

 𝑋1, 𝑋2, ⋯ , 𝑋𝑁 are known variables 

𝛽0, 𝛽1, 𝛽2,⋯ , 𝛽𝑝 are regression coefficients (unknown model parameters),  

휀𝑖, 1 ≤ 𝑖 ≤ 𝑁 is the error due to variability in the observed responses and assumed 

independent 𝑁(0, 𝜎2) , and 

𝑖 = 1,2,3… . , 𝑁 where N is the number of data entries. 

 

Matrix representation of the linear regression model (3.1)  

 𝑌𝑁×1 = 𝑋𝑁×𝑝 × 𝛽𝑝×1 + 휀𝑁×1 (3.2)  

where, 

𝑌𝑁×1 is a vector of responses, [

𝑌1
𝑌2
⋮
𝑌𝑁

] 

𝛽𝑝×1 is a vector of parameters, [

𝛽0
𝛽1
⋮

𝛽𝑝−1

] 

 

𝑋𝑁×𝑝 is a matrix of predictors, 

[
 
 
 1
1
⋮
1

𝑋11
𝑋21
⋮
𝑋𝑁1

⋯
⋯
⋱
⋯

𝑋1,𝑝−1
𝑋2,𝑝−1
⋮

𝑋𝑁,𝑝−1]
 
 
 

 

휀𝑁×1 is a vector of independent normal random variables, [

휀1
휀2
⋮
휀𝑁

] 

 3.1.2 Regression Coefficients 

Regression coefficients can be obtained by any of the following criteria: 

1. QR Factorization 

2. Least Square 

3. Weighted Least Square (WLS) 

4. Gaussian 

5. Pseduoinverse 
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6. Singular Value Decomposition (SVD) 

The least square criterion has important statistical interpretations. The least criterion is 

frequently used for solving over-determined or inexactly specified systems of equations in an 

approximate sense. Instead of solving equations exactly, minimization of the sum of the residual 

squares is used.  Zhou, Pahwa and Yang used the lease square criterion for estimating 

coefficients [38]. 

The most widely known type of matrix pseudoinverse is the Moore–Penrose 

pseudoinverse, which was independently described by E. H. Moore in 1920 [56], Arne 

Bjerhammar in 1951 [57], and Roger Penrose in 1955 [58]. The definition of the pseudoinverse 

makes use of the Frobenius norm of an mxn matrix A defined as the square root of the sum of the 

absolute squares of its elements, 

 ||𝐴||𝐹 = √∑∑|𝑎𝑖𝑗|2
𝑛

𝑗=1

𝑚

𝑖=1

 (3.3)  

The sum of the square of the error (SSE) for (3.2) is: 

 𝑆𝑆𝐸(𝛽0, 𝛽1, ⋯ , 𝛽𝑝) =∑(𝑌𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

 (3.4)  

 �̂�𝑖 = (𝛽0 +∑𝛽𝑗𝑋𝑖𝑗

𝑝−1

𝑗=1

+ 휀𝑖) (3.5)  

To calculate vector β, which minimizes SSE  

 
𝜕𝑆𝑆𝐸

𝜕𝛽𝑗
= −2(𝑌 − 𝑋�̂�)

𝑇
𝑋𝑗 = 0,       0 ≤ 𝑗 ≤ 𝑝 − 1 (3.6)  

Equivalent to 

 (𝑌 − 𝑋�̂�)
𝑇
𝑋𝑗 = 0 (3.7)  

 𝑌𝑇𝑋 = �̂�𝑇(𝑋𝑇𝑋) (3.8)  

 �̂� = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌) (3.9)  
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A general exponential regression model: 

 𝑌𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝑝𝑋𝑖,𝑝−1 + 휀𝑖) (3.10)  

And in matrix form, 

 𝑌𝑁×1 = exp (𝑋𝑁×𝑝 × 𝛽𝑝×1 + 휀𝑁×1) (3.11)  

Several methods are available for function approximation in order to predict values of 

model parameters. Gradient-descent methods are the most widely used of all function 

approximation methods [55]. The steepest descent method has been used to solve nonlinear 

equations in order to obtain model parameters while minimizing the sum of weighted least 

square error between the observed and estimated outages given below: 

 𝐸 = 𝑤𝑖∑(𝑌𝑖 − �̂�𝑖)
2

𝑁

𝑖=1

 (3.12)  

 �̂�𝑖 = 𝑒𝑥𝑝(𝛽0 +∑𝛽𝑗𝑋𝑖𝑗

𝑝−1

𝑗=1

+ 휀𝑖) (3.13)  

The partial derivative of weighted sum square error with respect to the coefficients is given by 

 ∆𝛽𝐸𝑖 = 𝑤𝑖(𝑌𝑖 − �̂�𝑖)𝑋𝑖 (3.14)  

Computation begins with an initial guess of the values of β. For every subsequent iteration, the 

coefficients are updated 

 𝛽 = 𝛽 − 𝛼 ∗ ∆𝛽𝐸𝑖 (3.15)  

where, α is a constant in the range 0.001 to 0.1. For larger ∆𝛽𝐸𝑖, α equal to 0.001, and for the 

smaller ∆𝛽𝐸𝑖, α equal to 0.1, was used. In this research, all the weights, wi, were considered to be 

equal to 1. 

 3.2 Model Construction 

Zhou, Pahwa and Yang attempted several mathematical functions on response and 

explanatory variables, such as square root and natural log, and all possible regression procedures 

were conducted for the preceding 15 explanatory variables and three response variables. They 

found that taking the original form of the number of failures as the response variable and wind 
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gust speed, lightning stroke current, and natural log of lightning stroke current as explanatory 

variables, yield comparatively small MSE [38].  

From Zhou, Pahwa and Yang work and other published works [38], the following six 

regression functions were considered: 

Model 1: �̂� = 𝛽1𝐿𝑖 + 𝛽2𝑊𝑑 (3.16)  

Model 2: �̂� = 𝛽1𝐿𝑖 + 𝛽2𝑊𝑑 + 𝛽3𝑊𝑑
2 (3.17)  

Model 3: �̂� = 𝛽1𝐿𝑖 + 𝛽2𝑊𝑑 + 𝛽3𝑊𝑑
2 + 𝛽4𝐿𝑖

2 (3.18)  

Model 4: �̂� = 𝛽1𝐿𝑖 + 𝛽2𝑊𝑑 + 𝛽3𝑊𝑑 × 𝐿𝑖 + 𝛽4𝑊𝑑
2 + 𝛽5𝐿𝑖

2 (3.19)  

Model 5: �̂� = exp ( 𝛽0 + 𝛽1𝐿𝑖 + 𝛽2𝑊𝑑 + 𝛽3𝑊𝑑 × 𝐿𝑖) (3.20)  

Model 6: �̂� = exp ( 𝛽0 + 𝛽1ln (𝐿𝑖) + 𝛽2𝑊𝑑 + 𝛽3𝑊𝑑 × ln (𝐿𝑖)) (3.21)  

where,  

Li are the daily accumulated lightning stroke current in kiloAmps 

ln(Li) are the natural log of lightning stroke current 

wd are daily maximum wind gust speed in miles per hour  

 �̂� observed outages, and β ’s are the regression coefficients. 

Model 1 is a linear model, Model 2 considers linear relationship for lightning and 

quadratic relationship for wind, Model 3 considers quadratic relationship both for wind and 

lightning and Model 4 considers quadratic relationship both for wind and lightning and 

combined effect of lightning and wind.    Interactions of wind and lightning are represented by 

multiplication of any wind and lightning variables. Model 5 and 6 are the exponential models, 

both have same structure except in model 6 logarithmic relation for lightning is considered. 

Given the wind, lightning, and observed outages, model parameters for the first four 

models were estimated using the pseudo inverse method. For model 5 and 6, parameters were 

estimated using the steepest descent approach while minimizing the least square error between 

the observed and estimated outages. 
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 3.3 Simulations and Model Performance 

Table 3.1 tabulates the MAE, MSE, and correlation coefficient values for the six different 

regression models for Manhattan service area for training and test data. The table demonstrates 

that, among all six models, model 4 has the lowest MAE, MSE, and the highest correlation 

coefficient, R, for both the training and test. Similarly, for Lawrence, Topeka, and Wichita, 

MAE, MSE, and correlation are tabulated in Tables 3.2, 3.3, and 3.4. Performance measure 

(MAE, MSE) values for the training and test data decreases from model 1 to 4 for all four cities 

in Kansas. For all the cities, correlation coefficients are all positive, which indicates there is a 

positive linear relationship between the estimated outages and observed outages. Additionally, 

slope of the regression line between the observed and estimated outages, S, is shown in these 

tables. This slope is an indicator of performance of the models.  A higher slope indicates better  

performance, with a slope of one giving the ideal performance.  

 

 

Table 3.1 Results of Regression Models for Manhattan 

Manhattan 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Model 1 3.3181 0.6702 0.5258 0.2712 2.0779 0.7180 0.4824 0.1556 

Model 2 3.2239 0.6055 0.5449 0.3012 2.1021 0.6622 0.4929 0.1826 

Model 3 3.1218 0.5924 0.5650 0.3233 2.0185 0.6509 0.5077 0.2362 

Model 4 2.7824 0.6056 0.6268 0.3946 2.2247 0.6885 0.4283 0.1328 

Model 5 2.8980 0.6334 0.6077 0.3934 2.1622 0.6992 0.4477 0.1467 

Model 6 4.1716 0.7795 0.4669 0.3773 2.4705 0.6919 0.4608 0.0589 
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Table 3.2 Results of Regression Models for Lawrence 

Lawrence 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Model 1 4.4220 0.7421 0.2755 0.0699 4.6686 0.8653 0.5185 0.1420 

Model 2 4.3814 0.6879 0.2890 0.0849 4.7475 0.8099 0.5219 0.1431 

Model 3 4.3805 0.6860 0.2893 0.0851 4.7243 0.8028 0.5543 0.1396 

Model 4 4.3731 0.6872 0.2920 0.0864 4.9956 0.8261 0.5316 0.1051 

Model 5 4.4043 0.7114 0.2816 0.0722 4.8554 0.8471 0.5449 0.1168 

Model 6 4.4999 0.6502 0.2468 0.0554 5.7250 0.8713 0.4655 0.0371 

 

Table 3.3 Results of Regression Models for Topeka 

Topeka 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Model 1 13.7319 1.4523 0.5114 0.2515 40.3696 2.4318 0.4443 0.0724 

Model 2 13.3099 1.3690 0.5325 0.2892 40.3150 2.3851 0.4756 0.0905 

Model 3 13.1783 1.3753 0.5391 0.2964 40.9059 2.4054 0.4613 0.0810 

Model 4 13.1423 1.3754 0.5409 0.2979 41.2994 2.4105 0.4604 0.0736 

Model 5 13.7337 1.4077 0.5114 0.2433 41.1660 2.4329 0.4721 0.0636 

Model 6 15.5890 1.3537 0.4189 0.1298 45.0651 2.5160 0.4713 0.0284 
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Table 3.4 Results of Regression Models for Wichita 

WICHITA 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Model 1 39.7079 3.0767 0.5151 0.2413 71.8361 3.5966 0.4775 0.1050 

Model 2 37.5084 2.8773 0.5501 0.3107 63.3287 3.3308 0.5811 0.1919 

Model 3 37.4824 2.8841 0.5506 0.3111 63.5145 3.3392 0.5809 0.1892 

Model 4 37.3769 2.8891 0.5524 0.3135 63.5677 3.3468 0.5771 0.1902 

Model 5 39.7459 3.0183 0.5114 0.2541 71.0337 3.5369 0.4970 0.1128 

Model 6 42.0023 2.9238 0.4678 0.2144 77.2927 3.4298 0.4814 0.0837 

 

           Comparing the model performance measures, it is observed that model 4 has better 

performance with low MSE and MAE values and high correlation compared to models 1, 2 and 3 

for all four cities for the training data. The reason behind this very possibly is the simplicity of 

linear relations in model 1 to 3. The MSE, MAE and R values for model 4 and 5 differ by a very 

small value. For the test data, it is observed that model 5 has lower MSE and high correlation but 

high MAE values compared to model 4 for service areas in Kansas except Wichita. For Wichita, 

model 4 has better performance values compared to model 5. This might be size of service area 

because the bigger cities have a wider range of outages. 

Figure 3.1 to 3.6 show the scatter plots between the observed and estimated outages with 

a regression line for the training and test data for models 1 to 6 for four service areas in Kansas. 

From the scatter plot, it is observed that the regression models underestimate the outages when in 

the higher range and overestimate outages when in the lower range. It can be observed from the 

scatter plots, the models performance for Lawrence compared to other cities is not good and this 

might be because of some anomalies is the data. 
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Training Data

Test Data

Figure 3.1 Plot of Observed and Estimated Weather-related Outages Obtained with 

Regression Model 1 in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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Test Data

Figure 3.2 Plot of Observed and Estimated Weather-related Outages Obtained with 

Regression Model 2 in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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Figure 3.3 Plot of Observed and Estimated Weather-related Outages Obtained with 

Regression Model 3 in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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Figure 3.4 Plot of Observed and Estimated Weather-related Outages Obtained with 

Regression Model 4 in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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Figure 3.5 Plot of Observed and Estimated Weather-related Outages Obtained with 

Regression Model 5 in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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The linear and exponential regression models presented here were also applied for the 

estimation of outages caused by weather considering wind and lightning stroke within 200m and 

400m around the feeder as input to study impact of distance in recording the lightning stroke in 

reliability assessment [47, 48]. Simulation results shows that considering 400m lighting stroke 

either side of the overhead distribution feeders provides better estimation [47]. 
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Figure 3.6 Plot of Observed and Estimated Weather-related Outages Obtained with 

Regression Model 6 in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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 3.4 Summary  

Linear, quadratic and exponential regression models are investigated. From performance 

measure tables for all cities it is observed that model 4 does better estimation compared to other 

models. Although the multiple regression models are able to approximate complex relations 

between the input and output, the models underestimate when observed outages are in the higher 

range and slightly overestimate when observed outages are in the lower range. Better learning 

models are needed to accurately correlate the input and output.  
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Chapter 4 - Neural Network Model 

Because of the random nature of weather-related outages, conventional methods are 

limited in capturing nonlinearities in the time series of weather-related outages. In Chapter 3, 

results based on a multiple regression model showed that regression models overestimate when 

observed outages are in the lower range, thus prompting demand for a nonlinear model for the 

estimation for this research. Artificial neural networks-based methods have gained wide attention 

in engineering and are widely used for forecast because of their ease of use and ability to 

approximate high complexity functions. 

 4.1 Neural Network 

Neural network (NN) is a general mathematical computing paradigm that models 

operations of biological neural systems. The non-linear nature of the neural networks allows 

them to learn from the environment in supervised and unsupervised ways, and the universal 

approximation property of neural networks makes them highly suited for solving complex 

problems. The study of artificial neural networks (ANNs) is loosely motivated by biological 

learning systems which are built of densely interconnected neurons. By mimicking the brain, 

artificial neural networks acquire knowledge by learning from data and storing it within the 

connections between neurons. The most widely used neural model was devised in 1943 on 

McCulloch, a neurobiologist, and Pitts, a statistician [59, 60]. A simple mathematical model of 

the neuron is illustrated in Figure 4.1. Neural networks have advantages over traditional linear 

models because they are able to represent linear and non-linear relationships and they can learn 

these relationships directly from the data being modeled.  

 4.1.1 McCulloch and Pitts’ Neuron Model [59] 

Network consists of units arranged in layers with only forward connections to units in 

subsequent layers. The connections have weights associated with them. Each signal traveling 

along the link is multiplied by the connection weight. The first layer is the input layer, and the 

input units distribute inputs to units in subsequent layers. In the following layers, each unit sums 

its inputs, adds a bias or threshold term to the sum, and nonlinearly transforms the sum to 

produce an output. This nonlinear transformation is called the activation function of the unit. 
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Output layer units often have linear activations. The layer located between the input layer and 

output layer are called hidden layers, and units in hidden layers are called hidden units.  

Neural networks are composed of nodes or units connected by directed links. A link from 

unit i to unit j serve to propagate the activation ai from i to j. Each link is also associated with a 

numeric weight Wij, which determines the strength and sign of the connection. Each unit j first 

computes a weighted sum of its inputs, defined as the net function, 

 𝑛𝑒𝑡𝑗 =∑𝑤𝑗𝑖𝑥𝑖

𝑁

𝑖=1

+ 𝑏𝑖 (4.1)  

The bias weight, bj, included in (4.1), is used to model the threshold.  

 

Figure 4.1 Simple Mathematical Model for a Neuron 

 

The output of the neuron, Yj, is related to the network input, neti, via a linear or nonlinear 

transformation called the activation function, 

 𝑌𝑖 = 𝑓(𝑛𝑒𝑡) (4.2) 

Additional commonly used activations functions are summarized in Table 4.1. The derivative of 

the activation function is also provided.  

 



46 

 

Table 4.1 Neuron Activation Functions 

Activation Function 𝒇(𝒖) Derivative 
𝝏𝒇(𝒖)

𝝏𝒖
 

Sigmoid 𝑓(𝑢) =
1

1 + 𝑒−𝑢
 𝑓(𝑢)[1 − 𝑓(𝑢)] 

Hyperbolic Tangent 𝑓(𝑢) = tanh (𝑢) 1 − (𝑓(𝑢))2 

Threshold 𝑓(𝑢) = {
   1       𝑢 > 0
−1       𝑢 < 0

 
Derivates do not exist at 

u = 0 

linear 𝑓(𝑢) = 𝑦𝑢 + 𝑏 y 

 4.1.2 Neural Network Topology 

In a neural network, multiple neurons are interconnected to form a network that facilitates 

distributed computing. Configuration of the interconnections can be described efficiently with a 

directed graph. A directed graph consists of nodes and directed arcs. The topology of the graph 

can be categorized as either acyclic or cyclic.  A neural network with acyclic topology represents 

a function of its current input; thus, it has no internal state other than the weights. No feedback 

connection is present from units in one layer to those in a previous layer or the same layer. Such 

an acyclic neural network is called a feed-forward network, which is often used to approximate a 

nonlinear mapping between its input and output. A neural network with cyclic topology contains 

at least one cycle formed by directed arcs. Such a neural network is known as a recurrent 

network. A recurrent network feeds its outputs back into its own inputs. 

The most popular neural network used in the application of engineering problems is a 

multi-layer feed-forward network. Although a neural network can have any number of layers, the 

universal approximation theorem proves that only one layer of hidden units with non-linear 

activation functions is enough to approximate any function with finitely many discontinuities of 

an arbitrary degree of precision [59]. Hence, in most applications, a three-layer feed-forward 

network is used, consisting of an input layer, a hidden layer, and an output layer. 

 

 4.2 Multilayer Feed-Forward Network 

A network with all inputs connected directly to the outputs is called a single-layer neural 

network, or a perceptron network. Multilayer perceptron (MLP) neural networks model consists 

of a feed-forward, layered network of McCulloch and Pitts’ neuron. Each neuron in an MLP has 
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a nonlinear activation function that is often continuously differentiable. Some of the most 

frequently used activation functions for MLP include the sigmoid function and the hyperbolic 

tangent function. The advantage of adding hidden layers is that it enlarges the space of 

hypotheses that the network can represent. A typical MLP configuration is depicted in Figure 

4.2. 

 

Figure 4.2 A Three-layer MLP Configuration 

The performance of a neural network is highly dependent on the training algorithm. A 

well-trained neural network has minimal error in training data and, thus, is able to accurately 

approximate the targets. An adequate learning method is needed to obtain such a network. 

Learning rules can be grouped into two distinct types: supervised learning and unsupervised 

learning [66]. In supervised learning, the inputs and corresponding outputs are provided to the 

network from outside. Supervised learning allows the network to adjust weights based on 

differences between network outputs and provided outputs. Several popular supervised learning 

methods exist, among which back-propagation is the most common. Unsupervised training is 

also called self-organized learning in which no matching outputs are provided and output units 

must independently make sense of the inputs. Unsupervised learning varies from supervised 

𝑥1 

𝑥2 

𝑥3 

𝑥𝑁  

   Input 𝑛𝑒𝑡𝑖(1) 𝑢𝑖(1)    Output 

�̂�2  

�̂�1 

�̂�3  

�̂�𝑁  
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learning because no existing groups are present into which the inputs are classified, and the 

network discovers the feature within the inputs [66]. Unsupervised learning is commonly used in 

data mining in which large sets of data and features of data are not known.  

 4.2.1 Back-Propagation Training Algorithm 

One supervised learning method, back-propagation, is routinely used in many neural 

network applications in which the connection weights are adjusted to minimize the error between 

the output of each output unit and a target output [66]. This process requires the computation of 

error derivative of the weights, starting from the output layer and moving from layer to layer in a 

direction opposite to the propagation of data through the network. The term “back-propagation” 

originates from the fact that the error is propagated back to modify the incoming weights. For a 

MLP model, the mathematical steps of back-propagation algorithm are given in [59]. 

The training data set consists of N training patterns {(xi, yi)}, where i is the pattern 

number. The input vector, xi, and desired output vector, yi, have dimensions M. 𝑦�̂� is the network 

output vector for the ith pattern. The thresholds are handled by augmenting the input vector with 

an element x0 and setting it equal to one.  

For the jth hidden unit, the net input neti(j) and output activation ui(j) for the ith training 

pattern are 

 𝑛𝑒𝑡𝑖(𝑗) =∑𝑤𝑗𝑖𝑥𝑖

𝑁

𝑖=0

 (4.3) 

where wji denotes the weight connecting the ith input unit to the jth hidden unit.  

 𝑢𝑖(𝑗) = 𝑓(𝑛𝑒𝑡𝑖(𝑗)) (4.4) 

For MLP networks, a typical activation function f is the sigmoid 

 𝑓(𝑛𝑒𝑡𝑖(𝑗)) =
1

1 + 𝑒−𝑛𝑒𝑡𝑖(𝑗)
 (4.5) 

The kth ouput for the ith training pattern in 𝑦𝑖�̂� and is given by 

 �̂�𝑖𝑘 =∑𝑤𝑗𝑖𝑥𝑖

𝑁

𝑖=0

+∑𝑤𝑘𝑗𝑢𝑗

𝑀

𝑗=1

 (4.6) 



49 

 

where wkj denotes the weight connecting the jth hidden unit to the kth output unit.  

The mapping error or sum-squared loss function for the ith pattern is 

 𝐸 =
1

2
∑(𝑌𝑖 − 𝑌�̂�)

2
𝑁

𝑖=1

 (4.7) 

 

In order to update the weights by the gradient descent method, the gradient of the loss function 

with respect to each weight wji of the network needs to be computed. According to the chain rule, 

the gradient can be represented as: 

 ∆𝑤𝑗𝑖 =
𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
 
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
 (4.8) 

The second factor is actually the output of unit j: 

  
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
=

𝜕

𝜕𝑤𝑗𝑖
∑𝑤𝑗𝑖𝑥𝑖 = 𝑥𝑗 (4.9) 

In Equation (4.8), the first factor can be considered as two cases: the case where unit j is an 

output unit for the network, and the case where  j is an internal unit. 

Case 1: Training rule for output unit weights 

The first factor of Equation (4.8), by chain rule can be written as 

 
𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
=
𝜕𝐸

𝜕𝑌�̂�
 
𝜕𝑦�̂�

𝜕𝑛𝑒𝑡𝑗
 (4.10) 

The first term in Equation (4.10) 

 
𝜕𝐸

𝜕𝑌�̂�
=

𝜕

𝜕𝑌�̂�

1

2
∑(𝑌𝑖 − 𝑌�̂�)

2
 (4.11) 

The derivates of Equation (4.11) will be zero for all outputs units except i=j. 
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𝜕𝐸

𝜕𝑌�̂�
=

𝜕

𝜕𝑌�̂�

1

2
(𝑌𝑗 − 𝑌�̂�)

2
  

 

                     =
1

2
 2 (𝑌𝑗 − 𝑦�̂�)

𝜕(𝑌𝑗 − 𝑌�̂�)

𝜕𝑌𝑗
  

 

= −(𝑌𝑗 − 𝑌�̂�) (4.12) 

Now consider the second term in Equation (4.10).  

  
𝜕𝑌�̂�

𝜕𝑛𝑒𝑡𝑗
=
𝜕𝑓(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
= 𝑌�̂� (1 − 𝑌�̂�)  (4.13) 

Substituting expressions (4.12) and (4.13) into (4.10), 

 
𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
= −(𝑌𝑗 − 𝑌�̂�)𝑌�̂� (1 − 𝑌�̂�) (4.14) 

Combining (4.9) and (4.14) into (4.8), 

 ∆𝑤𝑗𝑖 =
𝜕𝐸

𝜕𝑤𝑗𝑖
= −(𝑌𝑗 − 𝑌�̂�)𝑌�̂� (1 − 𝑌�̂�)𝑥𝑗  (4.15) 

Case 2: Training rule for hidden unit weights 

In the case where j is a hidden unit in the network, derivation of the training rule for wji must 

account for the indirect ways in which wji can influence the network outputs and, hence, error E. 

All units immediately downstream of unit j in the network are considered. 
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𝜕𝑛𝑒𝑡𝑗

𝑘

  

 
𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
=∑−𝛿𝑘  

𝜕𝑛𝑒𝑡𝑘

𝜕𝑌�̂�

𝜕𝑌�̂�

𝜕𝑛𝑒𝑡𝑗
𝑘

  

 
𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
=∑−𝛿𝑘 𝑤𝑘𝑗

𝜕𝑌�̂�

𝜕𝑛𝑒𝑡𝑗
𝑘

  

 
𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
=∑−𝛿𝑘 𝑤𝑘𝑗𝑌�̂� (1 − 𝑌�̂�)

𝑘

 (4.16) 

Combining (4.9) and (4.16) into (4.8), 

 ∆𝑤𝑗𝑖 =
𝜕𝐸

𝜕𝑤𝑗𝑖
= −𝛿𝑗𝑥𝑗 (4.17) 

where, 𝛿𝑗 = 𝑌�̂� (1 − 𝑌�̂�)∑𝛿𝑘 𝑤𝑘𝑗
𝑘

  

 

At last, weights are updated by the gradient which has been computed, 

 𝑤𝑗𝑖 = 𝑤𝑗𝑖 + ∆𝑤𝑗𝑖 (4.18) 

 

A well-trained network can converge to a stable solution, but, unfortunately, divergence can 

occur during the learning procedure. To prevent divergence, a learning rate ε is introduced to the 

weight-update scheme. Learning rate is a constant value used to multiply the gradient [59]. By 

choosing a different value for the learning rate, the increment amount for weight-update at each 

step can be controlled. Divergence occurs when ε is too large, and the algorithm misses the 

optimal solution and oscillate.  If the learning rate is too small, though, the algorithm is less 
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efficient since it will take a long time for the algorithm to converge. The most suitable value for 

a learning rate is the largest one without causing oscillation.  

 𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 휀 ∆𝑤𝑗𝑖 (4.19) 

The aim of training a neural network with training data is to learn the complex relation between 

input and output data and generalize this knowledge to new data. The training algorithm must be 

performed many times in order to completely acquire the knowledge and back-propagation 

algorithm to converge. However, overtraining happens if the number of iteration is too large 

because the network memorizes every detail of the training set or error and noise and, thus, is not 

able to generalize new data. In practical cases, it results in a network that has very small error on 

the training set, but large error on new test data.  

 4.3 Model Construction 

The most commonly used three-layer, feed forward neural network topology, which is 

able to adequately approximate nonlinear functions with sufficient accuracy is considered here 

[59]. The network has a single hidden layer with sigmoid activation functions and is trained in 

the batch mode according to the error back-propagation algorithm with gradient decent. 

Lightning and wind speed are two feature-related inputs to the neural network model.  

 

Figure 4.3 Three-layer Feed-forward NN Model for Weather-related Outages 

 

No theoretical guidance exists for choosing the number of neurons in the hidden layer. 

From all applications of NN, experience shows that preference goes to the structure in which 

fewer neurons are present in the hidden layer rather than neurons in the input layer. The number 

of hidden neurons typically is half the total number of input neurons and output neurons. When 
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applying neural networks to time series estimation, the number of output neurons is very 

important [66]. As suggested in [66], the number of required targets was minimized in the 

weather-related outage estimation of this research. The NN model structure for the estimation is 

shown in Figure 4.3. Input and target data are normalized between 0.1-0.9, but the desired output 

must never be set to 0 or 1 because whatever the inputs, the node outputs in the hidden layer 

must remain between 0 and 1 (these values are asymptotes of the function). Approaching these 

values requires enormous weights and/or input values, and most importantly, they cannot be 

exceeded. By contrast, setting a desired output of 0.9, for example, allows the network to 

approach and ultimately reach this value from either side. Experiments show that the learning 

rate is 0.5 and optimum training times are 3000.  

 4.4 Simulations and Model Performance 

The model was trained with historical data for the four cities from 2005 to 2009 and 

tested for 2010 to 2011.  Performances of the model were measured using the average absolute 

error (MAE) and mean square error (MSE) given in Table 4.2. Results showed increasing MSE 

and MAE with increasing city size, which does not necessarily mean the model works better for 

smaller cities because the outages have a greater range in bigger cities.  

 

Table 4.2 Results of Neural Network Model for Four Cities 

Neural Network 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 2.4879 0.6009 0.6761 0.4555 2.3370 0.6433 0.4335 0.1254 

Lawrence 4.3621 0.6973 0.2958 0.0871 5.0176 0.8778 0.4130 0.1012 

Topeka 12.9613 1.3913 0.5494 0.3016 37.1506 2.4418 0.4231 0.1909 

Wichita 35.9343 2.8051 0.5756 0.3312 76.7436 3.2873 0.4003 0.2314 

 

For all cities, however, correlation coefficients are positive, indicating a positive linear 

relationship between estimated outages and observed outages. Because the correlation 

coefficients are much smaller than 1, the estimated outages cannot accurately follow observed 

outages for Wichita, Topeka, Lawrence and Manhattan. Scatter plots of daily observed outages 
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and estimated outages for four cities for training and testing duration are shown in Figure 4.4. 

The NN model presented here are applied for the estimation of outages caused by weather 

considering wind and lightning stroke within 200m and 400m around the feeder as weather 

variables [49]. 

 

 

 

 

 4.5 Summary 

The neural network model is able to approximate complex relations between the input 

and output, causing it to outperform the traditional regression models. Although, the 
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Figure 4.4 Plot of Observed and Estimated Weather-related Outages Obtained with Neural 

Network Model in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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performance measure values are slightly better than the regression model 4, the NN model also 

overestimates and underestimates the outages for the lower and higher range of observed values. 

The performance of the model can be improved with the use of machine learning algorithms 

based on ensemble systems. In an ensemble system, multiple networks are trained using identical 

data but each network is initialized with different random weights. The network output can be 

weighted average of individual network output or best performing individual network’s output.   
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Chapter 5 - Committee Machines 

Two key problems associated with time series modeling of weather-related outages are 

noise and non-stationarity in the data which could lead to overestimation and/or underestimation.  

A potential solution to the above problems is to utilize Committee Machine (CM) architecture 

[50] inspired by the “divide-and-conquer” principle often used to attack a complex problem by 

dividing it into simpler problems whose solutions are combined to yield a solution to the 

complex problem. The motivation of the CM is that individual expert networks can focus on 

specific regions and attack them well. 

 5.1 Concept of a Committee  

 Noisy characteristics of the data refer to the unavailability of complete information from 

past behavior of the time series in order to fully capture dependency between the future and the 

past. The noise in the data could lead to over-fitting or under-fitting so that the obtained model 

has a poor level of performance when applied to new data patterns. Non-stationarity implies that 

the time series switches dynamically between regions, leading to gradual changes in dependency 

between input and output variables. In general, it is hard for a single model to capture such a 

dynamic input–output relationship inherent in the data and causes over-fitting or under-fitting. 

Apart from random noise, the expected error of a trained model for test data consists bias, and 

variance components. The component, bias, refers to topological inadequateness when modeling 

the data. It can be reduced by increasing network complexity, such as adding additional 

parameters. For example, as more hidden neurons are added to a neural network, complexity of 

the resulting model complexity will be greater. Unfortunately, increased parameter also leads to 

higher variance, or sensitivity of network parameters to the training samples, thus creating the 

third source of error. In other words, increasing model complexity to improve training sample 

performance has the undesirable effect of degrading the network’s overall performance. This is 

the well-known bias-variance dilemma in machine learning theory; decreasing the bias increases 

the variance and vice versa. 
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Figure 5.1 Bias-Variance Trade-off as a Function of Model Complexity [50] 

 

Understanding bias and variance is critical for understanding the behavior of estimation 

models. However, in general, overall error is the greater concern, not specific decomposition. 

The optimal point for any model is the level of complexity at which the increase in bias is 

equivalent to the reduction in variance. If the model complexity exceeds this optimal point, the 

model is over-fitting; while if complexity falls short of the optimal point, the model is under-

fitting. Ensemble methods are proved to be very effective technique in reducing bias and 

variance. In the literature, a plethora of terms other than ensembles has been used, such as fusion, 

combination, aggregation, committee, to indicate sets of learning machines that work together to 

solve a machine learning problem, but here the term committee or ensemble is used. Likewise, 

each learning algorithm has plethora of terms such as base models, elementary units, experts, 

weak learner, and base learner. 

 A complex computational task is solved by dividing the task into a number of 

computationally simple tasks and then combining the solutions to those tasks. In supervised 

learning, computational simplicity is achieved by distributing the learning task among a number 

of experts, who divide the input space into a set of subspaces. The combination of experts is said 

to constitute a committee machine because it fuses knowledge acquired by experts to arrive at an 

overall decision that is supposedly superior to that attainable by any one of them acting alone. 

The idea of a committee machine originated with Nilsson (1965); the network structure 
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considered therein consisted of a layer of elementary units followed by a vote-taking unit in the 

second layer.  

Potential benefits of the CM include: 

1. Better overall performance. 

2. Reuse of existing pattern classification expertise. 

3. Heterogeneity 

 Expert classifiers need not be of the same type. 

 Different features can be used for different classifiers. 

4. Anonymity: black box, proprietary expert classifiers can be used. 

 

                    5.1.1 Types of CM 

CM is comprised of multiple experts which are strategically generated and combined to 

solve a particular computational problem. Committee machines are classified into two major 

categories:  

 Static structures. In this class of committee machines, the responses of several 

predictors (experts) are combined by means of a mechanism that does not involve the 

input signal, hence the designation “static.” Examples include Averaging, Boosting, 

voting. 

 Dynamic structures. In this second class of committee machines, the input signal is 

directly involved in actuating the mechanism that integrates the outputs of individual 

experts into overall outputs, hence designation “dynamic.” [50]. Examples include 

mixture of experts, hierarchical mixture of experts.  

 

  5.1.2 Base-Learner Selection and Combining Outputs 

Three basic questions that arise while generating ensemble model: 

1. How to choose a base-learners among many competing models? 

2. Given a particular learning algorithm, which realization of this algorithm should be 

chosen? 

3. How to combine the outputs of base-learners for maximum accuracy? 
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Each learning algorithm dictates a certain model that comes with a set of assumptions. This 

inductive bias leads to error if the assumptions do not hold for the data. Since learning is an ill-

posed problem and with finite data, each algorithm converges to a different solution and fails 

under different circumstances. Learner performance may be fine-tuned to achieve the highest 

possible accuracy on a validation set, but this fine tuning is a complex task and instances still 

occur in which even the best learner is not accurate enough. Some of the choices are: 

 Match the assumptions for particular model to what is known about the problem, or 

 Try several model and choose the one that performs the best, or 

 Use several models and allow each sub-result to contribute to the final result. 

Several base learners, such as multilayer perceptron [80, 83], support vector machine (SVM) 

[84], Gaussian Process (GP) [85], Gaussian Mixture Models (GMM) [86], Hidden Markov 

Models (HMM) [87], kernel-based models [88], radial basis function networks [89], decision 

trees [90], fuzzy logic [91], ARMA models [101] and Bayesian models [102, 103],  exist.  

The No Free Lunch Theorem [72] states that there is no single learning algorithm in any 

domain that always induces the most accurate learner. From literature, the usual approach is to 

try many and choose the one that performs best on a separate validation set. Various learning 

algorithms can be used to train different base-learners, since algorithms make different 

assumptions about the data and lead to different base learners, or the same learning algorithm can 

be used with different hyper-parameters. Some of possible choices are: 

 Use same base-learner with different input representation, such as sensor fusion and 

random subspace [72].  

 Use different base-learners by different subsets of the training set by drawing random 

training sets from the given sample; this is called bagging.  

 Train the base-learner serially so that when preceding base-learners were not accurate, 

they are given more emphasis in training later base-learners, such as boosting and 

cascading. 

 Use base-learners on each region by partition the input space, such as a mixture of 

experts. 
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The final output can be obtained in many different ways from the outputs of multiple 

base-learners. In multi-expert combination method, base-learners work in parallel and the final 

output can be generated in two ways: 

 In the global approach, all base-learners are given an input, they generate an output 

and all these outputs are used, such as voting and averaging. 

 In the local approach, a gating model is present which looks at the input and selects 

one (or very few) learners as responsible for generating the output. 

In multistage combination method, a serial approach is used in which the next base-

learner is trained with training samples where previous base-learners are not accurate enough. In 

this dissertation, boosting and mixture of experts are considered. 

 5.2 Boosting  

Boosting is a powerful technique for combining multiple base learners in order to 

produce a form of committee whose performance can be significantly better than any base 

learner. The original boosting algorithm was developed by Schapire [104]. Structural illustration 

is given in Figure 5.1. In boosting, learners are trained sequentially and the training of a 

particular learner is dependent on the training and performance of previously trained learners. 

Each data point is associated with weighting coefficient which is dependent on past learner 

performance. In particular, points that are misclassified by one of the learners are given more 

weight when used to train the next learner in the sequence. Once all learners have been trained, 

their outputs are combined through a combining rule. Since more emphasis is put on data points 

misclassified by previously trained learners, boosting reduces both variance and bias [72]. In this 

dissertation, the most widely used boosting algorithm, AdaBoost, is used. Freund and Schapire 

proposed AdaBoost algorithm short for adaptive boosting in 1995 [104].  
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Figure 5.2 Structural Representation of Boosting 

 

 5.2.1 AdaBoost Model 

The training data comprises input vector 𝑋 = {𝑥1, 𝑥2, …… . . , 𝑥𝑁} and desired output 

vector 𝑌 = {𝑦1, 𝑦2, …… . . , 𝑦𝑁}. Each data point is given an associated weighting parameter, 

𝑑𝑘; 𝑘 = 1,2, … , 𝐾, which is initially set 1 𝑁⁄  for all data points. Each learner is trained using 

associated weights to give output, 𝒚�̂� by minimizing the error function given as 

 𝐸𝑘 =
1

2
∑𝑑𝑘(𝑖)(𝑌(𝑖) − 𝒚�̂�(𝑖))

2

𝑁

𝑖=1

 (5.1) 

At each stage of the algorithm, a new learner is trained using a data set in which the 

weighting coefficients are adjusted according to performance of the previously trained learner so 

as to give more weight to misclassified data points. The learner output for this sample is 

considered to be error-free when the absolute relative error lies within threshold, 𝜃 

 
|𝒚�̂�(𝑖) − 𝑌(𝑖)|

𝑌(𝑖)
≤ 𝜃 (5.2) 

The new weights 𝑑𝑘+1(𝑖) are determined from the prior 𝑑𝑘(𝑖) in accordance  
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 𝑑𝑘+1(𝑖) =

{
 
 

 
 𝑑𝑘(𝑖)𝛿𝑘,

|𝒚�̂�(𝑖) − 𝑌(𝑖)|

𝑌(𝑖)
≤ 𝜃,

𝑑𝑘(𝑖),             
|𝒚�̂�(𝑖) − 𝑌(𝑖)|

𝑌(𝑖)
> 𝜃.

 (5.3) 

From (5.3), results show that in subsequent iterations, weighting coefficients 𝑑𝑘(𝑖) are 

increased for data points that have larger error than threshold, 𝜃. Therefore, successive learners 

are forced to emphasize points that have larger estimation error by previous learners, and data 

points that continue to have higher error by successive learners receive increasing weight. 

The quantity 𝛿𝑘 in (5.3) is the error rate produced by the 𝑘𝑡ℎ network at the end of its 

training with {𝒙(𝑖), 𝑦(𝑖)}~𝑑𝑘(𝑖). Using (5.2) as the criterion for a sample to be error-free, the set 

of erroneous samples is, 

 ℎ𝑘 = {𝑖|
|𝒚�̂�(𝑖) − 𝑌(𝑖)|

𝑌(𝑖)
> 𝜃} (5.4) 

Hence, the network error rate is given by,  

 𝛿𝑘 = ∑ 𝑑𝑘(𝑖)

𝑖∈ℎ𝑘

 (5.5) 

In order to ensure that the new weights constitute a probability distribution, they are normalized 

as follows, 

 𝑑𝑘+1(𝑛) =
𝑑𝑘+1(𝑖)

∑ 𝑑𝑘+1(𝑖)𝑖
 (5.6) 

Following normalization, the weights add up to unity, 

 ∑𝑑𝑘+1(𝑖)

𝑖

= 1 (5.7) 

Finally, when the desired number of base learners has been trained, they are combined to form a 

committee using coefficients that give different weight to different base learners. 

The algorithms, AdaBoost.RT and AdaBoost+, differ in how the ensemble output is determined. 

In AdaBoost.RT, the ensemble output �̂�(𝑖) is the weighted sum of all 𝐾 learners, with the 
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learners receiving weights proportional to the logarithm of their inverse error rates. Accordingly, 

the ensemble output by AdaBoost.RT is, 

 �̂�(𝑖) =∑(
log

1
𝛿𝑘

∑ log
1
𝛿𝑘

𝑘

) × �̂�𝑘(𝑖)

𝑘

 (5.8) 

In AdaBoost+, the weights are determined to explicitly minimize the sum of the squared errors of 

all samples. The sum squared error can be expressed as, 

 𝐸 =∑(𝑌(𝑖) − �̂�(𝑖))
2

𝑖

= (Y − Ŷ)
T
(Y − Ŷ) (5.9) 

where, Y   and Ŷ  are the desired output and the ensemble output of size 𝑁 × 1. 

Outputs of each network, �̂�𝑘 can be organized as an 𝑁 × 1 vector. Defining the 𝑁 × 𝐾 output 

matrix  �̂� = [�̂�1… �̂�𝑲], the output vector �̂� can be expressed as, 

 Ŷ = �̂�(�̂�T�̂�)−1�̂�TY (5.10) 

Regularization can be incorporated for numerical stability of the matrix inversion, in which case 

(5.10) can be obtained as follows, with 𝑎 being a small constant, 

 Ŷ = �̂�(�̂�T�̂� + 𝑎𝐈)−1�̂�TY (5.11) 

Actual boosting performance on a particular problem is clearly dependent on the data and the 

base-learner. Enough training data should be available and the base-learner should be weak but 

not too weak. Boosting is especially susceptible to noise and outliers. 

 5.3 Mixture of Experts 

The original ME model, introduced by Jacobs et al. [111] in 1991, can be viewed as a 

tree-structured architecture based on the principle of “divide and conquer”, having three main 

components: several experts that are either regression functions or classifiers; a gate that makes 

soft partitions of the input space and defines regions where individual expert opinions are 

trustworthy; and a probabilistic model to combine the experts and the gate. Structural 

representation of ME is shown in Figure 5.2. The model is a weighted sum of experts, where the 
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weights are the input-dependent gates. In this simplified form, the original ME model has three 

important properties: 1) it allows individual experts to specialize in smaller parts of a larger 

problem; 2) it uses soft partitions of the data; and 3) it allows splits to be formed along 

hyperplanes at arbitrary orientations in the input space [112]. 

Some of models, such as support vector machines [114], Gaussian process (GP) [115], 

hidden markov models [116, 117], and Bayesian [118-121] are used as base-learners in the 

literature. Different inference techniques, such as fuzzy c-means [91], EM-based methods like 

IRLS [122], generalized EM [127], single loop EM [128], Newton-Raphson [130], deterministic 

annealing (DA) [133], and Bayesian inference [136], are used to train experts for faster 

convergence rates and learn the arameters of these models. Gaussian mixture model GMM [138], 

softmax of GPs [133], Dirichlet distribution [134], Dirichlet process (DP) [135], max/min 

networks [139], and neural networks (NNs) [140] are expert models for the gating. 

 
Figure 5.3 Mixture of Experts Architecture 
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 5.3.1 Mean Field Annealing 

Mean field annealing is an optimization approach developed for use in statistical 

mechanics.  Statistical mechanics is an area of physics which describes the slow Ising 

Hamiltonian process of thermal cooling for spin articles with many degrees of freedom until 

reaching equilibrium states [141]. Annealing particles in solids provide a framework for 

optimization of the properties of very large and complex systems. This idea is now incorporated 

into algorithms for solving several prototype combinatorial optimization problems. The 

annealing models degrees of freedom of collection of atoms slowly being cooled into a ground 

state corresponding to the optimal solution to the problem with the temperature T as the 

controlling parameter. The energy surface, defined as E(s) for a particle state, s, is a Boltzmann 

distribution function that allows changes in s to increase E, thus providing the network with a 

mechanism to escape from entrapment in a local minimum. 

The relaxation is done according to the Boltzmann distribution  

 𝑃(𝑆) =
𝑒−𝐸(𝑆) 𝑇⁄

𝑍
 (5.12) 

where, 

 S is any one possible configuration specified by the corresponding expert set 

E(S) is the energy of the corresponding configuration; 

T is the temperature; 

Z is the partition function given by 

 𝑍 =∑𝑒−𝐸(𝑆) 𝑇⁄

𝑆

 (5.13) 

and the summation covers all possible expert configurations. 

The efficacy of method depends on a proper choice of temperature T. The goal is to 

spend most relaxation time around the critical temperature Tc, where global minima begin to be 

noticeable (i.e., when escaping from deeper minima begins to be significantly more difficult). 

For T >> Tc, the system evolves randomly, whereas for T << Tc, the system ‘freezes’ in a local 

minimum. The usual procedure is to start at a sufficiently high initial temperature T0 and 

decrease slowly until some final temperature Tf . 
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 5.3.2 AME Model 

The training data comprises input vector 𝑋 = {𝑥1, 𝑥2, …… . . , 𝑥𝑁} and desired output 

vector 𝑌 = {𝑦1, 𝑦2, …… . . , 𝑦𝑁}. The learning algorithm used by the AME localizes the base-

learners such that each becomes an expert in a different part of the input space and has its 

weight,  𝑤𝑘(𝑖) close to 1 in its region of expertise.  

 𝑤𝑘(𝑖) =
1

𝐾
 ; 𝑘 = 1,2, …𝐾; 𝑖 = 1,2, …𝑁 (5.14) 

Suitable initial values for the thermostatic temperature T0 and cooling parameter 𝛾 are also 

chosen. In first iteration, all experts receive an equal amount of training for each sample. Each 

learner is trained using associated weights to give output, 𝑦�̂� . The committee is trained to find 

optimal combination weights to minimize the mean squared error between the desired and the 

expert output with respect to the training data distribution. The combination weights is a linear 

combination of the estimators based on the empirical MSE and defined as 

 𝐸𝑘 =
1

2
∑𝑤𝑘(𝑖) ∗  (𝑒𝑘(𝑖))

2
𝑁

𝑖=1

 (5.15) 

where the 𝑤𝑘 satisfies the constraint that ∑𝑤𝑘= 1. Choose  𝑤𝑘’s so as to minimize the MSE with 

respect to the desired output,  𝑌. The error 𝑒𝑘(𝑖)of sample 𝑖 is defined as 

 𝑒𝑘(𝑖) = (
�̂�𝑘(𝑖) − 𝑌𝑘(𝑖)

1 + 𝑌𝑘(𝑖)
) (5.16) 

where 𝑌𝑘(𝑖) denotes the desired output for the input i and �̂�𝑘(𝑖) the output of kth member of the 

AME. 

The new weights 𝑤𝑘 are determined as  

 𝑤𝑘(𝑖) = 1 − [
𝑒−

𝑒𝑘(𝑖)
𝑇

𝑍
] (5.17) 

where,  
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 𝑍 =∑(𝑒−
𝑒𝑘(𝑖)
𝑇 )

𝐾

𝑘=1

 (5.18) 

In our earlier work, the initial ME model, the weight update rule is just the Boltzmann 

distribution and details can be found in [52]. 

The weighted MSE is computed w.r.t the new weights. At every cycle, the weighted MSE 

change is observed closely as it determines whether the selected neuron updates its values or not. 

The next step is to repeat annealing. The temperature T is reduced according to 𝑇 ←  𝛾 ∗ 𝑇 for 

O< 𝛾 <l, and repeated until the system is stabilized. As the temperature is lowered, a phase 

transition is passed at 𝑇 = 𝑇𝑐 and as 𝑇 → 0 fixed points 𝑤𝑘
∗ emerge, representing a specific 

decision made as to the solution. The fixed points are characterized by 

 ∑𝑤𝑘
∗

𝐾

𝑘=1

= 1 (5.19) 

When no significant change occurs in the weighted MSE, the neurons are said to have 

stabilized at the current temperature. This entire process is repeated for several iterations until a 

stopping criteria is reached. The temperature first exhibiting this observation is called the critical 

temperature Tc, and MFA is said to have reached its equilibrium. 

The position of 𝑇𝑐 depends on 𝑇0, 𝛾, and  𝑤. Setting initial parameters for annealing techniques 

has always been troublesome. Beginning at too high a temperature is wasteful since no progress 

is made toward a solution until the critical temperature is reached. Beginning at a low 

temperature, however, can quench the system and quickly force it into a poor solution.  

At high temperatures, the clustering/partitioning is maximally disordered. As the 

temperature lowers, a critical temperature Tc is reached where each node begins to move 

predominantly into one or another of the clusters. At sufficient low temperatures, the MSE 

saturates, completing the clustering process. 

The output of the AME architecture is determined by the gating network, given by 

 �̂�(𝑖) = �̂�𝑘(𝑖)| 𝑘 = max(𝑤𝑘(𝑖)) 𝑜𝑟 𝑚𝑖𝑛(𝑒𝑘(𝑖))  (5.20) 

The model output is the output of the individual expert which ever gives the minimum error or 

have the maximum weight. 
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The initial investigation of the ME model to study the weather impact on power outages are 

presented and published [52]. 

 5.4 Summary 

 In this chapter, an overview and the practical reasons of using committee machines were 

discussed. Also presents, the different approaches for selection of base-learner and types of 

combining outputs of multiple learners to generate the final output. Two distinct static and 

dynamic structures, boosting and mixture of experts were discussed. In boosting, each case the 

outputs from the base-learner constituent networks are combined with no reference to the inputs. 

The construction of AdaBoost.RT and AdaBoost+ models were discussed. In mixtures of experts, 

the outputs of the base-learners are combined by gates which learn appropriate dependencies on 

the inputs. The mean field theory is used to learn the learning algorithm parameters in the AME. 

Application of the three proposed methods, AdaBoost.RT, AdaBoost+ and AME are presented in 

the following chapter. 
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Chapter 6 - Application of CM Models for Estimation of Weather-

related Outages 

In this chapter, the AdaBoost and AME models presented in Chapter 5 are applied for the 

estimation of weather-related outages. The model construction of AdaBoost and AME models 

are also presented and the model performance is investigated by simulating the model with 

available data. 

 6.1 AdaBoost Model 

In the proposed algorithm, four base-learners are considered. The multilayer neural 

network discussed in Chapter 4 and represented in Figure 4.3 is considered as the base-learner. 

All networks have an identical number of layers and neurons. AdaBoost structural representation 

is shown in Figure 6.1.   

 

Figure 6.1 Structure of AdaBoost Model for Weather-related Outage Estimation 

 



70 

 

 

 

  

 The models were trained with historical data for the four cities, Manhattan, Lawrence, 

Topeka and Wichita from 2005 to 2009 and tested for 2010 and 2011. The learning algorithm for 

the proposed architecture is outlined above. The lightning stroke, wind gust and observed 

outages are given as input to the model. All data points are associated with distribution, 𝑑. 

Initially, the distribution, 𝑑 for all training samples are given equal value, 1. The number of base-

learners, K considered is 4. At each stage of the algorithm, a base-learner is trained using 

training data with associated distribution. Based on the performance of the previous learner, the 

distribution is updated using equation (5.3) and (5.5). To have a probability distribution, the 

distribution is normalized using equation (5.6). When K number of base learners has been 

trained, the final outputs are computed using equation (5.8) and (5.11) for AdaBoost.RT and 

AdaBoost+ respectively. The performance of AdaBoost+ for Wichita data improved with 

Input 

 Training data 𝑋 = {𝑙𝑖, 𝑤𝑑} and 𝑌 = {𝑂}. 

 K is the total number of base-learners. 

Initialize 

Assign initial distribution 𝑑𝑘
0 to data points 

AdaBoost Learning 

For each neural network k=1 to K do 

 Train network 𝑘 

 Compute error rate 𝛿𝑘  using (5.5). 

 Compute distribution 𝑑𝑘+1 using (5.3). 

 Normalize distribution 𝑑𝑘+1 using (5.6). 

 Add network 𝑘 to ensemble. 

End 

Output 

AdaBoost.RT: compute ensemble output using (5.8). 

AdaBoost+: compute ensemble output using (5.11). 
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regularization using a = 0.01 in equation (5.11). For all other cases, regularization was not used 

since it did not change the results.  

 Figure 6.2 shows the percentage MSE of AdaBoost.RT and AdaBoost+ compared to the 

number of networks for the training data set of the four cities. The percentage MSE dropped as 

the number of networks increased, and it stabilized after a certain number of networks. In 

Wichita, for example, the percentage MSE dropped to 65% for AdaBoost.RT with four neural 

networks, whereas for AdaBoost+, the percentage MSE dropped to 43% for the same number of 

neural networks, clearly illustrating the better performance of AdaBoost+. Since increasing the 

number of neural networks beyond that did not significantly change the results, further 

comparison of the models uses results with five networks. 

 

 

Figure 6.2 The % Mean Square Error as a Function of Number of Learners 

 

 The performance of the proposed AdaBoost.RT and AdaBoost+ models are measured 

using MAE, MSE, R and S, given in Tables 6.1 and 6.2. Comparison of MSE and MAE in 

Tables 6.1 and 6.2, shows the better performance of AdaBoost+ compared to AdaBoost.RT. 

Scatter plots of daily observed outages and estimated outages for AdaBoost.RT and AdaBoost+ 

for four cities for training and testing duration are shown in Figures 6.1 and 6.2. The scatter plots 

clearly show that the models precisely estimated outages in the lower range, but underestimated 

outages in the upper range. This can be expected because data in the higher range is sparse and 

thus the models are not able to fully learn data characteristics in this range. 
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Table 6.1  Results of AdaBoost.RT Model for Four Cities 

AdaBoost.RT 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 1.9163 0.3789 0.7813 0.5082 2.0737 0.5578 0.6216 0.1952 

Lawrence 0.3884 3.5923 0.5150 0.2112 3.6619 0.5316 0.6662 0.2792 

Topeka 11.7940 0.9053 0.6434 0.3042 32.0706 1.9056 0.7026 0.2095 

Wichita 4.9390 1.6712 0.7692 0.4539 49.9527 3.1672 0.4145 0.6401 
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Training Data

Test Data

Figure 6.3 Plot of Observed and Estimated Weather-related Outages Obtained with 

AdaBoost.RT Model in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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Table 6.2 Results of AdaBoost+ Model for Four Cities 

AdaBoost+ 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 1.8251 0.3691 0.7860 0.5694 2.0558 0.5578 0.6079 0.2083 

Lawrence 0.3095 2.6210 0.6947 0.3662 3.0395 0.4340 0.7173 0.3825 

Topeka 8.8922 0.7070 0.7448 0.4409 22.9910 1.4621 0.7928 0.3530 

Wichita 4.2925 1.4615 0.8263 0.5755 48.0201 2.4409 0.7963 0.3271 
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Training Data

Test Data

Figure 6.4 Plot of Observed and Estimated Weather-related Outages Obtained with 

AdaBoost+ Model in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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 6.2 Annealed Mixture of Experts (AME) Model 

Multilayer neural networks used as base-learners are structurally identical to the neural 

network model discussed in Chapter 4 and represented in Figure 4.3. All networks have identical 

number of layers and neurons. Structural representation of AME is shown in Figure 6.5.    

  

Figure 6.5 Structure of AME for Weather-related Outage Estimation 

  

The models were trained with historical data for the four cities, Manhattan, Lawrence, 

Topeka and Wichita from 2005 to 2009 and tested for 2010 and 2011. The learning algorithm for 

the proposed architecture is outlined below. The lightning stroke, wind gust and observed 

outages are given as input to the model. The number of base-learners, K was set to 4, 

temperature cooling parameter,   was set to 0.98, initial temperature 𝑇0 was 1 and maximum 

number of iteration were 5000.  
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Each base-learner is trained using training data with associated weights. All training 

samples are associated with weights, 𝑤. Initial weights, 𝑤 for all training samples are given 

equal value, 1. In next iteration, a base learner that performs relatively well with any sample 

input in the past iteration receives increased training with similar samples only through a weight 

adjustment using equation (5.17). As a result, each learner in the ensemble is trained to 

“specialize” in only one region of the entire input space. The parameters in the learning 

algorithm are trained using MFA method. After each iteration the temperature is reduced by the 

cooling parameter. At high temperatures, the clustering is maximally disordered. As the 

temperature lowers, a critical temperature Tc is reached where each node begins to move 

predominantly into one or another of the clusters. At sufficiently low temperatures, the MSE 

saturates, completing the clustering process.  Figure 6.6 shows the drop of MSE as a function of 

Input 

 Training data 𝑋 = {𝑙𝑖, 𝑤𝑑} and 𝑌 = {𝑂}. 

 K is the total number of base-learners. 

Initialize 

Assign initial weights 𝑤𝑘
0 to data points 

Set initial temperature 𝑇0, cooling parameter , max_iteration 

Adaboost Learning 

For j=1 to max_iteration 

For each neural network k=1 to K do 

 Train network 𝑘 

 Compute error rate, 𝑒𝑘  using (5.16). 

 Compute weights, 𝑤𝑘+1 using (5.17) and (5.18). 

 Add network 𝑘 to ensemble. 

End 

Cool temperature using 𝑇 ← 𝛾 × 𝑇   

End 

Output 

Compute model output using (5.20). 
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negative logarithm of temperature. The temperature behavior of MFA during estimation is 

approximately analyzed and shown to possess a critical/curie temperature lying between 1 and 2. 

It can be observed from Figure 6.6, the MSE saturates once the critical temperature has reached. 

By experiments, it was found that optimal maximum number of iterations is 5000. Once the 

maximum number of iterations has reached, the training is stopped and the final output is 

computed using equation (5.20).  
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Figure 6.6 Temperature vs. MSE plots Obtained with AME Model in Overhead Distribution 

Systems for Four Cities  
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Cluster plots of training data and testing data for the four cities are shown in Figures 6.7 

to 6.15. The clustering is shown using the input variables, wind and lightning stroke. Since the 

aggregate lightning stroke recorded in a day ranges from 0 to tens of thousands of kiloamps, it is 

hard to show them in a scatter plot along with wind speed, which ranges from 0 to 75 miles per 

hour. Therefore, natural log of lightning is considered. Since many days have zero recorded 

lightning, one is added to the lightning values to avoid singularities in the data.  

The color code of the input data shows regions in which base learners in the AME model 

are specialized. The color red, blue, green and black are for cluster 1, cluster 2, cluster 3 and 

cluster 4. One base-learner performs well on cluster 1 input data points, other on cluster 2 data 

points and so on. The clustering is done based on the observed and estimated outages. The 

cluster plots shown here are on input variables wind and lightning.  The two or more of the data 

points will have the same values on the input variables for different output variables, when this 

happens, the points are plotted on top of each other, and it is hard from the cluster plot to state 

how many data points each symbol on the plot represents and hard to find the cluster boundaries. 

From the scatter plots it can observed that, all four cities have same similar pattern for the 

training and test data and it is hard to categorize the data points in each clusters. 
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Figure 6.7 Cluster Plots of Input Data for Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Manhattan from 2005 to 2009 
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Figure 6.8 Cluster Plots of Input Data for Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Lawrence from 2005 to 2009 
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Figure 6.9 Cluster Plots of Input Data for Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Topeka from 2005 to 2009 
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Figure 6.10 Cluster Plots of Input Data for Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Wichita from 2005 to 2009 
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Figure 6.11 Cluster Plots of Input Data for Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Manhattan from 2010 to 2011 
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Figure 6.12 Cluster Plots of Input Data for Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Lawrence from 2010 to 2011 

 

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Log(1+Lightning)

W
in

d

Lawrence AME test

 

 

Cluster1

Cluster2

Cluster3

Cluster4



84 

 

 

Figure 6.13 Cluster Plots of Input Data for Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Topeka from 2010 to 2011 
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Figure 6.14 Cluster Plots of Input Data for Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Wichita from 2010 to 2011 

 

Performance of the proposed AME model is measured using MAE, MSE, R and S, given 

in Table 6.3. The correlation for the four cities for the training data is close to one with a very 

high value of slope, indicating better performance of the model. The results for test data are 

slightly inferior, but they are better than those obtained with other models. It can be observed 

that for Lawrence, the results for training data have improved but not as good on the test data. 

The scatter plot of daily observed outages and estimated outages for AME for four cities for 

training and test duration are shown in Figure 6.7. The scatter plot clearly shows that the model 

estimated outages very well in the lower range as well as in the upper range.  
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Table 6.3 Results of AME Model for Four Cities 

AME 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 0.7044 0.2611 0.9225 0.8406 0.6679 0.2802 0.8715 0.6400 

Lawrence 0.1815 0.2603 0.9724 0.9414 2.9584 0.3856 0.7382 0.3743 

Topeka 3.0957 0.4493 0.9138 0.8276 9.6359 1.0227 0.8871 0.8172 

Wichita 2.8548 0.9677 0.9225 0.8289 18.6595 1.4358 0.8883 0.7524 
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Figure 6.15 Plot of Observed and Estimated Weather-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Four Cities from 2005 to 2011 
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 6.3 Summary  

In this chapter, ensemble learning models for the estimation of weather caused outages 

were investigated. Training the network on a specialized region on the input space and 

computing the ensemble output using combining rules performs better than the individual 

network. AdaBoost.RT, AdaBoost+ and AME models are applied to estimate weather-related 

outages. AdaBoost models were able to approximate complex relations between the input and 

output, and they were able to estimate outages in the lower range but under-estimated in the 

upper range. The AME model proposed was able to accurately estimate outages in the lower as 

well as upper ranges, compared to the single network in which the multilayered neural network 

over-estimated in the lower range and under-estimated in the upper range. 
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Chapter 7 - Comparison of Models  

Different models, including linear and exponential regression, neural network, AdaBoost, 

and a mixture of experts were presented to estimate outages caused by weather in overhead 

distribution systems. Model performance was evaluated by computing MAE, MSE, RMSE, 

MAPE, slope, and correlation coefficient for four cities in Kansas, Wichita, Topeka, Lawrence, 

and Manhattan, which represent the two large cities and two smaller cities in Kansas. Available 

historical data was divided into training data from 2005 to 2009 and test data from 2010 to 2011. 

Tables 7.1 to 7.8 tabulate performance measure values for training and testing data for four 

cities. Because of the random nature and noise in the data, traditional regression models faced a 

big challenge in estimating outages both in the lower range and the higher range. Therefore, the 

NN model, which has the ability to approximate high complexity functions, was introduced and 

it outperformed regression models. However, the NN model still could not give accurate 

estimations in extreme cases which demanded methods based on committee machines. 

Generalized performance for various committee machines was certainly impressive. A particular 

feature of boosting, one of the method used, is that it reduces bias and variance. Training the 

network on a specialized region on the input space and computing the ensemble output using 

combining rules gives better results than the individual network. Since AdaBoost models are able 

to approximate complex relations between the input and output, they were able to estimate 

outages in the lower range.  However, they underestimate in the upper range of outages. The 

AME model proposed was able to accurately estimate outages both in lower and upper ranges. 

 Tables 7.1 - 7.8 shows the performance measure values for training and test data for all 

models for Manhattan, Lawrence, Topeka and Wichita. It can be observed that all the 

performance measures, MAE, MSE, RMSE, and MAPE, dropped from traditional models to 

ensemble models. The slopes of the best-fit lines between the estimated and the observed outages 

are also higher than those for traditional models, indicating better performance. For ensemble 

models for all the cities, the correlation coefficients for the training data and the testing data are 

closer to one too which shows a high degree of relationship between the estimated and the 

observed values. AME performed distinctly better than other models, followed by AdaBoost+ for 

all the four cities demonstrating the reasons for using the ensemble learning methods. 
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Table 7.1 Performance Measure for Manhattan Training Data by Different Models for 

Weather-related Outages 

Manhattan - Training Data 

 MAE MSE RMSE MAPE S R 

Regression 

Model 1 
0.6702 3.3181 1.8216 39.7715 0.2712 0.5258 

Regression 

Model 2 
0.6055 3.2239 1.7955 33.1950 0.3012 0.5449 

Regression 

Model 3 
0.5924 3.1218 1.7669 31.7251 0.3233 0.5650 

Regression 

Model 4 
0.6056 2.7824 1.6681 34.4878 0.3946 0.6268 

Regression 

Model 5 
0.6334 2.8980 1.7024 36.7020 0.3934 0.6077 

Regression 

Model 6 
0.7795 4.1716 2.0424 48.4178 0.3773 0.4669 

Neural Network 0.6009 2.4879 1.5773 35.1208 0.4555 0.6761 

AdaBoost.RT 0.3789 1.9163 1.3843 14.4025 0.5082 0.7813 

AdaBoost+ 0.3691 1.8251 1.3510 13.6323 0.5694 0.7860 

AME 0.2611 0.7044 0.8393 10.9287 0.8406 0.9225 
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Table 7.2 Performance Measure for Manhattan Test Data by Different Models for 

Weather-related Outages 

Manhattan - Test Data 

 MAE MSE RMSE MAPE S R 

Regression 

Model 1 
0.7180 2.0779 1.4415 35.7854 0.1556 0.4824 

Regression 

Model 2 
0.6622 2.1021 1.4499 29.5598 0.1826 0.4929 

Regression 

Model 3 
0.6509 2.0185 1.4207 28.8090 0.2362 0.5077 

Regression 

Model 4 
0.6885 2.2247 1.4915 30.8150 0.1328 0.4283 

Regression 

Model 5 
0.6992 2.1622 1.4704 32.5445 0.1467 0.4477 

Regression 

Model 6 
0.6919 2.4705 1.5718 27.8129 0.0589 0.4608 

Neural Network 0.6433 2.3370 1.5287 23.5203 0.1254 0.4335 

AdaBoost.RT 0.5578 2.0737 1.4400 16.6458 0.1952 0.6216 

AdaBoost+ 0.5578 2.0558 1.4338 16.5486 0.2083 0.6079 

AME 0.2802 0.6679 0.8172 8.7964 0.6400 0.8715 
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Table 7.3 Performance Measure for Lawrence Training Data by Different Models for 

Weather-related Outages 

Lawrence - Training Data 

 MAE MSE RMSE MAPE S R 

Regression 

Model 1 
0.7421 4.4220 2.1028 45.4708 0.0699 0.2755 

Regression 

Model 2 
0.6879 4.3814 2.0932 39.9166 0.0849 0.2890 

Regression 

Model 3 
0.6860 4.3805 2.0930 39.7650 0.0851 0.2893 

Regression 

Model 4 
0.6872 4.3731 2.0912 39.9118 0.0864 0.2920 

Regression 

Model 5 
0.7114 4.4043 2.0987 41.8992 0.0722 0.2816 

Regression 

Model 6 
0.6502 4.4999 2.1213 35.1645 0.0554 0.2468 

Neural Network 0.6973 4.3621 2.0886 40.8074 0.0871 0.2958 

AdaBoost.RT 0.3884 3.5923 1.8953 17.3300 0.2112 0.5150 

AdaBoost+ 0.3095 2.6210 1.6189 12.9578 0.3662 0.6947 

AME 0.1815 0.2603 0.5102 8.6236 0.9414 0.9724 
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Table 7.4 Performance Measure for Lawrence Test Data by Different Models for Weather-

related Outages 

Lawrence - Test Data 

 MAE MSE RMSE MAPE S R 

Regression 

Model 1 
0.8653 4.6686 2.1607 38.6730 0.1420 0.5185 

Regression 

Model 2 
0.8099 4.7475 2.1789 31.9075 0.1431 0.5219 

Regression 

Model 3 
0.8028 4.7243 2.1735 31.6856 0.1396 0.5543 

Regression 

Model 4 
0.8261 4.9956 2.2351 32.4379 0.1051 0.5316 

Regression 

Model 5 
0.8471 4.8554 2.2035 35.4599 0.1168 0.5449 

Regression 

Model 6 
0.8713 5.7250 2.3927 30.8729 0.0371 0.4655 

Neural Network 0.8778 5.0176 2.2400 40.7603 0.1012 0.4130 

AdaBoost.RT 0.5316 3.6619 1.9136 18.4797 0.2792 0.6662 

AdaBoost+ 0.4340 3.0395 1.7434 14.6647 0.3825 0.7173 

AME 0.3856 2.9584 1.7200 10.9470 0.3743 0.7382 
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Table 7.5 Performance Measure for Topeka Training Data by Different Models for 

Weather-related Outages 

Topeka - Training Data 

 MAE MSE RMSE MAPE S R 

Regression 

Model 1 
1.4523 13.7319 3.7057 78.1175 0.2515 0.5114 

Regression 

Model 2 
1.3690 13.3099 3.6483 64.8792 0.2892 0.5325 

Regression 

Model 3 
1.3753 13.1783 3.6302 66.4634 0.2964 0.5391 

Regression 

Model 4 
1.3754 13.1423 3.6252 66.4296 0.2979 0.5409 

Regression 

Model 5 
1.4077 13.7337 3.7059 72.0787 0.2433 0.5114 

Regression 

Model 6 
1.3537 15.5890 3.9483 60.3896 0.1298 0.4189 

Neural Network 1.3913 12.9613 3.6002 69.5512 0.3016 0.5494 

AdaBoost.RT 0.9053 11.7940 3.4342 26.8615 0.3042 0.6434 

AdaBoost+ 0.7070 8.8922 2.9820 19.6678 0.4409 0.7448 

AME 0.4493 3.0957 1.7594 12.0277 0.8276 0.9138 
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Table 7.6 Performance Measure for Topeka Test Data by Different Models for Weather-

related Outages 

Topeka – Test  Data 

 MAE MSE RMSE MAPE S R 

Regression 

Model 1 
2.4318 40.3696 6.3537 62.7603 0.0724 0.4443 

Regression 

Model 2 
2.3851 40.3150 6.3494 50.0993 0.0905 0.4756 

Regression 

Model 3 
2.4054 40.9059 6.3958 51.1664 0.0810 0.4613 

Regression 

Model 4 
2.4105 41.2994 6.4265 51.2496 0.0736 0.4604 

Regression 

Model 5 
2.4329 41.1660 6.4161 58.9479 0.0636 0.4721 

Regression 

Model 6 
2.5160 45.0651 6.7131 49.8850 0.0284 0.4713 

Neural Network 2.4418 37.1506 6.0951 62.6446 0.1909 0.4231 

AdaBoost.RT 1.9056 32.0706 5.6631 29.5779 0.2095 0.7026 

AdaBoost+ 1.4621 22.9910 4.7949 21.3953 0.3530 0.7928 

AME 1.0227 9.6359 3.1042 14.7260 0.8172 0.8871 
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Table 7.7 Performance Measure for Wichita Training Data by Different Models for 

Weather-related Outages 

Wichita - Training Data 

 MAE MSE RMSE MAPE S R 

Regression 

Model 1 
3.0767 39.7079 6.3014 135.4532 0.2413 0.5151 

Regression 

Model 2 
2.8773 37.5084 6.1244 107.3498 0.3107 0.5501 

Regression 

Model 3 
2.8841 37.4824 6.1223 108.0321 0.3111 0.5506 

Regression 

Model 4 
2.8891 37.3769 6.1137 108.1678 0.3135 0.5524 

Regression 

Model 5 
3.0183 39.7459 6.3044 129.0661 0.2541 0.5114 

Regression 

Model 6 
2.9238 42.0023 6.4809 105.4414 0.2144 0.4678 

Neural Network 2.8051 35.9343 5.9945 107.8690 0.3312 0.5756 

AdaBoost.RT 1.6712 24.3932 4.9390 39.7066 0.4539 0.7692 

AdaBoost+ 1.4615 18.4254 4.2925 37.9276 0.5755 0.8263 

AME 0.9677 8.1498 2.8548 22.4145 0.8289 0.9225 
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Table 7.8 Performance Measure for Wichita Test Data by Different Models for Weather-

related Outages 

Wichita - Test Data 

 MAE MSE RMSE MAPE S R 

Regression 

Model 1 
3.5966 71.8361 8.4756 105.5216 0.1050 0.4775 

Regression 

Model 2 
3.3308 63.3287 7.9579 80.8640 0.1919 0.5811 

Regression 

Model 3 
3.3392 63.5145 7.9696 81.4191 0.1892 0.5809 

Regression 

Model 4 
3.3468 63.5677 7.9729 81.5540 0.1902 0.5771 

Regression 

Model 5 
3.5369 71.0337 8.4281 100.3206 0.1128 0.4970 

Regression 

Model 6 
3.4298 77.2927 8.7916 73.6672 0.0837 0.4814 

Neural Network 3.2873 76.7436 8.7603 67.2931 0.2314 0.4003 

AdaBoost.RT 3.1672 49.9527 7.0677 38.2060 0.4145 0.6401 

AdaBoost+ 2.4409 48.0201 6.9297 32.4919 0.3271 0.7963 

AME 1.4358 18.6595 4.3197 17.6520 0.7524 0.8883 

 

 Figures 7.1 and 7.2 show scatter plots with regression lines of observed and estimated 

outages for training and test data of best regression model, neural network, AdaBoost.RT, 

ADABOOST
+, and AME. These graphs show clear improvement in AME model performance, 

which provides better slope than other models for all training and test cases.   
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Figure 7.1 Scatter Plot with Regression Line of Observed and Estimated Outages for 2005-

2009 Training Data for Different Models 
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Figure 7.2 Scatter plot with Regression Line of Observed vs. Estimated Outages for 2010-

2011 Testing Data for Different Models 

 7.1 Summary  

In this chapter, the models discussed in Chapters 3 through 6 for the estimation of 

weather-related outages in the overhead distribution system were compared. The analysis of 

performance metrics of six regression models, NN model, ensemble models were presented. 

Experimental results concluded that AME model outperformed the other models, followed by 

AdaBoost+ model. Also, results indicated that ensemble of networks accurately estimates outage, 

compared to the single network. Overall, the ensemble learning methods gave significantly better 

performance compared to traditional linear, quadratic and exponential regression models and NN 

model.   
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Chapter 8 - Application of Models for Estimation of Outages for 

Only Lightning Days 

In order to evaluate performance of models discussed in Chapters 3 through 7, all days in 

the study period were considered. In this chapter, results with non-lightning days were excluded 

from the study period are presented. The motivation is to determine whether the models will 

provide better results for days with lightning. All the models discussed previously were used to 

find correlation between lightning, wind, and outages.  

 8.1 Data Overview 

In the previous study 2555 days from January 1, 2005 to December 31, 2011 were 

considered. Table 8.1 shows the number of days on which lightning occurred during the study 

period in the four cities.  The histogram of outages caused by lightning and wind is shown in 

Figure 8.1. Since outages are spatially aggregated over the service area, smaller cities such as 

Manhattan and Lawrence have the most number of days with zero outages, whereas Topeka and 

Wichita have the least number of days with zero outages.  

 

Table 8.1 Number of Lightning Days from 2005 to 2011 

Cities Number of Days 

Manhattan 239 

Lawrence 288 

Topeka 314 

Wichita 329 
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Figure 8.1 Histogram of Weather-related Outages Excluding Non-lightning Days, 2005-

2011 

 8.2 Models & Results 

  Performances of the models were evaluated using the same metrics as done previously, 

that is by computing MAE, MSE, R and S values.  The division of training and test data is also 

similar with 2005-2009 as training data and 2010-2011 as test data. 

 8.2.1 Regression Models 

Tables 8.2 to 8.5 tabulate the MAE, MSE, R and S for six different regression models of 

the four service areas for training and testing data. The tables show that, among all six models, 

model 4 has the lowest MAE and MSE and the highest correlation coefficient, R, for the training 

data; whereas for the test data, model 1 has lower MAE and MSE for Manhattan, Lawrence, and 

Topeka, and model 2 has lower MAE and MSE for Wichita. Figures 8.2 to 8.5 show scatter plots 

between observed and estimated outages with a regression line for the six regression models for 
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the four cities. The scatter plots indicate that the regression models underestimate outages when 

in the higher range and overestimate in the lower range. 

 

Table 8.2 Results of Regression Models for Manhattan 

Manhattan 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Model 1 22.2554 2.4144 0.5411 0.2674 12.2207 2.3069 0.4113 0.1382 

Model 2 20.9057 2.2984 0.5762 0.3386 13.8272 2.3392 0.3930 0.1557 

Model 3 20.2859 2.2961 0.5932 0.3590 13.2797 2.3449 0.4198 0.2072 

Model 4 17.4771 2.1212 0.6643 0.4453 14.8278 2.3655 0.2804 0.0983 

Model 5 18.5958 2.2975 0.6402 0.4263 13.1955 2.3204 0.3540 0.1323 

Model 6 31.8471 4.1990 0.4952 0.2279 16.9278 2.5182 0.3638 0.0487 

 

Table 8.3 Results of Regression Models for Lawrence 

Lawrence 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Model 1 7.9714 1.6617 0.4109 0.1424 33.0010 2.5279 0.4502 0.4502 

Model 2 7.7517 1.6337 0.4319 0.1891 34.6061 2.6660 0.4379 0.4379 

Model 3 7.7414 1.6381 0.4331 0.1901 34.7633 2.7106 0.3833 0.3833 

Model 4 7.7413 1.6389 0.4331 0.1902 34.7534 2.7152 0.3789 0.3789 

Model 5 7.8939 1.6212 0.4161 0.1564 34.2368 2.5952 0.4782 0.4782 

Model 6 8.6825 1.6526 0.3786 0.0563 42.2372 3.2598 0.4436 0.4436 
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Table 8.4 Results of Regression Models for Topeka 

Topeka 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Model 1 57.4702 3.6942 0.5658 0.2939 234.7566 8.4734 0.4108 0.0641 

Model 2 54.7092 3.4509 0.5908 0.3524 248.4255 9.1163 0.4379 0.0806 

Model 3 52.4079 3.4189 0.6135 0.3802 251.7194 9.1459 0.4432 0.0640 

Model 4 52.4079 3.4176 0.6135 0.3803 251.7084 9.1458 0.4432 0.0640 

Model 5 58.1699 3.5117 0.5587 0.2756 244.5595 8.7217 0.4180 0.0561 

Model 6 74.4721 3.8945 0.4061 0.0766 288.7147 10.0273 0.4066 0.0242 

 

Table 8.5 Results of Regression Models for Wichita 

WICHITA 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Model 1 120.6749 6.2875 0.5678 0.2849 228.3920 7.7286 0.4953 0.1312     

Model 2 113.9089 6.0441 0.5954 0.3592 204.6407 7.4305 0.6088 0.2423     

Model 3 112.7194 6.1154 0.6011 0.3659     207.8384 7.4830 0.6103 0.2238     

Model 4 109.8211 6.0993 0.6146 0.3825     207.7634 7.5412 0.6036 0.2393     

Model 5 122.5367 6.0590 0.5533 0.2927     231.7494 7.7373 0.5097 0.1330     

Model 6 143.6969 7.2987 0.4671 0.1425     292.3997 8.8891 0.4370 0.1110     

 

 

 

 

 

 

 

 

 

 



103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Observed Outages

E
s
ti

m
a
te

d
 O

u
ta

g
e
s

Manhattan Regression Model #1

 

 

Training Data

Test Data

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Observed Outages

E
s
ti

m
a
te

d
 O

u
ta

g
e
s

Manhattan Regression Model #2

 

 

Training Data

Test Data

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Observed Outages

E
s
ti

m
a
te

d
 O

u
ta

g
e
s

Manhattan Regression Model #3

 

 

Training Data

Test Data

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Observed Outages

E
s
ti

m
a
te

d
 O

u
ta

g
e
s

Manhattan Regression Model #4

 

 

Training Data

Test Data

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Observed Outages

E
s
ti

m
a
te

d
 O

u
ta

g
e
s

Manhattan Regression Model #5

 

 

Training Data

Test Data

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Observed Outages

E
s
ti

m
a
te

d
 O

u
ta

g
e
s

Manhattan Regression Model #6

 

 

Training Data

Test Data

Figure 8.2 Plot of Observed and Estimated Weather-related Outages, Excluding Non-

lightning days, Obtained with Six Regression Models in Overhead Distribution Systems for 

Manhattan from 2005 to 2011 
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Figure 8.3 Plot of Observed and Estimated Weather-related Outages, Excluding Non-

lightning days, Obtained with Six Regression Models in Overhead Distribution Systems for 

Lawrence from 2005 to 2011 
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Figure 8.4 Plot of Observed and Estimated Weather-related Outages, Excluding Non-

lightning days, Obtained with Six Regression Models in Overhead Distribution Systems for 

Topeka from 2005 to 2011 
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Figure 8.5 Plot of Observed and Estimated Weather-related Outages, Excluding Non-

lightning Days, Obtained with Six Regression Models in Overhead Distribution Systems for 

Wichita from 2005 to 2011 
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 8.2.2 Neural Network  

The NN model, as discussed in Chapter 4, which is a 3x2x1 multilayered feed forward 

network, shown in Figure 4.3, is considered in this section. The MSE, MAE, R and S for the four 

cities are tabulated in Table 8.6.  

By comparing the MSE and MAE values obtained from NN model with the six 

regression models presented in the previous section, the NN model has performed better. Figure 

8.6 shows a scatter plot of observed and estimated outages, with a regression line for the four 

cities. 

Table 8.6 Results of Neural Network Model for Four Cities 

Neural Network 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 17.0073 2.0839 0.6672 0.4504     11.1545 2.2044 0.4519 0.2819     

Lawrence 7.5003 1.6066 0.4614 0.2124     31.7455 2.4905 0.4575 0.0991     

Topeka 52.1686 3.3817 0.6158 0.3795 217.2222 8.3975 0.4832 0.1815     

Wichita 107.7232 5.9835 0.6241 0.3886 203.9876 6.9484 0.6123 0.2947     
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 8.2.3 AdaBoost Model 

The MSE, MAE, R and S for the four cities for the AdaBoost.RT and AdaBoost+ are 

tabulated in Tables 8.7 and 8.8. Figures 8.7 and 8.8 show the scatter plot between observed and 

estimated outages, with a regression line for the AdaBoost.RT and AdaBoost+ models for the 

four cities.  
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Figure 8.6 Plot of Observed and Estimated Weather-related Outages, Excluding Non-

lightning Days, Obtained with NN Model in Overhead Distribution Systems for Four Cities 

from 2005 to 2011 
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Table 8.7 Results of AdaBoost.RT Model for Four Cities 

AdaBoost.RT 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 7.0555 1.1504 0.8905 0.6729 11.0939 1.7922 0.6791 0.2542 

Lawrence 4.1884 0.7555 0.7772 0.4506 22.8446 1.6073 0.6961 0.2462 

Topeka 37.0523 1.8908 0.7781 0.4478 143.3025 5.4715 0.7425 0.6693 

Wichita 64.9567 3.5652 0.8125 0.5238 132.4641 5.1816 0.8205 0.8317 

 

Table 8.8 Results of AdaBoost+ Model for Four Cities 

AdaBoost+ 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 6.3902 1.1065 0.8945 0.7457 10.8610 1.7671 0.6576 0.2751 

Lawrence 1.8573 0.6011 0.9056 0.7107 17.7038 1.7692 0.7352 0.3908 

Topeka 3.9552 1.2753 0.9762 0.9431 42.8308 3.4174 0.9013 0.9452 

Wichita 13.4385 2.5290 0.9646 0.8785 49.7171 3.4863 0.9036 0.8448 

 

From tables 8.6 - 8.8, it can be observed that the AdaBoost+ model estimates the outages 

more accurately compared to the NN model. For bigger cities, Topeka and Wichita, the drop in 

MAE and MSE is very significant compared to smaller cities, Manhattan and Lawrence. The 

correlation and slope for all cities for the AdaBoost models are high indicating better 

performance of the models. 
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Figure 8.7 Plot of Observed and Estimated Weather-related Outages, Excluding Non-

lightning days, Obtained with AdaBoost.RT Model in Overhead Distribution Systems for 

Four Cities from 2005 to 2011 
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Test Data

Figure 8.8 Plot of Observed and Estimated Weather-related Outages, Excluding Non-

lightning Days, Obtained with AdaBoost+ Model in Overhead Distribution Systems for Four 

Cities from 2005 to 2011 
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 8.2.4 Annealed Mixture of Experts (AME) Model 

The MSE, MAE, R and S for the four cities for AME are tabulated in Table 8.9.  Figure 

8.9 shows the scatter plot between observed and estimated outages, with a regression line for the 

AME model for the four cities. The scatter plot indicates that the model accurately estimated 

outages both in the lower range and the higher range. The high correlation also indicates the 

better performance of AME model in estimation of weather-caused outages. However, results for 

the test data for Lawrence are still inferior as compared to other cities. 

 

 

Table 8.9 Results of AME Model for Four Cities 

AME 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 1.2064 0.6169 0.9806 0.9547 3.7862 0.9601 0.8864 0.6259 

Lawrence 0.3535 0.4144 0.9814 0.9598 16.7268 1.4352 0.7352 0.4577 

Topeka 2.5126 0.1115 0.9879 0.9706 37.0199 3.3236 0.9150 0.9045 

Wichita 8.9861 2.2542 0.9754 0.9503 29.2457 2.9082 0.9479 0.8634 
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Figure 8.9 Plot of Observed and Estimated Weather-related Outages, Excluding Non-

lightning Days, Obtained with AME Model in Overhead Distribution Systems for Four Cities 

from 2005 to 2011 
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 8.3 Analysis of Models Result 

The available weather and outage data from 2005 to 2011 excluding non-lightning days 

were used. The models discussed in Chapters 3 through 6, that is six regression models, NN 

model, and ensemble models were investigated to estimate outages and find correlation. Similar 

metrics as previously used that is by computing the MAE, MSE, R and S values are used to 

evaluate the performance of the models. The performance measure values are summarized in 

Table 8.10 for training data and testing data for Manhattan, Lawrence, Topeka and Wichita. 

Experimental results concluded that AME model outperformed the other models, followed by 

AdaBoost models. For the tested cities, all models have positive correlation coefficient, 

indicating a positive relationship between observed and estimated outages. The drop is MAE and 

MSE values from NN model to AME model is very significant for training and test data for all 

four cities. Also, high correlation of ensemble models which are close to one indicates that 

ensemble of networks more accurately estimates outages, compared to the traditional regression 

models and single NN model.  

To observe the impact of only lightning on the distribution outages, the results were 

obtained by considering only days on which lightning happened as input and they are compared 

with the model results with all days as input. To be simple, we define dataset 1 and dataset 2 as, 

 Dataset 1 – Only the days that have lightning in the study period 

 Dataset 2 – All days included in the study period 

With dataset 2 as input the models are trained and the outages are estimated. Although all 

the days were used for training, the performance measure values are computed for the days in 

which lightning happened and are summarized in Table 8.11 for the training data and test data 

for all four cities.  Comparison of Tables 8.10 and 8.11, shows that dataset 1 has better 

performance measure values. Figures 8.10 to 8.17 shows the observed and estimated outages for 

AdaBoost+ and AME model for dataset 1 and 2 for training and test data for Manhattan and 

Wichita. The plots shows that both AdaBoost+ and AME model are able to estimate outages very 

well for dataset 1 and 2. From Figures 8.12, 8.13, 8.16 and 8.17, it can be clearly observed that 

for dataset 1 and 2, the AME model is able to estimates outages accurately, compared to 

AdaBoost+ model.  
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Table 8.10 Summary of Model Results for four Cities for Dataset 1 

 
Training Data Test Data 

MAE MSE R S MAE MSE R S 

Mht 

NN 2.0839 17.0073 0.6672 0.4504 2.2044 11.1545 0.4519 0.2819 

AdaBoot.RT 1.1504 7.0555 0.8905 0.6729 1.7922 11.0939 0.6791 0.2542 

AdaBoost+ 1.1065 6.3902 0.8945 0.7457 1.7671 10.8610 0.6576 0.2751 

AME 0.6169 1.2064 0.9806 0.9547 0.9601 3.7862 0.8864 0.6259 

Lwr 

NN 1.6066 7.5003 0.4614 0.2124 2.4905 31.7455 0.4575 0.0991 

AdaBoot.RT 0.7555 4.1884 0.7772 0.4506 1.6073 22.8446 0.6961 0.2462 

AdaBoost+ 0.6011 1.8573 0.9056 0.7107 1.4692 17.7038 0.7397 0.3908 

AME 0.4144 0.3535 0.9814 0.9598 1.4352 16.7268 0.7352 0.4577 

Tpk 

NN 3.3817 52.1686 0.6158 0.3795 8.3975 217.2222 0.4832 0.1815 

AdaBoot.RT 1.8908 37.0523 0.7781 0.4478 5.4715 143.3025 0.7425 0.6693 

AdaBoost+ 1.2753 3.9552 0.9762 0.9431 3.3236 37.0199 0.9150 0.9452 

AME 0.1115 2.5126 0.9879 0.9706 3.4174 42.8308 0.9013 0.9045 

Wht 

NN 5.9835 107.7232 0.6241 0.3886 6.9484 203.9876 0.6123 0.2947 

AdaBoot.RT 3.5652 64.9567 0.8125 0.5238 5.1816 132.4641 0.8205 0.8317 

AdaBoost+ 2.5290 13.4385 0.9646 0.8785 3.4863 49.7171 0.9036 0.8448 

AME 1.8249 7.4726 0.9791 0.9503 2.9082 29.2457 0.9479 0.8634 
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Table 8.11 Summary of Model Results for four Cities for Dataset 2 

 
Training Data Test Data 

MAE MSE R S MAE MSE R S 

Mht 

NN 1.8530 14.6236 0.7347 0.5594 2.4163 15.8752 0.3548 0.1318 

AdaBoot.RT 1.3730 5.8565 0.8636 0.6074 1.9593 12.2358 0.6219 0.2241 

AdaBoost+ 1.2889 7.8769 0.8695 0.7006 1.9410 11.9084 0.6127 0.2505 

AME 0.7346 1.4625 0.9765 0.9588 0.9167 3.2285 0.9061 0.6844 

Lwr 

NN 1.5256 7.9216 0.4373 0.2053 2.8599 37.0763 0.3912 0.0715 

AdaBoot.RT 0.7694 3.6690 0.8007 0.5171 1.9683 28.1243 0.5417 0.1743 

AdaBoost+ 0.6788 2.2221 0.8893 0.6556 1.7538 25.05 0.6042 0.2318 

AME 0.5471 0.6764 0.9644 0.9603 1.6626 23.7575 0.6460 0.2504 

Tpk 

NN 3.1090 54.1858 0.6075 0.3774 9.1558 234.7022 0.3206 0.1754 

AdaBoot.RT 2.2712 48.0067 0.7018 0.3921 6.6575 185.5079 0.6532 0.1929 

AdaBoost+ 1.8595 33.5809 0.7990 0.4849 5.1769 132.5051 0.7671 0.2936 

AME 1.1337 2.9294 0.9825 0.9738 3.5183 38.7901 0.9126 0.9500 

Wht 

NN 5.4880 110.5012 0.6246 0.4037 9.1286 319.9919 0.3587 0.3187 

AdaBoot.RT 3.8783 80.6723 0.7696 0.4342 5.6632 145.9637 0.8286 0.3693 

AdaBoost+ 2.9238 55.2778 0.8463 0.5763 7.5024 155.2768 0.6444 0.4078 

AME 2.2542 8.9861 0.9754 0.9579 3.7394 53.3616 0.9061 0.9236 
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 8.4 Summary  

In this chapter, only days that have lightning were considered to study the effect of 

lightning on distribution feeders outages. The six regression models, NN model, and ensemble 

models were investigated and performance of the models were evaluated by computing 

performance measures. The results for the days that had lightning were obtained with two 

models, one with all days included and the other with lightning days only. Results show that the 

models with only days with lightning as input have better performance and were able to capture 

the time series of daily observed outages more accurately.   
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Chapter 9 - Application of Models for Estimation of Outages for 

Only Non-Lightning Days 

The better performance of model with only days that have lightning as input compared to 

the model with all days included as input, prompts for the investigation of models with days in 

which no lightning happened. A NN model and ensemble models were tested with available 

historical data from 2005 to 2011 with days that had no recorded lighting. 

 9.1 Data Overview 

Table 9.1 shows the number of days on which no lightning occurred during the study 

period in the four cities.   

 

Table 9.1 Number of non-Lightning Days from 2005 to 2011 

Cities Number of Days 

Manhattan 2316 

Lawrence 2267 

Topeka 2241 

Wichita 2226 

 

 9.2 Model Results 

Since it was found that ensemble methods have better performance compared to 

traditional regression models, in this chapter, regression models were not investigated. A NN 

model, AdaBoost+ and AME models were tested. The division of training and test data is also 

similar with 2005-2009 as training data and 2010-2011 as test data. The model construction, 

training, testing and performances evaluation are the same as done previously. 

The MSE, MAE, R and S values for the training data and testing data for the four cities 

for the NN model, AdaBoost+ and AME model are tabulated in Table 9.2.  
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Table 9.2 Summary of Model Results for four Cities for Non-Lightning Days 

 
Training Data Test Data 

MAE MSE R S MAE MSE R S 

Mht 

NN 0.4404 1.1721 0.1667 0.1073 0.4955 1.1582 0.1747 0.0128 

AdaBoost+ 0.2379 1.2383 0.3726 0.1076 0.4654 1.2298 0.5472 0.0165 

AME 0.1634 0.5774 0.7394 0.4642 0.1882 0.4527 0.7772 0.4970 

Lwr 

NN 0.5791 4.0713 0.0947 0.5092 0.5204 1.1586 0.2990 0.0198 

AdaBoost+ 0.3124 3.5770 0.4060 0.6923 0.4193 0.9440 0.5982 0.1404 

AME 0.1414 0.3792 0.9528 0.9076 0.3270 0.5346 0.7429 0.5733 

Tpk 

NN 1.0559 6.5898 0.2626 0.2689 1.5973 12.7715 0.3315 0.1895 

AdaBoost+ 0.3943 3.1630 0.7496 0.5156 0.7692 5.7346 0.7759 0.5656 

AME 0.3504 2.8433 0.7765 0.5654 0.6874 5.2513 0.7940 0.6025 

Wht 

NN 2.2790 24.1046 0.3297 0.1110 2.6812 41.5480 0.5751 0.1749 

AdaBoost+ 1.0159 10.4977 0.7893 0.5867 1.2411 10.8465 0.9024 0.7635 

AME 0.8085 7.4343 0.8541 0.6881 0.9783 6.8607 0.9392 0.8174 
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Figure 9.1 Plot of Observed and Estimated Weather-related Outages, for Non-lightning 

Days, Obtained with NN Model in Overhead Distribution Systems for Four Cities from 

2005 to 2011 
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Figure 9.2 Plot of Observed and Estimated Weather-related Outages, for Non-lightning 

Days, Obtained with AdaBoost+ Model in Overhead Distribution Systems for Four Cities 

from 2005 to 2011 
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Figure 9.3 Plot of Observed and Estimated Weather-related Outages, for Non-lightning 

Days, Obtained with AME Model in Overhead Distribution Systems for Four Cities from 

2005 to 2011 

 

Figures 9.1 - 9.3 show the scatter plot between observed and estimated outages, with a 

regression line for the Neural Network, AdaBoost+ and AME models for the four cities. The 

scatter plots for Manhattan and Lawrence for NN and AdaBoost+ models are poor. One reason 

might be skewed data distribution and the model assigning too much weight onto a few hard-to-

learn data points. As seen in Chapter 2, the Manhattan and Lawrence had a large number of days 

with zero observed outages compared to bigger cities, Topeka and Wichita. 
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A significant difference in MAE and MSE values between NN model and AME model 

can be observed for all four cities for training and testing data. Higher correlation and higher 

slope between observed and estimated outages indicates better performance of AME model. 

For comparison, the results for days with no lightning were computed from the estimates 

for these obtained with models considering all days as input. The MAE, MSE, R and S values for 

all four cities for training and testing data obtained from these models are summarized in Table 

9.3. 

 

Table 9.3 Summary of Model Results for four Cities for All Days Included 

 
Training Data Test Data 

MAE MSE R S MAE MSE R S 

Mht 

NN 0.4645 1.1658 0.1135 0.1182 0.4848 1.1246 0.2823 0.0274 

AdaBoost+ 0.2689 1.1458 0.3642 0.1292 0.4340 1.1734 0.5022 0.0331 

AME 0.2095 0.6218 0.7098 0.4220 0.2232 0.4386 0.7697 0.5441 

Lwr 

NN 0.5918 3.9089 0.1060 0.0168 0.6266 0.9545 0.2972 0.1333 

AdaBoost+ 0.2625 2.6718 0.6131 0.2381 0.2667 0.2500 0.8765 0.7711 

AME 0.1350 0.2073 0.9735 0.9301 0.2237 0.3224 0.8935 0.8368 

Tpk 

NN 1.1396 6.9203 0.2069 0.1689 1.5962 12.3802 0.3575 0.1060 

AdaBoost+ 0.5381 5.2743 0.5790 0.2059 0.9963 9.2594 0.6759 0.2757 

AME 0.3490 3.1200 0.7543 0.5214 0.7098 5.9804 0.7701 0.5161 

Wht 

NN 2.3784 24.0757 0.3460 0.1490 2.6863 47.0425 0.5773 0.1069 

AdaBoost+ 1.2290 12.5646 0.7604 0.4595 2.9745 37.0924 0.5668 0.3271 

AME 0.8314 8.2575 0.8378 0.6542 0.8787 14.4222 0.8787 0.6293 

 

A comparison of the performance measures shows that the results for days without 

lightning are better if lightning days are removed from the data. 

 9.3 Comparative Analysis 

Three different input datasets are defined as follows: 

 Input dataset 1 – All days included 

 Input dataset 2 – Only days with lightning  
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 Input dataset 3 – Only days with no lightning occurrence 

The input dataset 1 contains all the days in the study period from 2005 to 2011.The input dataset 

2 contains only the days with lightning recording in the study period. The input dataset 3 

contains only the days with zero for lightning values. All the input datasets are divided into 

training data and test data with 2005 - 2009 as the training duration and 2010 – 2011as the test 

duration. 

The six different output datasets which are considered are defined as follows: 

 Output dataset 1 – estimated outages for all days with models trained using input 

dataset 1 

 Output dataset 2 – estimated outages for days with lighting with models trained 

using input dataset 2 

 Output dataset 3 – estimated outages for days without lightning with models 

trained using input dataset 3 

 Output dataset 4 – estimated outages for days with lightning with models trained 

using input dataset 1 

 Output dataset 5 - estimated outages for days that have no lightning with models 

trained using input dataset 1 

 Output dataset 6 – estimated outages for all days with models trained separately 

using input datasets 2 and 3 

 

Table 9.4 summarizes detailed categorization of different output datasets. 
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Table 9.4 Summary of Output Dataset  

Output 

dataset 

Input dataset 

for training 

(2005 -2009) 

Input 

dataset for 

testing 

(2010-2011) 

Model Output 

Outputs considered 

for model 

performance 

evaluation 

1 1 1 All days All days 

2 2 2 
Only days with 

lightning recorded 

Only days with 

lightning recorded 

3 3 3 
Only days with no 

lightning recorded 

Only days with no 

lightning recorded 

4 1 1 All days 
Only days with 

lightning 

5 1 1 All days 
Only days with no 

lightning recorded 

6 
2 2 

Only days with 

lightning recorded 
Combined to get all 

Days 
3 3 Only days with wind 

 

The MSE, MSE, R and S values are computed between observed outages and six output 

datasets of a NN model, AdaBoost.RT, AdaBoost+ and AME models. The performance measure 

values for output datasets 1, 2, 3, 4, 5 and 6 are tabulated in Table 9.5, 8.10, 9.2, 8.11, 9.3 and 

9.6. Table 9.5 and 9.6 summarizes the performance measure values for output dataset 1 and 6 for 

all four cities for NN model, AdaBoost.RT, AdaBoost+ and AME models. Results shows that 

model performs better for output dataset 6 compared to 1 that is the models perform better when 

trained separately with days with only lightning and only no lightning. 

Comparing the tables 8.10, 8.11, 9.2, 9.3, 9.5, 9.6, the improvement in the model 

performance can be observed. One of the reason of using ensemble models stated earlier in the 

dissertation is the statistical reasons. The ensemble models allows the individual learner to 

specialize local on the input data space and output is obtained by combining the results of 
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individual learners. Our results demonstrates significantly better performance of the ensemble 

learning methods compared to traditional regression models and NN model. 

 

 

 

 

Table 9.5 Summary of Model Results for four Cities for Output dataset 1 

 
Training Data Test Data 

MAE MSE R S MAE MSE R S 

Mht 

NN 0.6009 2.4879 0.6761 0.4555 0.6433 2.3370 0.4335 0.1254 

AdaBoost.RT 0.3789 1.9163 0.7813 0.5082 0.5578 2.0737 0.6216 0.1952 

AdaBoost+ 0.3691 1.8251 0.7860 0.5694 0.5578 2.0558 0.6079 0.2083 

AME 0.2611 0.7044 0.9225 0.8406 0.2802 0.6679 0.8715 0.6400 

Lwr 

NN 0.6973 4.3621 0.2958 0.0871 0.8778 5.0176 0.4130 0.1012 

AdaBoost.RT 0.3884 3.5923 0.5150 0.2112 0.5316 3.6619 0.6662 0.2792 

AdaBoost+ 0.3095 2.6210 0.6947 0.3662 0.4340 3.0395 0.7173 0.3825 

AME 0.1815 0.2603 0.9724 0.9414 0.3856 2.9584 0.7382 0.3743 

Tpk 

NN 1.3913 12.9613 0.5494 0.3016 2.4418 37.1506 0.4231 0.1909 

AdaBoost.RT 0.9053 11.7940 0.6434 0.3042 1.9056 32.0706 0.7026 0.2095 

AdaBoost+ 0.7070 8.8922 0.7448 0.4409 1.4621 22.9910 0.7928 0.3530 

AME 0.4493 3.0957 0.9138 0.8276 1.0227 9.6359 0.8871 0.8172 

Wht 

NN 2.8051 35.9343 0.5756 0.3312 3.3873 76.7436 0.4003 0.2314 

AdaBoost.RT 1.6712 24.3932 0.7692 0.4539 2.4409 48.0201 0.7963 0.4145 

AdaBoost+ 1.4615 18.4254 0.8263 0.5755 3.4672 49.9527 0.6401 0.3271 

AME 0.9677 8.1498 0.9225 0.8289 1.4358 18.6595 0.8883 0.7524 
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Table 9.6 Summary of Model Results for four Cities for Output dataset 6 

 
Training Data Test Data 

MAE MSE R S MAE MSE R S 

Mht 

NN 0.6013 2.4831 0.6784 0.3905 0.6606 2.4647 0.3496 0.1072 

AdaBoost.RT 0.3126 1.7949 0.7903 0.5499 0.5711 2.0419 0.6194 0.2043 

AdaBoost+ 0.3097 1.7261 0.7955 0.5970 0.5694 2.0107 0.6083 0.2195 

AME 0.2078 0.6390 0.9294 0.8504 0.2516 0.7266 0.8674 0.6046 

Lwr 

NN 0.6951 4.3583 0.3082 0.0953 0.7420 4.5990 0.5073 0.1968 

AdaBoost.RT 0.5396 4.0956 0.4224 0.1436 0.6379 3.6254 0.6963 0.3007 

AdaBoost+ 0.3450 3.3817 0.5720 0.2669 0.5373 2.8289 0.7624 0.4289 

AME 0.1722 0.3762 0.9610 0.9217 0.4516 2.3559 0.7867 0.5390 

Tpk 

NN 1.3527 12.4057 0.5751 0.3311 2.3883 35.5507 0.4619 0.2173 

AdaBoost.RT 1.0009 10.6172 0.6769 0.3556 1.9180 27.7728 0.7279 0.2767 

AdaBoost+ 0.5066 3.2639 0.9084 0.8094 1.0538 9.2203 0.8918 0.8302 

AME 0.4475 2.8011 0.9217 0.8402 0.9915 9.4382 0.8882 0.8080 

Wht 

NN 2.7867 35.5654 0.5810 0.3386 3.3631 72.2817 0.4386 0.2697 

AdaBoost.RT 1.4610 19.086 0.8135 0.5728 1.7961 26.5714 0.8646 0.5648 

AdaBoost+ 1.2217 10.8976 0.8937 0.7851 1.4794 15.0616 0.9101 0.8080 

AME 0.0944 7.6422 0.9262 0.8556 1.1823 9.2845 0.9473 0.8330 

 

 9.4 Summary  

In this chapter, the models were trained with days that have no lightning and performance 

of the models were discussed. Three different input datasets and six different output datasets 

were defined. Comparison of different models performance with these input and output datasets 

are discussed. Overall, the models trained with separate data, days with lightning and no 

lightning, perform better when compared to models trained with all day in the data.  
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Chapter 10 - Application of CM Models for Estimation of Animal-

Related Outages 

Gui, Pahwa and Das found the correlation between animal activity and animal-caused 

outages by analyzing historical outage information for different months of the year under 

different weather conditions and relating it to behavioral patterns of animals [23-25]. A Poison 

model, NN model, wavelet-based NN model, and a Bayesian model combined with Monte Carlo 

simulation are presented in [23-25]. The models were trained with historical data for the four 

cities in Kansas, Manhattan, Lawrence, Topeka, and Wichita, from 1998 to 2006 and tested for 

2007. The data was aggregated on a weekly basis since a larger sample size evened out some of 

the randomness in the daily data. In this chapter, the ensemble learning models are applied for 

estimation of animal-related outages on overhead distribution systems to test their performance 

for animal-related outages.  

 10.1 Data Overview 

The same historical data used by Gui, Pahwa and Das was considered to evaluate 

performance of the ensemble models [23-25]. Figure 10.1 illustrates that, under fair weather 

conditions, animal activity is the most significant cause of outages as compared to other factors. 

Fair weather days have temperature within 40 and 85 degrees F with no other weather activity. 

From historical data it is observed that animals are most active in fair weather [23]. When there 

is strong wind, ice, thunder storm and other unfavourable weather conditions, they stay in their 

nests [23]. Additionally, animals have different behavioral patterns in different months of the 

year and thus months have considerable impacts on animal-related outages in overhead 

distribution system. The months are grouped based on low, medium and high level of animal 

activity and classified as Month type 1, 2, and 3 as follows: 

 Month Type 1: January, February, March; 

 Month Type 2:  April, July, August, December ; 

 Month Type 3:  May, June, September, October, and November. 

 

 



137 

 

 

Figure 10.1 Percentage of Outages Caused under Fair Weather Conditions between 2003 

and 2004 [23] 

Since a month can have 28, 29, 30, or 31 days, even allocation of the weeks in a 

particular month is difficult. In order to ensure that every week belongs to only one month, some 

weeks have eight days [23]. For months that have 31 days, the first week has seven days and the 

remaining three weeks each have eight days. For months that have 30 days, the first two weeks 

each have seven days and the other two weeks each have eight days. In February, which typically 

has 28 days, each week has seven days. If it is a leap year, the last week of February has eight 

days. Classification of week as mentioned above does not impact results because both the input 

state and output have the same classifications for weeks [23]. Based on this classifications, the 

number of fair weather days per week can vary from zero to seven or eight [23]. Since the 

number of fair days in a week impacts outage occurrences in that week, the number of fair days 

per week is used as an input factor in the models for weekly animal-related outages. Also, the 

month type of the month in which that week lies is taken as the second input factor for weekly 
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animal-related outages. Detailed information, such as animal characteristics, outages caused by 

animals, and data processing can be found in [23-25].  

 10.2 Previous Neural Network Model 

Structure of the NN model presented by Gui, Pahwa and Das for outage estimations is 

shown in Figure 10.2 [23]. The model has the number of fair days per week, month type, and 

outages from the previous four weeks as inputs.  

 

 

 

Figure 10.2 Structure of NN Model [23] 

 

With a single output node, this model gives one step ahead estimation. Input and target 

data are normalized between 0.1-0.9.  The learning rate is considered as 0.5, momentum as 0.2, 

and optimum training times as 3000. Simulations were carried out for the four cities, and 

performances of the model were measured using the mean absolute error (MAE), given in Table 

10.1. The correlation, R and slope, S between the observed and estimated outages tabulated are 

the overall R and S for training and test data. The results show that the model performs better 

with increase in the size of the cities. 
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Table 10.1 Previous NN Model Results for Four Cities [23] 

NN Model 
Training 

MAE 

Testing 

MAE 
R S 

Manhattan 1.93 2.09 0.29 0.76 

Lawrence 2.74 3.38 0.36 0.86 

Topeka 6.29 6.94 0.76 0.90 

Wichita 7.67 6.38 0.69 0.90 

 

 10.3 Model Construction & Simulation Results 

In this section, the construction of various models for estimation of outages caused by 

animals is discussed and experimental results are presented. The NN model, AdaBoost models, 

and AME model were considered in this study.  

 10.3.1 Neural Network  

The most common three-layered feed forward neural network topology was used, which 

is able to adequately approximate nonlinear functions with sufficient accuracy. The network has 

a single hidden layer with sigmoid activation functions and is trained in the batch mode 

according to the error back-propagation algorithm with gradient decent. The number of fair days 

per week and month type are the two feature-related inputs to the neural network. Furthermore, 

outages of previous weeks are taken as additional inputs since similar patterns are observed in 

historical data. Thus the NN can learn the patterns and predict future outages based on learned 

patterns. By experimentation, Gui found the four previous week outages as a suitable number for 

additional inputs [23]. To make the model computationally simple, only one previous week 

outage is considered as additional input in this dissertation.  A 3x2x1 multilayered feed forward 

NN model structure considered in this work is shown in Figure 10.3, whereas Gui considered 

6x4x1 NN model, as shown in Figure 10.2.  
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Figure 10.3 Three-layer Feed-Forward NN Model 

where, 

Mn: the month type index of the forecasting week n; 

FDn: the number of fair days during the forecasting week n; 

O n-1: values of the time series O for one week before the forecasting week n;  

On: estimated output of the time series O of week n. 

Gui, Pahwa and Das also considered the sigmoidal function in the hidden and output 

layer. Learning rate, momentum and the optimum number of training times were 0.5, 0.2 and 

3000, respectively.  In this work, sigmoidal function in the hidden layer, linear function in the 

output layer, the learning rate of 0.01, momentum of 0 and 3000 as the number of training times 

were considered. 
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Table 10.2 Results of Neural Network Model for Four Cities 

Neural Network 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 9.8982     2.1843     0.5593     0.3021 5.1144     1.8683     0.3885 0.2867 

Lawrence 15.8521     3.1250     0.6857    0.4680 19.7885     3.7601     0.4263 0.4075 

Topeka 84.4520     6.8084     0.7729    0.5896 54.3965     5.7810     0.7552 0.7059 

Wichita 154.8318     8.6310     0.7800    0.5912 68.8767     6.2469     0.7399 0.9819 

 

The NN model was trained with historical data for the four cities from 1998 to 2006 and 

tested for 2007. Model performances were measured using the MAE, MSE, correlation, R, and 

slope, S given in Table 10.2. Figure 8.4 shows the scatter plot of observed and estimated outages 

with a regression line for the four cities. MAE for the training and test data obtained by Gui are 

shown in Table 10.1. It can be observed that the 6x4x1 model has slightly lower MAE values 

compared to 3x2x1 model. However, to use the NN model as the base learner in ensemble 

learning methods, it is kept computationally simple by using the 3x2x1 model. 

Figures 10.5-10.8 show the plot of weekly observed outages and estimated outages for 

Manhattan, Lawrence, Topeka, and Wichita. The figures indicate that the model can reproduce 

basic patterns of the time series quite well in training and testing durations. However, it still 

underestimates outages in the higher range and overestimates in the lower range, shown at the 

high peaks and base in the time series in Figures 10.5-10.8. 
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Figure 10.4 Plot of Observed and Estimated Animal-related Outages Obtained with Neural 

Network Model in Overhead Distribution Systems for Four Cities from 1998 to 2007 
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 10.3.2 AdaBoost Model 

The weekly animal-related outages time series is fluctuant and seasonal. In addition, 

noise could have deteriorated performance of the NN model. Ensemble learning methods may be 

used to approximate characteristics of the time series where each learner can be trained in one 

specific region. The AdaBoost structure, shown in Figure 6.1, is used here. In this work, four 

base-learners are considered. The base learner is the NN model presented in Section 10.3.1 with 

the structure shown in Figure 10.3. The training method is the same as that presented in Chapter 

6. In this proposed model, each NN model is trained in one specific input region and outputs of 

the NN models are combined using the combining rule specified in Chapter 5 to find the final 

estimation for the original series. 

The results are tabulated in Tables 10.3 and 10.4. The tables indicate that AdaBoost+ has 

better performance, followed by AdaBoost.RT compared to an NN model with smaller MSE and 

MAE values and high correlation coefficient in training and test durations.   

Figures 10.9 and 10.14 show the scatter plot of observed and estimated outages with 

regression line for the four cities for AdaBoost.RT and AdaBoost+ models. Figures 10.10-10.13 

and Figures 10.15-10.18 show the plot of weekly observed outages and estimated outages for 

Manhattan, Lawrence, Topeka, and Wichita for the AdaBoost.RT and AdaBoost+ model. The 

AdaBoost.RT and AdaBoost+ models are able to reproduce fluctuating patterns of the time series 

quite well in training and testing durations; however, they still underestimate outages in the 

higher range. 

 

Table 10.3 Results of Adaboost.RT Model for Four Cities 

Adaboost.RT 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 3.3883 0.9927 0.8836 0.6686 2.1028 0.8251 0.7125 0.4467 

Lawrence 7.7892 1.8940 0.8723 0.6501 4.5417 1.4592 0.7298 0.3919 

Topeka 50.0755 3.3548 0.8893 0.6751 41.7213 4.3797 0.8809 0.5057 

Wichita 55.2318 4.0011 0.9292 0.7777 21.6314 3.1175 0.8479 0.5773 
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Table 10.4 Results of Adaboost+ Model for Four Cities 

Adaboost+ 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 1.6513 0.8592 0.9518 0.8219 1.3111 0.6566 0.8325 0.5847 

Lawrence 3.5305 1.3293 0.9407 0.8170 2.4946 0.9759 0.8594 0.6102 

Topeka 22.0193 2.8002 0.9485 0.8337 20.9659 2.6823 0.9589 0.7065 

Wichita 33.8051 3.2699 0.9569 0.8637 12.5119 2.2847 0.9082 0.7104 

 

 

 

Figure 10.9 Plot of Observed and Estimated Animal-related Outages Obtained with 

Adaboost.RT Model in Overhead Distribution Systems for Four Cities from 1998 to 2007 
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Figure 10.14 Plot of Observed and Estimated Animal-related Outages Obtained with 

Adaboost+ Model in Overhead Distribution Systems for Four Cities from 1998 to 2007 
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 10.3.3 Annealed Mixture of Experts (AME) Model 

Performances of the proposed models were measured by MAE, MSE, and correlation, R, 

which are tabulated in Table 10.5. The table shows that AME has better performance compared 

to other models with smaller MSE and MAE values and high correlation coefficient in training 

and test durations. For all the cities, the AME model has correlation coefficient near 0.9, 

indicating the positive relationship between observed and estimated outages. Figures 10.19 -

10.22 show clusters of data for observed and estimated outages for training and test data for the 

four cities. Table 10.6 summarizes the number of data points each cluster receives in the training 

and test data for the four cities. Figure 10.23 shows the scatter plot of observed and estimated 

outages with regression line for the four cities for AME model. Most of the points are around the 

unity slope line. Figures 10.24-10.25 show the plot of weekly observed outages and estimated 

outages for Manhattan, Lawrence, Topeka, and Wichita for the AME model.  The model 

accurately estimates outages in the lower and higher range for all the cities. 

Table 10.5 Results of AME Model for Four Cities 

AME 

 
Training Data Test Data 

MSE MAE R S MSE MAE R S 

Manhattan 1.5039     0.8246     0.9467     0.8576 0.9390     0.5576     0.8859 0.6624 

Lawrence    3.1367     1.2829     0.9468     0.8423 2.2260     0.9125     0.8739 0.6530 

Topeka 11.0242     2.2725     0.9736    0.9344 11.4240     2.1174     0.9425 0.8028 

Wichita 19.7962     2.8531     0.9741     0.9320 7.5639     1.8747     0.9333 0.8686 

 

Table 10.6 Number of Data Points in each Cluster for Four Cities 

 

Training Data Test Data 

T
o
ta

l 

C
lu

st
er

 

1
 

C
lu

st
er

 

2
 

C
lu

st
er

 

3
 

C
lu

st
er

 

4
 

T
o
ta

l 

C
lu

st
er

 

1
 

C
lu

st
er

 

2
 

C
lu

st
er

 

3
 

C
lu

st
er

 

4
 

Manhattan 432 18 205 118 91 48 11 14 15 8 

Lawrence 432 107 57 193 75 48 11 14 16 7 

Topeka 432 124 70 175 63 48 8 19 11 10 

Wichita 432 126 151 97 58 48 15 7 9 17 
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Figure 10.19 Clustering of Estimated Animal-related Outages Obtained with AME Model 

in Overhead Distribution Systems for Manhattan for 1998-2006 and 2007 
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Figure 10.20 Clustering of Estimated Animal-related Outages Obtained with AME Model 

in Overhead Distribution Systems for Lawrence for 1998-2006 and 2007 
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Figure 10.21 Clustering of Estimated Animal-related Outages Obtained with AME Model 

in Overhead Distribution Systems for Topeka for 1998-2006 and 2007 
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Figure 10.22 Clustering of Estimated Animal-related Outages Obtained with AME Model 

in Overhead Distribution Systems for Wichita for 1998-2006 and 2007 
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Figure 10.23 Plot of Observed and Estimated Animal-related Outages Obtained with AME 

Model in Overhead Distribution Systems for Four Cities from 1998 to 2007 
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 10.4 Comparison of Models  

Gui, Pahwa and Das proposed the poison model, NN model, wavelet-based NN (WNN) 

model to find the correlation between animal activity and animal-caused outages [23]. The NN 

model with 6x4x1 structure with month type, number of fair days and previous four week 

outages as inputs was constructed. Wavelet-based NN model with three-stage DWT 

decomposition (WNN), with one stage wavelet decomposition (MWNN) was constructed. The 

hybrid model presented in [23] represents MWNN, one stage wavelet decomposition and 

artificial immune system (AIS). Historical data from 1998 to 2007 was considered and carried 

out the simulations. As mentioned in [23] the hybrid model outperformed other models followed 

by MWNN model for Manhattan, Lawrence, Topeka, and Wichita for the test data. An NN 

model was developed and because of randomness in the data, it could not catch the high peak in 

the time-series of weekly animal caused outages. A wavelet based NN models which decompose 

the data into approximate and detail subseries, used NN models for the subseries estimation and 

summed up the outputs from the NN models to get the final estimation for the original data. 

Three stage and one state wavelet decomposition was considered in [23]. To overcome the 

overtraining problem in the application of NNs, the Artificial Immune System was applied in one 

stage DWT decomposition for hyper mutation and retraining of the networks during the testing 

stage. From the simulations results, the hybrid model has better performance followed by one 

stage wavelet decomposition NN model [23].  

In this dissertation, to make model computationally simple, a 3x2x1 structure NN model 

with month type, number of fair days and previous week outage as inputs was constructed. An 

ensemble models, AdaBoost.RT, AdaBoost+ and AME, with 3x2x1 NN model as base learner 

was constructed. The historical data as considered in [23] was used to evaluate the performance 

of the models. The construction of the models and simulation results are discussed in section 8.3. 
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Table 10.7 The MAE of Models for Four Cities 

Models Wichita Topeka Lawrence Manhattan 

Hybrid [23] 4.67 3.70 1.50 1.22 

MWNN [23] 4.71 3.77 1.53 1.25 

WNN [23] 6.75 5.62 2.39 1.51 

AdaBoost+ 2.7773 2.7413 1.1526 0.7579 

AME 2.3639 2.1950 1.0977 0.6911 

 

Table 10.7 shows the mean absolute error (MAE) with different models for the four 

cities. Note that the MAE for ensemble models are overall MAE for training data and testing 

data combined, which are different from the ones in Table 10.4 and 10.5. Comparing the MAE 

values, it can be observed that ensemble models have outperformed the hybrid model. The MAE 

drop for hybrid model and AME is very significant: for Wichita it dropped from 4.67 to 2.36, for 

Topeka it dropped from 3.7 to 2.1, for Lawrence it dropped from 1.5 to 1.09 and for Manhattan it 

dropped from 1.22 to 0.69.    

 10.5 Summary 

In this chapter, ensemble learning methods were applied for estimation of animal-related 

outages in the distribution system. The construction of simple NN model and ensemble models 

were presented. Comparison of models developed by Gui and ensemble models were also 

discussed. The simulation results shows that ensemble methods gave significantly higher 

performance compared to wavelet-based NN models. For ensemble models for all the cities, the 

correlation coefficients are close to 1 too which indicates the high degree of relation between 

estimated and observed values. Overall, the ensemble model outperformed wavelet based NN 

model and gave significantly good performance. 
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Chapter 11 - Conclusion and Future Work 

In this dissertation, different feature-based methods are proposed for estimation of 

weather and animal-related outages in the overhead distribution system. The proposed methods 

are applied to available historical weather and outage data to demonstrate their effectiveness. In 

this chapter, the primary results and conclusion are summarized, followed by suggestions for 

possible research directions for future work. 

 11.1 Conclusion 

Considering discussions of previous research on the impact of various environmental 

factors on the distribution system, assessment of distribution reliability, and outage estimations, 

this dissertation aims to extend and implement algorithms in order to more accurately estimate 

outages caused by weather and animal activity. The utilities can use the approaches presented in 

this dissertation to find distribution reliability at the end of the year.   By comparing the 

reliability of a specific year with past, the utilities can identify critical areas and plan remedial 

action.   

The weather and outage data from 2005 to 2011 for Manhattan, Lawrence, Topeka and 

Wichita in Kansas are considered in this dissertation to evaluate the performance of the proposed 

models. Separate analysis for outages caused by wind, lightning and animals are considered. In 

the initial analysis, lightning strokes recorded within 200m and 400m around the feeder were 

used to know whether the distance of the recorded lightning will have any impact on system 

performances. Experimental results showed that the considering the lightning data within a 

distance of 400m around the feeder slightly improved the performance. In this dissertation, 

lightning stroke recorded within 500m around the feeder, as per the standard industry practice, 

were used to study the impact of lightning occurrence on the distribution system outages. For this 

study, the outages caused by wind, lightning, trees, equipment and unknown factors, outages 

possibly caused by lightning and wind are included in the outage count. All the proposed models 

in this dissertation were successfully implemented in MATLAB and model performances were 

evaluated using available historical data by computing MAE, MSE and R. 

Linear, quadratic and exponential regression models were used to compare the 

performance. Simulation were carried out with lightning and wind as independent variables and 
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results show that among six regression models developed, Model 4 (eqn 3.19), which considers 

quadratic relationship both for wind and lightning and combined effect of lightning and wind, 

have better performance than other models. However, due to random nature of weather effects 

and presence of noise in the data, regression models fail to estimate outages in the lower and 

upper range of observed outages.  

The NN model, which has the ability to approximate nonlinear functions, is used to find 

the complex relationship between the weather and weather caused outages.  With lightning, wind 

and observed outages as input to the model, the network structure and parameters were 

optimized by experiments. The NN model outperforms the regression models, but fails to 

estimate outages accurately. The performance of the NN model can be improved with the use of 

machine learning algorithms, specifically ensemble learning methods. In ensemble learning 

methods, multiple networks are trained using identical data with assigned weights. Based on 

performance of network in the previous training, the weight associated with data are updated in 

the current training.  The final output can be weighted average of individual network output or 

weighted sum of individual network with weights being input dependent.  This way with use of 

many networks, individual networks are specialized to perform in specific region.  The number 

of learners to be used in the ensemble is found by experiments. 

The AdaBoost.RT, AdaBoost+, and AME based ensemble learning methods were 

proposed to estimate outages caused by weather in overhead distribution feeders. In AdaBoost 

models, the learners are trained sequentially based on the performance of past learner. The 

AdaBoost.RT and AdaBoost+ model differ in the way the individual network outputs are 

combined to obtain the final output. In AdaBoost.RT, the ensemble output is the weighted sum 

of all learners, with the learners receiving weights proportional to the logarithm of their inverse 

error rates. In AdaBoost+, the ensemble output is the pseudo inverse of all learners. To stabilize 

the matrix inversion in pseudo inversion, regularization has been incorporated. In AME method, 

the learners are trained in parallel and algorithm parameters are learned using MFA. When the 

temperature reaches a critical temperature, the MSE of the learners stabilizes. The optimum 

number for the maximum iterations is obtained by experiments. The critical temperature for all 

four cities is found to lie between 1.5 and 2. The ensemble output is the output of the individual 

learner whichever gives the minimum error. Simulation results shows that ensemble of networks 

perform significantly better compared to the other models. Among proposed ensemble methods, 
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it is found that AME has better performance followed by AdaBoost+. Also, results show that the 

ensemble learning methods are resistant to over-fitting due to noisy data and that they perform 

significantly better than a single network. We can see a significant improvement from regression 

model to ensemble models in estimating outages. And also the positive correlation close to one 

indicates the high correlation between observed and estimated outages. 

To further test the models, the data were divided into two sets, the days with lightning 

and the days with no lightning. The proposed models are trained separately with two data sets 

and the MSE and MAE values were computed. The models were trained with all days included 

and separately for days with lightning and with no lightning. Also, the estimated outages from 

the model trained separately were combined to find the MAE and MSE between the estimated 

outages and observed outages. These values were compared with the MAE and MSE values 

obtained from models trained with all days included. It was found that the prior approach has 

better performance values indicating better performance of the models trained separately.  

Since the results of ensemble learning models for weather-related outages were very 

promising, the models were extended to study their application for estimation of outages caused 

by animals. The historical data from 1998 to 2005 were used to evaluate the performance of the 

models. The model performance were compared with models presented in [23] and the 

simulation results shows that the ensemble models outperformed the hybrid and wavelet-based 

neural network model.  

 11.2 Future Work 

Further research to improve AdaBoost models should be focused on automating the 

choice of optimal value of threshold depending on characteristics of the data set. Other learning 

models as a base learner in the ensemble learning method can be investigated in the future.  

Other variables to represent wind, such as wind gust duration and gust speed, can be 

investigated.  Furthermore, in this dissertation, cutoff for the wind speed is not considered. When 

the wind gust is less than 15-25 mph and with no lightning occurrence, the probability of outage 

happening is zero. This calls for investigation of the models with a cutoff value for wind speed. 

Tree density information along the overhead feeders will greatly improve the estimations 

of animal-related outages since tree attracts animals and animals can cause outages indirectly 

through trees. And the proposed models can be applied for available 2005 -2011 data. 
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Finally, the proposed models are suitable for end-of-the-year reliability evaluation based 

on past data.  Based on the weather scenarios, future outage prediction can be researched.  

Further, the proposed models provide estimated outages without a confidence bound associated 

with them. These models can be extended to include determination of confidence bound both for 

outages caused by weather and animals. Such statistical analysis can be used to benchmark the 

performance of the system. If the number of outages observed for a year fall within the 

confidence bounds, the utilities can justify the results to the regulatory commissions. However, if 

the observed outages are outside the bounds, the system performed either better or worse than 

expected. Specifically, if higher than upper bound, the utility will have to do further investigation 

to determine specific reasons for higher outages and fix them to prevent large number of outages 

in the future. 
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