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Chapter 1

INTRODUCTION

A safety analysis is an important aspect during the design,
construction, and operation of a nuclear power plant. A good deal of ef-
fort is expended on this analysis to ensure the safe operation of the

plant.

It is important to develop a failure model which has the

ability to make future predictions about the failure behavior of

systems under scrutiny. The nuclear industry is relatively new and the
systems and components are designed to perform their task with high
reliability. Therefore, a safety analysis is often based on data
accumulated from components in power plants which exhibit inherently low

failure rates.

When considering a safety analysis on any system, one must
first determine a proper failure model to utilize in describing the
failure characteristics of the particular components or systems. The
better the agreement between a model and the past failure data for the
system, the better one feels in his description «f the stochastic nature
of the failure mechanism, particularly when the development of the
failure model is based on reasonable physical assumptions. Many diff-
erent statistical failure models can be proposed based on different as-
sumptions for the failure mechanism, type of failure, relation of one
failure to another, the dependence of one part of the system on another,

etc.

One of the most useful statistical models :¢ diescribe the failure

of components with low failure probabilities is the compound or



Bayesian model. Given a class of similar components, this model assumes
the failure rate varies from component to component according to some
unknown prior distribution, yet remains constant for each individual com-
ponent in the class. The probability of observing F failures in test

time T, assumed in this study to be given by the Poisson distribution,

ig then averaged over all possible failure rates described by the prior

distribution to obtain the compound or marginal distribution.
i

Generally, the gamma distribution is cheosen to represent the prior
distribution in the compound model because of the analytical sim-
plification afforded by its use when combined with the Poisson
distribution. In particular, an associated distribution, the
"posterior', becomes a gamma distribution (with different parameters)
and for this reason the gamma distribution is called the "conjugate"
distribution to the Poisson. While other prior families could, in
principle, be used, the numerical evaluation of such non-conjugate com-
pound models is exceptionally difficult. Although the conjug;te gamma-
Poisson model is mathematically convenient, it is unknown how the
results of the failure analysis depend upon the a priori selection of
the gamma family. To answer this question was one of the primary pur-

poses of this study.

Once the functional form has been selected to represent the
prior distribution, one must determine appropriate values for the
prior parameters so that the resulting compound model agrees as
closely as possible with observed failure data. Several techniques

are available for the prior parameters. In this study, three



methods were used to estimate values of the prior parameters: (1) mat-
ching the data moments to those of the prior distribution (PMMM), (2)
matching the moments of the marginal distribution to those of the data
{(MMMM), and (3) the maximum likelihood method based on the marginal dis-
tribution (MMLM) where the parameter values are chosen so as to max-

imize the priobability of observing the actual data.

‘This study is a summary of previous reports showing the use of non-
conjégaté prior distributions in compound failure models and extends the
use of different prior family selections in compound failure models. In
this study, simulated failure data of the (F,f) type were generated from
alternative non-conjugate compound modeis. In particular, the prior dis-
tribution was taken as belonging to (1) the loggamma family and (2) the
logWeibull family. In a previous study [1], the prior distribution was
taken as belonging to (3) the gamma family, (4) the Weibull family, (5)
the lognormal family, or (6) the logheta family. The simulated failure
data from non-conjugate models were analyzed by the assumed gamma-
Poisson failure model as well as the correct failure models from which
the data were simulated. The free parameters were estimated using the
PMMM, MMMM, and MMLM. Numerical techniques for estimating the free
parameters of these prior famjilies were determined in a previous report

[2] and have been extended in this study. Many comparisons are presented
in this report which use both conjugate and non-conjugate models to fit

data from non-conjugate distributions.

The main conclusion derived; from both studies is that the simpler

conjugate model can be used to describe failure data even when the data



is known to come from a non-conjugate distribution. There appears to be
no need to expend the large computational effort needed to use the non-
conjugate compound models. The results of the failure analysis are not
significantly affected by the selection of the gamma family. Of far
greater importance in the safety analysis is the method used to estimate
the parameters of the chosen prior family from the failure data. For
some data sets the three parameter estimation techniques are found to

give quite different results.



Chapter 2

FAILURE MODELS

In developing a failure model to analyze the safe operation of nu-
clear power plants, one needs to distinguish between components or sys-
tems which are normally active and those that are normally inactive.
Normally active components are defined as components thatiare continually
operating during the operation of the plant. These components include
such items as cooling pumps, safety monitors, heat exchangers, and hun-
dreds of others. The other class of components are those which are nor-
mally inactive and used only under specific conditions. Such components
includes such items as backup cooling systems and standby diesel
generators that mostly sit idle until @ circumstance arises that war-

rants their use, at which time they are required to start without delay.

For normally inactive components, one may be concerned with
predicting the probability that a component will fail to perform its
designed task when needed. For this type of "failure-on-demand"
situation, one may want to use failure models tc estimate the

probability that F failures will result from T demands of the component.

Failure models may also be used to describe normally active
components. For example, a failure rate or a mean time to failure can
be associated with components that are normally active. The failure

rate being failure per unit time. The mean time to failure is the in-
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verse of failure rate (1/1) and gives the expected length of time

for a component to operate before failing.

Consequently, to evaluate the safety of a nuclear power plant one
would require at least two failure models; one to determine the
probability of a failure-on-demand, the other to analyze the failure
rate case. This study is concerned with the failure of components which
are normally active, termed the "failure-rate" case. It is assumed that
angy component which fails can be rapidly repaired (or replaced) to its
initial state and brought back into operation without any significant
loss of operating time. In this study the failure-rate problem is

"

treated by both "homogeneous" and "compound" models described below.

2.1 HOMOGENEOUS MODEL

The homogeneous model is the simpler of the two failure models used
in this study. In this model the failure rate, ), is assumed to be an
unknown constant common to all components in a given class. In this
study, it is assumed that a component which fails is immediately
repaired and brought back into operation with its failure rate
unchanged. Given that failures occur randomly and independent of one
another, that is, the failure of one component does not directly or in-
directly affect the failure rate of another component, the probability
of obtaining F failures in time of operation, T, is assumed to be

given by the Poisson distribution,

F
AT ~AT
£(F|A,T) = I(‘(F-)l—l e , F=0,1,2,...2-D

where I'(F+1) is the gamma function.
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The unknown failure rate A may be estimated from the given failure
data. By applying the maximum likelihood method [3] to the Poisson dis-
tribution one estimates the failure rate as the ratio of the total

number of failures to the sum of the testing times, i.e.;

Since components in a nuclear power plant are designed to be highly
reliable and therefore to have very low failure probabilities, one often
has availabie failure data that is termed 'censored" data. Censored
data occurs when a group of components are tested for an extended period
of time during which a certain percentage of the components do not fail.
For a component which has zero failures in test time T, the homogeneous
model will predict the failure rate to be zero. This is inadmissable since
no machine is totally immune to failure. To obtain a better estimate of
the failure rate, similar components are often lumped together and their
failure rates averaged over all the components. However, it has been ob-
served from experience that such grouped failure data may exhibit a
greater variation in the observed F; than would be expected from the
homogeneous model [4-6]. Therefore, alternatives to the homogeneous

model may be required to obtain more reasconable r=sults for components

with inherent low failure rates.

2.2 COMPOUND MODEL

A second and more complex model, known as the "compound model”, is
better equipped to treat censored data. In this model, the failure rate
(A) is assumed to vary from component to component yet remain constant

for each component in the class. The failure rate ; is thus regarded as



a random variable with a distribution g(X). This distribution is termed
the "prior" distribution since it has to be determined from previous
knowledge of the components in the given class. Once g(A) is known, the
probability that a component randomly selected from the class will ex-
perience F failures in test time T is given by the "marginal" dis-

tribution

h(F;T) = f f(F')\;T) g()\) di » F = 0’1’2’... (2.3)

l all A

where the "conditional” distribution f is given by the Poisson dis-
tribution of Eg. (2.1). The marginal distribution can be viewed as
weighing the Poisson distribution by the information about the dis-
tribution of the failure rates contained in the prior distribution.
Therefore, should each component in a class under consideratiocn have the
same failure rate KO‘ the marginal distribution of Eq. (2.3) would sim-
plify to the homogeneous model, i.e. to the Poisson distribution of Eq.
(2.1). In mathematical terms, the prior distribution for this case

becomes a delta function, i.e., g(A) = (A-Xp).

Also it is of practical interest to obtain a distribution which
combines the prior information g()) and posterior information of the
data (F,T). The estimated distribution of A for a component randomly
selected from the class described by g(A), and for which F failures in

test time T are observed, is

o sEE|NT)
u(A[F,T) = h(F;T) y

G <A <o (2.4)

From this "posterior' distribution for an indiv:3isal component, one can
P
make a future prediction about the behavior of 4 _omponent by estimating

the probability interval for the failure rate ! »f the component.



2.3 CLASSICAL AND BAYESIAN APPLICATION OF THE COMPOUND MODEL

In this section, interpretation of the prior distribution is
discussed as to whether it is obtained through subjective judgement or
not. When developing a scientific procedure for an analysis, one should
try to minimize any subjective judgement by the user. If one gives the
same data to different individuals, the results or answers will
differ the majority of the time unless there exists a strict procedure

for each to follow thereby eliminating individual judgement.

In the Bayesian application of the compound model the prior dis-
tribution represents both the phvsical variation of ) among components
as well as the uncertainty of the analyst about what the actual values
of ) are. Before the analyst observes any data, the prior distribution
provides some information about the expected failure probability of the
component. The prior distribution is thus an a priori probability model
for the failure probability. Since the prior distribution is based upon
the analyst's prior knowledge and assumptions about a components failure
probability, the prior distribution represents subjective judgement or
prejudice towards a component. As such, the outcoms of the analysis
using the compound failure model will be dependent upon the analyst's

uncertainty or prejudice for a particular component.

The classical analyst, on the other hand, wishes to avoid all sub-
jective aspects in his probabilistic models and tc use only observed
failure data. By eliminating subjective judgemcnt, the analyst hopes to
remove any error introduced into the madel due ©o axtraneous decision
making. Nevertheless, a classical analyst can 2lsc ase prior information

to improve his predictions about a particular comnponent with a low
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failure probability. Rather than treat each component in isclation, he
may assume (subjective?) that the component of concern belongs to a
class of similar components whose constant failure probabilities are
distributed according to some (prior) distribution. Each component in
this class is still assumed to have a constant failure probability. One
may then combine the prior information (the distribution of failure
probabilities in the class to which the component of concern belongs)
with the observed data for the component in question. Such was the basis

for the compound model developed in the previous sectiomn.

In both the classical compound model analysis and the Bayesian
analysis, information about the distribution of the failure probability
concerning the component must be obtained. In the Bayesian analysis this
information is obtained from one's own experience and personal judgement
thereby introducing subjective judgement and possible error into the
analysis. In a classical compound model, this information is given
either a priori or must be established from data observed for the com-

ponents in the class.

The development of the failure probability model for a particular
component is identical for both analyses. In summary, the difference
between the Bayesian approach and the compound model of classical
analysis is the interpretation attached to the prior distribution and

the methods used to estimate it.
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Chapter 3

THE PRIOR DISTRIBUTION

3.1 CHOICE OF PRIOR DISTRIBUTION

Before the compound model discussed in the previous section can be
used to analvze failure data from a given class of components and to
make predictions about any one of the components, one needs to predeter-
mine or estimate an appropriate prior distribution. In principle, any
non-negative function with unit area could be used. However, there are
criteria which the prior distribution should satisfy. In practice, one
often choses a function that simplifies the margimal or posterior dis-
tributions such that they can be evaluated analytically. Other
requirements of the functions used to represent the prior distribution
are that it should have several free parameters whose values determine
the shape and range of the distribution. The number of free parameters
in the function should be kept to a minimum so as to minimize the as-
sociated problem of obtaining appropriate parameter values. By varying
the values of the parameters, the prior distribution should have the
ability to assume a wide variety of shapes in order to model as many

component classes as possible.

Usually the gamma family is chosen as the prior distribution in
the application of the compound model of Eq. (Z.3). This decision is,
more often than not, based on analytical convenience since the gamma

-11-
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family permits the marginal distribution to be evaluated explicitly and
has the property of yielding another member of the gamma family for the
posterior distribution. The gamma family is thus called the "conjugate"
prior distribution due to this pairing of the prior and posterior

distributions.

The two free parameters in the gamma family allow the functional
form to assume many different shap;s. In the past, it has often been as-
sumed that the gamma family has sufficient flexibility to model the ac-
tual distribution of A amo;é the components in any given class. One may
guestion this assumption based on the limitations forced on the compound
model by the functional form of the gamma distribution, and wonder to

what degree the results are affected by the choice of a gamma prior

distribution.

In this study, alternatives to the gamma distribution are in-
vestigated for use as a prior distribution in the compound model. The
non-conjugate distributions, loggamma and logWeibull, are presented in
this study as possible alternatives for use as prior distributions. In
order to obtain a more complete analysis, three other non-conjugate
distributions, previously investigated [L], are also included. These are

the lognormal, Weibull, and loghbeta distributions.
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3.2 PROPERTIES OF VARIOUS PRIOR FAMILIES

[n this section, six different functions are presented as possible
prior distributions for failure-rate analyses. A brief summary of some
of the properties of each function, and figures are presented showing

the possible shapes each function mav assume.

3.2.1 Properties of Prior Families Selected for Analyses

GAMMA DISTRIBUTION [2]

[conjugate distribution to the conditional Poisson Distribution]

ta) Density Function:

a-1_a .
(1-9) 8 e—b(A—S) (3.1)

g(isa,B,B8) = T ()

(b) Parameters and Range:

(i) Parameters: shape a>0; scale £>0; shift >0

(ii) Range: 0 < A , =06 < ) < =
— "min = =

(c) Shape of Density Function: (see Fig. 3.1)
(i) 1if a>1, g(A) has a mode at Ko ™= 8 (a-1)/8
(ii) 1if a<l, g(A) becomes unbounded at Amin = 8, and g(})

decreases monotonically.

(d) Cumulative Distribution:
g(x;a,B,8) = P(a,R(A-0)) (3.2)

where the "normalized incomplete gamma function'” P is defined as

Blign) = o [ et L g (3.3)
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(e) Moments about Zero:

Use the recursion relation

k-1
L. g

g% 4

wl = B[] =

: ilk].1
(a+i) - ) (-1) [.Je W o BEL, B
0 i=1 L
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(a)

(b)

(c)

(d)

(e)
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WEIBULL DISTRIBUTION [2]

Density Function:

B-1 ’ B
g(h;a,8,0) = £ [ﬂ] exp —P“a—J ] (3.5)
a o Lt

Parameters and Range:
(i) Paramcters: shape B>0; scale a>0; shift 6>0

(ii) Range: 0 < A, =8 < X < «
— "min —
Shape of Density Function: (see Fig. 3.2)

1,1/8
2

(ii) if B<l, g(A) decreases monotonically and becomes unbounded

(i) if 8>1, g(}) has a mode at A . = 6 + a(l-

) = f
as approaches Amin

Cumulative Distribution:

B
G(r;a,B,08) = 1 - exp[—(k;e] } (3.6)
Moments about Zero:
Use the recursion relation
k k k K i i |k
w! T EMX) =a T +=2)- 3 (-1)786 ‘)w' ., k=1,2... (3.7)
k 3 o1 if k-1
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LOGNORMAL DISTRIBUTION [2]

[In(x-8) ~ Normal(a,B)]

(a) Density Function:

g(A;a,B.8) = [(A-8) /Zmg] % exp[—ln(k—B)—a)ZIZBz] (3.8)

(b) Parameters and Range:
(i) Parameters: -=<a,B<®; shift 8<0
(1ii) Rangu: A>8

'

(c) Shape of Density Distribu@ionf (see Fig. 3.3)
2
(i) g()) has a mode at A= 8+ exp[-B +a)

(i1) increasing B or decreasing o shifts g()X) to smaller A-values

(d) Cumulative Distribution:

G(A;1,B,8) = % [1 - Sign(x*)erf(IA*J/J§)} (3.9)

ahisre & = [-Anlh-8) + al/e

{(e) Moments about Zero:

Use the recursion relation

= B(35] = anplis + P8/ -

B iy k=l,2,... (3.10)

Il 1

[ i Y
I
e
St

i
fasl

-

“k

(=

with w' = L.
0
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LOGBETA DISTRIBUTION [2]

[InA ~ Beta(o,B,a,b)]

(a) Density Function:

g(i;a,B,a,h) = 77%&%%%%7 (b—a)l_uﬂB (1nA—a)a-1 (b-ln?\)s_l (3.11)

(b) Parameters and Range:

Parameters: shape o,8>0; range -®<a<b<w
_ : 3 a b
Range: 0 < A_, A< A < ®; yhere A_, %= e and A = e
- min — " — "max min- max
(c) Shape of Density Distribution: (see Fig. 3.4)
(i) if a<l, g(A) is unbounded at X ., o
min
b
(ii) if R<l, g(x) is unbounded at A = e
max
(iii) if a>1l and B>1, g(A) has a mode between X . and A
B min max
{iv) , if a>1 and B<l, g()) either has both a minimum and a
maximum, or increases monotonically
|
: (v) if o<l and B>1, g(A) decreases monotonically
(d) Cumulative Distribution:

G(r;a,8,a,b) = IA*(U,S) (3.12)
whope 4 = [lni-al)/(b-a) and the "incomplete heta function' is
defined as

_ _I'(at+B) Py g1 ,
Ip(a,B) =TT (8 g X (1-x) dx.
(e) Moments about Zero:
Use numerical techniques to evaluate
max
mL = E{lk] = f 1K g{i;a,B,a,b) dx
Amin
1
I T
B T 1- £(y)-F(1) -£(0) }d
@) T8 [ . vy {(1l-y) [(E(y)-Ey™ 7] Y |
= — i
+ {——fél) + -f—_io)}] Pl

where f(y) = expl[k{a+(b-a)y}].
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(a)

(b)

(c)

(d)

(e)

=P

LOGGAMMA DISTRIBUTION
[-1lnA ~ Gamma (a,B,0)]

Density Function:
-1 »
g(A;a,B8,8) = [F(a)82] ™ (~1n1-8)*"1 exp(-(-1na-8)/8]
Parameters and Range:

(i) Parameters: a,8,>0; 6>0
-6

(ii) Range: 0 < X < X where A = e
— 7 = "max max

Shape of Density Distribution: (see Fig. 3.5)

(i) if o>l and B<l, have mode at exp[-{8+(1l-a)/(1- %J}]

(3.14)

(1i) if a<l and B>1, g(A) has minimum at exp[-{6+(l-a)/(1- %)}]

(1ii) if a<l, g(X) is unbounded at A = e“e
max

(iv) if B8>1, g(A) is unbounded at A=0

(v) if o>l and B8>1, g(X) decreases monotonically

(vi) 1if a<l and B<l, g(X) increases monotonically
Cumul ‘tive Distribution:

G(r;a,B,8) =1 - P(a,[-1nr-6]/8)

where the '"mormalized incomplete gamma function' is defined

. by Eq. (3.3).

Moments about Zero:

w

(3.15)

(3:..16)



_23-

*sxajsweied $37 YITm UOTIETIBA SIT PUB UOT3Idung

ﬂvwﬁmlﬂmlﬁml.—m

bl

dvmdv—vwbvﬂﬂ

c@mevﬁvnmva ﬁvqalmUHNUI~a

v

(8

qmv

(o}

B sl /)

4> 8 [¢'M="0="1a' B

g9>1>
4

‘A3Tsuap

emue33o] 9yl S°¢ %14

178-Lgalanly "o foapnleslo

L4

1AL

08

NoL



24

LOGWEIBULL DISTRIBUTION
[-1nA ~ Weibull(a,B,8)]

(a) Density Function:

g-1 B
g(r;a,B,0) = a[BA]_l [:&Eé:ﬁ} exp[—{:£3§:gi ] (3.17)

(b) Parameters and Range:

(i) Parameters: shape B>0; scale a>0; shift 6>0

(ii) ; Range: 0 < XA ., =8 < X ¢« ) = e_e
5 — "min — " — "max
(c) Shape of Density Function: (see Fig. 3.6)
. g
Y (i) 4F g<l, g()\) unbounded at A=Dand X _=e °
3 max

(ii) dif B=1 and o<l, g(X) increases monotonically
(iii) 4if B=1 and w>l, g()) decreases monotonically

(iv) if B>1, g()\) bounded

{d) Cumulative Distribution:

B
G(h;a,8,8) = exxn[—{ll“—;’"ﬁ] } (3.18)

a

(e) Moments about Zero:

Use numerical techniques to evaluate

max
w oz B[] = f 2K g(A;a,8,8) dx
A

k
min
g2 B-1 8
- o [k [ER T L [HMT g )
0 o L a
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3.3 EVALUATION OF THE MARGINAL AND POSTERIOR DISTRIBUTIONS FOR THE

COMPOUND MODEL

Once the prior distribution has been selected and values of the
prior parameters g determined, the marginal and posterior distributiocn
can be evaluated for given values of I and T. The marginal distribution

is given as

: max
h(F;T,H) =f £(F|2;T) g(A38) da (3.20)

AL
min i

'u

and posterior distribution as
u(A|F;T,8) = £(F[A;T) g(X;68)/h(F;T,8) . (3.21)

Generally, if a non-conjugate distribution is selected as the prior
distribution, the integration required to evaluate the marginal dis-
tribution of Eq. (3.20) cannot be performed analvtically, and numerical
techniques must be used. One must be careful when numerically evaluating
Eq. (3.20) since the prior distribution g(A) may become singular at one
or both endpoints. Further complications arise if the range of inte-
gration for Eq. (3.20) is infinite {i.e.,kmax ==}, as 1is generally the
case for the present failure rate problem. The problem of numerically

evaluating an integral at infinity is also encountered when the

cumulative of the posterior distribution is to ke evaluated, i.e.,

UG|F;T,8) = TO/TCG ) (3.22)

where the "convolution integral' T{A) is defined s

max )
I(A) : J E(F[A";T) 2(2758) dA" . (3.23)
" .

min



"

In order to evaluate numerically Egs. (3.20)-(3.22), it is neces-

sary to be able to compute I(}) for any )\ between Amin and Amax‘

For all of the prior families summarized in the previous section,
it is necessary to use a numerical guadrature scheme to perform the in-
tegration required for I(A). To simplify the numerical integration of
Eq. (3.23) one should first attempt to remove any potential sin-
gularities by performing analytical rearrangement of the integrand. Each
prior distribution must be treated on a case-by-case basis, since there
appears to be no specific technique for which each distribution may be
svstematically evaluated. In this section, explicit procedures are
presented for evaluating I(A) for each of the six prior families con-

sidered in this study.

5.3.1 Explicit Expresions for I())

As was mentioned previously, the prior families are generally
defined for failure rates between kmin and infinity. Consequently, dif-
ficulties are often encountered when numerically evaluating the con-

volution integral

F A '
__=I F AT S Grse) da! (3.24)
I(A) = TEFD JA A e g 39 ]
min

over the possible large range of integration.

It is generally more convenient to simplify the numerical analysis
of the convolution integrals by using a systemati:c. method to obtain an
effective finite upper-bound for A, such that the integral of Egq. (3.24)

can be set to zero for X>Am , i.e., find an upr=r bound Amaxsuch that

ax

b 1 max at
I LI g(A'|®) dr' = J i g gl+':0) dA" + e, (3.25)

Amin Amin



where € is some small error term. With an effective finite kmax’ the
convolution integral of Eq. (3.24) becomes
TF mlnLA,Amax] . 5
B e AT e At:0) di’ (3.26)
I = +eD . e g(1';8)
min

to within an error of €. The convolution integral of Eq. (3.26) lends

itself to numerical evaluation more easily than does Eq. (3.24).

In this study, the following form of Chebyshev's inequality is

utilized for determining kmax for a non-negative density function w(y)

defined on the interval 3e(0,=)} with unit area,

(W3]
ra
~}
ot

Prob{§A~u, > rg}l < I/r2 (

where y and g are the mean and standard deviation of w and r is any
!

positive number. By restricting r to r> 1/ g, this inequality reduces to

J w(i) dx < 1l/r™ , (3.28)
y+ro

since Prob{i<y-rg<0} = 0. If one then chooses r = max [W/0 1//e] then

f w(d) dx < e . (3.29)
n+ro
Since J w(A}dx = 1 , this last result implies
0 . :
_ru+rc'
1-g E‘J w(l, da. & by (3.30)
0

However, to find kmax = p+re by this method, the mean and standard

deviation of w(} ) must first be known. Another alternative estimate of

Rmax can be obtained by using another form of Iheoyshev's inequality,

1

J wd) dA < w/K, (3.31)
. )

Prob{x > K}

where K is any positive number. If K is chosen :~ be p/e, then
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u/e
l-g iJ‘ w(i) dx < 1, (3.32)
0 ,

Hence, if only the mean of w is known, then one could choose Amax=“/5'

Given a non-negative function w(A) with unit area on the interval

00

re(o,»). the effective value for A on the integralf w(X) dx can be

ax g
selected as
Ama£ = mi“[U/E, X + o max(u/o, 1//€)] (3.33)
SO that ; i
{ max
l-¢ E_J w(A) dr < 1. (3.34)
0

One can use the above results for finding an effective upper limit
for an integral over an infinite range to solve the problem of the con-

volution integral of Eqg. (3.24) which can be written as

A

L(\) =f E(F[A:T) g(h;8) an (3.35)
. 8

where f is the Poisson distribution, Eq. (2.1), and g(i) the prior
distribution. To ohtain an effective Amax for the convolutien integral,
one needs to apply the above results to the Poisson and prior dis-
tributions separately and use the maximum of the two values obtained.
Both of these distributions are non-negative and normalized such that
o
T fo E(F[A;T) dA = 1 (3.36)

and

fo BOAE) d4d = 1. (3.37)
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The mean and variance for Eq. (3.36) are (F+1)/T and (F+l)/T2,

respectively, so that from Eqs. (3.33) and (3.34)
b

1
l-e < T f E(F[A;T) dr < 1, (3.38)
0
where
/F+ Y
A = min[z;l, F;l + Tl max (FFHL, 1//e)] | . (5.39)

Similarly, if u and 02 are the mean and variance for Eq. (3.37), then
i
*2
l-g f‘f g(A;8) dx <1 . (3.40)
0

where

Az £ min[u/s, max (2y, u+0//Ej]T (3.41)

Having determined the upper limits kl and AZ for the Poisson and prior

functions, respectively, the effective upper limit for the convolution

integral of Eg. (3.35) can be taken as)\max = max[Al,AZL

Altheough Amax now requires some computational effort to determine
Al and AQ from Egqs. (3.39) and (3.41), the numerical evaluation of Eq.

(3.24) is considerably more efficient than that of Eq. (3.26) par-

ticularly for distributions describing low failure probability events.
3.3.1.1 Gamma and Poisson Comnvolution Integral [2]
For the gamma prior distribution of Eq. (3.17, Eg. (3.26) hecomes

(X)) =

*
Foo -8T (A -8
T -1 (T
2 £ f Byl LY gy (3.42)

FEFDT(@ (a+8)

* i
where A = min[x, ) ]. For g>1 the above integraud is bounded and
max

numerical quadrature mav be applied directly. Howaver, if 0<e<l the in-
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tegrand becomes weakly singular at A=0 and it is preferable to integrate
the above results by parts before applying numerical quadrature. The

result is

(T+R) ) dx

*
F,a -0T A -8
ry = TBe {J F eak(T+B){lie -

6
F(F+1)T (o+1) 0 A (aA0)

-0 ey (14 |
J

Although the integrand in this expression is no longer positive, it is

T
; (3.43)

& 50T -

bounded over the entire integration range and hence suitable to be

i
evaluated by numerical integration.

For the special case that the shift parameter €=0, the gamma dis-
tribution becemes the natural conjugate te the Poisson distribution and

Eq. (3.42) reduces to (using the incomplete gamma function if Eq. (3.3))
¥

F. o
[{F+a) T8 *
I(\) = P(F'H)’.,.}\ T+5)). I
T@T(FFD) g o Fio f (3.44)
As 3»0, this reduces to the marginal distribution
F o
_ ) _ T(F+a) T B .
I(») = h(F,T,O’.,B) = T(B)T(F+l) (3.45)

(T+8)F+u

3.3.1.2 Weibull and Poisson Convolution Integral [2]

Upon substitution of the explicit expression tor the Weibull prier

distribution of Eq. (3.5) into Eq. (3.26), the convolution integral

becomes
F ~0T (A -8 p
I(;\) = Bg e f ls-l(:\'}'e)F e_lT E-(A/a) dx (3‘50'6)
o T{F+1) ‘0
* >
where again A = min[A,A 1. The integrand is positive and bounded if

max

B>1, or if F>1 when 0=0 and B<l. For these cases ;mmerical guadrature

can be used to evaluate this expression.
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If B<1l and 8>0, the above integral can be rewritten as

*

B = ¥ =8 8

Bg e [] \B-1 AT {(x+e)Fe—(A/a)
0

o T'(F+1)

T(h) = -6y aa

+ e r(g) Peg, (o)) /TB| | (3.47)

where the normalized incemplete gamma function P is given by Eq. (3.3).
For the special case that the shift parameter © vanishes and the number

of failures =0, this result reduces to ;
" :

_g( 21 - - 8
I(3) = Ba B[J R A D P Ty V21 BN
0 : J ’

The integrands in Egs. (3.47) and '(3.48) have no singularities and hence

are amenable tc evaluation by numerical techniques.
3.3.1.3 Lognormal and Poisson Convolution Integral [2]
'

The lognormal prior distribution of Eg. (3.81 gives for the con-
volution integral of Eg. (3.26)

F

1) = 18 T [repsr) Vzmelt [ exp[-(lnx-a)z/zszl da

(3.49)

*

where % = min[X, )\ ]. It can be shown that the integrand vanishes as
max

Aa+0 for all values of o,8,F and T, and thus Eq. (3.49) can be used

directly with numerical integration techniques to evaluate I(A).
3.3.1.4 Logbeta and Poisson Convolution Integral [2]

For the legbeta prior distribution of Eq. (2.11), Egq. (3.26)

becomes
*
LA = 7 (at) (bea) ~9~B (le—lE_lT(]nl-aia_l(b—lnksB_l 4
~ T(a)T(B)T(F+1) 2 A | ni—; :
e

(3.50)



* b
where A_ = MIﬂ{l,lmaX, e’ ] For a,8>1 this integrand is positive and

bounded; and, hence, the integral can be directly evaluated with

numerical quadrature.

However, if a<l or B<l, singularities appear in the integrand at

a b ; . i R
A=e® or A=e . These integrable singularities can be removed by defining

x = (lnx-a)/(b-a) and adding and subtracting the singularities to give

x
I(x) = r(@%gﬁzwl) E v(x)dx + E-(-g—)-(x*)ﬁ + E%)—[L(l—x*)s] ,
¢ [3.;1)

where
x* 3 (Zn?\*—a)/(bwa), (3.52)
v (0T O Lo -0 P, (5
w(x) - (T explat(b-a)x]} exp(-T &3 (P=2)%) (3.54)
v(0) = —w(1) = ~(1e)¥ expl-1") , (3.55)

and

v(1) = ~w(0) =—(Te®)F exp[-Te?] . £3,58)

Wwhile this result is considerably more complicated than Eq. (3.50), the
integrand in Egq. (3.31) is now bounded for all positive o and B and

therefore suitable for numerical evaluaticn.
3.3.1.5 Loggamma and Poisscn Convolution Integral

For the loggamma prior distribution of Eq. 3.14) .- the convolution
integral becomes

F -a A
- -1 - -1
TA) = ?TF%T?ETET JOAF le lT(—lnl—B)a axp[-(-1nx-6) /8] 1r .

(3.57)
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* . -0 .
Where A = mln[k’lmax’ e ]. This form of the convolution integral is
bounded for most realistic values of the loggamma parameters. If B>l and

F=0, the integrand becomes singular. For this case, adding and subtract-

ing the singularit? at A=0 gives

F . —o A
-l B “AT_1y (c1noes) @1 e da
IO =TT [o(e 1) (-1nx-8) exp[-(-1nx-8)/8] 5
F fre e
T ; (3.38)
+ m [l-P(u,g-—lnA—G}fB):!

where P is the normalized incomplete gamma function defined by Eg. (3.3),

The integral in this result is noy bounded as A>0.
3.3.1.6 LoghWeibull and Poisson Convelution Integral

For -the loghweibull prior distributicen of Eq. 13.17), the con-

voflution integral becomes

F, [ max B-1
T -AT ,F-1 [-1lni-6
I(A) = Wﬁl)s_cl'{ e A {—n'a—-—] exp[—({—ln)\-—e}/a) BJ di
0
(3.59)
. g -8
where A . = mln[hl,lz, e ] A and Ay having been determined from the

results obtained by using the first form of Chebvshev's inequality,
ie., X = wrr0. Yumerical difficulties often ceccurred in the evaluation

of the convolution integral of Eq. (3.59) when the value for the error

term is very small (%10_10

), thereby producing an effective Amax larger
than required. Using a larger error term resulted in a lower value of
Amax that is more applicable for evaluating tﬁe convolution integral of
Eg. {3.39) without any significant less of accuracy in the final

results.
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If B<l and F=0 the convolution integral of Eq. (3.39) becomes sin-

gular at A=0, By adding and subtracting the singularity at A=0 one ob-

tains
F kmax
LY = et o Tl = vl dx % viEe
rFDa (3.60)
where
-1 ~xT |-1lnx-8 Bl g -
vix) =x e [——E———} exp[-({-1nx-8}/a)"] . (3.61)

The integral in this result is now bounded as -0



Chapter 4

ESTIMATION OF PRIOR PARAMETERS FOR THE COMPOUND MODEL

An important factor te consider when using the compound model, is
how does one best estimate values for the free parameters of the prior
distribution. Appropriate values for the parameter; must be selected so
that the resulting compound model agrees as closely as possible with the

observed failure data for the class of components under consideration.

Many methods are available for determining the prior parameters
from prior failure 'data. In this study, three standard wmethods for egt-
imating (from given failure data) the prior parameters for arbitrary

priér families are used. They are
(i) matching the moments of the prior distribution to
those of the observed failure data,
(ii) matching the moments of the marginal distribution
to those of the observed failure data, and
(i1i) maximizing the likelihood function of the marginal
distributiomn.

In these particular applications of the estimation techniques, it is as-
sumed that all range or shift parameters of the prior distribution are

g o ; i
to be specified a priori so that only shape and scale parameters are to

—36—
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be estimated from the data. By so specifying the shift parameter, only
two parameters need be estimated for each of the six prior families

discussed in Chapter 3.

4.1 MATCHING MOMENTS METHODS

This method consists of matching the sample moments of the given
data to the corresponding distribution moments. Since two parameters
need be estimated, this method involves matching any two sample moments
of the data to the corresponding moments of t%e distribution. In
practice, the first two moments are usually used. The distribution
moments, as will be shown later, are functions of the two equations with
two unknowns being the parameters of the distribution. 0Oiften, the ap-
plication of this method results in equations that are non-linear and
thus requires the use of numerical technigues to obtain values for the
parameters. Due to the different forms of the prior families considered
in this study, this method must be applied on a zase-by-case basis. In
this section, the method of matching moments is applieq to the prior and
marginal distributions of the compound model for each éf the six prior

families presented in Chapter 3.

4.1.1 Prior Matching Moments Method (PMMM)

In this subsection, the prior parameters estimates are obtained hy
matching the mean A and variance 52 of the given data to the correspond-
. . 2 . . s . e
ing mean y and variance ¢- of the prior distribution. Explicitly,  and

52 are defined as

n
Z (T (4.1)
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and

n
s 21 {52
S =S TR e

where n is the number of components in the given data set and F_ is the
i

number of failures experienced in test time T by individual components
i

in the set.

The K-th "moment about zero", wi, for the prior distribution is

defined as

" max
L - A e d>
wy = E[A7] L\ A g(r;8) di 3
min
The expressions for mé. k=1,2,3... were given for all six prior

families in Section 3.1. The mean Wy and the variance W, for the prior
'

distributions are found to be

(i) w)

il
E

i (mean) , (4.4

=~
(W3]
~—

(1) w - (ml)2 {(variance)

I
[=4

2

If more than two parameters were to be estimated, one could obtain

the third and fourth central moments by calculating first

s T - 3 ;o2
(iid) wy = W} 3m2w1 + 0], (4.90)

. ' 4 ,
(iv) W, =rw£ - 4w3m1 + 6wé - Bml . (4.7)

and then use the "shape factors", a,, defined as {7]

w }—k/2’ k>2 . (4.8)

o1

i
£

iy

The first two shape factors are
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-3/2

ey, = iy B ("index of skewness') (4.9)

and

w, ("index of kurtosis'"). (4.10)

Skewness 1s a measure of asymmetery. Kurtosis is a measure of the degree
of flatness of a density near its center. However, in this study only

two parameters need be estimated.

l
By equating the mean and variance of Egs. (4.1) and (4.2) to the cor-

responding mean and variance of the prior distribution, the prior mat-

ching moments equations become

|
> |

'JJl(Ot,B) (4.11)

and

]
wn
b2

wz(a.s)

Solving these two equations for the parameters § = ¢ and g will thus

vield estimates for the prior parameters.

4.1.2 Marginal Matching Moments Method (MMMM)

This method consists of matching the data mean and variance, % and
S2 , * * , ,
i , to the mean and variance, ml(a,B) and mz(a,g} . corresponding to the
marginal distribution. The task of obtaining analytical expressions for
* *
ml(a,B) and mz(a,B) appears at first glance to be difficult. However, it
*
can be shown, for any prior distribution, the expected values of ml(a,B)
*
and mz(a,B) can be expressed in terms of the pricr distribution [2] simply

2 2 o * .
by replacing Si by SX - T A where T is given by



! -1
I 2¢ D (4.13)
The marginal matching moments equations become

mf(a,ﬁ) = 1 (4.14)

and

* 2 *a =
w,(e,B) = s; X i (4.15)

Unfortunately, there are data sets for which negative valpes for & and B
4 *
will-be obtained. If the testing times of the components are short, T
increases which increases the likelihood of obtaining a negative value

. 2 e " i1 : . ;
for {Si - T A]. Most prior families do not permit negative values for «o

and B. For these situations, the MMMM fails to estimate acceptable parameters.

’

4.1.3 Matching Moment Estimators for Particular Prior Distributions

1. Gamma Distribution: (shift parameter 5 given) [2]

From Eq. (3. 4), the marginal matching moments equations for this

distribution are

PR (4.16)
8
and
alefl) 4 2094 6% - 6% 437 (4.17)

B

Solution of these equations for the parameter estimators yields

& = (R-0)%/s? (4.18)

t

and
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£ 5B 5
B = (A-8)/S5" . (4.19)

2.  Weibull Distribution: (shift parameter 8 given) [2]

From the moments given by Eg. (3.7) and from Eq. (4.4), the matching

moments equations of Eqs. (4.11) and (4.12) become
1 R _
ar(1+-§)+e=A (4.20)

and

rra + 9 - rfa+ 91 - st (h.21)
From the first equation, cone obtains
s 1 f
a = (A-B)/T(1 + 5) , (4.22)

which, upon substitution irto Eq. (4.21), yields

o

S rfa+h - G0 ra+p - Tra s pl=o. (4.23)

This non-linear equation for B may be solved by standard numerical
methods for finding the zeros of a functien of one variable (e.g.,
Mueller's iteration method [6]). Once B is obtained, @ can be evaluated

directly from Eq. (4.22).

3 Lognormal Distribution: (shift parameter £ given) [

From Egs. (3.10) and (4.4) the moments wy and w, are obtained so

that the matching moments equations become

3 + EXP[G + ;i 62] = i (-0-24}

and
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expf2a + 282] + exp[2a + 82] = 52 (4.25)
Solution of these two eqguations yields
7 - 2 . 2
& = In(r=-08) - % In[1l + s7/(+-8)"] (4.26)
and
n 5y = 5
8 = |In[1l + S7/(X-8)] } . _ {(4.27)
4. Logbeta Distriburion: (range parameters a and b given) [2] i

Explieét éxpressions for the moments Mg and w, are not available
and the moments must be obtained from Eq. (3.13) by performing the inte-
gration numerically. Numerical techniques are used to solve the matching
moments equations for the estimators @ and é.

In a previous study [2]. Egs. (4.11) and (4.12) were solved by con-
sidering an equivalent minimization problem in which the estimators a

and B are selected as those values of o and B which minimize the non-

negative function

P L 2
Fla,8) = [u)(a,8) - A}" # (m:‘z(a,B) - 57 - J : L4280

This minimization is performed by using a standard simplex search tech-
nique [8], and the minimizing values of @ and ? are then checked to
verify that T vanishes at the minimum, thereby ensuring that a solution

to the matching moments equations has been obtained.

5. Loggamma Distribution: (shift parameter & gives

From Eg. (3.16) the matching momeﬁts equatisns, Lgs. (4.11) and

(4.12), become



K = [l'f“B]-.a‘ e_e (4'29)

and

Ao+ g2 28

= [1+28] % & (4.30)

The first equation can be solved for o, namely
a == (6 + 1nA)/1n(l + B) (4 313

Substitution pf this result into Eq. (4.30) gives the following equation

for B:

(28 + In(h + 82)]ln(1 + B) - [8 + 1ni]1n(1 + 28 = 0 fo. oy

This equation with one unknown can be readily solved by standard
s

numerical techniques which find zeros of a functiou of a single

variable. Once B is found, @ is then obtained from Eg. (&4.31).

6. LogWeibull Distribution: (shift parameter C given)

For this pricr distribution, explicit expressions for the moments

w, and w, as functions of the parameters @ and 2 could not be found

1
analytically. The numerical solution of the matching mements eqguations

can be performed in a similar manner as used for .the logbeta dis-

tribution by minimizing the non-negative functiorn
- w2 2 =2)?
Fa,8) = [w;(a,8) = A]" + |uj(a,B) - 8% - ’ (4.33)

Due to the absolute difference convergence methed used by the standard
Yy

simplex search technique, Eg. (4.33) was normalized and redefined as

F(o,8) = [w) (e, 8)/3 = 11%+ [w)(a,8)/(s%+52) - 1)2 (4.36)
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for this case. Further discussicn concerning the convergence method used

is covered in Chapter 5.

4.2 MARGINAL MAXIMUM LIKELIHOOD METHOD (MMLM)

Maximum likelihood estimators are the values of @ and B which
maximize the likelihood function for the given failure data. The mar-
ginal distribution of Eq. (2.3) gives the probability that a component,
randomly selected from the class, will experience F failures in test
time T. If each compon@nt_is assumed to be independent. the probability
L of observing (Fl,Tlii(Fé,Tz).....(Fn,Tn) is the product of the

probability of observing each pair of (F,,T.) separately or
N

,ﬁ
i
[}
W
—

L(x,B8) = W(F T oyity B 5
1 1

1

I =3

i
where h is the marginal distributicen of Eq. (2.3}. The maximum
likelihood estimators of the prior parameters are those values of @ and
B which maximize L{a,B) for the given failure data. Equivalently, one
may wish to maximize InL(w.R)- & more convenient form. Here, the prior
parameters are the solutions of

g—u h(¥ ;T ,,8)]

ainL(a,B) _ o
ar’ JRg X . # ;
3 = . s 0 (4.36a)
a i1 h(Fi,Ti,u,B)J

and
0 [ h(E.T. 0,8
diep) o §RE TR iy
IB .- h(F..T.,x.B) (4.36b)
i=1 ir"q J

In this study and a previous study [1], the following second order
central difference result was used to evaluate ths derivatives of the

marginal distribution: i

df . f{x-2Ax) - B8f(x-Ax) + Bf (x+Ax) - £y

4
+ Orp -
dx 1248 + O02%) o (4.37)




where Ax is some suitably small increment of the variable.

Once the derivatives 9h/3a and 3h/38 are computed numerically,
values for the summations in Eqs. (4.36a) and (4.36b) can be found.
Several methods are available for obtaining a solution to these maximum
likelihood equations [10]. A convenient method used in this study was to

find the minimum of the non-negative function

2 2
Fla,B) = “_J__BZ.ng.éa B) + ___J__aanéa B (4.38)

by the simplex technique [8]. This particular method for obtaining the
solution of the maximum likelihood equations was convenient in that the

simplex technique had previously been incorporated into the study.



Chapter 5

SAFER COMPUTER CODE

In this chapter a general description is given of the SAFER com-
puter code used in the analysis of conjugate and non-conjugate prior
distributions in compound failure models. Due to the magnitude in size

of the code, no attempt is made to detail code operation line by line.

In order to operate the code, one must obtain the users manual [11]
for a complete description of the structure including input commands and
options The manual also includes a flow diagram showing how the
separate parts of the code are used and an example which illustrates in-

put commands and output of the code.

In previous works [1-2] a good deal of time and effort was expended
engineering this computer code to enable the user to perform safety
analyses using a compound failure model. The safety analyst using SAFER
has the option of choosing the prior family to represent the prior dis-
tribution used in the compound failure model. Hepefully, by creating
such a computer code, the analyst will have available a code allowing

greater ease in computations and greater latitude in the analysis.

5.1 Description

As discussed above, the prior distribution {or the compound model
analysis may be choosen as one of several distribution families (e.g.

gamma, loggamma, Weibull, logbeta, etc.). The anilyst may choose to

46—
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estimate the unknowp parameters of the selected prior distribution from
the failure data by any or all of the procedures discussed in Chapter 4.
i.e., (i) matching the data mean and variance to those of the selected

prior distribution, (ii) matching the data mean and variance to those of
the marginal distribution, and (iii) maximizing the likelihood function

of the marginal distribution.

All needed procedures and numerical algorithms have been programmed
into the code for proper evaluation; of the convolution integrals in

Chapter 3.

Several other functions are available with SAFER. A Chi-square
and/or a Kolmogrov goodness-of-fit test can be performed in crder to see
how well the resulting statistical models describe the given failupe
data. An analysis of the posterior distribution estimated flor each com-
ponent as well as various types of confidence intervals, tolerance

intervals, tables, plots, etc. can be requested.

5.2 Modifications

The description of the SAFER computer code discussed in the users
manual [11] includes only four of the six currently existing possible
choices of prior families. The original SAFER code was programmed to do
the necessary analysis for the compound failure model with the following
choices of prior family: gamma, Weibull, lognormal, and logbeta. In this
study, the SAFER computer code was modified to include the prior
. families loggamma and logWeibull as choices for -epresenting the prior

distribution in the compound model. Procedures in =ach part of the pro-
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gram necessary for the complete analysis of the compound model were

changed to accommodate loggamma and logWeibull distribution families.

There was no need to introduce any new numerical techniques into
SAFER  Only modifications of existing techniques available in SAFER were

used.

5.2.1 Specific Changes Made in SAFER

Not only were steps added to the program to perform analyses on the
loggamma-Poisson and logWeibull-Poisson comp;und failure models, but
also other changes were made to the original SAFER code. The changes
made should increase the efficiency of SAFER and decrease possible er-

rors in future use of SAFER.
1

In a previous study [2], the simplex search technique was in-
troduced into the SAFER code to solve a minimization problem. The es-
timators @ and B are selected as those values of © and B which minimize

the nen-negative function

Fia,B) = [ml(a,B) - §j2 + rmé(a,B) = 52 - ?2 2 - (3.1)
The method used to test fér convergence was an absolute difference, as
is seen in Eq. (5.1). In this study, the simplex search technique was
used to determine estimates of « and B, for the logWeibull
distribution, which minimize the non-negative function of Eq. (5.1).
Realizing that components which exhibit inherently low failure rates
alsc exhibit the characteristic wl(a,B} >> wz(a.Q), one can-Db—{
serve that the squared value of the second half oi Eq. (5.1) may effec-;

tively be lost due to its magnitude relative to the squared value of the
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first half. This may result in an inequality when matching the variance
of the data set to that of the distribution. In order to avoid possible
error using the convergence method above, Eq. (5.1) was normalized to

that of Eq. (4.34) i.e.,

Fla,8) = [ (a,8)/} - 11%+ [wé(a,a)/(sz-i-iz) e L (5.2)

Both squared values in Eq. (53.2) now carry the same weight for deter-

mining convergence.
i

The Mueller's iteration method, previously introduced into SATFER, was
used to find the zeroeth solution of the non-linear equation for B in
Eq. (4.23), for the case that the Weibull family is chosen as the
prior distribution. This method was also utilized to solve for B in
Eq. (4.32) for the case when the loggamma family is chosen to rep- |
resent the prior distribution. From experience, it was found that

a large change in B generally did not greatly effect the mean and
variance of the loggamma distribution. Therefore, the users initial
guess of B was often far from the true value. Mueller;s iteration
method requires that one chose two different parameter values

such that the equation is positive for one value and negative for the
other. This is done by multiplying the initial guess for the
parameter by some multiplification factor to obtain one larger guess
value and then divide the initial guess for the parameter by the same
multiplication factor to obtain a second smaller guess. By using

this multiplier given in SAFER one often did not obtain values
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for the parameter that would satisfy the above requirements for the
method. The problem was corrected by increasing the multiplication
and dividing factor of B to increase the upper-bound and decrease
the lower-bound in an effort to enlarge the interval around the
initial guessed value of 8. This may increase the iterations
required to obtain a solution in some cases. The advantage is that
it reduces the possible error of the user when determining an

initial value for the parameter.



Chapter 6

ANALYSIS OF DIFFERENT PRIOR DISTRIBUTIONS IN THE COMPOUND MODEL

When using the compound failure model to analyze the operation of a
nuclear power plant, one would like the prior distribution describing
the variation of the failure rates for a given set of components to be
completely known, i.e., both the function family and its; parameter

%

Evalues specified. Generally, one assumes the prior distribution belongs
to a particular family of distributions and then proceeds to estimate
apprepriate values for the distribution parameters. By choosing the
gamma family to represent the prio::distribution. the resulting analysis

of the compound model is relatively simple. Therefore, in most ap-

plications of the compound model, the gamma distribution is used.

The effect of choosing the conjugate gamma family to represent the
prior distribution is generally unknown. Alsc, the properties of the es-
timators for the prior distribution are generally unknown. It is of in-
terest to users of the compound failure model to determine what affect
the choice of the prior family has on the model and to what degree the
procedure used to estimate the prior parameters affects the results.
The prupose of this study was to investigate further both of these

questions for the failure rate problem.

Besides the gamma distribution, several othey Zamilies of dis-
tributions are reasonable alternatives for reprasenting the prior
f
distributions. In this study, two families of disiributions, the

~51—
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loggamma and logWeibull, were introduced as possib;e alternatives to the
conjugate gamma distribution as the prior distribution. In order to ob-
tain more conclusive results, three families of distributions, Weibull,
lognormal, and logbeta, previously investigated in another study [1],

are also included in this report.

Once a family of distributions has been selected, values for the
prior parameters Sust be determined. In this study, the pricr parameters
were estimated from given component failure data by three methads, |
CPMMM, HMMﬁ. and MMLM) for each of the prior families selected. From
these results, it was then possible to determine the effect of the prior
family selection and the parameter estimation technigque on the compound

failure medel.

6.1 CONJUGATE ANALYSIS OF NON-CONJUGATE FAILURE DATA

Several different families of distributions could be used to
describe the prior distribution in the compound failure model. It is of
interest to the user of the compound failure modei to have information
of the economic feasibility of each family. Generally, the non-cocnjugate
prior distributions require time consuming numerical methods to ob-
tain results from the compound model. Therefore, it is of practical
importance to determine how well the conjugate gamma distribution can
be used to approzimate non-conjugate distributions in compound failure

models.

In this section, failure data were generated from loggamma-
Poisson and logWeibull-Poisson margingl distributions with known

parameters. These failure data were then analyzed by theconjugate



-53-

gamma-Poisson failure model and the results of the estimated gamma prioxr
distributions then compared to results from the actual non-conjugate

prior distributions.

6.1.1 Data Simulation Procedure

In this study. the loggamma-Poisson and logWeibull-Pcisson marginal
distributions were assumed with specific values of parameters ¢ and g
and component opefation time T. With the marginal distribution of Eq.
(2.3), simPlated failure data were generated as follows. A random éumber
between O-énd:l was taken as the value of the cumulative marginal
distribution. A value of F was then determined that vielded this wvalue
for the cumulative distributicn of Eg. (2.3)..By using a series of ran-
dom numbers, a series of component failures Fi (all with same operation
time T) were generated which were distributed according to the specific

marginal distribution.

6.1.2 Results of Using a Conjugate Model to Analvze Data from Non-

Conjugate Yodels

A total cof 500 failure data were simulated from each of the two
non-conjugate distributions. These data were grouped into 25 sets of
sample size 20. Parameter values for the two non-comjugate prior dis-
tributions were chosen so that the prior means and standard deviations

; 1 ; ;
were 0.12(-4)" and 0.11(-4) per hour, respectively. The component
operation time T was taken as 50,000 hours (almost & years). These
values of the mean and standard deviation were chosen toc represent com-

ponents characterized by low failure rates.
1

1
~read 0.12(-4) as 0.12 times 10 to the -4 power, i.e., 0.000012
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From the gamma parameters estimated by the PMMM and MMMM from the
simulated non-conjugate failure data, various characteristics of the
resulting estimated gamma distributions were compared to the same
characterstics of the known non-conjugate prior distributions. These
comparisons are summarized in Tables 6.1 and 6.2 for failure data ob-
tained from the known loggamma-Poisson and logheibull-Peisson marginal
distributions, respectively. Only the two matching moments estimation
methods (PMMM and MMMM) were used in the phase of the study. The mar-
ginal maxim&m likelihood estimation method applied to non-conjugate
failure models requires a large amount of computaticnal effort for the
analvsis of a large mnumbevr of data samples. Therefore, this method was
omitted in this phase of the study.

'
Tables 5.3, 6.4, and 6.3 present similar results from a previous
t
study [1] where three families of distributions ithe Weibull, lognormal,
and logbeta) were selected as non-conjugate pricr distributions. The

procedure used to obtain the failure data and analyses by the conjugate

gamma-Poisson failure model were the same as described above.

The results obtained from using the gamma-Toisson model to analyze
failure data simulated from loggamma-Poisson and logWeibull-Poisson non-
conjugate failure models often matched reasonably well with the actual
values. These results agreed with those obtainéd in the previous study
where the Weibull, lognormal, and logbeta non-comjugate distributions

were selected as prior distributions for the compound model.

Ir the next section, the correct models arw used to analvze these
same sets of simulated failure data. It will be seen that perfect

agreement is still not obtained. Furthermore, in sume cases, the gamma-
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Poisson model even yielded parameter estimators closer to the_actual
values than did the correct models. Given these results, one can con-
clude that the gamma-Poisson model has sufficient flexibility for
analyzing failure data even though the data are believed to come from
another failure distribution.

There was no significant difference in the results of the loggamma-
Poisson model and the other éon-conjugate results obtained in the
previous works [1]. However, the logWeibull-Poisson model analysis con-
sistently showed smafler;variauce {a more peaked distribution) whether

the failure data were analvzed by using the gamma-Poisson model or with

the logWeibull-Poisson model.
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TABLE 6.1

Results of a gamma-Poisson analysis of data from a loggamma-Poisson
distribution

parameter Method Mean Standard 3q. Root Bias
& True Value Deviation of MSE@
mean PMMM 1.17(=5) .360(-5) .353(-5) -.032(-5)
1.20(-5) MMM 1.25(=5) .350(-5) .340(-5) .050(=5)
standard PMMM 1.60(-5) «391(-5) .383(-5) .502(-5)
deviation  MMMM .780(-5) .392(-5) .381(-5) -.322(-5)
1.10(-5)
5-th PMMM .015(-5) .022(=5) .021(=59 -.200(-5)
percentile  MMMM .368(-5) .267(-5) .26B8(-5) . 153(-5)
.215(=5)
25-th PMMM «137(-5) .120(-5) .118(-5) -.363(-5)
percent .le  MMMM .694(-5) .344(-5) .335(-5) «193(-5)
.500(-1)
50-th PMMM .557(-5) .300(-5) .294(-5) -.324(-5)
percentile  MMMM - 1.07(-5) .375(-5) .364(-5) . 187(-5)
.881(-5)
75-th PMMM 1.53(-5) .536(-5) .525(-5) .007(--5)
percentile  MMMM 1.61(=5) LAU5(-5)  .433(-5) .088(-5)
1.52(-5)
95-th PMHM 4.39(-5) 1.09(=-5) 1 07(=5) 1.15(=5)
percentile  MMMM  2.75(-5) .967(-5) .939(-5)  -.H498(-5)

? Mean Squared Error
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TABLE 6.2
Results of a gamma-Poisson analysis of data from a logWeibull-Poisson
distribution
Parameter Method Mean Standard Sg. Hoot Bias
& True vilue Deviation of HSE2
mean PMMM 1.14(=5) .315(=5) .309(-5) -.056(-5)
1.20(=5) MMMM 1.27(=5) .270(=5)  .259(-5) L075(-5)
stands 'd PMMM 1.52(-5) L314(-5)  .334(-5) L417(-5)
deviat.on MMMM .664(=5) L415(=5)  .397(-5) -.436(-5)
1.10(=5)
5-th PMMM .019(-5) .028(-5) .027(-5) —.4ul(-5)
percent le MMMM .516(=5) L406(-5) .389(=5) .054(-5)
AH63(-5)
25-th PMMM .185(=5) .133(=5) .130(-5) -.480(-5)
percentile MMMM .803(-5) L407(-5) .390(-5) .138(-5)
«665(=5)
50-th PMMM .581(=5) L276(-5)  .270(-=5) -.332(-5)
percentile MMMM 1.12(=5) L3U6(=-5) .332(-5) .210(-5)
L918(=5)
75-th PMMM 1.52(-5) LUBT7(-5)  LU45T(-5) .169(-5)
percentile MMMM 1.59(-5) .308(-5) .295(-5) .236(-5)
1.35(-5)
95—t PMMM 4.,18(=5) L948(=5)  .929(-5) 1.38(-5)
percent.le MMMM  2.65(-5) .865(~5) .828(-5) -.246(-5)
2.75(-3)

? Mean Squared Error
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TABLE 6.3
Results of a gamma-Poisson analysis of data from a Weibull-Poisson
distribution
Parame .er Method Mean Standard Sq. koot Bias
& True v lue Deviation of HSE®

mean PMMM 1.20(-5) .397(-5) .389(-5) .004(-5)
1.20(-5) MMM 1.25(-9) . 385(-5)  .388(-5) .053(-5)
MMLM 1.24(=5) LU32(-5) L 821(-=5) LoUu(-5)

standard PMMM 1.81(=5) LUG6(-5)  LB6U(=5) LTIH(=-5)
deviation MMMM 1.10(-5) .568(-5) .553(-5) .00l (=5)
1.10(-5) MMLM 1.39(=5) .568(=5) .623(=5) .029(-5)

5—th PMMM  .009(=5)  .015(=5) .075(=5)  -.0TH(+5)
percentile  MMMM .235(-5) .352(-5) .375(-5)  .152(-5)
.083(-5) MMLM .036(=5) J45(=5)  L1H1(=5) | . N13(=5)

25-t1 PMMM .120(-5) .106(-5) .297(=5) -.276(=5)
percentile  MMMM .1490(-5) .379(-5) .380(-5) .092(-5)
+399(=5) MMLM .329(=5) .295(-5) .294(-5) -.070(-=5)

50-t 1 PMMM  .505(-5) L287(=5) .K77(-5) -.385(-5)
percent .le  MMMM - .910(-5) .390(=5) .380(-5) .021(-5)
.889(~73) MMLM  .770(-5) LU415(=5)  .419{-5)  -.119(-5)
75-th PMMM 1.53(-5) .602(=5) .608(-5) - TH7(=5)
percentile  MMMM 1.65(=5) .555(=-5) .541(-5) -.021(-5)
1.67(-3) MMLM 1.65(=5) L607(-5)  .588(-5) -.020(=5)
95-th PMMM  4.78(-5) 1.38(-5) 1.95(-=5) 1.41(-5)
percentile MMMM 3.44(-5) 1.39(-5) 1.35(-5) .056(=5)

3.38(-5)  MMLM  4.00(-5)  1.46(-5) 1.54(-5) .621(=5)

i

? Mean Squared Error
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TABLE 6.4
Results of a amma-Poisson analysis of data from a lognormal-Poissen
distribution
Parame er Method Mean Standard S8q. Root Bias
& True value Deviation of HSE2
mean PMMM 1.20(=5) LU418(-5)  .409(-5) -.004(=5)
1.20(=5) MMMM 1.25(=5) SH19(-5)  L411(-5) .047(-5)

MMLM 1.24(-5) LU459(=5) .4u86(-5) .038(-5)

standard PMMM 1.79(=5) 524(=5) .863(-5) L6GU(=5)
deviation MMMM 1.07(=5) -598(-5) .582(-5) .023(-5)
1.10(=5} MMLM 1.32(-5) LB04(-5) .625(-5) .221(-5)

1

5-th PMMM .010(-5) L015(=5) .221(-5) . 221(-5)
percentile  MMMM L24T7(=-5) .351(=5) .342(-5) L017(-5)

| .230(-5) MMLM 1.21(=5) L167(-5)  .195(-5) .109(=5)

i PMMM . 123(-5) .110(=5) .403(-5) -.389(-5)
percentile  MMMM .505(-5) .387(=5) .377(=5) -.006(-5)

.512(-5) MMLM .367(-5) .324(-5) .346(-5) =.145(=5)
50-t . PMMM .506(=5) .299(=-5) J47B(-5) -.377(-5)
percent. le MMMM - .917(=5) L406(-5) .397(-5) LN2U(-5)
B8U(=5) MMLM  .799(-5)  .442(-5) .437(-5)_  -.084(-5)
75=th PMMM 1.52(-5) L028(=5) .5616(-5) L006(-5)
percentile  MMMM 1.64(=5) .582(-5) .580(-5) L 127(-5)
1.51(=%) MMLM 1.64(=5) LB37(=-5)  .630(-5) L128(-5)
g5-th PHMMM 4, 74(-5) 1.46(-5) 2.08(=5) 1.51(=5)
percentile MMMM 3.37(-5) 1.47(=5) 1.44(=5) . T48(=5)
3.22(=5) MMLM 3.84(-5) 1.55(=5) 1.62(-5) .622(-5)

& Mean Squared Error
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Results of a gamma-Poisson

TABLE 6.5

analysis of data from a logbeta-Poisson
distribution

parameter Method
& True value

Mean Standard Sq. Root Bias
Deviation of MSE®

c:viation MMMM

mean PMMHM i
1.20(-5) MMMM T
MMLM 1

swandard PMMM 1.
1.07(=5) .598(=5) .582(-5)
1.10(=5) MMLM 1

5-th PMMM  .009(=5) .015(=5) .237(-5)
percentile  MMMM «2H7(-5) .351(=5) .342(-5) .PC1(-5)
.246(-5) MMLM . 121(=5) .167(=5) .204(-5)

25-th PMMM .123(=5) .110(-5) .415(-5)
percentile  MMMM  ,505(-5) .387(=5) .377(-5) -.019(-5)
.524(=~5) MMLM  .36T7(-5) .324(-5) .351(-5) -.158(-5)

75-th PMMM 1.

percentile MMMM 1+
1.50(=5) MMLM 1.64(=5) LB637(-5)  .633(-5) L142(-5)

20(-5) LU18(-5)  .409(-5) -.004(-5)
25(-5)  L419(-5) .411(-5) L0U7(-5)
2U(-5) L459(-5)  LH46(-5) - 038(-5)

79(=5) «524(-5) .863(-5) .694(-5)
.023(-5)
32(-5) -604(-5) .625(-5) .221(=5)

.237(=5) -

<N125(-5)

L401(-5)

50-th RMMM .506(=5) .299(=-5) LUBO(-5) -.380(=-5)
percentile MMMM *.917(-5) L406(-5) .396(-5) ,031(=5)
.886(-5) MMLM .799(=5) LU42(-5)  J437(-5) -.087(=5)

52(-5) .628(-5) .616(-5) .020(-5)
64(-5) .582(-5) .583(-5) L141(-5)

95~th PMMM 4,74(=5) 1.46(-5) 2.10(-5) 1.54(-5)
pe-centile MMMM 3.
3.19(=5) MMLM 3.

37(=5) 1.47(-5) 1.44(-5) . 180(-5)
B4(-5) 1.55(=5) 1.63(-5) <654(-5)

2 Mean Squared Error
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6.2 NON-CONJUGATE ANALYSIS OF DATA FROM NON-CONJUGATE MODELS

The results of the previous section showed that the sample gamma-
Poisson conjugate model could be successfully used to analyze failure

data simulated from non-conjugate marginal distributions.

To confirm these results, failure data generated from the loggamma-
Poisson and logWeibull-Poisson non-conjugate models were analyzed by the

same compound failure models from which the data were generated.

Tables 6.6 and 6.7 present the results of using the correct non-
conjugate models to analyze the simulated failure-data from the
loggamma-Poisson and logWeibull-Poisscn marginal distributions,
respectively. As in the pfevious section, only the two matching moments
estimation methods![PMMM and MMMM) were used. Tables 6.8, 6.9, and 6.10
present the results of using the correct non-conjugate models to analyze

the simulated failure data from the Weibull-Poisson, lognormal-Poisson,

and logbeta-Poisson marginal distributions, respectively [1].

Of the five alternative prior models investigated in these two
studies, the logbeta-Poisson and logWeibull-Poisson models presented the
most difficulties in calculating parameter estimates even for the simple
prior matching moments. Both models required a similar elaborate
numerical algorithm to obtain estimates of o and 3 from bhoth the PMMM

and MMMM parameter estimation methods.
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TABLE 6.6

Results of a loggamma-Poisson analysis of data from a loggamma-Poisson
distribution

R
Farameter Method Mean Standard Sg. Root Bias
& True value Deviation of MSE®
alpha PMMM 110.5 24,31 23.582 -88.69
149.2 MMMM  442.0 208.9 t202.¢ 2224 8
beta PMMM 0.114 0.266 0.260 L 506
.0585 MMMM 0.032 0.019 0.018 -.027
mean PMMM 1.17(=5) .360(=5) .353(-5) -.032(=5)
1.20(-5) MMMM  1.26(=5) L370(=-5) .359(=5) L056(=5;
stan. dev, PMMM 1.60(=5) +391(-5) .383(-5) .502(=5)

1.10(=5) MMMM .843(=-5) L3066(=5) .35U(=5) -.257(=5)

5-th pctl. PMMM .099(-5) .063(-5) .062(-5) -.116(-5)
. 215(=5) MMMM L402(-5) -229(-5) .222(-5)  .187(-%)
25-th petl. PMMM .309(-5) .153(-5) .150(-5) -.191(-5)

.500(=5) MMMM  .703(-5) .312(-5) .302(-5) .203(=5)

5C-th petl. PMMM  .664(-5) .272(-5) .267(-5) -.217(=5)
.381(-5) MMM 1.04(=5) .373(-5) .361(-5) . 164(-5)

75-th petl. PMMM 1.39(-5) LU4T73(=5)  H63(-5) -.131(=5)
1.52(=5) MMMM 1.56(=5) LU55(=K)  LU4U1(=5) .038(=5)

9t-th petl. PMMM 3.87(-5) 1.03(-5) 1.01(-5) .626(-5)
3.25(=5) MMMM 2.82(-5) 847(-5) .820(-5) -.432(-5)

? Mean Squared Error
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TABLE 6.7

Results of a logWeibull-Poisson analysis of data from a

logWeibull-Poisson distribution

Parameter Method Mean Standard Sqg. Root Bias
& True value Deviation of MSE?
alpha PMMM 12.01 . 360 .352 243
1.7 MMMM  11.50 .288 .276 -. 269
bata PMMM 21.55 1.66 1.63 -4.15
£5.70 MMMM 57.59 27.6 26.6 31.9
mean PMMM 1.14(=5) L315(=-5)  .308(-5) -.056(-5)
1.20(-5) MMMM  1.29(=5) 26T(=50  256(=5) .0GU(-5)
st in. dev. PMMM 1.52(-5) L341(=5)  L.334(-5) LHIT(-5)
1.10(=5) MMMI4 .569(-5) LUUz(-5) .423(-5) -.501(-9)
5-th pectl. PMMM L346(-5) .126(=5) .124(-5) -.116(=5)
S463(-5) MMMM .818(-5) .330(-5) .317(-5) .355(-5)
25-th pectl. PMMM «536(-5) .180(=5) .176(-5) -.129(-5)
.665(-5) MMMM .974(-5) .318(-5) .305(-5) .309(-5)
50-th pctl. PMMM .782(-5) .243(-5) .238(-5) -.131(-5)
L)14(=5) MMMM 1.15(-5) .300(=-5) .28&E(-5) L234(-5)
75-th pctl. PMMM 1.25(-5) .362(-5) .354(-5) -.101(=5)
1.35(-5) MMMM 1.42(=5) .260(=-5) .278(-5) AT3(-5)
95-th pctl. PMMM  2,97(-5) .750(=5) .736(-5) L17H(=5)
2.79(-5) MMMM 2.22(-5) .600(-5, .575(-5) -.573(-5)

? Mean Squared Error
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TABLE 6.8

Results of a Weibull-Poisson analysis of data from a Weibull-Poisson

distribution
Parameter Method Mean Standard Sq. Root Eias
& True value Deviation of HMSE®

alpha PMMM .938(-5) .399(=5) .495(-5) -.304(-5)
1.24(=5) HMMMM 1.25(-5) JU45(-5)  .433(-5) ' .o0u(-%)

tau PMMM .683 . 126 L U432 -. 413

1.10 MMMM 2.04 2.4Y Z2.5C .94
nean PMMM 1.20(=5) L3G7(=5)  .389(=5) L00U(=-5)
1.20(-5) MMMM 1.25(-5) ~3455(=5)  .3b8(=5) .053(-5)
stan. dev. PMMM 1.81(=5) JH96(-5)  .B6U(-5) LT14(=5)
. 10(=5) MMMM 1.10(-5) .568(-5) .553(=~5) .005(-5)
5-th pctl. PMMM L017(=5) .016(-5) .068(-5) -.066(=5)
.083(-5) MMMM .219(=5) .32G(=5) .3UB(-5) .136(=5)
25-th pctl. PMMM . 168(-5) .105(=5) .253(=5) -.231(-5)
.399(=5) MMMM  * .500(=5) .371(=5) .375(-5) . 101(=5)
50-th pectl. PMMM .561(~5) .269(-5) .U421(-5) -.328(=5)
.890(-5) MMMM .926(-5) <393(=5) .384(-5) .037(-5)
7¢-th pctl. PMMM 1.49(-5) .569(=-5} .586(-5) -.182(=5)
1.67(=5) MMMM 1.65(=5) .563(=-5) .548(-5) -.022(=5)
95-th pctl. PMMM 4,.55(=5) 1.38(-5) 1.79(-5) 1.18(~5)
3.38(-5) MMMM 3.40(=5) 1.39(-5, 1.36(-5) .018(-5)

? Mean Squared Error
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TABLE 6.9

Results of a lognormal-Poisson analysis of data from a lognormal-Poisson

distribution
Parameter Method , Mean Standard Sq. Root Bias
& True value Deviation of MSE?
alpha PMMM -12.03 .568 .683 -0.40
-11.63 MMMHM -11.67 .526 «514Y -0.04
tau PMMM 1.105 . 148 357 . 326
L7178 MMM 0.734 .303 . 296 -.044
mean PMMM 1.20(-5) LU16(-5)  LH09(=5) -.7.0U4(-5)
1.20(-5) MMPFiM 1.25(=5) LH429(-5) L U11(=5) LCAT (=9

stan. dev., PMMM 1.79(-5) .524(=5) .863(=5) . 694 (=5)

1.10(=5) MMMM 1.07(=5) H9B(=5)  .582(-5) -.023(-5)
5-th pctl. PMMM  .085(-5)  .053(=5) .053(=5) =-.162(=5)
L246(=5) MMMM .222(=5) 212(=5) .252(=5) -.024(=-5)
25-th pctl. PMMM  .260(-5)  .138(=5) .135(=5)  =-.264(-5)
.524(=5)  MMMM  .449(=5)  .268(=5) .326(=5) =.075(=5)
50-th petl. PMMM .573(=5) 272(=5) .266(=5) -.314(-5)
.886(=5)  MMMM  .780(-5)  .334(-5) .384(=5) =-.107(-5)
76-th pctl. PMMM  1.27(=5)  .555(=5) .545(=5) =-.226(-5)
1.50(=5)  MMMM  1.42(=5)  .541(=5) .541(=5) =-.079(-5)

95-th pectl. PMMM  4,06(-5) 1.68(-5} 1.66(-5) .870(-5)
3.19(=5) MMMM - 3.59(=5) 1.73(-63  1.81(-5) L400(-5)

2 Mean Squared Error
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TABLE 6.10
Results of a logbeta-Poisson analysis of data from a logbeta;Poisson
distribution
Parameter Method Mean Standard S5q. Root Bias
& True value . Deviation of MSE®
alpha PMMM 136. 35.3 150. -145.
282 MMMM 136.(+1) 259.(+1) 274.(+1) 108, (+1)1
tau PMMM 70.9 17.0 71.5 -69.5
140 MMMM 653. 122.(+1)  130.(+1) 512.
mean PMMM  1.20(-5)  .418(-5) .409(-5) -.CO4(-5)
1.20(-5) MMM 1.25(-5) LH20(=-55 -.411(-5) L0UT(=-5)
stan. dev.  PMMM  1.79(=5)  .524(-5) .863(-5) L694(=6)

1.10(=5) MMM 1.07(-5} .599(-5; .583(-5) ~.023(-5)

5.th petl. PMMM . 100(=5) L061(=-5) .143(-5) -.130(-5)
.230(=5) MMMM .351(-5) .319(-5) .333(-5) 12G(=5)

25-th petl. PMMM .303(-5) -152(-5) .257(-5) -.209(=5)
.512(-5) MMMM  * .606(=5) .342(-5) .346(-5) .095(=-5)

50-th petl. PMMM .649(=5) .284(-5) .364(-5) -.234(-5)
.884(-5) MMMM .940(-5) .379(=4) .373(-=5) .056(-5)

75-th petl. PMMM  1.38(-5) .531(=5) .536(-5) -.129(-5)
1.51(-5) MMMM 1.51(-5) «531(-5) .517(=-5) .002(-5)

95-th pctl. PMMM 4.04(-5) 1.31(-5) 1.52(-5) «814(-5)
3.22(=5) MMMM 3.16(=5) 1.33(-5Y 1.30(-5) -.065(~5)

? Mean Squared Error
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The use of a loggamma-Poisson model to analyze failure data frqm a
loggamma-Poisson marginal distribution (as seen from Table 6.6) gave
better estimators of alpha from the PMMM, but better estim;tors of beta
from the MMMM. The means of the estimated prior distribution from the
two matching moments methods showed only slight disagreement due to the
fewer successful estimates obtained from the MMMM. The mean of the stan-
dard deviations of the estimated prior distributions obtained by the
MMMM have less bias than those fromrthe PMMM. The percentile estimators
of the PMMM are consistentl$ lower than those for the MMMM. Only the 95-
th percentile estimators of?therpﬂﬂﬂ are larger than those of the MMMM.
Since the mean of the standard deviations was significantly lower for
the MMMM than for the PMMM, the percentile estimators of the MMMM showed

a more peakad distribution.

In comparison with results in Table 6.1, which were cbtained by
using a gamma-Poisson model to analvze failure data from a loggamma-
Poisson marginal distribution, the means of the estimated prior dis-
tribution from the two matching moments methods are the same as those
cbtained when the correct model was used to analyze the failure data,
(shown in Table 6.6). The means of the standard deviations of the es-
timated prior distributions obtained by the PMMM was the same as in
Table 6.6, but less for the MMMM. The characteristics of the percentiles
estimated were the same as those obtained when the correct model was

used to analyze the failure data, shown in Table %.6

The logWeibull-Poisson model yielded resﬁl;s that favored the prior
matching moments estimation method. The mean of the PMMM estimated prior

distribution has an advantage over that obtained from the MMMM, mainly
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because the MMMM failed to give successful estimates for 12 of the 25
data sets. The estimators for the PMMM of alpha and beta are less biased
than those obtained from the MMMM. The PMMM gave a larger mean square
error for the estimators of alpha than did the MMMM. The PMMM showed
better results for the means and standard deviations of the estimated
prior distribution. Only for the 75-th percentile did the MMMM showed
smaller mean square errors for estimates of the 75-th and 95-th
percentiles. In all, the PMMM did a better job than the MMMM for the

t
given simulated failure data.

In comparison with results in Table 6.2, which were obtained by
using a gamma-Poisson model to analyzé failure data from a logWeibull-
Poisson marginal distribution, the estimators of the ﬁeans of the es-

'
rimated prior distribution from the two matching moments methods are the
same for both failure models. The estiéators of the standard deviations
were the same for the PMMM, but better for the MMMM when the gamma-
Poisson mcdel was used. With the PMMM, the correctly assumed model gave
better estimators of thefS-th. 25-th, 530-th, and 75-th percentiles, but
poorer estimators of the 95-th percentiles than did the gamma-Poisscon
model. For the estimates of the 5-th, 25-th, 30-th, and 95-th
percentiles, the gamma-Poisson model vielded less biased estimators from
the MMMM, but yielded greater MSE estimators for the 5-th, 25-th, and

95-th percentiles from the MMMM. In all, the gamma-Poisson model yielded

poorer estimators for the PMMM, but better estimators for the MMMM.

The use of a Weibull-Poisson model to analvze failure data from a

Weibull-Poisson marginal distribution {as is seer from Table 6.8) showed
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better results for MMMM than the PMMM. The gamma-Poisson model showed

comparable results from each estimation method considered.

The lognormal-Peisson model also yielded results that favored the
marginal matching moments estimation method. A comparison of the
lognormal-Poisson results to those obtained with gamma-Poisson analysis
(Table 6.4) shows the mean and-standérd deviation of the estimated prior
distribution for both models d&e the same. Using a gamma-Poisson model
vielded better estimates of the 5-th, 25-th, 50-th, and 95-th percen-
tiles in terms of biaséandlMSE for the MMMM than those from a lognormal-

Poisson model. However, the PMMM did a better job with the lognormal-

Poisson model than with the gamma-Poisson model.

As shown in Table 6.10, the PMMM gave better estimates for the
parameters alpha and betz for the logbeta prior distribution than did
the MMMM. The mean of the PMMM estimated prior distribution was better
than that of the MMMM, but the MMMM showed better results for estimates
of the prior standard deviation. The 5-th, 25-th, and 5-th percentiles
favor the PMMM. Using the gamma-Poisson model in Table 6.5 gave similar
values for the mean and standard deviation of the estimated prior
distribution. The results from the Table 6.5 showed poorer estimators of
the 5-th, 25-th, and 50-th percentiles, but estimates from the MMMM gave

comparable values of MSE for both parameter estimation methods.

In each of the three alternative models previously investigated
[1,2] the MMMM failed to give successful estimates for 6 of the 25

simuilated data sets.
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6.3 COMPARISON OF USING SIX DIFFERENT PRIOR DISTRIBUTIONS WITH THE

SAME FAILURE DATA

Another method to show the effect of using different prior dis-
tributions in the failure rate analysis is to plot the estimated prior
distributions for a particular failure data set. In a previous study [ 1],

failure data sets of size 5 were simulated from a gamma-Poisson mar-
ginal distribution by the method described in Section 6.1, but with the
observed time T increaS%Q to 1,000,000 hours so as to raise the mean
number of observed failures from 0.6 to 12. Therefore, the majority of
simulated failure data no longer consisted of zero or one failure and
the distributions of prior parameters estimators obtained from these data
were smooth. Two of these data sets were chosen and analvzed with the

) '
conjugate gamma-Poisson failure model and three non-conjugate failure
models, i.e., Weibull-Poisson, lognormal-Poissoé, and loghbeta-Poisson.
For each failure mcdel, estimates of the prior parameters were cal-
culated by all three estimation methods and the wstimated prior dis-
tributions were plotted. The 5-th, 25-th, 50-th, 73-th, and 95-th per-
centiles of each estimated prior distribution were also computed. In
this study, the same two data sets were analvzed by the loggamma-Poisson
and logWeibull-Poisson failure models using all three estimation methods
and the estimated prior distributions were plotted along with those
pricr distributions previously estimated, i.e., gamma, Wéibull,
lognormal, and logbeta. The 5-th, 25-th, 530-th, 75-th, and 953-th percen-
tiles of the estimated loggamma and logWeibull prior distributions were

also computed.
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The two failure data sets chosen for this phase of the study were
(2,3,10,11,28) and (4,8,10,12,13). The first data sample was called good
data since it yielded prior gamma parameter estimates with small bias
for all three parameter estimation methods. The second data sample used
was called bad data since it gave very poor prior parameter estimates.
The prior parameter estimates for the prior distributions obtained from
the good and bad data sets using each estimation method are given in

Tables 6.11 and 6.12, respectively.

)

Figures 6.1, 6.2, and 6.3 s@bwsithe estimated prior distributions
belonging to the six prior families combined from both studies, with
parameters estimated by the PMMM, MMMM, and MMLM, respectively, for the
good data sample. In order to better visualize the resulting prior |

[l
distributions, the figures are presented both in linear and semi-log
form. All three figures show the same characteristics, i.e., close
similarity between the estimated gamma and Weibull distributions and
between the loggamma, lognormal., and logbeta distributions. Since the
95-th percentile is an important characteristic in safety studies, the
observation of considerable interest is that the high failure rate tail
of the distributions, are very close to one another. This charateristic
is confirmed by the results in Table 6.13 which gzives the 5-th, 23-th,
50-th, 75-th, and 95-th percentiles of the estimated prior distributions

of Figures 6.1, 6.2, and 6.3.

Figures 6.4, 6.5, and 6.6 and Table 6.14 present the results ob-
tained from the bad data sample. These figures show characteristics com-
parable with those of the good data. Close similsrity are paxticularly

evident between the loggamma, lognormal, and logheta distributions when
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the MMMM was used for this bad data set. The estimated prior dis-
tributions from the gamma and Weibull distributions show some minor
differences. However, the results in Table 6.14 show close estimates of
all five percentiles calculated for the different estimated
distributions, except those obtained for the logWeibull prior dis-
tribution from the MMLM estimaticn method. From these results, one can
conclude that any difficulty with estimating the prior distribution from
the failure data is inherent in the data sample and not in the parameter

t
estimation technique used.
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TABLE 6.11

Parameter estimates for sSix prior models obtained by three estimation
techniques for GOOD data

Prior@ Method Alpha Betab
Dist.
PMMM 1.073 9.936(4)
Gamma MMMM 1.191 1.103(5)
HMLM 1.543 1.429(5)
PMMM 1.096(-5) 1.036
Weibull MMMM 1.096(=5) 1.036
MMLM 1.167(-5) 1.267
PMMM -11.76 0.811
ognormal MMMM -11.74 0.781
MMLM -11.78 0.860
PMMM 257.7 130.7
Logbeta MMMM 262.0 133.5
MMLM 242.7 123.1
PMMM 187.2 6.298(-2)
Loggamma MMMM 203.2 5.788(-2)
MMLM 184.2 6.369(=-2)
PMMM 11.89 25.49
LogWeibull MMMM 1187 26.26
MMLM 12.15 16.07

4 The range or shift parameters are selected so that the
support of the prior distribution is (0,»).

8 For the gamma distribution, these represent 1/B.
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TABLE 6.12

Parameter estimates for six prior models obtained by three estimation

techniques for BAD data

| Priord Method Alpha Betab
Dist.
PMMM 6.093 7.348(5)
Gamma MMMM 25.99 2.765(6)
MMLM 82.64 5.823(6)
PMMM 1.055(-5) 2.849
Weibull MMMM 1.014(-5) 5.G21
MMLM 3.996(-6) 7.786
PMHM -11.64 3.687(-1)
Lognormal MMMM -11.59 1.943(-1)
MMLM -11.58 0.988(-1)
PMMM 1.323(3) 6.595(2)
Logbeta MMMM 4.788(3) 2.371(3)
MMLM 1.626(4) 8.038(3)
PMMM 9.788(2) 1.189(-2)
Loggamma MMMM 3.537(3) 3.278(=3)
MMLM 9.126(3) 1.269(=3)
PMMM 1176 48.17
Logweibull® MMMM 11.67 83.81
MMLM 11.59 357.0Q9

selected so that the

@ The range or shift parameters are
is (O0@).

support of the prior distribution

B For the gamma distribution, these represent 1/8.
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TABLE 6.13

Percentiles of six prior distributions obtained from three estimation
methods with GOOD data

Method Prior Percentiles
Dist.

5-th 25-th 50-th 75-th g95-th

+
£

PMMM gamma .066(=5) .333(=5) .770(-5) 1.50(-5} 3.?6(—53
PMMEL Weibull .062(-5) .329(-5) .769(-5) 1.50(-5) 3.16(-5)
PMMM  lognormal .205(=5) .ULU4G(-5) .777(-5) 1.34(-5) 2.95(-5)
PMMM logbeta .190(=5) .437(=5) .773(-5) 1.36(-5) 2.59(-5)
PMMM  loggamma .177(=5) .428(=5) .772(-5) 1.37(-5) 3.01(-=5)
PMMM  logWeibull .408(-5) .591(-5) .816(-5) 1.21(-5) 2.55(-5)

MMMM gamma .082(=5) .366(-5) .797(-5) 1.49(-5) 3.04(-5)
MMMM Weibull .O74(-5) .357(-5) .798(-5) 1.50(-5) 3.05(-5)
MMMM  lognormal .220(-5) .470(-5) .796(-5) 1.35(-5) 2.87(-5)
MMMM logbeta .185(-5) .H423(-5) .745(-5) 1.30(-5) 2.85(-5)
MMMM  loggamma .194(-=5) .451(-=5) .793(-5) 1.37(-5) 2.92(-5)
MMMM  1logWeibull .423(=5) .605(=5) .B828(-5) 1.22(-5) 2.50(-5)

MMLM gamma . 133(=5) .445(~5) .858(-5) 1.48(-5) 2.79(-5)
MMLM Weibull .112(-~5) .436(-5) .8T4(-5) 1.51(-5) 2.78(-5)
MMLM  lognormal .186(-5) .429(-5) .766(-5) 1.37(-5) 3.15(-5)
MMLM logbeta .181(~5) .429(-5) .773(-5) 1.38(-5) 3.11(-5)
MMLM  loggamma 3177(-5) .430(-5) .780(-5) 1.39(-5) 3.07(-5)
MMLM logWeibull »224(=5) .412(~5) .696(-5) 1.31(-5) 4.11(-5)




-79-

‘TInqTsM

-807 (9) pue ‘euweB8B07 (g) ‘®ieqB01 (%) ‘TInqIeM (¢) ‘TewiouSor (Z) ‘euwesn (T)
:S9TTTWey 2y3 03 Zuo[aq 01 paunsse aIam SUOTINgTIISTp z1orid ayg ‘Sol-twas (q)
IeaulT (®B) ‘®BIRP QVY YITA WWWd 243 £q pauTelqo suoTinqTiistp Iorid pajewrisy

i9°g 2an81y4

mrmv 9lBYH 2injle 4 A—. C@OFV ajey ainjjey
.leLl_”_LLLv 1 n |Oh_- ml.OP 0 O.m O.¢ O.m O.N O.P O-O
A G Auhilued g = 00 = R R T A L \ 0°0
(o]
-
W)
G0 W LG 0
i
<
m1|
0k 5 -0 |
O
T
=
-Gt LG}
o
(@2}
=
@ 0 ¢ bepsen o sy ) 0°2

(4 gOL) uoIoung Aysueq "qoid



—80—

TTINqTaM
-807 (9) pue ‘wuwef8o7 (¢) ‘miaql8o1 (k) ‘TINqIaM (g) ‘rewioudo] () ‘Bumesn (1)
$S9T[TWe) 2yl o3 Fuolaq 03 pawnsse alam suoTingIliastp ioTad ayy ‘Sor-Twes (q)

IeauTr( (B) ‘BIEp (V9 YITM WWWW 24l £q paurel1qo Su0TINqTIlsTp IoTad pelewrisy :¢°9 23in3Td

( Weiey ainjjed (, 4, 01) eyey eunjjey
0l 0°'¢ (O 4 o't 02 o't 0’
A s @‘MH‘D ‘0 T S e

© 0
- ]
(QOU’:) uoljoun4 Ajtsuaqg "qoid

-
Y}

)
o

©
(=]

©
T

|
]
o™
™
G

(”90” uoiioung Ajtsuag "qodd



==

TTTNGT=2M
-801 (9) pue ‘eume3807 (¢) ‘®3ILqQB30 () ‘TINYIAM (€) ‘1euzoulo] (g) ‘euwed (1)
:s9TTTWR] 2Yya 031 Buo2q 031 paWNSse 2i1aM SuoTinqrIlstp 1otad ayy -Sor-Twas (q)

a1eauIT (v) ‘®IEp QVE UITA WIHW 9yl £q pauTelgo suoringTilsTp lorad psjeurisg :9°9 21n814
ainjie

y2) g 0! 90} | 0s ov 0€ 0g 01 00 7
— IO O d ﬂ.l.l...L!wiif‘ e RN A N lbo.o m

s o

9 :

) & . o

U o @

Lo Sl 0 ]

v ® kv oy >

17 ~

- <

= M

o'g 2 -0° g 5

3 (9]

- o =

= i o

Ie) 3

9 2 —~

0el o 9 021
L J&

OC._ -

- S

L . R | o . 0°'91

Q) 0" a1 (e)



-82—

TABLE A.14

Percentiles of six prior distributions obtained from three estimation
methods with BAD data

Method Prior Percentiles
Dist.

5-th 255th  50-th  75-th  §5-th

PMMM gamma LU38(-5) .681(-5) .895(-5) 1.15(-5) 1.59(-5)
PMMM weibull .372(45) .681(-5) .926(-5) 1.18(=5) 1.55(-5)
PMMM  lognormal .UBO(=5) .685(-5) .378(-5) 1.13(-5) 1.61(=5)
PMMM logbeta LH76(-5) .684(-5) .879(-5) 1.13(=5) 1.61(-5)
PMMM  loggamma 473(-5) .684(-5) .881(-5) 1.13(-5) 1.61{-5)
PMMM  logwWeibull .594(-5) .719(-5) .851(-5) 1.05(-5) 1.57(-5)

HMMMM gamma .659(=5) .B10(-5) .928(-5) 1.06(-5) 1.26(-5)
MFMM Weibull .E14(=5) .822(-5) .953(-5) 1.07(=5) 1.z22(=5)
MMMM  lognormal .670(-5) .809(-5) .922(-5) 1.05(-5) 1.27(-5)
HMMM logbeta .669(-=5) .805(~5) .923(-5) 1.05(=5) 1.27(-5)
MMMM  loggamma .668(~5) .809(=5) .923(=5) 1.05(=5) 1.27(-5)
MMMM  logWeibull .733(=5) .816(=5) .895(-5) 1.01{(-5) 1.28(-5)

MMLM gamma LIT7(=5) .868(-5) .936(-5) 1.01(=5) 1.12(-5)
MMLM weibull .6E3(-5) .852(-5) .G54(-5) 1.04(=5) 1,15(=-5)
MMLM lognormal .795(-5) .875(~5) .G35(-5) 1.00(-5) 1.10(-5)
MMLM logbeta ,785(~5) .E70(-5) .934(-5) 1.00(-5) 1.11(=5)
MMLM  loggamma .T6U4(=3) .860(-5) .G34(-5) 1.01(=5) 1.14(=5)
MMLM logWeibull .889%(~5) .§12(-5) .¢33(-5) .900(-=5) 1.02(-5)




Chapter 7

SUMMARY AND CONCLUSION

This chapter briefly summarizes this study and suggests areas

for future research.

7.1 FAMILIES OF DISTRIBUTIONS

One of the objectives of this study was to examine the ability
of several different prior distributions to model failure-rate data.
This study incorporated the non—co;jugate loggamma and logWeibull
distributions into a compound failure-rate model, and thereby
extended an earlier study[ll] that used the conjugate gamma, non-
conjugate Weibull, lognormal, and logbeta prior distributions.

In this étudy the non-conjugate loggamma and logWeibull dis- '
tributions were chosen as possible altermatives to the conﬁugate
gamma distribution in order to determine the effect the choice
of the prior family has on the failure model. Data were simulated
from these alternative distributions with thgir parameters at pre-
set values, i.e.; the data were therefore generated from known dis-
tributions. The data simulation, as explained in section 6.1.1, was
achieved by utilizing a random number generator program to obtain
numbers between 0 and 1. These numbers were then takem as the values
of the cummulative marginal distribution. Sets of failure data were
then determined from the cummulative distribution thereby producing

sets of failure data representative of known altern:tive distributioms,

These sets of failure data were analyzed by using the conjugate

i
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gamma model. The same failure data sets were also analyzed by using
the non—conjugéte models from which they were simulated. The results
of the conjugate gamma and non-conjugate analysis of the failure
data were then compared. It was determined that the conjugate gamma
model is as good, if not better, in analyzing failure data than the

non-conjugate models, even when the failure data are known to

K
=

come from the non-conjugate distribution.

7.2 ESTIMATION METHODS é

In this study the results of an earlier study [11] were
verified, namely that the method chosen to estimate values of the
prior paramgters is of greater importance than the cheoice of the
disﬁribution family used.

Three methods were used to estimate values of the pricr para-
meters: (1) matching the data moments to those of the prior dis-
tribution (PMMM), (2) matching the moments of the marginal distribu-
tion to those of the data (MMMM), and (3) the maximum likelihood
method based on the marginal distribution (MMLM).

The matching mements methods consisted of matching the sample
moments of the given failure data to the corresponding distribution
moments. Since two parameters needed to be estimated in order to
determine the distribution shape and range, this produced two
equations with two unknowns. These equations were solved either
directly or by use of standard numerical techniques.

The Marginal Maximum Likelihood Method consists of determining

the values of the two unknowns a and B which maximized the like-



P
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lihood function for the given failure data. This is explained in
section 4.2,

Each of the estimation techniques were used in estimating
the parameters of the chosen prior families from the simulated
failure data. Percentiles of the resulcs and estimated prior dis-
tributions were compared to each other and to the known exact
values. From these comparisons, it was determined that the method

t

used to estimate the parameters of the chosen prior family has

a greater effect than the selection of the prior family.

7.3 SUGGESTIONS FOR FUTURE STUDIES

7.3.1 Estimation Techniqﬁes

To augment this study and to obtain a better overall under-
standing of the different estimation techniques, one should in
future work investigate several other methods of parameter estim-
ation. For example, in the matching moments equations cne could
use the third and fourth moments "shape factors" (described in
chapter 4). Kurtosis, a measure of the degree of flatness of a

density near its center, could be utilized in estimating parameters

of distributions.

7.3.2 Degradation of Components and Systems.

In this study, it was assumed the failure rate . for a par-
ticular component was a constant and that the compomznc if it
should faii is immediately repaired and brought bark into nperation

t
with its failure rate unchanged. It was also assumed rhat failures

were independent of one another. These assumptions :unsidarably

simplified the development of the compound failure moocel, and



-86-=

experience with mechanical components show that they are doomed

to fail with continual use. Components are degraded with use and

it can be expected that their failure rates X will generally change
in time.

All plants are built with some form of redundant emergency
back-up systems (""failure-on-demand problem'). That is, duélicate
systems designed such that if one fails when signaled to operate,
the other is required to start, i.e. back-up to a bgck—pp system.
Until lately is has been long standing with the Nuciear Regulatory
Commission that if one of the safety back-up systems fail, then
the remaining (2nd) redundant system must be tested every day to
insure its cperabiliLy until the first back-up system is repaired

i
or replaced.iThe obvious conclusion to this practice is that the
secondary system being tested every day will wear and its probability
of failure will increase, i.e. pump failure, failed valve closure,
etc., thereby , possibly leaving no back-up system and requiring the
shutdown of the plant. One of the supporting truths te this is
that a major portion of the wear and strain on a pump is during
its start up and shut down - precisely the strains imposed by
testing.

In order to include degradation of components and systems
in the failure rate case, one would have a time dependent problem

which would further complicate an already difficult task. The
computational diffulties would mount with each step of mathema-
tics required to compute results from a timefdependent compound

failure model. However, with numerical procedures duveloped here

and in earlier studies, it should be possible to reduce these
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more complex (and more realistic) failure models to numerics. One
could change (increase) the value of X after each test or use,

based on the original constant failure rate assumed. This would
account for the degradation of components during its operating mode.
Since degradation is a reasonable assumption, this should produce

more realistic results.



10.
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ABSTRACT

Compound or Bayesian failure models are often used to describé
nuclear plant components with inherently low failure rates. In these
models the failure rates of similar components are assumed to vary
according to some unknown prior distribution, and yet to remain constant
for each individual component. Usually, the conjugate gamma distribution
is chosen to represent the prior distribution in the compound model
because of the subsequent analytical simplification afforded by its use
in the compound failure model.

Recently, the use of non-conjugate prior distributions in a compound
failure~ratg model was studied. The purpose of this study is to extend
this earlier work by incorporating additional non-conjugate prio; distri-
butions in the compound failure-rate model. In particulﬁr, the use of
non-conjugate loggamma and logWeibull distributions are studied as
alternative distributions to represent the prioer distributiomn.

Failure data were simulated from known loggamma-Poisson and log-
Weibull-Poisson marginal distributions. P;ior distributions were then
estimated from these data by using the conjugate gamma-Poisson failure
model as well as by the non-conjugate failure models from which the data
was generated. Parameters for the various prior distributions were
estimated from the simulated failure data by the following three methods:
(i) matching the data moments to those of the prior distribution, (ii)
matching the moments of the marginal distribution to those of the data,
and (11i) the maximum likelihood method that estimates the prior
parameters so as to maximize the probability of observing the actual

data.



The ‘main conclusion from this study is that the computationally
simpler conjugate model can be used to describe failure data from
components with inherently low failure probabilities even when the data
is known to come from a non-conjugate distribution. Of far greater
importance than the selection of the prior family is the method used to
estimate the prior parameters from the failure data. For scme data sets
the three parameter estimation techniques are found to give quite

different results.



