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Abstract 

Crop improvement is a central objective to address global food security of the increasing 

population. Breeders and geneticists around the world are trying to find out the best ways and 

means that can select the superior lines of any crops. A 2% genetic gain is needed to keep up 

with the increasing global population and increasing food demand. To accelerate rapid genetic 

gain conventional breeding methods of crop selection should be complemented with the 

advanced molecular selection methods that encompasses with the genotyping technology. Rapid 

advances in technology like next generation sequencing that resulted in many sequenced 

genomes and the ability to quickly genotype thousands of individuals are providing the datasets 

to match genotyping to phenotyping. Here, we will describe the advanced breeding 

methodologies that can be used to improve any crop with specific focus on wheat improvement 

for the heat stressed environments of Bangladesh. Advanced breeding methodologies includes – 

predicting yield with the secondary traits, genome wide association studies to identify the 

significant genomic region for a specific trait and using whole-genome prediction models to 

calculate the genomic estimated breeding values to make genomic selection. 

There are two ways of predicting important traits of any crops – phenotypic prediction 

and genotypic prediction.  Yield prediction is the final target of any breeding program but 

selection for yield is limited by the extent of field trials, fluctuating environments, and the time 

needed to obtain multi-year assessments. Proximal sensing data collection is increasingly 

implemented with high-throughput platforms that provide powerful and affordable information, 

while efficiently using this data is challenging. The objective of this study was to monitor wheat 

growth and predict grain yield in wheat breeding trials using high-density proximal sensing 

measurements under extreme terminal heat stress that is common in Bangladesh. We used 



  

several models and different secondary traits for this purpose. Our results showed that optimized 

phenotypic prediction models can leverage secondary traits to deliver accurate predictions of 

wheat grain yield, allowing breeding programs to make more robust and rapid selections. 

A genome wide association study (GWAS) was conducted for grain yield, yield 

components and other secondary traits in elite spring wheat germplasm grown in natural heat 

stressed environment in Bangladesh to identify genomic regions that control component traits 

and contribute to yield potential.  A total of 2682 unique advanced wheat lines from the 

CIMMYT bread wheat program were planted in cohorts of ~540 lines in each of the five wheat 

growing seasons with measurement of important traits including grain yield and yield component 

traits and proximal sensing data including normalized difference vegetation index (NDVI) and 

canopy temperature (CT).  To understand the genetic architecture of these traits, genome-wide 

association study (GWAS) was conducted using 39,912 SNPs from genotyping-by-sequencing.  

GWAS result were insignificant and variable for CT and NDVI supporting a hypothesis of 

highly polygenic genetic architecture.  In contrast, large effect loci associated with days to 

heading and days to maturity were found on chromosomes 5A, and 5B at the Vrn-A1 and Vrn-

B1 loci and the frequency and impact of these alleles was observed to vary over successive 

cohorts. We were able to find significant association in chromosome 3B and 4A for grain yield 

that colocalized with loci identified for thousand grain weight.  Overall, this study highlights the 

utility of secondary traits including sensor based NDVI and CT to identify chromosome regions 

that contribute to yield and stress tolerance in South Asian spring bread wheat and better 

understand the genetic architecture, particularly for heading date and maturity which are critical 

targets of selection to avoid extreme terminal heat stress.  



  

By matching the dense genotyping data with the phenotyping data, we can successfully 

predict and select the best performed cultivar. Predicting crop performance and selecting them 

using genetic information is a major challenge for 21st century plant breeders. This is because a 

complex trait is controlled by thousands of genes and their interactions with the environment 

where the crops are grown. We have developed a genomic selection model for the heat stressed 

environment in South Asia. With the advanced wheat lines collected from CIMMYT, Mexico, a 

training population was created, and genomic selection was done for the breeding population. 

We found low to high prediction accuracy across the years and how to moderate prediction 

accuracy across trials. Days to heading and maturity showed the highest and consistent 

prediction accuracy while thousand grain weight and grains per spike had good predictability 

among the yield components. This genomic selection approach can be used in any unbalanced 

dataset that are common to any breeding program. It will ultimately accelerate the rate of crop 

improvement that is important to secure the global food security. 
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Abstract 

Crop improvement is a central objective to address global food security of the increasing 

population. Breeders and geneticists around the world are trying to find out the best ways and 

means that can select the superior lines of any crops. A 2% genetic gain is needed to keep up 

with the increasing global population and increasing food demand. To accelerate rapid genetic 

gain conventional breeding methods of crop selection should be complemented with the 

advanced molecular selection methods that encompasses with the genotyping technology. Rapid 

advances in technology like next generation sequencing that resulted in many sequenced 

genomes and the ability to quickly genotype thousands of individuals are providing the datasets 

to match genotyping to phenotyping. Here, we will describe the advanced breeding 

methodologies that can be used to improve any crop with specific focus on wheat improvement 

for the heat stressed environments of Bangladesh. Advanced breeding methodologies includes – 

predicting yield with the secondary traits, genome wide association studies to identify the 

significant genomic region for a specific trait and using whole-genome prediction models to 

calculate the genomic estimated breeding values to make genomic selection. 

There are two ways of predicting important traits of any crops – phenotypic prediction 

and genotypic prediction.  Yield prediction is the final target of any breeding program but 

selection for yield is limited by the extent of field trials, fluctuating environments, and the time 

needed to obtain multi-year assessments. Proximal sensing data collection is increasingly 

implemented with high-throughput platforms that provide powerful and affordable information, 

while efficiently using this data is challenging. The objective of this study was to monitor wheat 

growth and predict grain yield in wheat breeding trials using high-density proximal sensing 

measurements under extreme terminal heat stress that is common in Bangladesh. We used 



  

several models and different secondary traits for this purpose. Our results showed that optimized 

phenotypic prediction models can leverage secondary traits to deliver accurate predictions of 

wheat grain yield, allowing breeding programs to make more robust and rapid selections. 

A genome wide association study (GWAS) was conducted for grain yield, yield 

components and other secondary traits in elite spring wheat germplasm grown in natural heat 

stressed environment in Bangladesh to identify genomic regions that control component traits 

and contribute to yield potential.  A total of 2682 unique advanced wheat lines from the 

CIMMYT bread wheat program were planted in cohorts of ~540 lines in five wheat growing 

seasons with measurement of important traits including grain yield and yield component traits 

and proximal sensing data including normalized difference vegetation index (NDVI) and canopy 

temperature (CT).  To understand the genetic architecture of these traits, genome-wide 

association study (GWAS) was conducted using 39,912 SNPs from genotyping-by-sequencing.  

GWAS result were insignificant and variable for CT and NDVI supporting a hypothesis of 

highly polygenic genetic architecture.  In contrast, large effect loci associated with days to 

heading and days to maturity were found on chromosomes 5A, and 5B at the Vrn-A1 and Vrn-

B1 loci and the frequency and impact of these alleles was observed to vary over successive 

cohorts. We were able to find significant association in chromosome 3B and 4A for grain yield 

that colocalized with loci identified for thousand grain weight.  Overall, this study highlights the 

utility of secondary traits including sensor based NDVI and CT to identify chromosome regions 

that contribute to yield and stress tolerance in South Asian spring bread wheat and better 

understand the genetic architecture, particularly for heading date and maturity which are critical 

targets of selection to avoid extreme terminal heat stress. 



  

By matching the dense genotyping data with the phenotyping data, we can successfully 

predict and select the best performed cultivar. Predicting crop performance and selecting them 

using genetic information is a major challenge for 21st century plant breeders. This is because a 

complex trait is controlled by thousands of genes and their interactions with the environment 

where the crops are grown. We have developed a genomic selection model for the heat stressed 

environment in South Asia. With the advanced wheat lines collected from CIMMYT, Mexico, a 

training population was created, and genomic selection was done for the breeding population. 

We found low to high prediction accuracy across the years and how to moderate prediction 

accuracy across trials. Days to heading and maturity showed the highest and consistent 

prediction accuracy while thousand grain weight and grains per spike had good predictability 

among the yield components. This genomic selection approach can be used in any unbalanced 

dataset that are common to any breeding program. It will ultimately accelerate the rate of crop 

improvement that is important to secure the global food security. 
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Preface 

Wheat is the second staple grain crop and its demand and consumers are increasing day 

by day in Bangladesh. Wheat research in Bangladesh follows only conventional methodologies 

and the genetic gain is not up to the mark that is required to improve wheat for addressing the 

country’s increasing population and growing demand. Conventional breeding should be 

complemented by the advanced molecular breeding that can reduce land, labor, and time and 

increase genetic gain. To address this issue, we have developed some advanced breeding 

methodologies including yield prediction, genome wide association study (GWAS), and genomic 

selection models those can be used by the researchers to improve wheat in Bangladesh. Breeders 

can use secondary trait measurements, obtained during the growing season, to increase selection 

accuracies prior to harvesting the plots and ensure that high yielding plots are harvested. This is 

of particular interest if these secondary traits can be measured on smaller plots at earlier 

generations in the breeding cycle enabling more intense selection prior to lines entering into 

replicated yield testing. We already have implemented these models along with high throughput 

phenotyping (HTP) to select the superior wheat lines from the advanced lines collected from 

CIMMYT, Mexico. Over the previous five years we selected several wheat lines and due to their 

superior performance than the national check variety they can be released as new variety. I think 

these advanced breeding methodologies can help to improve the wheat breeding research in 

Bangladesh.  
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Chapter 1 - Scope of Wheat Improvement in Bangladesh  

 Abstract 

Wheat is the second most important cereal crop after rice in Bangladesh and its 

consumption has increased by more than 10% in recent years. The crop is subjected to various 

abiotic and biotic stresses with terminal heat stress having the greatest constraint. Recently the 

discovery of wheat blast, caused by Magnaporthe oryzae pathotype Triticum, poses significant 

additional challenges for wheat breeding and production.  The Bangladesh Wheat and Maize 

Research Institute (BWMRI) is the organization in Bangladesh is tasked with wheat and maize 

improvement. Using traditional breeding methods, it usually takes 8 to 10 years to develop and 

an additional 3 to 5 years to release a new wheat variety. Classical breeding assisted with 

molecular breeding will accelerate the improvement. With the conjunction of low cost new high-

throughput genotyping technologies and more routine statistical methods the genomic selection 

can greatly accelerate the breeding cycle and thus genetic gain beyond what is possible with 

phenotypic selection. Our objectives are - to harness genetic resources for wheat improvement 

through systematic characterization and use of genetic diversity to accelerate breeding gains to 

address climate change issues, - develop high-throughput phenotyping system and genomic 

selection models to identify useful alleles/traits for stress tolerance and rapidly make predictions 

and selections of the most promising candidate wheat varieties. In this context, breeding heat and 

drought tolerant cultivars, and developing new technologies comparable with those in more 

advanced countries in collaboration with various national and international organizations like 

CIMMYT, ICARDA, ICRISAT, CIDA, AusAID, USAID are most important. 
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 Introduction 

  During liberation war the production of number one cereal crop, rice in Bangladesh 

decreased due to a series of disasters. Then people came to realize that the rice couldn’t alone 

mitigate the food requirement of the country (Bangladpedia, 2006). The country received a lot of 

wheat grain as food relief from international communities. In course of time, Bangladesh became 

highly dependent on wheat imports while dietary preferences were changing such that wheat was 

becoming a highly desirable food supplement to rice. Now wheat is the second most important 

cereal crop in Bangladesh and its consumption increased by 13% annually due to changes in 

dietary habit, socioeconomic upliftment, and increasing per capita income (Hossain, Islam, and 

Islam 2020). The country’s wheat imports constitute 70% of total wheat consumption. Moreover, 

demand for wheat across the developing world is projected to increase 60 % by 2050. Recently, 

the production cost of wheat became lower compared to irrigation dependent boro rice and the 

market price of wheat is higher than rice. There had been recorded a depletion of ground water 

table for irrigation in boro rice cultivation in the barind region in the country. Moreover, 

government took initiative to purchase wheat with some added incentives. All these might 

rejuvenate the farmers’ waning interests to grow wheat again in their field. 

 Scope and challenges of increasing wheat production in Bangladesh 

There are two ways of wheat expansion in Bangladesh. A vertical expansion – increasing 

wheat productivity by minimizing yield gap through adoption of new wheat varieties and other 

technologies and a horizontal Expansion – Southern belt (1 million ha) can be brought under 

wheat cultivation. Charlands in different districts are also very much suitable for growing wheat 

(0.8 m ha.). Encouraging wheat instead of growing Boro rice in high land and sandy soils in 
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north-western districts and Barind areas can be brought under wheat by 1-2 light irrigations 

(75,000 ha). Greater Sylhet can be brought under wheat by improving irrigation facility.  

The abiotic constraints of wheat production here are heat especially terminal heat stress 

(global warming), moisture stress (drought), salinity, sterility (B deficiency), and soil acidity 

(low pH). The most important stress is the heat stress. CIMMYT and ICARDA (2011) estimated 

that 20–30 % wheat yield losses would occur by 2050 in developing countries as a result of a 

predicted temperature increase of 2–3 C. The Geophysical Fluid Dynamics Laboratory transient 

model (Manabe et al. 1991) projected that, in Bangladesh, temperatures would rise 1.3 C by 

2030 and 2.6 C by 2070, compared with mid-20th-century levels. The annual mean temperature 

of Bangladesh is 25.75 C and is expected to rise by 0.21 C by 2050 (Karmakar 2000). By 

2050, rice yield could drop by 8 % and wheat yields by 32 % (Action 2010). With a change in 

average temperature of 2 – 4 0C over 34/160C day/night temperature, the prospect of growing 

wheat and potato would be severely impaired and production loss may exceed 60 % of the 

achievable yields (Karim 1993). The major stress faced by wheat in South Asia is high 

temperature, mainly terminal heat stress (Joshi et al. 2007), which was defined by (Fischer and 

Byerlee 1991) due to mean daily temperature above 17.5 C in the coolest month. In Bangladesh, 

mean temperature in winter (rabi) has risen by 0.66 C since 1990 and a further warming of 

2.13C by 2050 is predicted (Rawson 2011).  

The biotic constraints are Bipolaris leaf blight (BpLB) caused by Bipolaris sorokiniana 

(Sacc.in Sorok.) Shoemaker, leaf rust caused by Puccinia triticina Eriks. (= Puccinia recondite f. 

sp. Tritici), black point caused by B. sorokiniana, Alternaria alternata, etc., head blight caused by 

B. sorokiniana. Among them Bipolaris leaf blight is the most important. A rise in temperature 

can be expected to increase the severity of Bipolaris leaf blight and other wheat diseases in the 
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future because a warm and humid climate favors the development and spread of the pathogen.  

Unfortunately, wheat blast, a devastating wheat disease caused by the Triticum pathotype of 

Magnaporthe oryzae B.C. couch (Synonym Pyricularia oryzae Cavara) emerged for the first 

time in 2016 in several south-western and southern districts of Bangladesh. Since then, it is being 

a focus and concern in the international scientist community.  

 History of wheat research in Bangladesh 

The research on wheat crop was initiated by the first testing of two Mexican varieties 

(‘Sonora 64’ and ‘Penjamo 62’) in the northern part of Bangladesh in 1965 (BARI, 2010). Their 

spectacular performance encouraged scientists to introduce wheat more generally to this part of 

the country. Since then, there were so many ups and downs in the acreage and production of 

wheat crop in Bangladesh. It was recorded that wheat production reached more than 1 million 

ton per year in the first half of eighties (BARI 2010). This was possible due to the release of 

‘Sonalika’ in 1972 that created a true breakthrough in wheat production. It was an early maturing 

high yielding widely adapted wheat variety. It became a mega variety in the early eighties (WRC 

2009). Another breakthrough was recorded when Kanchan was released along with other three 

varieties viz. Ananda, Barkat, and Akbar in 1983 by the scientists of WRC, BARI. These four 

varieties were higher yielding (yield 2–3 tons/ha) than Sonalika. Gradually wheat variety 

Sonalika was replaced by the new variety Kanchan, which became the predominant variety in 

Bangladesh by the early 90s. The highest production of wheat was recorded at 19.08 lakh tons in 

fiscal year 1998-99. In the meantime, Kanchan became susceptible to Bipolaris leaf blight and 

for this disease yield of Kanchan was dramatically decreased. Later the acreage and production 

of wheat decreased due to the competition with other winter crops like maize, potato, and winter 

vegetables that promised higher profits. In 2006 the lowest wheat production was recorded. The 
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lower acreage, which is due to crop competition, lack of stress tolerant wheat varieties, etc. is 

one of the most important causes of its low production. The acreage of wheat was the lowest in 

2011-12 fiscal year. Then total area increased by 1.83% from 436814 ha in 2014-15 to 44805 in 

2015-16. But the yield decreased by 1.78% due to blast disease. Currently, Bangladesh only 

produces one fifth of its annual wheat demand. 

 Current wheat breeding strategy in Bangladesh 

Bangladesh Wheat and Maize Research Institute (BWMRI) is the only organization 

solely assigned to research on the development and improvement of wheat and maize crops. 

BWMRI has develops all the wheat varieties that are being cultivated by the farmers throughout 

the country. Scientists of BWMRI are continuing their research to develop biotic and abiotic 

stress tolerant wheat varieties. The institute has released so far 36 wheat varieties.  

The main objective of variety improvement is to develop high yielding wheat varieties 

with a wide range of adaptability with a view to enhance wheat productivity in Bangladesh. 

Development of heat tolerant varieties has been given the highest research priority under the 

context of global climate change. Due emphasis has also been given to develop varieties against 

other abiotic stresses like drought, salinity, Boron-deficiency etc. Genetic improvement through 

incorporating stress adaptive traits into good agronomic background is being duly emphasized in 

the variety development program. In addition, research thrust has been put forwarded towards 

developing varieties for improved bread making quality. Efficient deployment of resistance 

genes into the genotypes with good agronomic background for the major diseases like bipolaris 

leaf blight, leaf rust, stem rust, etc. is also considered as a priority area. The performance of 

newly developed wheat lines from national and international sources specially from CIMMYT is 
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being evaluated under different growing environments across the country and promising lines 

superior to the standard check varieties are selected.  

 Shuttle breeding with Kenya & Ethiopia 

Every year some selected lines were sent to Kenya for screening against stem rust (Ug99 

race). The BWMRI maintains a unique crossing block having germplasm from diverse sources 

and those are utilized for hybridization. Strategic crosses are made based on the pyramiding yield 

potential, disease resistance, physiological traits conferring tolerance to biotic and abiotic 

stresses, etc. in the agronomical superior adapted varieties. The crossing block materials are 

consisted of high yielding commercial varieties, early maturing varieties/lines, BpLB tolerant 

varieties/lines, rust resistant including Ug99 tolerant varieties/lines, short height varieties/lines, 

high biomass and high harvest index varieties/lines, genotypes with more grains/spike, genotypes 

with excellent grain filling under late planting condition, genotypes with good bread making 

quality, sterility tolerant genotypes, etc. Single cross, three-way cross or top cross, and limited-

backcross strategies are followed for developing breeding populations. Crosses are then 

evaluated in respect of their female parent and superior crosses are selected to proceed through 

segregating generations. Segregating generations are advanced following selected bulk method. 

In the segregating generations selections are made based on good vigor, earliness, medium 

height, disease and sterility tolerance and resistance, etc. The F6 nursery is planted as plant to 

plot. Yield of the F6 plots are not usually recorded. Genotypes are selected on the basis of visual 

agronomic characteristics like homogeneity in plant height, good arrangement of spikelets on the 

spike, short plant height, early maturing, disease resistant/tolerant, visual seed quality viz. white 

seed color, bold grain, smoothly filled grain, etc. Every year new lines are being added in the 

nurseries/trial for performance evaluation. 



7 

The selected genotypes go directly to the national wheat-screening nursery called 

Bangladesh wheat screening nursery (BWSN). These nurseries are evaluated under irrigated time 

sown (ITS) and irrigated late sown (ILS) conditions. Selected genotypes from this nursery are 

evaluated in preliminary yield trial (PYT) and then in advance yield trial (AYT) both in ITS and 

ILS conditions. The most promising lines are then evaluated in farmers field as participatory 

variety selection (PVS) and then the selected lines from PVS are advanced to adaptive trial, 

which is tested on farmers’ field and on research station. Personnel from national seed board then 

come to evaluate the lines in adaptive trial and finally the national technical committee approves 

the variety. Wheat genotypes those are not recommended as varieties are kept in germplasm 

maintenance nursery and there is a scope to initiate a program for core collection that can help 

future breeders to develop better variety in future. Normally it takes 12 to 15 years to develop a 

new wheat variety with this breeding method. 

Future strategy of wheat breeding in Bangladesh 

Breeding efforts to develop high-yielding varieties still continued with the classical 

methods but the breeders should be evaluating new breeding methodologies to initiate programs 

for addressing the future global warming. Most of the wheat varieties grown Bangladesh are 

sensitive to high temperature, and yield safety is in jeopardy because of the forecast climatic 

changes. Drought and high temperature are key stress factors with high potential for impacting 

negatively on crop yield. Yield safety can only be improved if future breeding is based on new 

knowledge concerning plant development and its responses to stress, for example by enabling the 

development of crop plants with improved thermo-tolerance using various genetic approaches 

(Wahid et al., 2007). A thorough understanding of physiological responses of plants to high 

temperature, mechanisms of heat tolerance and possible strategies for improving crop thermo-
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tolerance will be needed for this. In this context, breeding heat and drought tolerant cultivars, and 

developing new technologies comparable with those in more advanced countries in collaboration 

with various national and international organizations (i.e. CIMMYT, ICARDA, ICRISAT, 

CIDA, AusAID, USAID) are most important. So, the conventional breeding should be 

complemented with the advanced breeding methodologies like yield prediction, high throughput 

phenotyping, GWAS, and genomic selection. By implementing these advanced breeding 

methodologies, desired increase in genetic gain will be possible through which food and 

nutritional security in Bangladesh will be ensured. 
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Chapter 2 - Improving Wheat Yield Prediction Using Secondary 

Traits and High-Density Phenotyping under Heat Stressed 

Environments 

 Abbreviations 

BLUE, Best Linear Unbiased Estimator; NDVI, Normalized Difference Vegetation 

Index; CT, Canopy Temperature; DTHD, Days to heading; DAYSMT, Days to maturity; 

GRNSPK, Grains per spike; GRYLD, Grain yield; HELSPSEV, Helminthosporium severity; PH, 

Plant height; SN, Number of spikes per square meter; SPKLNG, Spike length; SPLN, Number of 

spikelets per spike. Z 

 Abstract 

A primary selection target for wheat (Triticum aestivum) improvement is grain yield.  

However, selection for yield is limited by the extent of field trials, fluctuating environments, and 

the time needed to obtain multi-year assessments. Secondary traits such as spectral reflectance 

and canopy temperature (CT), which can be rapidly measured many times throughout the 

growing season, are frequently correlated to grain yield and could be used for indirect selection 

in large populations particularly in earlier generations in the breeding cycle prior to replicated 

yield testing.  While proximal sensing data collection is increasingly implemented with high-

throughput platforms that provide powerful and affordable information, efficiently using this 

data is challenging.  The objective of this study was to monitor wheat growth and predict grain 

yield in wheat breeding trials using high-density proximal sensing measurements under extreme 

terminal heat stress that is common in Bangladesh.  Over five growing seasons, we analyzed 

normalized difference vegetation index and CT measurements collected in elite breeding lines 
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from the International Maize and Wheat Improvement Center at the Regional Agricultural 

Research Station, Jamalpur, Bangladesh. We explored several variable reduction and 

regularization techniques followed by using the combined secondary traits to predict grain yield.  

Prediction accuracy was calculated via a cross-fold validation approach as the correlation 

between observed and predicted grain yield using univariate and multivariate models. We found 

that multivariate models resulted in higher prediction accuracies for grain yield than the 

univariate models.  Stepwise regression performed equal to, or better than, other models in 

predicting grain yield.  When incorporating all secondary traits into the models, we obtained high 

prediction accuracies of 0.58 to 0.68 across the five growing seasons.  Our results show that 

optimized phenotypic prediction models can leverage secondary traits to deliver accurate 

predictions of wheat grain yield, allowing breeding programs to make more robust and rapid 

selections. 

 Background 

Wheat is one of the most important cereal crops in the world and a staple for human 

consumption.  It accounts for 26% of world cereal production and 44% of total cereal 

consumption (McGuire, 2015).  Rapid economic and income growth, urbanization, and 

globalization are leading to dramatic dietary shifts, especially in Asia as consumers are 

increasing their consumption of wheat products (Pingali, 2007).  Wheat production needs to 

increase to meet the combined growing population and expanding demand by the middle of this 

century (Tilman et al., 2011).  Currently, wheat yield gains are estimated to be 0.9% per year, 

much less than the 1.5% per year that is required to meet the projected 60% increase in global 

production needed by 2050 (Reserach Program on Wheat, 2016).  At the current rate, global 

production of wheat may only increase by 38%, which is far short of the projected demand.  
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Additionally, the effect of climate change, including less favorable growing conditions, may 

even further reduce wheat production (Gammans et al., 2017).  Up to 6% yield declines are 

projected in wheat for each degree temperature increase if adaptive measures such as improved 

germplasm are not realized (Zhao et al., 2017).  Given these challenges, wheat yield is increasing 

far less than what is needed to meet future demand.    

While wheat is globally distributed and faces a variety of biotic and abiotic challenges, in 

South Asia, heat is the most important stress and critical yield limitation.  Terminal heat stress is 

also a common problem in temperate regions where 40% of world wheat is produced.  In these 

areas temperature ranges from 32 - 38°C can cause up to a 50% grain yield reduction (Asseng et 

al., 2011). Heat stress is a regulated physiological process that can affect a range of plant 

phenotypes including canopy temperature (Ayeneh et al., 2002).  Fundamental research has 

shown that this response is highly complex and differs at the tissue (Thomason et al., 2018), 

species (Kotak et al., 2007), and developmental stage (Tricker et al., 2018) suggesting that heat 

tolerance is a physiologically and genetically complex trait.   

In wheat, temperatures above the optimum level are deleterious and cause irreversible 

damage, with the duration and magnitude of temperature exposure determining the severity of 

yield loss.  In controlled studies with supra-optimal temperatures, a 3-5% yield loss for every 

1°C increase of mean temperature above 15°C has been observed (Gibson and Paulsen, 1999).  

In addition to reducing grain yield, high temperatures can reduce individual grain mass by up to 

23% (Stone and Nicolas, 1994) further impairing grain yield and quality (Teixeira et al., 2013). 

Many of the global wheat production areas already have supraoptimal temperature conditions, 

and global temperatures are predicted to further increase between 1.7°C to 4.8°C by the end of 

the century (Pachauri et al., 2014).  Thus, increasing grain yield under heat stress is a major 
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global objective, and more efficient breeding methods and technology are needed to increase the 

rate of genetic gain in heat stressed environments. 

The complexity of heat stress means that breeding programs cannot use a single strategy 

to improve heat tolerance.  Some plant adaption mechanisms to avoid and minimize heat stress 

include early flowering (Aiqing et al., 2018; Ishimaru et al., 2010) and stomatal closure (Liu et 

al., 2018).  The difference of expression of these traits provides an opportunity to improve wheat 

if this beneficial genetic variation can be accurately measured. Traditionally, before the 

implementation of molecular markers, plant breeders selected promising lines only on the basis 

of phenotype.  By generating large numbers of crosses and evaluating successive generations in a 

wide range of environments superior individuals could be identified. While great improvements 

have been made in this fashion, as the number of lines to evaluate increase, breeders are faced 

with the challenge of precisely phenotyping large populations within a short time to identify the 

most promising candidates.   

With the advent of low cost, high-throughput genotyping technologies, breeders have 

access to high-density genomic data (Morrell et al., 2012).  While molecular markers have aided 

in breeding objectives (Bernardo, 2008) breeding programs continue to face a combined 

challenge of characterizing breeding lines precisely and rapidly (McMullen et al., 2009; Araus 

and Cairns, 2014).  Unraveling complex traits, such as heat stress, requires precise and accurate 

phenotypic data to connect the phenotype to genotypic data (Cobb et al., 2013).  Phenotyping is 

now considered the bottleneck of crop improvement, yet it is crucial to fully realize the benefits 

of plant breeding (Araus and Cairns, 2014).   

Increasing grain yield, especially under extreme terminal heat stress is a primary goal of 

the national breeding program in Bangladesh.  While grain yield is the primary trait of interest, it 
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can be estimated using remote or proximal sensing data (Lillesand et al., 2014). Any trait which 

is correlated with the primary trait can be considered as secondary trait in selection and can 

potentially be used to reduce evaluation time and cost (Rutkoski et al., 2016).  If the secondary 

traits can be accurately phenotyped within the breeding program, these secondary traits can be 

used to predict the primary trait and improve genetic gain particularly earlier in the breeding 

cycle before advancement to replicated yield trials.  Two potential secondary traits that are 

amendable to high-throughput measurements include spectral reflectance and canopy 

temperature (CT) (Pask et al. 2012).  

Remote sensing of spectral reflectance is based on the ability to measure the 

electromagnetic reflectance of plants.  Plants’ cells and tissues have wavelength specific 

absorbance and reflectance properties which make spectral reflectance a trait that can be rapidly 

and quantitatively measured (Montesinos-López et al., 2017).  Remote sensing has been widely 

used in agriculture with different vegetation indices providing a non-destructive, real-time 

measure of crop growth.  Normalized Difference Vegetation Index (NDVI) is one of the most 

commonly used vegetation indices based on the reflectance of red and near-infrared light.  It can 

be used to characterize crop growth stages, to evaluate crop density, and to predict crop yield 

(Rutkoski et al., 2016).  In crops, including maize, wheat, sorghum, and barley, scientists have 

identified significant correlations between biomass and NDVI with some correlation coefficients 

above 0.70 (Chen et al., 2011).  Values of NDVI, especially two to three weeks before and after 

heading have been found to be highly correlated with grain yield in wheat (Babar et al., 2006). 

Another trait that can be used to evaluate crop status is CT.  Crop CT is the surface 

temperature of the plant canopy and is related to the amount of transpiration that results in 

evaporative cooling.  CT plays an important role in the observation of the crop water relationship 
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which is a factor of crop yield, and CT has been shown to have potential for selecting heat and 

drought tolerant genotypes in stressed environments (Reynolds et al., 2009).  Several factors 

including root length and biomass, stomatal conductance, number of stomata, metabolic 

activities, and photosynthate translocation are the important biological factors that result in 

variation in CT in different genotypes (Reynolds et al., 2012). (Mason et al., 2013) suggested 

that CT is a complex trait controlled by loci of small effects with most of the loci having 

pleotropic effects on traits like plant height and days to heading. Even though the exact 

mechanism of CT difference is unresolved, research has shown that the correlation between CT 

and grain yield in wheat is generally negative under heat stress environments providing selection 

strategies to identify heat tolerant lines (Amani et al., 1996; Gutierrez et al., 2010; Mason and 

Singh, 2014).   

While CT can be easily measured using handheld infrared radiometers (Pask et al., 2012) 

and often has moderate heritability (Lopes et al., 2012), the application CT in breeding has been 

limited because some of the inconsistent nature of the CT measurements.  Canopy temperature is 

impacted by a variety of environmental factors including solar radiation intensity, atmospheric 

temperature, humidity, soil moisture, and wind speed which can quickly change throughout the 

day (Reynolds et al., 2012).  The complexities of CT measurements suggest it is important to 

determine how to effectively use CT to select the better yielding lines in large wheat breeding 

programs under heat stressed environments.  

Both CT and NDVI can be measured multiple times throughout the growing season 

which gives a powerful approach to capture the temporal dynamics of the growing crop. Using 

just a single measurement to evaluate the lines in a breeding program neglects the temporal 

dynamics of plant growth and development (Crain et al., 2018).  Incorporating a combination of 
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multiple variables that show strong correlation between secondary traits and the primary trait can 

be used to develop precise inferences about crop phenotypes like grain yield prediction using 

secondary traits (Guo et al., 2014).  While NDVI and CT have been advocated for plant 

selection, little work has been done on incorporating multiple measurements into selection 

decisions.   

As precision phenotyping becomes more routine in breeding programs, new challenges 

include how to best utilize and translate this data into improved prediction models and selection 

strategies (Tester and Langridge, 2010).  Our research objective was to evaluate how dense, 

temporal phenotypic measurements from proximal sensing of NDVI and CT as well as other 

agronomic traits could be used within the national plant breeding of Bangladesh programs to 

assess line performance in heat-stressed environments.  Additionally, an emphasis was placed on 

statistical modeling that could account for highly correlated measurements of secondary traits.  

 Materials and Methods 

 Experimental design and field management 

During the 2015-16, 2016-17, 2017-18, 2018-19, and 2019-20 growing seasons, different 

sets of 540 advanced lines from International Maize and Wheat Improvement Center (CIMMYT) 

were evaluated in Bangladesh.  Each year, different sets of 540 lines from CIMMYT were 

evaluated as new heat tolerant material became available, and in addition to lines from CIMMYT 

there were seven different local checks including BARI Gom 26, or BARI Gom 30 which served 

as the benchmark check variety of Bangladesh.  

All lines were evaluated in a high heat stress environment at the Regional Agricultural 

Research Station (RARS), Bangladesh Agricultural Research Institute (BARI), Jamalpur, 

Bangladesh (N 24.93, E 89.93, 23 masl).  The climate of this region is hot and humid leading to 
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overall heat-stressed environment, classified as ME5A according to the CIMMYT wheat mega-

environment classification system (Rajaram et al., 1993).   

To manage spatial variability, the lines were placed in multiple trials each growing 

season.  Each trial consisted of 60 entries including 54 breeding lines and the six check varieties 

in two replications.  Complete trials were planted within a given day each year with planting 

dates for each season of December 4-8, 2015; November 25-28, 2016; November 29-30, 2017; 

November 28, 2018; and December 05, 2019.  The trials were arranged in an alpha-lattice design 

each with two replications for a total of 120 plots in each trial.  Each replication was composed 

of 12 blocks with five entries randomly assigned to each block.  The plots were composed of six 

rows of 4.17 m length and 20 cm row spacing for a total experimental plot size of 5 m2.  Plots 

were separated by a 40 cm alley.  The 2015-16 season had a total of 10 trials.  Subsequent years 

had a total of 11 trials, with the 11th trial representing second year testing of highest performing 

lines from the previous season 

The Bangladesh Wheat Research Center’s recommended agronomic practices were 

followed during the growing season.  Fertilizer application consisted of 100:26:50:20:5:1 kg/ha 

of N:P:K:S:Zn:B respectively each year.  Irrigation was applied as needed to prevent water 

deficit.  In the 2015-16 growing season three irrigations were applied at tillering, heading, and 

grain filling, while from 2016-17 to 2019-20 two irrigations were applied at tillering and booting  

(Zadoks et al., 1974).  Manual weeding was completed every season to keep the plots weed free.  

No pesticides were applied during the growing seasons.  

 Traits measurements 

We considered grain yield as primary trait, CT and NDVI as sensor based secondary 

traits and all other traits as agronomic traits. Total grain of each of the plot was harvested, dried, 
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weighed and then divided by the plot size (5 m2) to get yield (kg / m2) and then converted into 

metric tons per hectare. Throughout the growing season phenotypic data was recorded for 

agronomic traits including ground coverage (GrndCov), days to heading (DTHD), days to 

maturity (DAYSMT), plant height (PH), grains per spike (GRNSPK), severity of 

Helminthosporium leaf blight disease (HELSPSEV), number of spikes per unit area (SN), 

spikelets per spike (SPLN), spike length (SPKLNG), and thousand grain weight (TGW).  Days 

to heading was recorded as the number of days to when 50% of total plants in a plot had 

extended spike from the leaf sheath.  Days to maturity was recorded when 80% of the plants in a 

plot had peduncles that had turned from green to golden.  Plant height was measured as the 

length from ground level to the apex of the spike excluding awn.  The number of total heads per 

square meter (spike number; SN) was assessed by measuring the number of spikes counted from 

3.5 meter long 20 cm spacing (0.7 m2) and converted the number into per square meter. Spike 

length on a representative spike within the plot was measured as the length from the base to the 

tip of a spike excluding awn. 

The secondary traits of CT and NDVI data were collected 8, 14, 12, 13, and 15 different 

times during the 2015-16, 2016-17, 2017-18, 2018-19, and 2019-20 growing seasons, 

respectively.  The measurements represented plant growth from tillering through senescence 

(Zadoks et al., 1974) with measurements taken between 11 am to 2 pm corresponding to solar 

noon on each day of observation.  Canopy temperature was measured using a handheld infrared 

thermometer (IRT) (Apogee, Logan, UT, United States of America), that provided a high 

accuracy, non-contact surface temperature measurement from -30 °C to 65 °C with a precision of 

±0.124 °C.  IRT readings were taken at a 30° angle from the horizon for measurement and 70 cm 

above the crop canopy (Pask et al., 2012).  The IRT functions at 0.6 hertz, but only the average 
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canopy temperature was recorded for each measurement.  Normalized difference vegetation 

index was collected using a GreenSeeker handheld sensor (Trimble Inc. Sunnyvale, CA, United 

States of America). The GreenSeeker was used by passing the sensor 75 cm over the crop 

canopy.  Two-person teams were employed for CT and NDVI collection, with one person 

operating the instrument and the other person recording the data.  It took approximately 3 hours 

with two teams (four people) to measure CT and NDVI of all plots.  The data were recorded in 

the Field Book program (Rife and Poland, 2014). 

 Data analysis 

All analysis were completed in R software (Team, 2017) using several packages 

including lme4 (Bates et al., 2015), leaps (Lumley, 2017), tidyverse (Wickham et al., 2019), 

glmnet (Friedman et al., 2001), plyr (Wickham, 2011), ggplot2 (Wickham, 2016), caret 

(Williams et al., 2018), PerformanceAnalytics (Peterson et al., 2014), and readr (Wickham et al., 

2017). 

 Statistical analysis 

A mixed model to account for the trial design was used to obtain the best linear unbiased 

estimators (BLUEs) for each genotype using the following model fit separately for each trial: 

Equation 2.1.  A mixed effects model for BLUEs 

yij  =  + gi + rj + bl(j) + ij 

where, yij is the observed phenotypic response variable (GRYLD, CT, …, NDVI) for the ith 

genotype, jth replicate,  is the overall mean of the individual trial, gi is the fixed effect of ith 

genotype (line) with i taking the values 1-60, rj is the random effect of jth replicate with j 

corresponding to 1 or 2 with a normal distribution N(0,2
r), bl is the random effect of lth block, 

nested within replicate j, where l ranges from 1-12 distributed as N(0,2
l), and ij is the residual 
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effect for genotype i in replicate j with normal distribution N(0,2
e).  Best linear unbiased 

estimators (BLUEs) were calculated for each site year individually.   

To estimate heritability for each trial, a random term for genotype was used in (Equation 

2.2), resulting in variance components to calculate the broad-sense heritability.  Heritability was 

estimated using the following formula (Holland et al., 2003): 

Equation 2.2.  An equation for heritability 

H2 =
𝜎𝑔

2

𝜎𝑔
2+

𝜎𝑒
2

𝑟

 

Where 𝜎𝑔
2 is genotypic variance and 𝜎𝑒

2 is residual model variance and r is number of 

replications which is two.  Heritability estimates were calculated for all agronomic traits during 

the growing season and for each of the time-points of NDVI and CT observations.  In addition to 

calculating heritability on a trial basis, we estimated BLUPs and variance components across the 

full experiment each year for each trait using the following model: 

Equation 2.3.  A mixed effects model for BLUPs 

yijk  =  + tk + gi(k) + rj(k) + bl(ij) + ijk 

where, yijk is the phenotype of the trait of interest for ith genotype, jth replicate, kth trial,  is the 

overall mean of the population, tl is the random effect of the lth trial with a normal distribution 

N(0, 2
l), gi is the random effect of ith genotype (line) nested within trial with i taking the values 

1-60 with a normal distribution N(0,2
i), rj is the random effect of jth replicate nested within trial 

with j corresponding to 1 or 2 with a normal distribution N(0,2
j), bl is the random effect of lth 

block, nested within trial i and replicate j, with l ranges from 1 to 12 distributed as N(0, ,2
l), and 

ijk is the residual effect for the ith genotype jth replicate in the kth trial with normal distribution 

N(0,2
e). 
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Canopy Temperature Depression (CTD) depression was calculated as the subtraction of 

canopy temperature (CT) from the atmospheric maximum temperature (Ta) with the equation 

2.4.  

Equation 2.4. An equation to calculate canopy temperature depression 

CTD = Ta – CT.  

Where Ta is the daily maximum atmospheric temperature. The CTD were then used to 

calculate BLUEs. Correlations were calculated between BLUEs of individual observation day of 

CTD and grain yield. 

 Statistical models for grain yield prediction 

Using the BLUEs for each trait, four different statistical models were used to predict 

grain yield using multiple measurements of NDVI, CT, and agronomic traits.  The models 

included stepwise regression and three shrinkage regression models of ridge regression, least 

absolute shrinkage and selection operator (LASSO) regression and elastic net regression.  In all 

models, we used all the secondary traits and agronomic traits collected from the field to predict 

grain yield.  Stepwise regression performed forward selection followed by backward elimination 

(Friedman et al. 2001). Shrinkage models function by shrinking estimated effects towards zero.  

These models add a penalty that allows less contributing variables to have a coefficient close to 

or equal to zero. The tuning parameter lambda thus determines the amount of shrinkage. LASSO 

regression model performs L1 regularization (absolute value of the residual error term), and it 

can select variables by eliminate variables with a coefficient of zero.  Ridge regression performs 

L2 regularization (squared value of residual error term) and the coefficients cannot be zero thus 

retaining all variables in the model.  The penalty for the elasticNet regression is a combination of 

ridge regression and LASSO allowing for both variable shrinkage and feature selection 

(Friedman et al., 2001; James et al., 2013).  The models were built in an iterative process, for 
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each year we evaluated models with NDVI only, CT only, and all secondary and agronomic 

traits together. 

For each model, a cross-validation approach was evaluated to determine predictive ability 

for yield using the trial structure of the CIMMYT trials.  As related lines (e.g., full-sibs) are 

evaluated in the same trial, this approach prevents highly related, full- or half-sibling lines, from 

predicting their own performance.  In the cross-validation scheme, all entries from ten (nine in 

2015-16 and 2018-19 season) trials were used to fit the model, and prediction was completed on 

the 11th (10th in 2015-16 and 2018-19 season) trial.  This process was repeated by dropping a 

single trial fitting the model and predicting the left-out trial until all entries had been predicted.  

The reported prediction accuracy was assessed as the correlation between the predicted value and 

the BLUEs for grain yield. 

 Data availability 

All phenotypic data and code for analysis have been placed in the Dryad Digital 

Repository available at 

https://datadryad.org/stash/share/Vo_pfWVyVLHvF2tV8huoPuQLt2nN2X6ZYCI3XYnH0Vk. 

 Results 

 Broad sense heritability 

We observed moderate to high broad-sense heritability (repeatability) for grain yield and 

other agronomic traits, across the five seasons from 2015-16 to 2019-20 when considering the 

entire experiment (all trials together) (Table 2.1) and as well as on an individual trial basis (Table 

A.1 to Table A.5). For agronomic traits including DTHD, DAYSMT, and PH, we observed a 

consistent and high heritability. The highest heritability was recorded from days to heading (H2 = 

0.97 followed by days to maturity (H2 = 0.90) across the trials and growing seasons. 



23 

For secondary trait measurements, the sensor-based NDVI and CT had heritability 

ranging from low to high. The CT showed a narrower range of heritability compared to that of 

the heritability of NDVI (Figure 2.1), but CT heritability was almost always lower than NDVI 

heritability. The highest value of heritability was calculated as 0.56 for CT and that for NDVI 

was 0.74. We observed the values of heritability for both NDVI and CT were higher at grain 

filling stage (mid February to mid March) than the early growth stages (Figure 2.1). 

 Correlations among the measured traits 

Phenotypic correlations were calculated for all measured agronomic traits considering all 

trials together to determine the relationship among them and GRYLD (Table 2.1). We also 

calculated the correlations between yield and other agronomic traits for individual trials (Table 

A.6 to Table A.10). Days to heading showed moderate but negative correlation to grain yield in 

all the seasons. Days to maturity also showed negative correlation in three of the five growing 

seasons. The highest correlation was observed between TGW and GRYLD (r = 0.49) followed 

by GRYLD and SN (r = 0.41) in 2017-18 season. The most consistent correlation to grain yield 

was observed for PH and TGW across the growing seasons 

The correlation among the measured CTs at individual time points and GRYLD ranged 

widely with a trend of being strongly negative at the start of the season to positive correlation at 

the final measurement (Figure 2.2). The strongest correlations were recorded from CT 

measurement taken during the grain filling stage (mid-February to mid-March).  The correlation 

between CT and GRYLD was more consistent in 2017-18 season and had the least consistency 

in 2015-16 season. 

Generally, NDVI tended to show positive correlations with GRYLD at early to middle 

growth stages (Figure 2.2).  Out of total 63 individual days of NDVI measurement at five 
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growing seasons, 58 days showed significant correlation with GRYLD.  The positive correlation, 

however, changed at the later crop growth stages of all the seasons, where the correlations 

between NDVI and GRYLD were negative and correlations between CT and GRYLD were 

positive. 

There were strong correlations between multiple days of secondary trait measurements 

and the yield components across seasons (Figure A.1 to Figure A.5). It was not uncommon for 

correlation among days of NDVI to have correlations of 0.3. Correlations between days of CT 

were often not as highly correlated as multiple days of NDVI (Figures A.1 to Figure A.5). 

The correlation between CTD and grain yield ranged from low to medium (Figure A.6). 

The CT showed negative correlation with grain yield while the CTD showed positive correlation 

with grain yield. At the end of the season the CTD had negative correlation that might be due to 

the late maturity of some lines which were still green and had lower grain yield.  

 Yield prediction using univariate model 

Yield predictions were developed by implementing a prediction model tested for 

accuracy with a cross-fold validation strategy. Overall, using a single secondary or agronomic 

trait, the results were inconsistent with prediction accuracies ranging from zero to 0.59. The 

prediction accuracy of individual secondary traits varied greatly depending on the trait and the 

time of measurement (Figure 2.3), with traits measured around grain filling providing the highest 

values, while traits early or late in the growing season had inconsistent values.  

 Yield prediction using multivariate models 

Using four different multivariate models, the accuracy of grain yield prediction was 

estimated by using a cross validation strategy where the accuracy was the correlation of the 

predicted value and the genotypic BLUE.  Yield prediction accuracy of the models varied widely 
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from 0.17 to 0.68 (Table 2.2).  When using all traits as predictor variables, it was apparent that 

stepwise regression performed similar to shrinkage models, but the proportion of variance 

explained by the model was always substantially higher than other models. Stepwise regression 

was consistently the best among the models deployed with LASSO regression, ridge regression 

and ElasticNet regression performing similarly.  

 Difference in sensor based secondary trait selection 

Grain yield prediction models were developed iteratively with two distinct secondary 

traits NDVI and CT, and other agronomic traits with prediction accuracy in the range of 0.17 to 

0.45 for using CT only (Table 2.2).  Using NDVI, the prediction accuracy was usually higher 

than using CT alone ranging from 0.32 to 0.58.  When we incorporated both the NDVI and CT 

into the model, the prediction accuracy further increased with prediction ranging from 0.37 to 

0.58. Incorporating all traits together resulted in the highest overall prediction accuracies ranging 

from 0.4 to 0.6 across the experiment years  

 Discussion 

 Phenotypic evaluation 

The national priorities for wheat breeding programs in Bangladesh are focused on 

improving heat tolerance with early maturing varieties, improved yield and superior grain 

quality.  Such breeding efforts necessitate selecting promising lines from large breeding trials.  

Precise phenotyping is the most important prerequisite to deciding which individuals should be 

selected.  Observed heritability for the evaluated physiological high-throughput traits of NDVI 

and CT were consistent with previous literature (Reynolds et al., 1994).  Most of the CT showed 

negative correlation while most days of NDVI observations showed positive correlation and as 

such should be useful parameters for selection of superior breeding lines (Babar et al., 2007; 
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Crain et al., 2017).  Overall, the sensor-based traits had higher correlations than other agronomic 

traits and in the context of breeding are amendable to much higher throughput and rapid 

measurements. However, we also note that caution should be taken during CT and NDVI data 

collection as the weed population and irrigation management timing influence the data. Higher 

weed population increased NDVI values, and the higher transpiration after the irrigation lowers 

CT. The sensor based secondary traits like CT should be taken very carefully as it influenced by 

the weather conditions and finally it influences the CTD calculation. Such breeding trial 

management should be taken into consideration when using these proximal sensing 

measurements and developing prediction models and selection criteria.  

 Modeling yield prediction 

We evaluated how measured traits could be used to predict grain yield through a variety 

of statistical models.  We used a univariate model to predict grain yield using phenotypic data as 

our intention was to compare the univariate model to more complex multivariate prediction 

models. We observed that the univariate models had lower prediction accuracies than any of the 

multivariate models tested in this study. Using cross-fold validation, the multivariate stepwise 

model performed well, with the addition of more variables increasing the power of yield 

prediction.  We found that stepwise regression was the best among the four multivariate models 

deployed in predicting grain yield using secondary traits in wheat. 

 Application to breeding programs 

In a developing country like Bangladesh, genotyping facilities are not yet available.  

However, field-based phenotyping protocols are available, and these approaches can be 

implemented across national programs.  Hence, within Bangladesh phenotypic modeling is 

directly tractable and applicable for implementation in the applied breeding programs for yield 
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prediction and more tractable than modeling and selection based on genomic profiling.  Our 

results indicate that large amounts of phenotypic data can be collected with the low-cost 

phenotyping tools. These methods should be approachable for any breeding program, allowing 

secondary traits data to predict the primary trait of interest and increase selection accuracy. 

In these breeding trials we evaluated a large diversity of elite breeding germplasm that 

showed much promise in identifying superior performing candidate varieties for Bangladesh.  

Overall, there was a high proportion (24% - 57%) of the evaluated lines that outperformed the 

local check varieties BARI Gom 26 and BARI Gom 30 (Figure A.7). In addition, the average 

yield of selected entries (top 10% of evaluated lines) each year was one ton or more above the 

yield of the benchmark local checks. These observations and favorable selection results support 

the upward prospects of continued selection of heat-tolerant breeding materials and development 

of superior new candidate varieties for the supra-optimal temperatures found in Bangladesh. The 

combined use of more rapid selections with the proposed phenotyping tools and selection 

methods can further accelerated identification of these superior candidate varieties.  

Our goal was to improve wheat yield prediction through using secondary traits and 

statistical models that could accommodate highly correlated variables. While we investigated 

models with secondary and agronomic data, sensor-based data of NDVI and CT can be measured 

easier than agronomic traits which can require more time and often cannot be measured until the 

end of the season.  Supporting the value of these physiological sensor measurements in breeding, 

the yield prediction with only the sensor-based data showed prediction power almost as high as 

the prediction using all traits together.  These sensor-based traits are easy to measure repeatedly 

during the season.  This allows breeders to use sensor-based traits to predict grain yield with 

flexibility depending on the available equipment and to implement yield prediction on small 
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observation plots.  If a facility is limited NDVI could be used instead of CT for yield prediction.  

Regardless of the exact type of sensor-based measurement, breeders will have the ability to 

increase prediction power incorporating secondary traits. Breeders can use secondary trait 

measurements, obtained during the growing season, to increase selection accuracies prior to 

harvesting the plots and ensure that high yielding plots are harvested. This is  of particular 

interest if these secondary traits can be measured on smaller plots at earlier generations in the 

breeding cycle enabling more intense selection prior to lines entering into replicated yield testing 

(Krause et al., 2020).  

 Conclusion 

Overall, we found that proximal sensing including of NDVI and CT data were valuable in 

developing prediction models for yield.  When multiple measurements were obtained throughout 

the growing season, multivariate prediction models were much more accurate than models using 

a single time measurement.  Grain yield prediction was also improved for the incorporation of 

agronomic traits such as days to heading, days to maturity, and tiller numbers.  While less 

tractable to measure the full suite of agronomic traits (e.g., spikelet number), the incorporation of 

the routine agronomic measurements into prediction models can be useful for predictions in the 

breeding program.  In the future, if image-based measurement of the agronomic traits become 

tractable and high-throughput technology for breeding programs (Wang et al., 2019a; Wang et 

al., 2019b), these traits could be measured on large populations and incorporated into prediction 

models.    

This work demonstrated that high prediction accuracy for grain yield can be obtained 

using the full combination of proximal sensing and agronomic traits with multivariate models.  

These traits can be measured on small (e.g., <1 m2) plots that are used for early generations in 
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the breeding program.  Using these same prediction models, it could be possible to generate 

accurate predictions of grain yield at this stage, where current labor and time constraints prevent 

harvest assessment.  Additionally, using new high-throughput phenotyping platforms and 

unmanned aerial vehicles that can capture NDVI and CT these measurements can potentially be 

expanded to tens-of-thousands of plots.  By making predictions and more accurate selections 

much earlier in the breeding cycle, there is considerable potential to increase genetic gain, 

particularly for difficult and complex selection targets such as grain yield under heat stress.   
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Figure 2.1.  Broad sense heritability of normalized difference vegetation index (NDVI) and 

canopy temperature (CT) for days after seeding for five growing seasons. Each panel, A, B, 

C, D, and E represents the growing seasons 2015-16, 2016-17, 2017-18, 2018-19, and 2019-

20 respectively. Horizontal dotted line represents the heritability of grain yield. Vertical 

dashed line indicates days to heading and dotted line is for days to physiological maturity. 
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Figure 2.2.  Correlation between grain yield and sensor based secondary traits of 

normalized difference vegetation index (NDVI) and canopy temperature (CT) for 

observation on days after seeding. Each panel, A, B, C, D, and E represents the growing 

seasons 2015-16, 2016-17, 2017-18, 2018-19, and 2019-20 respectively. Horizontal dotted 

line represents correlation value 0. Vertical dashed line indicates days to heading and 

vertical dotted line represents days to physiological maturity.  
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Figure 2.3.  Correlation between predicted grain yield and observed grain yield for wheat 

grown in Bangladesh. Each panel represents one growing season where. A is for 2015-16, B 

is for 2016-17, C is for 2017-18, D is for 2018-19, and E is for 2019-20 season. Each 

prediction has been made by using a univariate model with one variable of phenotypic 

data, where CT is canopy temperature, NDVI is normalized difference vegetation index.  
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Table 2.1.  Broad sense heritability of agronomic traits and correlation between agronomic traits and GRYLD for five growing 

seasons from 2015-16 to 2019-2020 for wheat grown in Bangladesh. 

Traits 
2015-16 2016-17 2017-18 2018-19 2019-20 

H2 r H2 r H2 r H2 r H2 r 

Days to Heading 0.94 -0.05 ns 0.94 -0.29 *** 0.97 -0.32 *** 0.94 -0.16 *** 0.96 -0.19 *** 

Days to Maturity 0.72 0.3 *** 0.9 -0.01 ns 0.9 -0.01 ns 0.88 -0.04 ns 0.87 0.08 * 

Plant Height 0.51 0.35 *** 0.57 0.24 *** 0.35 0.27 *** 0.28 0.31 *** 0.44 0.38 *** 

Number of Spikes per m2 0.75 0.33 *** 0.03 0.22 *** 0.35 0.41 *** 0.05 0.06 ns 0.18 0.36 *** 

Number of Spikelets 0.31 0.1 * 0.28 0.04 ns 0.19 -0.03 ns 0.29 -0.1 * 0.15 0 ns 

Kernels per Spike 0.8 0.14 *** 0.36 0.16 *** 0.19 -0.01 ns 0.07 0.14 *** 0.15 0.1 * 

Thousand Kernel Weight 0.47 0.25 *** 0.55 0.28 *** 0.61 0.49 *** 0.52 0.17 *** 0.41 0.33 *** 

Grain Yield 0.72 - 0.66 - 0.56 - 0.30 - 0.39 - 

Spike Length 0.42 0.05 ns 0.36 0.05 ns 0.3 0.2 *** 0.29 0 ns - - 
H2= Broad sense heritability, and r = Correlation between grain yield and agronomic trait 
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Table 2.2.  Yield prediction accuracies for five wheat growing seasons from 2016 to 2020 in 

Jamalpur, Bangladesh using four different multivariate models. Yield predictions were 

based on cross fold validation where accuracy r is the correlation between the Best Linear 

Unbiased Estimator and the cross-fold validation predicted yield for each trial.  R2 is the 

variance explained by the prediction model. 

Yield 

predictors 

Models 2015-16 2016-17 2017-18 2018-19 2019-20 

r R2 r R2 r R2 r R2 r R2 

Canopy 

temperature 

(CT) 

stepwise 0.17 0.07 0.45 0.26 0.34 0.31 0.39 0.14 0.23 0.25 

LASSO 0.17 0.06 0.44 0.24 0.33 0.28 0.39 0.1 0.22 0.23 

ridge 0.17 0.08 0.44 0.25 0.34 0.3 0.4 0.11 0.23 0.23 

elasticnet 0.17 0.08 0.44 0.25 0.34 0.3 0.4 0.11 0.23 0.23 

Normalized 

Difference 

Vegetation 

Index 

(NDVI) 

stepwise 0.35 0.2 0.34 0.1 0.43 0.36 0.58 0.36 0.42 0.33 

LASSO 0.35 0.19 0.32 0.08 0.42 0.35 0.58 0.35 0.42 0.32 

ridge 0.36 0.21 0.32 0.08 0.42 0.35 0.58 0.35 0.41 0.32 

elasticnet 0.36 0.21 0.32 0.08 0.42 0.35 0.58 0.35 0.42 0.33 

NDVI & 

CT 

stepwise 0.38 0.29 0.48 0.27 0.48 0.42 0.58 0.37 0.43 0.37 

LASSO 0.37 0.27 0.45 0.23 0.44 0.37 0.56 0.31 0.41 0.33 

ridge 0.38 0.28 0.47 0.25 0.44 0.38 0.56 0.32 0.42 0.33 

elasticnet 0.38 0.28 0.46 0.24 0.44 0.38 0.57 0.34 0.42 0.33 

Agronomic† 

stepwise 0.53 0.3 0.53 0.33 0.57 0.48 0.4 0.14 0.6 0.48 

LASSO 0.53 0.29 0.53 0.32 0.57 0.47 0.41 0.13 0.59 0.46 

ridge 0.53 0.3 0.53 0.32 0.57 0.48 0.41 0.13 0.6 0.47 

elasticnet 0.53 0.3 0.53 0.32 0.57 0.48 0.41 0.13 0.6 0.47 

All Traits 

stepwise 0.58 0.46 0.68 0.5 0.64 0.58 0.65 0.43 0.64 0.57 

LASSO 0.58 0.44 0.66 0.48 0.62 0.52 0.62 0.39 0.62 0.51 

ridge 0.58 0.44 0.67 0.49 0.62 0.52 0.62 0.39 0.61 0.51 

elasticnet 0.58 0.43 0.67 0.49 0.62 0.52 0.63 0.39 0.61 0.51 
†Agronomic traits include days to heading, days to maturity, plant height, spikes per square meter, spike length, 

spikelets per spike, grains per spike, thousand grain weight, etc.  
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Chapter 3 - Genome-Wide Association Study of Grain Yield and 

Yield Components in CIMMYT Spring Wheat Lines Grown in Heat 

Stressed Environments of Bangladesh  

 Abbreviations:  

GWAS, Genome Wide Association Study; SNP, Single Nucleotide Polymorphism; LD, 

Linkage Disequilibrium 

 Abstract 

A genome wide association study was conducted for grain yield, yield components and 

other secondary traits in elite spring wheat germplasm grown in natural heat stressed 

environment in Bangladesh to identify genomic regions that control component traits and 

contribute to yield potential.  A total of 2682 unique advanced wheat lines of F6 from the 

CIMMYT bread wheat program were planted in cohorts of ~540 lines in five wheat growing 

seasons with measurement of crop phenology including plant height, days to heading, days to 

maturity, grain yield and yield component traits and proximal sensing data including normalized 

difference vegetation index (NDVI) and canopy temperature (CT).  There was a broad range in 

heritability (H2=0 to 0.98), as well as genetic correlation with yield from strongly negative for 

CT (-0.59) to highly positive for component traits.  To understand the genetic architecture of 

these traits, genome-wide association study (GWAS) was conducted using 39,912 SNPs from 

genotyping-by-sequencing.  GWAS result were insignificant and variable for CT and NDVI 

supporting a highly polygenic architecture.  In contrast, large effect loci associated with days to 

heading and days to maturity were found on chromosomes 5A, and 5B at the Vrn-A1 and Vrn-

B1 loci and the frequency and impact of these alleles was observed to vary over successive 
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cohorts.  For other traits including plant height, number of spike and number of spikelets, 

thousand grain weight some consistent associations were found.  We able to find significant 

association in chromosome 3B and 4A for grain yield that mapped with loci identified for 

thousand grain weight.  Overall, this study highlights the utility of secondary traits including 

sensor based NDVI and CT to identify chromosome regions that contribute to yield and stress 

tolerance in South Asian spring bread wheat and better understand the genetic architecture, 

particularly for heading date and maturity which are critical targets of selection to avoid extreme 

terminal heat stress.  

 Introduction 

Wheat is one of the most important cereal food crops in the world. It is also one of the 

most important traded commodities in the world market (Curtis and Halford 2014).  In parallel 

the demand of wheat is increasing day by day.  Reflecting this, Bangladesh has both increasing 

demand and increasing wheat imports for the past decade.  To develop a sustainable wheat 

supply that is meeting demand, it is estimated that 2% genetic gain in wheat yield is required to 

meet the predicted global demand (Lopes et al. 2012). Results of conventional breeding from 

hundreds of testing sites worldwide, however, showed a genetic gain of 0.6% for grain yield of 

spring wheat (Sharma et al. 2012). To accelerate wheat improvement, conventional breeding 

approach should be complemented with molecular approaches for a better understanding of the 

genetic basis of yield and implementing optimal selection strategies based on this knowledge.  

The genetic basis of a complex trait like yield can be dissected by a combination of 

assessing the trait heritability, correlation to other traits, component traits and assessing the 

genetic architecture of the trait with genome wide association study (GWAS) and genomic 

predictions (Risch and Merikangas 1996). GWAS offers a high-resolution, cost effective way of 
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identification of molecular markers and gene discovery from diverse population while QTL 

mapping is limited to mapping genomic regions with low resolution in bi-parental population. 

For GWAS, diverse populations are phenotyped for different traits, combined with whole-

genome profiling for directly testing marker-trait associations on the unstructured panel (Zhu et 

al. 2008).  

In the context of a breeding program, a collection of lines spanning the diversity of the 

whole program can capture more diversity and variants than would be found in a single bi-

parental population. To facilitate molecular breeding and the strategic combination of traits in 

spring wheat, high-density polymorphic SNPs from 90K SNP array was used to detect molecular 

markers that were associated with yield and yield contributing traits (Sukumaran et al. 2015). 

The CIMMYT developed wheat association mapping initiative (WAMI) population for GWAS 

(Lopes et al. 2012) on which candidate gene association mapping was carried out for drought 

tolerance (Edae et al. 2014). With five known genes in five chromosomes the WAMI population 

facilitated locating functional markers for drought tolerance through association analysis (Lopes 

et al. 2015).  

Days to heading is one of the most important traits in cereal crops (Kitagawa, Shimada, 

and Murai 2012) and the transition from vegetative stage to reproductive stage is a critical 

developmental phase which determines the adaptive capacity in both crop and wild cereals 

(Cockram et al. 2007). Heading time in wheat varies with environment changes and it indicates 

the life cycle duration which ultimately helps to maximize the yield potential in any environment 

(Seki et al. 2011). Vernalization requirement, photoperiod sensitivity and narrow-sense earliness 

are the three major  genetic fctors which determines days to heading in wheat (Worland 1996). 

These various genetic factors play a major role in determined the relative maturity of wheat 



43 

breeding lines and subsequently their specific adaptation to a target environment.  For the 

extreme terminal heat stress environments and multiple cropping cycles found in Bangladesh, a 

very rapid growth and early heading period are key determinants of a successful variety to 

simultaneously avoid heat stress and fit within the narrow season between rice crops and the 

monsoon rains. 

There are many important genetic factors impacting relative maturity in wheat.  The 

VRN-1 and PHY-C genes affecting heading time in wheat are locate on the group 5 

chromosomes (Wiebe et al. 2010, Tóth et al. 2003, Chen et al. 2014). A MADS-box transcription 

factor encoded by VRN-1 gene was found to be a regulator of vernalization requirement and 

heading date (Trevaskis et al. 2007). The concentration of VRN-1 must reach a threshold to 

trigger the transition from vegetative to reproductive stage (Loukoianov et al. 2005). The 

vernalization of winter cereals depends on the length of cold exposure of the VRN-1 allele 

(Trevaskis et al. 2006). The dominant mutations in the regulatory regions (promoter or intron1) 

of VRN-1 changes the winter habit into spring ones which does not require vernalization 

(Kiseleva et al. 2016). The level of transcription of VRN-1 and flowering date was determined 

by the variability of the first intron of VRN-1 (Shcherban et al. 2013).  The homeologous loci in 

wheat have been identified via QTL analysis based on genetic linkage maps idendified some loci 

located on 5B chromosome which influence heading date (Bennett et al. 2012, Griffiths et al. 

2009). There are some genetic maps based on SSR, RFLP, AFLP, RAPD, and DArT markers 

(Matthews 1999) which are not easily amenable to high-throughput genotyping. Now, SNPs are 

being used to construct high resolution genetic map and marker-trait association (Zhao et al. 

2007, Shcherban, Efremova, and Salina 2012). (Kiseleva et al. 2016) identified 78 SNP markers 

in the pericentromeric region of 5B chromosome significantly associated with heading date 
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variation. The completed wheat reference genome has placed each of the known determinants of 

flowering and maturity on a single physical map (Appels, Eversole, Stein, et al. 2018).  

Heat stress reduces the average grain size and increases the proportion of small grains 

which downgrade the harvest at delivery.  This is a serious constraint in many wheat producing 

areas around the world.  In Australia and USA for example, the average yield loss due to heat 

stress is estimated as 10-15% (Wardlaw and Wrigley 1994). Number of grains decreases with the 

increase of floret sterility caused by heat stress at meiosis (Saini and Aspinall 1982). Terminal 

heat stress during grain filling is particularly detrimental to yield as heat stress at early grain 

filling reduces the grain size (Stone and Nicolas 1996).  The unpredicted and sporadic natural 

heat stress and its cooccurrence with drought hampers breeding for heat tolerance by direct 

selection.  In some environments with full irrigation, however, heat and drought stress are 

decoupled and the only limiting factor then become heat.  This is the case in Bangladesh where 

abundant water supply can be provided throughout the growing season.  Greater scientific 

knowledge about the physiological and genetic determinants of heat stress including marker trait 

association for stress tolerance could be helpful for devising more effective selection methods. 

Heat stress reduces the chlorophyl content and the photosynthetic area.  Hence the ability 

of a genotype to maintain stay green is considered as an advantage (Cossani and Reynolds 2012). 

Likewise, in the presence of sufficient moisture, increased transpiration will lead to a cooler 

canopy and improved photosynthesis.  Starch biosynthetic capacity in grain is influenced by 

soluble starch synthase which is vulnerable to heat stress (Blum et al. 1994). Heat stress triggers 

ethylene production which accelerate the mutation of grain (Jenner 1994). Increased temperature 

cause moisture stress and favorable water status enables stomata opening which facilitate 

photosynthesis and evaporative cooling of plant tissue through transpiration. Lower canopy 
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temperature is correlated with yield performance in many heat/drought stressed environments 

(Pinto et al. 2010). 

To implement molecular breeding strategies, understanding the genetics and the genetic 

architecture of a given trait is important. The QTLs and the QTL co-localizations are powerful 

ways to identify the traits associated with heat tolerance yield components. There have a few 

studies to identify the significant associations between molecular markers and the secondary 

traits for heat tolerance breeding.  QTL mapping is a key approach for understanding the genetic 

architecture of complex traits in plants (Holland 2007).  However, QTL mapping using bi-

parental populations explains only a small portion of the genetic architecture of a trait because of 

several limitations including evaluation of just two specific allele specific and population 

specificity (Edae et al. 2014). Association mapping approach, a more efficient approach to use 

diverse germplasm has overcome the limitation of bi-parental mapping population by utilizing 

diverse germplasm and it can detect QTL for many traits with high resolution in a single study 

(Sorrells and Yu 2009, Waugh et al. 2009, Ersoz, Yu, and Buckler 2009, Breseghello and 

Sorrells 2006). Association mapping has been used to identify QTL for disease resistance 

(Crossa et al. 2007, Yu et al. 2011, Adhikari et al. 2012, Kollers et al. 2013), end-use quality 

traits (Breseghello and Sorrells 2006, Zheng et al. 2009), Russian wheat aphid resistance (Peng 

et al. 2009), and yield and yield component traits (Maccaferri et al. 2010). 

Genome-wide association study (GWAS) using high density markers and a population of 

diverse lines provides higher mapping resolution than conventional QTL mapping based on 

cross-derived segregating population, and enables one to provide or identify causal genes (Zhang 

et al. 2015). GWAS has been used to dissect the complex traits of some crops (e.g., maize and 

rice (Tian et al. 2011, Poland et al. 2011, Li et al. 2013, Huang et al. 2010).  The genetic 



46 

architecture of days to flowering, days to maturity, duration of flowering to maturity, and plant 

height in soybean was studied using GWAS with a total of 27, 6, 18, 27 loci were identified for 

the traits respectively (Zhang et al. 2015). The flowering time differences of maize inbreed lines 

were caused by the cumulative effects of many minor alleles with small effects but not by the 

major alleles with large effects (Buckler et al. 2009).  

Due to the large genome size, GWAS has been limited in wheat from a lack of reference 

positions for anchoring variants. With the availability of wheat reference genome sequenced in 

hand (Appels, Eversole, Feuillet, et al. 2018), genotyping-by sequencing (GBS) approach to 

rapidly call genomewide variants becomes more powerful for GWAS studies being more 

efficient and appealing in studying and dissecting important secondary traits. The objective of 

this study was genome-wide scan for identifying genomic regions specially the single nucleotide 

polymorphisms (SNPs) associated with yield and yield related important secondary traits of 

interest in wheat. 

 Materials and Methods 

 Plant materials 

We evaluated a total of 2682 genetically diverse advanced unique elite lines (F6 and 

onward generations) of spring wheat from the CIMMYT bread wheat breeding program.  These 

lines were selected for broad adaptation, superior performance and yield potential along with 

strong disease resistance.  The lines were screened for heat tolerance targeting heat stressed 

environments in South Asia and we have further evaluated this germplasm in a severe heat stress 

environment in Bangladesh.   
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 Field trials 

The collected breeding lines were evaluated in five consecutive wheat growing seasons 

from 2015-16 to 2019-20 in Regional Agricultural Research Station, Bangladesh Agricultural 

Research Institute (BARI), Jamalpur, Bangladesh (N 24.9343175238333, E 89.932690164).  The 

trials were planted in optimum timely sown condition in November in all four years while in the 

2016 trials were sown in first week of December 2015.  The trials were arranged in an alpha 

lattice design with two replications.  Each experimental plot was 5 m2 consisting of six rows at 

20 cm row spacing in 2016 season and next four seasons were planted in 3.57 m long 7 rows 

plot.  The experimental site is under natural heat stress in a hot, humid region.  The Wheat 

Research Center (WRC) of BARI has its own fertilizer and irrigation recommendation which 

were followed to grow the crop.  Fertilizer application consisted of 100:26:50:20:5:1 kg/ha of 

N:P:K:S:Zn:B respectively each year.  Irrigation was applied to prevent water deficit with each 

year consisting of three irrigations at crop establishment, heading, and grain filling stages during 

2015-16 growing season. Two irrigations were applied at crown root initiation and booting 

stages for rest of the four seasons.  

Data were collected on ground coverage (BIOMASS), canopy temperature (CT) in 

several observation days during the growing seasons, normalized difference vegetation index 

(NDVI) were also measured in several measurement days, days to heading (DTHD), days to 

maturity (DAYSMT), plant height (PH), plant population (SN), spike length (SPKLNG), 

spikelets per spike (SPLN), grains per spike (GRNSPK), thousand grain weight (TGW), grain 

yield (GRNYLD), biomass weight (BM), harvest index (HI), etc.  The CIMMYT wheat 

physiological phenotyping guide was followed for collecting crop phenology data (Pask et al. 

2012). 
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 Genotyping 

DNA was extracted from leaf tissues of all the CIMMYT wheat lines when seedlings 

were two weeks old.  The lines were then profiled and sequenced in an Illumina HiSeq2000 

following the procedures described by (Poland et al. 2012).  Single Nucleotide Polymorphisms 

(SNPs) were called through TASSEL GBSv2 pipeline considering IWGSC RefSeq v1.0 (cv. 

‘Chinese Spring’) as reference genome (Appels, Eversole, Feuillet, et al. 2018).  The called 

SNPs were filtered for percent missing data (< 40%), percent heterozygosity ( < 10%), minor 

allele frequency (MAF) ( < 1%).  SNPs were further filtered by removing markers with more 

than 50% missing values.  Beagle v4.1 was used to impute SNPs (Browning and Browning 

2016).  Finally, 39911 clean and curated SNPs scored on 535 wheat lines in crop season 2015-

16, 589 lines in 2016-17, 599 lines in 2017-18, 532 lines in 2018-19, and 601 lines in 2019-20 

were used for genome wide association study.  We also pooled the lines all together from five 

years and after removing duplicated lines, resulted in 2682 total lines in the combined analysis.  

 Data recording and analyses 

We used R programming for all remaining data analysis (R core team 2017).  A mixed 

effects model was used to analyze the data. The total entries each year were divide into 10 trials 

consisting of 54 entries and six check varieties. The experimental design was alpha lattice with 

two replicates for each trial.  The design was adjusted considering replications, sub-blocks within 

replication as random effects, and entry as random effect in the following model: 

Equation 3.1.  A mixed effects model for BLUEs 

yij =  + gi + rj + bl(j) + ij 

The model was implemented in the R 

environment with the 3.6.1 version, where yij is the phenotypic response (the secondary traits) for 
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the ith genotype  in jth replication, gi is the genotype used as random term with i for 1-60 

corresponding to the number of entries within a single trial, rj is the random effect of replication 

with j takes value from 1 to 2 and bl is the random effect of ith block nested within jth replicate 

with i taking the values 1-12, and eij is the residual effect for ith genotype in jth replication. 

Adjusted means were calculated for each trait of interest. 

Broad-sense heritability was calculated with the variance components derived from the 

best linear unbiased predictions (BLUPs) using ‘lme4’ (Bates et al. 2014) package.  Heritability 

of all the traits were also estimated using the formula:  

Equation 3.2.  An equation for heritability 

 H 2=
𝝈𝒈

𝟐

𝝈𝒈
𝟐 +

𝝈𝒆
𝟐

𝒓

 

Where, H2 is the broad sense heritability, 2
g is the genetic variance, 2

e is the error variance, 

and r is the number of replications, which in this experiment is equal to two. 

 Genome-wide association analysis 

A total of 535, 589, 599, 532, and 601 lines were obtained from 2015-16, 2016-17, 2017-

18, 2018-19, and 2019-20 seasons, respectively, for Best Linear Unbiased Estimators (BLUEs) 

with mean of the respective traits.  As a part of structure analyses we conducted PCA, by default 

the command also created marker based kinship matrix (K) utilizing VanRaden method and 

generated association panel based clustering heat map (Lipka et al. 2012, Wang et al. 2017).  A 

genome wide scans in GAPIT using 39912 markers with known positions, with respective trait 

means was conducted using the first five principal components to account for population 

structure as the fixed component and K matrix as the random component.  The threshold for a 

marker to be significant is usually taken at p-value < 10-4, considering the number of markers 

and the deviation of the observed F test statistics from the expected F test distribution 
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(Sukumaran et al. 2012). We also used a more stringent threshold with Bonferroni correction for 

multiple testing added to determine significance threshold at 5% level of significance divided by 

number of SNPs (P= 0.05/39912 =1.25*10E-6), i.e. a threshold of -log10 (1.25*10E-6) ≥ 5.9 is 

considered as significant, to restrict false SNP-traits association. The results obtained from 

GAPIT were evaluated in ‘cm plot’ (https://github.com/YinLiLin/R-CMplot) to construct 

Manhattan plot. 

 Results and Discussion 

 Phenotypic variation and heritability estimate 

The average yield of the tested lines ranged from 2.41 to 3.5 ton ha-1 in the different years 

(Figure 3.1). The highest average grain yield of the five growing seasons was recorded in 2020 

growing season.  As 2020 was a very cool year with below average temperature across the 

growing season, the high yield in this season shows the overall significant yield losses due to 

heat stress in any given year. Weather data for the five wheat growing seasons were presented in 

Appendix A (Table A.12 – Table A.16). 

The observed phenotypes for all traits were normally distributed, supporting a polygenic 

genetic architecture of these traits in the breeding program germplasm.  The heritability estimate 

ranged from low to high for different traits (Figure 2.1 and Table 2.1 of chapter 2).  The highest 

heritability was recorded for days to heading followed by days to maturity.  

 Correlations among the traits 

The correlation among the traits ranged from low to high (Figure 2.2 and Table 2.1of 

chapter 2 and Rahman et al., 2021 – a manuscript submitted to Frontiers in Plant Science). 

Among the phenology traits, days to heading showed negative correlation to yield across the 

years, which further supports the favorable performance of early maturity lines in this 

https://github.com/YinLiLin/R-CMplot
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environment.  Plant height and thousand grain weight showed moderate to high correlation with 

grain yield in most of the growing seasons.  This observation further supports that these 

secondary traits are contributing to final yield and can be important targets of selection as well as 

contain additional importance for modeling and prediction in genomic selection.  

For the high-throughput proximal sensing, we observed positive correlations for the 

vegetation index (NDVI) while canopy temperature (CT) had negative correlation to grain yield.  

This supports a hypothesis that improved photosynthesis (e.g. stay green) and increased 

transpiration resulting in lower canopy temperature contribute to improved yield potential 

(Reynolds et al., 2012).  For these physiological traits, the highest correlations were obtained at 

grain filling stage of the crop growth.  This further supports that this is critical developmental 

stage in heat stress environments.  However, there was much variation from day to day as the 

correlations were inconsistent for sensor-based traits.  The variable performance of the proximal 

sensing has been known as these measurements are greatly impacted by ambient conditions such 

as cloud cover.  Thus, identification and selection of phenotyping dates with good conditions and 

moderate to high heritability of the sensor measurements per se are more predictive of final grain 

yield (Crain et al., 2017).  

 GWAS 

Understanding of the genetic architecture of a trait is the key point for accurate selection 

and for combining desired allels.  A total of 2682 lines were used to dissect the genetic 

architecture of nine key traits of bread wheat using GWAS.  Many significant marker-trait 

associations were identified on the basis of p-values passing the corrected experimental 

threshold.  The model using population structure and kinship (PC + K) matrix showed less 

deviation of the expected value from the observed values in the Q-Q plots, supporting that this 
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was the best model.  We ran GWAS with the data from five years and found loci significantly 

associated with the traits of interest (Figure 3.2 to Figure 3.5). A total of 39912 markers were 

used to identify the association. We also ran GWAS with data from individual year and got 

significant associations (Figure B.1 to Figure B.9).  

 Association for days to heading and maturity 

Significant associations were found in chromosomes 5A and 5B for days to heading 

(Figure 3.2). Most significant associations were found in chromosome 5A. The highest 

consistent and significant association were recorded on Chr. 5A at 586.6 Mb.  These positions 

are at the position of Vrn-A1, a strong determinant of days to heading.  All the 13 significant 

SNPs on chromosome 5A showed positive effects while all the four significant SNPs on 

chromosome 5B showed negative effects.  Most of the genomic regions associated with days to 

heading were also associated with days to maturity (Figure 3.2). Seven SNPs were found 

significantly associated with days to maturity in chromosomes 5A, and 5B. Among the 

significantly associated SNPs those on chromosome 5A showed positive effect while the only 

SNP on chromosome 5B had negative effect.  

Interestingly, we observed a shift from Vrn-A1 to Vrn-B1 as the major effect for relative 

maturity across the cohorts observed here. In the early cohorts of germplasm (e.g. 2015 – 2017) 

the Vrn-A1 was a significant and large effect. In contrast, the latter cohorts from 2018 onward 

showed a larger effect for Vrn-B1.  

 Plant height, spikes number, and spikelets number 

Two loci S5A_586600382 and S5A_586669400 on chromosome 5A were significantly 

associated with plant height (Figure 3.2). The spikes per sq. meter had association with two 
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SNPs S6B_674159322 and S6B_674380816 on chromosome 6B (Figure 3.3). Spikelets per 

spike had significant association in chromosome 4A at position S4A_699037779  (Figure 3.3). 

 Thousand grain weight and grain yield 

Among nine significant SNPs seven were found on chromosome 3B and two were on 

chromosome 4D for thousand grain weight. The strongest association was found in 

S4A_699037779 on chromosome 3B (Figure 3.3). Grain yield is the most important and 

complex trait. We completed the GWAS for grain yield in five seasons and found significant 

associations with loci in chromosome 3B (S3B-5601689), and 4A (S4A-660920825) (Figure 

3.3). The locus S4A-660920825 had negative effect while the locus S3B-5601689 had positive 

effect.  

 Canopy Temperature (CT) 

It was observed that the sensor-based CT was controlled by many minor alleles. We 

found inconsistent associations for CT on all the chromosomes when data were pooled from five 

years (Figure 3.4). Some consistent associations were also found when individual year was 

considered. 

 Normalized Difference Vegetation Index (NDVI) 

The sensor-based trait NDVI was found associated with the loci of almost all of the 

chromosomes (Figure 3.5). The association results were inconsistent and did not observe any 

association peak consistently across years. It indicates that the trait is controlled by many minor 

alleles and should have a highly polygenic architecture. Condorelli et al., (2018) also found 

association on several chromosomes for NDVI and drought adaptivity in durum wheat.  
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 Conclusion 

The development of high throughput phenotyping encouraging breeders to use traits 

associated with grain yield potential.  Predictors of agronomic performance must be stable for 

various genetic background and target environment.  To this end, we observed several important 

physiological parameters including flowering time, vegetation index and canopy temperature that 

were significantly associated with yield.  The NDVI is the commonly used indicator of healthy 

wheat growth, biomass and grain yield of hot and humid mega environments (Reynolds, Pask, 

and Mullan 2012).  The heritability and correlation of these secondary traits with grain yield 

were comparable with other research findings (Gizaw et al., 2016).  The moderate heritability 

and genetic correlations of these traits obtained in this panel are a realistic estimate of the 

potential for secondary trait selection in the breeding program.  We confirmed that flowering 

time is a very important factor for yield under these heat stress conditions and that selection for 

early maturity is giving superior yield.  Further, we observed strong effects for the VRN-1 loci 

both on Chr. 5A and 5B in this materials.  Finally, the increased NDVI and decreased CT, 

support the connection of a cool, green canopy giving higher grain yield potential.  As such, the 

combination screening for increased NDVI and lower CT in early maturity germplasm is an ideal 

selection target for improved yield potential in Bangladesh.    

The secondary traits that improve grain yield in stressed environment are important for 

sustainable yield. Many of the secondary traits studied in this study showed loci that passed 

Bonferroni threshold but few of them passed the near genome-wide significance threshold. It was 

seen that when we considered individual year, the loci that passed the genome-wide significance 

threshold were different when the pooled data from five years were considered (Supplementary 

figures 3-).  Overall, we can consider that the lack of prominent associations for the secondary 
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traits of NDVI and CT, support that these are highly polygenetic traits with a diffuse genetic 

architecture.  As such, they are very suitable as selection criterial per se (e.g. using NDVI for 

selection), but will not be good molecular breeding targets apart from genomic prediction.  In 

contrast, the strong effect of VRN-1 loci in the Bangladesh environments are very favorable for 

using marker assisted selection to select for the early alleles at this locus. 

Overall, there is promise for use of genomics tools for wheat breeding in Bangladesh.  

However, these must be balanced with the pragmatic application of the most suitable tools.  

NDVI and CT for example can be directly assessed on the candidate lines and selections made 

without further complications of needed genotyping.  As such these are powerful selection tools, 

particularly on early generation nurseries before extensive yield testing.  In contrast, marker 

assisted selection for VRN-1 alleles can be achieved most directly through external sourcing and 

collaboration for high-throughput genotyping platforms.  However, this must be balanced with 

the throughput and power of directly selecting for early heading types directly in the field.   

Association mapping is a powerful tool to identify molecular markers for physiological 

and agronomic traits in wheat. Through GWAS we identified pleotropic chromosomal regions 

associated with different yield and yield contributing traits including physiological 

measurements in spring wheat germplasms developed in CIMMYT, Mexico. The sensor-based 

measurements for CT and NDVI had inconsistent associations with other agronomic traits. 

Chromosomal regions on 5A, 5B are strongly associated with days to heading, days to maturity, 

plant height and chromosomal regions on 3B are associated with thousand grain weight and grain 

yield. These associations on 5A, 5B, and 3B chromosomes can be important targets for marker-

based breeding and will be further validated for use in breeding programs. 
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Figure 3.1.  Average grain yield of wheat in the genomic selection trials at Regional 

Agricultural Research Station, BARI, Jamalpur, Bangladesh in five consecutive wheat 

growing seasons 
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Figure 3.2.  A panel of Manhattan plots showing marker-trait associations from a GWAS. 

A Bonferroni ∝ level of 0.05 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 

  



64 

 

 

 

 

Figure 3.3.  A panel of Manhattan plots showing marker-trait associations from a GWAS. 

A Bonferroni ∝ level of 0.05 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure 3.4.  A panel of Manhattan plots showing marker-trait associations from a GWAS. 

A Bonferroni ∝ level of 0.05 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure 3.5.  A panel of Manhattan plots showing marker-trait associations from a GWAS. 

A Bonferroni ∝ level of 0.05 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Chapter 4 - Development of Genomic Selection in South Asia Bread 

Wheat for Bangladesh Breeding Programs  

 Abbreviations 

Genomic Selection, GS 

 Abstract 

Genomic Selection (GS), a new breeding technology has been implemented in various 

species with considerable success in animal breeding. Researchers are trying to explore the 

potentiality of the GS to reshape the wheat breeding as many of them found several times higher 

genetic gain with GS. The GS is a new window for wheat breeding and the best strategy for its 

implication is still being determined with different strategies being optimal for different breeding 

programs. The objective of this study was to develop and train a model for genomic selection in 

wheat in South Asia. For this purpose, each year ~ 540 lines were collected from CIMMYT, 

Mexico for five consecutive years from 2015-16 to 2019-20 seasons. The yield trials were laid 

out as alpha lattice design with two replications in Regional Agricultural Research Station 

(RARS), Bangladesh Agricultural Research Institute (BARI), Jamalpur, Bangladesh and 

phenotyped using high density phenotyping platforms. The germplasms were genotyped using 

genotyping by sequencing (GBS). For GS across trials one of the ten trails was used as breeding 

population (BP) and rest of the trials were used as training population (TP). Similarly, data from 

one of the five years were used as BP and data from the remaining years were used as TP for GS 

across the years. With tenfold cross validation we conducted genomic selection and the selected 

entries were grown in the next season as eleventh trial. The prediction accuracy varied across 

trials and years for different traits where days to heading and days to maturity showed the highest 
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and most consistent accuracy than any other traits. Among the yield components thousand grain 

weight and grains per spike showed medium prediction accuracy. The most variable and 

inconsistent prediction of spike population could have led to low the prediction accuracy and low 

heritability of grain yield. However, we still obtained good prediction accuracy for grain yield 

that can be used to increase genetic gain through the implementing the proposed genomic 

selection model for Bangladesh.   

 Introduction 

Identification of superior candidate lines for variety release is the main target of any 

breeding programs which exerts huge efforts to evaluate breeding lines across the locations. 

Collaborative programs have been taken in CIMMYT, Mexico with South Asia to deliver 

advanced wheat lines for releasing as varieties. Bread wheat is the staple food for millions of 

people globaly with a variety of food items including breads, noodles, cookies, cakes, pastries, 

etc. The human population is increasing exponentially and current projections predict a 

population of >9 billion by 2050 (Gerland et al. 2014). Improved crop varieties and advanced 

agronomic practices are greatly needed to have an intersection between the demand and supply 

of wheat to ensure food security in the coming decades. There is also demanded to produce high 

quality, more nutritious food to satisfy the sustainable development goal (SDG). Grain yield 

combined with improved agronomic performance and disease resistance is the primary focus of 

wheat breeding historically. Visual selection of lines for the targeted traits is the principle of 

conventional breeding program. Phenotyping a large number of plots is time consuming, costly, 

and require larger field. In addition, there is limitation for developing any wheat cultivars with 

good agronomic traits and disease resistance. Accurate good agronomic traits, disease resistance, 

and end-use quality prediction models would allow breeding programs to cull unacceptable lines 
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or target specific lines earlier in the pipeline before time and resources are invested in lines that 

will not pass the final test.  

With the recent development of inexpensive, high-density genetic markers, whole-

genome marker profiles can now be obtained for every experimental line, making possible new 

analyses that rely on large amounts of genomic data including diversity studies and genomic 

selection (Poland and Rife 2012). Marker-assisted selection with previously identified significant 

markers has limited prediction power in the scope of breeding for quantitative complex traits like 

grain yield (Heffner, Jannink, and Sorrells 2011).  

Genomic selection models, however, use high-density genotype data sets and 

simultaneously model all additive genetic variance. These models use entries with known 

phenotype and genotype to train a prediction model, and then predict traits in materials with only 

genotype information available. This approach was first introduced into animal breeding by 

(Meuwissen, Hayes, and Goddard 2001) demonstrating that ridge regression and Bayesian 

approaches could be used to model the total additive variance and predict breeding values. Their 

claim that attaining genome-wide marker profiles would become cheaper than phenotyping each 

individual is becoming a reality (Poland and Rife 2012). Taking all this into consideration, GS 

could serve as a way to predict grain yield and yield component phenotypes earlier in the 

pipeline before breeders have enough resources for testing and allow predictions of more 

individuals than would be possible to phenotype.  

Genomic selection has been evaluated many times for wheat yield and disease resistance 

((Arruda et al. 2015); (Crossa et al. 2010, Crossa et al. 2014); (Dawson et al. 2013); (Heffner, 

Sorrells, and Jannink 2009); (Poland, Endelman, et al. 2012); (Rutkoski, Heffner, and Sorrells 

2011, Rutkoski et al. 2012, Rutkoski et al. 2014). Genomic selection was tested in soft wheat for 
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end-use quality in a biparental population and a small breeding population (Heffner, Sorrells, and 

Jannink 2009, Heffner et al. 2011). These studies relied on cross-validation, rather than forward 

prediction approaches, to assess the prediction accuracy of the GS models. They did find 

processing and end-use quality traits to be more highly predictive than grain yield.  

Genomic selection is a new breeding approach that utilizes total allelic effects across the 

genome to predict phenotypes and to select superior lines (Meuwissen, Hayes, and Goddard 

2001). Breeders are using and investing the GS approach to reduce the breeding cycle (Heffner et 

al. 2010, Anderson, Maas, and Ozias‐Akins 2009, Heffner, Sorrells, and Jannink 2009), and to 

increase selection intensity in a breeding program (Cros et al. 2015), (Battenfield et al. 2016) 

GS has two sets of population: 1) a population that has been both phenotyped and 

genotyped which is used to train the prediction model and 2) a population that has been 

only genotyped (Heffner, Sorrells, and Jannink 2009), (Heffner et al. 2010). A prediction 

model is then used to predict the traits of the second set of population to select the 

superior genotypes. Scientists used different designations each of the two population 

(Rincent et al. 2012), (Rutkoski et al. 2015), (Isidro et al. 2015). Here we will refer to the 

two populations as the training population (TP) and the breeding population (BP), 

respectively.  

Phenotyping of a large population is a land, labor, and time-consuming endeavour and 

hence an optimal design for selecting a TP is a research topic of high interest to the breeders 

(Akdemir, Sanchez, and Jannink 2015), (Spindel et al. 2015), (Isidro et al. 2015). Researchers 

are still in search of the ideal training population as they have limited understanding of its 

characteristics. Two of the important factors of selecting an ideal TP are – population size 

and their relatedness. It has been shown that with the increasing size of the population, the 



71 

prediction accuracy increases (Zhong et al. 2009). On the contrary, there are generally 

diminishing returns, that is if more lines are added to the training population, the gains in 

accuracy reduces (Asoro et al. 2011). The training population and breeding population 

must be interrelated with common alleles and markers to increase predictability. Results 

have been shown that if the training population and the breeding population are closely 

related the prediction accuracy increases (Hayes, Visscher, and Goddard 2009), (Long et al. 

2011), (Pszczola et al. 2012), (Rutkoski et al. 2015). We are interested to implement the 

genomic selection model in the wheat breeding program in Bangladesh for yield and yield 

contributing traits that are regularly assessed by the conventional phenotyping approach. 

To this end, we have generated whole-genome profiles via genotyping-by-sequencing for 

SABWGPYT entries of last five years starting from 2016 to 2020. This genetic data was used as 

a TP for GS and evaluate prediction differences between yield trials. The objective of this study 

was to determine prediction accuracy of the GS model for the complex traits, assess the accuracy of 

prediction into the next year, and introduce GS for the bread wheat breeding program in South Asia 

especially in Bangladesh.  

 Materials and Methods 

 Germplasm 

Wheat lines used in the training and testing the GS model were from advanced lines from 

CIMMYT, Mexico intended to develop heat tolerant varieties for South Asia. Each year new 

lines were tested and hence we received ~2700 lines for five years. The 540 materials were 

planted in lattice design in two replications with six checks including local check BARI Gom 26 

for first three years and BARI Gom 30 for last two years. The lines were tested in the Regional 
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Agricultural Research Station, BARI, Jamalpur, Bangladesh. The GIS coordinate of the trial 

location is N 24.9343175238333, E 89.932690164. 

 Library construction and data processing 

The GBS libraries were prepared following the protocol detailed by (Poland, Endelman, 

et al. 2012). Briefly, DNA was digested with two enzymes PstI and MspI and barcoded adapters 

were added to the ends of the fragments. Samples were then pooled at 192-plex, amplified, 

and sequenced on an Illumina HiSeq 2000. The SNPs were called using the approach of (Poland, 

Endelman, et al. 2012). SNPs having at least 1% minor allele frequency were kept and at least 

30% of the data present across lines. For subsequent genomic prediction, genotype data from the 

lines grown in five seasons in Bangladesh were used.  

 Phenotypes 

Phenotyping was done using handheld instruments for the five consecutive growing 

seasons. Sib and non-sib lines were included in the trials to increase variance among the lines for 

breeding selection. We used Infrared Thermometer (IRT) for canopy temperature measurement, 

green seeker for Normalized Differences Vegetation Index (NDVI) measurement, barcode 

scanner for taking plant height, USB scale connected with barcode scanner and fieldBook to 

measure thousand grain weight and plot weight, FieldBook for easy data processing. All the crop 

phenology data including days to heading, days to maturity, spike population, spikelets per spike, 

grains per spike, disease scoring for bipolaris leaf blight, rusts, etc.  

 Genotypes 

From each line we collected leaf tissue and bulked them. DNA was extracted using 

CTAB protocol (Saghai-Maroof et al. 1984). For the purpose of genotyping by sequencing the 

extracted was quantified, normalized to 10 L at 10 ng L-1, digested with two-enzymes PstI and 
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MspI, ligated with barcoded adapters, amplified, and then sequenced following the protocol of 

(Poland, Brown, et al. 2012). Sequences were trimmed to 64 bp, unique sequence tags were aligned, 

and single-nucleotide polymorphisms (SNPs) were recoded numerically as (−1, 0, 1) using TASSEL 

GBS v2 using Chinese spring wheat (IWGSC RefSeq v1.0) as reference genome (Appels et al. 2018). 

The MAF was 0.01. The SNPs were filtered using three methods inbreed coefficient, Fisher Exact 

Test, and Chi-Square test. SNPs with >70% missing data were also removed from further analysis. 

Beagle v4.1 was used to impute SNPs (Browning and Browning 2016). We got 39912 clean and 

curated SNPs scored on 2682 lines from five wheat growing seasons that were used in this study. 

 Analyses 

The Best Linear Unbiased Estimates (BLUEs) were calculated using a mixed effects 

model (Equation 4.1).  

Equation 4.1.  A mixed effects model for BLUEs 

yij  =  + gi + rj + bl(j) + ij 

where, yij is the observed phenotypic response variable (GRYLD, CT, …, NDVI) for the ith 

genotype, jth replicate,  is the overall mean of the individual trial, gi is the fixed effect of ith 

genotype (line) with i taking the values 1-60, rj is the random effect of jth replicate with j 

corresponding to 1 or 2 with a normal distribution N(0,2
r), bl is the random effect of lth block, 

nested within replicate j, where l ranges from 1-12 distributed as N(0,2
l), and ij is the residual 

effect for genotype i in replicate j with normal distribution N(0,2
e).  Best linear unbiased 

estimators (BLUEs) were calculated for each site year individually.   

A realized additive relationship matrix (A) was constructed using the A.mat function in 

the rrBLUP package in R (Endelman 2011).  
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 Results and Discussion 

 Materials and genotyping 

Moving from phenotyping-based breeding to allele-based breeding, an entire genome 

profile was created from every one of the lines included in the yield trials and therefore an 

acknowledged relationship grid was determined. Here, we utilized genotyping by sequencing 

method with an inner arrangement-based pipeline to find 39912 SNP. 

Phenotype Means, Heritability and Correlation 

Phenotyping was carried out on ~2700 advanced lines for all phenologies including, yield 

and yield contributing traits. We calculated mean and standard errors for each trait within each 

year and observed phenotype distribution of all traits within all years followed an approximately 

normal distribution (Figure C.1, Table C.1). The estimated heritability of different traits was low 

to high ranging from 0 to 0.97 and the correlations of those traits to grain yield were low to 

medium ranging from -0.32 to 0.49 (Table 2.1 of chapter 1). Days to heading showed the highest 

heritability followed by days to maturity. Among the yield component traits, TGW showed the 

highest and consistent heritability. Most of the secondary traits showed significant correlation 

with grain yield (Table 2.1 in chapter 2). Plant height and thousand grain weight showed 

significant positive correlation across years while days to heading showed negative correlation 

across years. Thousand kernel weight had the highest and positive correlation with grain yield. 

 Genomic prediction 

We used genome modeling approach to predict all the phenotypes including yield and 

yield contributing traits in the trials of last five years from 2016 to 2020. This genomic 

prediction was made in two ways – across trials and across years. For genomic prediction across 

trials within year, a training population was created using nine of the ten trials and the remaining 
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trial was used as prediction set. Same way for the prediction across years one of the five years 

used as prediction set and rest of the four years was used to create training set. The genomic 

prediction accuracy assessed as the Pearson correlation between the calculated BLUPs and 

predicted values of the prediction set. 

We observed differences in genomic predictability of the traits among the trials within 

year ranging from low to medium (Figure 4.1) while among the years the predictability was 

ranging from low to high (Figure 4.2). The highest and most consistent genomic prediction was 

observed for days to heading followed by days to maturity. Days to heading and days to maturity 

are two most important traits and early heading and maturity are important selection target for 

any breeding program for heat stressed environment like Bangladesh. Early days to heading and 

late maturity will facilitate long duration for grain filling.  However, too late of maturity 

eventually will increase the chance to face the terminal heat stress. Thus, quick grain filling is 

important to escape the heat stress. So, early heading and maturity is the most important trait to 

select best lines in heat stressed environment.  

The spike population, a very important yield component, showed mostly inconsistent and 

low prediction accuracy among the traits in both within and across years.  The highly variable 

spike population and lower prediction accuracy for this trait could have led to lower prediction 

accuracy and low heritability for grain yield. The variable spike population is likely due to the 

large impact of early season tillering on this trait. With variable early season temperatures, there 

was a large variation in spike population across the years, introducing G×E and likely resulting 

in lower prediction accuracy.  

The grains per spike is a yield component trait that showed most consistent and moderate 

prediction accuracy in both by year and by trial methods of calculation. The spikelets per spike 



76 

had low genomic predictability but better consistent than spike population when considered by 

year. 

Thousand grain weight (TGW) is directly correlated to grain yield and we found 

consistent and moderate genomic prediction for TGW. Heat stress affects on grain size and 

shape. Large and bold grain type is important selection target in heat stressed environment. 

Plant height showed low predictability across years, but it showed consistent and 

moderate correlation to grain yield. The negative predictability of plant height in 2020 could 

have led to low and negative predictability of grain yield in 2020. Depending on the target 

environment, breeding in Bangladesh is generally focused on short plant types that maintain 

good grain yield. There is limited value for the wheat straw and therefore increased biomass is 

not an important selection target. 

Grain yield is the most complex trait that had moderate prediction accuracy across years 

when the prediction was calculated across trials within year and it showed low prediction 

accuracy when predicting across years. We observed very low prediction accuracy (negative) for 

grain yield in 2020, which also corresponded to negative prediction accuracy for spike 

population (e.g. tillering).  This growing season was marked by cool weather which led to a very 

high level of tillering, which much different than ‘normal’ years with higher temperatures and 

minimal tillering.  The yield therefore in 2020 season was much higher than average, largely 

driven by the increased tillering.  As these were unusual conditions for this environment in 

Bangladesh, the prediction of component trait (spike population) and yield were negative.  

However, in such a year, we still observed consistently high predictions for thousand grain 

weight and grains per spike, enabling positive selection for these other component traits.  
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 Conclusions 

Genomic selection is an approach that plant breeders and geneticists are trying to finetune 

its application in superior line selection around the world. In Bangladesh, wheat breeders are 

using conventional breeding approach to select lines from their breeding trials and nurseries but 

it takes long time to reach the final destination of releasing a new variety. If we can use advanced 

breeding methodologies like genomic selection it would complement the conventional breeding 

approach and it would reduce the land, labor, time and other resources. Here we have developed 

a prediction model that can be used for South Asia especially in Bangladesh to select promising 

wheat lines from large breeding trials. We applied this model last five years and selected several 

superior lines from the trials and those were better yielder than the national best check variety. 

Our target is to continue using this new breeding approach in Bangladesh to accelerate genetic 

gain in the national wheat breeding program in Bangladesh. 
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Figure 4.1.  A panel boxplot of genomic prediction accuracy of different traits of wheat 

predicted across trials within year. The prediction accuracy was the correlation between 

predicted value and observed values of a trait. The predicted values were calculated by 

keeping the lines of one trial as breeding population and lines from rest of the trials as 

training population. 
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Figure 4.2.  A panel plot of genomic prediction accuracy of different traits of wheat 

predicted across years. The prediction accuracy was the correlation between predicted 

value and observed values of a trait. The predicted values were calculated by keeping the 

set of lines of one year as breeding population and lines from rest of the years as training 

population. 
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Appendix A - Supplementary Material Chapter 2 

 

 
Figure A.1.  Correlation matrix of all traits in 2015-16 season. Data include normalized 

difference vegetation index (NDVI) and canopy temperature (CT) measured at multiple 

times across the growing season (date of measurement) and agronomic traits for wheat 

grown in Jamalpur, Bangladesh 
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Figure A.2.  Correlation matrix of all traits in 2016-17 season. Data include normalized 

difference vegetation index (NDVI) and canopy temperature (CT) measured at multiple 

times across the growing season (date of measurement) and agronomic traits for wheat 

grown in Jamalpur, Bangladesh 
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Figure A.3.  Correlation matrix of all traits in 2017-18 season. Data include normalized 

difference vegetation index (NDVI) and canopy temperature (CT) measured at multiple 

times across the growing season (date of measurement) and agronomic traits for wheat 

grown in Jamalpur, Bangladesh 
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Figure A.4.  Correlation matrix of all traits in 2018-19 season. Data include normalized 

difference vegetation index (NDVI) and canopy temperature (CT) measured at multiple 

times across the growing season (date of measurement) and agronomic traits for wheat 

grown in Jamalpur, Bangladesh 
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Figure A.5.  Correlation matrix of all traits in 2019-20 season. Data include normalized 

difference vegetation index (NDVI) and canopy temperature (CT) measured at multiple 

times across the growing season (date of measurement) and agronomic traits for wheat 

grown in Jamalpur, Bangladesh 
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Figure A.6.  Correlation of CTD at different observation days with grain yield in five wheat 

growing seasons. 
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Figure A.7.  A panel plot of the selected lines from genomic prediction trials in five wheat 

growing season.  The solid line is the average grain yield of the national check variety in the 

trials, which was BARI Gom 26 as local check in 2016 - 2018 and BARI Gom 30 in 2019 

and 2020 season. We selected 59 top yielder lines in each year.  The dotted line is the 

average of the selected 59 lines from each year.  The text number is the fraction 

(percentage) of the lines that superseded the yield of the check variety.  
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Table A.1.  Broad see heritability for the 2015-16 growing season for phenotypic data. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-10) in Jamalpur, Bangladesh. 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 
CT_20160123 0.00 0.00 0.00 0.07 0.00 0.10 0.00 0.00 0.16 0.00 
CT_20160204 0.28 0.00 0.00 0.00 0.26 0.39 0.00 0.27 0.04 0.09 
CT_20160212 0.00 0.10 0.21 0.33 0.23 0.26 0.27 0.20 0.15 0.00 
CT_20160223 0.23 0.09 0.06 0.00 0.00 0.00 0.00 0.03 0.00 0.03 
CT_20160228 0.09 0.00 0.20 0.12 0.00 0.43 0.00 0.00 0.00 0.12 
CT_20160302 0.53 0.44 0.43 0.00 0.58 0.56 0.28 0.06 0.00 0.50 
CT_20160309 0.21 0.00 0.12 0.00 0.21 0.22 0.00 0.17 0.00 0.19 
CT_20160315 0.01 0.37 0.01 0.00 0.00 0.03 0.00 0.00 0.31 0.00 
NDVI_20160121 0.19 0.00 0.42 0.00 0.00 0.11 0.00 0.33 0.41 0.34 
NDVI_20160130 0.21 0.00 0.22 0.06 0.57 0.36 0.00 0.00 0.20 0.27 
NDVI_20160203 0.00 0.00 0.21 0.08 0.00 0.48 0.00 0.46 0.00 0.64 
NDVI_20160207 0.02 0.06 0.00 0.09 0.38 0.00 0.00 0.00 0.24 0.00 
NDVI_20160223 0.49 0.14 0.06 0.29 0.00 0.00 0.40 0.26 0.21 0.00 
NDVI_20160228 0.68 0.51 0.68 0.64 0.60 0.71 0.46 0.73 0.44 0.67 
NDVI_20160303 0.79 0.60 0.65 0.74 0.76 0.62 0.17 0.64 0.54 0.36 
NDVI_20160310 0.00 0.00 0.35 0.00 0.08 0.14 0.42 0.40 0.00 0.26 
NDVI_20160315 0.22 0.40 0.00 0.28 0.35 0.30 0.00 0.30 0.12 0.30 
Days to Heading 0.98 0.93 0.96 0.91 0.97 0.94 0.96 0.90 0.91 0.91 
Days to 
Maturity 

0.80 0.84 0.81 0.66 0.78 0.52 0.50 0.67 0.59 0.55 

Plant Height 0.00 0.44 0.64 0.52 0.75 0.50 0.00 0.49 0.63 0.68 
Spike Number 0.91 0.83 0.75 0.84 0.74 0.78 0.86 0.64 0.24 0.74 
Spike length 0.36  0.38 0.36 0.43 0.42 0.32 0.21 0.68 0.26 0.54 
Spikelets per 
spike 

0.47 0.34 0.46 0.27 0.00 0.00 0.51 0.37 0.34 0.31 

Grains per spike 0.86 0.71 0.84 0.84 0.82 0.84 0.92 0.74 0.70 0.77 
Thousand grain 
wt. 

0.61 0.40 0.42 0.51 0.38 0.62 0.68 0.00 0.38 0.35 

Grain yield 0.73 0.58 0.78 0.76 0.65 0.64 0.40 0.73 0.90 0.78 
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Table A.2.  Broad see heritability for the 2016-17 growing season for phenotypic data. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-11) in Jamalpur, Bangladesh. 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 Trial_11 
CT_20170104 0.19 0.00 0.23 0.00 0.00 0.00 0.33 0.19 0.45 0.26 0.04 
CT_20170109 0.10 0.23 0.12 0.38 0.17 0.15 0.16 0.45 0.28 0.01 0.00 
CT_20170114 0.00 0.00 0.00 0.01 0.18 0.04 0.00 0.29 0.12 0.11 0.00 
CT_20170120 0.07 0.11 0.27 0.42 0.10 0.00 0.33 0.00 0.00 0.31 0.00 
CT_20170125 0.00 0.00 0.14 0.10 0.41 0.00 0.06 0.17 0.00 0.00 0.00 
CT_20170131 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00 0.15 0.00 0.13 
CT_20170205 0.52 0.05 0.36 0.40 0.29 0.13 0.04 0.01 0.00 0.26 0.07 
CT_20170210 0.05 0.00 0.24 0.17 0.24 0.11 0.23 0.34 0.18 0.56 0.15 
CT_20170215 0.42 0.32 0.00 0.00 0.00 0.12 0.25 0.00 0.00 0.40 0.35 
CT_20170221 0.31 0.30 0.32 0.42 0.00 0.00 0.53 0.35 0.00 0.24 0.00 
CT_20170225 0.54 0.60 0.31 0.49 0.69 0.00 0.63 0.49 0.09 0.37 0.43 
CT_20170302 0.61 0.60 0.64 0.73 0.62 0.72 0.69 0.43 0.25 0.55 0.39 
CT_20170307 0.14 0.00 0.61 0.55 0.00 0.83 0.77 0.48 0.51 0.56 0.13 
CT_20170313 0.00 0.05 0.09 0.19 0.00 0.48 0.00 0.00 0.00 0.00 0.32 
NDVI_20170103 0.41 0.12 0.58 0.24 0.48 0.09 0.32 0.39 0.13 0.11 0.18 
NDVI_20170108 0.66 0.40 0.63 0.41 0.45 0.08 0.44 0.59 0.00 0.09 0.15 
NDVI_20170114 0.52 0.72 0.00 0.51 0.32 0.58 0.46 0.44 0.06 0.30 0.34 
NDVI_20170120 0.52 0.56 0.20 0.65 0.18 0.47 0.42 0.21 0.00 0.35 0.28 
NDVI_20170125 0.51 0.46 0.34 0.49 0.30 0.55 0.53 0.47 0.20 0.08 0.33 
NDVI_20170131 0.36 0.44 0.12 0.53 0.03 0.58 0.29 0.38 0.29 0.00 0.35 
NDVI_20170205 0.51 0.51 0.47 0.44 0.06 0.65 0.69 0.38 0.26 0.41 0.27 
NDVI_20170210 0.54 0.25 0.53 0.40 0.60 0.52 0.42 0.44 0.00 0.09 0.20 
NDVI_20170215 0.58 0.00 0.25 0.07 0.39 0.29 0.22 0.56 0.01 0.35 0.55 
NDVI_20170220 0.72 0.03 0.64 0.54 0.65 0.63 0.59 0.49 0.00 0.33 0.30 
NDVI_20170225 0.73 0.61 0.42 0.61 0.68 0.65 0.65 0.34 0.06 0.30 0.40 
NDVI_20170302 0.77 0.64 0.80 0.50 0.35 0.66 0.78 0.76 0.43 0.74 0.59 
NDVI_20170307 0.41 0.50 0.09 0.56 0.40 0.78 0.68 0.23 0.61 0.44 0.25 
NDVI_20170313 0.29 0.13 0.43 0.00 0.41 0.79 0.47 0.59 0.63 0.55 0.15 
Days to Heading 0.96 0.92 0.95 0.96 0.95 0.96 0.95 0.95 0.88 0.94 0.93 
Days to 
Maturity 

0.87 0.86 0.95 0.90 0.95 0.94 0.91 0.89 0.86 0.89 0.84 

Plant Height 0.46 0.39 0.06 0.59 0.79 0.57 0.79 0.33 0.38 0.46 0.69 
Spike Number 0.09 0.28 0.23 0.21 0.00 0.00 0.00 0.45 0.00 0.00 0.00 
Spike length 0.14 0.36 0.03 0.54 0.44 0.29 0.00 0.25 0.38 0.37 0.76 
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Spikelets per 
spike 

0.14 0.28 0.00 0.28 0.12 0.36 0.48 0.00 0.39 0.60 0.30 

Grains per spike 0.53 0.10 0.26 0.32 0.48 0.36 0.44 0.14 0.30 0.44 0.34 
Thousand grain 
wt. 

0.69 0.72 0.20 0.70 0.74 0.05 0.75 0.85 0.00 0.53 0.72 

Grain yield 0.78 0.71 0.74 0.76 0.75 0.73 0.59 0.70 0.53 0.53 0.20 
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Table A.3.  Broad see heritability for the 2017-18 growing season for phenotypic data. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-11) in Jamalpur, Bangladesh. 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 Trial_11 
CT_20180126 0.33 0.00 0.00 0.19 0.18 0.37 0.00 0.42 0.00 0.17 0.65 
CT_20180131 0.39 0.00 0.22 0.20 0.00 0.55 0.00 0.36 0.05 0.12 0.45 
CT_20180205 0.35 0.09 0.00 0.21 0.19 0.39 0.13 0.25 0.00 0.35 0.56 
CT_20180210 0.39 0.00 0.00 0.33 0.08 0.32 0.00 0.00 0.00 0.29 0.41 
CT_20180214 0.33 0.00 0.15 0.20 0.00 0.29 0.00 0.24 0.17 0.29 0.03 
CT_20180219 0.31 0.00 0.13 0.40 0.00 0.26 0.00 0.14 0.00 0.27 0.46 
CT_20180225 0.03 0.53 0.00 0.03 0.55 0.17 0.00 0.29 0.20 0.00 0.00 
CT_20180301 0.12 0.35 0.00 0.18 0.60 0.14 0.00 0.03 0.17 0.26 0.00 
CT_20180305 0.00 0.06 0.00 0.19 0.23 0.14 0.52 0.46 0.10 0.27 0.34 
CT_20180310 0.02 0.00 0.13 0.57 0.65 0.32 0.00 0.13 0.20 0.25 0.00 
CT_20180315 0.00 0.27 0.12 0.55 0.39 0.00 0.00 0.26 0.00 0.00 0.36 
CT_20180320 0.21 0.33 0.29 0.44 0.00 0.17 0.00 0.00 0.00 0.46 0.00 
NDVI_20180126 0.41 0.37 0.00 0.26 0.34 0.27 0.26 0.17 0.24 0.30 0.60 
NDVI_20180131 0.20 0.27 0.17 0.43 0.16 0.00 0.16 0.00 0.01 0.13 0.70 
NDVI_20180204 0.21 0.25 0.30 0.31 0.58 0.09 0.02 0.00 0.33 0.00 0.34 
NDVI_20180210 0.41 0.38 0.50 0.58 0.65 0.14 0.32 0.00 0.00 0.32 0.00 
NDVI_20180214 0.26 0.59 0.37 0.41 0.49 0.04 0.22 0.26 0.41 0.19 0.16 
NDVI_20180219 0.48 0.52 0.26 0.00 0.00 0.49 0.00 0.00 0.10 0.00 0.23 
NDVI_20180226 0.13 0.00 0.00 0.05 0.00 0.30 0.35 0.06 0.00 0.00 0.00 
NDVI_20180301 0.33 0.68 0.45 0.47 0.78 0.46 0.00 0.16 0.20 0.00 0.14 
NDVI_20180305 0.37 0.78 0.27 0.17 0.00 0.74 0.44 0.05 0.05 0.67 0.10 
NDVI_20180310 0.43 0.68 0.52 0.72 0.71 0.70 0.66 0.80 0.61 0.71 0.56 
NDVI_20180315 0.27 0.72 0.66 0.21 0.57 0.78 0.81 0.80 0.63 0.86 0.63 
NDVI_20180320 0.00 0.29 0.14 0.00 0.40 0.44 0.26 0.55 0.00 0.15 0.30 
Days to Heading 0.95 0.98 0.93 0.97 0.98 0.97 0.98 0.95 0.96 0.97 0.94 
Days to 
Maturity 

0.86 0.96 0.87 0.85 0.94 0.90 0.92 0.84 0.77 0.91 0.86 

Plant Height 0.41 0.45 0.17 0.57 0.26 0.30 0.39 0.07 0.52 0.34 0.24 
Spike Number 0.41 0.64 0.00 0.12 0.30 0.19 0.11 0.50 0.27 0.35 0.54 
Spike length 0.12 0.45 0.44 0.37 0.49 0.26 0.42 0.46 0.00 0.46 0.11 
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Spikelets per 
spike 

0.20 0.32 0.12 0.34 0.12 0.37 0.00 0.50 0.00 0.37 0.00 

Grains per spike 0.00 0.51 0.36 0.41 0.00 0.41 0.00 0.14 0.00 0.10 0.31 
Thousand grain 
wt. 

0.39 0.71 0.65 0.54 0.75 0.68 0.64 0.50 0.52 0.70 0.63 

Grain yield 0.28 0.63 0.68 0.80 0.71 0.54 0.67 0.08 0.33 0.71 0.66 
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Table A.4.  Broad see heritability for the 2018-19 growing season for phenotypic data. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-10) in Jamalpur, Bangladesh. 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 
CT_20190123 0.10 0.28 0.11 0.00 0.00 0.22 0.42 0.13 0.22 0.16 
CT_20190127 0.12 0.01 0.31 0.29 0.15 0.03 0.34 0.33 0.34 0.16 
CT_20190131 0.10 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 
CT_20190205 0.05 0.01 0.00 0.02 0.30 0.00 0.15 0.24 0.26 0.00 
CT_20190211 0.00 0.44 0.22 0.28 0.00 0.38 0.28 0.21 0.32 0.05 
CT_20190218 0.00 0.29 0.05 0.00 0.34 0.55 0.25 0.30 0.00 0.28 
CT_20190223 0.00 0.00 0.00 0.00 0.00 0.20 0.04 0.00 0.00 0.00 
CT_20190301 0.18 0.47 0.34 0.00 0.00 0.00 0.00 0.14 0.03 0.11 
CT_20190305 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.01 0.00 
CT_20190311 0.00 0.15 0.33 0.11 0.00 0.22 0.00 0.00 0.00 0.43 
CT_20190316 0.00 0.06 0.09 0.00 0.37 0.19 0.34 0.05 0.47 0.48 
CT_20190320 0.00 0.02 0.08 0.53 0.28 0.00 0.00 0.00 0.29 0.00 
CT_20190325 0.27 0.18 0.00 0.19 0.37 0.36 0.00 0.03 0.00 0.00 
NDVI_20190121 0.29 0.30 0.24 0.11 0.24 0.00 0.00 0.02 0.28 0.20 
NDVI_20190127 0.29 0.16 0.23 0.08 0.30 0.30 0.29 0.01 0.00 0.22 
NDVI_20190131 0.05 0.21 0.10 0.00 0.15 0.00 0.00 0.29 0.22 0.63 
NDVI_20190205 0.04 0.12 0.14 0.06 0.00 0.38 0.11 0.04 0.00 0.00 
NDVI_20190211 0.00 0.43 0.41 0.00 0.17 0.34 0.45 0.19 0.31 0.39 
NDVI_20190218 0.16 0.22 0.46 0.00 0.14 0.05 0.00 0.26 0.27 0.54 
NDVI_20190222 0.00 0.12 0.27 0.40 0.11 0.03 0.21 0.22 0.00 0.00 
NDVI_20190228 0.44 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.17 0.15 
NDVI_20190305 0.58 0.86 0.45 0.43 0.50 0.05 0.56 0.29 0.35 0.44 
NDVI_20190311 0.81 0.82 0.78 0.55 0.75 0.84 0.76 0.69 0.56 0.73 
NDVI_20190315 0.73 0.77 0.74 0.69 0.37 0.50 0.40 0.54 0.60 0.69 
NDVI_20190320 0.26 0.06 0.44 0.40 0.68 0.49 0.66 0.65 0.01 0.77 
NDVI_20190325 0.19 0.11 0.29 0.19 0.66 0.14 0.18 0.20 0.05 0.17 
Days to Heading 0.94 0.97 0.94 0.91 0.97 0.94 0.86 0.92 0.90 0.95 
Days to 
Maturity 

0.89 0.88 0.93 0.88 0.89 0.87 0.82 0.91 0.85 0.91 

Plant Height 0.37 0.11 0.24 0.47 0.61 0.00 0.00 0.32 0.34 0.01 



96 

Spike Number 0.06 0.00 0.17 0.00 0.10 0.11 0.28 0.00 0.09 0.16 
Spike length 0.00 0.54 0.57 0.49 0.00 0.21 0.07 0.33 0.18 0.00 
Spikelets per 
spike 

0.15 0.00 0.42 0.00 0.09 0.41 0.00 0.00 0.00 0.26 

Grains per spike 0.00 0.00 0.00 0.00 0.15 0.34 0.07 0.00 0.41 0.41 
Thousand grain 
wt. 

0.59 0.55 0.35 0.59 0.17 0.57 0.47 0.48 0.68 0.60 

Grain yield 0.24 0.00 0.45 0.01 0.35 0.48 0.61 0.04 0.41 0.36 
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Table A.5.  Broad see heritability for the 2019-20 growing season for phenotypic data. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-11) in Jamalpur, Bangladesh. 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 Trial_11 
CT_20200112 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.17 0.34 0.01 
CT_20200116 0.15 0.30 0.14 0.00 0.22 0.00 0.11 0.07 0.00 0.30 0.27 
CT_20200121 0.00 0.16 0.19 0.01 0.00 0.00 0.32 0.36 0.03 0.31 0.00 
CT_20200126 0.12 0.24 0.10 0.00 0.00 0.20 0.00 0.01 0.11 0.20 0.00 
CT_20200130 0.01 0.30 0.27 0.35 0.00 0.00 0.22 0.00 0.00 0.08 0.32 
CT_20200205 0.00 0.05 0.30 0.07 0.18 0.00 0.00 0.00 0.00 0.29 0.00 
CT_20200210 0.20 0.00 0.44 0.03 0.00 0.00 0.07 0.00 0.00 0.00 0.23 
CT_20200215 0.00 0.00 0.43 0.15 0.00 0.00 0.00 0.17 0.00 0.00 0.22 
CT_20200220 0.40 0.00 0.26 0.07 0.00 0.07 0.00 0.00 0.12 0.20 0.02 
CT_20200226 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.12 
CT_20200302 0.54 0.12 0.11 0.20 0.00 0.00 0.00 0.30 0.00 0.14 0.08 
CT_20200308 0.00 0.00 0.42 0.44 0.24 0.40 0.00 0.40 0.02 0.17 0.00 
CT_20200313 0.05 0.04 0.28 0.12 0.00 0.37 0.19 0.29 0.37 0.04 0.00 
CT_20200318 0.00 0.00 0.05 0.22 0.16 0.27 0.18 0.51 0.14 0.33 0.00 
CT_20200323 0.00 0.00 0.30 0.33 0.00 0.45 0.41 0.00 0.00 0.28 0.11 
NDVI_20200112 0.07 0.00 0.26 0.07 0.00 0.32 0.00 0.22 0.47 0.35 0.30 
NDVI_20200116 0.27 0.24 0.41 0.16 0.00 0.13 0.13 0.06 0.25 0.00 0.26 
NDVI_20200121 0.00 0.19 0.28 0.35 0.00 0.07 0.16 0.30 0.20 0.00 0.40 
NDVI_20200126 0.12 0.37 0.06 0.00 0.06 0.19 0.14 0.00 0.09 0.00 0.14 
NDVI_20200130 0.10 0.18 0.20 0.06 0.18 0.39 0.00 0.00 0.24 0.00 0.00 
NDVI_20200205 0.00 0.21 0.00 0.22 0.37 0.13 0.00 0.22 0.24 0.03 0.16 
NDVI_20200210 0.23 0.17 0.01 0.00 0.02 0.00 0.00 0.00 0.16 0.27 0.00 
NDVI_20200215 0.00 0.05 0.00 0.41 0.12 0.00 0.09 0.06 0.20 0.00 0.00 
NDVI_20200220 0.00 0.47 0.00 0.00 0.05 0.22 0.00 0.01 0.36 0.23 0.00 
NDVI_20200226 0.10 0.21 0.17 0.00 0.00 0.33 0.00 0.22 0.53 0.48 0.17 
NDVI_20200302 0.10 0.30 0.29 0.00 0.09 0.43 0.40 0.56 0.35 0.48 0.07 
NDVI_20200308 0.41 0.28 0.46 0.06 0.20 0.47 0.50 0.53 0.64 0.52 0.29 
NDVI_20200313 0.59 0.42 0.67 0.62 0.57 0.36 0.69 0.53 0.54 0.65 0.10 
NDVI_20200318 0.21 0.70 0.58 0.75 0.64 0.65 0.84 0.82 0.57 0.51 0.18 
NDVI_20200323 0.18 0.28 0.39 0.57 0.34 0.38 0.81 0.70 0.33 0.53 0.00 
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GrndCov_20200112 0.30 0.23 0.17 0.27 0.00 0.32 0.00 0.12 0.00 0.00 0.58 
GrndCov_20200206 0.07 0.18 0.15 0.00 0.23 0.00 0.00 0.56 0.33 0.00 0.44 
DLA_Feb26 0.45 0.64 0.74 0.71 0.37 0.32 0.49 0.56 0.71 0.47 0.29 
DLA_Mar09 0.27 0.40 0.56 0.43 0.69 0.46 0.66 0.55 0.45 0.66 0.69 
Days to Heading 0.97 0.94 0.95 0.97 0.95 0.93 0.96 0.96 0.96 0.96 0.95 
Days to Maturity 0.88 0.81 0.92 0.95 0.90 0.88 0.86 0.87 0.86 0.83 0.57 
Plant Height 0.22 0.35 0.76 0.37 0.47 0.25 0.53 0.52 0.52 0.25 0.47 
Spike Number 0.29 0.00 0.01 0.20 0.30 0.62 0.13 0.00 0.40 0.00 0.00 
Spikelets per spike 0.20 0.00 0.37 0.02 0.28 0.00 0.45 0.31 0.00 0.22 0.17 
Grains per spike 0.23 0.06 0.06 0.28 0.00 0.40 0.01 0.24 0.00 0.23 0.21 
Thousand grain wt. 0.48 0.22 0.33 0.58 0.57 0.65 0.37 0.53 0.68 0.00 0.32 
Grain yield 0.09 0.18 0.37 0.67 0.09 0.34 0.70 0.51 0.45 0.12 0.17 
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Table A.6.  Correlation between grain yield and phenotypic traits for the 2015-16 season. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-10) in Jamalpur, Bangladesh 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 
CT_20160123 0.06  0.00  -0.21  -0.15  -0.16  0.00 0.00 0.12  0.12  0.12  
CT_20160204 -0.03  -0.27 * 0.05  0.02  -0.04  0.07  -0.33 * 0.17  -0.04  0.14  
CT_20160212 -0.25  0.05  0.04  -0.19  -0.13  0.15  -0.23  0.26 * -0.10  -0.29 * 
CT_20160223 0.09  -0.16  -0.29 * -0.03  0.13  0.15  0.11  0.08  -0.06  -0.09  
CT_20160228 -0.20  -0.22  -0.39 ** 0.11  -0.25  -0.18  -0.02  0.09  0.04  -0.12  
CT_20160302 -0.54 *** -0.50 *** -0.58 *** -0.33 * -0.46 *** -0.35 ** -0.13  -0.04  0.00 -0.08  
CT_20160309 -0.14  -0.21  -0.17  -0.21  -0.31 * -0.04  -0.20  -0.26 * -0.39 ** -0.23  
CT_20160315 -0.02  0.21  -0.10  0.00  -0.15  0.01  -0.02  -0.09  -0.12  0.05  
NDVI_20160121 0.24  0.33 ** 0.23  -0.05  0.43 *** -0.28 * 0.51 *** 0.03  0.29 * 0.16  
NDVI_20160130 0.20  0.28 * 0.15  0.02  0.35 ** -0.16  0.31 * -0.09  0.28 * 0.17  
NDVI_20160203 0.32 * 0.29 * 0.24  -0.06  0.13  -0.36 ** 0.29 * 0.03  0.26 * 0.58 *** 
NDVI_20160207 0.23  -0.18  0.27 * 0.13  0.06  -0.02  0.33 * -0.13  -0.10  -0.23  
NDVI_20160223 0.47 *** 0.06  0.18  -0.24  -0.10  -0.02  0.02  -0.13  0.02  0.00 
NDVI_20160228 0.30 * 0.46 *** 0.49 *** 0.38 ** 0.28 * 0.34 ** 0.58 *** 0.02  0.28 * 0.37 ** 
NDVI_20160303 0.34 ** 0.40 ** 0.49 *** 0.45 *** 0.48 *** 0.54 *** 0.45 *** 0.07  0.44 *** 0.17  
NDVI_20160310 0.07  0.13  0.09  0.11  0.04  0.28 * 0.34 ** 0.00 0.21  0.16  
NDVI_20160315 -0.12  0.03  -0.05  -0.03  -0.21  0.14  -0.07  0.19  -0.04  0.07  
Days to Heading 0.04  -0.03  0.04  -0.09  -0.24  0.00 0.05  0.06  -0.05  -0.21  
Days to 
Maturity 0.28 * 0.29 * 0.29 * 0.26 * 0.19  0.34 ** 0.28 * 0.04  0.37 ** 0.00 
Plant Height 0.13  0.19  0.27 * 0.33 * 0.30 * 0.46 *** 0.10  0.03  0.32 * 0.45 *** 
Spike Number -0.03  0.19  0.21  -0.03  0.16  0.03  0.4 ** -0.37 ** -0.04  0.48 *** 
Spike length -0.08  -0.22  -0.28 * -0.21  0.19  -0.03  0.07  -0.01  0.12  0.01  
Spikelets per 
spike 0.02  0.06  -0.03  0.05  0.28 * 0.33 ** 0.03  0.00  0.22  0.09  
Grains per spike 0.11  0.02  0.22  0.16  0.08  0.04  0.10  0.06  0.22  0.11  
Thousand grain 
wt. 0.44 *** 0.47 *** 0.51 *** 0.42 *** 0.43 *** 0.45 *** 0.33 ** 0.03  0.25  0.33 ** 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the <0.001 probability level. 
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Table A.7.  Correlation between grain yield and phenotypic traits for the 2016-17 season. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-11) in Jamalpur, Bangladesh 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 Trial_11 
CT_20170104 0.05  -0.30 * 0.16  -0.39 ** -0.32 * -0.18  -0.02  0.05  -0.29 * -0.36 ** -0.35 ** 
CT_20170109 -0.05  0.01  -0.02  -0.35 ** -0.51 *** -0.15  -0.12  0.21  -0.32 * -0.33 ** -0.26 * 
CT_20170114 -0.02  -0.20  -0.17  -0.29 * -0.52 *** -0.21  -0.26 * 0.03  -0.56 *** -0.45 *** -0.31 * 
CT_20170120 0.05  -0.17  -0.04  -0.41 *** -0.38 ** 0.02  -0.09  0.05  -0.15  -0.12  -0.30 * 
CT_20170125 -0.13  -0.06  -0.25  -0.34 ** -0.61 *** -0.03  -0.12  -0.14  -0.33 ** -0.35 ** -0.08  
CT_20170131 -0.11  -0.07  -0.07  -0.09  -0.33 ** -0.10  -0.18  0.13  -0.10 -0.22  -0.21  
CT_20170205 -0.26 * -0.13  -0.39 ** -0.34 ** -0.58 *** -0.31 * -0.27 * -0.31 * -0.53 *** -0.52 *** -0.36 ** 
CT_20170210 -0.32 * -0.32 * -0.13  -0.33 * -0.62 *** -0.30 * -0.15  0.06  -0.38 ** -0.53 *** -0.28 * 
CT_20170215 -0.03  -0.31 * -0.30 * -0.25  -0.42 *** -0.16  -0.15  -0.13  -0.38 ** -0.56 *** -0.50 *** 
CT_20170221 -0.28 * -0.34 ** -0.36 ** -0.26 * -0.63 *** -0.12  -0.20  -0.14  -0.19  -0.47 *** -0.46 *** 
CT_20170225 -0.40 ** -0.31 * 0.05  -0.34 ** -0.45 *** -0.10  -0.42 *** -0.11  -0.31 * -0.53 *** -0.38 ** 
CT_20170302 -0.44 *** -0.26 * 0.04  -0.32 * -0.37 ** -0.19  -0.36 ** -0.03  -0.17  -0.31 * -0.30 * 
CT_20170307 0.10  -0.4 ** 0.16  -0.04  -0.17  0.06  -0.02  0.08  0.02  -0.20  0.00  
CT_20170313 -0.28 * -0.29 * -0.15  -0.05  -0.11  -0.01  0.01  0.14  0.21  -0.28 * -0.18  
NDVI_20170103 -0.03  0.07  -0.20  0.29 * 0.29 * 0.00  -0.23  -0.21  0.39 ** 0.33 * 0.28 * 
NDVI_20170108 0.00 0.23  -0.21  0.20  0.30 * -0.02  -0.28 * -0.11  0.48 *** 0.40 ** 0.40 ** 
NDVI_20170114 0.00 0.32 * -0.09  0.25  0.30 * 0.06  -0.14  -0.17  0.50 *** 0.44 *** 0.39 ** 
NDVI_20170120 0.08  0.23  0.01  0.26 * 0.35 ** 0.26 * -0.15  0.06  0.55 *** 0.47 *** 0.31 * 
NDVI_20170125 0.09  0.30 * -0.09  0.28 * 0.43 *** 0.12  0.11  -0.04  0.55 *** 0.46 *** 0.38 ** 
NDVI_20170131 -0.07  0.25  0.21  0.29 * 0.41 ** 0.23  0.20  0.06  0.62 *** 0.54 *** 0.33 * 
NDVI_20170205 0.17  0.23  0.22  0.28 * 0.43 *** 0.25  0.26 * 0.00  0.64 *** 0.56 *** 0.45 *** 
NDVI_20170210 -0.01  0.35 ** -0.02  0.15  0.40 ** 0.21  0.30 * -0.07  0.36 ** 0.36 ** 0.29 * 
NDVI_20170215 0.04  0.12  -0.21  -0.09  0.3 * 0.22  0.35 ** 0.01  0.52 *** 0.56 *** 0.16  
NDVI_20170220 0.12  0.36 ** -0.03  0.25  0.46 *** 0.00 0.30 * 0.10  0.22  0.43 *** 0.03  
NDVI_20170225 0.42 *** 0.36 ** -0.16  0.33 ** 0.21  0.10  0.30 * 0.03  0.22  0.28 * 0.07  
NDVI_20170302 0.3 * 0.18  -0.21  -0.05  -0.10  -0.02  0.28 * 0.12  0.06  0.27 * 0.13  
NDVI_20170307 0.07  0.10  -0.35 ** -0.09  -0.11  -0.18  0.08  0.20  -0.04  0.23  0.13  
NDVI_20170313 -0.12  0.07  -0.35 ** -0.04  -0.22  -0.23  -0.10  -0.21  -0.26 * 0.14  0.14  
Days to Heading -0.31 * -0.18  -0.57 *** -0.25  -0.21  -0.61 *** -0.28 * -0.38 ** -0.26 * -0.11  0.04  
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Days to 
Maturity 0.13  0.01  -0.41 ** 0.08  -0.11  -0.22  0.08  -0.06  -0.14  0.08  0.01  
Plant Height 0.18  0.12  -0.12  0.14  0.29 * 0.15  -0.01  0.18  0.44 *** 0.32 * 0.29 * 
Spike Number 0.31 * 0.14  0.02  0.22  0.22  0.02  -0.11  -0.19  0.31 * 0.48 *** 0.35 ** 
Spike length -0.01  -0.11  -0.27 * -0.16  -0.13  -0.23  0.04  -0.12  0.11  0.14  0.11  
Spikelets per 
spike -0.01  -0.3 * -0.24  -0.26 * -0.07  -0.15  0.14  -0.07  0.01  0.09  0.31 * 
Grains per spike 0.17  -0.04  -0.02  0.05  0.15  0.08  0.23  -0.13  0.33 * 0.21  0.22  
Thousand grain 
wt. 0.56 *** 0.45 *** 0.53 *** 0.31 * 0.53 *** 0.51 *** 0.48 *** 0.48 *** 0.29 * 0.09  -0.03  

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the <0.001 probability level. 
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Table A.8.  Correlation between grain yield and phenotypic traits for the 2017-18 season. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-11) in Jamalpur, Bangladesh 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 Trial_11 
CT_20180126 -0.37 ** -0.16  -0.41 ** -0.44 *** -0.18  -0.57 *** 0.06  -0.29 * 0.08  -0.4 ** -0.51 *** 
CT_20180131 -0.36 ** -0.03  -0.38 ** -0.51 *** -0.06  -0.46 *** -0.12  -0.06  0.01  -0.48 *** -0.50 *** 
CT_20180205 -0.31 * -0.22  -0.32 * -0.30 * -0.14  -0.6 *** -0.32 * -0.40 ** -0.12  -0.45 *** -0.58 *** 
CT_20180210 -0.37 ** -0.28 * -0.53 *** -0.32 * -0.07  -0.73 *** -0.20  -0.29 * -0.02  -0.23  -0.50 *** 
CT_20180214 -0.43 *** -0.30 * -0.39 ** -0.41 ** -0.25  -0.61 *** -0.28 * -0.48 *** -0.07  -0.43 *** 0.00 
CT_20180219 -0.36 ** -0.39 ** -0.46 *** -0.17  0.06  -0.59 *** -0.15  -0.28 * 0.01  -0.39 ** -0.36 ** 
CT_20180225 -0.26 * -0.12  -0.23  -0.21  -0.10  -0.64 *** 0.09  -0.24  -0.03  -0.10  -0.09  
CT_20180301 -0.32 * -0.17  -0.25  -0.19  -0.03  -0.45 *** -0.11  -0.41 ** -0.30 * -0.22  -0.28 * 
CT_20180305 -0.26 * -0.20  -0.05  -0.09  -0.12  -0.28 * 0.04  -0.37 ** 0.06  -0.12  0.02  
CT_20180310 -0.30 * 0.04  -0.32 * -0.10 0.04  -0.42 *** 0.21  -0.01  0.02  -0.18  -0.17  
CT_20180315 -0.24  -0.08  -0.23  0.12  -0.03  -0.12  0.16  0.01  0.13  -0.01  -0.19  
CT_20180320 -0.09  -0.25  -0.28 * 0.11  0.06  0.24  0.28 * 0.06  -0.25  0.03  -0.17  
NDVI_20180126 0.28 * 0.08  0.50 *** 0.43 *** 0.12  0.17  0.04  0.26 * -0.07  0.28 * 0.56 *** 
NDVI_20180131 0.28 * 0.21  0.38 ** 0.42 *** 0.02  0.38 ** 0.08  -0.06  -0.1  0.22  0.63 *** 
NDVI_20180204 0.27 * 0.19  0.35 ** 0.37 ** 0.30 * 0.21  0.20  0.23  0.00  0.08  0.59 *** 
NDVI_20180210 0.32 * 0.37 ** 0.35 ** 0.44 *** 0.35 ** 0.62 *** 0.22  0.35 ** 0.22  0.41 ** 0.38 ** 
NDVI_20180214 0.42 *** 0.27 * 0.36 ** 0.21  0.14  0.61 *** 0.29 * 0.27 * -0.16  0.41 ** 0.17  
NDVI_20180219 0.34 ** 0.00  0.35 ** 0.02  0.14  0.58 *** -0.09  0.47 *** 0.15  0.34 ** 0.35 ** 
NDVI_20180226 0.06  0.09  0.03  -0.23  0.16  0.37 ** 0.06  -0.15  -0.07  -0.24  0.19  
NDVI_20180301 0.16  0.02  0.24  -0.04  -0.08  0.36 ** 0.13  0.15  0.27 * 0.04  -0.03  
NDVI_20180305 0.03  -0.06  0.07  0.03  0.19  0.10  0.05  0.08  -0.14  -0.24  0.04  
NDVI_20180310 -0.28 * -0.32 * -0.03  -0.23  -0.24  -0.18  -0.09  -0.12  -0.18  -0.29 * -0.03  
NDVI_20180315 -0.35 ** -0.32 * -0.13  -0.23  -0.23  -0.38 ** -0.29 * -0.27 * -0.22  -0.26 * -0.35 ** 
NDVI_20180320 -0.20  -0.23  -0.29 * 0.01  -0.21  -0.49 *** -0.25  -0.37 ** -0.26 * -0.32 * -0.48 *** 

Days to 
Heading -0.33 ** -0.45 *** -0.31 * -0.42 *** -0.40 ** -0.5 *** -0.36 ** -0.23  -0.45 *** -0.40 ** -0.22  

Days to 
Maturity -0.19  -0.34 ** -0.08  -0.33 * -0.25  -0.24  -0.14  -0.12  -0.29 * -0.16  -0.12  

Plant Height 0.31 * 0.12  0.53 *** 0.34 ** 0.16  0.33 ** 0.19  0.29 * 0.16  -0.13  0.19  
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Spike Number 0.42 *** 0.09  0.42 *** 0.42 *** -0.01  0.22  0.09  0.06  0.39 ** 0.39 ** 0.53 *** 

Spike length 0.18  -0.14  0.04  0.13  -0.28 * 0.18  0.15  0.37 ** 0.23  0.05  -0.18  

Spikelets per 
spike 0.05  -0.20  0.09  -0.18  -0.11  0.03  0.14  0.19  0.08  0.14  -0.06  

Grains per 
spike -0.10  0.19  -0.01  0.22  0.31 * -0.06  0.07  0.33 * 0.00 0.09  -0.05  

Thousand 
grain wt. 0.26 * 0.61 *** 0.45 *** 0.17  0.5 *** 0.39 ** 0.45 *** 0.29 * 0.05  0.20  0.28 * 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the <0.001 probability level. 
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Table A.9.  Correlation between grain yield and phenotypic traits for the 2018-19 season. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-10) in Jamalpur, Bangladesh 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 
CT_20190123 -0.21  -0.24  -0.68 *** -0.47 *** -0.22  -0.40 ** -0.49 *** -0.63 *** -0.52 *** -0.54 *** 
CT_20190127 -0.26 * -0.37 ** -0.76 *** -0.45 *** -0.37 ** -0.36 ** -0.62 *** -0.68 *** -0.53 *** -0.54 *** 
CT_20190131 -0.27 * 0.01  -0.30 * -0.15  -0.16  -0.27 * -0.18  0.09  -0.08  -0.08  
CT_20190205 -0.15  0.02  -0.46 *** 0.10  -0.23  -0.08  -0.28 * -0.48 *** -0.50 *** -0.30 * 
CT_20190211 0.15  -0.14  -0.24  0.14  -0.37 ** -0.51 *** -0.45 *** -0.55 *** -0.52 *** -0.66 *** 
CT_20190218 -0.22  0.03  -0.21  -0.11  0.10  -0.6 *** -0.43 *** -0.55 *** -0.63 *** -0.65 *** 
CT_20190223 -0.07  -0.45 *** 0.04  0.02  -0.11  -0.33 * 0.18  -0.04  -0.11  0.11  
CT_20190301 -0.13  -0.29 * 0.03  0.02  0.15  -0.31 * 0.30 * 0.13  -0.21  0.17  
CT_20190305 -0.28 * -0.22  -0.19  -0.29 * -0.17  -0.31 * -0.4 ** -0.36 ** -0.33 * -0.53 *** 
CT_20190311 0.00 -0.16  0.18  -0.44 *** 0.09  -0.27 * -0.25  -0.60 *** -0.06  -0.27 * 
CT_20190316 0.10  -0.26 * -0.24  -0.5 *** -0.25  -0.01  -0.25  -0.32 * -0.27 * -0.22  
CT_20190320 0.23  0.08  -0.02  -0.29 * -0.08  0.01  0.04  -0.11  -0.24  -0.31 * 
CT_20190325 -0.14  -0.20  0.42 *** 0.17  0.32 * 0.14  0.10  0.17  0.05  -0.06  
NDVI_20190121 0.35 ** 0.13  0.66 *** 0.57 *** 0.25  0.34 ** 0.32 * 0.59 *** 0.47 *** 0.51 *** 
NDVI_20190127 0.25  0.13  0.57 *** 0.56 *** 0.33 ** 0.43 *** 0.43 *** 0.65 *** 0.47 *** 0.47 *** 
NDVI_20190131 0.29 * 0.30 * 0.24  0.36 ** 0.18  0.25  0.25  0.05  -0.01  0.24  
NDVI_20190205 0.28 * 0.24  -0.01  0.45 *** 0.12  0.31 * 0.34 ** 0.43 *** 0.38 ** 0.18  
NDVI_20190211 0.41 ** 0.21  0.69 *** 0.46 *** 0.29 * 0.53 *** 0.55 *** 0.75 *** 0.62 *** 0.53 *** 
NDVI_20190218 0.21  0.37 ** 0.69 *** 0.4 ** 0.04  0.56 *** 0.40 ** 0.74 *** 0.68 *** 0.52 *** 
NDVI_20190222 0.12  0.04  -0.02  -0.24  0.09  -0.3 * 0.13  -0.01  0.06  -0.06  
NDVI_20190228 0.07  0.18  0.30 * 0.23  -0.10  -0.02  0.08  -0.10  0.05  0.35 ** 
NDVI_20190305 0.03  0.24  0.38 ** 0.39 ** 0.25  0.14  0.06  0.58 *** 0.38 ** 0.29 * 
NDVI_20190311 -0.15  0.18  0.06  0.28 * 0.10  0.06  -0.01  0.28 * 0.07  0.17  
NDVI_20190315 -0.19  -0.11  -0.12  -0.10  -0.12  -0.15  -0.25  0.07  -0.10  -0.04  
NDVI_20190320 -0.34 ** -0.30 * -0.37 ** -0.24  -0.22  -0.29 * -0.43 *** -0.07  -0.24  -0.16  
NDVI_20190325 -0.32 * -0.09  -0.52 *** -0.23  -0.24  0.20 -0.09  -0.23  -0.28 * -0.15  
Days to Heading -0.33 * -0.05  -0.37 ** -0.10  -0.08  -0.20  -0.37 ** -0.26 * -0.35 ** -0.20  
Days to 
Maturity -0.24  0.10  -0.22  0.04  0.03  -0.12  -0.36 ** -0.18  -0.31 * -0.12  
Plant Height 0.42 *** 0.35 ** 0.5 *** 0.47 *** 0.26 * 0.20  0.06  0.23  0.02  0.01  
Spike Number 0.16  0.13  0.43 *** 0.08  0.23  0.33 * 0.39 ** 0.06  0.48 *** 0.17  
Spike length -0.04  -0.04  0.05  0.25  -0.09  0.09  0.03  0.19  0.46 *** 0.12  
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Spikelets per 
spike -0.01  -0.23  -0.12  0.10  -0.02  -0.26 * -0.31 * 0.14  0.16  -0.12  
Grains per spike -0.01  0.19  0.33 * 0.14  0.26 * -0.01  0.23  0.06  0.21  -0.04  
Thousand grain 
wt. 0.27 * 0.21  0.07  0.14  0.11  0.37 ** 0.03  0.02  0.09  0.01  

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the <0.001 probability level.  
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Table A.10.  Correlation between grain yield and phenotypic traits for the 2019-20 season. Data include normalized difference 

vegetation index (NDVI) and canopy temperature (CT) measured at multiple times across the growing season (date of 

measurement) and agronomic traits for wheat grown in multiple yield trials (1-11) in Jamalpur, Bangladesh 

Traits Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 Trial_6 Trial_7 Trial_8 Trial_9 Trial_10 Trial_11 

CT_20200112 

-0.44 

*** 0.01  -0.01  -0.11  -0.18  -0.07  -0.15  -0.19  -0.23  -0.23  

-0.63 

*** 

CT_20200116 -0.11  -0.08  -0.24  -0.05  0.09  -0.09  -0.32 * -0.21  -0.15  -0.03  

-0.44 

*** 

CT_20200121 -0.28 * 0.05  -0.12  0.05  -0.20  -0.05  -0.13  -0.09  -0.17  -0.18  

-0.48 

*** 

CT_20200126 -0.13  -0.15  

-0.40 

** -0.25  0.12  0.10 -0.17  0.13  -0.20 -0.16  

-0.46 

*** 

CT_20200130 

-0.44 

*** -0.12  -0.07  

-0.35 

** 0.13  0.04  0.08  0.00 -0.22  0.12  -0.24  

CT_20200205 -0.12  -0.29 * 

-0.35 

** 

-0.43 

*** -0.28 * -0.15  0.06  0.10 -0.06  -0.18  -0.31 * 

CT_20200210 

-0.44 

*** 

-0.53 

*** 

-0.42 

*** 

-0.49 

*** -0.22  -0.06  0.08  0.00 -0.22  -0.26 * -0.34 ** 

CT_20200215 -0.08  0.00 -0.13  -0.25  -0.12  -0.04  0.22  -0.23  -0.31 * -0.12  -0.13  

CT_20200220 -0.07  -0.27 * -0.24  -0.29 * 0.05  0.06  0.02  -0.17  -0.13  -0.27 * -0.23  

CT_20200226 -0.24  -0.12  -0.27 * -0.20  -0.04  0.08  0.06  0.06  -0.21  -0.22  -0.26 * 

CT_20200302 

-0.42 

*** -0.29 * -0.29 * -0.32 * -0.19  0.11  -0.01  -0.17  -0.24  -0.28 * -0.36 ** 

CT_20200308 -0.18  -0.13  -0.09  

-0.36 

** -0.17  0.15  0.07  -0.05  

-0.40 

** -0.28 * -0.36 ** 

CT_20200313 -0.21  0.07  -0.29 * -0.17  -0.04  -0.11  -0.03  -0.08  

-0.47 

*** -0.28 * 

-0.42 

*** 

CT_20200318 0.08  -0.32 * -0.22  -0.14  -0.02  -0.28 * 0.25  -0.03  -0.33 * -0.17  -0.09  

CT_20200323 0.23  -0.21  -0.11  -0.16  0.05  0.00  0.18  0.08  -0.20  -0.14  -0.18  

NDVI_20200112 0.41 ** 0.25  0.35 ** 0.27 * 0.15  0.07  0.32 * 0.32 * 0.28 * -0.01  

0.56 

*** 
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NDVI_20200116 0.16  0.22  0.18  0.08  0.14  0.07  0.04  0.29 * 0.10  0.14  

0.65 

*** 

NDVI_20200121 0.37 ** 0.30 * 

0.50 

*** 0.29 * 0.05  -0.07  0.21  

0.55 

*** 0.26 * 0.08  

0.64 

*** 

NDVI_20200126 0.38 ** 0.06  0.21  0.38 ** 0.18  -0.11  0.05  0.30 * 0.14  0.18  0.38 ** 

NDVI_20200130 0.40 ** 

0.45 

*** 0.33 * 0.35 ** 0.21  0.03  0.25  0.31 * 0.26 * 0.22  

0.65 

*** 

NDVI_20200205 

0.45 

*** 0.5 *** 0.29 * 0.31 * 

0.45 

*** 0.07  0.11  0.27 * 0.16  0.40 ** 

0.45 

*** 

NDVI_20200210 0.38 ** 0.32 * 0.40 ** 0.41 ** 0.06  0.05  0.20  0.29 * 0.13  0.36 ** 0.17  

NDVI_20200215 0.24  0.35 ** 0.28 * 

0.68 

*** 0.36 ** -0.11  0.06  0.16  0.32 * 0.37 ** 0.29 * 

NDVI_20200220 0.41 ** 0.25  0.18  

0.53 

*** 0.21  0.01  

0.42 

*** 0.14  0.06  0.18  

0.45 

*** 

NDVI_20200226 0.24  0.33 ** 0.36 ** 0.41 ** 0.28 * -0.22  0.35 ** 0.35 ** 0.25  0.37 ** 

0.57 

*** 

NDVI_20200302 0.14  

0.42 

*** 0.31 * 0.37 ** 0.32 * -0.29 * 0.38 ** 0.37 ** 0.32 * 0.34 ** 0.31 * 

NDVI_20200308 0.02  

0.45 

*** 0.13  0.19  0.13  -0.07  0.03  0.23  0.26 * 

0.45 

*** 0.23  

NDVI_20200313 0.00 0.05  0.08  -0.13  0.00  -0.11  

-0.34 

** 0.10  0.14  0.19  0.07  

NDVI_20200318 -0.19  -0.06  -0.05  -0.09  -0.04  -0.21  

-0.49 

*** -0.03  -0.11  0.16  0.21  

NDVI_20200323 -0.33 * -0.09  

-0.33 

** -0.20  0.03  0.11  

-0.60 

*** -0.10  -0.02  0.07  

-0.43 

*** 

GrndCov_20200112 0.28 * 0.16  

0.45 

*** 0.39 ** 

0.43 

*** 0.02  0.12  

0.44 

*** 0.41 ** 0.25  

0.72 

*** 

GrndCov_20200206 0.29 * 0.24  0.25  

0.45 

*** 

0.46 

*** 0.14  0.07  0.39 ** 

0.42 

*** 0.17  

0.73 

*** 

DLA_Feb26 -0.22  -0.11  -0.20  -0.22  0.07  -0.24  0.38 ** 0.09  -0.05  -0.31 * -0.05  

DLA_Mar09 0.14  -0.26 * -0.02  -0.28 * -0.02  -0.22  0.27 * 0.09  -0.06  -0.03  0.19  



108 

Days to Heading -0.19  -0.03  -0.20  

-0.41 

** -0.27 * 

-0.46 

*** 

-0.62 

*** -0.03  -0.25  -0.08  0.12  

Days to Maturity 0.07  0.11  -0.01  -0.32 * -0.15  -0.03  

-0.43 

*** 0.08  0.06  0.08  0.20  

Plant Height 

0.42 

*** 0.29 * 

0.47 

*** 0.34 ** 0.20  0.19  

0.44 

*** 0.18  0.32 * 0.07  0.33 ** 

Spike Number 0.19  0.29 * 0.11  

0.44 

*** 0.25 * 0.15  0.37 ** 

0.44 

*** 

0.44 

*** 0.25  

0.63 

*** 

Spikelets per spike 0.21  0.20 0.21  -0.10  0.04  0.03  -0.09  -0.06  -0.07  -0.12  0.23  

Grains per spike 0.06  0.35 ** 0.31 * 0.21  0.14  0.01  0.11  0.12  -0.10  0.34 ** 0.05  

Thousand grain wt. 0.19  0.24  

0.44 

*** 

0.42 

*** 0.28 * 

0.51 

*** 0.33 * 0.16  0.28 * 0.07  -0.09  
* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the <0.001 probability level.
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Table A.11.  Selected lines from each year.  

year trial plot gid DTHD DAYSMT PH SN SPLN GRNSPK TGW GRYLD 
2016 5 entry5051 7046872 68.5 104.9 109.3 307.9 16.1 43.1 45.3 4.40 
2016 9 entry9040 7175897 73.6 105.6 96.1 325.0 18.4 49.1 34.7 4.03 
2016 5 entry5001 7171325 62.2 103.0 99.5 204.2 18.5 55.9 37.8 3.91 
2016 6 entry6028 7174167 67.1 105.6 103.7 353.0 19.1 38.9 43.8 3.86 
2016 5 entry5041 7173767 72.0 106.9 107.4 353.2 15.2 42.2 34.3 3.78 
2016 9 entry9030 7175853 69.4 103.6 101.6 318.0 19.8 47.6 33.9 3.73 
2016 5 entry5050 7173922 70.3 104.0 92.9 312.8 16.1 40.9 36.3 3.70 
2016 4 entry4012 7177875 71.7 107.9 98.2 288.3 17.0 56.0 31.7 3.65 
2016 5 entry5037 7173722 70.9 105.4 105.2 291.0 17.2 40.1 41.9 3.64 
2016 5 entry5003 7171329 71.2 106.5 106.0 276.2 15.3 48.1 37.7 3.63 
2016 5 entry5054 6333158 65.3 106.0 99.7 352.0 16.0 45.7 33.4 3.62 
2016 9 entry9025 7175837 71.1 103.5 102.2 263.0 21.3 61.7 31.4 3.61 
2016 5 entry5030 7173536 71.5 106.4 107.0 320.5 16.7 46.7 31.9 3.58 
2016 3 entry3052 7177666 73.1 107.5 102.8 215.9 17.9 48.2 41.7 3.56 
2016 5 entry5031 7046418 71.5 107.3 93.2 335.3 14.3 38.9 33.4 3.54 
2016 5 entry5048 7173851 69.9 104.5 106.1 340.5 16.3 45.8 34.6 3.51 
2016 6 entry6024 7047297 65.5 103.7 105.1 277.8 16.0 47.6 38.3 3.51 
2016 6 entry6031 7174267 74.1 106.0 93.1 282.8 18.4 43.1 41.9 3.51 
2016 5 entry5059 7047125 67.5 102.5 108.3 289.0 16.8 47.7 33.5 3.50 
2016 5 entry5002 0 70.4 106.1 106.9 274.5 15.7 46.7 47.9 3.49 
2016 6 entry6006 7174105 68.9 105.8 101.1 281.8 18.1 41.2 46.0 3.48 
2016 6 entry6016 7174130 68.4 106.0 98.5 238.8 19.3 49.7 37.8 3.48 
2016 4 entry4046 7171133 75.7 107.4 96.0 299.9 16.7 51.8 38.7 3.47 
2016 6 entry6032 7174269 70.5 105.7 100.7 259.7 18.1 48.1 39.0 3.47 
2016 9 entry9048 7048441 69.3 104.0 85.9 271.0 15.3 51.0 36.0 3.46 
2016 5 entry5027 7046390 68.7 106.4 100.2 325.9 16.4 44.4 31.9 3.43 
2016 5 entry5038 7173723 71.4 107.6 92.1 240.1 16.2 44.2 46.0 3.43 
2016 5 entry5043 7173803 67.8 106.0 98.6 290.3 19.6 50.4 38.1 3.43 
2016 5 entry5055 7047009 68.2 101.9 106.2 309.4 14.1 44.5 35.9 3.43 
2016 5 entry5019 7173500 66.8 100.6 104.1 312.5 17.0 39.3 38.5 3.41 
2016 6 entry6046 7174321 73.1 105.6 107.8 296.3 17.9 51.1 29.8 3.40 
2016 5 entry5028 7173528 69.6 105.9 100.9 351.1 17.5 42.3 33.8 3.38 
2016 9 entry9001 7047937 69.4 102.6 103.8 249.0 17.3 49.3 36.9 3.38 
2016 5 entry5020 7173511 66.8 100.6 98.1 324.0 16.4 42.8 43.0 3.37 
2016 5 entry5023 7173521 73.9 107.6 92.0 279.3 16.2 47.2 35.2 3.37 
2016 6 entry6035 7174271 74.4 106.0 105.1 381.5 18.3 43.1 39.0 3.35 
2016 9 entry9002 0 69.0 105.2 103.3 261.5 18.6 53.9 44.2 3.35 
2016 5 entry5015 7173488 70.5 106.4 106.3 265.5 16.3 43.9 29.4 3.34 
2016 5 entry5033 5398530 76.7 107.8 109.8 337.4 15.8 37.4 35.0 3.34 
2016 4 entry4051 7046099 75.3 108.0 98.4 312.6 20.1 52.7 31.0 3.33 
2016 9 entry9029 7175852 69.4 102.6 99.8 268.5 16.4 45.5 28.7 3.33 
2016 4 entry4020 7170548 74.1 107.9 105.5 293.5 17.1 44.0 36.3 3.32 
2016 6 entry6015 7047225 67.5 105.8 105.2 297.8 16.5 46.8 31.5 3.32 
2016 6 entry6002 0 70.8 106.0 101.5 364.3 16.7 46.3 45.7 3.31 
2016 5 entry5005 7173426 70.9 103.6 104.9 345.5 12.9 34.0 30.4 3.28 
2016 5 entry5053 7174031 71.3 106.4 104.7 272.2 15.5 46.8 36.7 3.28 
2016 9 entry9020 7175794 69.5 103.4 96.4 315.5 16.9 55.8 33.7 3.27 
2016 3 entry3051 7177664 71.2 104.0 98.4 240.1 13.4 34.8 40.8 3.24 
2016 5 entry5016 7173494 69.4 103.2 103.2 289.0 16.5 46.1 33.0 3.24 
2016 5 entry5022 7173519 70.1 105.2 96.4 266.6 14.6 47.1 46.9 3.22 
2016 5 entry5029 7173534 71.4 106.0 107.3 275.4 16.8 48.9 28.5 3.22 
2016 4 entry4009 7177872 72.9 107.1 96.7 271.7 17.8 47.4 37.9 3.21 
2016 6 entry6029 7174195 74.5 105.0 100.8 256.7 17.1 50.2 21.8 3.21 
2016 6 entry6053 7174342 70.0 106.1 95.5 338.6 16.7 48.4 32.7 3.21 
2016 6 entry6056 7174347 69.6 105.8 105.0 245.8 17.1 48.4 34.0 3.20 
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2016 5 entry5014 7173484 72.0 106.9 99.8 355.0 16.6 48.8 30.7 3.19 
2016 3 entry3055 7177673 73.4 107.4 97.8 231.3 15.4 43.0 39.9 3.18 
2016 4 entry4041 7171098 70.3 106.3 94.3 312.7 17.3 50.3 35.8 3.18 
2016 6 entry6050 7174332 71.5 106.2 103.3 221.2 19.0 53.0 32.2 3.18 
2016 4 entry4060 7046215 66.2 104.2 92.3 232.4 16.7 53.0 37.7 3.17 
2017 1 entry1051 7399180 67.4 111.5 101.0 440.1 15.7 43.6 35.8 4.69 
2017 2 entry2049 7399623 69.4 110.3 103.9 346.2 17.0 51.2 34.2 4.64 
2017 3 entry3059 7400239 68.2 111.9 98.5 328.3 17.7 56.1 35.6 4.60 
2017 2 entry2046 7399616 69.8 110.4 97.8 414.9 16.1 44.6 35.8 4.56 
2017 3 entry3036 7399947 61.4 109.1 99.0 407.6 15.9 53.6 37.8 4.56 
2017 9 entry9048 7398471 66.5 107.0 101.8 370.0 15.1 41.4 37.7 4.55 
2017 2 entry2041 7399609 61.7 104.2 102.9 325.9 13.7 47.5 43.0 4.48 
2017 7 entry7002 0 62.5 108.5 105.6 372.0 17.3 41.2 46.6 4.46 
2017 7 entry7026 6175067 67.2 110.0 108.6 252.2 19.2 58.1 39.5 4.46 
2017 4 entry4045 7400456 65.3 108.7 102.0 437.4 18.5 65.9 32.5 4.45 
2017 3 entry3035 7399946 67.5 104.8 97.5 336.7 16.9 52.8 40.4 4.43 
2017 7 entry7016 7311105 68.1 109.5 101.9 367.1 17.6 54.4 40.2 4.40 
2017 3 entry3026 6175067 67.9 109.4 104.0 293.9 20.8 52.5 40.1 4.39 
2017 9 entry9029 7398428 67.5 107.5 109.5 247.1 18.5 52.2 45.2 4.37 
2017 8 entry8032 7397762 68.0 107.8 104.7 297.3 16.8 57.7 46.7 4.30 
2017 11 entry11037 7174105 69.9 109.0 98.7 250.7 19.1 43.1 50.0 4.30 
2017 7 entry7042 7397189 75.9 112.5 120.6 280.2 19.9 46.6 36.3 4.29 
2017 5 entry5040 7396142 70.0 112.3 107.2 365.5 18.5 56.8 41.8 4.29 
2017 7 entry7008 7310918 70.8 112.0 102.2 245.7 17.6 55.8 44.7 4.28 
2017 6 entry6041 7396710 68.9 109.5 105.6 328.4 18.2 46.3 39.0 4.27 
2017 8 entry8002 0 65.4 109.6 109.5 324.0 17.8 47.4 44.3 4.26 
2017 3 entry3042 7400069 63.0 106.2 106.0 319.2 17.2 44.3 42.2 4.23 
2017 3 entry3050 7400194 62.8 103.8 99.0 412.1 17.3 40.9 40.4 4.23 
2017 8 entry8004 7397520 63.0 109.2 105.0 383.3 20.4 61.4 40.5 4.22 
2017 4 entry4020 7400308 61.0 107.2 96.0 364.3 17.0 50.1 34.7 4.21 
2017 5 entry5050 7396176 70.0 111.7 101.9 309.4 16.6 46.7 42.4 4.21 
2017 7 entry7020 7396931 69.0 110.0 103.8 391.6 19.9 55.7 37.1 4.21 
2017 11 entry11051 7175837 72.1 109.3 112.6 267.7 19.3 47.9 42.0 4.20 
2017 5 entry5036 7396135 68.5 109.9 96.7 343.9 17.0 39.3 40.6 4.20 
2017 8 entry8053 7398192 68.0 110.7 108.9 304.2 19.3 49.1 35.9 4.20 
2017 4 entry4044 7400453 66.4 107.6 103.0 273.6 18.0 57.1 32.5 4.19 
2017 1 entry1050 7399179 66.0 108.1 101.0 432.1 17.6 48.3 36.6 4.19 
2017 7 entry7033 6332122 69.3 111.0 105.0 324.0 19.4 52.0 41.3 4.18 
2017 4 entry4056 7400488 57.3 105.3 89.5 379.2 15.6 43.4 38.7 4.16 
2017 4 entry4022 7400313 59.0 106.1 99.5 388.7 16.8 46.6 40.9 4.15 
2017 3 entry3038 7399956 60.7 107.0 103.5 427.6 18.8 55.6 35.0 4.15 
2017 2 entry2006 7399442 69.5 109.8 101.6 395.9 16.7 54.4 35.6 4.14 
2017 8 entry8056 7398211 70.3 110.3 110.0 316.4 20.3 56.3 43.9 4.14 
2017 7 entry7005 7310902 71.0 109.0 99.6 299.0 21.6 60.4 35.8 4.12 
2017 2 entry2048 7399621 67.7 109.9 99.6 437.1 15.9 43.7 35.1 4.12 
2017 3 entry3037 7399950 68.5 107.8 94.5 370.1 18.5 56.0 35.8 4.12 
2017 8 entry8038 7397893 67.5 106.0 106.3 306.7 18.8 52.9 39.1 4.11 
2017 3 entry3016 7399823 70.6 111.4 99.0 298.6 18.6 59.5 39.0 4.10 
2017 3 entry3057 7313697 72.8 113.6 101.5 327.2 18.2 40.0 40.4 4.10 
2017 9 entry9012 7398326 69.5 110.5 108.5 357.3 18.8 53.4 39.2 4.10 
2017 7 entry7036 7311300 74.3 111.0 112.4 314.7 21.0 57.5 36.2 4.09 
2017 4 entry4019 7400306 62.5 107.7 102.5 285.3 16.3 47.5 36.7 4.08 
2017 10 entry10005 7400872 65.7 108.5 93.6 339.7 18.5 46.1 46.0 4.07 
2017 9 entry9003 7398243 63.5 104.0 107.1 315.2 17.0 48.3 40.3 4.05 
2017 8 entry8043 7398014 67.5 108.9 101.4 334.3 19.3 48.2 38.5 4.04 
2017 8 entry8001 7397501 62.5 107.6 106.6 308.4 18.0 46.4 37.9 4.04 
2017 7 entry7041 7397183 70.6 116.0 105.1 315.8 18.5 51.1 40.0 4.02 
2017 7 entry7021 7311134 68.7 110.0 106.3 282.3 21.4 69.2 38.4 4.02 
2017 7 entry7015 7311059 64.4 108.5 103.9 309.4 15.7 41.0 43.0 4.01 
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2017 4 entry4026 6175067 65.7 111.2 101.0 338.0 18.3 56.5 38.4 4.00 
2017 9 entry9031 7398433 67.0 108.5 110.8 345.5 19.7 49.8 40.4 4.00 
2017 4 entry4050 7400466 70.4 111.1 98.5 365.5 19.5 57.7 33.8 3.99 
2017 2 entry2045 7399615 67.9 108.8 97.4 389.2 17.2 51.0 32.2 3.99 
2017 10 entry10039 6341870 75.3 114.0 95.8 312.5 16.0 47.3 39.8 3.99 
2017 9 entry9005 7398254 71.0 109.0 106.4 256.9 18.1 51.2 43.8 3.98 
2018 10 entry10001 7631563 67.0 107.5 82.0 371.6 16.8 46.3 42.9 4.78 
2018 4 entry4042 7626450 68.4 111.2 98.5 328.1 15.8 50.6 40.8 4.24 
2018 4 entry4044 7626460 64.5 104.8 89.9 290.2 15.7 49.8 41.3 4.06 
2018 9 entry9016 7631006 77.4 111.5 94.5 347.6 19.4 57.8 44.0 4.06 
2018 8 entry8031 7629982 77.2 113.5 95.3 254.1 18.4 57.4 45.3 3.96 
2018 9 entry9033 6332122 73.3 111.0 89.5 266.7 16.7 46.4 45.5 3.91 
2018 8 entry8039 6341870 77.1 112.9 88.4 243.1 19.3 59.2 43.5 3.89 
2018 10 entry10041 7632416 72.1 108.4 86.0 229.5 18.2 48.5 45.3 3.86 
2018 10 entry10016 7631846 68.5 108.8 90.3 240.0 18.7 41.0 51.2 3.85 
2018 8 entry8060 7630530 73.5 111.0 87.4 256.9 17.0 41.4 48.5 3.85 
2018 8 entry8046 7630341 77.3 112.5 100.2 283.2 23.2 63.6 43.5 3.80 
2018 9 entry9046 7631434 73.2 110.5 91.0 378.5 20.4 57.8 45.0 3.80 
2018 3 entry3045 7626319 69.6 109.2 98.3 299.0 13.9 49.4 50.8 3.80 
2018 10 entry10009 7631640 76.5 110.1 86.7 296.6 17.6 52.9 44.9 3.79 
2018 8 entry8016 7629772 75.7 111.5 91.0 299.0 18.3 57.6 47.5 3.79 
2018 6 entry6005 7627721 74.1 111.0 95.2 230.5 20.6 56.3 42.8 3.77 
2018 9 entry9006 7630704 78.1 111.5 86.5 303.7 19.8 45.2 35.3 3.74 
2018 6 entry6015 7627903 67.3 110.5 90.3 212.5 17.3 57.6 43.5 3.74 
2018 8 entry8040 7630179 70.5 112.0 92.5 264.9 17.8 52.7 50.3 3.72 
2018 10 entry10048 7632462 70.5 110.9 91.4 232.3 17.6 47.6 45.2 3.72 
2018 10 entry10005 7631608 79.0 113.6 87.5 248.9 17.1 41.1 40.9 3.71 
2018 4 entry4050 7626569 80.5 114.6 97.6 239.4 19.3 51.0 37.7 3.70 
2018 4 entry4052 7626572 70.9 111.8 97.3 217.4 19.9 55.0 46.8 3.68 
2018 10 entry10026 6175067 72.4 111.2 88.3 244.6 19.5 51.4 48.6 3.67 
2018 8 entry8032 7630037 77.3 112.5 98.6 297.2 16.4 58.9 43.3 3.67 
2018 3 entry3005 7626072 77.1 112.6 94.2 243.5 22.6 59.1 40.8 3.66 
2018 9 entry9030 7631193 69.9 109.0 92.7 278.7 18.9 45.4 44.5 3.66 
2018 9 entry9018 7631063 72.7 111.5 90.1 220.9 18.0 49.0 41.5 3.65 
2018 4 entry4031 7626416 75.4 110.6 91.6 194.2 19.2 49.8 47.5 3.65 
2018 9 entry9009 7630834 69.5 110.0 89.3 320.2 18.1 47.7 44.5 3.64 
2018 8 entry8007 7629741 69.0 110.5 87.8 287.0 16.9 45.4 45.0 3.63 
2018 8 entry8030 7629913 76.3 112.4 89.4 278.0 17.1 47.2 40.3 3.62 
2018 10 entry10006 7631614 80.0 115.9 88.5 228.3 15.6 39.9 41.7 3.62 
2018 8 entry8011 7629752 70.6 109.4 86.0 239.8 15.8 51.8 45.3 3.62 
2018 8 entry8015 7629766 72.2 110.5 91.4 306.3 19.9 46.9 47.3 3.60 
2018 8 entry8035 7630047 76.3 111.0 92.3 236.8 18.9 55.6 51.0 3.60 
2018 8 entry8005 7629732 71.8 109.0 84.7 270.2 18.2 45.8 45.5 3.59 
2018 9 entry9015 7630977 71.7 111.5 87.7 265.8 17.7 50.9 41.8 3.59 
2018 4 entry4043 7626451 75.4 109.7 91.2 301.4 14.5 39.8 38.6 3.59 
2018 10 entry10043 7632444 70.0 108.1 88.9 272.0 20.3 57.4 39.7 3.58 
2018 11 entry11029 7399601 78.1 111.0 90.8 314.5 15.4 41.1 45.4 3.57 
2018 7 entry7031 7629318 75.2 111.5 95.5 284.0 17.8 52.9 41.8 3.56 
2018 3 entry3041 7626305 77.5 113.1 96.4 223.0 19.4 55.3 50.5 3.56 
2018 6 entry6032 7628201 73.3 109.5 90.7 188.6 19.1 53.7 46.5 3.55 
2018 8 entry8057 7630477 76.2 111.0 87.6 265.2 17.6 46.2 47.8 3.54 
2018 3 entry3015 7626094 71.5 108.9 93.7 269.0 20.6 46.4 43.5 3.52 
2018 10 entry10004 7631568 72.5 109.0 87.9 360.0 19.8 45.1 39.5 3.51 
2018 9 entry9008 7630830 69.4 108.5 85.6 302.6 14.5 46.8 45.8 3.51 
2018 10 entry10045 7632450 69.0 108.7 88.5 237.2 17.0 43.1 51.9 3.50 
2018 10 entry10003 7631566 75.5 111.5 84.5 242.6 16.6 42.9 43.7 3.50 
2018 10 entry10023 7631994 68.5 106.4 84.2 264.9 19.2 51.5 48.2 3.50 
2018 8 entry8048 7630352 77.1 112.0 96.7 299.3 22.4 55.0 42.5 3.50 
2018 8 entry8026 6175067 71.9 110.0 89.8 245.5 19.6 55.0 46.3 3.50 
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2018 4 entry4060 7626689 77.8 112.7 92.6 316.7 17.2 51.2 45.5 3.49 
2018 10 entry10029 7632194 71.9 106.8 83.6 267.7 18.7 42.1 39.9 3.47 
2018 9 entry9048 7631438 73.3 110.0 94.2 271.5 18.0 53.8 43.5 3.47 
2018 8 entry8038 7630077 75.6 111.9 90.4 343.1 18.8 56.6 39.3 3.46 
2018 7 entry7009 7628883 70.6 106.0 88.3 208.5 18.7 44.0 51.4 3.46 
2018 10 entry10010 7631716 77.6 111.3 93.8 269.7 18.3 54.0 39.3 3.45 
2018 8 entry8047 7630348 75.7 112.0 93.9 266.6 21.2 61.3 45.0 3.44 
2019 9 entry9055 8053864 79.5 116.3 93.9 169.0 20.6 52.1 47.8 5.25 
2019 8 entry8035 8052004 75.4 116.0 99.1 156.0 18.5 49.2 40.1 5.16 
2019 3 entry3020 8051113 73.8 113.9 105.0 251.9 16.4 52.5 40.9 4.97 
2019 3 entry3058 8044990 74.8 115.2 98.5 182.5 20.0 53.3 42.3 4.94 
2019 10 entry10034 8054309 80.3 118.0 93.0 149.0 16.2 36.5 44.0 4.88 
2019 8 entry8025 8051868 72.8 106.0 97.4 148.5 17.5 49.9 48.0 4.62 
2019 5 entry5028 8047924 74.9 113.0 100.3 169.0 17.5 60.7 48.4 4.59 
2019 3 entry3034 8051237 81.8 118.2 95.5 193.0 18.1 55.0 43.4 4.57 
2019 4 entry4039 6681676 72.6 112.7 105.8 163.6 18.3 49.3 46.8 4.41 
2019 8 entry8007 8051474 77.2 117.1 105.7 176.5 21.5 47.4 41.3 4.40 
2019 8 entry8009 8051496 80.4 118.6 100.3 166.5 17.6 43.7 42.5 4.39 
2019 10 entry10026 6341870 79.4 118.0 90.3 144.1 20.2 56.8 44.8 4.37 
2019 3 entry3039 6681676 71.0 113.0 96.0 172.4 15.3 53.3 44.1 4.36 
2019 10 entry10046 8054553 70.8 107.0 95.6 158.1 17.0 41.5 49.6 4.36 
2019 3 entry3047 8044862 78.9 116.7 101.0 185.9 19.7 58.5 42.9 4.36 
2019 3 entry3050 8044907 74.4 112.6 87.5 203.6 16.1 50.6 41.2 4.35 
2019 9 entry9045 8053288 78.0 114.6 98.2 194.0 17.1 41.2 46.4 4.32 
2019 10 entry10060 8055317 79.9 117.0 97.3 163.5 19.5 56.0 44.6 4.30 
2019 4 entry4017 6175067 74.2 111.6 107.3 149.8 19.9 60.0 48.6 4.28 
2019 10 entry10039 6681676 72.4 114.0 97.8 136.2 16.0 43.7 42.5 4.27 
2019 10 entry10005 8054147 79.8 118.0 102.9 141.2 16.0 48.1 43.3 4.26 
2019 8 entry8003 8051443 74.6 114.9 101.3 160.5 19.3 48.8 49.0 4.26 
2019 9 entry9002 7890127 66.5 108.4 89.2 162.0 17.3 47.7 52.8 4.26 
2019 8 entry8002 7890127 66.0 111.0 93.8 154.0 19.0 45.5 49.0 4.25 
2019 3 entry3048 8044864 80.2 117.8 89.5 207.7 18.7 55.0 38.1 4.24 
2019 1 entry1015 8048881 80.0 115.7 86.0 175.2 21.1 51.2 37.3 4.23 
2019 10 entry10035 8054321 79.5 115.0 95.7 169.3 18.3 49.0 49.8 4.18 
2019 7 entry7039 6681676 73.7 115.1 100.5 154.6 16.7 46.0 41.7 4.16 
2019 3 entry3011 8051039 78.3 115.5 96.0 105.2 18.6 64.8 41.2 4.14 
2019 4 entry4056 8046775 76.6 114.4 101.2 168.3 15.7 49.0 53.4 4.13 
2019 7 entry7049 8059712 72.0 108.1 90.0 161.1 16.9 37.8 44.0 4.13 
2019 10 entry10036 8054354 73.6 109.5 91.4 171.6 19.4 54.3 46.6 4.12 
2019 4 entry4055 8046733 75.8 111.4 98.5 136.1 16.0 45.4 50.6 4.11 
2019 9 entry9057 8053942 76.5 114.1 94.1 155.0 19.0 42.8 51.0 4.08 
2019 10 entry10014 8054192 81.6 118.0 87.8 168.8 19.3 47.4 45.1 4.08 
2019 3 entry3017 6175067 75.1 112.5 101.5 161.9 20.0 61.0 47.2 4.07 
2019 7 entry7011 8058242 81.1 118.0 102.5 166.2 18.7 61.2 45.8 4.07 
2019 10 entry10043 8054496 75.7 113.5 91.0 161.0 17.4 47.3 44.1 4.06 
2019 7 entry7022 8059025 75.3 114.5 100.0 171.3 14.7 56.2 39.5 4.05 
2019 7 entry7038 8059211 77.2 112.1 103.5 154.6 18.8 52.8 47.6 4.04 
2019 8 entry8026 6341870 80.0 119.0 96.6 136.0 17.2 55.2 45.0 4.03 
2019 3 entry3040 8044697 76.6 115.0 94.0 198.5 20.9 66.0 48.1 4.03 
2019 3 entry3010 8051036 77.7 113.7 100.0 175.7 17.8 52.8 42.4 4.03 
2019 8 entry8010 8051507 81.2 118.4 105.8 136.5 19.5 47.4 38.8 4.03 
2019 7 entry7005 8058152 74.0 112.0 88.0 161.4 18.2 52.8 49.9 4.00 
2019 8 entry8023 8051812 75.8 114.5 98.9 153.5 19.9 46.3 42.5 4.00 
2019 3 entry3051 8044909 76.8 113.2 98.5 182.4 19.7 50.5 45.9 3.99 
2019 6 entry6032 8057419 80.7 118.1 97.3 190.6 15.0 58.8 45.1 3.99 
2019 4 entry4046 8046693 82.6 119.0 102.9 152.1 17.7 34.9 40.8 3.99 
2019 2 entry2026 6341870 77.0 118.2 92.6 258.6 18.6 61.3 49.1 3.94 
2019 10 entry10031 8054238 81.3 118.5 101.0 158.5 19.5 64.6 47.3 3.94 
2019 10 entry10025 8054214 81.5 118.5 90.4 152.6 17.0 56.8 42.5 3.93 
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2019 5 entry5016 8047605 73.9 117.0 95.3 195.8 18.3 51.8 42.6 3.92 
2019 5 entry5032 8048083 78.7 115.7 101.5 156.7 19.9 52.8 48.3 3.91 
2019 8 entry8030 8051926 74.4 113.1 102.8 162.5 18.7 45.8 50.0 3.90 
2019 8 entry8001 8051423 81.1 118.9 96.3 146.5 21.2 43.8 42.3 3.88 
2019 8 entry8016 8051574 78.2 116.9 94.2 163.5 18.4 52.2 45.3 3.87 
2019 3 entry3054 7175970 74.6 110.7 103.5 153.9 20.1 62.2 43.3 3.86 
2019 7 entry7052 8059717 75.2 117.0 98.0 175.0 17.9 48.6 49.4 3.85 
2019 3 entry3056 8044987 77.4 116.8 99.0 159.9 21.7 50.9 48.2 3.85 
2020 3 entry3054 7398245 70.9 108.0 107.3 344.6 21.2 66.8 52.4 5.33 
2020 5 entry5031 8244791 73.0 108.4 97.8 322.9 16.8 51.7 50.3 5.16 
2020 4 entry4046 8243776 68.0 107.3 99.3 424.5 16.5 62.1 45.4 5.16 
2020 9 entry9025 8241671 70.0 108.4 98.0 354.5 16.3 42.8 44.6 5.11 
2020 8 entry8031 8240862 71.6 112.3 92.5 346.9 18.5 57.0 49.5 5.10 
2020 10 entry10025 8242637 72.3 114.7 96.5 363.2 17.2 53.4 54.4 5.10 
2020 9 entry9011 8241417 69.0 113.3 95.6 372.5 17.2 42.0 52.0 5.08 
2020 10 entry10002 304660 62.0 110.1 91.0 351.8 16.9 56.3 50.0 5.06 
2020 7 entry7001 8247612 70.8 112.5 96.4 303.4 17.9 53.5 54.9 5.05 
2020 7 entry7012 8239328 72.8 111.0 98.4 412.5 23.3 60.4 37.8 5.01 
2020 9 entry9041 8241804 70.9 112.6 99.5 300.0 15.9 55.0 54.9 5.01 
2020 9 entry9028 8241729 70.5 113.3 96.6 326.5 18.4 48.4 48.0 5.01 
2020 9 entry9055 8242209 71.0 111.2 98.1 422.5 16.6 46.0 47.3 4.98 
2020 7 entry7026 6175067 70.3 111.5 98.3 378.9 18.6 54.0 44.0 4.96 
2020 7 entry7039 7400769 72.5 112.5 90.9 357.0 18.4 58.2 57.3 4.92 
2020 4 entry4043 8243589 70.5 105.0 95.2 384.5 15.8 51.0 46.3 4.86 
2020 8 entry8041 8241091 70.9 110.5 98.0 337.7 21.1 53.0 51.3 4.83 
2020 8 entry8046 8241137 73.6 111.0 97.1 400.9 16.7 51.5 48.8 4.83 
2020 9 entry9018 8241577 71.5 110.6 97.2 356.0 17.1 51.5 46.2 4.80 
2020 3 entry3026 6175067 70.4 111.0 103.0 357.9 18.4 60.7 46.0 4.80 
2020 10 entry10054 7398245 70.1 112.3 101.5 299.6 18.7 54.6 56.9 4.80 
2020 10 entry10021 8242598 72.2 114.2 96.0 336.8 16.0 60.0 44.0 4.79 
2020 9 entry9045 8241952 74.9 115.8 91.6 366.5 19.4 46.5 50.7 4.78 
2020 9 entry9040 8241794 71.0 112.1 87.6 389.0 17.4 47.5 49.9 4.77 
2020 8 entry8003 8240217 78.1 114.2 98.9 384.7 17.9 50.0 44.8 4.75 
2020 9 entry9046 8241963 68.5 112.6 100.3 356.0 20.0 47.0 51.7 4.73 
2020 9 entry9005 8241241 71.0 110.1 100.5 310.0 16.5 44.0 56.7 4.73 
2020 8 entry8044 8241122 74.7 112.7 96.4 336.4 19.3 46.5 47.8 4.72 
2020 8 entry8039 7400769 72.0 113.0 88.9 426.8 15.4 45.5 56.0 4.72 
2020 9 entry9056 8242211 70.9 112.5 97.7 353.5 16.5 42.5 49.7 4.67 
2020 4 entry4045 8243716 71.0 108.3 86.6 307.0 16.9 50.3 45.5 4.66 
2020 11 entry11007 8048669 66.8 107.0 95.3 276.4 18.2 40.0 54.0 4.64 
2020 9 entry9054 7398245 70.4 111.3 99.2 356.0 18.5 58.5 48.8 4.63 
2020 9 entry9023 8241656 71.0 110.9 100.5 410.0 17.6 49.5 47.6 4.63 
2020 9 entry9052 8242164 71.0 112.0 95.9 448.5 17.0 46.5 50.1 4.62 
2020 6 entry6026 6175067 71.0 110.0 99.2 398.3 16.0 48.0 59.3 4.62 
2020 10 entry10016 8242520 74.4 113.5 89.5 360.9 17.5 59.0 49.6 4.61 
2020 8 entry8010 8240449 69.4 111.2 92.6 389.4 19.3 50.0 39.5 4.61 
2020 10 entry10005 8242376 71.5 112.6 96.0 318.8 18.6 61.0 39.7 4.60 
2020 7 entry7010 8239306 65.4 109.0 100.6 356.2 17.8 47.9 52.3 4.60 
2020 8 entry8032 8240864 71.3 109.2 97.5 361.2 20.5 50.7 44.0 4.57 
2020 11 entry11055 8054321 75.0 113.0 95.9 304.6 17.7 49.1 44.3 4.57 
2020 4 entry4054 7398245 67.6 108.4 101.0 371.5 19.8 51.5 55.3 4.56 
2020 8 entry8030 8240840 72.6 111.9 98.9 358.7 17.9 52.0 43.5 4.56 
2020 7 entry7008 8239262 70.5 112.0 92.0 359.9 17.2 47.2 49.8 4.54 
2020 8 entry8018 8240574 75.7 112.9 96.5 347.8 20.1 54.0 51.0 4.54 
2020 6 entry6002 304660 62.8 106.5 92.1 363.3 17.5 46.6 47.7 4.53 
2020 8 entry8040 8241055 71.9 111.5 95.1 430.0 18.7 54.5 46.3 4.52 
2020 9 entry9010 8241408 72.0 113.4 95.2 294.5 20.0 60.5 45.0 4.52 
2020 8 entry8025 8240790 71.4 107.2 99.5 384.9 15.4 52.0 44.3 4.51 
2020 6 entry6030 8246525 70.7 110.0 100.3 416.2 16.2 46.0 40.8 4.51 
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2020 8 entry8036 8240873 68.4 109.6 93.1 376.6 15.8 54.3 50.0 4.51 
2020 4 entry4037 8243467 71.0 110.4 98.7 424.5 18.9 45.6 40.2 4.50 
2020 7 entry7005 8239230 72.0 112.0 89.2 378.5 16.1 52.5 64.1 4.50 
2020 6 entry6039 7400769 72.5 114.5 97.3 420.6 18.5 48.7 45.5 4.49 
2020 6 entry6005 8245477 70.8 110.5 95.1 359.8 18.5 46.5 39.2 4.49 
2020 10 entry10009 8242393 73.7 112.0 91.0 332.1 16.7 58.0 48.9 4.48 
2020 4 entry4044 8243684 81.5 115.6 92.6 370.0 19.0 56.4 42.0 4.48 
2020 8 entry8007 8240287 72.5 113.3 97.4 344.0 18.7 43.7 41.3 4.47 
2020 11 entry11023 8046597 70.5 110.0 88.7 376.6 18.3 49.1 50.3 4.46 

 

  



115 

Table A.12.  Weather data during wheat growing season 2015-16 in Jamalpur, Bangladesh 

November'2015         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 31 21 26 77 71 84 77.3  

2 29 21 25 84 61 84 76.3  

3 29 21 25 70 64 84 72.7  

4 29 21 25 70 61 84 71.7  

5 29 21 25 77 63 84 74.7  

6 32 18 25 77 65 84 75.3  

7 32 18 25 77 71 84 77.3  

8 31 18 24.5 69 59 77 68.3  

9 32 19 25.5 76 65 77 72.7  

10 32 18 25 77 58 77 70.7  

11 30 18 24 77 58 70 68.3  

12 30 18 24 70 58 70 66.0  

13 30 18 24 70 58 70 66.0  

14 31 18 24.5 73 84 70 75.7  

15 30 20 25 84 84 70 79.3  

1st fortnight 30.47 19.20 24.83 75.20 65.33 77.93 72.82  

16 30 20 25 84 64 70 72.7  

17 31 20 25.5 84 64 64 70.7  

18 30 19 24.5 76 64 70 70.0  

19 30 18 24 84 64 70 72.7  

20 31 17 24 84 64 84 77.3  

21 30 16 23 84 57 84 75.0  

22 31 16 23.5 84 58 83 75.0  

23 31 15 23 76 57 79 70.7  

24 31 15 23 75 63 69 69.0  

25 31 15 23 81 63 76 73.3  

26 30 15 22.5 81 63 66 70.0  

27 30 15 22.5 81 63 66 70.0  

28 29 15 22 81 63 66 70.0  

29 30 15 22.5 82 63 81 75.3  

30 30 17 23.5 90 63 81 78.0  

2nd fortnight 30.33 16.53 23.43 81.80 62.20 73.93 72.6  

Monthly 30.40 17.87 24.13 78.50 63.77 75.93 72.73  

December'2015         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 35 27 31 74 56 73 67.7  

2 35 26 30.5 86 56 73 71.7  

3 35 26 30.5 73 69 73 71.7  

4 35 25 30 79 58 73 70.0  

5 35 25 30 85 74 73 77.3  

6 35 25 30 79 68 78 75.0  

7 33 25 29 85 85 85 85.0  

8 33 25 29 78 85 85 82.7 5 

9 33 25 29 77 85 85 82.3  

10 33 25 29 84 85 85 84.7  

11 33 24 28.5 85 85 85 85.0  

12 33 24 28.5 77 67 78 74.0  

13 34 24 29 77 51 78 68.7  

14 32 25 28.5 70 73 70 71.0  

15 34 24 29 77 73 85 78.3  

1st fortnight 34.00 25.00 29.43 79.06 71.33 78.60 76.33 5.00 

16 34 24 29 85 73 85 81.0  

17 34 24 29 85 67 78 76.7  
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18 34 24 29 85 67 85 79.0  

19 33 23 28 85 61 85 77.0  

20 33 24 28.5 85 61 85 77.0  

21 34 24 29 85 68 78 77.0  

22 33 24 28.5 85 72 85 80.7  

23 33 24 28.5 85 67 85 79.0  

24 32 21 26.5 85 61 85 77.0  

25 32 20 26 84 61 85 76.7  

26 34 19 26.5 84 61 77 74.0  

27 33 19 26 77 55 77 69.7  

28 33 19 26 84 55 77 72.0  

29 33 19 26 84 61 77 74.0  

30 34 20 27 84 61 77 74.0  

31 32 22 27 77 61 84 74.0  

2nd fortnight 33.19 21.88 27.53 83.69 63.25 81.56 76.2 0.00 

Monthly 33.59 23.44 28.48 81.37 67.29 80.08 76.25 5.00 

January'2016         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 27 16 21.5 98 62 82 80.7  

2 27 13 20 98 56 82 78.7  

3 26 12 19 81 68 91 80.0  

4 27 12 19.5 90 68 82 80.0  

5 26 12 19 81 68 82 77.0  

6 27 12 19.5 80 68 82 76.7  

7 27 12 19.5 81 68 80 76.3  

8 26 12 19 90 68 90 82.7  

9 23 15 19 90 68 90 82.7  

10 26 11 18.5 90 59 98 82.3  

11 24 12 18 88 59 98 81.7  

12 24 11 17.5 94 59 98 83.7  

13 25 11 18 94 66 90 83.3  

14 25 11 18 89 66 90 81.7  

15 25 10 17.5 89 59 91 79.7  

1st fortnight 25.67 13.00 18.90 88.87 61.00 88.40 80.47  

16 25 10 17.5 89 59 91 79.7  

17 24 11 17.5 89 66 91 82.0  

18 25 11 18 89 59 91 79.7  

19 25 10 17.5 90 73 91 84.7  

20 18 26 22 94 90 90 91.3 15 

21 21 13 17 90 81 90 87.0  

22 21 11 16 90 81 98 89.7  

23 20 10 15 88 66 90 81.3  

24 19 10 14.5 88 80 98 88.7  

25 18 8 13 94 94 89 92.3  

26 20 9 14.5 93 80 89 87.3  

27 23 11 17 93 65 81 79.7  

28 25 11 18 89 73 81 81.0  

29 25 11 18 89 73 81 81.0  

30 24 13 18.5 89 73 81 81.0  

31 24 14 19 90 68 81 79.7  

2nd fortnight 22.31 11.81 17.06 90.25 73.81 88.31 84.1 15.00 

Monthly 23.99 12.41 17.98 89.56 67.41 88.36 82.30 15.00 

February'2016         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 23 12 17.5 90 50 57 65.7  

2 27 11 19 78 46 52 58.7  

3 29 12 20.5 64 55 60 59.7  



117 

4 29 14 21.5 98 44 44 62.0  

5 27 11 19 81 50 35 55.3  

6 27 11 19 80 35 66 60.3  

7 25 11 18 90 60 62 70.7  

8 26 13 19.5 90 68 62 73.3  

9 26 13 19.5 98 61 53 70.7  

10 26 12 19 81 61 53 65.0  

11 26 11 18.5 81 54 53 62.7  

12 26 11 18.5 57 59 53 56.3  

13 26 12 19 80 59 53 64.0  

14 27 13 20 80 47 53 60.0  

15 26 13 19.5 81 55 60 65.3  

1st fortnight 26.40 12.00 19.20 81.93 53.60 54.40 63.31 0.00 

16 29 13 21 65 51 61 59.0  

17 29 14 21.5 81 50 61 64.0  

18 29 13 21 81 63 64 69.3 2.5 

19 29 13 21 90 68 68 75.3 23 

20 29 18 23.5 90 84 84 86.0  

21 29 18 23.5 82 70 84 78.7  

22 28 17 22.5 82 64 84 76.7  

23 31 19 25 73 64 70 69.0  

24 30 20 25 82 59 64 68.3  

25 30 20 25 83 59 64 68.7  

26 30 20 25 91 64 64 73.0  

27 28 20 24 91 70 76 79.0 35.5 

28 27 21 24 91 68 74 77.7  

2nd fortnight 29.08 17.38 23.23 83.23 64.15 70.62 72.7 61.00 

Monthly 27.74 14.69 21.22 82.58 58.88 62.51 67.99 61.00 

March'2016         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 32 18 25 81 65 76 74.0  

2 32 18 25 75 65 76 72.0  

3 32 18 25 75 65 78 72.7  

4 32 19 25.5 75 65 78 72.7  

5 32 20 26 75 62 78 71.7  

6 33 18 25.5 62 62 76 66.7  

7 33 20 26.5 75 59 70 68.0  

8 33 21 27 75 59 70 68.0  

9 33 21 27 75 62 70 69.0  

10 33 21 27 56 74 59 63.0  

11 33 21 27 64 68 59 63.7  

12 35 21 28 64 68 59 63.7  

13 29 21 25 76 63 53 64.0  

14 27 19 23 76 56 53 61.7  

15 33 19 26 76 64 53 64.3  

1st fortnight 32.13 19.67 25.90 72.00 61.00 67.20 67.67  

16 33 17 25 69 59 70 66.0  

17 34 21 27.5 62 49 64 58.3  

18 34 21 27.5 76 49 64 63.0  

19 33 22 27.5 76 62 65 67.7  

20 33 22 27.5 77 62 73 70.7  

21 35 20 27.5 84 62 73 73.0  

22 34 17 25.5 70 62 61 64.3  

23 34 16 25 62 63 70 65.0  

24 34 16 25 70 63 70 67.7  

25 34 21 27.5 70 63 70 67.7  

26 34 23 28.5 70 63 70 67.7  

27 33 21 27 70 73 70 71.0  
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28 25 19 22 82 76 84 80.7 4 

29 31 22 26.5 84 71 84 79.7  

30 34 20 27 84 71 84 79.7 5 

2nd fortnight 33.00 19.87 26.43 73.73 63.20 71.47 69.5 9.00 

Monthly 32.57 19.77 26.17 72.87 62.10 69.33 68.57 9.00 

April'2016         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 31 18 24.5 66 73 91 76.7  

2 31 22 26.5 66 78 82 75.3  

3 29 26 27.5 81 83 81 81.7  

4 32 24 28 81 78 81 80.0  

5 33 23 28 82 79 62 74.3  

6 33 24 28.5 84 79 84 82.3  

7 34 24 29 77 69 77 74.3  

8 34 24 29 77 69 61 69.0  

9 36 26 31 77 69 61 69.0  

10 39 27 33 79 69 75 74.3  

11 37 27 32 78 69 80 75.7  

12 38 27 32.5 73 58 80 70.3  

13 37 27 32 73 58 73 68.0  

14 37 24 30.5 85 58 73 72.0  

15 33 24 28.5 76 61 73 70.0  

1st fortnight 34.27 24.47 29.37 77.00 61.00 88.40 74.20  

16 32 23 27.5 85 73 72 76.7  

17 33 23 28 84 73 70 75.7  

18 34 29 31.5 85 62 85 77.3  

19 36 25 30.5 85 68 85 79.3  

20 36 27 31.5 92 68 85 81.7  

21 38 27 32.5 79 63 85 75.7  

22 38 27 32.5 79 63 85 75.7  

23 39 28 33.5 79 63 85 75.7  

24 39 26 32.5 79 53 68 66.7  

25 37 26 31.5 68 53 78 66.3  

26 36 23 29.5 85 53 78 72.0  

27 36 23 29.5 85 53 78 72.0  

28 36 23 29.5 86 53 78 72.3 7.5 

29 36 23 29.5 86 53 78 72.3  

30 36 23 29.5 78 73 78 76.3  

2nd fortnight 36.13 25.07 30.60 82.33 61.60 79.20 74.4 7.50 

Monthly 35.20 24.77 29.98 79.67 61.30 83.80 74.29 7.50 
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Table A.13.  Weather data during wheat growing season 2016-17 in Jamalpur, Bangladesh 

Nov.2016         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 34 23 28.5 79 74 85 79.3  

2 34 23 28.5 79 74 74 75.7  

3 34 23 28.5 79 75 79 77.7  

4 30 22 26 84 85 92 87.0  

5 26 24 25 85 92 92 89.7  

6 29 19 24 84 85 84 84.3  

7 29 19 24 91 84 84 86.3  

8 29 19 24 91 61 85 79.0  

9 31 19 25 77 67 78 74.0  

10 31 19 25 77 67 78 74.0  

11 31 19 25 77 67 78 74.0  

12 31 19 25 77 67 78 74.0  

13 31 19 25 84 72 85 80.3  

14 31 18 24.5 84 72 85 80.3  

15 29 17 23 92 85 84 87.0  

1st fortnight 30.67 20.13 25.40 82.67 75.13 82.73 80.18  

16 31 16 23.5 92 71 84 82.3  

17 30 15 22.5 84 71 77 77.3  

18 30 15 22.5 84 71 84 79.7  

19 31 15 23 84 77 84 81.7  

20 29 15 22 83 87 84 84.7  

21 29 15 22 82 76 84 80.7  

22 24 15 19.5 82 76 83 80.3  

23 29 16 22.5 82 76 83 80.3  

24 29 16 22.5 82 76 83 80.3  

25 27 15 21 83 76 76 78.3  

26 29 16 22.5 83 84 83 83.3  

27 29 16 22.5 83 77 76 78.7  

28 29 16 22.5 76 70 76 74.0  

29 29 16 22.5 76 70 76 74.0  

30 30 17 23.5 91 59 76 75.3  

2nd fortnight 29.00 15.60 22.30 83.13 74.47 80.60 79.4  

Monthly 29.83 17.87 23.85 82.90 74.80 81.67 79.79  

Dec.'2016         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 0 17 8.5 91 59 77 75.7  

2 30 17 23.5 91 59 77 75.7  

3 30 17 23.5 91 59 77 75.7  

4 29 17 23 91 59 77 75.7  

5 29 17 23 83 76 84 81.0  

6 29 13 21 83 76 84 81.0  

7 30 13 21.5 74 70 84 76.0  

8 29 13 21 91 68 82 80.3  

9 28 13 20.5 82 83 82 82.3  

10 25 13 19 82 82 82 82.0  

11 27 14 20.5 82 84 84 83.3  

12 23 13 18 89 82 83 84.7  

13 25 13 19 89 82 82 84.3  

14 22 14 18 90 69 83 80.7  

15 27 14 20.5 98 63 83 81.3  

1st fortnight 25.53 14.53 20.03 87.13 71.40 81.40 79.98  

16 27 13 20 81 84 83 82.7  
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17 27 16 21.5 81 84 83 82.7  

18 27 15 21 82 77 83 80.7  

19 26 15 20.5 92 76 83 83.7  

20 26 13 19.5 82 76 83 80.3  

21 27 16 21.5 82 76 83 80.3  

22 26 13 19.5 82 76 83 80.3  

23 27 16 21.5 82 76 83 80.3  

24 29 15 22 82 76 83 80.3  

25 28 16 22 82 77 83 80.7  

26 25 13 19 91 84 83 86.0  

27 25 15 20 82 75 83 80.0  

28 25 14 19.5 90 92 83 88.3  

29 25 13 19 94 91 83 89.3  

30 25 13 19 89 91 83 87.7  

31 25 13 19 89 91 83 87.7  

2nd fortnight 26.25 14.31 20.28 85.19 81.38 83.00 83.2  

Monthly 25.89 14.42 20.16 86.16 76.39 82.20 81.58  

Jan'2017         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 27 14 20.5 89 92 91 90.7  

2 28 15 21.5 89 84 84 85.7  

3 25 14 19.5 89 84 83 85.3  

4 25 15 20 89 68 68 75.0  

5 21 13 17 90 68 83 80.3  

6 21 13 17 94 75 82 83.7  

7 26 11 18.5 94 75 83 84.0  

8 26 12 19 90 75 83 82.7  

9 26 13 19.5 90 61 68 73.0  

10 18 11 14.5 95 90 89 91.3 5 

11 23 11 17 94 68 75 79.0  

12 24 9 16.5 89 59 82 76.7  

13 20 7 13.5 90 59 66 71.7  

14 24 10 17 90 59 66 71.7  

15 23 9 16 90 59 66 71.7  

1st fortnight 23.80 11.80 17.80 90.80 71.40 77.93 80.16 5.00 

16 24 9 16.5 90 59 66 71.7  

17 24 9 16.5 90 59 66 71.7  

18 25 12 18.5 90 59 91 80.0  

19 25 12 18.5 89 59 91 79.7  

20 25 11 18 89 59 82 76.7  

21 27 12 19.5 89 59 82 76.7  

22 27 13 20 90 69 75 78.0  

23 27 13 20 80 69 75 74.7  

24 28 13 20.5 80 63 68 70.3  

25 30 12 21 82 70 68 73.3  

26 29 13 21 80 64 70 71.3  

27 29 13 21 80 64 76 73.3  

28 23 12 17.5 90 15 69 58.0 2 

29 24 13 18.5 95 75 69 79.7  

30 24 14 19 90 68 62 73.3  

31 25 12 18.5 90 68 70 76.0  

2nd fortnight 26.00 12.06 19.03 87.13 61.19 73.75 74.0 7.00 

Monthly 24.90 11.93 18.42 88.96 66.29 75.84 77.09 7.00 

February'2017         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 22 12 17 89 68 70 75.7  

2 22 12 17 94 69 70 77.7  
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3 21 12 16.5 89 62 62 71.0  

4 22 13 17.5 89 62 75 75.3  

5 31 13 22 89 58 75 74.0  

6 31 15 23 62 64 70 65.3  

7 29 13 21 83 64 70 72.3  

8 28 13 20.5 81 70 68 73.0  

9 28 13 20.5 81 70 68 73.0  

10 28 13 20.5 81 70 68 73.0  

11 29 13 21 81 70 68 73.0  

12 29 15 22 81 70 75 75.3  

13 29 15 22 83 64 70 72.3  

14 29 15 22 83 64 70 72.3  

15 29 16 22.5 83 64 70 72.3  

1st fortnight 27.13 13.53 20.33 83.27 65.93 69.93 73.04  

16 29 16 22.5 75 64 70 69.7  

17 29 15 22 73 58 70 67.0  

18 31 15 23 73 58 70 67.0  

19 31 17 24 82 58 70 70.0  

20 31 16 23.5 82 92 70 81.3  

21 31 14 22.5 82 85 70 79.0  

22 31 18 24.5 82 79 85 82.0 6.5 

23 31 18 24.5 76 79 85 80.0  

24 29 12 20.5 89 79 85 84.3  

25 28 13 20.5 89 64 69 74.0  

26 29 14 21.5 73 64 76 71.0  

27 29 15 22 73 63 69 68.3  

28 29 15 22 73 64 70 69.0  

2nd fortnight 29.85 15.23 22.54 78.62 69.77 73.77 74.1 6.50 

Monthly 28.49 14.38 21.44 80.94 67.85 71.85 73.55 6.50 

March'2017         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 31 19 25 81 65 70 72.0  

2 31 19 25 74 65 92 77.0  

3 31 19 25 74 62 66 67.3  

4 25 17 21 74 74 90 79.3  

5 26 18 22 95 95 81 90.3 1.5 

6 31 16 23.5 83 70 68 73.7  

7 31 16 23.5 91 59 85 78.3  

8 29 18 23.5 82 70 85 79.0  

9 28 18 23 82 84 85 83.7  

10 31 18 24.5 82 76 85 81.0  

11 23 18 20.5 91 91 91 91.0  

12 29 14 21.5 82 75 75 77.3  

13 31 15 23 74 57 68 66.3  

14 30 12 21 74 56 75 68.3  

15 30 13 21.5 73 64 62 66.3  

1st fortnight 29.13 16.50 22.90 80.80 71.40 77.93 76.73 1.50 

16 30 15 22.5 81 70 62 71.0  

17 32 19 25.5 66 70 75 70.3  

18 27 17 22 82 70 75 75.7  

19 31 18 24.5 84 71 75 76.7  

20 28 17 22.5 91 71 91 84.3 14 

21 29 18 23.5 91 70 91 84.0  

22 30 20 25 91 77 83 83.7  

23 29 24 26.5 91 83 91 88.3  

24 32 18 25 70 78 83 77.0  

25 29 20 24.5 91 77 92 86.7 30 

26 31 23 27 83 73 78 78.0  



122 

27 33 21 27 85 62 78 75.0  

28 29 23 26 95 92 84 90.3 31 

29 29 23 26 91 96 92 93.0 30 

30 32 24 28 96 79 70 81.7 18.75 

31 32 24 28 92 85 85 87.3  

2nd fortnight 30.19 20.25 25.22 86.25 76.50 81.56 81.4 123.75 

Monthly 29.66 18.38 24.06 83.53 73.95 79.75 79.09 125.25 

April'2017         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 33 24 28.5 92 85 86 87.7  

2 32 24 28 84 73 86 81.0  

3 32 21 26.5 84 74 79 79.0 35 

4 32 20 26 91 84 83 86.0  

5 25 20 22.5 81 95 91 89.0 4 

6 31 22 26.5 91 78 78 82.3  

7 32 22 27 91 78 78 82.3  

8 32 22 27 72 74 78 74.7  

9 31 21 26 85 81 85 83.7  

10 32 21 26.5 87 81 80 82.7  

11 33 21 27 85 81 80 82.0  

12 36 24 30 84 75 80 79.7  

13 36 24 30 85 69 80 78.0  

14 36 23 29.5 79 75 80 78.0  

15 35 23 29 92 74 80 82.0 65 

1st fortnight 32.53 22.28 27.33 85.53 78.47 81.60 81.87 104.00 

16 29 20 24.5 95 85 84 88.0  

17 34 20 27 95 86 84 88.3  

18 35 20 27.5 95 87 74 85.3  

19 32 20 26 95 92 91 92.7 16 

20 28 20 24 95 84 92 90.3 65 

21 26 20 23 95 95 92 94.0  

22 26 20 23 95 92 92 93.0 95 

23 27 20 23.5 95 96 96 95.7  

24 28 20 24 95 92 92 93.0 10 

25 31 20 25.5 95 92 84 90.3  

26 35 20 27.5 95 80 86 87.0  

27 36 20 28 95 81 80 85.3  

28 36 20 28 95 69 86 83.3  

29 33 20 26.5 95 69 86 83.3  

30 34 20 27 95 74 86 85.0  

2nd fortnight 31.33 20.00 25.67 95.00 84.93 87.00 89.0 186.00 

Monthly 31.93 21.14 26.50 90.27 81.70 84.30 85.42 290.00 
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Table A.14.  Weather data during wheat growing season 2017-18 in Jamalpur, Bangladesh 

November'2017         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 31 20 25.5 99 78 84 87.0  

2 31 19 25 76 78 88 80.7  

3 33 20 26.5 99 76 85 86.7  

4 33 21 27 78 79 85 80.7  

5 33 20 26.5 85 78 85 82.7  

6 32 19 25.5 84 78 85 82.3  

7 33 22 27.5 84 79 85 82.7  

8 33 21 27 85 79 85 83.0  

9 31 19 25 84 78 85 82.3  

10 32 20 26 84 78 85 82.3  

11 33 21 27 84 86 85 85.0  

12 33 22 27.5 84 73 85 80.7  

13 32 22 27 84 85 85 84.7  

14 31 20 25.5 84 73 85 80.7  

15 24 21 22.5 83 84 91 86.0  

1st fortnight 31.67 20.46 26.07 85.13 78.80 85.53 83.16  

16 30 22 26 84 84 92 86.7 95 

17 31 20 25.5 84 85 84 84.3  

18 31 21 26 84 85 85 84.7  

19 31 20 25.5 84 85 85 84.7  

20 30 21 25.5 84 85 85 84.7  

21 29 16 22.5 83 84 84 83.7  

22 27 15 21 82 84 84 83.3  

23 28 16 22 81 84 84 83.0  

24 29 16 22.5 82 84 84 83.3  

25 29 15 22 82 84 84 83.3  

26 27 16 21.5 82 84 84 83.3  

27 29 16 22.5 83 84 84 83.7  

28 27 16 21.5 83 84 84 83.7  

29 26 15 20.5 98 91 91 93.3  

30 27 15 21 98 92 84 91.3  

2nd fortnight 28.73 17.33 23.03 84.93 85.27 85.20 85.1 95 

Monthly 30.20 18.90 24.55 85.03 82.03 85.37 84.14 95 

December'2017         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 29 16 22.5 91 84 84 86.3  

2 28 15 21.5 82 84 84 83.3  

3 27 16 21.5 82 84 84 83.3  

4 28 14 21 82 84 84 83.3  

5 28 15 21.5 82 84 84 83.3  

6 27 15 21 91 84 83 86.0  

7 27 16 21.5 82 84 84 83.3  

8 27 17 22 82 84 84 83.3  

9 27 18 22.5 83 92 91 88.7 250 

10 24 21 22.5 83 92 91 88.7  

11 27 18 22.5 91 84 84 86.3  

12 29 17 23 91 85 84 86.7  

13 29 19 24 91 84 92 89.0  

14 28 18 23 91 84 84 86.3  

15 27 14 20.5 91 83 83 85.7  

1st fortnight 27.47 16.60 22.03 86.33 85.13 85.33 85.58 250.00 

16 27 12 19.5 82 92 91 88.3  
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17 23 16 19.5 98 91 91 93.3  

18 24 17 20.5 98 83 91 90.7  

19 25 16 20.5 91 91 91 91.0  

20 28 15 21.5 98 84 83 88.3  

21 28 15 21.5 98 84 84 88.7  

22 27 14 20.5 91 84 84 86.3  

23 28 15 21.5 91 84 83 86.0  

24 27 14 20.5 91 84 83 86.0  

25 28 14 21 81 84 83 82.7  

26 27 15 21 91 84 84 86.3  

27 28 14 21 98 84 83 88.3  

28 28 13 20.5 90 82 91 87.7  

29 28 14 21 98 84 82 88.0  

30 27 14 20.5 91 84 84 86.3  

31 27 14 20.5 98 84 83 88.3  

2nd fortnight 26.88 14.50 20.69 92.81 85.19 85.69 87.9  

Monthly 27.17 15.55 21.36 89.57 85.16 85.51 86.74 250.00 

Jan'2018         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 28 14 21 80 84 83 82.3  

2 22 12 17 89 81 91 87.0  

3 22 8 15 89 82 80 83.7  

4 23 10 16.5 88 81 80 83.0  

5 22 10 16 78 82 80 80.0  

6 20 9 14.5 89 82 81 84.0  

7 18 7 12.5 87 79 88 84.7  

8 18 6 12 77 80 89 82.0  

9 22 10 16 78 83 80 80.3  

10 22 9 15.5 88 80 78 82.0  

11 20 9 14.5 87 89 89 88.3  

12 20 8 14 87 79 89 85.0  

13 19 9 14 88 80 78 82.0  

14 17 10 13.5 88 80 89 85.7  

15 21 10 15.5 88 82 80 83.3  

1st fortnight 20.93 9.40 15.17 85.40 81.60 83.66 83.56  

16 20 10 15 88 41 80 69.7  

17 22 11 16.5 88 82 80 83.3  

18 22 12 17 88 83 81 84.0  

19 21 10 15.5 89 83 81 84.3  

20 23 8 15.5 78 82 80 80.0  

21 23 12 17.5 89 82 81 84.0  

22 19 13 27 89 83 81 27  

23 26 11 18.5 90 83 81 84.7  

24 19 13 16 90 76 82 82.7  

25 22 12 17 80 83 82 81.7  

26 22 10 16 79 84 81 81.3  

27 21 8 14.5 79 82 81 80.7  

28 23 9 16 89 82 81 84.0  

29 22 9 15.5 89 82 98 89.7  

30 23 12 17.5 89 82 98 89.7  

31 24 11 17.5 89 83 82 84.7  

2nd fortnight 22.00 10.69 17.03 86.44 79.56 83.13 79.5  

Monthly 21.47 10.04 16.10 85.92 80.58 83.39 81.51  

February'2018         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 24 11 17.5 90 83 82 85.0  

2 25 12 18.5 90 83 82 85.0  
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3 25 11 18 90 83 91 88.0  

4 25 12 18.5 98 84 83 88.3  

5 26 13 19.5 91 84 83 86.0  

6 27 13 20 98 84 82 88.0  

7 27 14 20.5 81 84 82 82.3  

8 27 13 20 81 76 83 80.0  

9 27 13 20 91 84 83 86.0  

10 28 12 20 98 84 83 88.3  

11 26 12 19 82 76 83 80.3  

12 28 15 21.5 91 86 83 86.7  

13 28 15 21.5 91 70 84 81.7  

14 26 13 19.5 91 84 83 86.0  

15 27 13 20 91 86 83 86.7  

1st fortnight 26.40 12.80 19.60 90.27 82.07 83.33 85.22  

16 28 14 21 82 77 84 81.0  

17 29 14 21.5 82 84 84 83.3  

18 29 15 22 82 85 84 83.7  

19 30 17 23.5 91 78 84 84.3  

20 30 15 22.5 91 78 76 81.7  

21 30 15 22.5 91 78 84 84.3  

22 31 16 23.5 91 77 84 84.0  

23 31 16 23.5 83 78 84 81.7  

24 31 16 23.5 84 78 84 82.0  

25 32 18 25 84 79 85 82.7  

26 32 18 25 82 77 84 81.0 3.2 

27 30 17 23.5 83 78 84 81.7  

28 30 17 23.5 91 72 77 80.0  

2nd fortnight 30.23 16.00 23.12 85.92 78.38 82.92 82.4 3.20 

Monthly 28.32 14.40 21.36 88.09 80.23 83.13 83.82 3.20 

March'2018         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 30 17 23.5 91 74 77 80.7  

2 31 18 24.5 85 78 84 82.3  

3 32 18 25 84 85 77 82.0  

4 34 21 27.5 84 79 78 80.3  

5 33 18 25.5 85 86 85 85.3  

6 33 16 24.5 84 78 85 82.3  

7 31 16 23.5 84 78 64 75.3  

8 32 16 24 76 73 71 73.3  

9 32 16 24 76 79 79 78.0  

10 33 16 24.5 84 79 78 80.3  

11 34 18 26 84 73 85 80.7  

12 34 19 26.5 84 79 78 80.3  

13 31 18 24.5 84 92 84 86.7  

14 31 20 25.5 84 92 84 86.7  

15 31 20 25.5 96 92 84 90.7  

1st fortnight 32.13 17.80 24.97 84.33 81.60 79.53 81.67  

16 32 20 26 84 79 84 82.3  

17 33 20 26.5 84 86 85 85.0  

18 34 19 26.5 84 79 78 80.3  

19 33 17 25 84 62 85 77.0  

20 34 18 26 84 73 85 80.7  

21 34 19 26.5 84 74 79 79.0  

22 35 19 27 84 80 79 27  

23 35 19 27 84 86 86 85.3  

24 36 21 28.5 85 92 85 87.3 9.5 

25 35 19 27 92 80 79 83.7  

26 34 21 27.5 92 85 85 87.3  
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27 32 21 26.5 92 92 92 92.0  

28 33 23 28 92 92 85 89.7  

29 34 18 26 84 86 79 83.0 17.45 

30 33 17 25 91 86 85 87.3 12 

31 33 16 24.5 89 85 85 86.3 22 

2nd fortnight 33.75 19.19 26.47 86.81 82.31 83.50 80.8 60.95 

Monthly 32.94 18.49 25.72 85.57 81.96 81.52 81.25 60.95 

April'2018         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 33 20 26.5 84 92 85 87.0  

2 32 22 27 85 92 85 87.3  

3 34 21 27.5 85 78 85 82.7  

4 34 23 28.5 85 80 92 85.7  

5 33 22 27.5 92 81 85 86.0 2.75 

6 35 22 28.5 92 85 85 87.3  

7 35 21 28 85 86 85 85.3  

8 31 21 26 85 86 85 85.3  

9 34 21 27.5 85 79 85 83.0 2.75 

10 34 22 28 78 73 85 78.7  

11 34 22 28 85 80 86 83.7  

12 34 22 28 77 67 65 69.7  

13 34 21 27.5 77 67 72 72.0  

14 34 21 27.5 71 70 78 73.0  

15 35 23 29 71 73 67 70.3 25 

1st fortnight 33.73 21.60 27.67 82.47 78.47 81.66 81.13 30.50 

16 35 21 28 72 62 67 67.0  

17 31 20 25.5 91 91 71 84.3 25.95 

18 34 22 28 77 67 70 71.3  

19 33 22 27.5 84 67 70 73.7 18.25 

20 32 21 26.5 84 67 70 73.7 7.6 

21 32 21 26.5 84 79 85 82.7  

22 31 23 27 84 79 78 80.3  

23 33 19 26 77 79 73 76.3  

24 34 21 27.5 78 80 79 79.0 27.25 

25 34 21 27.5 71 58 85 71.3 2.5 

26 34 21 27.5 77 61 84 74.0 0.25 

27 34 20 27 77 85 85 82.3 1.5 

28 34 21 27.5 85 73 84 80.7  

29 34 20 27 91 84 85 86.7 30 

30 34 21 27.5 91 91 91 91.0 76 

2nd fortnight 33.27 20.93 27.10 81.53 74.87 78.47 78.3 189.30 

Monthly 33.50 21.27 27.38 82.00 76.67 80.06 79.71 219.80 
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Table A.15.  Weather data during wheat growing season 2018-19 in Jamalpur, Bangladesh 

Nov'2018         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 34 22 28 78 73 85 78.7  

2 34 23 28.5 77 62 72 70.3  

3 32 23 27.5 92 73 72 79.0  

4 32 21 26.5 92 73 78 81.0  

5 31 21 26 92 78 85 85.0  

6 31 20 25.5 84 78 85 82.3  

7 30 18 24 91 85 92 89.3  

8 32 22 27 83 70 84 79.0  

9 31 20 25.5 76 78 56 70.0  

10 30 18 24 76 78 70 74.7  

11 31 17 24 83 72 70 75.0  

12 31 17 24 83 72 84 79.7  

13 30 17 23.5 83 70 76 76.3  

14 31 19 25 83 71 84 79.3  

15 30 16 23 84 78 84 82.0  

1st fortnight 31.33 19.60 25.47 83.80 74.07 78.47 78.78  

16 31 18 24.5 75 77 68 73.3  

17 30 16 23 69 77 68 71.3  

18 29 14 21.5 74 70 68 70.7  

19 29 15 22 90 63 68 73.7  

20 28 16 22 91 70 68 76.3  

21 28 16 22 82 68 81 77.0  

22 30 16 23 82 77 75 78.0  

23 31 17 24 82 75 73 76.7  

24 30 17 23.5 75 68 73 72.0  

25 31 15 23 82 70 82 78.0  

26 31 15 23 83 64 82 76.3  

27 31 15 23 82 70 83 78.3  

28 30 14 22 83 58 83 74.7  

29 30 16 23 82 65 84 77.0  

30 31 17 24 81 83 82 82.0  

2nd fortnight 30.00 15.80 22.90 80.87 70.33 75.87 75.7  

Monthly 30.67 17.70 24.18 82.33 72.20 77.17 77.23  

Dec'2018         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 30 15 22.5 91 62 81 78.0  

2 28 15 21.5 81 63 82 75.3  

3 29 14 21.5 82 63 82 75.7  

4 29 14 21.5 82 64 83 76.3  

5 26 16 21 82 68 83 77.7  

6 27 14 20.5 82 69 83 78.0  

7 27 15 21 82 70 83 78.3  

8 28 13 20.5 82 69 83 78.0  

9 27 12 19.5 82 69 83 78.0  

10 28 12 20 82 77 83 80.7  

11 29 13 21 82 76 82 80.0  

12 29 14 21.5 82 63 83 76.0  

13 28 13 20.5 82 70 83 78.3  

14 28 14 21 82 77 83 80.7  

15 29 13 21 82 70 83 78.3  

1st fortnight 28.13 13.80 20.97 82.83 68.67 82.67 77.96  

16 29 13 21 82 76 83 80.3  
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17 24 18 21 82 83 81 82.0  

18 21 15 18 90 90 90 90.0 15.5 

19 23 13 18 82 83 82 82.3  

20 24 13 18.5 90 83 81 84.7  

21 25 12 18.5 81 84 82 82.3  

22 26 12 27 81 76 82 27  

23 27 13 20 81 69 82 77.3  

24 22 13 17.5 81 68 82 77.0  

25 25 12 18.5 82 68 81 77.0  

26 24 10 17 89 75 81 81.7  

27 24 10 17 80 66 81 75.7  

28 25 10 17.5 80 66 73 73.0  

29 26 9 17.5 80 62 82 74.7  

30 27 8 17.5 81 76 82 79.7  

31 28 7 17.5 81 76 82 79.7  

2nd fortnight 25.00 11.75 18.88 82.69 75.06 81.69 76.5 0.00 

Monthly 26.57 12.78 19.92 82.76 71.87 82.18 77.24 15.50 

Jan'2019         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 26 10 18 79 68 74 73.7  

2 27 10 18.5 90 68 74 77.3  

3 25 10 17.5 80 76 82 79.3  

4 24 10 17 79 66 80 75.0  

5 26 10 18 79 75 81 78.3  

6 27 9 18 80 68 81 76.3  

7 28 11 19.5 80 68 73 73.7  

8 25 11 18 80 61 73 71.3  

9 25 10 17.5 80 68 73 73.7  

10 25 10 17.5 80 68 73 73.7  

11 26 11 18.5 78 66 71 71.7  

12 26 11 18.5 84 59 80 74.3  

13 27 12 19.5 84 69 80 77.7  

14 26 9 17.5 89 55 80 74.7  

15 24 10 17 80 62 73 71.7  

1st fortnight 25.80 9.40 18.03 81.47 66.45 76.53 74.82  

16 28 10 19 80 61 73 71.3  

17 26 12 19 90 62 74 75.3  

18 27 12 19.5 84 62 80 75.3  

19 26 12 19 80 62 80 74.0  

20 26 12 19 80 68 79 75.7  

21 28 11 19.5 80 63 75 72.7  

22 29 11 27 80 77 75 27  

23 28 12 20 81 70 75 75.3  

24 27 14 20.5 81 69 73 74.3  

25 28 14 21 80 68 81 76.3  

26 29 15 22 81 68 82 77.0  

27 30 15 22.5 82 64 74 73.3  

28 27 15 21 81 69 81 77.0  

29 22 10 16 80 68 81 76.3  

30 24 10 17 80 62 82 74.7  

31 28 13 20.5 80 76 81 79.0  

2nd fortnight 27.06 12.38 20.16 81.25 66.81 77.88 72.2  

Monthly 26.43 10.89 19.09 81.36 66.63 77.20 73.49  

February'2019         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 28 12 20 81 82 82 82.0  

2 27 12 19.5 91 68 81 80.0  
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3 27 13 20 90 74 80 81.3  

4 26 13 19.5 81 61 91 77.7  

5 26 12 19 90 75 91 85.3  

6 26 12 19 79 61 82 74.0  

7 26 12 19 90 63 82 78.3  

8 26 13 19.5 89 91 80 86.7 1.5 

9 27 15 21 89 90 88 89.0 1 

10 23 12 17.5 89 74 73 78.7  

11 27 15 21 90 68 82 80.0  

12 27 16 21.5 81 63 74 72.7  

13 29 17 23 82 70 66 72.7  

14 28 18 23 81 77 74 77.3  

15 29 18 23.5 81 76 91 82.7  

1st fortnight 26.80 13.71 20.40 85.6 72.87 81.13 79.9 2.50 

16 29 17 23 91 56 66 71.0  

17 26 14 20 81 60 73 71.3  

18 27 13 20 81 69 74 74.7  

19 29 16 22.5 82 63 82 75.7  

20 28 16 22 91 84 82 85.7  

21 29 15 22 81 77 74 77.3  

22 30 15 22.5 82 76 73 77.0  

23 31 15 23 81 68 82 77.0  

24 29 15 22 74 64 83 73.7  

25 29 17 23 75 63 75 71.0  

26 22 19 20.5 82 63 75 73.3  

27 23 17 20 91 91 90 90.7 19.75 

28 26 14 20 91 91 81 87.7  

2nd fortnight 27.54 15.62 21.58 83.31 71.15 77.69 77.4 19.75 

Monthly 27.17 14.66 20.99 84.46 72.01 79.41 78.6 22.25 

March, 2019         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 27 11 19 82 69 82 77.7  

2 27 10 18.5 82 62 82 75.3  

3 27 15 21 82 62 75 73.0  

4 28 18 23 91 63 75 76.3  

5 27 19 23 91 76 82 83.0 9.75 

6 28 16 22 82 77 75 78.0  

7 28 17 22.5 82 82 75 79.7  

8 28 19 23.5 66 76 75 72.3  

9 29 19 24 83 70 75 76.0  

10 28 18 23 81 76 83 80.0  

11 32 17 24.5 74 78 76 76.0  

12 34 20 27 87 61 77 75.0  

13 35 18 26.5 77 62 65 68.0  

14 29 19 24 76 51 65 64.0  

15 30 20 25 92 67 70 76.3  

1st fortnight 29.13 9.40 23.10 81.87 66.45 76.53 75.38 9.75 

16 30 20 25 84 72 76 77.3  

17 29 20 24.5 84 78 84 82.0  

18 32 20 26 76 77 70 74.3  

19 33 18 25.5 76 61 64 67.0  

20 35 18 26.5 76 73 71 73.3  

21 32 17 24.5 91 62 71 74.7  

22 34 18 27 82 72 75 27 5 

23 35 17 26 83 73 85 80.3  

24 36 17 26.5 77 46 78 67.0  

25 31 19 25 70 51 72 64.3  

26 26 20 23 91 85 84 86.7  
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27 31 20 25.5 76 53 57 62.0  

28 32 20 26 76 62 65 67.7  

29 34 19 26.5 76 61 77 71.3  

30 35 20 27.5 84 59 70 71.0  

31 31 17 24 92 78 83 84.3  

2nd fortnight 32.25 18.75 25.56 80.88 66.44 73.88 70.6 5.00 

Monthly 30.69 14.08 24.33 81.37 66.44 75.20 73.01 14.75 

April, 2019         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 30 22 26 82 71 70 74.3 46.75 

2 31 18 24.5 83 74 92 83.0 2 

3 31 21 26 75 71 83 76.3  

4 30 18 24 91 78 84 84.3  

5 30 19 24.5 91 77 83 83.7  

6 30 19 24.5 76 83 84 81.0 30 

7 31 20 25.5 84 78 77 79.7  

8 30 19 24.5 84 84 77 81.7 11.5 

9 29 18 23.5 91 70 81 80.7 13.5 

10 32 22 27 84 65 70 73.0  

11 32 22 27 77 73 72 74.0  

12 31 21 26 85 73 85 81.0 33 

13 32 21 26.5 92 86 85 87.7  

14 31 22 26.5 85 79 92 85.3  

15 32 24 28 83 73 84 80.0  

1st fortnight 30.80 19.60 25.60 84.20 78.47 81.66 80.38 136.75 

16 34 21 27.5 85 80 85 83.3 12.5 

17 34 22 28 85 73 85 81.0 15.75 

18 34 22 28 70 72 85 75.7  

19 35 21 28 77 73 77 75.7  

20 36 21 28.5 76 73 77 75.3  

21 34 22 28 77 74 85 78.7  

22 35 23 29 77 85 84 82.0 15.25 

23 37 24 30.5 77 74 79 76.7  

24 38 26 32 78 63 68 69.7  

25 37 24 30.5 79 64 74 72.3  

26 38 24 31 78 68 73 73.0  

27 39 24 31.5 84 73 78 78.3 39.25 

28 32 24 28 85 73 78 78.7 1 

29 36 26 31 85 69 86 80.0  

30 35 25 30 92 74 79 81.7 2.25 

2nd fortnight 35.60 23.27 29.43 80.33 72.53 79.53 77.5 86.00 

Monthly 33.20 21.43 27.52 82.27 75.50 80.60 78.92 222.75 
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Table A.16.  Weather data during wheat growing season 2019-20 in Jamalpur, Bangladesh 

November, 2019         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 32 22 27 84 78 77 79.7  

2 33 21 27 85 78 85 82.7  

3 31 21 26 85 78 85 82.7  

4 33 21 27 84 72 84 80.0  

5 28 21 24.5 84 78 85 82.3  

6 32 19 25.5 84 78 84 82.0  

7 28 21 24.5 83 72 84 79.7  

8 28 22 25 83 77 84 81.3  

9 27 21 24 83 77 84 81.3 4.25 

10 30 20 25 91 77 84 84.0 3 

11 29 20 24.5 84 77 84 81.7  

12 30 20 25 84 77 84 81.7  

13 32 20 26 84 78 85 82.3  

14 31 20 25.5 84 78 85 82.3  

15 32 19 25.5 84 78 85 82.3  

1st fortnight 30.40 20.53 25.47 84.40 78.47 81.66 81.73 7.25 

16 32 19 25.5 84 78 84 82.0  

17 30 18 24 84 71 84 79.7  

18 30 18 24 83 77 84 81.3  

19 29 16 22.5 83 77 84 81.3  

20 29 18 23.5 82 70 84 78.7  

21 29 17 23 91 91 84 88.7  

22 29 16 22.5 91 77 83 83.7  

23 30 17 23.5 83 77 84 81.3  

24 29 17 23 83 70 92 81.7  

25 29 17 23 83 70 84 79.0  

26 30 17 23.5 91 70 92 84.3  

27 30 17 23.5 83 77 92 84.0  

28 30 17 23.5 83 78 76 79.0  

29 30 16 23 83 78 84 81.7  

30 31 16 23.5 82 70 83 78.3  

2nd fortnight 29.80 17.07 23.43 84.60 75.40 84.93 81.6 0.00 

Monthly 30.10 18.80 24.45 84.50 76.94 83.30 81.69 7.25 

December, 2019         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 28 14 21 91 70 83 81.3  

2 28 14 21 91 69 83 81.0  

3 27 15 21 91 68 82 80.3  

4 28 13 20.5 91 69 82 80.7  

5 28 14 21 82 64 83 76.3  

6 29 13 21 91 70 83 81.3  

7 30 13 21.5 81 70 83 78.0  

8 28 14 21 90 69 82 80.3  

9 28 14 21 81 69 82 77.3  

10 26 13 19.5 81 68 82 77.0  

11 25 13 19 81 68 82 77.0  

12 26 13 19.5 81 68 82 77.0  

13 26 13 19.5 81 68 81 76.7  

14 27 13 20 90 62 81 77.7  

15 27 14 20.5 90 68 82 80.0  

1st fortnight 27.40 13.53 20.47 86.20 66.45 76.53 78.80  

16 26 14 20 90 68 82 80.0  
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17 25 13 19 90 82 81 84.3  

18 23 13 18 90 81 80 83.7  

19 23 12 17.5 90 81 80 83.7  

20 19 12 15.5 90 81 80 83.7  

21 18 12 15 89 90 90 89.7  

22 18 12 27 89 80 89 27  

23 21 12 16.5 89 81 80 83.3  

24 21 10 15.5 89 90 90 89.7  

25 21 9 15 89 90 89 89.3  

26 22 10 16 89 82 81 84.0  

27 23 10 16.5 89 81 89 86.3  

28 23 11 17 89 81 80 83.3  

29 25 8 16.5 89 73 81 81.0  

30 26 11 18.5 89 60 73 74.0  

31 27 13 20 80 61 82 74.3  

2nd fortnight 22.56 11.38 17.72 88.75 78.88 82.94 79.8  

Monthly 24.98 12.45 19.09 87.48 72.66 79.73 79.32  

January, 2020         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 28 16 22 81 62 75 72.7  

2 28 14 21 82 69 83 78.0  

3 28 15 21.5 90 60 82 77.3 8.75 

4 29 14 21.5 81 61 62 68.0  

5 23 10 16.5 90 82 90 87.3  

6 20 10 15 89 81 79 83.0  

7 19 11 15 88 80 89 85.7  

8 21 13 17 89 82 90 87.0  

9 21 13 17 90 82 90 87.3  

10 22 12 17 89 82 80 83.7  

11 22 12 17 89 81 90 86.7  

12 21 11 16 89 81 80 83.3  

13 23 12 17.5 90 74 90 84.7  

14 23 13 18 89 74 81 81.3  

15 26 13 19.5 90 75 81 82.0  

1st fortnight 23.60 12.60 18.10 87.73 66.45 76.53 81.87 8.75 

16 25 13 19 90 64 73 75.7  

17 26 12 19 81 68 81 76.7  

18 27 12 19.5 81 75 81 79.0  

19 22 13 17.5 91 90 90 90.3  

20 21 10 15.5 89 73 80 80.7  

21 23 9 16 89 73 80 80.7  

22 21 8 27 88 73 80 27  

23 22 9 15.5 89 66 81 78.7  

24 23 9 16 89 66 81 78.7  

25 24 8 16 89 62 81 77.3  

26 23 11 17 89 66 80 78.3  

27 22 10 16 89 73 81 81.0  

28 23 12 17.5 89 66 73 76.0  

29 23 16 19.5 90 68 81 79.7  

30 23 12 17.5 81 68 82 77.0  

31 24 11 17.5 89 74 81 81.3  

2nd fortnight 23.25 10.94 17.88 87.69 70.31 80.38 76.1 0.00 

Monthly 23.43 11.77 17.99 87.71 68.38 78.45 79.00 8.75 

February'2020         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 24 9 16.5 89 81 80 83.3  

2 24 9 16.5 79 74 81 78.0  
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3 23 8 15.5 79 75 81 78.3  

4 24 10 17 79 62 72 71.0  

5 25 9 17 80 59 72 70.3  

6 24 10 17 80 53 73 68.7  

7 25 10 17.5 80 60 81 73.7  

8 26 9 17.5 80 59 81 73.3  

9 24 11 17.5 80 54 73 69.0  

10 22 10 16 71 53 73 65.7  

11 26 11 18.5 81 61 81 74.3  

12 26 10 18 80 61 81 74.0  

13 25 11 18 80 53 81 71.3  

14 25 10 17.5 90 61 81 77.3  

15 26 11 18.5 90 59 81 76.7  

1st fortnight 24.60 9.87 17.23 81.20 66.45 76.53 73.67 0.00 

16 28 14 21 81 62 82 75.0  

17 27 14 20.5 91 61 81 77.7  

18 28 14 21 91 62 82 78.3  

19 29 14 21.5 91 56 74 73.7  

20 29 14 21.5 82 64 75 73.7  

21 30 14 22 91 63 82 78.7  

22 31 14 22.5 91 70 75 27  

23 30 15 22.5 91 70 82 81.0  

24 31 14 22.5 91 82 82 85.0  

25 23 16 19.5 91 91 91 91.0 1.75 

26 28 15 21.5 82 68 82 77.3  

27 29 14 21.5 81 61 82 74.7  

28 30 14 22 81 68 82 77.0  

29 31 14 22.5 91 69 82 80.7  

2nd fortnight 31.00 14.29 21.50 87.33 67.03 80.72 75.1 1.75 

Monthly 27.80 12.08 19.37 88.66 64.01 80.86 76.20 1.75 

March, 2020         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 32 16 24 91 53 75 73.0  

2 30 17 23.5 83 58 75 72.0  

3 24 18 21 83 59 68 70.0  

4 30 17 23.5 75 52 68 65.0 2.5 

5 28 17 22.5 75 52 68 65.0  

6 28 18 23 81 82 81 81.3 14.25 

7 30 18 24 81 68 82 77.0  

8 29 15 22 91 70 75 78.7  

9 29 15 22 75 52 75 67.3  

10 30 15 22.5 62 64 76 67.3  

11 31 15 23 75 52 75 67.3  

12 31 16 23.5 83 53 76 70.7  

13 32 17 24.5 83 53 76 70.7  

14 33 18 25.5 75 76 83 78.0  

15 27 17 22 75 75 82 77.3  

1st fortnight 29.60 16.15 23.10 79.20 66.45 76.53 72.04 16.75 

16 29 17 23 76 47 68 63.7  

17 31 17 24 76 53 76 68.3  

18 31 16 23.5 68 65 76 69.7  

19 32 16 24 76 72 76 74.7  

20 34 17 25.5 83 78 84 81.7  

21 34 17 25.5 83 72 84 79.7  

22 29 18 27 82 76 83 27  

23 31 18 24.5 76 78 84 79.3  

24 32 18 25 76 78 84 79.3  

25 32 18 25 76 73 77 75.3  
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26 32 17 24.5 85 79 85 83.0  

27 34 17 25.5 76 79 85 80.0  

28 33 18 25.5 84 86 85 85.0  

29 34 18 26 85 74 85 81.3  

30 35 18 26.5 84 68 85 79.0  

31 34 17 25.5 84 68 85 79.0  

2nd fortnight 32.31 17.31 25.03 79.38 71.63 81.38 74.1 0.00 

Monthly 30.96 16.73 24.07 79.29 69.04 78.95 73.08 16.75 

April, 2020         

 Temp   RH(%)    Rainfall (mm) 

Days Max Min Mean Morning Noon Afternon Mean  

1 34 18 26 77 74 85 78.7  

2 35 17 26 85 74 85 81.3  

3 35 18 26.5 85 74 85 81.3  

4 36 18 27 77 74 78 76.3  

5 35 18 26.5 77 63 78 72.7  

6 36 17 26.5 78 68 78 74.7  

7 36 18 27 78 68 78 74.7  

8 36 18 27 78 68 78 74.7  

9 37 18 27.5 78 63 85 75.3  

10 37 18 27.5 85 63 85 77.7  

11 37 18 27.5 85 63 78 75.3 8.75 

12 36 17 26.5 85 74 78 79.0 2 

13 35 17 26 85 73 85 81.0  

14 35 23 29 84 73 85 80.7  

15 34 22 28 84 91 83 86.0 35.25 

1st fortnight 35.60 19.60 26.97 81.40 78.47 81.66 77.96 46.00 

16 33 21 27 84 73 85 80.7  

17 33 22 27.5 92 79 85 85.3  

18 31 20 25.5 92 85 84 87.0  

19 31 20 25.5 92 85 85 87.3 2.25 

20 32 21 26.5 92 85 92 89.7 3 

21 32 21 26.5 92 79 85 85.3  

22 33 20 26.5 85 79 85 83.0  

23 32 21 26.5 85 79 85 83.0  

24 32 20 26 92 78 84 84.7 0.75 

25 32 21 26.5 84 85 85 84.7  

26 33 21 27 85 79 85 83.0  

27 34 22 28 85 79 85 83.0  

28 29 21 25 92 85 84 87.0 12.5 

29 33 23 28 92 85 85 87.3  

30 32 22 27 85 73 85 81.0  

2nd fortnight 32.13 21.07 26.60 88.60 80.53 85.27 84.8 18.50 

Monthly 33.87 20.33 26.78 85.00 79.50 83.46 81.38 64.50 
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Figure B.1.  A panel of Manhattan plots showing marker-trait associations from a GWAS. 

A Bonferroni ∝ level of 0.05 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure B.2.  A panel of Manhattan plots showing marker-trait associations from a GWAS. 

A Bonferroni ∝ level of 0.05 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure B.3.  A panel of Manhattan plot showing marker-trait associations from a GWAS. A 

Bonferroni ∝ level of 0.05 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure B.4.  A panel of Manhattan plot showing marker-trait associations from a GWAS. A 

Bonferroni ∝ level of 0.20 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure B.5.  A panel of Manhattan plot showing marker-trait associations from a GWAS. A 

Bonferroni ∝ level of 0.20 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure B.6.  A panel of Manhattan plot showing marker-trait associations from a GWAS. A 

Bonferroni ∝ level of 0.20 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure B.7.  A panel of Manhattan plot showing marker-trait associations from a GWAS. A 

Bonferroni ∝ level of 0.20 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure B.8.  A panel of Manhattan plot showing marker-trait associations from a GWAS. A 

Bonferroni ∝ level of 0.20 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Figure B.9.  A panel of Manhattan plot showing marker-trait associations from a GWAS. A 

Bonferroni ∝ level of 0.20 was used to correct for multiple testing and identify significant 

markers is shown with horizontal line. The title of the Manhattan plot indicates the trait. 
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Appendix C - Supplementary Material Chapter 4 

 

 

Figure C.1.  Distribution of the traits across trials and years 
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Table C.1.  Mean and SE of different traits across trials. 

year trait mean SE 

2016 DAYSMT 103.8 0.09 

2017 DAYSMT 109.2 0.14 

2018 DAYSMT 110.5 0.13 

2019 DAYSMT 115.2 0.15 

2020 DAYSMT 111 0.14 

2016 DTHD 70.1 0.11 

2017 DTHD 69.8 0.2 

2018 DTHD 75.1 0.2 

2019 DTHD 77.9 0.16 

2020 DTHD 73.2 0.17 

2016 GrnSpk 46.7 0.3 

2017 GrnSpk 49.9 0.28 

2018 GrnSpk 50.6 0.3 

2019 GrnSpk 49.7 0.27 

2020 GrnSpk 51.3 0.29 

2016 GRYLD 2.4 0.02 

2017 GRYLD 3.1 0.03 

2018 GRYLD 2.6 0.02 

2019 GRYLD 3.1 0.03 

2020 GRYLD 3.5 0.03 

2016 PH 97 0.21 

2017 PH 100.8 0.21 

2018 PH 89.3 0.2 

2019 PH 94.5 0.23 

2020 PH 93.4 0.18 

2016 SN 258.3 1.77 

2017 SN 317.5 2.27 

2018 SN 229.9 1.81 

2019 SN 166.4 1.4 

2020 SN 329.2 1.99 

2016 SplN 17 0.07 

2017 SplN 18.1 0.07 

2018 SplN 18.4 0.08 

2019 SplN 18.7 0.07 

2020 SplN 18.1 0.08 

2016 TGW 34.4 0.22 

2017 TGW 36 0.18 

2018 TGW 41.6 0.19 

2019 TGW 44.3 0.19 

2020 TGW 44.6 0.25 

 


