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ABSTRACT

Integer Programming (IP) problems are a common type of optimization problem used

to solve numerous real world problems. IPs can require exponential computational effort to

solve using the branch and bound technique. A popular method to improve solution times

is to generate valid inequalities that serve as cutting planes.

This dissertation introduces a new category of cutting planes for general IPs called

inequality merging. The inequality merging technique combines two or more low dimensional

inequalities, yielding valid inequalities of potentially higher dimension. The dissertation

describes several theoretical results of merged inequalities.

This research applies merging inequalities to a frequently used class of IPs called mul-

tiple knapsack (MK) problems. Theoretical results related to merging cover inequalities

are presented. These results include: conditions for validity, conditions for facet defining

inequalities, merging simultaneously over multiple cover inequalities, sequentially merging

several cover inequalities on multiple variables, and algorithms that facilitate the develop-

ment of merged inequalities. Examples demonstrate each of the theoretical discoveries.

A computational study experiments with inequality merging techniques using bench-

mark MK instances. This computational study provides recommendations for implement-

ing merged inequalities, which results in an average decrease of about 9% in computational

time for both small and large MK instances. The research validates the effectiveness of

using merged inequalities for MK problems and motivates substantial theoretical and com-

putational extensions as future research.
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Chapter 1

Introduction

Operations research techniques (analytics) have become the norm for twenty-first century

leaders in both the public and private sectors [51]. Reduced budgets, limited resources,

and increased global competition necessitate optimal resource management. Furthermore,

modern leaders must make their decisions very rapidly in order to keep up with competitors

and changing circumstances. These requirements motivate the continued development and

refinement of optimization techniques that may be tailored to solve many such problems.

Integer programming (IP) is a form of discrete optimization where some or all of the

decision variables are restricted to integer values. One popular variant of modeling an IP

is known as the knapsack problem (KP), and modeling a KP with two or more constraints

is known as the multiple knapsack (MK) problem. To assist the solution process for these

problems, a common strategy is to further constrain the problem by adding new inequali-

ties that separate the linear relaxation of the IP from the convex hull of potential integer

solutions. Such inequalities are known as cutting planes.

Many of the most challenging real-world optimization problems contain integer program-

ming components. In addition to general IP formulations, many of these problems include

KP and MK formulations. Consequently, improved solution techniques for IPs, KPs, and
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MKs are the topic of a vast body of literature demonstrating both theoretical extensions

and many modern applications.

Some examples of general theoretical advancements include exact methods to solve the

KP by Dudzinski and Walukiewicz [29] and extensions to the nonlinear KP by Hochbaum

[47]. The development of new types of cutting planes may be seen in recent papers by

Hooker [48] and Chu and Xia [20]. Inspiration for new theory is often motivated by applied

problems, and this process begins with innovative modeling strategies. A recent text by

Williams titled Model Building in Mathematical Programming [73] offers general insights

to model and solve IPs and other optimization problems.

Integer programming formulations serve as a natural structure for many modern prob-

lems. A survey of recent papers highlights a wide variety of applications, and a few of

the topics are described in greater detail. Three broad categories of applications include

allocation of resources, logistics and transportation problems, and scheduling problems.

Bartlett, et. al. developed an application of the knapsack problem that may be used

to allocate resources in a competitive environment [13]. Two uses highlighted in this paper

include allocation of communication bandwidth for a myriad of purposes and allocating

multiprocessor resources among numerous computer stations. Melachrinoudis and Kozanidis

demonstrated the usefulness of IP as a tool to determine allocation of funds for highway

safety improvements [59].

The logistics industry experiences significant benefit from optimization, and IP serves as

a natural modeling structure for many transportation problems. The fleet assignment prob-

lem is solved as a large-scale IP by Hane, et. al. in [43]. Trick considers an IP formulation

to optimize a particular transportation problem in [71]. Pajunas, et. al. used large-scale IP

in a decision-support tool that aids the United States Postal Service by identifying cost sav-

ings opportunities in the surface transportation network [64]. IP also serves as a framework

employed by Demirel and Gökeen in [24] for the relatively new discipline of reverse logistics.
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Such reverse-flow modeling may incorporate ecological factors, government regulation, and

socially responsible environmental concerns.

Scheduling problems are a third area for important applications of integer programming.

Dowsland and Thompson use the knapsack framework of IP to model nurse scheduling at a

large hospital [28]. Project scheduling is an important aspect of optimized manufacturing,

and Seda demonstrates a multiple knapsack model to solve this problem in [67]. Hansen and

Lidén use an IP formulation to schedule airline cabin crews for a large air-transportation

provider in [44]. Easton, et. al. also used IP to facilitate sports scheduling and provide

solutions to the traveling tournament problem in [30].

1.1 Research Motivation

While many continuous optimization problems can be solved very quickly, there is no known

polynomial time algorithm for the optimal solution to integer programming problems unless

P = NP . The branch and bound technique finds the optimal solution to IP problems in

exponential time, but that is not satisfactory in many practical instances. Consequently,

researchers have studied a variety of techniques to improve the solution time for IP problems.

Slow computational times for these integer programming problems limit the decision-

maker’s ability to use the results of the IP in a fast-paced global environment. Conse-

quently, any method that yields faster solution times for integer programming problems has

the potential to significantly improve the efficient and effective decision-making by modern

leaders.

The research objective of this dissertation is to advance the discipline of cutting plane

design and implementation in IP problems. This work develops and demonstrates the the-

oretical foundations for generating a new category of valid cutting plane inequalities for IP

problems through inequality merging. Inequality merging yields a new class of valid inequal-
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ities that are fundamentally different from other known cutting planes, and the technique

is shown to reduce the solution times of MK instances.

A significant accomplishment of this research is that it enables other scholars to extend

inequality merging to a variety of integer programming problems. It is likely that merged

inequalities of various forms fundamentally improve the understanding of solution techniques

for IPs. Furthermore, inequality merging may become widely used helping practitioners solve

complex IP problems more rapidly. These solutions should benefit companies, governments,

and society alike, enabling twenty-first century leaders to make better decisions.

1.2 Research Contributions

Inequality merging is a new method to generate cutting planes for IP problems with a wide

variety of natural extensions. The dissertation provides the theoretical foundations necessary

to understand and implement the technique. The implementation of inequality merging

is facilitated through several algorithms in this dissertation. A thorough computational

study demonstrates that inequality merging reduces the solution times for benchmark MK

instances. A variety of theoretical extensions are considered that may improve solution

times under certain conditions.

The research contained in this dissertation answers the following fundamental questions:

i. Does inequality merging advance the discipline associated with using cutting planes

to solve integer programming problems?

ii. What algorithms are recommended or required to implement inequality merging in a

computer program?

iii. What are the best implementation strategies for inequality merging, and does the

technique facilitate faster computation and solution times for integer programming
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problems when these strategies are followed?

iv. How can the initial theory of inequality merging be extended to new varieties of merged

inequalities?

A more complete discussion of each research question is contained in the paragraphs below.

1.2.1 Theoretical Contributions Developing a New Category of

Cutting Planes

The dissertation demonstrates that inequality merging is a theoretically proven concept

that yields valid, higher dimensional cutting plane inequalities by merging two or more

lower dimensional inequalities. This could be viewed as lifting one valid inequality into

another valid inequality. The resulting merged inequality is theoretically stronger than the

original inequalities, and it may be facet defining under some conditions.

The dissertation argues that inequality merging is a new approach for creating cutting

planes in integer programming problems that is fundamentally different from any other

known techniques. As such, the proposed methodology advances the understanding of using

multiple cutting planes in an elegant and potentially beneficial manner for integer program-

ming practioners. The dissertation provides a detailed treatment of two natural extensions

to the basic inequality merging technique, thus continuing to advance the discipline as new

inequality merging theory is developed and demonstrated.

1.2.2 Algorithms

Inequality merging is a new method to generate valid cutting planes for IP problems. Thus,

the construction of merged inequalities requires algorithms that support the new theory.

Several algorithms are presented that construct, strengthen and verify merged inequalities.

The algorithms presented in this dissertation include the following contributions.
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i. The Merging Over a Cover Inequality Algorithm (MOCIA) verifies the validity of a

merged cover inequality.

ii. The Reducing ψp Algorithm is used to construct the initial (host) inequality before

merging may occur.

iii. The Donor Coefficient Strengthening Algorithm (DCSA) may be used to strengthen

coefficients attained in a merged inequality.

iv. The Sequential Cover Merging Algorithm (SCMA) may be used to construct a specific

type of merged inequality, considered in depth as a theoretical extension of basic

inequality merging.

1.2.3 Implementation Techniques and Computational Study

A computer program was developed that constructs merged inequalities for testing on

benchmark MK problems. The dissertation considers several implementation strategies for

the construction of merged cover inequalities. These include the choice of several possible

pseudo-costing techniques, how many merged inequalities to generate, a possible decision

to overlap rows when multiple cuts are added, and a possible decision to strengthen merged

coefficients. A detailed examination of these variables is considered in the computational

study, yielding recommended implementation strategies for MK instances.

A thorough computational study demonstrates the benefits of inequality merging when

applied to benchmark MK instances. Inequality merging is tested using the current CPLEX

solver [21] as the baseline for comparing computational performance with and without the

generation of merged cutting planes. The program adds these new cutting planes to the

constraint matrix in a preprocessing step. Inequality merging is shown to reduce compu-

tational effort by about 9% on both small and larger MK instances, when compared to

baseline CPLEX settings while using the recommended implementation strategies.
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1.2.4 Theoretical Extensions

Two theoretical extensions are considered in detail in this dissertation. The first extension

merges information from multiple (donor) inequalities into the original (host) inequality si-

multaneously. Theoretical conditions are developed that support validity, and the extension

is demonstrated in an example problem. This extension is included as an optional imple-

mentation strategy in the computational study. In some instances, this theoretical extension

yields even shorter computational times than the baseline inequality merging technique.

The second theoretical extension is the concept of sequentially merging multiple inequal-

ities on several different variables yielding a single merged inequality. The Sequential Cover

Merging Algorithm constructs merged inequalities of this type, and sufficient conditions

are shown that guarantee validity. The power of this theoretical extension is shown in an

example problem, since merged inequalities of this type have higher numbers of variables

with non-zero coefficients.

It is likely that extensions to the baseline theory may be most beneficial when tailored

to specific classes of IP problems. Additional topics are offered as promising areas for future

research.

1.3 Outline

Chapter 2 provides an overview of background information that is important to under-

stand the theoretical contributions contained in this dissertation. Topics covered in chapter

2 include integer programming, polyhedral theory, knapsack problems, classic cover cuts,

and lifting. Treatment of these topics includes both formal definitions and examples that

facilitate a better understanding of some concepts.

Chapter 3 introduces the general, theoretical foundations of inequality merging. The

technique combines two or more low-dimensional inequalities potentially yielding a valid
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inequality of higher dimension. The dissertation offers theoretical conditions for validity

of the merged inequality and shows that the validity of a merged cover inequality may

be verified in quadratic time. Conditions under which a valid merged inequality is facet

defining are also presented. The section concludes with an example that demonstrates these

concepts and argues that these inequalities are not a simple extension from past research.

Chapter 4 extends the general results for inequality merging to cover inequalities from

a MK instance. Theoretical conditions for validity are extended to cover inequalities. Con-

struction techniques of merged inequalities in a MK instance are introduced, providing

techniques to select indices as members of both the original (host) and merging (donor)

inequalities. A theorem proves that adherence to the ψp construction method yields a valid

merged inequality, and an algorithm provides a mechanism that reduces ψp for construction

purposes when necessary. Chapter 4 concludes with the introduction of a theoretical exten-

sion that merges over multiple donor inequalities simultaneously, thus strengthening merged

coefficients. The DCSA algorithm implements this extension, and an example problem is

provided.

Chapter 5 provides the results of the computational study. Several implementation

strategies are investigated, including pseudo-costing techniques, the number of cutting

planes generated, consideration of overlapping rows, and using the coefficient strengthening

extension. Significant experimentation on smaller problems motivates recommended imple-

mentation strategies, and further analysis is conducted on larger MK instances. Experimen-

tal results demonstrate that inequality merging reduces computational time in benchmark

MK instances when recommended implementation strategies are followed.

Chapter 6 offers the theoretical foundations for a second extension to the general in-

equality merging theory, sequentially merging on multiple covers and variables. The SCMA

implementation algorithm is provided, and a theorem proves that the SCMA provides suf-

ficient conditions that the sequentially merged cutting plane is valid. An example problem

8



demonstrates this extension.

Chapter 7 provides a summary of important contributions from this dissertation. This

research serves as a foundation for a new technique that has already been shown to yield

undiscovered classes of cutting planes. As such, several areas of future research are discussed.

These topics are likely to yield strong results for a variety of real-world applications.

9



Chapter 2

Background Information

Chapter two provides the theoretical background information that is required to under-

stand the new contributions in this dissertation. Chapter 2 includes a discussion of integer

programming, polyhedral theory, and the generation and use of cutting planes to facilitate

solution processes for IPs. This includes a more careful examination of knapsack prob-

lems and cover cutting plane inequalities because the dissertation focuses on these areas

to develop a new category of cutting planes for MK problems. Chapter two also provides

sufficient treatment of other strategies such as classic categories of cutting planes, lifting,

and recent IP research to distinguish these new contributions from other known techniques.

2.1 Integer Programming and Polyhedral Theory

An Integer Program (IP) is defined as Maximize cTx subject to Ax ≤ b, x ≥ 0 and x ∈ Zn

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Define the set of indices of an integer program to

be N = {1, ..., n}. One source for significant theoretical background on IPs is the popular

text Integer and Combinatorial Optimization by Nemhauser and Wolsey [60]. Integer

programming has served as a fertile ground for theoretical and applied research for several
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decades, including recent publications by Bonami et. al. in 2012 [15], Hemmecke et. al.

[45] in 2011, and Luedtke et. al in 2010 [57].

The branch and bound technique is the standard method used to solve integer optimiza-

tion problems [56]. This method eventually converges to the optimal solution, but it may

take an exponential amount of time. The branch and bound technique builds a branching

tree where the nodes have ancestral properties with each other.

Fundamental to the branch and bound technique is the understanding of a linear relax-

ation (LR). Given an integer program, the linear relaxation is the same problem without the

integer restriction, thus x ∈ Rn. Since the integral constraint has been removed, the integer

program becomes a linear program. Consequently, the solution is found quickly through the

simplex method or other LP solution technique.

The nodes of the branch and bound tree represent linear relaxation problems. The root

node of the tree is the original LR. While there exists at least one unfathomed leaf node,

the branch and bound algorithm solves the LR of that node with its corresponding xLR and

zLR. If xLR is integer, then the node is fathomed. Furthermore, if zLR is better than the

best current integer solution (Z∗IP ), then a better integer solution has been found, Z∗IP =

zLR, and xLR is saved as the corresponding integer solution.

If xLR is not integer, the algorithm considers three options. If zLR < Z∗IP , then the

tree is fathomed at that node. If xLR is infeasible, then the tree is fathomed at that node.

Otherwise, zLR ≥ Z∗IP and xLR is not integer. In this case, there exists p < xi < p+ 1 with

p ∈ Z. Two children nodes are created from this node. The LR problem of one child is the

LR of the parent with the additional constraint xi ≤ p. The LR of the other child requires

xi ≥ p+ 1.

There are several different strategies to examine the branch and bound tree, including

breadth first, depth first, and best child. There are also a variety of other techniques

that are sometimes employed during branch and bound implementation. Anstreicher et.al.
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discuss heuristic searching and randomized diving in [4]. Achterberg and Berthold discuss

hybrid branching including pseudo-cost branching in [2]. Techniques like these may improve

solution times for branch and bound.

The addition of a new inequality called a cutting plane is another common strategy to

improve the solution times of the branch and bound technique. There are a wide variety of

well-known cutting plane techniques. Several famous examples include Gomory fractional

cuts (Gomory [35],), Chvátal-Gomory cuts (Chvátal [18] and Gomory [35],) disjunctive cuts

(Balas and Perregaard [9]), and superadditive cuts (Gomory and Johnson [37] and Wolsey

[76].) Polyhedral theory is a fundamental concept in the development of cutting planes.

2.1.1 Polyhedral Theory

Solutions to IPs are highly dependent on the geometry of the problem, and polyhedral

theory is fundamental to understanding integer programming research. A half space is

{x ∈ Rn :
n∑
i=1

aixi ≤ b}, and a polyhedron is defined as the intersection of finitely many half

spaces.

A set S ⊆ Rn is convex if and only if x1 and x2 ∈ S implies λx1 +(1−λ)x2 ∈ S for every

λ ∈ [0, 1]. A polyhedron is convex, and the convex hull of S, conv(S), is the intersection of

all convex sets that contain S.

Define P as the set of feasible points of an integer program, P = {x ∈ Zn+ : Ax ≤ b}. An

inequality
n∑
i=1

αixi ≤ β is valid for conv(P ) if every x ∈ P satisfies this inequality. Every

valid inequality induces a face, F , of conv(P ) having the form {x ∈ conv(P ) :
n∑
i=1

αixi = β}.

A proper face is neither ∅ nor the entire region, conv(P ). Every face is a polyhedron.

Theoretically, the usefulness of a valid inequality is measured by the dimension of the induced

face. The strongest such inequalities are facet defining and have a dimension one less than

the dimension of conv(P ). A more complete discussion of a polyhedron’s facets may be
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found in works by Wolsey, [74] and [75].

The dimension of a polyhedron equals the maximum number of affinely independent

points minus one. Let V be a finite set of points in Rn, V = {vi ∈ Rn : i = 1, ..., w}. The

points in V are affinely independent if and only if the unique solution to
w∑
i=1

λivi = 0 and

w∑
i=1

λi = 0 is λi = 0 for all i = 1, ..., w. In order to define points in Rn, let ξj be the origin

in n dimensions translated one positive unit in the jth dimension, i.e. ξ2 = {0, 1, 0, ....., 0}.

2.1.2 2-Dimensional Integer Programming Example

In general, an integer programming problem may have arbitrarily large dimension. A two-

dimensional IP example is shown below. This problem is used to demonstrate several

theoretical concepts and solution techniques.

Example 2.1

Maximize z = x1 + x2

Subject to 4x1 + 2x2 ≤ 15

2x1 + 3x2 ≤ 13

x1, x2 ∈ Z+

Figure 2.1 offers a graphical perspective of this problem. Observe that the set of feasible

integer points P are identified by the large circles. Five interesting points in the graph are

given letter designations, including the two points where the constraints intersect the axes,

two integer points on the exterior envelope of the convex hull, and the linear relaxation

point.
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Figure 2.1: 2-Dimensional IP Example

The dimension of conv(P ) is clearly 2. More formally, the dimension of conv(P ) may be

bounded from above since there are two variables (x1 and x2). The dimension of conv(P )

may also be bounded from below since there are three affinely independent points in P :
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(0,0), (1,0), and (0,1). Thus the dimension of conv(P ) must be 2. The first constraint,

4x1 +2x2 ≤ 15 intersects the x1 axis at point E, but it does not intersect any integral points

in P . The second constraint, 2x1 +3x2 ≤ 13 intersects the x2 axis at point A and is incident

to conv(P ) at point B. Thus the second constraint is a face of dimension 0 (where the face

is point B). Since the dimension of conv(P ) is 2, the strongest faces in this problem are lines

with dimension 1. The linear facets that define the convex hull of P are the following set of

line segments: {[(0, 0) to (0, 4)], [(0, 4) to (2, 3)], [(2, 3) to (3, 1)], [(3, 1) to (3, 0)], [(3, 0) to

(0, 0)]}.

Since the objective function is x1 + x2, the best integral solution to this problem is at

(2, 3), identified as point B, achieving zIP = 5. If the integral constraint x1, x2 ∈ Z+ is

removed, the best solution is the linear relaxation (LR) at point C. Observe that zLR = 41
8

with xLR = (19
8
, 11

4
), where zLR > zIP .

As discussed in Section 2.1, a well-known technique to improve the branch and bound

solution times for IP problems is the generation of valid inequalities that separate the linear

relaxation solution from the convex hull of the IP. Such inequalities are known as cutting

planes. The theoretically best cutting planes define facets of conv(PMK), but any cutting

plane that separates the linear relaxation from conv(PMK) may be computationally useful.

The problem in Figure 2.1 can be solved by finding a cutting plane that separates the

linear relaxation from the conv(P ). In this case, let the cutting plane be the inequality

2x1 + x2 ≤ 7. Observe that this cut would include the portion of the convex hull that

connects points B and D. With the inclusion of this inequality, the new zLR = 5 at the point

B. Since B is integral, zIP = zLR = 5, and the IP has been solved.

It can be demonstrated that the cutting plane 2x1 + x2 ≤ 7 is facet defining. Earlier,

it was shown that dim(conv(P )) = 2. By inspection, it is trivially seen that 2x1 + x2 ≤ 7

is valid because no x ∈ P has αTx > β. Now the dimension of the induced face must be

determined, where F = {X ∈ conv(P ) : 2x1 + x2 = 7}. Since the point (0,0) is in P but
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it is not on the induced face, the dimension of the induced face is not the whole space.

Thus dim(F ) ≤ 1. Two affinely independent points on the induced face are (2,3) and (3,1),

corresponding to points B and D. Thus, dim(F ) ≥ 1. Therefore, dim(F ) = 1, which is one

less than the dim(conv(P )). Thus the cutting plane is facet defining.

2.2 Knapsack Problems

A commonly studied category of integer programs is the 0-1 knapsack problem (KP), defined

as Maximize
n∑
j=1

cjxj subject to
n∑
j=1

ajxj ≤ b, and xj ∈ {0, 1} for all j ∈ N where c and

a ∈ Rn
+, b ∈ R+. The multiple knapsack (MK) problem is an integer program with a finite,

m, number of knapsack constraints. Formally MK is defined as Maximize cTx subject to

Ax ≤ b and x ∈ {0, 1}n where c ∈ Rn
+, A ∈ Rm×n

+ , and b ∈ Rm
+ . General solution techniques

may be found in Martello and Toth [58].

Recall that P is the set of feasible points of an integer program. Define the feasible

points of a knapsack problem to be PKP = {x ∈ {0, 1}n : aTx ≤ b} where a ∈ Rn
+. This

dissertation focuses on the multiple knapsack problem with the corresponding feasible region

defined as PMK = {x ∈ {0, 1}n : Ax ≤ b} with A ∈ Rm×n
+ . Valid inequalities are of the

form
n∑
j=1

αjxj ≤ β where every x ∈ PMK satisfies this inequality for conv(PMK). All valid

inequalities of conv(PMK) have positive coefficients. The conv(PMK) is full dimensional

under standard assumptions that each ai,j ∈ A satisfies ai,j ≤ bi for all i = 1, ...,m and

j = 1, ..., n.

The 0-1 knapsack problem is appropriately named, motivated by the concept that a hiker

would need to select which items to bring in their knapsack before leaving on a camping

trip. Each of the n candidate items provides a corresponding value, and the hiker seeks to

maximize the total value of the selected items constrained by practical considerations.

The knapsack problem can be modeled as an integer program. If item xi is to be
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selected in IP formulations, then xi = 1. If item xi is not selected, then xi = 0 for each

i ∈ N . A basic knapsack problem has only one constraint, such as the cubic volume of

the knapsack. A multiple knapsack problem has 2 or more constraints, including additional

concerns such as the weight of the items being carried or the total cost of purchasing the

items. Consequently, each candidate item j has attributes such as its value to the camper

(cj) and three ai,j coefficients concerning the knapsack size in cubic inches, (a1,j), the weight

of candidate items in pounds (a2,j), and each item’s price in dollars (a3,j).

Beyond the namesake example, both the KP and MK problems have many important

applications. Numerous researchers have developed solution techniques for KP and MK

problems in a wide range of practical examples. These include project/portfolio selection

problems by Chang and Lee [16], production planning and inventory problems by Dawande

et al.[23], machine scheduling techniques by Kellerer and Strusevich [54], profit maximization

applications by Dizdar et. al. [27] and Szeto and Lo [70] and storage management/packing

problems by Shachnai and Tamir [68]. Large neighborhood search techniques for MK prob-

lems by Ahuja and Cunha may be seen in [3].

Since the theoretical contributions from this research focus on the multiple knapsack

problem, the next section provides an example that provides a detailed discussion of KP

and MK instances.

2.2.1 Example Knapsack/Multiple Knapsack Problem

Suppose that a PhD student decides to go on a week-long backpacking trip over Spring

Break. The student determines a list of 22 candidate items to bring on the trip. The

information in Table 2.1 shows the benefit (value score) of each item, along with the weight,

volume, and purchasing price of each.

First, consider a KP problem with one constraint. In this instance, assume that the stu-
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Index # Item Value Weight (lbs) Size (in3) Cost ($)

1 Food 75 14 470 32

2 Water Bottle 57 4 30 4

3 2nd Water Bottle 45 4 30 4

4 Tent 36 9 250 114

5 Sleeping Bag 53 5 335 75

6 2nd Set Clothes 28 2 155 50

7 3rd Set Clothes 19 2 155 50

8 First Aid Kit 40 0.5 25 6

9 Camera 20 1 15 180

10 Pillow 22 0.5 200 5

11 Flashlight 32 2 13 22

12 Spare Batteries 14 2 28 7

13 GPS 10 1 10 150

14 Cooking Pot 34 5 145 16

15 Stove Set 27 6 125 65

16 Matches 40 0.5 4 2

17 Hygiene Kit 43 2 70 10

18 Spare Shoes 27 3 100 60

19 Rain Jacket 39 3 50 40

20 Fleece Jacket 21 2 120 35

21 Water Purification Tabs 45 0.5 5 13

22 Knife 48 2 14 55

Table 2.1: Multiple Knapsack Data

dent is very strong and can carry all 22 items (71 pounds). Also, assume that the student

already owns the equipment and does not have to make any purchases. In this case, the

student’s only concern is maximizing the value of the selected items as long as they fit in

the knapsack with a capacity of 1,500 cubic inches. This KP problem is shown in Example

2.2 below.
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Example 2.2

Maximize
22∑
i=1

cjxj

Subject to
22∑
i=1

a1,j xj ≤ 1, 500

xj ∈ {0, 1}22

The optimal solution for the KP is {1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1}

with zKP = 650. In this instance, the student brings every item except for the tent, the 3rd

set of clothes, the pillow, the cooking stove, and the fleece jacket. This makes sense since

the solution avoids relatively low-value items that have relatively larger cubic volumes.

The problem is a MK if all three constraints are considered. Suppose that the student

needs to purchase all the equipment for the trip with a budget of only $500 to purchase

supplies. The student also decides to restrict the total weight of the items to 60 pounds.

The problem is now much more strictly constrained because the student can only afford

about half of the items. The student also needs to remove at least 11 pounds from the

packing list. The MK problem is shown in Example 2.3.

Example 2.3

Maximize
22∑
j=1

cjxj

Subject to
22∑
j=1

a1,j xj ≤ 1, 500
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22∑
j=1

a2,j xj ≤ 500

22∑
j=1

a3,j xj ≤ 60

xj ∈ {0, 1}22

The optimal solution for the MK problem is {1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}

with zMK = 623. Notice that there are several changes from the previous solution. Now

the student brings all the items on the packing list except for the sleeping bag, the 2nd and

3rd set of clothes, the camera, the pillow, and the GPS. Observe that the student is now

bringing the tent, the cooking stove, and the fleece jacket (all previously omitted) because

of the more strictly constrained environment.

2.3 Classic Cover Cuts

One popular type of cutting planes for KP and MK problems is called a cover cut. Cover

cuts may decrease solution times for KP and MK problems in many instances. Knowledge

of cover cuts is critical to this research because several theoretical contributions of this

dissertation use cover cuts to generate more complex inequalities. Cover cuts have been

studied extensively by Balas and Zemel [10], De Farias et al. [22], Hunsaker and Tovey [50],

Nemhauser and Vance [61], and Park [63]. For a MK problem, a cover cut may be generated

in one or more of the m constraints.

A set C ⊆ N is a cover for row i ∈ {1, ...,m} if
∑
j∈C

ai,j > bi. The corresponding cover

inequality is valid for conv(PMK) and takes the form
∑
j∈C

xj ≤ |C| − 1. A cover C is a

minimal cover if C \{j} is not a cover for all j ∈ C. If C ⊆ N is a cover, define an extended
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cover as E(C) = C ∪ {j ∈ N |aj ≥ ai ,∀i ∈ C}. The valid inequality of the extended cover

is
∑

j∈E(C)

xj ≤ |C| − 1.

Consider the backpacking KP scenario shown in Table 2.1, and recall that the capacity

of the student’s knapsack is 1,500 cubic inches. Examining the largest candidate items, one

cover would be {1, 5, 4, 10, 6, 7} since the volume of these 6 items is 1,565 cubic inches. This

means that a backpacker could choose at most 5 of these 6 items, and the corresponding

cutting plane would be x1 + x4 + x5 + x6 + x7 + x10 ≤ 5. This cover is minimal because the

removal of any of these items would no longer constitute a cover. Another minimal cover in

the example KP problem is {4, 5, 6, 7, 10, 14, 15, 18, 20} with valid inequality x4 + x5 + x6 +

x7 + x10 + x14 + x15 + x18 + x20 ≤ 8.

Many such covers exist for any given constraint in the MK instance. The choice of

variables depends on which pseudo-costing strategy is employed. Pseudo-costing strategies

for integer programming problems were studied by Benichou, et. al. in [14] and Gauthier

and Ribiere in [34]. The choice of pseudo-cost strategy designates which variables are more

or less desirable for inclusion in additional cutting planes. Refalo used pseudo-cost strategies

to improve constraint programming [65], and Achterberg, et. al. developed reliability

branching rules for IPs as an extension of pseudo-costing in [1].

Pseudo-costing strategies that sort by the volume requirements of each item may choose

largest items first, and that strategy yields the original cover {1, 5, 4, 10, 6, 7} with the corre-

sponding inequality x1+x5+x4+x10+x6+x7 ≤ 5. However, if the pseudo-costing technique

sorts by the value of each item, the associated cover is {1, 2, 5, 22, 3, 21, 17, 8, 16, 19, 4, 18, 20}

with the corresponding inequality x1 + x2 + x5 + x22 + x3 + x21 + x17 + x8 + x16 + x19 + x4 +

x18 + x20 ≤ 12.

Because of the large disparity between the volumes of different items, great care must

be followed to ensure that a valid cover is attained. Observe that the last two items (indices
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18 and 20) were selected out of order because their inclusion in the cover took the total sum

of volumes in the cover to be exactly 1,503 cubic inches. Since the smallest volume of an

item in the cover was 4 cubic inches (index 16), this took a careful selection of indices for

the last two terms. Clearly, the size and composition of the cover can vary significantly as

pseudo-costing strategies change.

2.4 Lifting

In some instances, cover inequalities may be strengthened through lifting. Additionally,

some of the research contributions in this dissertation use restricted polyhedra similar to

lifting. Although the contributions of this dissertation are distinctly different from known

lifting techniques, some knowledge of lifting is helpful to understand the newly discovered

category of cutting planes in this research.

Lifting, introduced by Gomory [36], takes a valid inequality of a restricted space and

tilts it to become a valid inequality of a higher dimensional space. Formally, let C ⊂ N and

K ∈ Z|N\C|, then the restricted IP for C is Maximize cTx subject to Ax ≤ b, xi = ki for

all i ∈ N \ C, x ≥ 0 and x ∈ Zn. Its feasible region is denoted as PC,K = {x ∈ Zn+ : Ax ≤

b, xi = ki,∀i ∈ N \ C} and the corresponding integer polyhedron is conv(PC,K). The newly

discovered category of cutting planes in this dissertation merge restricted inequalities from

polyhedra with K = 0. For notational convenience, define conv(PC) to be conv({x ∈ Zn+ :

Ax ≤ b, xi = 0,∀i ∈ N \ C}).

Lifting requires a set C ⊂ N , K ∈ Z|N\C| and a valid inequality
∑

i∈C αixi+
∑

i∈N\C αixi ≤

β of conv(PC,K). Lifting then creates a valid tilted inequality of the form
∑

i∈C αixi +∑
i∈N\C α

′
ixi ≤ β′ of conv(P ). The standard goal of lifting is to theoretically strengthen the

original inequality by increasing its dimension.

There are several categories of lifting. Inequalities can either be generated sequentially
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|N\C| = 1 or simultaneously |N\C| ≥ 2. The coefficients can be either exact or approximate

for α and β values. The restricted polyhedron can have variables fixed at the lower bounds

for up lifting, at the upper bounds for down lifting, or someplace in between for middle

lifting.

Numerous researchers have done work on sequential exact up lifting, such as Cho et al.

[17], Gutierrez [41], Hammer et al. [42], and Wolsey [74]. Exact sequential lifting finds the

maximum value of α1 that maintains validity. Thus, one benefit of this technique is that

it guarantees that the dimension of the face induced by the sequentially lifted inequality

increases by at least 1 if such a value of α1 may be obtained. While maintaining validity, the

process may be repeated sequentially for α2, α3, etc. In such cases, exact sequential lifting

increases the dimension of the induced face by even more.

In some instances, this process can transform a facet defining inequality from the re-

stricted space into a facet defining inequality of the full space. However, one disadvantage

is that exact lifting typically requires the solution of an integer program or multiple integer

programs. Furthermore, the coefficients obtained are restricted to integer values. Exact lift-

ing has been the topic of significant research because of its potential to yield strengthened

inequalities. Examples include papers by Easton and Hooker [31], Kubik [55], and Zemel

[77].

Sequence dependent lifting can be classified as an approximate simultaneous up lifting

technique, shown in Atamtürk [7], Gu et al. [38], [39], and [40], and Shebalov and Klabjan

[69]. Simultaneous lifting may yield stronger fractional α coefficients for several variables at

the same time, requiring the solution of a single integer program. However, simultaneous

lifting may not increase the dimension of the induced face in general. Rather, this tech-

nique often lends itself to computational benefits since simultaneous lifting strengthens α

coefficients during preprocessing.

There are a variety of extensions and other categories of lifting. Additional approximate
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lifting methods can be found in Balas [8] and Weismantel [72]. Wolsey [74] also provides ex-

act sequential down and middle lifting. More recently, Atamtürk and Narayanan generalized

the theory of lifting to conic integer programming. [5]

2.5 Inequality Merging

This dissertation research provides the theoretical foundations for generating a new class

of valid inequalities for integer programming problems through a process named inequality

merging. Dey and Richard introduced the idea of sequential-merge facets in two-dimensional

group problems in 2007 [26]. Their paper includes an operation that combines two facet-

defining inequalities of one-dimensional group problems, creating a facet-defining inequality

for two-dimensional group problems. In 2010, Dey and Wolsey developed two row mixed

integer cuts through lifting [25]. Their process uses lifting functions to obtain integer coef-

ficients for new cuts that combine information from two rows of a simplex tableau. Other

than a similar naming scheme, the contributions in this dissertation are different because

they apply to general KP and MK problems with arbitrary dimension. This technique also

differs from Dey and Wolsey because their work uses lifting directly while this research

generates cutting planes that are not readily attainable by direct implementation of known

lifting techniques.

Inequality merging yields a new type of valid cutting plane inequalities for MK problems

that are fundamentally different from other types of cutting planes, lifting techniques, or

other known efforts to merge information from existing inequalities. The next chapter intro-

duces the theoretical foundations of inequality merging including conditions for validity and

conditions under which a merged inequality may be facet defining. Chapter 3 also provides

an example problem that demonstrates inequality merging over the MK polyhedron.

24



Chapter 3

Theoretical Foundations of Inequality

Merging

The bulk of the results in this chapter can also be found in my co-authored paper that has

been accepted for publication in the International Journal of Operations Research [46].

The idea behind inequality merging is to combine information from two valid inequal-

ities in a manner that yields a single, higher-dimensional valid cutting plane for integer

programming problems. Designate the two low-dimensional inequalities as the host and

donor inequalities. The basic form and the right-hand side of the merged inequality are de-

fined by the original host inequality. In the process of merging, the host inequality replaces

one or more of its terms with a collection of terms attained from the donor inequality. Valid-

ity is maintained by adjusting the coefficients of the terms gained from the donor inequality.

In many cases, the result is a higher-dimensional cutting plane that merges information

from both the host and donor inequalities.

The merging process is not symmetric, and care must be employed to designate the host

and donor inequalities appropriately. Furthermore, merged inequalities of this type are not
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always attainable because of the need to preserve validity across all constraints. However,

the method is shown to be particularly useful for instances such as the MK problem when

it is relatively easy to find valid inequalities (e.g. cover inequalities) of low dimension, but

somewhat more difficult to find higher-dimensional cutting planes.

Creating a merged inequality on a binary variable xp requires C1 ⊂ N , p ∈ C1 and

C2 ⊆ (N\C1) ∪ {p}. More formally, define the host inequality,
∑
j∈C1

α1
jxj ≤ β1, as a valid

inequality of conv(PMK
C1 ) such that β1 and each α1

j is a nonnegative integer for all j ∈ C1

and α1
p = 1. Furthermore, let the donor inequality,

∑
j∈C2

α2
jxj ≤ β2, be a valid inequality of

conv(PMK
C2 ). Then the merged inequality is

∑
j∈C1\{p}

α1
jxj +

∑
j∈C2

α2
j

β2
xj ≤ β1.

The basic idea of inequality merging is that the merged variable, xp, is bounded by the

value 1. Since
∑
j∈C2

α2
jxj ≤ β2 is valid,

∑
j∈C2

α2
j

β2
xj ≤ 1. Thus, it may be possible to replace xp

by this fractional inequality, creating a merged inequality. Several obvious questions arise,

the first of which concerns the validity of such an inequality. The next section provides the

theoretical foundations for this question.

3.1 Validity of Merged Inequalities

This section begins with a theorem providing conditions under which a merged inequality is

valid. The result is extended to merging with a host cover inequality. Using this concept, the

section concludes with a polynomial time algorithm to determine the validity of a merged

cover inequality.

Theorem 1. Let C1 ⊂ N with p ∈ C1 have a corresponding valid host inequality
∑
j∈C1

α1
jxj ≤

β1 of conv(PMK
C1 ) and C2 ⊆ (N\C1)∪{p} have a valid donor inequality of conv(PMK

C2 ) of the

form
∑
j∈C2

α2
jxj ≤ β2. Furthermore, assume α1 and β1 are nonnegative integer coefficients
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with α1
p = 1, α2 ≥ 0 and β2 > 0. Let F = {x ∈ PMK

C1 :
∑
j∈C1

α1
jxj = β1, xp = 0}. If y + ξq is

infeasible for all y ∈ F and q ∈ C2, then the merged inequality

∑
j∈C1\{p}

α1
jxj +

∑
j∈C2

α2
j

β2
xj ≤ β1

is a valid inequality of conv(PMK
C1∪C2).

Proof. Let x′ be any point in PMK
C1∪C2 . Due to the fact that

∑
j∈C1

α1
jxj ≤ β1 is valid over

conv(PMK
C1 ),

∑
j∈C1\{p}

α1
jx
′
j ≤ β1. The proof divides into two cases because α1 and β1 are

nonnegative integer coefficients with α1
p = 1. First, assume

∑
j∈C1\{p}

α1
jx
′
j = β1. Let y′

be x′ projected onto F . By assumption, y′ + ξq is infeasible for each q ∈ C2. Thus,∑
j∈C1\{p}

α1
jx
′
j +

∑
j∈C2

α2
j

β2
x′j ≤ β1. Second, assume

∑
j∈C1\{p}

α1
jx
′
j < β1. Since x′ and each α′j are

integer,
∑

j∈C1\{p}

α1
jx
′
j ≤ β1 − 1. Because

∑
j∈C2

α2
jxj ≤ β2 is valid over conv(PMK

C2 ), it implies

that
∑
j∈C2

α2
j

β2
xj ≤ 1. Thus

∑
j∈C1\{p}

α1
jx
′
j +

∑
j∈C2

α2
j

β2
x′j ≤ β1, and the result follows.

Checking the conditions of Theorem 1 may not be easy for all merged inequalities.

Restricting the host inequality to a cover inequality enables a polynomial time algorithm to

verify validity. If C1 \ {p} ∪ {j} is a cover in at least one of the MK’s constraints for each

j ∈ C2, then the conditions of Theorem 1 are met.

An important extension is that verifying the validity of merging over a host cover in-

equality in a multiple knapsack instance can now be completed in O(m(|C1|+ |C2|)) effort.

The algorithm verifies that each C1 \ {p} ∪ {j} is a cover in some constraint for all j ∈ C2.
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Merging Over a Cover Inequality Algorithm (MOCIA)

a. Initialization:

Set di to
∑

j∈C1\{p}

aij for all i = 1, ...,m

Set validflag to True

b. Main Step:

For each j ∈ C2

Set flag to False

For each i = 1, ...,m

If aij + di > bi, then set flag to True

end for

if flag = False, Then

set validflag to False

end for

c. Output:

Report validflag

The Initialization clearly requires O(m|C1|) effort due to the first step. The main step

requires O(m|C2|) effort and reporting requires O(1). Thus the MOCIA is extremely fast

and runs in O(m(|C1|+ |C2|)) effort. This is clearly a linear time algorithm for a knapsack

problem. Observe that the MOCIA is bounded by O(mn). Furthermore, reading in a generic
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multiple knapsack instance requires reading in A with mn elements. Thus, every algorithm

on a generic multiple knapsack must be Ω(mn). Consequently, the MOCIA is Θ(mn).

Both the merging process and the verification of validity can be accomplished with

minimal computational effort. Consequently, merged inequalities are now readily accessible

and easily implemented by practitioners solving complex multiple knapsack problems.

3.2 Theoretical Strength of Merged Inequalities

Merging inequalities can create higher dimensional faces, and the dimension of the inequal-

ity’s face defines its theoretical strength. The strongest such inequalities define facets of

conv(PMK). Theoretically, stronger inequalities tend to eliminate more linear relaxation

space when applied as cutting planes. The following theorem demonstrates that under cer-

tain general conditions a valid merged inequality defines a higher dimensional face, which

may be a facet.

Theorem 2. Let
∑
j∈C1

α1
jxj ≤ β1 be a face of dimension η over the restricted space conv(PMK

C1 )

and let
∑
j∈C2

α2
jxj ≤ β2 be a face of dimension φ over conv(PMK

C2 ) such that the inequality

merging technique on xp yields a valid inequality of the form
∑
j∈C1

α1
jxj +

∑
j∈C2

α2
j

β2
xj ≤ β1 of

conv(PMK
C1∪C2). If the following 2 conditions hold, then the merged inequality has a face of

dimension at least η + φ in conv(PMK
C1∪C2).

i. There exists a point x2
′ ∈ F 2 = {x ∈ PMK

C2 :
∑
j∈C2

α1
jxj = β2} such that x1 − ξp + x2

′ ∈

PMK
C1∪C2 for each x1 ∈ {x ∈ PMK

C1 : xp = 1}.

ii. There exists a point x1
′ ∈ F 1 = {x ∈ PMK

C1 :
∑
j∈C1

α1
jxj = β1, xp = 1} such that
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x1
′ − ξp + x2 ∈ PMK

C1∪C2 for each x2 ∈ PMK
C2 .

Proof. By assumption,
∑
j∈C1

α1
jxj +

∑
j∈C2

α2
j

β2
xj ≤ β1 is valid over conv(PMK

C1∪C2). Since∑
j∈C1

α1
jxj ≤ β1 defines a face of dimension η in conv(PMK

C1 ), there exist at least η + 1

affinely independent points q11, q
1
2, ..., q

1
η+1 ∈ PMK

C1 that meet
∑
j∈C1

α1
jxj ≤ β1 at equality.

Similarly, there exist at least φ + 1 affinely independent points q21, q
2
2, ..., q

2
φ+1 ∈ PMK

C2 that

meet
∑
j∈C2

α2
jxj ≤ β2 at equality.

Without loss of generality and by assumption ii there exists some i such that q11, ..., q
1
i

have xp = 0 and q1i+1, ..., q
1
η+1 have xp = 1 where i = 0, ..., η. Notice that if i = 0, then all

qj have xp = 1 for j = 1, ..., η + 1. Consider the following η + φ + 1 points that are clearly

feasible by assumptions i and ii. Without loss of generality, assume that x2
′

is q21 and x1
′

is

q1i+1. For clarity, these points are divided into three sets.

a. The first set of points are q11, ..., q
1
i .

b. The second set of points are q1i+1 − ξp + q21, q
1
i+2 − ξp + q21, ..., q

1
η − ξp + q21.

c. The third set of points are q1i+1 − ξp + q22, q
1
i+1 − ξp + q23, ..., q

1
i+1 − ξp + q2φ+1.

It is trivial to verify that each of these points satisfy
∑
j∈C1

α1
jxj +

∑
j∈C2

α2
j

β2
xj = β1. Thus,

these η + φ + 1 points are on the face of the merged inequality. It remains to show that

these points are affinely independent. The second set contains the point y
′
= x1

′ − ξp + x2
′
.
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Perform the column operation of subtracting this point, y
′
, from each point in the third set.

The third set of points now take the form

q1i+1 − ξp + q2j − y
′
=

q1i+1 − ξp + q2j − (x1
′ − ξp + x2

′
) =

q1i+1 − ξp + q2j − (q1i+1 − ξp + q21) =

q2j − q21

for each j = 2, ..., φ+1. These new columns are clearly linearly independent following a well-

known result found in various texts such as Nemhauser and Wolsey [60]. This result defines

one affinely independent point, q21, as the origin and then creates vectors by subtracting this

new ’origin’ from the other affinely independent points.

These operations yield a collection of points that are lower block diagonal. Since the

points in sets one and two are affinely independent, the top block of these points are affinely

independent and the bottom block is linearly independent as previously argued. Thus these

η+φ+1 points are affinely independent and so the merged inequality has a face of dimension

at least η + φ in conv(PMK
C1∪C2), concluding the proof.

Restricting both C1 and C2 to minimal covers provides a set of well defined conditions

where facet defining inequalities are created. It is straightforward to show that merging over

two minimal cover inequalities meets at least one of the conditions of Theorem 2. Thus,
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merging two minimal cover inequalities may induce a facet over the merged space with the

additional conditions provided in the following corollary.

Corollary 1. Let C1 and C2 be two minimal covers from possibly two distinct constraints

that result in a valid merged inequality of conv(PMK
C1∪C2) with the form

∑
i∈C1\{p}

xi +
1

|C2| − 1

∑
j∈C2

xj ≤ |C1| − 1.

If the following conditions are met:

i. The set C1 \ {p} is not a cover of any constraint.

ii. There exists an s′ ∈ C2 such that the sets (C1 \ {r} \ {p})∪ (C2 \ {s′}) are not covers

for each r ∈ C1 \ {p}.

iii. There exists an r′ ∈ C1 \ {p} such that the sets (C1 \ {r′} \ {p}) ∪ (C2 \ {s}) are not

covers for each s ∈ C2,

then the merged inequality is facet defining over conv(PMK
C1∪C2).

2

The following example demonstrates the inequality merging technique in a multiple knap-

sack instance. The example includes the implementation of the MOCIA, the demonstration

of validity consistent with Theorem 1, and the proof that the merged inequality is facet

defining consistent with Theorem 2 and Corollary 1.
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3.3 Inequality Merging Example

Consider the following multiple knapsack instance, with (3.1) and (3.2) as multiple knapsack

constraints

13x1 + 12x2 + 11x3 + 5x4 + 3x5 + 2x6 + 2x7 + 1x8 ≤ 36 (3.1)

2x1 + 4x2 + 1x3 + 7x4 + 6x5 + 8x6 + 6x7 + 5x8 ≤ 30 (3.2)

and x ∈ {0, 1}8.

Let C1 = {1, 2, 3, 4}, C2 = {4, 5, 6, 7, 8}, and p = 4. Since C1 is a cover in (3.1) and C2

is a cover in (3.2), (3.3) is a valid inequality of conv(PMK
C1 ) and (3.4) is a valid inequality of

conv(PMK
C2 ).

x1 + x2 + x3+x4 ≤3 (3.3)

x4 + x5 + x6 + x7 + x8 ≤4 (3.4)

Merging the host (3.3) with the donor (3.4) on x4 yields

x1 + x2 + x3 +
1

4
x4 +

1

4
x5 +

1

4
x6 +

1

4
x7 +

1

4
x8 ≤ 3. (3.5)

The validity of (3.5) is shown by verifying that setting all of the variables associated with

C1 \ {4} ∪ {k} to 1 is infeasible (a cover for some constraint for every k ∈ C2). The sum of

the a1,j coefficients for j ∈ C1 \ {4} is already equal to the righthand side, b1, of (3.1), and

all the a1,j coefficients in C2 are positive in (3.1). Thus, mink∈C2

∑
j∈C1\{4}∪{k}

a1,j > b1. This

implies that C1 \ {4}∪ {k} is a cover in (3.1) for every k ∈ C2. Consequently, the results of

Theorem 1 show that (3.5) is a valid inequality of conv(PMK
C1∪C2).
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Following the result of Theorem 2, it can be shown that (3.5) is also facet defining.

Observe that (3.3) induces a face of dimension η = 3 over the conv(PMK
C1 ). Four affinely

independent points that meet (3.3) at equality are shown in Figure 3.1.

x1
x2
x3
x4
x5
x6
x7
x8

=

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Figure 3.1: Four Affinely Independent Points in (3.3)’s Face in PMK
C1

Note that the first column of Figure 3.1 is the only column with x4 = 0. This implies

i = 1 in Theorem 2. Similarly, (3.4) has a face of dimension φ = 4 over conv(PMK
C2 ). Five

affinely independent points that meet (3.4) at equality are shown in Figure 3.2.

x1
x2
x3
x4
x5
x6
x7
x8

=

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Figure 3.2: Five Affinely Independent Points in (3.4)’s Face in PMK
C2

Let x1
′

= (1,0,1,1,0,0,0,0) and observe that x1
′

4 = 1. Also, let x2
′

= (0,0,0,1,1,0,1,1).

It is easily verified that x2
′

satisfies x1 − ξp + x2
′ ∈ PMK

C1∪C2 for each x1 ∈ {x ∈ PMK
C1 :

x4 = 1,
∑
i∈C1

xi = 3}, achieving the first condition of Theorem 2. Again, it is easily verified
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that x1
′

satisfies x1
′ − ξp + x2 ∈ PMK

C1∪C2 for each x2 ∈ {x ∈ PMK
C2 ,

∑
i∈C2

xi = 4}, obtaining

the second condition of Theorem 2. Since both conditions of Theorem 2 are satisfied, the

merged inequality (3.5) has a face of dimension at least η + φ = 7 in conv(PMK
C1∪C2). Thus,

the merged inequality is facet defining, as shown by the 8 affinely independent points in

Figure 3.3. These points follow directly from Figures 3.1 and 3.2 and the implementation

of Theorem 2.

The vertical lines in Figure 3.3 separate the columns into the 3 categories of affinely

independent points described in the proof of Theorem 2. The first column of Figure 3

corresponds to the set of points q11, ..., q
1
i , where x4 = 0 and xj = 0 for all j ∈ C2. Columns

2-4 of Figure 3.3 are points where x2
′

replaces the overlapped ξp, corresponding to points of

the form q1i+1 − ξp + q21, q
1
i+2 − ξp + q21, ..., q

1
η − ξp + q21. For these points, the quantity x4 = 1

is replaced by four terms from C2 \ {4}.

The final four columns in Figure 3.3 are points where x1
′ − ξp is added to the original

columns from Figure 3.2, corresponding to points of the form q1η+1 − ξp + q22, q
1
η+1 − ξp +

q23, ..., q
1
η+1 − ξp + q2φ+1. These points combine 4 of the 5 terms in C2 with x1 and x3 in C1.

Thus, (3.5) is facet defining by Corollary 1.

x1
x2
x3
x4
x5
x6
x7
x8

=

1 1 1 0 1 1 1 1
1 0 1 1 0 0 0 0
1 1 0 1 1 1 1 1
0 1 1 1 0 1 1 1
0 1 1 1 1 0 1 1
0 0 0 0 1 1 1 1
0 1 1 1 1 1 0 1
0 1 1 1 1 1 1 0

Figure 3.3: Eight Affinely Independent Points that Meet (3.5) at Equality

To prove a lower bound of at least dimension η + φ = 7 in conv(PMK
C1∪C2), the points in

Figure 3.3 must be shown to be affinely independent. The proof of Theorem 2 subtracts
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x1
′ − ξp + x2

′
, the second column of Figure 3.3, from each of the last 4 columns in Figure

3.3. The result is in Figure 3.4.

x1
x2
x3
x4
x5
x6
x7
x8

=

1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
0 1 1 1 −1 0 0 0
0 1 1 1 0 −1 0 0
0 0 0 0 1 1 1 1
0 1 1 1 0 0 −1 0
0 1 1 1 0 0 0 −1

Figure 3.4: Demonstration of Affine Independence of the Points in Figure 3.3, Step 1.

Conducting the column operations of adding each of the final four columns in Figure 3.4

to each of the columns 2-4 in Figure 3.4 results in the matrix shown in Figure 3.5.

x1
x2
x3
x4
x5
x6
x7
x8

=

1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 4 4 4 1 1 1 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

Figure 3.5: Demonstration of Affine Independence of the Points in Figure 3.3, Step 2.

The columns in Figure 3.5 are clearly linearly independent and therefore trivially affinely

independent. Thus

x1 + x2 + x3 +
1

4
x4 +

1

4
x5 +

1

4
x6 +

1

4
x7 +

1

4
x8 ≤ 3 (3.6)

is facet defining on conv(PMK
C1∪C2) = conv(PMK). Thus inequality merging can create facet
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defining inequalities.

Several other valid inequalities can be easily created, demonstrating the true power of

merging. Every valid non-negative inequality of PMK
C2 is a donor inequality that can be

merged with the C1 cover constraint on x4. For instance,

7x4 + 6x5 + 8x6 + 6x7 + 5x8 ≤ 30 (3.7)

is valid trivially by (3.2). Observe that this can be strengthened to

7x4 + 6x5 + 8x6 + 6x7 + 5x8 ≤ 27 (3.8)

because summing the largest four coefficients is 27. Thus,

x1 + x2 + x3 +
7

27
x4 +

6

27
x5 +

8

27
x6 +

6

27
x7 +

5

27
x8 ≤ 3 (3.9)

is a valid inequality of PMK by Theorem 1. This is not facet defining, but it does eliminate

linear relaxation points (e.g. (1
2
,1,1,6

7
,0,1,0,0)) that are not eliminated by (3.5). Conse-

quently, once a set of variables is able to be merged, numerous valid merged inequalities can

be generated with the inequality merging technique. This process may decrease preprocess-

ing time and be computationally useful. Some additional results on this topic are discussed

in the next chapter.

To argue that inequality merging is not a straightforward extension of a known technique,

consider Example 1 and lifting techniques. Sequentially lifting over (3.3) or (3.4) generates

integer coefficients and would not create (3.5). Using the simultaneous lifting method de-

scribed in Gutierrez [41] and lifting {x5, x6, x7, x8} into (3.3) yields a zero coefficient with

the lifted inequality being x1 + x2 + x3 + x4 ≤ 3. Simultaneous lifting {x1, x2, x3} into (3.4)
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also yields a zero coefficient and the resulting inequality is x4 + x5 + x6 + x7 + x8 ≤ 4. Thus

any lifting starting with either of the cover inequalities does not generate (3.5).

Since all inequalities can be obtained by iteratively applying various lifting techniques

(Balas and Zemel [11], Balas and Ng [12] and Zemel [77] [78]), clearly (3.5) can be achieved

from lifting. In this case simultaneously lifting over x1 + x2 + x3 ≤ 3 would generate (3.5).

Since the initial inequality does not eliminate any linear relaxation space from any binary IP,

it is unlikely that a person would begin with this inequality given known lifting techniques

unless an oracle was consulted. Therefore applied lifting techniques do not typically generate

merged inequalities.

Similar to lifting, several techniques such as superadditive cuts (Gomory and Johnson

[37] and Wolsey [76],) Chvátal-Gomory cuts (Chvátal [18] and Gomory [35],) and disjunctive

cuts (Balas and Perregaard [9]) can generate or dominate all valid inequalities. However,

there is not a straightforward or even fairly complex application of any of these techniques

to generate (3.5). Thus, these methods are unlikely to yield a merged inequality by prac-

titioners. It is also evident that (3.5) is not the direct result of a modular or a Gomory

fractional cut (Gomory [35].) Consequently, to the author’s knowledge, merged inequalities

are a previously undiscovered class of valid inequalities, which may induce facets. Thus,

inequality merging constructs a new category of cutting planes for integer programming

problems.

In the specific instance of a single knapsack inequality, merging two distinct covers

C1 and C2 achieves the same result as simultaneous lifting C1 \ {p} into C2’s constraint.

However, since this only applies to the special case where C1 and C2 are covers of the same

constraint, it does not diminish the contribution associated with inequality merging across

different constraints.

This chapter introduced the theoretical results for inequality merging that apply to

general IP problems with an example that demonstrated the theory on a MK instance. The
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theory may be extended and applied in different manners for different types of IPs. The next

chapter focuses on multiple knapsack problems and cover inequalities. Several theoretical

extensions and implementation algorithms are introduced, where inequality merging is used

to generate cutting planes from cover inequalities in a MK instance.
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Chapter 4

Inequality Merging with Cover

Inequalities in the Multiple Knapsack

Chapter 3 presented general theory for inequality merging in integer programming problems.

The remainder of the dissertation focuses on the multiple knapsack. Chapter 4 provides

theoretical extensions to the general theory that focus on merging over cover inequalities.

This chapter contains a theorem providing conditions under which merging cover in-

equalities yields a valid merged inequality. Algorithms for the construction process are

presented, including discussion of pseudo-costing techniques and using a parameter to se-

lect appropriate merging indices. Additional theoretical results present conditions under

which merging may occur over multiple donor covers in a MK instance simultaneously. An

algorithm is provided that implements this type of simultaneous merging across multiple

constraints. This section concludes with an example demonstrating these theoretical results,

and it demonstrates that merging cover inequalities creates a new category of cutting planes.
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4.1 Merging over Two Cover Inequalities

This section describes how to merge two cover inequalities into a single inequality with a

theorem that describes conditions for validity. To facilitate the arguments for validity, this

section defines eligible indices using a calculated value ψ. A second theorem proves that

using the value of ψ to select candidate indices guarantees that merging covers yields a valid

inequality. An algorithm is presented to modify the value of ψ, which may be helpful in

some instances.

It is straightforward to find cover inequalities in a MK instance. One cover is called the

host cover and the other cover is called the donor cover. Merging the host and donor cover

inequalities creates a single merged inequality. Some notation was deliberately adjusted in

this chapter to support theoretical contributions with cover inequalities. The general theory

in Chapter 3 used C1 and C2 to designate sets of indices that had non-zero coefficients in

the valid host and donor inequalities. Theoretical results using cover inequalities designate

these sets differently, where the host cover Chost replaces the set C1 and the donor cover

Cdonor replaces the set C2.

Without loss of generality, select a host cover designated as Chost from row r in a multiple

knapsack instance. Thus the cover inequality
∑

i∈Chost
xi ≤ |Chost| − 1 is a valid inequality of

conv(PMK). Another cover from any row s may be a donor cover designated as Cdonor if

|Cdonor ∩ Chost| ≤ 1. Thus,
∑

i∈Cdonor
xi ≤ |Cdonor| − 1 is a valid inequality of conv(PMK).

Merging the host and donor cover inequalities occurs on binary variable xp where p =

Chost ∩ Cdonor or if Chost ∩ Cdonor = ∅, then p ∈ Chost. Since xp is bounded by 1 and∑
i∈Cdonor

1

|Cdonor| − 1
xi ≤ 1, it follows that xp could be replaced in the host cover inequality

with the Cdonor indices with coefficients 1
|Cdonor|−1 . This follows the theory presented in

Chapter 3, and thus merged cover inequalities have the form shown below.
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∑
i∈Chost\{p}

xi +
∑

i∈Cdonor

1

|Cdonor| − 1
xi ≤ |Chost| − 1

If the merged inequality is valid, then this inequality includes more nonzero coefficients

than either Chost or Cdonor. This inequality has the potential to be a theoretically stronger

inequality that merges some of the information from two covers into a single inequality.

Since cover inequalities are relatively easy to find, this procedure can rapidly produce cutting

planes that contain more nonzero coefficients than standard cover inequalities. The question

remains as to whether or not the merged inequality is valid, and conditions are provided in

the following theorem.

Theorem 3. Let Chost be a cover from row r and Cdonor be a cover from some row s in a

MK instance such that |Chost ∩ Cdonor| ≤ 1. Define index p ∈ Chost as the merging index

with the restriction that if |Chost ∩ Cdonor| = 1, then p = Chost ∩ Cdonor. If Chost \ {p} ∪ {i}

is a cover in at least one row of the MK instance for each i ∈ Cdonor, then the merged cover

inequality,
∑

i∈Chost\{p}

xi+
∑

i∈Cdonor

1

|Cdonor| − 1
xi ≤ |Chost|−1, is valid for conv(PMK

Chost∪Cdonor)

and conv(PMK).

Proof. Let x′ be any point in PMK . Define q =
∑

i∈Chost\{p}

x′i. If q = |Chost| − 1, then∑
i∈Cdonor

x′i = 0 because Chost \ {p} ∪ {i} is a cover in some constraint for each i ∈ Cdonor.

Thus,
∑

i∈Chost\{p}

x′i +
∑

i∈Cdonor

1

|Cdonor| − 1
x′i ≤ |Chost| − 1.

If q ≤ |Chost| − 2, then
∑

i∈Cdonor

1

|Cdonor| − 1
x′i ≤ 1 since Cdonor is a cover. Thus,∑

i∈Chost\{p}

x′i +
∑

i∈Cdonor

1

|Cdonor| − 1
x′i ≤ |Chost| − 1 and the result follows.
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Theorem 3 describes which indices can be used to create a donor cover. These candidate

indices can be easily found based upon a ψ threshold, which is associated with the host cover

inequality and the merging variable. Given a host cover Chost in row r and a designated

merging variable p ∈ Chost, then ψp = br − (
∑

i∈Chost
ar,i − ar,p) + 1.

The purpose of ψp is to identify indices that can be used to create a donor cover from

any row s. Define these potential donor indices as Nψp = {i ∈ N \ (Chost \ {p}) : ar,i ≥ ψp}.

If Cdonor is a cover and Cdonor ⊆ Nψp , then merging the host and donor cover on xp results

in a valid merged inequality as the following theorem proves.

Theorem 4. Assume a multiple knapsack instance, a host cover Chost from row r and a

merging variable xp with p ∈ Chost. Let Cdonor be a cover in some row s such that ar,i ≥ ψp

for all i ∈ Cdonor, then∑
i∈Chost\{p}

xi +
1

|Cdonor| − 1

∑
i∈Cdonor

xi ≤ |Chost| − 1

is a valid inequality of conv(PMK).

Proof. For contradiction assume that there exists a point x′ ∈ PMK such that x′ does not

satisfy
∑

i∈Chost\{p}

x′i +
1

|Cdonor| − 1

∑
i∈Cdonor

x′i ≤ |Chost| − 1. The proof divides into two cases,∑
i∈Chost\{p}

x′i = |Chost| − 1 and
∑

i∈Chost\{p}

x′i ≤ |Chost| − 2.

Assume
∑

i∈Chost\{p}

x′i = |Chost|−1. Since x′ violates the merged inequality, there exists an

x′q = 1 with q ∈ Cdonor. Examining row r results in
∑

i∈Chost\{p}

ar,i + ar,q ≥
∑

i∈Chost\{p}

ar,i +ψp.

By definition
∑

i∈Chost\{p}

ar,i + ψp = br + 1. Thus, x′ is not a feasible point, a contradiction.
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Next, assume
∑

i∈Chost\{p}

x′i ≤ |Chost| − 2. Since Cdonor is a cover in row s,
∑

i∈Cdonor
x′i ≤

|Cdonor| − 1. Thus, x′ does not violate the merged inequality.

To implement inequality merging, the user must designate a host constraint r and find a

host cover in this row. Pseudo-costing is a common method to prioritize variables, discussed

in Benichou, et.al. [14], Achterberg, et.al [1], and Gauthier and Ribiere [34]. This pseudo-

costing prioritization scheme is then used to choose indices to create Chost. Two useful

pseudo-costing attributes in MK instances are the reduced cost of the variable and its

coefficient in row r.

Once pseudo-costs are associated with indices in Chost, any merged variable xp may result

in a ψp that is large. In such a case, there may only be a few or possibly zero candidate

indices from which to build a donor cover. Without a donor cover, merging is impossible.

To alleviate this issue, the following algorithm modifies the host cover to reduce ψp so that

valid donor covers are more likely to exist.

The input to the Reducing ψp Algorithm is a multiple knapsack instance, a valid host

cover from row r, and a merging variable xp with p ∈ Chost. In addition, a threshold

τ ∈ [0, 1] is provided. The output of this algorithm is a new host cover inequality with a

new merging variable, which are denoted by C
′ host and xp′ , respectively.
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Reducing ψp Algorithm

a. Initialization:

ψp ← br − (
∑

i∈Chost
ar,i − ar,p) + 1

C
′ host ← Chost \ {p}

atotal ←
∑

i∈C′ host ar,i

b. Main Step:

For each q ∈ N \ C ′ host

If τψp ≤ ar,q ≤ ψp − 1, Then

C
′ host ← C

′ host ∪ {q}

atotal ← atotal + ar,q

If atotal > br, Then

exit for loop

end for

c. Output:

If: atotal > br, Then

report C
′ host with xq as the merging variable xp′

Else return no improvement to ψp
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When the Reducing ψp Algorithm terminates successfully, observe that C
′ host is a cover

since it satisfies the condition that
∑

i∈C′ host
ar,i > br. When this happens, the last index q

added to C
′ host becomes the newly determined merged variable xp′ , and

ψp′ = br − (
∑

i∈C′ host
ar,i − ar,p′) + 1.

Since ψp′ < ψp, smaller ar,i coefficients may identify acceptable additional variables for

use in Cdonor. This increases the likelihood of achieving a valid Cdonor, thus increasing the

opportunity for construction of merged cover cutting planes.

In some instances, the Reducing ψp Algorithm terminates successfully with a new cover

C
′ host and a new value ψp′ , but it may not have a sufficient number indices in Nψp′

to

construct Cdonor. If this happens, the Reducing ψp Algorithm should be used iteratively,

reducing ψp incrementally each time, until a suitable Cdonor is attained.

Observe that the Reducing ψp Algorithm also requires a careful selection of τ to achieve

stronger results in many instances. A small value of τ tends to allow smaller a coefficients to

enter C
′ host. When this happens, the size of C

′ host may become undesirably large or fail to

generate a cover. Similarly, if the dimension of the MK instance is relatively small, including

too many variables in the host cover may result in fewer (or possibly zero) attainable donor

cover inequalities in other rows. However, smaller values of τ may have desirable properties

if the problem has many variables because decreasing ψp allows many new candidate indices

for donor inequalities on other rows.

Higher values of τ may have similar benefits or problems with some MK instances. Very

high values of τ may allow few (or zero) new candidate indices in Nψp . In such instances,

it is more likely that the reducing ψp algorithm fails to return a new C
′ host and/or fails to

reduce the value of ψp. Even if the algorithm succeeds, higher values of τ tend to result in

relatively smaller reductions in ψp, possibly requiring multiple calls to this procedure when

a valid merged inequality is not yet attainable. However, a high-dimensional MK instance
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has a greater likelihood of achieving the valid merged inequality even when τ is relatively

high. In this case, higher values of τ may yield stronger results with host and donor covers

of smaller size.

Given this sensitivity to τ , a careful selection of τ should consider the dimension of the

MK instance and computational requirements. For practical purposes, it is recommended

to consider values of τ between 0.3 and 0.7.

The Reducing ψp Algorithm is a linear algorithm for each specified τ value. The ini-

tialization requires O(|Chost|). The mainstep could search through all other indices, so it

performs in O(N \ |Chost|) effort. Thus, the algorithm runs in O(n), which is linear for a

fixed τ .

4.2 Merging over Multiple Donor Cover Inequalities

Simultaneously

This section presents a method to strengthen the previous results by merging on multiple

donor covers at the same time. Conditions are provided to create valid inequalities by

merging over three or more cover inequalities simultaneously. Another algorithm is presented

to search for the strongest merging coefficients among multiple potential donor rows in the

MK instance.

Simultaneous merging over multiple donor covers begins with a Chost cover from a MK

constraint with p ∈ Chost and its associated ψp and set Nψp . The inequality

∑
i∈Chost\{p}

xi +
∑
j∈Nψp

αjxj ≤ |Chost| − 1

is likely to be valid for any αj ≤ 1
|Cj |−1 where Cj ⊆ Nψp is any cover from any constraint of

the MK instance with j ∈ Cj. Thus, the strongest such inequality would select αj = 1
|Cj |−1
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where Cj ⊆ Nψp and j ∈ Cj is the maximum cardinality cover from any row.

The check of validity must assure that there does not exist a feasible point which violates

this new inequality. Prior to this result, define cqmin, αqmin, and aqmin as shown below.

cqmin = minQ⊂Chost\{p}, |Q|=q {
∑
i∈Q

ar,i}

αqmin = minD⊆Nψp{|D| :
∑
i∈D

αi > |Chost| − q − 1}

aqmin = minD′⊆Nψp :|D′|=α
q
min
{
∑
i∈D′

ar,i}

These values support the second condition described in Theorem 5.

Theorem 5. Let Chost be a cover from an MK constraint with p ∈ Chost, corresponding

value ψp and associated set Nψp. Then the inequality

∑
i∈Chost\{p}

xi +
∑
j∈Nψp

αjxj ≤ |Chost| − 1

is valid for conv(PMK) for any αj ≤ 1
|Cj |−1 where j ∈ Cj ⊆ Nψp is any cover from any

constraint of the MK instance as long as one of the following conditions holds

i)
∑
i∈Nψp

αi ≤ 1

ii) cqmin + aqmin > br for all integer q ∈ {1, 2, ..., |Chost| − 1}.

Proof. Let x′ ∈ PMK . Since i ∈ Nψp , then {i} ∪ Chost \ {p} is a cover in row r. If∑
i∈Chost\{p}

x′i = |Chost| − 1, then
∑
i∈Nψp

x′i = 0. Thus,
∑

i∈Chost\{p}

x′i +
∑
i∈Nψp

αix
′
i ≤ |Chost| − 1 for

every value of αi.

48



Assume i) is true and
∑

i∈Chost\{p}

x′i ≤ |Chost| − 2. Then
∑
i∈Nψp

αixi ≤ 1 because i) is true.

Consequently,
∑

i∈Chost\{p}

x′i +
∑
j∈Nψp

αjx
′
j ≤ |Chost| − 1.

Assume ii) is true and let q =
∑

i∈Chost\{p}

x′i. By ii)
∑
j∈Nψp

αjx
′
j ≤ q or x′ violates row r.

Thus,
∑

i∈Chost\{p}

x′i +
∑
j∈Nψp

αjx
′
j ≤ |Chost| − 1.

An immediate result of Theorem 5 is an algorithm to merge over multiple donor covers

simultaneously. This algorithm explores all rows to determine the smallest eligible covers

of each merging variable in Nψp . This translates into the strongest α coefficient for each

merging variable. The input to the Donor Coefficient Strengthening Algorithm (DCSA) is

an MK instance, a host cover Chost from row r, and an index p ∈ Chost.

Donor Coefficient Strengthening Algorithm

a. Initialization:

ψp ← br − (
∑

i∈Chost
ar,i − ar,p) + 1

Nψp ← {i ∈ N \ (Chost \ {p}) : ar,i ≥ ψp}

Let A′r′ be Nψp sorted according to the a coefficients in row r′ ∈ {1, ...,m}

b. Main Step

For each i ∈ Nψp

Set αi ← 0

For each r′ ∈ {1, ...,m}
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coversum← ai,r′

coversize← 1

j ← 1

While coversum ≤ br′ and j ≤ |Nψp |

If j 6= i, Then

coversum← coversum+ A′r′,j

coversize← coversize+ 1

j ← j + 1

end while

if coversum > br′ and αi <
1

coversize−1 , Then

αi ← 1
coversize−1

end for

end for

c. Output

Return α, an array of the largest merging coefficients for the indices in Nψp .

The DCSA identifies the smallest donor covers possible for each index in Nψp from each

row in the MK instance using the indices sorted in each row by the a values. Observe that

the DCSA does not guarantee a valid inequality, but it does identify the strongest possible

merged inequality. If the reported merged inequality satisfies a condition of Theorem 5,

then it is a valid inequality.
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The computational effort for DCSA’s initialization is O(|Chost|+m|Nψp |log(|Nψp |)). The

mainstep requires O(m|Nψp |2). Thus DCSA’s total computational effort is O(|Chost| +

m|Nψp |2). Although this is a cubic run time, the DCSA performs quickly in practice.

The next section demonstrates the theoretical merging techniques presented in this sec-

tion through an example MK instance. The example also implements the algorithms shown

in this section.
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4.3 Example Cover Inequality Merging in a Multiple

Knapsack

The following example demonstrates the theoretical concepts discussed earlier, including the

validity of merging two cover inequalities from Theorem 3 and the calculation and usage of

the ψp term to find a valid merged inequality using Theorem 4. It also shows an improvement

to the host cover via the Reducing ψp Algorithm. The example further strengthens the

merged cover inequality using the concepts in Theorem 5 and the implementation of DCSA.

A discussion demonstrates that merged cover inequalities are a new category of cutting

planes for MK instances.

Consider multiple knapsack constraints of the form Ax ≤ b with n = 14 and m = 2

where

A =

 20 18 16 16 15 12 11 10 10 8 6 5 5 3

14 19 13 6 6 20 5 12 11 20 14 14 6 12


and

b =

 79

75

 .
Designate the first constraint as the host constraint, r = 1. This example uses a pseudo-

costing strategy that chooses terms for Chost according to the size of the coefficients in the

first constraint. The host constraint is sorted by this metric, while the second constraint is

not. Based on the sorted coefficients, the most desirable cover is {1, 2, 3, 4, 5}. Since index

5 is least desirable, it is the merging index, p = 5. Since a1,1 + a1,2 + a1,3 + a1,4 = 70 and

the corresponding right-hand side is 79, ψ5 = (79− 70) + 1 = 10. Because a1,5, a1,6, a1,7, a1,8

and a1,9 are all greater than or equal to 10, the candidate indices for the donor cover are

restricted to Nψ5 = {5, 6, 7, 8, 9}.
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Observe that the candidate indices for the donor inequality do not attain a cover in

either the first or second constraint. The Reducing ψp Algorithm is used to change the host

cover to create a smaller ψ. This smaller value of ψ should facilitate additional candidate

indices for the donor cover.

Let τ = 1
2
, then the Reducing ψp Algorithm seeks a host cover with a ψ value that is less

than or equal to 5. In this case {5} is eliminated from the host cover, and the host cover

adds an index with a coefficient between 5 and 9. Indices 10, 11, 12, and 13 are all suitable

and index 11 is added to C ′host. However, C ′host = {1, 2, 3, 4, 11} is not a cover. Including

either index 12 or 13 would create a host cover and by desirability C ′host = {1, 2, 3, 4, 11, 12}.

The new value for ψ12 is reduced exactly by the coefficient of the first added index, a1,11.

Thus ψ12 = 4, and the candidate indices for the donor cover areN ′ψ12
= {5, 6, 7, 8, 9, 10, 12, 13}.

There exist several covers in constraint two from this candidate set. One such cover is

Cdonor = {6, 8, 9, 10, 12}. Since a donor cover now exists, C ′host becomes Chost.

The algorithm has now determined the valid host cover inequality (4.1) and the valid

donor cover inequality (4.2). Merging the host with the donor on x12 yields the valid merged

inequality (4.3) according to Theorem 4.

x1 + x2 + x3 + x4 + x11 + x12 ≤5 (4.1)

x6 + x8 + x9 + x10 + x12 ≤4 (4.2)

x1 + x2 + x3 + x4 +
1

4
x6 +

1

4
x8 +

1

4
x9 +

1

4
x10 + x11 +

1

4
x12 ≤5. (4.3)

The following arguments demonstrate Theorems 3 and 4 in practice. Verifying the

validity of (4.3) requires that coefficients in row one associated with Chost \ {12} ∪ {j} are

a cover for some constraint for every j ∈ Cdonor. The sum of the a1,j coefficients over

Chost \ {12} is 76. Clearly Chost \ {12} ∪ {j} is a cover in the first knapsack as long as

a1,j ≥ 4 and j /∈ Chost \ {12}. Since all candidate donor indices have a1,j ≥ 4 = ψ12, (4.3) is
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verified as a valid inequality of conv(PMK).

Observe that numerous other minimal donor covers exist when p = 12. Two other

examples are {5, 6, 7, 9, 10, 12} with corresponding inequality x5+x6+x7+x9+x10+x12 ≤ 5

and {5, 6, 7, 8, 9, 10, 13} with corresponding inequality x5 +x6 +x7 +x8 +x9 +x10 +x13 ≤ 6.

Accordingly, each of these donor cover inequalities could be merged with the host cover

inequality yielding the following valid merged inequalities

x1 + x2 + x3 + x4 +
1

5
x5 +

1

5
x6 +

1

5
x7 +

1

5
x9 +

1

5
x10 + x11 +

1

5
x12 ≤ 5 (4.4)

x1 + x2 + x3 + x4 +
1

6
x5 +

1

6
x6 +

1

6
x7 +

1

6
x8 +

1

6
x9 +

1

6
x10 + x11 +

1

6
x13 ≤ 5. (4.5)

Each of these merged inequalities remove linear relaxation points and are thus cutting

planes. For instance, the point (1,1,1,1,0,0,0,0,0,1
4
,1,0,0,0) is eliminated by each of these

merged inequalities. Additionally, it is simple to find points in PLR that are satisfied by two

of the three merged inequalities, but eliminated by the other inequality. Thus, each merged

inequality is eliminating distinct regions of the linear relaxation space.

Returning to the original host cover {1, 2, 3, 4, 11, 12}, it is also possible to generate new

families of merged inequalities if merging on p = 11 instead of p = 12. By changing the

index selected for merging, ψ11 = 5 = (79 − 75) + 1 with corresponding candidate donor

indices {5, 6, 7, 8, 9, 10, 11, 13}. Similar to the examples shown previously, many possible

new donor covers now exist. For instance, Cdonor = {6, 8, 9, 10, 11} yields

x1 + x2 + x3 + x4 +
1

4
x6 +

1

4
x8 +

1

4
x9 +

1

4
x10 +

1

4
x11 + x12 ≤ 4. (4.6)

The idea of ψ guarantees validity, but it is not necessary to merge covers. Consider

Chost = {1, 2, 3, 4, 6} with p = 4. In the first constraint, {1, 2, 3, 5, 6} is a cover and so

{5} is a candidate index. The second constraint has several relevant covers: {1, 2, 3, 6, 9},
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{1, 2, 3, 6, 10}, {1, 2, 3, 6, 11}, {1, 2, 3, 6, 12} and {1, 2, 3, 6, 14}. Thus, the candidate indices

are now {4, 5, 9, 10, 11, 12, 14} by Theorem 4. Another cover in the second constraint is

{4, 9, 10, 11, 12, 14}, which results in the following merged constraint.

x1 + x2 + x3 +
1

5
x4 + x6 +

1

5
x9 +

1

5
x10 +

1

5
x11 +

1

5
x12 +

1

5
x14 ≤ 4 (4.7)

Such constraints may be more useful computationally since they are incorporating cov-

ers from multiple constraints to obtain validity. For instance, the linear relaxation point

(1,1,1,1
3
,0,1,0,0,1

4
,0,0,0,0,1

3
) is eliminated by this inequality.

To demonstrate Theorem 3, an additional row is added to this example. Now consider

the following multiple knapsack instance

A =


20 18 16 16 15 12 11 10 10 8 6 5 5 3

14 19 13 6 6 20 5 12 11 20 14 14 6 12

4 6 7 6 18 3 17 15 19 4 16 8 9 14


and

b =


79

75

73

 .

Again, consider Chost = {1, 2, 3, 4, 11, 12}, with ψ12 = 4 and the set of eligible donor

indices Nψ12 = {5, 6, 7, 8, 9, 10, 12, 13}. For each index in Nψ12 , the DCSA forces this index

as the first element in a cover and then adds other indices according to the sorted order for

each row. Observe that {5, 6, 7, 8, 9, 10, 12, 13} is not a cover in row 1, so only rows 2 and 3

are considered.
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For index 5, the smallest covers are {5, 6, 10, 12, 8, 9} and {5, 9, 7, 8, 13} in rows 2 and

3, respectively. Continuing this logic for each of the other indices results in Table 4.1. The

smallest covers are listed in the order in which the DCSA adds indices to the cover.

Index Smallest Cover Row α
5 {5, 9, 7, 8, 13} 3 1

4

6 {6, 10, 12, 8, 9} 2 1
4

7 {7, 9, 5, 8, 13} 3 1
4

8 {8, 9, 5, 7, 13} 3 1
4

9 {9, 5, 7, 8, 13} 3 1
4

10 {10, 6, 12, 8, 9} 2 1
4

12 {12, 6, 10, 8, 9} 2 1
4

13 {13, 9, 5, 7, 8} 3 1
4

Table 4.1: Applying DCSA to Find the Strongest Coefficients

Thus the simultaneous merged inequality is

x1 + x2 + x3 + x4 +
1

4
x5 +

1

4
x6 +

1

4
x7 +

1

4
x8 +

1

4
x9 +

1

4
x10 + x11 +

1

4
x12 +

1

4
x13 ≤ 5. (4.8)

Observe that this new inequality dominates all of the previous inequalities. Further-

more, both donor rows are necessary to achieve this inequality. For instance, the smallest

cover in row 3 containing index 6 has 6 indices. Thus row 2 is necessary to find a cover

containing index 6 with only 5 indices, obtaining the 1
4

coefficient on x6 in (4.8). Similarly,

the smallest cover in row 2 containing index 7 has 6 indices. Thus row 3 is necessary to

obtain a 5-element cover containing x7 and the corresponding coefficient 1
4

for x7 in (4.8).

To argue the validity of (4.8), consider Theorem 5. Since
∑

j∈Nψ12

αj = 2, condition i) is

not satisfied. For condition ii), observe that c1min = a1,11 = 6, c2min = a1,11 + a1,4 = 22, and
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similarly the other values are c3min = 38, c4min = 56, and c5min = 76. Determining the values

for αmin yield that α1
min, α2

min, and α3
min do not exist as

∑
j∈Nψ12

αj = 2. However, α4
min = 5

because it requires five variables with coefficients in Nψ12 to be set to one to arrive at a

value strictly larger than 1 = |Chost| − 4− 1. Since |Chost| − 5− 1 = 0, α5
min = 1.

Since α1
min, α2

min, and α3
min do not exist, only a4min and a5min are determined. The value

of a4min = a1,13 + a1,12 + a1,10 + a1,9 + a1,8 = 38. Similarly, a5min = a1,13 = 5. Condition ii) of

Theorem 5 checks c4min + a4min = 56 + 38 = 94 > 79, and c5min + a5min = 76 + 5 = 81 > 79.

Thus, (4.8) meets condition ii) of Theorem 5 and it is valid. As a note, observe that checking

q = |Chost| − 1 is always satisfied by the definition of Nψp .

The idea of Theorem 5 is to use αmin, cmin, and amin to guarantee validity of the simul-

taneously merged inequality. If the merged inequality is invalid, then there is a collection

of the variables set to 1 in the host constraint that violates the merged inequality. Using

αmin, cmin and amin tests a hypothetical collection of variables that would be most likely to

induce invalidity.

To clarify the purpose of αmin, cmin, and amin, consider the following discussion. In this

example, invalidity could occur if x1 +x2 +x3 +x4 +x11 = 4. The minimum contribution of∑
a1,1+a1,2+a1,3+a1,4+a1,11 such that four of them are taken is 6+16+16+18 = 56 = c4min.

With x1 + x2 + x3 + x4 + x11 = 4, invalidity could occur if 1
4
x5 + 1

4
x6 + 1

4
x7 + 1

4
x8 + 1

4
x9 +

1
4
x10 + 1

4
x12 + 1

4
x13 > 1. This requires at least 5 merged variables to be 1 (5 × 1

4
> 1).

Thus, α4
min = 5. Finding the 5 smallest a coefficients in the host constraint corresponding

to any simultaneously merged variable derives a4min = 5 + 5 + 8 + 10 + 10 = 38. Since

38 + 56 > 79 = b1, the most likely hypothetical point to violate the inequality is not feasible

in the host row. Thus, the inequality is valid when x1 + x2 + x3 + x4 + x11 = 4.

This fast check in Theorem 5 is a sufficient condition, but it is not a necessary condition.

It is possible to not have the smallest coefficients in the merged inequality linked to the

smallest a coefficients. Thus, this check guarantees validity, but there may exist valid
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simultaneously merged inequalities that violate the check.

The final benefit of this example demonstrates that merging cover inequalities are not an

immediate extension of known methods. Clearly, the general inequality merging in Chapter

3 did not merge multiple donor covers and could not obtain (4.8). As argued in Chapter

3, general inequality merging or cover inequality merging is also fundamentally different

from other popular cutting plane generation techniques such as C-G cuts (Chvátal [18] and

Gomory [35]), disjunctive cuts (Balas and Perregaard [9]), Gomory cuts (Gomory [35]),

or superadditive cuts (Gomory and Johnson [37] and Wolsey [76]). Theoretically, these

methods could generate (4.8), but they would require numerous iterative applications to

find this cutting plane. Such a result is unlikely to occur without the consultation of an

oracle to select initial inequalities, weights or other necessary input.

There are similarities between merging cover inequalities and some categories of lifting.

Any type of sequential lifting has integer coefficients [75], and sequence independent lifting

would require all non-cover coefficients in this example to be 0 [40]. Thus neither of these

methods generate (4.8). While simultaneous lifting could theoretically generate (4.8) [41],

it would require starting with the trivial cutting plane x1 + x2 + x3 + x4 + x11 ≤ 5 and

furthermore having a perfect guess of proper weights. Consequently, inequality merging

yields inequalities similar to (4.8) that are extremely unlikely to be produced by lifting

techniques.

A single call to the DCSA creates (4.8) and requires O(nm2) effort. Thus, merging over

cover inequalities is a new method to obtain previously unknown inequalities. Given the

large size of most multiple knapsack problems, the flexibility of the construction algorithms

are usually capable of finding strong candidate Chost and Cdonor inequalities.

Both Chapters 3 and 4 have provided theoretical properties of merged inequalities. The

question remains as to whether or not these inequalities can be computationally useful.

Chapter 5 provides the results of a thorough computational study, demonstrating the prac-
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tical effectiveness of inequality merging on benchmark multiple knapsack problems.

59



Chapter 5

Computational Study

Chapter 5 includes the results of a thorough computational study that validate the effec-

tiveness of inequality merging for multiple knapsack problems. The computational study

compares solution times for multiple knapsack problems both with and without the use of

merged inequalities. This is accomplished using CPLEX 12.5 [21] to determine the com-

putational requirements with default CPLEX settings and then comparing them to the

computational requirements for the same problems with the addition of merged cover in-

equalities. The results are obtained on a PC with an i7-4770 processor at 3.4 Ghz with 8 GB

of RAM. Since larger problems become memory intensive, CPLEX writes out to memory

node files when necessary.

The study considers a variety of implementation strategies including different pseudo-

costing techniques, the number of merged inequalities added, the possibility of overlapping

rows when multiple cuts are added, and the option to use the Donor Coefficient Strengthen-

ing Algorithm when constructing merged inequalities. Significant experimentation focused

on smaller problems, and this process yielded the recommended implementation strategies

for general (larger) problems. Following the recommended construction and implementation
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strategies, merged inequalities produced average reductions of about 9% of computational

effort required for MK problems as compared to baseline CPLEX settings.

5.1 Multiple Knapsack Instances

There are numerous types of multiple knapsack problems. A standard benchmark set of

MK instances from the OR−Library [62] are used for this study. The instances chosen for

this study were developed by Chu and Beasley in 1998 [19]. The test problems include nine

classes containing 5, 10, and 30 rows with 100, 250, and 500 variables. These problems are

saved in files titled mknapcb1,...,mknapcb9. Each class contains 30 MK instances. These 30

instances are divided into groups of 10 based upon a tightness ratio. These 270 benchmark

instances are randomly created using the following method.

Let ai,j be an integer uniformly distributed between 0 and 1,000. With these random

coefficients, bi = bs
n∑
j=1

ai,jc for each j = 1, ...,m. The value of s is called the tightness ratio,

which is .25 for the first 10 instances, .5 for the second ten instances, and .75 for the final

ten instances. The cost values are determined by cj = b
m∑
i=1

ai,j
m

+ uc, where u is a uniform

number between 0 and 500.

For this computational study, the first ten instances are considered because the tightness

ratio has the lowest value of 0.25. When the tightness ratio is 0.5 or higher, then Chost tends

to include more variables. Since the variables in Chost are prohibited from being in Nψp ,

a higher tightness ratio reduces the size of Nψp which decreases the likelihood of finding a

donor cover in any row.

The problems developed by Chu and Beasley span a wide gamut of size and difficulty.

The three files of problems with only 100 columns were very easy for modern computers to

solve quickly. In particular, many of the smallest problems could be solved in less than a

second, and the vast majority of these problems solved so quickly that there was very little
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difference between the baseline CPLEX and the inclusion of merged inequalities. Given the

trivial size of these problems, the computational study did not consider problems with only

100 variables.

Conversely, the largest problems (10× 500), (30× 250), and (30× 500) were so big that

they typically took over a day to solve each of the sub-problems in those files. Consequently,

it took at least 2-3 weeks to solve the 10 sub-problems in order to determine a complete set

of run output data. Thus computational results were not pursued for those instances due

to the prohibitively long computational requirements.

Instead, the computational study focuses its attention on medium sized problems in files

mknapcb2 (5 × 250) and mknapcb5 (10 × 250). Of these two files, the smaller problems

(5×250) were used for extensive experimentation since the first 10 instances could be solved

in approximately 5-10 minutes. These problems were complex enough to demonstrate the

effect of adding merged inequalities, and they solved quickly enough to allow substantial

experimental variations with numerous subordinate iterations. Thus, the experimentation

on smaller problems motivated several insights concerning construction techniques and im-

plementation strategies that tended to yield better results.

The second file (mknapcb5, with problems of size 10× 250) served as a test-ground for

larger problems. It typically took a total of 1-2 days to solve the first 10 instances in this

file. By using the recommended strategies learned from the smaller problems, fewer itera-

tions of the larger problems still allowed for similar average improvements in computational

requirements. These larger problems were excellent representatives of difficult, real-world

problems, and the observed reductions in computational requirements validated the the-

oretical advancements in this dissertation as effective methods to help solve modern MK

problems more rapidly.
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5.2 Testing Implementation Strategies

This section describes the implementation techniques used to generate merged cover inequal-

ities. Experimentation with the smaller MK problems focused on implementation strategies

that varied three critical components. First, what pseudo-costing strategies generate the

most effective merged cover inequalities? Second, should there be overlapping of rows be-

tween host and donor inequalities if multiple cuts are added? Third, how many merged

inequalities should be added?

5.2.1 Pseudo-Costing Strategies

A primary implementation strategy focused on the choice of pseudo-cost weighting tech-

niques used to designate the indices in the host inequality. The two attributes considered

in this study are the reduced costs of each variable and the a coefficients of each variable

in the row corresponding to the host inequality. Three different options for pseudo-costing

were evaluated.

One option primarily sorts on the reduced costs of the variables. This option tends to

select host cover inequality indices that are more likely to appear in the optimal linear relax-

ation solution. Consequently, tested instances of the merged inequalities in this option were

typically near the right-hand side at the root node, and on some occasions they eliminated

the root node’s linear relaxation solution.

A second option sorts on the a coefficient values of the indices in the host constraint. This

policy usually builds stronger host cover inequalities because fewer indices were necessary to

construct the host covers, and the corresponding cover inequalities had smaller right-hand

sides than the first option. Larger host cover coefficients also tend to make it easier to adjust

ψp if necessary to find valid indices for the donor inequality.

The third option considered in this study offered equal weight to both attributes when
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constructing host cover inequalities. Thus the indices are sorted on a combination of a

coefficients and reduced costs. This technique attempts to gain some of the benefits of both

attributes without focusing exclusively on only one of the two.

5.2.2 Overlapping Rows

The second idea considered as an implementation strategy was whether or not overlapping

rows improves the performance of the merged inequalities when multiple merged cuts are

added. Consider an instance where two cuts are added. Suppose that the first cut merged

cover inequalities from rows 1 and 2 with row 1 contributing the host cover inequality and

row 2 serving as one of the rows that contributes variables from the corresponding donor

cover inequality. If the second cut used row 2 to contribute the second host inequality and

any other row(s) contributing donor cover variables, this would be considered an overlap.

Selection of a previously unused row as the second host inequality is not an overlap.

The concept of forcing an overlap tests the hypothesis that overlapping rows allows the

algorithm to glean more information from the overlapped row. This requires the same row to

contribute both the host cover information according to the pseudo-costs of each coefficient

and the donor cover information for a second merged inequality according to the value of

ψp in the second host inequality.

Use of the Donor Coefficient Strengthening Algorithm (DCSA) from Chapter 4 would

significantly increase the likelihood of an overlap, since all rows are considered in the process

of strengthening donor coefficients. In practice, employing the DCSA almost always defined

an overlap regardless of the choice of subsequent host inequalities when multiple merged

cutting planes were generated. Thus, use of the DCSA was part of this experimental process.

Some experimentation used the DCSA and some did not. However, employing the DCSA

constituted an overlap for experimental purposes.
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5.2.3 Varying the Number of Merged Inequalities

The final implementation strategy studied on the smaller MK instances considered the num-

ber of merged cover inequalities generated. Adding a single merged inequality is equivalent

to the addition of a single cutting plane to the existing problem. It is typically possible to

find multiple merged inequalities for each MK instance, and adding more cutting planes has

theoretical appeal since more linear relaxation space may be removed.

However, there is also theoretical appeal associated with adding relatively fewer merged

inequalities since the addition of each constraint increases the size of the A matrix and basis.

This may escalate the computational time required, slowing the computational process for

each iteration of branch-and-bound.

If each row of the original constraint matrix is considered as the host inequality at most

once, then the size of the A matrix is at most doubled with new merged cutting planes. The

experimental question considered how many merged inequalities was best, balancing the

benefit of additional cuts with the detrimental effect of increasing the size of the A matrix

too much. Thus, the computational study evaluated the inclusion of several numbers of

merged cutting planes ranging from 1 to m.

To evaluate the implementations, each test problem was solved with and without merged

cover inequalities. The baseline solution for each problem uses the CPLEX 12.5 solver at

its default settings. Code was developed that added merged inequalities as a preprocessing

step to the given problems, and then CPLEX 12.5 solved the problems a second time. The

following sections discuss the computational results and provide insights and recommenda-

tions.
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5.3 Computational Results

The computational study considered the variations of each implementation strategy by test-

ing both small and large instances. Instead of reporting the time in seconds, the data below

compares computational ticks in CPLEX. Fischetti, et. al. argue the benefit of this tech-

nique in [33], and Ju, et. al. use a similar process in [52]. Ticks provide a more accurate com-

parison between the experimental runs because the computational time in seconds is subject

to variability on different computers with multiple computers running different implemen-

tation strategies and/or pseudo-costing construction techniques. However, computational

ticks alleviate this concern of variability between machines by reporting a deterministic

measure of computational effort.

Merged inequalities are constructed and added as preprocessing cuts. This construction

process is extremely rapid, and the preprocessing times were less than 0.003 seconds for every

multiple knapsack instance in this study. The total preprocessing time for all 10 instances

was less than 0.02 seconds. Thus, the computational effort associated with preprocessing is

negligible and does not diminish the computational savings from inequality merging.

A summary of the primary findings are discussed in the paragraphs below with tabular

summaries of some selected output. Since the two categories of MK test problems in this

computational study included 10 multiple knapsack subordinate instances, most of the tables

compare the aggregate total ticks required to solve all 10 problems using the baseline CPLEX

12.5 and the inequality merging technique.
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5.3.1 Computation Results for Small Problems

Problems from the smaller MK instances with 5×250 A matrices (file mknapcb2) offered an

excellent opportunity for experimenting with each of the implementation strategies. Since

these problems solved relatively quickly, they were used to test a variety of implementation

strategies. Observe that there are combinatorially many row combinations that are possible

for each implementation strategy. An extensive experimentation conducted a thorough, but

not exhaustive, process of varying row combinations for each strategy.

Tables 5.1 and 5.2 include selected output from these experiments on the smaller MK

problems, showing the best known computational results that correspond to each strategy.

Since there are 5 rows in the smaller test problems, each implementation strategy was tested

with the inclusion of 1-5 merged inequalities. Table 5.1 shows the results for iterations with

1, 2, or 3 merged inequalities added. Table 5.2 shows the results with 4 or 5 merged

inequalities added. A later conclusion recommends constructing 1-3 merged inequalities, so

the data is separated in this manner as a convenience for display purposes.

The pseudo-costing categories are split into three sub-columns in Tables 5.1 and 5.2.

These represent a focus on reduced costs, a focus on a values, and a balanced approach

between the two. The numbers in those columns represent how many cuts followed each of

the possible pseudo-costing strategies in that particular experiment.
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# Merged Overlap Pseudo-Costing Strategy Total Ticks Percent

Cuts Rows Red. Costs Balanced a Values (10 probs.) Improv.
Baseline Baseline 0 0 0 81497 Baseline

1 N/A 1 0 0 70895 13.0%
1 N/A 0 0 1 69669 14.5%
1 N/A 0 1 0 75868 6.9%
2 Yes 2 0 0 72376 11.2%
2 Yes 0 0 2 78840 3.3%
2 Yes 0 2 0 71668 12.1%
2 Yes 1 0 1 71305 12.5%
2 Yes 0 1 1 67634 17.0%
2 Yes 1 1 0 76272 6.4%
2 No 2 0 0 81022 0.6%
2 No 0 0 2 76956 5.6%
2 No 0 2 0 77947 4.4%
2 No 1 0 1 64417 21.0%
2 No 0 1 1 72356 11.2%
2 No 1 1 0 79088 3.0%
3 Yes 3 0 0 74985 8.0%
3 Yes 0 0 3 72123 11.5%
3 Yes 0 3 0 67794 16.8%
3 Yes 1 1 1 72593 10.9%
3 No 3 0 0 80178 1.6%
3 No 0 0 3 75445 7.4%
3 No 0 3 0 77490 4.9%
3 No 1 1 1 77448 5.0%

Merged Average 74099 9.1%

Table 5.1: Changing Implementation Strategies for Smaller MK Problems, 1-3 Cuts

Observe that inequality merging outperformed the baseline CPLEX computational ticks

for all strategies in Table 5.1 with 1, 2, or 3 added inequalities, and inequality merging

also outperformed the baseline CPLEX for most of the 4 and 5 cut strategies in Table 5.2.

Additionally, several of the better results in both tables achieved improvements in excess of

10% over the baseline computational ticks required to solve the first 10 MK instances in the

smaller problems.

Extensive experimentation on the smaller MK instances (5 × 250) informed the best
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# Merged Overlap Pseudo-Costing Strategy Total Ticks Percent

Cuts Rows Red. Costs Balanced a Values (10 probs.) Improv.
Baseline Baseline 0 0 0 81497 Baseline

4 Yes 4 0 0 80230 1.6%
4 Yes 0 0 4 79756 2.1%
4 Yes 0 4 0 80494 1.2%
4 Yes 1 2 1 73751 9.5%
4 No 4 0 0 80606 1.1%
4 No 0 0 4 81981 -0.6%
4 No 0 4 0 72744 10.7%
4 No 1 2 1 74820 8.2%
5 Yes 5 0 0 82279 -1.0%
5 Yes 0 0 5 72882 10.6%
5 Yes 0 5 0 82423 -1.1%
5 Yes 1 3 1 76820 5.7%
5 No 5 0 0 77944 4.4%
5 No 0 0 5 78817 3.3%
5 No 0 5 0 83201 -2.1%
5 No 1 3 1 75256 7.7%

Merged Average 78375 3.8%

Table 5.2: Changing Implementation Strategies for Smaller MK Problems, 4-5 Cuts

implementation strategies used for larger problems. Examination of each experimental pa-

rameter in isolation is shown in Tables 5.3 - 5.5. In each instance, the average computational

times of the best known results from all relevant lines in Tables 5.1 and 5.2 are averaged to

show aggregated results for each experimental parameter.

Table 5.3 considers the different pseudo-costing strategies. Observe that many of the

experimental runs in Tables 5.1 and 5.2 included a pure strategy (all reduced costs, all a

values, or all balanced cuts). However, some of the experimental runs include a mixture of

strategies such as the 3 cut scenario with 1 cut of each pseudo-costing strategy. Experiments

of this type are listed under ’Mixture of Strategies’ in Table 5.3.

Notice that each of the three pure strategies performed well, at about the same level

of improvement. However, there may be some additional benefit to mixing pseudo-cost

strategies if multiple merged inequalities are being generated. Any of the pseudo-costing
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Pseudo-Costing Strategy

All Reduced Costs All Balanced All a Values Mixture of Strategies
Average Ticks 77835 76625 76274 73569

% Improvement 4.5% 6.0% 6.4% 9.8%

Table 5.3: Average Ticks of Pseudo-Costing Strategies from Tables 5.1 and 5.2

strategies may work well, but a mixed strategy is often preferred if multiple cuts are added.

Thus, all of the same pseudo-costing strategies were considered for the larger MK instances

presented later in this chapter.

Table 5.4 uses the experimental output from Tables 5.1 and 5.2 to compare whether or

not overlapping rows is preferred when multiple merged inequalities are generated.

Overlapping Rows

No Yes
Computational Ticks 77095 75294

% Improvement 5.4% 7.7%

Table 5.4: Average Ticks of Overlapping Row Strategies from Tables 5.1 and 5.2

Merged inequalities almost always improved the computational time, regardless of the

overlapping strategy. However, it appears that deliberate overlapping of rows provides

even stronger results if multiple cutting planes are added. This is consistent with the

theory motivating Theorem 5. Overlapping allows the algorithm to search in rows that had

previously been used to generate a host cover inequality for an earlier merged cut. If the

DCSA is employed, the algorithm may also search all candidate rows including those that

had previously generated a host inequality.

It is easy to implement overlapping on general MK instances, and overlapping typically

outperformed experimental variations without overlapping. Thus all future experimentation

included overlapping as part of the recommended implementation strategy. Overlapping

may occur by deliberately forcing an overlap while constructing merged inequalities or by
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use of the DCSA. Both types of overlapping were explored in greater detail in the larger

MK instances.

The third experimental variation to consider is the number of merged inequalities that

were generated and implemented before solving the MK problems. Since there are 5 rows for

the smaller MK instances in this example, the experimental output from Tables 5.1 and 5.2

includes all 1, ...,m=5 possible numbers of added merged inequalities assuming that each

row serves as the host inequality no more than once. Table 5.5 shows the average perfor-

mance of all strategies from Tables 5.1 and 5.2 that employ each number of constructed

merged inequalities.

Number of Merged Covers Added

1 2 3 4 5
Computational Ticks 72144 74157 74757 78181 78702

% Improvement 11.5% 9.0% 8.3% 4.2% 3.4%

Table 5.5: Average Ticks of Quantity of Cut Strategies from Tables 5.1 and 5.2

The benefit of inequality merging is immediately apparent when a single merged cutting

plane is added. Adding two or three merged inequalities also performed well, with strong

improvements over the baseline CPLEX ticks. It is not surprising that there are diminishing

returns as the number of merged inequalities increases, with the worst performance occuring

as the number of generated cuts approaches the m number of rows in the original A matrix.

This is intuitive since each added merged inequality increases the size of the new A matrix

during preprocessing, and matrix manipulation during the solution process is slowed by a

larger A matrix.

This result was made even more clear by the separation of experimental output into

Tables 5.1 and 5.2. The average performance from Table 5.1 reduced computational effort

by about 9%, while the experimental runs with 4 or 5 merged inequalities in Table 5.2
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provided an average improvement of only 4%. Thus, the best results appear to occur when

the number of added merged inequalities is limited to 1, 2, or 3.

These experimental results from the smaller MK instances support three conclusions for

use in larger MK instances:

i. Each of the pseudo-costing strategies performs well. If multiple merged inequalities

are added, the best results appear to occur when using a variety of pseudo-costing

strategies while generating multiple cutting planes. However, specific geometries of

the MK instance may cause one strategy to outperform the others. All pseudo-costing

strategies should be considered for larger problems.

ii. Deliberate overlapping of rows almost always outperformed the same experimental

runs that prohibited overlapping rows. Only test strategies that use overlapping of

rows for all larger problems.

iii. The number of added merged inequalities quickly creates diminishing returns because

of additional computational requirements as the A matrix and basis grow in size.

Preferred implementation strategies should focus on including 1, 2, or 3 merged cutting

planes.

These conclusions provided critical insights for the best implementation strategies used

for larger problems. As the problems increased in size, the computational time quickly

increased. The same implementation strategies tended to yield the strongest results with

larger problems, as shown in the next section.
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5.3.2 Computational Results for Larger Problems

The earlier work was performed on relatively small MK problems that solved quickly. This

facilitated an extensive analysis of the implementation strategies described above. However,

the remaining problems in the computational study took considerably longer to solve. The

remainder of the computational study focuses on MK instances with 10 constraints and 250

variables. These problems are representative of many real-world MK problems that could

be solved within 1-2 days.

As before, the primary metric used to compare experimental strategies is the total com-

putational effort (reported CPLEX ticks) required to solve the first 10 MK problems. Fol-

lowing the recommended implementation strategies from the previous section, a variety of

pseudo-costing strategies are considered and all runs allow overlapping of rows. Experimen-

tation focuses on the construction of 1, 2, or 3 merged inequalities, and the output from

these runs is given in Table 5.6. For comparison, some experimentation with higher numbers

of constructed merged inequalities is provided in Table 5.7.

As with the smaller MK problems, there were combinatorially many combinations of

rows that could be tested for each implementation strategy. The experimentation considered

many such variations. The best known results for each implementation strategy are shown

in Tables 5.6 and 5.7.
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# Merged Pseudo-Costing Strategy Total Ticks Percent

Cuts Added Red. Costs Balanced a Values (10 problems) Improvement
Baseline 0 0 0 30,994,459 Baseline

1 1 0 0 29,949,459 3.4%
1 0 0 1 30,268,076 2.3%
1 0 1 0 29,614,573 4.5%
2 2 0 0 20,166,265 34.9%
2 0 0 2 29,347,409 5.3%
2 0 2 0 30,881,549 0.4%
2 1 0 1 28,518,016 8.0%
2 0 1 1 29,975,494 3.3%
2 1 1 0 29,718,811 4.1%
3 3 0 0 20,412,908 34.1%
3 0 0 3 29,362,710 5.3%
3 0 3 0 30,908,925 0.3%
3 1 1 1 29,903,185 3.5%

Average 28,260,350 8.8%

Table 5.6: Changing Implementation Strategies for Larger MK Problems, 1-3 Cuts

# Merged Pseudo-Costing Strategy Total Ticks Percent

Cuts Added Red. Costs Balanced a Values (10 problems) Improvement
Baseline 0 0 0 30,994,459 Baseline

4 4 0 0 31,841,297 -2.7%
4 0 0 4 31,495,916 -1.6%
4 0 4 0 32,067,429 -3.5%
4 1 2 1 32,032,889 -3.4%
5 5 0 0 20,789,585 32.9%
5 0 0 5 31,172,648 -0.6%
5 0 5 0 32,866,353 -6.0%
5 1 3 1 31,273,350 -0.1%
10 10 0 0 37,095,448 -19.7%

Average (all) 31,053,810 -0.2%
Average (omits 10-cut run) 30,382,517 2.0%

Table 5.7: Changing Implementation Strategies for Larger MK Problems, 4 or more Cuts
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Observe that restricting the number of merged inequalities to 1, 2, or 3 yielded strong

computational results with an average improvement of about 9%. In contrast, adding 4 or

more cuts often required more computational time than the baseline CPLEX settings. The

following paragraphs explain the results from Tables 5.6 and 5.7 in greater detail.

Table 5.6 shows the best known results for the large MK problems when the recommended

implementation strategies are followed. In these instances, inequality merging continues to

provide an average improvement of about 9% over the baseline CPLEX computational

effort. This is roughly the same level of improvement observed in the smaller MK instances.

Most important, following the recommended implementation strategies always improved

the solution times. This provides strong evidence that inequality merging is a beneficial

technique for MK problems, and the reduction of computational ticks correlates to hours of

time savings for large problems.

Notice that three of the set-ups in Tables 5.6 and 5.7 performed extremely well, reducing

the computational ticks by more than 30%. The savings in each of these experiments

corresponded to approximately 12 hours of computational time. In this case, all 3 of the

best set-ups used pseudo-cost strategies that focus on reduced costs. Clearly a focus on

reduced costs had the best impact for this particular grouping of larger MK instances,

but that may not be the case in general. Previous analysis from Table 5.3 suggested that

different pseudo-costing techniques may be preferred for particular problems, but focusing

on reduced costs was actually the least preferred in that grouping of smaller MK instances.

Identifying the reason that certain methods dominate other pseudo-costing techniques in

particular problems is an excellent area for future research.

Table 5.7 also illustrates the significant impact of diminishing returns as the number

of constructed merged inequalities exceeds three. The additional computational burden of

adding too many new inequalities to the A matrix and basis caused negative ’improvements’

in every case except one. Since the larger MK instances had 10 rows in the original A matrix,
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one example of adding 10 cuts is presented to accentuate the diminishing returns. In this

10-cut example, the best known result required almost 20% more computational ticks than

the baseline CPLEX.

Further analysis of the output from larger MK instances also considers the two different

types of overlapping. While all of these experimental runs used overlapping of some type,

an additional policy difference was studied in this example. In some cases, randomly se-

lected overlapping rows were determined a priori, restricting all overlaps to specific donor

inequalities. In other instances, the algorithm searched every possible donor inequality to

find the strongest coefficients for each variable. While the second policy has obvious the-

oretical appeal, additional computational time and less sparse cuts may imply diminishing

returns when the DCSA searches every candidate donor. In some instances, randomly as-

signed specified rows outperformed searching all donor rows. In other instances, the DCSA

gave the strongest results.

Table 5.8 shows the best solution times for each of the 10 MK instances in the larger files.

In addition, the table also describes the implementation strategy that yielded the best result

for each problem. Merging improved the solution times for each of the 10 problems, with an

average reduction of computational requirements by 25.8%. However, the best single result

for each sub-problem came from a wide variety of implementation strategies. These include

instances that search all donor rows with the DCSA and other instances that consider only

specified randomly-selected donor inequalities that define single overlaps.
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Problem Baseline Merging Percent Implementation Strategy

# Ticks Ticks Improv. Cuts Pseudo-cost Donor Rows
1 1,955,055 128,467 93.4% 3 cuts Reduced Costs All
2 203,122 160,209 21.1% 1 cuts Balanced Specified
3 316,729 265,573 16.2% 3 cuts a Values Specified
4 1,964,804 1,710,877 12.9% 2 cuts Red. Cost & a Val. Specified
5 6,735,442 6,300,815 6.4% 2 cuts Red. Cost & a Val. Specified
6 331,058 288,987 12.7% 1 cut a Values Specified
7 224,004 208,500 6.9% 1 cut a Values All
8 17,630,931 5,993,211 66.0% 5 cuts Reduced Costs Specified
9 651,113 563,288 13.5% 2 cuts Red. Cost & a Val. All
10 982,201 895,267 8.8% 3 cuts a Values Specified

Average 25.8%

Table 5.8: Best Merging Performance by Problem for m = 10 and n = 250

Several important observations become apparent from the data in Table 5.8.

i. Solution times (ticks) were reduced in all 10 instances by employing some form of

cover inequality merging.

ii. Problems 1 and 8 experienced dramatic reductions of 93% and 66% respectively. In

both instances, the strongest implementation strategy focused on reduced costs. This

is consistent with the conclusions from Tables 5.6 and 5.7 for this particular collection

of MK instances.

iii. Observe that problem 8 took substantially longer than the other 9 problems given the

baseline CPLEX 12.5 solver. Furthermore, the use of cover inequality merging reduced

the computational requirements for this problem from over 17 million ticks to about

6 million ticks. This corresponded to a savings of about 13 hours of computational

time. Not every set-up achieved this level of improvement in problem 8, but several

implementation strategies achieved similar results. This dramatic improvement of a

single large problem contributed to the majority of the strong results for the three best

instances in Tables 5.6 and 5.7. A natural conclusion is that the greatest single benefit
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of cover inequality merging may exist when applying the technique to very difficult

problems that require the most computational effort. It is difficult to predict which

problems fall into this category, but it is an encouraging result that argues for the

development of merged cutting planes to improve solution times for large or complex

problems.

iv. The best results for the 10 subordinate problems include 3 instances with simultaneous

merging on all rows (through the use of the DCSA) and 7 instances that specify the

randomly selected donor overlap row(s) a priori. Additionally, observe that the two

best results included one of each overlapping strategy, where the DCSA facilitated

the single best percentage improvement in problem 1. It is clear that each strategy

yields strong results in specific instances, and neither strategy obviously dominates

the other.

The next natural extension would be application of the most successful implementation

strategies to some of the very large problems proposed by Chu and Beasley in [19]. Some

initial experimentation began on MK instances with A matrices of size 30× 250 since there

had been such strong results with the large problems in this study (10 × 250 A matrices)

shown in Tables 5.6 and 5.7. Unfortunately, each of the 10 subordinate problems of size

30 × 250 took between 2-5 days to solve, often requiring over 100 million ticks each. The

collective time required to solve all 10 MK instances exceeded three weeks. A very few

experimental runs revealed some instances where inequality merging saved numerous hours

of computational time, but it was impractical to conduct a thorough examination of such

complex problems with different implementation strategies.

The computational study validates inequality merging as an effective technique that re-

duces computational time for multiple knapsack problems. Preferred implementation strate-

gies provide the strongest results, yielding an average reduction of computational effort by
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about 9%. The computational study provides strong evidence that inequality merging yields

productive cutting planes for MK problems, and it is likely that similar computational im-

provements will be achieved for other categories of general IP problems.
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Chapter 6

Sequentially Merging Inequalities on

Multiple Covers and Variables

The theoretical contributions and algorithms presented in Chapters 3 and 4 served as the

foundation for the computational study shown in Chapter 5. Using the recommended im-

plementation strategies, inequality merging has already reduced computational times for

benchmark MK problems by about 9%. This exciting result encourages significant future

research in constructing other merged inequalities that may reduce computational time for

MK and general IP problems.

Several promising theoretical extensions will be discussed in Chapter 7 as areas for future

research. The dissertation considered one extension in Chapter 4 by strengthening donor

coefficients in merged inequalities. Chapter 6 provides an in-depth treatment of a second

theoretical extension called sequentially merging multiple cover inequalities on multiple

variables. This chapter provides theoretical foundations, an implementation algorithm, a

theorem presenting conditions for validity, and an example problem to highlight the potential

of this sequential merging technique on multiple variables.
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The motivation for sequentially merging on multiple variables has its roots in the com-

putational study. Recall that generating and implementing large numbers of merged cuts

contributed to significant diminishing returns when the number of merged inequalities be-

came too large. It is also likely that some of the information from multiple merged cuts is

seen as redundant. Thus large numbers of cuts slowed down the calculations as the constraint

matrix and basis grew in size. However, it appears to be theoretically and computationally

desirable to include more merges with increased information concerning a higher number of

variables with non-zero coefficients.

The sequential merging technique described in this chapter offers many of the same

theoretical benefits of multiple merged cuts, but the information is combined into a single

sequentially merged inequality. This strategy yields a merged inequality with more non-zero

coefficients than the merging techniques presented in Chapters 3 and 4, and the example

instance in this chapter yields a merged inequality where all variables achieve non-zero

coefficients. The technique should be well suited for MK instances and other IP problems

with sparse matrices.

6.1 Theoretical Foundations for Sequential Merging

The idea of sequentially merging multiple cover inequalities on multiple variables is to re-

peatedly merge cover inequalities on distinct variables from the host inequality which yields

a single merged inequality. Restricting to host and donor cover inequalities provides some

starting results for this concept.

Given a MK instance and a Chost cover from row r, a sequentially merged inequality on

multiple covers and variables follows the following procedure. An index p ∈ Chost is selected

and a donor cover that contains p is found in some row s. This creates a merged inequality

following Theorem 3. A new index p′ ∈ Chost \ {p} is selected. Another donor cover that
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contains p′ is found in some row s′, and that cover is then merged into the previously merged

inequality. This process can continue through all of the indices in Chost, but it is dependent

upon the particular instance.

Since multiple merges may occur on distinct variables in Chost and these merges oc-

cur sequentially, several new definitions are necessary. Define the remaining host indices

Crem host to be the indices in Chost from row r that have not yet been merged. Further-

more, define the indices from Chost that have already been merged to be Cmerge host. Clearly

Crem host ∪ Cmerge host = Chost.

The indices in Crem host have αj = 1 in the current sequentially merged inequality because

Chost is a cover and the indices in Crem host have not yet been merged. Define Cdonor
p to

be the donor cover that merges on index p for p ∈ Crem host. It is further assumed that

p ∈ Cdonor
p . The indices in Cmerge host have αj = 1

|Cdonorj |−1 . In general, requiring p ∈ Cdonor
p

is not necessary, and the reader should be able to make the straightforward adjustments if

so desired.

A sequentially merged inequality using multiple covers and variables takes the form

∑
i∈Crem host

xi +
∑

p∈Cmerge host

1

|Cdonor
p | − 1

∑
i∈Cdonorp

xi ≤ |Chost| − 1.

To create a sequentially merged inequality on multiple variables requires a sequentially

merged inequality with Crem host and Cmerge host. Merging selects a p′ ∈ Crem host and then

finds a cover that contains p′.

The purpose of ψ from the previous chapter is to determine which indices are eligible

based solely on constraint r. A similar strategy exists in a sequentially merged inequality and

is denoted as ψSp′ . This new value involves the previously merged donor cover’s coefficients.

Define a′p = (
∑

i∈Cdonorp

ar,i)−maxi∈Cdonorp
ar,i for each p ∈ Cmerge host. Also, let

ψSp′ = br − (
∑

i∈Crem host\{p′}

ar,j +
∑

p∈Cmerge host

a′p) + 1.
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Define a taboo list of indices that includes members of any Cdonor
p sets and any member of

Chost except for index p′. Denote this taboo list as Tp′ = (Chost \ {p′}) ∪p∈Cmerge host Cdonor
p .

The candidate indices for finding a donor cover are now denoted as NψS
p′

= {i ∈ N \ T ′p :

ar,i ≥ ψSp′}. A cover that includes p′ is found in any row and it becomes Cdonor
p′ . The index p′

is now taken away from Crem host and added to Cmerge host. Additional nonzero coefficients

are added to the sequentially merged inequality.

This process of sequentially merging inequalities may occur iteratively for previously

unmerged indices in Chost, and it can potentially continue for each index in Chost in which

case Crem host = ∅. However, there is no guarantee that such donor covers exist for a given

index. Furthermore, merging certain donor covers may create an invalid inequality.

The Sequential Cover Merging Algorithm (SCMA) determines the validity of a sequen-

tially merged inequality after all of the merging is completed. An interesting aspect is that

an interim sequentially merged inequality may be invalid, but the final merged inequality

may be valid. Thus, one may wish to only check for validity after all sequential merging is

complete.

The process begins by creating a table with one set of two columns, Tα and T a. Each

row of the table reflects a number of indices selected from Cdonor
i for each i ∈ Chost. If no

indices are selected from Cdonor
i , then Tαi = 0 and T ai = 0, which is the first row of the

table. If an index i ∈ Chost is not merged, then the a column for index i has ar,i and the α

column has a 1. If i ∈ Chost is merged, then the a column for index i has |Cdonor| entries.

The a values are

|Cdonori |∑
q=|Cdonori |−j+1

ar,q with the α values equal to j
|Cdonori |−1 for each j ∈ Cdonor

i .

In this formula, it is assumed that Cdonor
i is presented in descending order according to the

coefficients in row r of the A matrix.

The SCMA verifies validity by exhaustively checking instances where setting variables

to one force the α value over |Chost
i | − 1. If such a point is feasible in row r, then the
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sequentially merged inequality cannot be guaranteed to be valid. The input to SCMA is a

multiple knapsack instance, a host cover, associated donor covers, and a sequentially merged

inequality on multiple variables. The formal description of SCMA is as follows.

Sequential Cover Merging Algorithm

a. Initialization

For each i ∈ Chost

T ai,0 ← 0

Tαi,0 ← 0

If i ∈ Crem host, Then

T ai,1 = ar,i and Tαi,1 ← 1

end if

If i ∈ Cmerge host, Then

For (j = 1 to |Cdonor
i |)

T ai,j ← T ai,j−1 + ar,|Cdonori |−j+1

Tαi,j ← Tαi,j−1 + 1
|Cdonori |−1

end for

end if

end for

b. Main Step

For each i ∈ Chost

counteri ← 0
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If (i ∈ Crem host), Then

ci ← 1

Else

ci ← |Cdonor
i |

end else

a← 0

α← 0

While counter1 ≤ |Cdonor
1 |

If α > |Chost| − 1 and a ≤ br, Then

Report sequentially merged inequality as invalid and terminate.

Else

counter|Chost| ← counter|Chost| + 1

If counter|Chost| ≤ |Chost|, Then

α← α + Tα|Chost|,counter|Chost|
− Tα|Chost|,counter|Chost|−1

a← a+ T a|Chost|,counter|Chost|
− T a|Chost|,counter|Chost|−1

Else

q ← |Chost|

While (counterq > cq)

a← a− T aq,cq

α← α− Tαq,cq

counterq ← 0

q ← q − 1
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counterq ← counterq + 1

if (counterq ≤ cq), Then

α← α + Tαq, counterq − T
α
q, counterq−1

a← a+ T aq, counterq − T
a
q, counterq−1

end while

end else

end while

end else

end for

c. Output

Report that the sequentially merged inequality is valid.

SCMA is an exhaustive enumerative algorithm because the counter|Chost| increases by

one each iteration. If this counter ever exceeds the number of indices associated with the

last index in Chost, then this counter reverts to 0 and the counter|Chost|−1 increases by one.

If counter|Chost|−1 exceeds the number of indices associated with this index in Chost, then its

counter is reset to zero and counter|Chost|−2 increases by one. This logic continues and only

terminates when counter1 exceeds its number of associated indices. At each step, necessary

updates are made to a and α. If α > |Chost| − 1 and a ≤ b, then the algorithm reports

that the inequality is not valid. Thus, SCMA exhaustively examines each opportunity to

discover a hypothetical invalid point, and it verifies that such a point is not feasible in row

r.

The initialization of SCMA trivially requires O(|Chost|maxi∈Chost |Cdonor
i |) to create the

table for each index in Chost. Each step of the main step requires O(1) effort. The counterq
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term is incremented (Πi∈Crem host2)Πi∈Cmerge host(|Cdonor
i | + 1) many times. Thus, the main

step requires O(2|C
rem host|Πi∈Cmerge host |Cdonor

i |) effort. The worst case happens with only

minimal merging where |Chost| is approximately n. Thus the SCMA is bounded by O(2n).

It is important to use care when implementing the SCMA. The algorithm requires ex-

ponential effort, and worst case scenarios approach O(2n). However, the run time is much

faster as the number of sequential merges increases and the size |Crem host| decreases. Since

the algorithm is designed to verify inequalities that have experienced multiple sequential

merges, practical implementations experience much lower computational effort. Improve-

ments to the design of SCMA may decrease computational effort in some instances, and this

possibility is recommended as an area of future research.

The following theorem provides conditions for which sequential merging on multiple

variables creates a valid inequality.

Theorem 6. Given a MK instance and a valid sequentially merged inequality on Chost with

Crem host ⊂ Chost of the form
∑

i∈Crem host

xi +
∑

p∈Cmerge host

1

|Cdonor
p | − 1

∑
i∈Cdonorp

xi ≤ |Chost| − 1.

Let p′ ∈ Crem host and Cdonor
p′ ⊆ NψS

p′
. If SCMA reports that the inequality is valid, then the

sequentially merged inequality is a valid inequality of conv(PMK).

Proof. For contradiction, assume that SCMA reports that∑
i∈Crem host

xi+
∑

p∈Cmerge host

1

|Cdonor
p | − 1

∑
i∈Cdonorp

xi ≤ |Chost|−1 is valid, but it is not. There

must exist an x′ ∈ PMK such that∑
i∈Crem host

x′i +
∑

p∈Cmerge host

1

|Cdonor
p | − 1

∑
i∈Cdonorp

x′i > |Chost| − 1. For each q ∈ Crem host

define cntq = 1 if x′q = 1 and 0 if not. For each q ∈ Cmerge host define cntq =
∑

i∈Cdonorq

x′i.

Since the mainstep of the SCMA is an exhaustive check, one iteration of the SCMA has

counterq = cntq for each q ∈ Chost. During this iteration, the value of α exceeds |Chost| − 1.
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The value of a is
∑

q∈Chost
T aq,cntq . Since x′ is feasible,

∑
i∈N ar,ix

′
i ≤ br. Clearly a ≤

∑
i∈N

ar,ix
′
i

and thus a ≤ br. However, SCMA would have reported that the inequality is not valid, a

contradiction and the result follows.

The SCMA serves as an excellent screening tool. According to the discussion in Theorem

6, any sequentially merged inequality that passes the examination of SMCA is provably valid.

However, it is possible for SCMA to report that the merged inequality is invalid, when in

actuality the inequality is valid. The SCMA only checks row r for validity. In certain

situations, a point or set of points, denoted by X, may appear to be feasible in row r, but

the points are infeasible due to some other row s. In such an instance,
∑
i∈N

ar,ix
′
i ≤ br, but∑

i∈N

as,ix
′
i > bs in some other row s for each x′ ∈ X. In such a scenario, the SCMA reported

an invalid inequality, but
∑

i∈Crem host

xi+
∑

p∈Cmerge host

1

|Cdonor
p | − 1

∑
i∈Cdonorp

xi ≤ |Chost|−1 could

be valid.

A modification to SCMA could check all other row combinations before terminating.

However, there would be exponentially many such checks, potentially requiring an untenable

amount of computational effort. Thus, the SCMA serves as a screening tool and terminates

if row r does not prove validity.
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6.2 Example Problem showing Sequential Merging on

Multiple Variables

Consider the multiple knapsack instance shown below with n = 12 and m = 4, where

A =



21 19 17 13 12 8 8 7 7 6 4 3

18 6 5 14 19 5 8 6 4 8 6 7

7 14 8 7 6 13 19 12 5 3 4 8

7 5 20 6 4 5 8 7 13 10 12 14


and

b =



44

50

57

67


.

Designate the first constraint as the host with r = 1, and assume that pseudo-costing

sorts the indices according to the size of the coefficients in the host inequality. Using

this pseudo-cost strategy, the host cover is {1, 2, 3}, and the corresponding inequality is

x1 + x2 + x3 ≤ 2.

Sequentially merging may occur first on any of these three variables, and this example

demonstrates one merge using each of the members of Chost as the variable xp. First, consider

merging on index 1. In order to determine the eligible indices for Cdonor
1 , it is necessary to

calculate ψS1 . For the first merge, this follows the initial procedure described in Chapter 4.

Since a1,2 + a1,3 = 36 and the right-hand side is 44, ψS1 = (44− 36) + 1 = 9. Indices 2 and 3

are taboo, since they are in Chost and are not the merging index. Since ψS1 = 9, all eligible

(non-taboo) indices in the host constraint must have coefficients that are greater than or
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equal to 9 in row 1. Thus, ψS1 = 9 implies that indices 4 and 5 are the only eligible indices

that may join index 1 in Cdonor
1 , since a1,4 and a1,5 are ≥ 9. Thus NψS1

= {1, 4, 5}.

Observe that indices 1, 4, and 5 form a cover in row 2. Since this merge is on index

1, Cdonor
1 = {1, 4, 5}, with corresponding inequality x1 + x4 + x5 ≤ 2. Merging Chost with

Cdonor
1 yields

1

2
x1 + x2 + x3 +

1

2
x4 +

1

2
x5 ≤ 2. (6.1)

Next, consider merging the host cover inequality on index 2 with knowledge of Cdonor
1 .

The first step is to calculate ψS2 . Observe that this process is more complicated than in the

past because there are many combinations of indices that satisfy 6.1 at equality. However,

the choice of indices must also satisfy the host constraint. The calculation of ψS2 requires

choosing terms from (6.1) such that their coefficients sum to exactly 1 in (6.1). This involves

selecting the terms with the smallest possible sum of a1,i values from each cover.

In this instance, index 2 is not considered because it becomes the merged index. This

implies that the model selects index 3 (with coefficient 1) from the Crem host indices, and

a1,3 = 17. Now, 2 of the 3 indices from Cdonor
1 must be selected since each of the three terms

has coefficient 1
2

in (6.1). In particular, the two indices from Cdonor
1 with the smallest a1,i

values are selected. Observe that a1,1 = 21, a1,4 = 13, and a1,5 = 12. Thus indices 4 and 5

are selected, where a1,4 + a1,5 = 25 = a′1.

Accordingly, the smallest summed value of coefficients that satisfies the host constraint

and satisfies (6.1) at equality is attained by selecting indices 3, 4, and 5. The sum of their

coefficients a1,3, a1,4, and a1,5 yield the value of 42. Thus, ψS2 = (44− 42) + 1 = 3. Notice

that all indices in the host inequality have a1,i values greater than or equal to 3. Thus, any

of the indices satisfy the restrictions imposed by ψS2 .

However, it is important to exclude any indices that are taboo. Indices 1 and 3 are
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taboo since they are non-merging components of Chost. Additionally, indices 4 and 5 are

also taboo since they are in Cdonor
1 . Thus NψS2

= {2, 6, 7, 8, 9, 10, 11, 12}. Observe that row 3

contains a cover that satisfies these conditions, where Cdonor
2 = {2, 6, 7, 8} with corresponding

inequality x2 + x6 + x7 + x8 ≤ 3.

Merging Chost with Cdonor
1 and Cdonor

2 sequentially is the same as merging (6.1) with

Cdonor
2 , yielding

1

2
x1 +

1

3
x2 + x3 +

1

2
x4 +

1

2
x5 +

1

3
x6 +

1

3
x7 +

1

3
x8 ≤ 2. (6.2)

Finally, consider merging the host cover on index 3. As before, the first step in this

process is the calculation of ψS3 . The calculation of ψS3 requires that if (6.2) is satisfied at

equality, then including any index in NψS3
must force a cover (infeasibility) in the host row.

While there may exist many methods for (6.2) to be satisfied at equality, calculating ψS3

only considers the following case. Since Crem host = ∅, the coefficients of merged terms from

both Cdonor
2 and Cdonor

1 in (6.2) must sum to 1. Additionally, the terms from both Cdonor
2

and Cdonor
1 are selected that minimize the sum of a1,i values.

Achieving a weight of 1 from both Cdonor
2 and Cdonor

1 satisfies (6.2) at equality yielding

a minimized sum of a1,i values of 48. This corresponds to indices 4 and 5 contributing

13 + 12 = 25 = a′1 from the Cdonor
1 terms and indices 6, 7, and 8 contributing 8 + 8 + 7 =

23 = a′2 from the Cdonor
2 terms. Thus, ψS3 = (44− 48) + 1 = −3. Since all coefficients in the

host row are non-negative, all indices satisfy the eligibility requirements associated with ψS3 .

However, it is again important to consider which indices are taboo. Indices 1 and 2

are taboo from Chost, indices 4 and 5 are taboo from Cdonor
1 , and indices 6, 7, and 8 are

taboo from Cdonor
2 . Thus NψS3

= {3, 9, 10, 11, 12}. Notice that row 4 contains a 5-element

cover with these indices. Thus Cdonor
3 = {3, 9, 10, 11, 12} with corresponding inequality

x3 + x9 + x10 + x11 + x12 ≤ 4. Sequentially merging Chost with Cdonor
1 , Cdonor

2 , and Cdonor
3 is
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the same as merging (6.2) with Cdonor
3 , yielding

1

2
x1 +

1

3
x2 +

1

4
x3 +

1

2
x4 +

1

2
x5 +

1

3
x6 +

1

3
x7 +

1

3
x8 +

1

4
x9 +

1

4
x10 +

1

4
x11 +

1

4
x12 ≤ 2. (6.3)

The SCMA is used to verify the validity of (6.3). The SCMA begins by creating Table

6.1, which shows the minimum possible sum of a1,i coefficients depending on how many

indices associated with each fractional coefficient in (6.3) are selected. If (6.3) does not

remove a valid point from the host constraint in row 1 of the A matrix, then (6.3) is valid.

Depth Cdonor
1 Cdonor

2 Cdonor
3

i Tα1,i T a1,i Tα2,i T a2,i Tα3,i T a3,i

0 0 0 0 0 0 0

1 1
2

12 1
3

7 1
4

3

2 1 25 2
3

15 2
4

7

3 3
2

46 1 23 3
4

13

4 4
3

42 1 20

5 5
4

37

Table 6.1: The Tα and T a Table for Sequential Merging from the SCMA

The SCMA uses the data in Table 6.1 to verify the validity of (6.3). Observe that (6.3) is

invalid if there is an instance where the sum of Tαi,counteri values across all indices i ∈ Chost is

strictly greater than 2, but the corresponding sum of T ai,counteri values are ≤ 44 since br = 44.

All such combinations of Tαi,counteri and T ai,counteri values are considered exhaustively.

Consider one instance that uses Table 6.1 as an example. Let counter3 = 3, counter2 = 2

and counter1 = 2. Then Tα3,3 = 3
4

and T a3,3 = 13, Tα2,2 = 2
3

and T a2,2 = 15, and Tα1,2 = 1 and

T a1,2 = 25. Observe that Tα3,3 + Tα2,2 + Tα1,2 = 3
4

+ 2
3

+ 1 = 29
12

> 2. In this instance,
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T a3,3 + T a2,2 + T a1,2 = 13 + 15 + 25 = 53 > 44. If 53 was less than br = 44, then the SCMA

would report that (6.3) is invalid and terminate. Clearly, this instance did not yield an

invalid circumstance. The SCMA now moves to the next instance for inspection, which is

counter3 = 4, counter2 = 2 and counter1 = 2. This process repeats exhaustively until all

such combinations have been inspected or an invalid instance is discovered.

An exhaustive inspection using Table 6.1 verifies the validity of (6.3). Now, it is impor-

tant to demonstrate the usefulness of this merged inequality by demonstrating that it is a

cutting plane.

The linear relaxation point that maximizes the value achieved by the left-hand side of

(6.3) is the point (0, 0, 0, 0, 0.5793, 1, 0.5315, 1, 0.6851, 1, 1, 1) with a right-hand side of

2.0547. This linear relaxation point is valid in all 4 MK constraints, but it is removed by

(6.3). Thus (6.3) is a cutting plane. One criticism may argue that it is extremely unlikely

to consider such unusual decimal values and 4 indices in that point are zero. Consequently,

more reasonable points were pursued that also demonstrate the usefulness of the cutting

plane in (6.3). Many such points exist, and a more reasonable example is the point ( 1
100

, 1
100

,

1
100

, 1
10

, 4
10

, 3
4
, 3

4
, 3

4
, 1, 1, 1, 1). This point has a right-hand side of 2.011 in (6.3), it provides

coefficients for each index in (6.3), and all coefficients are reasonable. Furthermore, this

point is valid in all 4 MK constraints but it is removed by (6.3). Thus this point provides

evidence that (6.3) is a cutting plane. This demonstrates that the merged inequality has a

strong potential to be computationally useful.

In this example, a non-zero coefficient for every variable in the MK instance was attained.

The existence of the Chost cover inequality is nearly impossible to distinguish in (6.3) after

completing the sequential merging process. The cover inequality was formerly x1+x2+x3 ≤

2, but those indices now appear as 1
2
x1 + 1

3
x2 + 1

4
x3 ≤ 2. Examining any donor cover

inequality also results in similar phenomenon. For instance, Cdonor
2 originally appeared

as x2 + x6 + x7 + x8 ≤ 3, but sequentially merging transforms the Cdonor
2 indices into
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1
3
x2 + 1

3
x6 + 1

3
x7 + 1

3
x8 ≤ 2. It is thus apparent that sequentially merged inequalities on

multiple covers and variables is not an extension of prior work in this dissertation or other

known cutting plane generation technique. Consequently, sequential merging on multiple

covers and variables yields a new class of cutting planes.

The coefficients obtained for sequentially merged indices may not be the strongest pos-

sible values like those achieved through simultaneous merging and the DCSA in Chapter 4.

However, the primary benefit of sequentially merging on multiple variables is that this tech-

nique typically yields more non-zero coefficients in the obtained inequality than any of the

other merging techniques discussed in this dissertation. If a single merge was performed in

this example, the attained inequality would have been (6.1), including non-zero coefficients

on variables x1, ..., x5. Instead, sequentially merging on multiple variables yielded (6.3) with

non-zero coefficients on variables x1, ..., x12.

Thus sequential merging on multiple variables may combine information from multiple

donor inequalities into a single merged cutting plane. This technique may avoid the di-

minishing returns observed in Chapter 5 when more than 3 merged cutting planes were

introduced into the constraint matrix and basis. Iterative use of sequential merging on

multiple variables could potentially condense information from higher numbers of single-

variable merged inequalities into 2 or 3 sequentially merged inequalities. This is an obvious

extension to consider as future research.

Lastly, sequential merging on multiple variables has an intuitive appeal for sparse ma-

trices in multiple knapsack problems. Many practical applications of MK problems contain

extremely sparse A matrices because of the structure of the knapsack constraints. Some re-

cent examples include work by Salman, et. al. [66], Kalagnanam, et. al. [53], and Dawande,

et. al. [23]. In such instances, it may be easier to find valid donor cover inequalities for

sequential merging on multiple variables.
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Chapter 7

Conclusions and Future Research

This dissertation introduces a previously undiscovered category of cutting planes for integer

programming problems called inequality merging. The dissertation provides the theoretical

foundations for inequality merging through several theorems. The document also includes

numerous algorithms to assist the construction of merged inequalities. A computational

study validates the benefit of implementing merged inequalities for multiple knapsack prob-

lems, reducing average computational time by about 9% over baseline CPLEX settings when

recommended implementation procedures are followed.

The theory presented in this document is an introduction to a new class of inequalities,

and inequality merging has a rich potential for additional theoretical discoveries and imple-

mentation techniques that may solve integer programming problems more quickly. While

MK instances provide the structure for many of the results in this document, the tech-

nique can be applied to many other types of IPs through straightforward extension and

substitution. Two theoretical extensions are presented in detail in this dissertation, known

as simultaneous merging over multiple donor cover inequalities and sequential inequality

merging on multiple covers and variables. Both are demonstrated through example MK
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instances. Several other possibilities are recommended as areas for future research.

7.1 Conclusions

The initial theoretical results for inequality merging are introduced in Chapter 3. Theorem

1 expresses conditions for validity of merged inequalities in general IP instances. When the

host inequality is restricted to a cover inequality, verification of validity may be achieved

in polynomial time using the MOCIA. Merging two valid inequalities typically generates a

theoretically stronger valid inequality, and Theorem 2 provides conditions under which a

valid merged inequality in a general IP instance may be facet defining. Corollary 1 extends

this result to a MK instance that merges inequalities associated with two minimal covers.

An example problem in Chapter 3 demonstrates the basic theoretical results, yielding a

facet-inducing merged inequality using the general theory. The resulting merged inequality is

shown to be unattainable through any straightforward implementation of previously known

cutting plane techniques or lifting procedures. Thus, the general inequality lifting theory

yields a new category of cutting planes for IPs.

Inequality merging is readily employed for situations like multiple knapsack problems,

when it is relatively easy to find valid inequalities such as cover inequalities. Consequently,

theoretical extensions and a computational study focus on the MK. These results merge

a host cover inequality with 1 or more donor inequalities in a MK instance. Theorem 3

provides conditions for validity when two such cover inequalities are merged. To assist

the process of merging two cover inequalities, Chapter 4 introduces the ψp threshold as a

technique to determine which indices are eligible members of Cdonor when merging occurs

with Chost on xp. Nψp represents this set of eligible indices. Theorem 4 provides conditions

under which the proper use of the ψp threshold yields a valid merged inequality in a MK

instance.
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The ψp threshold is used to generate donor cover inequalities in applied computational

problems. However, an unfortunate selection of indices in Chost or a poor choice of xp may

result in a scenario that fails to find Cdonor because ψp is too large. Chapter 4 provides the

Reducing ψp Algorithm to address this possibility while implementing inequality merging

in practice. Successful iterative application of this algorithm incrementally reduces ψp until

it is possible to merge Chost and Cdonor on xp yielding a valid merged inequality in a MK

instance.

The first extension considered in detail in this dissertation is the idea of merging over

multiple donor cover inequalities simultaneously. This technique determines the strongest

(largest) coefficient for each eligible donor index in Nψp , thus theoretically strengthening the

merged inequality. Theorem 5 provides conditions under which such a merged inequality

is valid. Chapter 4 also presents the DCSA, which is the corresponding implementation

algorithm for simultaneous merging across multiple donor inequalities. The DCSA requires

cubic effort, but it runs quickly in practice. The DCSA is used to implement simultane-

ous merging across multiple donor inequalities as part of the computational study in this

dissertation.

A thorough computational study validates the benefits of inequality merging in inter-

nationally recognized benchmark MK instances available through the OR − Library. The

computational study considers a variety of implementation strategies, including the pseudo-

costing method to construct Chost, the number of merged cutting planes added to the con-

straint matrix and basis, the strategy of overlapping rows when multiple cuts are added,

and solutions both with and without simultaneous merging across multiple donor covers.

Substantial experimentation on smaller MK instances motivated important conclusions

that defined the ”best practices” for implementing inequality merging methods. The best

performance usually occurred when 3 or fewer merged cuts were generated, and it was

consistently preferred to overlap rows when multiple merged cutting planes were generated.
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Overlapping may include merging on all rows simultaneously or on a randomly selected

subset of rows considered for donor cover inequalities. Both polices supported improved

results in many instances. Each of the pseudo-costing strategies worked in different scenarios,

depending on the geometry of the problem.

Cover inequality merging offered excellent average improvements in computational time

for MK instances. Compared against the CPLEX 12.5 solver with baseline settings, in-

equality merging is shown to reduce computational time by about 9% on average when

the recommended implementation strategies are followed. The computational improvement

percentages were shown to be consistent on both small and larger MK instances, but the

computational time savings become more significant in practice for some of the larger MK

problems. In some interesting cases, inequality merging in large MK instances reduced

computational time by more than 30%.

Finally, a second theoretical extension is considered in detail in Chapter 6. Sequentially

merging on multiple covers and variables provides a merged cutting plane construction tech-

nique that increases the number of merged indices with non-zero coefficients. The process

sequentially merges on multiple indices in Chost, combining information from multiple donor

covers into a single merged cutting plane. The SCMA implementation algorithm provides a

quick check to verify the validity of a sequentially merged inequality, and Theorem 6 guar-

antees that a sequentially merged inequality is valid when the SCMA reports validity. This

extension may have strong computational benefits because it combines information from

multiple single-variable merges into one merged cutting plane.

7.2 Future Research

Inequality merging offers the potential for significant future research, both computational

and theoretical in nature. This dissertation provides the theoretical foundations and imple-
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mentation algorithms for several types of inequality merging, while numerous extensions are

likely to continue to improve our understanding of merged cutting planes for IPs. Several

such ideas are considered in the paragraphs below.

7.2.1 Topics for Theoretical Extensions for Inequality Merging

The techniques described in this dissertation describe a new technique to create valid cutting

planes for integer programming problems. This research provides a strong foundation, which

should inspire future theoretical extensions. A few of these topics are described in this

section.

The general theory for inequality merging applies to general integer programming prob-

lems. However, the work in this dissertation assumes that the coefficient of the merging

variable xp in C1 or Chost is 1. This naturally applies to cover inequalities, but candidate

merging inequalities in general IPs may have higher integral values or even fractional values.

Future research may extend the theory to more general instances of this type.

A method to prove validity for sequential merging on multiple variables was shown in

Chapter 6. Future research may provide conditions under which this technique can yield

facet-defining merged inequalities. It may also be possible to implement the sequential

merging process across multiple variables several times for the same MK instance. Thus,

iterative merging of merged inequalities would combine the information from many single-

variable merged cutting planes into a few sequentially merged inequalities.

During each iteration of sequential merging, it may also be possible to merge across

multiple donor inequalities simultaneously. This may combine some of the ideas presented

as simultaneous merging over multiple donors (from Chapter 4) with sequential merging on

multiple variables (from Chapter 6) into a single technique. Such a methodology may have

computational appeal because it could theoretically strengthen merged coefficients, while
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yielding a single merged cutting plane with increased numbers of merged variables that have

non-zero coefficients.

Another possibility is to simultaneously merge two or more inequalities over multiple

variables xp1 , xp2 , ..., xpq that occur in the host cover and all donor covers across multiple

constraints. This should require the development of a new type of ψ that takes information

from ψp1 , ψp2 , ..., ψpq .

These represent rich opportunities for theoretical extensions that apply the general the-

ory to more categories of merged covers. In addition to the obvious applications of integer

programming, theoretical extensions for inequality merging may also apply to research con-

cerning conflict hypergraphs and other similar graph structures. Thus, there may be some

similarities or applications to hypergraph research by Atamtürk et al. [6], Easton et al. [32],

and Hooker and Easton [49].

7.2.2 Computational Studies and Algorithm Contributions as Fu-

ture Research

In addition to the possible theoretical extensions, future research may include new computa-

tional studies or new algorithm improvements to implement inequality merging in practice.

One important contribution will be a better understanding of the properties that make

some rows in a MK instance better choices as host inequalities than other rows. During the

computational study, it was observed that significant variability in computational time may

exist when solving the same MK problems using the same implementation strategies but

different host inequalities were selected for multiple trials. While the current method selects

a host inequality row at random, another implementation technique may be discovered that

selects a host inequality row more deterministically.

The implementation algorithms in this dissertation are performed as preprocessing, but
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some of them require significant computational effort. Of note, the SCMA validity check

shown in Chapter 6 requires exponential effort with a worst case of O(2n), and the DCSA

from Chapter 4 requires cubic effort. Although both perform rapidly in practice, it may be

possible to improve one or both algorithms to perform their functions more efficiently.

The computational study in this research was performed on the first 10 problems of each

file provided by Chu and Beasley in [19] with a tightness ratio of 0.25. Other test problems

exist in the same files with different tightness ratios. Future research should consider if

varying the tightness ratios tends to motivate different levels of computational improvement

when merged cover inequalities are added to the MK instance.

Another possibility for future computational studies is to truncate some variables by

removing the smallest a values from each row of the original A matrix. It is less likely

that these indices would contribute to a cover inequality in any given row, and truncating

the A matrix would tend to speed up computations by generating a smaller matrix for

algebraic computations. However, it is possible that indices with small a values may have

some of the highest reduced costs. If this happens, truncating the A matrix could eliminate

indices with the potential to serve as very strong terms in a host cover inequality. Some

experimentation with this concept suggested that eliminating about 10% of the smallest

coefficients facilitated faster results in some instances, but a more complete study of this

concept could be considered as future research.

These ideas are excellent candidates for computational extensions and algorithm im-

provements for future research. Some of the largest, most difficult IP problems may provide

some of the best candidates for excellent computational improvements through the use of

inequality merging. These computational extensions may further reduce computational re-

quirements for large integer programming problems.
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