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0. Introduction

Wetherill (17) defined a sequential experiment as one

in which the course of the experiment depends in some way upon

the results obtained at each stage.

In a medical setting patients enter for treatment in

succession. Decisions must be made for therapy. Novel

treatments must be considered or medicine would stagnate. At

the same time patients must be protected from receiving a

dangerous medication or prophylactic. Ethical standards

require a physician to use treatments which he deems best.

If he is unable to distinguish between responses, he is to

use what he considers the best as soon as it becomes apparent.

In many cases life is at stake in the evaluation of treatments.

Experimentation with animals in laboratories has already

indicated that certain treatments are effective. The researcher

can only surmise from his experience how efficient a treatment

will be when applied to humans. Some criterion has to be

used to decide upon the effectiveness of the treatment and at

the same time protect as many people as possible.

Under these ethical considerations Armitage urges the

use of sequential experiments. This type of design aids the

physician in his continuous scrutiny of his patients and

allows decisions to be made rapidly when response differences

are large.

The sequential procedure was first introduced by Wald at

the end of World War II. The war had caused his work to be



considered restricted and was not released until later.

Wald's work proved to be particularly useful in sampling

inspection.

Arraitage recognized that Wald's ideas met some of the

demands of medicine. Not only did he recommend some of Wald's

designs, hut he helped develop some plans that he hoped would

be even more suitable.

In 1957 Armitage (2) presented a restricted procedure for

testing the mean "of a normal population with known variance.

This restricted plan was constructed by the diffusion process.

Using a Monte Carlo method the author found the average sample

number (A.S.N.) of the restricted procedure to be much larger

than was expected. Schneiderman and Armitage (12) then intro-

duced a wedge design. This design gave a family of plans

that contained in one extreme the restricted procedure and in

another extreme (when the restricted sample size N-»«>) approached

the open sequential procedure of known variance. The wedge

design proved to have a very good A.S.N.

In 1962 Schneiderman and Armitage (13) proposed a wedge

design for a closed sequential t-test. This procedure was

packed with assumptions. Unlike the wedge design with known

variance, whose outer boundaries coincided with the corres-

ponding open design, the new plan only approximated the upper

boundary presented for hypotheses (6.1). The authors tried

very hard to make their design look like it followed as

naturally as the ones where the variance was assumed to be



known, but the closed sequential t procedure with all of

its approximations appears to this writer to be too much an

amalgamation of (12) to be included in section 6.

This report exposes the basic considerations for de-

signing a sequential medical trial (section 1) and presents

some of the sequential methods to evaluate data, which is

either qualitative (section 3) or quantitative (section 6).

Wald's theory of the Sequential Probability Ratio test is

presented in section 2. Section 4 deals with truncated and

restricted designs of the binomial case, and section 5

discloses some applications from medicine.



Some Problem s in the Design of
Sequential Hectic a l Trials

Armitage (3) indicated three reasons for testing

sequentially: (1) economy, (2) estimation with desired

accuracy (see J. Neyman's Lectures and Conferences on Mathe-

matical Statistics and Probability) , and (3) ethical consider-

ations. Since the fixed sample test procedures with a pre-

scribed size and power generally require large samples, any

reduction in the average or expected length of a test, without

sacrificing precision is usually welcome. Sequential tests

on the average require a substantially smaller number of ob-

servations than do test procedures based on a predetermined

number of observations (15).

The precision of an estimate depends on the sample size

and the variance of the observation. Armitage (1) concluded

that non-sequential estimators could be used in the binomial

case even though the sampling was done sequentially.

Some of the difficulties with planning a sequential

design are: (1) responses (data) may not be available as

soon as desired (or within a period of time which is short in

comparison with the period during which the subjects enter the

trial); (2) finding the important qualities of the treatment

upon which the stopping rule will depend; and (3) dealing

with the complex problems which arise if the design is to

include cooperative trials of many physicians or clinics.



In deciding the criterion for the stopping rule one

must realize that if a decision is made to stop suddenly

when a large difference is recorded that the experimenter

must be prepared to lose degrees of precision in the compar-

isons of other responses. This idea is of overriding im-

portance to cases where the response is based on mortality.

The uncertainty about the ultimate length of the trial

may cause administrative difficulty if a' special staff has

to be organized or if an estimate of cost is required before

the trial begins. Another difficulty is that results have

to be sent to the core organization rather than just being

compiled as the experiment is finished.

Most of the experimentation in medicine has been sus-

tained by fairly simple experiments. The main reason is that

in a clinic or hospital ward it is difficult enough to run

the simplest designs without compounding this trouble with

more controls and confusion to the participating staff and

patients.

Usually sequential analyses are performed on pairs of

observations where each subject has only one of the alter-

native treatments, and treatment comparisons are made between

subjects; or each subject has more than one treatment (within

subject) where the researcher assumes that the periods of

treatment influence do not overlap. Comparisons between

patients are usually used for acute diseases, where the treat-

ment period is limited or the treatment takes a long time,



and for prophylactic trials; whereas, the within subject

design is used when the experimenter feels that the response

times are short and when it is desired to help eliminate

variations from subject to subject.

Care must be taken to prevent sampling bias. It was

suggested that for within patient comparisons, a natural

method was to pair two successive observations on the same

subject, randomizing the treatment order. For between sub-

ject comparisons the treatments can still be randomized only

this time on successive subjects entering as pairs into the

trial.

Armitage (3) felt that pairing did not appreciably

reduce the efficiency of the design. Some efficiency may

be gained if successive subjects entering the trial are more

alike than subjects chosen randomly from the whole series of

subjects.

If natural stratification is present, it was suggested

that this separation into groups was acceptable if it would

reduce the total variation, but the researcher is warned

that too many sub-divisions could cause many unpaired patients

and could sharply reduce the efficiency of the test.



2. V.'ald's Sequential Probability Ratio Test
of Statistical Hypotheses

To discuss the designs which are to be introduced in

the next sections, some basic concepts need to be introduced.

The procedure for testing hypotheses can be considered

in the framework of the general decision problem. There are

two possible terminal actions, a, and a„. The appropriate

action to be taken depends on an unknown parameter 6 which

belongs to JZ , the parameter space. Each parameter repre-

sents a distribution function of the observed random variable.

The set Jl can be decomposed into sets w-, and w? such that

action a^ is preferred if '8 is in w-, and a
2

is preferred if

6 is in Wp.

Let s
n

= (y.-y, x
2 , ..., xn ) be a random sample realizing

n identically distributed and independent random variables,

having a common density function f(X,6); and let S be the

n-dimensional sample space. A decision function (d ) is a

measurable function on the sample space S , which assigns an

action of A to each possible sample; where A = I a |a = a

or a,,]. In other words, the decision of which action to take,

given the n observations s is a function

V X
1' V •••• X

n
)c" A -

Each decision function d
R

can be represented by a

partition of the n-diraensional sample space S into two

disjoint sets S (^ and S^), suo h that action a is taken



if the sample point s
n

falls in S (^ and a„ is taken if sn

falls in S (2)
.

The sets w^ and w„ are associated with the hypothesis

that 6 is in w-p and the alternative hypothesis that S is in

w
2 . The action a, is called accepting the hypothesis H, ,

and action &
2

is called rejection H . The function d , which

when applied to the data leads to the accepting or rejecting

of a hypothesis, is called a test of the hypothesis.

In the following presentation we shall be considering

the following hypotheses:

H :6 = 6o
(2.1)

H
1
:e = e^Oo.

Wald first worked with the simple hypotheses

H :6 = eo

H
1
:6 = 6

1
.

He then generalized these simple hypotheses into (2.1), where

H became a composite hypothesis and where the desired pro-

perties were maintained.

To test these hypotheses sequentially, an observation is

taken and a decision is made whether to accept Hq, accept H,

,

or to take another observation. This process is repeated

after each observation until one of the hypotheses is accepted.

The probability is 1 that the sequential probability ratio

test procedure will eventually terminate. Since the true

value of 6 is unknown, samples and statistical procedures



may lead the researcher to wrong conclusions.

If the true value of 6 is equal to 6q, but the test

statistic leads to a decision of accepting H , an error has

been committed. This error is called a Type I error and the

probability of a Type I error is called an K-risk, and is

denoted by «*. Another possible error is the Type II error

which is incurred when the true value of 6 is equal to 6-,

but the test statistic indicates that H. is true. The pro-

bability of a Type II error is denoted by /Q. Power is defined

as 1 minus the probability of a Type II error, and is the

probability of rejecting H whenever it is false.

Since the distribution of X is determined by a parameter

6, the probability of accepting HQ is a function of 6. This

function is called the operating characteristic function and is

denoted by L(6). Thus, for 6 outside the region specified

for it by Hq, the power of the test statistic is equal to

l - L(e).

Reference is often made to the average (expected) sample

number (A.S.N. ). Because of the decision made after each

observation, the number of observations, n, required by a

sequential test is not predetermined, but does depend on the

parameter 6.

In order to obtain a sequential procedure with the

desired properties, V/ald (16) introduced the sequential

probability ratio test (S.P.E.T.). To derive a S.P.R.T.

for hypotheses (1), it is assumed that 6-, is an arbitrary
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parameter greater than e„. Then f(X,6 ) is the density

function of X when H
Q

is true, while f(X,6
1

) represents the

distribution under H, .

When H is true, the likelihood (joint density) that a

particular random sample X , 1.^, ..., X
ffl

will be obtained is

P
orn=

f(X
l>

60»
' *th' e ]

' • '
t{V0h

Similarly, when H. is true

^-^Vl 1 ' f(W ' •••
'

f(W-
Two positive constants A and B (0<B*l<A«o) are chosen.

At each stage of the experiment, m, the probability ratio

P, /P is computed. If, after taking m observations
lm' om r

'

B<JiS!<A, (2.2)

om

the experiment is continued by taking one more observation. If

om

sampling is terminated with the rejection of II , and if

Plm.p
om

sampling is terminated with H being accepted.

A convenient form of the above ratio is as follows:
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l0C * - logj^ H ... + log
ora 1' u f (Xm> 6

0>~

= Z n + ... + 2 .
1 m

At stage m of the experiment the cumulative sum

Z + ... + Z is computed. If

log B<Z
1

+ ... + Zm <log A,

the experiment is continued by taking an additional observa-

tion. If

Z
l

H '•• + Z
m iloe A

the process is terminated with the rejection of Kq. If

Z, H . . . + Z < log B
1 m

the process is terminated with the acceptance of Hq.

To determine A and B consider a sample (Xi, ..., X )

where H is accepted in one case and where IL. is rejected in

the other. .For H to be accepted on the n the observation

requires that

B < -3a <A, for m = 1, . .
.

, n-1
ora

and
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but for H to be rejected requires

p

|—S<A, for ra = 1, . . . , n-1
om

and

P— » Ap -A.
om

V/ald stated that

A < —- and that B > -£- .

This can be proven by partitioning Sn into three sets such

that S
n

- An U R
n U C

n , where

Rn
= {(X,, ...,Xn

):-_J^
T
,A]

C
n = K> •••' X

n
,:^ro (17)

<A
j •

/Tt- I Lr, Tf£ ( x i ) d>: i
for the continuous case

Jff(VV (x
i
)E
j>
I LJK^^-a) for the discrete case.

P
e

[accepting H
Q]

» ^ J ^
ft^ i' (X. ) d/(l (X

± )

A
n

for 6=0, 1. Therefore,



= P. [accepting H
Q |

H is true]

**° r n

L J rr
,

f (x i )d/t(xi :

n <- 1 , i = l

I:

1P°

iB 1 / ft~ f (x )d A (x ]

n=lK i = 1
u x ^ x

i-

= B-P [accepting H
Q | HQ

is true]

- B(l - <*.).

Therefore,

1 -*

Similarly

,

1 -/) = P ["rejecting H |
H is true]

n = 1
i)

l - 1an

* a Z. f Jr f a
±
)^(x]

n = 1 ty 1 = 1
R
n

= A-P [rejecting H H is true]

= AK ,

1 -
I

s
A< • .

oi

13
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Wald suggested that for practical purposes, set A' =

(1 -/S)/^ and B' - fi/{l - c<). If these limits are used

for A and B, we have that the actual risk probabilities of

'

and R y satisfy:

In order to substantiate the statement that the sequential

procedure terminates with probability 1 the following lemma

is given.

Lemma : The S.P.R.T. terminates with probability 1,

for every < 11 < 1 < k<P° and for every 8.

Proof :

Let

*! - log ggi} , (i-1.2, ...,.

Since X , X ? , ..., are independent random variables and

identically distributed, so are Z-y, Z„, ....

Assume that for each 6,

P [Z= o]< 1.

Without loss of generality assume that < C^2 =

Var (Z )<*». If <^
2 = 0, this implies that P

Q fz = CJ = 1

n
for some C 7 0, and then obviously S = 2L z - will even-

n
i = 1 x

tually violate the inequality - b<S <a, where - b =

o
log B and a = log A. The assumption that CT. > implies
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that for sufficiently largo r (constant integer), which

depends on * (0 «=. <)< 1),

po|l^-i > a + bJ ' ^ " " ' This can easily be shown by

using the central limit theorem for (S - y/Xq) I \jr c£ >

With/Zg - EgTzl.

Finally, if N designates the sample size in the S.P.R.T.

pTn^I- 1 - lira pJ~Kiprl.
e J

p-*/»
6L

But

P
e
[lv!>prJ - p

e
[-b<S

n
<a for all n - 1,2, ..., pr]

<Pe [-b<S r <a, |s
2r

- S
r |

< a + b, ...,

\V- S
(p-Dr|<

aH

Thus,

lira P„ flOprl < lim ^ p ~ 1 = 0.

A strength is associated with a given sequential test,

which correspondends to ofand/J. Two sequential tests, S and

S' are said to be of equal strength if the values of ^ and/6

of S are equal to the corresponding values ev' and/?' of S'.

If *<<<<< and^s/S' , or if-teef and/?</3', S is stronger than

S'. The strength of a given sequential test is denoted (*,/?).
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Hence, if a researcher has two sequential tests with the

same strength, a logical question to consider is whether the

expected number of observations (A.S.N.) are equal for desired

range of ©. To derive a formula for the A.S.N, of a test,

the operating characteristic function is needed.

L(0) has been defined as the probability that the

sequential process terminates with the acceptance of H„ when

8 is the true value of the parameter.

Consider the expression

.(e)

where h(6) f o and
U(x,e V

"• h(e)
/fU.e-iA

( f ,v nJ f(x,e)dx=i
^ U(x,oe )/

in the continuous case or

V /f(X,
9l )\

X lr < x >
8o7

h(e)

f(x,e) = 1 (2.4)

in the discrete case. V/ald proved that there was only one 6

satisfying the above equations after some slight restriction

were placed on f(X,6).

Hence, for any given value 6, the function of X given by

Mx.ajA
f* (x

'
e) =

lfTx7e^; f <x -
e ) (2.5)

is a probability density function.
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Consider the following hypotheses:

H : f(X,e) is the true distribution of X

H* : f*(X,6) is the true distribution of S.

Assume h(6)>0 and consider the S.P.R.T. S* for testing H

against H*. Continue sampling procedure as long as

3
h(e)

<
f*(x 1>8 ) ... f*(xm ,e) ^ h(e)

f

f(x
1
,e) ... f(x

m ,e)
(2.6)

but accept H if

f*(xlie) ... f(V e)
h(9)

f(x
lf«) ... f(xm ,e)

-
'

(2 ' 7)

or reject H if

f*(x1>e ) ...f«(xm ,e) , 9)

f(x
1
,e) ... f(xm ,e) " A

•
U - 8J

Since

/f(x,e

flxTeT " \f(x,e )

the inequalities (2.6), (2.7), and (2.8) are equivalent to

ftx^ e,) ... f(iA )

' f (Ve ) ••• fUm .e )

<A

f(x
i-

e
i

) ••• f(Xm'V , .

f(xr e ) ... f(x
m ,eor
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f{xll6l ) ... fiy^
f(W ••• f(W 2 A

But these inequalities are the same as the ones derived from

S.P.R.T. S in (2.1). Thus, the probability of accepting H

when 6 «= 6 is the same as the probability that the test S*

will lead to the acceptance of H when f(X,6) is the true

distribution of X.

Let the strength of S* be ( «f '
, A' ) . It follows that

A
h(8) g l-.f,' and BMe)g ,*

_

* 1 -<X<

Hence o<' is approximately equal to

1 - E
h(6)

^HTF]
_ B

h(-e)

Since << ' * 1 - L(6),

.h(e) .

A h(e) _ Bh(e)

The same result is obtained if h(6) < 0; and; therefore,

(2.9) gives an approximation to the operating characteristic

function.

Using equation (2.9), one is able to find the A.S.N.

function of a S.P.R.T.

Let n denote the number of observations required by

the procedure, and let E
Q (n) be the expected value of n

when e is the true value of the parameter. The function

Eg(n) is the A.S.N, function, neglecting the excess of
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P, / P over the termination bounderies.
lm ' om

Let K be an integer sufficiently large to allow the

probability that nMi to be neglected.

Then

z
i+ ... H z

N
= (z1+ ... -I- z

n
) t (z

n+1
-f ... + zN )

(2.10)

where

Z. = log -7-i ±r- .

i f(x.,e )

Upon taking the expected value of both sides of (2.10),

it follows that

KE(Z) - E(Z
1

+ ... + Z
n ) + E(Z

n+1
h ... + Z

N
) (2.11)

ffx.ei)
where Z - log

f(x,e )

Since for i>n, the random variable Z. is distributed inde-

pendently of n, the following is obtained:

E

which

< Zn-U
+ ••• + V = E t

E(Z
rril

+ •••
+ ZK>l n l

5 [(N - n) E(Z)] (2.12)E

K(M - n) E(Z)
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and finally

E(Z L
. -i- ... -i Z„) = NE(Z) - E(n)E(Z). (2.13)

From (2.11) and (2.13) we obtain

E(Z, + ... + Z ) - E(n)E(Z) = 0.
1 n

Hence

E(n ) .
E(Z

1

+
/;'

+ V
, for E(Z) 4- 0. (2.14)

E(Z)

If 6 is the true value of the parameter, then by definition

Eg(n) = E(n). Neglecting excess at the boundaries, the random

variables (Z. + + Z ) can assume the values log A and lop;

E with probabilities 1 - L(8) and L(6), respectively, which

implies E(Z
1

+ ... + 2 ) £ [l - L(6)] log A + L(6) log B.

Hence,

F f„i ft - L(ejl lor, a + L(e ) log b
(2<15)

e
ln;

e
6
(z)

While it was proved that the probability is 1 that the

sequential probability ratio test will eventually terminate;

there is a possibility of an unexpected long series of obser-

vations. Armitage considered truncated sequential designs

in which the V.'ald S.P.R.T. was modified so that the power and

«<-risk remained nearly the same. Armitage chose to call

these truncated designs, closed designs. Open and closed

procedures under different probability distributions will be

discussed in the subsequent sections.
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3. The S.P.R.T . in the Binomial Case

The basic use of the sequential binomial test is that of

choosing the better of two treatments. This is done by

forming a sequence of preferences. These preferences can

be made subjectively by the patients or can be more objective.

In the two-tailed test a strength of (2 °<
,
/S) will be

discussed.

Let 8 be the probability that the preference is treat-

ment A. The hypotheses under question are:

H
Q

: 6 = e = {

H : 6 = 6 < i (3-D

h
2

: e = e
2

> i .

If A is really better than some treatment B, then

Q>{. If B is better, then B<{. For simplicity it was

assumed that 6 and 0^ are symmetrical about the value g.

To derive the test procedure for the above hypotheses, only

H- and I! will be considered with strength (
°<

, f). Then

because of the symmetry assumed between 6 and 6 , the test

will be extended to include the hypotheses (3.1) and have an

overall strength approximately equal to (2f
,
/3 )

.

Let X. denote the outcome of the ith pair; i.e., X. = 1

if the ith pair shows a preference for treatment A, and

Xj = if the preference was for B. For the first m pairs

observed, the probability of the observed sample (X,, ..., X )
-L m

in that order is equal to
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d ,
.rfl-cL, , .

e m (1 - e) m (3-2)

where d denotes the number favoring treatment A in the first

m units.

Under II , the likelihood of (3.2) becomes

d„, ,
,ni-dm

p
n

= e, m (i - e
n )

m
lm 1 1

and under HQ (3.2) becomes

p = e
d
™ (i - e )

m_dm
.

om o o'

At each stage of the experiment, denoted generally by m,

p
the logarithm of the ratio —S is computed:

om

log ^ - (d
m ) log p- n (m - dm ) log i^ii . (3.3)

om o o

Preference testing is continued as long as

log B - log -£— < log -^ < log ^-£— - log A.
1-* P

om

P-, ] .£>
If log -—^ > log J ,

H is rejected; but if (3.4)
r oc o

P /?

log —— £ log ——— , H is accepted. (3-5)
p 1 _ o< o1 om x

Ey substituting (3-3) into (3-4) and (3.5) and solving

for d„ one obtains critical values for each step m corres-

ponding to given values of 6 and 6, . For rejecting and
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accepting H , respectively, the following inequalities are

given:

log I. rf.
d > °<

1-6
1 o
l0^ I - e

n
+ m

m-" 6-, 1 -

log
ft

- log -,

- e-, ei l -

. d
L log

e
- log _uO

*1

eo

, (3.6)

_fi_ loglog -^ ioe r^e-
dm* I' i - a,

+ m—BT i-e
3

•
(3 - 7)

log g; - log i-r-e- ] °p e; " loe r^

Armitage (3) gives tabular values for given 6-^'s and

6 's for the researcher wanting critical values at each stage

of the experiment. A common procedure is to plot (3-6) and

(3.7) on cordinate graph paper.

Similarly, by considering only H Q and H
2

in (3-1) another

set of critical regions can be established. These two sets

of critical regions are symmetric with respect to the hori-

zontal axis. For this two-sided case X. take the values 1

and -1 (instead of 1 and 0) in the preferences for A and B,

respectively.

By letting X. take values of -1 and 41, Armitage over-

came two complications which arise from (3.1) if X. assumed

only and +1. A sample path taking values of +1 and -1

contradicts corresponding one-sided tests only if it crosses
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both dotted lines in figure 1 (see Sobel and V.'ald, Ann .

Math. Stat . , 1949, for details). Armitage stated that

sampling was terminated with the acceptance of H if the

sample path crossed both dotted lines because a sample path

of this kind would have terminated in the same conclusion

if considered in either of the two one-sided tests.

A typical open design is given in fig. 1, where

log 1^7

a
l

log
§0

'
1-6!^ i - e

(3.8)

log -&-

and

a
2 " if* ~ei ( 3-9)

log g-
o

- log 3-^-g-

i - e
i o
log

1 - 6
1

ei i - e,
log g- - log T

—
§
-

The equations of the outer boundaries (indicating sig-

nificant differences between treatments) are:

U: y •= a
1
+ bm

L: y = -a-, - bm.

The equations of the. inner boundaries (which close the trial

with no differences established) are:
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y, /m.

Fig. 1. SCHEMATIC REPRESENTATION OF AN OPEN DESIGN.

M: y = -a- + bm

M" : y = a 2
- bm,

where in both sets of equations the a's are intercepts and

the b's are the slopes of the lines.

The testing can be carried out on ordinary graph paper

by plotting the boundaries as given in Fig. 1. As results

begin to become available each preference for A is plotted

on the graph by moving one unit horizontally to the right

and one unit vertically up, while a preference for B is

noted by one sliding one unit to the right and then one unit

vertically down. If no preference is given (a tie), nothing

is recorded. This process is continued until one of the

boundaries is reached.
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A common method of assessing the relative efficiency of

two therapeutic procedures is to form 2 groups of patients

treating each group with a different therapy, and compare

the favorable responses toward one treatment in each group.

Up to this point tied observations were ignored completely

in the analysis by assuming that a preference had to be

made for one of the treatments or that the pair would be

ignored if a tie occurred. We shall now consider the effects

of ties on hypotheses (3.1). Armitage (3) indicated that the

following procedure for comparison of two proportions could

be used on observations that are naturally paired as well

as those which are not paired according to some criterion.

As patients entered the trial, they were formed into

pairs with each randomly receiving either treatment A or B.

Each pair of subjects could result in one of four possible

outcomes: (S,S), (F,F),(s,F), or (F,S) where the first of

each of these ordered pair represented the success (S) or

failure (F) of treatment A and the second represented the

outcome of B. The two pairs (S,S) and (F,F) were tied pairs;

while (S,F) and (F,S) showed a preference for A and B, re-

spectively.

Thus, a sequence of preferences had been formed, which

follows the discussion already presented but which also had

some interesting properties.

Suppose that the true probability of success for A is

ff-L while the probability of success for B is 1t"
2

. Then on
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the assumption of random pairing, probabilities were figured

for each of the four ordered pairs:

"POSSIBLE OUTCOME PROBABILITY

(s,s) ^ ^
(f,f) O-ttHi-jr*)

(s,f) ir,(i-ffL)

(f.sj 6-ir,)fo

Hence, the probability of an untied pair, denoted by ,
is

given by the formula,

/ - rxd - ir
2 ) + (i - /]r

1
)

2̂
-

Considering only untied pairs, the proportion yielding

A preferences, denoted by 8, is

vx ii - ff2 )
m r

3
(i -y

2 )

"
nr (i - r2 )

4 (i - #i)#2
'

and the proportion yielding B preferences is

(i - trx ) ir2
(i -^i)^2

! _ e =
^ "^TT""- -7?-

2
) + (i - irx ) T2

'

The series of preferences is therefore a binomial sequence

with the probability of an A preference equal to 6. Table

4.1 in Armitage (3) gives values of / and 6 for various

values of fT-, and Tn-

Some of the main points to notice are: (a) When 77^
= If?'

6 = {; (b) when 1T^ is greater than 1K, 9 > i; and (c) when
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ffj" is less than iT, 8^4. It is now clear that the same

hypotheses apply. If the upper boundary is reached, we have

good evidence that d?i, which implies T-y >1F^-

Using the tables given for restricted binomial procedures,

one obtains a value N for the number of untied subjects

needed for the specified risks. By taking N and dividing

it by the probability of untied observations^, one obtains

a new sample number larger than N, suggesting how large the

actual sample size v/ill need be (See section k)

With data paired naturally (equivalently stratified or

matched) the value ff for untied pairs is always less than

fyd - T2
) + (1 - ^]_)#2» which is valid for random pairing.

Armitage (3) indicated that this is not a disadvantage, since

for given values of f\ and lr„> stratification will tend to

give a value of 6 further away from -?> than would be expected

from the formula for 6. This means that one can achieve

higher power of detecting a particular difference in tT and

#2 than could be obtained in random pairing. This reduces

the average number of preferences required.
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4. Truncated and Restricted S.P.R.T.

Wald (16) indicated that truncation could be considered

in large sampling without causing much change in power or

risk.

In 1952 Bross (6) introduced the idea of a closed

design for clinical trials. Bross constructed two designs

which were believed to have been constructed mostly by trial

and error. This was the first attempt to build a truncated

open design to control the risks.

In 1957 Armitage (2) introduced his restricted procedures

which are similar to Bross' but which were less restrictive

to the researcher. The important feature of Armitage'

s

procedure is in the truncation of the V/ald's S.P.R.T. At

each stage a decision is made either to accept one of the

hypotheses or to continue sampling, but one of the hypotheses

is chosen by the time the Nth observation is recorded. The

truncation of Wald's S.P.R.T. at a point N may change the

strength of the untruncated sequential test. Stockman and

Armitage (15) investigated the effect of truncation on the

strength, and discussed an exact method for finding the total

number of paths that a sample path may take in a restricted

binomial procedure. Armitage (2) then offered an approxima-

tion by studying a corresponding diffusion process.

Consider Fig. 2 for the exact method. The bounds cor-

responded to the lines y = a-^ -t bra and y = -a -1- bm given in

Fig. 1. The area within the boundaries is the continuation
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Rejection and Acceptance Boundaries

Inner Boundary

Fig. 2. STOCKMAN AND ARMITAGE'S EXACT METHOD.

region. Each of the lattice diagrams (M-, M , A, B) had the

following properties: 1) In a random sample, the probability

of reaching the point (x, y) = N 6>' (1 - 6)
x

, where M was

the number of paths to (x, y) which were not interrupted by

the acceptance or rejection boundaries. 2) The number of

paths from (x1 , y-J
to (x

1
+ x, y^ + y), if no paths were

interrupted by the boundaries, was equal to the number of

ways of choslng the positions of the x unit displacements

parallel to horizontal axis x in a total of (x -i y) displace-

ments, which is:

With each lattice diagram a matrix was constructed such that

the (i, j)th element represented the number of paths from the

ith point of the left hand diagonal side to the jth point of
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the right hand diagonal side (counting from the top), all of

the elements being binomial coefficients. Further, Stockman

and Armitage indicated that the martices could be multiplied

together so that the (i, j)th element of the product of 2

adjacent matrices, S = (s
±
.) and T - (tij), was the number

of paths from the ith point of the left hand side of S to

the jth point of the right hand side of T.

Having noted that the lattice diagrams A and B in Fig.

2, repeat after M„, the authors stated that the total number

of paths from the origin to the points of a particular lattice

diagram could be expressed generally by G = f»ir '*2 (AB) (the

matrices represent their corresponding diagram), assuming

that the process terminated with the right hand side of the

nth-B diagram. It was then pointed out that the last element

of the row matric C represented the number of admissible paths

crossing the lower boundary for the first time. By multiplying

this number by the probability of reaching this point

(6
V (1 - e)

X
), the reserachers found the probability of a sample

path crossing the acceptance region for the first time after

a specified number of observations. By setting 6=8, the

value specified under the null hypothesis, one is able to

estimate ocfor various n in the expression G. By setting

8=6,, the probability of accepting H
Q
when 9 = 6, under

H, , 6 can be calculated for the one sided test for various n.

It is readily apparent that the above presentation is

interesting from a theoretical point of view
}
but practical
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applications would be very tedious.

In an attempt to overcome some of the shortcomings of

Stockman and Armitage's exact method, Armitage (2) introduced

a diffusion approximation. Admitting that the process had

not been fully investigated, the researcher compared the

diffusion method with the exact method for fixed <K and
fi

.

The diffusion process proved to be fairly satisfactory in

the specific cases compared.

Armitage stated that the discrete steps of m could

be replaced by continuous movement in time, where the time

unit corresponded to a single observation. He claimed that

the random variable could be approximated by the one-dimen-

sional diffusion process with drift, variance and an absorbing

barrier.

The upper boundary of the open binomial process,

U: y = a, -i bra and the values for a and b given in (3-3)

and (3.10) was maintained. The lower bound M was replaced

by a vertical boundary M' with equation m = H. Then W

became the maximum number of observation to be taken in this

closed procedure. The next step was to determine N to

maintain prescribed efand B-risks. Using

vm - Z
m

X.
i

where the X. are independent variates taking the values +1 or

-1 with probabilities 6 and 1-6 respectively, Armitage
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indicated that the random variable y could be approximated

by a diffusion process with drift (u - b) per time unit,

growth in variance at a rate C7 , and an absorbing barrier

at a, where

A 26-1 and <J 2 = 46 (1-6)

To ensure the procedure's power (1 -lS) the author,

using a result of Bartlett (5), set

a-i - m-,N ,2a-,m-| -a-, - m-iN
- F ( i_ ± ) - exp (-JU:) F {—1-—i-)

,

where a is defined through H-, by (3.3),

o£ - hQ
1

(i - e
1

) ,

21n (-L)
in, = 26, - 1 -11

T
e
l

In i-e,

and

F(u) - F (2ff)"
2

exp(-|t 2 )dt.

Finally, M' was replaced by a wedge-shaped boundary M",

and new boundaries analogously under H were formed, making

a two sided test. This is illustrated in Fig. 3.
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Fig. 3. SCHEMATIC REPRESENTATION OF A RESTRICTED DESIGN.

It should be noted that any sample path reaching the

wedge formed by M" causes an aceptance of H
q

;
that the bound

M" is drawn at an angle of /,5°, and that a sample path

crossing M" cannot cross either U or L. Hence the re-

placement of M' by M" does not affect the probability of

reaching any boundary point on U or L, but does reduce

the average sample number.

Values for these boundaries are given in Armitage (3).

Wetherill (17) indicated that this boundary probably could

be improved but did not make any suggestions.

It should be noted that the middle boundary M" in. the

restricted procedure helps delete the expected or average

number of subjects required, but that this average number

will be greater than the corresponding number given for the

open design, since the sample path may cross the middle

boundary of the open plan much sooner than in the restricted

procedure.
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In Armitage (3) proposed what he called a skew design.

This design follows intuitively from the binomial restricted

design. If one was interested in detecting the superiority

of a treatment A over B, where A is a new therapy and B is

a standard, the researcher might not be interested in how

bad B is; and thus, he could use a skew design (see Fig. h )

.

Examples for both the restricted and skewed binomial

designs are given in section 5.

Choi (7) introduced a truncated sequential design for

the random binomial sequence using a fundamental equation of

Markov chains. He proposed the same hypotheses as were given

in (3-D.

Choi defined "path points at n" as the points which can

be reached at the nth sampling step.

Let S (6) = s. be a vector such that the ith component

s. is the probability of reaching the ith path point at n = c

when 6 is the probability of a preference for A.

Let T (6) be the transition matrix from path points at

n - c to those at n = c + 1. T (e) is a (c + l)X(c + 1)

matrix constructed by adding a superfluous column of zeroes

to a (c -i 1)X c matrix.

Let T (8) be the (c -i l)X(c + 1) transition matrix from

path points at n- c to those at n - c + 2.

Figure 5 is presented as an aid.
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Fig. 4. THE METHOD OF FORMING SKEW RESTRICTED DESIGNS.

A

U: TREATMENT A IS BETTER THAN B

NO DIFFERENCE BETWEEN A
AND B

L: TREATMENT B IS BETTER THAN A

Fip. 5. TRUNCATED SEQUENTIAL CLINICAL TRIALS.
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It follows that
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It was noted that the upper or lower boundaries could

be reached only at n = c + 2
, j = 0, 1, 2, ..., h. (It was

assumed that n. «= c + 2h + $ where 8 = or 1 depending on

truncation.

)

Letting S.(p) be a vector whore the ith component is

the probability of reaching the ith path point at n = c + 2 j

,

the author used a fundamental equation of Markov chains:

s (e) = s (e) T
2
J (e), j = o, l, ..., h,
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where T °(6) was defined as the (c ^ l)X(c + 1) identity

matrix.

Let S' (6) denote a vector such that the ith component

is the probability of terminating at the ith path point when

m = n
t

. Chio stated that

S '(e) =

S (e)T
h
(9) if S-

o 2

S (6)T
h
(6)T (9) if £= 1

o 2 1

By defining V., j = 1, 2, ..., c, as follows:

v
1

= [l, 0, .... o] •

v
2

- [o, 1, ..., o] '

v
c
= [0, .... 1, o] '

,

he found exact probabilities of accepting H
Q , h^, and H

g
when

the probability of an A preference was 0. Denoting these

probabilities by ^ (e), ^(6), and ^(6); the author gave

the following equations:

0^(6) - Z. S
i(

e » V l
3 = 0"

* (e) - s
f
.(e)

j
Z. f

v.
c

5 = 2 -S

Me) = 21 s.d - e) v .

j = o J
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It should bo noted that the wedged boundary in Fig. 5

was used for the same reasons that Armitage used M" in Pig.

3; and that the above method fails to offer a quick decision

as is obtained in Armitage' s restricted binomial procedure

when the difference between two treatments is large.
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5_. Some Applications in Medical Trials

Example 1. Investigating the effects of hydrocortisone

herni succinate as an inhalent for children with asthma, Smith

(14) preformed a double blind trial, with a placebo prepara-

tion indistinguishable from the hydrocortisone and unidenti-

fied by the investigators until after the end of the trial.

Children were randomly placed in two treatment groups, and

each child used the specified inhalant daily for a month.

The value of the treatment was determined by respiratory

tests, by clinical records, and by collation of the different

types of evidence. It was then judged as being a success or

failure. Before the trial began it was estimated that 15/5 of

the children would probably benefit from the placebo, and

that an increase of 50^ would be sufficient to warrant notice.

Setting irx
= .65 and 1f2

~- .15 gives - .913- The open de-

signs discussed in section 3 with S-| = -90, 2<- .05,

1-6 = .95 was used. The middle boundary was crossed at

the 6th pair. The trial was continued a little longer, by

which time 10 untied pairs had been observed and there were

4 successes out of 2?> children treated with the placebo and

6 successes out of 29 children treated with hydrocortisone.

Example 2. Using the restricted design Robertson and

Armitage (10) compared 2 hypotensive agents, phenactropinium

chloride and trimetaphen between patients. The test criterion

was the length of time required for the systolic blood pressure
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to recover to a level of 100 mm, Hg, after it had been lowered

during operation by one of the two drugs. The preference

was determined by noting which of the 2 recovery times in

each pair was shorter.

The authors specified Z«~ .05, 1-f
= .95, e

i
= 6 2

=
• ?5 >

and M = 62. Since the drugs were used widely, results flowed

in fairly quickly, and it was felt worthwhile to use a rather

large design to maintain a greater power. The path reached

the middle boundary at the 49th preference, after which one

more pair of patients was treated. Three patients had equal

recovery times and thus, provided no preference. In all 53

pairs of patients were used in the trial. It is interesting

to note that if this trial had not been run sequential, a

preference for trimetaphen might have been signified after

the first 12 preferences.

Example 3. Using a restricted design with 2« = .05,

1-/J- .95, 6
2

" 9 = .09, and N = 19, Marshall and Shaw (8)

used a skew design to test anticoagulants in the treatment

of cerebral infarction. The preferences were ,!untied" pairs

of patients differing in their survival experience 6 weeks

after the beginning of the treatments. When 8 preferences

had been obtained, 5 were for the control treatment without

anticoagulants and 3 were for the anticoagulants. At this

time the path had entered the pointed area from which the

outer boundary favoring anticoagulants was inaccessible. It

was regarded unethical to continue this investigation to see
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whether the anticoagulant treatment could be shown to be

worse than the standard treatment.
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6. Continuous Measurements with Unknown Variability

Commonly an experimenter measuring quantitative responses

will have some knowledge of the variation of a response, but

he is not vailing to rely on this estimate to use a sequential

procedure assuming 0"2 known. Thus, in the case of independent,

normally distributed random variables, if <j2 is unknown, and

we wish to test two-sided hypotheses concerning the mean^n.,

we apply a sequential t-test. In the present section we

describe the sequential t-test. In the special case of pairing

observations, let X^ be the difference of two random vari-

ables X . and X . representing responses from treatments A

and B, respectively.

In Armitage (3) suggested the following set of hypo-

theses:

H : £ - (6.1)
o <r

It was noted that in the more general case one would be

testing whether
/

«= f* against the alternative that/i = /< + £<T

or A~
f*.Q

- <fcr , which is reducible to (6.1) by subtracting

u. from all the observations.

Ruston (11) considered the same hypotheses but stated

H as fk^ \'S<r where K is the unspecied sign of/<. (K = -1 or

+1).
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Now, the likelihood function of a set of n independent

observations X ,
(i = 1, ..., n), identically distributed as

i

N(K$CT , <T
2

) is

which is equal to

(K|t|S - Jn$KGT 2
}] J

. (6.2)

where

_2

(h - i)s 2 = Z ( x i
- x »

2
and t?~ =

^r •

i = 1 S

Since the density function (6.2) depends only on the sufficient

9 2
statistics (S , K|t\ ) , and the distribution of S" does not

depend on S , we can let the likelihood function be represented

by the density function of the non-central t, with n - 1

d.f., f(t 2 |S ). This density function is given by:

2(n-l)*
(n- 1) „ ,; n j »$£*<£_) ."kfi

2

B(i (n-1), £)(n-l-Kt2 )*n
^ ln '

(6.3)



45

B(«,/S) represents the beta function, and M is the confluent

hypergeometric function:

M (-c,r,X) = £ miSl^ll^-
.

(6.4)
i=o rM n*+i) i!

Hence, the likelihood ratio becomes

JUilA - M(4n, 4,
nW )e-W

2

f(t 2
0) 2(n-l + t 2

)

(6.5)

Substituting,

u
2,_nt! ju

n - 1 » t
2

(6.6)

r x. 2

i^-i x

we can write the likelihood ratio in the form:

3n
= e~

inS "

M(in, J, iS 2
* 2

). (6.7)

As before, the sequential procedure consist of taking

additional observation as long as

P . 1 .1 -J (6.8)

Thus, H is accepted as soon as u *u2 when u, 2 i s the
' o * 11

solution of the equation:

M(4n, 4, IS 2 u/) - ^-^ e
in?2

, (6.9)
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and H is accepted as soon as u Z £ u , where u 2 is the

solution of the equation:

K(*n, h, I S
2

ik 2
) - —— e*

n *'
(6.10)

Boundary values for u 2
, and u

2
, solutions to equations

(6.9) and (6.10), have been given in (9) for a wide range of

values of <(,£, S, and n.

In practice values of u 2 are plotted on charts similar

to the figure 6.

u

NUMBER OF PAIRS

Fig. 6. SCHEMATIC REPRESENTATION OF AN OPEN DESIGN FOR
NORMALLY DISTRIBUTED MEASUREMENTS WITH UNKNOWN
VARIABILITY (SEQUENTIAL T-TEST).
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Armitage (3) gave an example of open sequential t-tests

to compare the relative efficacies of different analgesics

for patients with rheumatoid arthritis.

One subject was treated for a week with treatment A

and then, was treated for a week with treatment B. Three

observations were recorded each week. The performance was

measured by a score from a grip test. An average score was

figured.

The next subject received the treatments in the order

BA. The difference between the average grip of successive

patients was used in calculating U2. A critical difference

gwas chosen to be .85, because this was believed to be the

difference between aspirin and a placebo.

Three trials were reported. In the first trial pred-

nisone was shown to be better than aspirin after 7 recordings

In the second no significant difference was detected in

phenylbutazone and aspirin after 13 pairs of patients. The

third report showed aspirin to be better than K-acetyl-

para-aminophenol after 29 pairs.
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Ethical considerations require a physician to protect as many

patients as possible during a trial which compares different treatments.

As differences in treatments become apparent, a medical person is re-

quired to use what he considers the best treatment. On the average

sequential testing requires fewer observations than are needed in fixed

sample procedures and respond rapidly when large differences are observed.

Although some difficulties may be encountered in a design of this type,

it is deemed particularly appropriate that sequential procedures be

used in many investigations of medicine.

This report reviews some of the problems in designing sequential

medical trials and presents some examples of experiments performed

in actual clinical trials. The sequential probability ratio test is

discussed. A lemma is. included which proves that the sequential

probability ratio test terminates with probability one, and formulas

for the average sample number and the operating characteristic function

are developed. Procedures for working with data that is either qualita-

tive or quantitative is derived.

Since an unexpected long series of observations is possible and

may be very undesirable in a clinical trial, truncated and restricted

designs are introduced for the binomial case. An exact method of counting

sample paths by matrix multiplication and by using a fundamental equation

of Markov chains is presented for the truncated designs; and an approxi-

mate method, the diffusion process, is discussed for restricted designs.


