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Abstract 

 Most of the e-commerce websites like Amazon, EBay, hotels, trip advisor etc. use 

recommender systems to recommend products to their users. Some of them use the knowledge of  

history/ of all users to recommend what kind of products the current user may like (Collaborative 

filtering) and some use the knowledge of the products which the user is interested in and make 

recommendations (Content based filtering). An example is Amazon which uses both kinds of 

techniques.. These recommendation systems can be represented in the form of a graph where the 

nodes are users and products and edges are between users and products. The aim of this project is 

to build a recommender system for recipes by using the data from allrecipes.com. Allrecipes.com 

is a popular website used all throughout the world to post recipes, review them and rate them. To 

understand the data set one needs to know how the recipes are posted and rated in allrecipes.com, 

whose details are given in the paper. The network of allrecipes.com consists of users, recipes and 

ingredients. 

 The aim of this research project is to extensively study about two algorithms adsorption 

and matrix factorization, which are evaluated on homogeneous networks and try them on the 

heterogeneous networks and analyze their results.  This project also studies another algorithm 

that is used to propagate influence from one network to another network. To learn from one 

network and propagate the same information to another network we compute flow (influence of 

one network on another) as described in [7]. The paper introduces a variant of adsorption that 

takes the flow values into account and tries to make recommendations in the user-recipe and the 

user-ingredient networks. The results of this variant are analyzed in depth in this paper.  

 



iv 

 

 

Table of Contents 

List of Figures ................................................................................................................................ vi 

List of Tables ................................................................................................................................ vii 

Acknowledgements ...................................................................................................................... viii 

Chapter 1 - Introduction .................................................................................................................. 1 

1.1 Structure of Data in allrecipes.com ....................................................................................... 3 

1.2 Literature Review on Recommender Systems ...................................................................... 5 

1.2.1 Collaborative Filtering ............................................................................................... 5 

1.2.2 Content Based Filtering ............................................................................................. 6 

Chapter 2 - Data Acquisition .......................................................................................................... 7 

2.1 Web Crawler ................................................................................................................. 7 

Chapter 3 - Data Cleaning............................................................................................................. 10 

Chapter 4 - Recommendation Algorithms .................................................................................... 14 

4.1 Adsorption ....................................................................................................................... 16 

4.2 Matrix Factorization ........................................................................................................ 19 

4.3 Influence propagation in heterogeneous network ........................................................... 20 

4.4 Mean Average Precision ................................................................................................. 22 

Chapter 5 - Results ........................................................................................................................ 25 

5.1 Statistics of different networks ....................................................................................... 25 

5.2 Homogeneous Network Results ...................................................................................... 27 

5.3 Heterogeneous Network Results ..................................................................................... 29 

5.4 Inferences ........................................................................................................................ 31 

5.3.1 User-Recipe Network ............................................................................................... 31 

5.3.2 User-Ingredient Network ......................................................................................... 31 

5.5 Testing ............................................................................................................................. 32 

Chapter 6 - Conclusion and Future Work ..................................................................................... 35 

6.1 Conclusion .................................................................................................................. 35 

6.2 Future Work ................................................................................................................ 35 

References Or Bibliography ......................................................................................................... 36 



v 

 

Appendix A - Technologies .......................................................................................................... 37 

1.  Apache Hadoop ................................................................................................................ 37 

1.1 MapReduce ............................................................................................................. 37 

2 Mahout ............................................................................................................................... 38 

3 Pig ...................................................................................................................................... 38 

4 Apache Http Client ............................................................................................................ 38 

5 Google GSON API ............................................................................................................ 39 



vi 

 

 

List of Figures 

Figure 1.1 Workflow of building a recommender system. ............................................................. 1 

Figure 1.2 Structure of data in allrecipes.com ................................................................................ 3 

Figure 1.3 Class diagram of data in allrecipes.com ........................................................................ 4 

Figure 2.1 Workflow of extracting data .......................................................................................... 8 

Figure 2.2 Review JSON file .......................................................................................................... 8 

Figure 2.3 Recipe JSON ................................................................................................................. 9 

Figure 2.4 Cook profile JSON ........................................................................................................ 9 

Figure 3.1 showing data cleaning steps that are taken to clean input data file ............................. 11 

Figure 3.2 Recipe JSON file with ID ............................................................................................ 11 

Figure 3.3 User with ID JSON file ............................................................................................... 12 

Figure 4.1 Edge length between the user-recipe and user-ingredient graph ................................. 14 

Figure 4.2 Neighbors and weights of neighbors are calculation ................................................... 16 

Figure 4.3 Formulae to calculate P
cond

 and Y
v
 .............................................................................. 18 

Figure 4.4 Adsorption algorithm................................................................................................... 18 

Figure 4.5  Adsorption workflow for user-recipe network ........................................................... 19 

Figure 4.6  Adsorption workflow for user-ingredient network..................................................... 20 

Figure 4.7 Workflow for calculating flow values ......................................................................... 22 

Figure 4.8  Adsorption workflow for user-recipe network with flow values ............................... 22 

 



vii 

 

 

List of Tables 

Table 5.1 Statistics of user-recipe network for all train folds ....................................................... 25 

Table 5.2 Statistics of user-recipe network for all test folds......................................................... 26 

Table 5.3 Statistics for user-ingredient network ........................................................................... 27 

Table 5.4 Adsorption results for user-recipe network .................................................................. 27 

Table 5.5 Matrix factorization results for user-recipe network .................................................... 28 

Table 5.6 Adsorption results for user-ingredient network ............................................................ 28 

Table 5.7 Matrix factorization results for user-ingredient network .............................................. 29 

Table 5.8 Heterogeneous algorithm results for user-ingredient network ..................................... 30 

Table 5.9 Heterogeneous algorithm results for user-recipe .......................................................... 30 

Table 5.10 Comparison for all networks....................................................................................... 32 

 



viii 

 

 

Acknowledgements 

Firstly I would like to thank the almighty for being the source of my strength. I would 

like to extend my sincere thanks to Dr. Doina Caragea for having trust in me and assigning this 

complex project. Without her help and support this project would not have been successful. I 

would also like to thank Dr. Daniel Andresen for being my major professor and assisting me 

during the course of my project. It was a pleasure to also work under Dr. Andresen for a couple 

of semesters as a Teaching Assistant. Thanks to him I learnt two new frameworks MVC4 and 

Ruby on Rails. I would like to thank Dr. Simon Ou for being a part of my committee and 

reviewing my thesis. I took a course called computer and information security taught by him and 

I thoroughly enjoyed it. I would like to thank Dr. Patrice Chalin, with whom I worked for two 

semesters. I really like his style of teaching and learnt a lot from. I would like to extend my 

sincere thanks to Dr. Gurdip Singh, for having faith in my abilities and appointing me as a TA 

for all the four semesters I was at Kansas State. I would also like to extend my thanks to Dr. 

Gustafson, who gave me the chance to study in this wonderful institution. I would also like to 

thank the department of Computing and Information Sciences for sponsoring my education for 

the past two years. I would also like to thank other professors that I have worked with namely, 

Dr. William Hsu, Dr. John Hatcliff,  Dr. Rod Howell  and Dr. Scott Delaoch. I would like to 

thank the CIS support staff in assisting me with any official paper work.  Last but not the least, I 

would like to thank to my family and friends  who have been my pillars of strength and been 

with me though the good and bad times. It's because of their encouragement and support that I 

was able to successfully completed my course work here at Kansas State.



1 

 

Chapter 1 - Introduction 

Recommender systems is an important research area in the field of computer science. 

Most of the big players in the industry like Google, Amazon, EBay, etc. use some kind of 

recommender systems in the background to recommend personalized products, ads, videos to the 

user. Most of the recommender systems recommend things that are relevant to the user. They 

make use of the user's browsing history, search history, emails, etc.  to gather information. The 

workflow of building a recommender system is shown below: 

 

 

Figure 1.1 Workflow of building a recommender system. 

 

The first step in building a recommender system is to gather data from the user. Since of 

these websites have personal user accounts and access to browsing and search history, they have 
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significant information from which they can recommend things to the user. We are looking at 

recommender systems that take user preferences and try to recommend something which is 

similar to what the user prefers. Hence we need some kind of data that has user's and their 

preferences. One such website where you have user accounts and their preferences is 

allrecipes.com. The structure of data in allrecipes.com is explained in detail in section 1.1 and 

data acquisition is explained in chapter 2.  

The next step in building a recommender system is to clean the data that we have and 

generate input in acceptable formats for the algorithms to run effectively. Data cleaning includes 

removal of stop words(most commonly used words like a, an, the... which have no significant 

bearing ), special symbols and stemming of the words (stemming is removal of common prefixes 

and suffixes in words). There might be words in our data do not belong to the English language. I 

have only considered those recipes and ingredients that are posted in allrecipes.com' United 

States website. Hence English is my primary language that I focus on. So I remove all the other 

words that do not belong to the English language. Data cleaning is explained in detail in chapter 

3. 

The next step in building a recommender system is dividing your data into two parts -- 

training data and test data. The training data is given as an input to the algorithm and results are 

compared with the test data. In order to test the accuracy of the algorithm we make use of 

random splitting and this is done five times to generate 5 different train and test folds.   

The next step in building a recommender system is running the algorithms on the input 

data. There are several algorithms that I have used in my research like adsorption, matrix 

factorization, KNN, BFS and link prediction in heterogeneous networks. All the algorithms and 

work flows are explained in detail in chapter 4.  

The next step in building a recommender system is  evaluating your results. The results 

are evaluated against what we have in the test data set. The main evaluation metric that I have 

used in my research is Mean Average Precision. The evaluation part is explained in detail in 

chapter 4.  

All my results are compared in with the matrix factorization algorithm that was used in 

the Netflix challenge. The results are explained in detail in chapter 5. The different technologies 

that I have used in this project are explained in the technology section (1.2) of chapter 1. The 

basic workflow in building a recommender system is: 
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 1.1 Structure of Data in allrecipes.com  

Allrecipes.com is a prominent website used in United States and all throughout the world 

by many users to post recipes, review recipes posted by others and rate recipes posted by other 

users. Users of allrecipes.com have to create an account to be able to review and rate recipes. 

They have the option of adding recipes they like to the recipe box. Typically a user doesn't have 

any constraint on how many recipes he can add to the recipe box. A user can only rate and 

review a recipe that is present in a recipe box. He cannot rate and review recipes that are outside 

his box. General tendency is that whenever a user wants to try out a new recipe or a recipe he 

likes he adds it to his recipe box.  A typical data model consisting of user, recipe and ingredients 

is given below: 

 

 

Figure 1.2 Structure of data in allrecipes.com 

 

 

A recipe consists of one or more ingredients. The ingredients and the quantity(Ex:- pinch 

of salt) to be used is specified for each recipe in allrecipes.com. The amount of ingredient used in 

the recipe is ignored for my experiments but can be included in future scope of this project. The 
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recipe is also categorized in the website according to the cuisine. This is not used in my current 

experiments but can be included in the future scope of this project where we could consider only 

recipes in one type of cuisine and make recommendations in that cuisine . The only data that we 

used in the website are the ingredients, recipes and user profiles.  Using these we constructed 

user, ingredient, recipe network and then implemented some algorithms on them. 

The class diagram of recipe, ingredient and user is given below: 

 

Figure 1.3 Class diagram of data in allrecipes.com 

The data extracted  from the website is filled into these objects which are in turn 

converted to JSON strings and stored in text files and processed using hadoop. The process of 

extracting data is explained in chapter 2 and technologies used are explained in the appendix 

section. 
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 1.2 Literature Review on Recommender Systems 

Recommender systems try to predict the 'preference' that the user would give to an 'item'. 

Recommender systems used by many e-commerce, travel, retail, movie, music, books etc. 

applications. The two main approaches of building a recommender system are 

1. Collaborative filtering 

2. Content based filtering 

 1.2.1 Collaborative Filtering 

Collaborative filtering method uses the user's preferences like the rating, review or 

behavior to predict what they might like based on their similarity to other users. Collaborative 

filtering algorithms are independent of the domain, which is their biggest advantage when 

compared to content based algorithms. There are many approaches are used to predict the 

similarity between the two users. Some of them are K-nearest neighbors, Pearson Correlation etc. 

User profile data is often available in two forms. One is implicit data where the system 

analyzes what items the user has viewed, what purchases user has made or analyzing user's 

social network to understand users preferences. Other is explicit data where the user is asked to 

review an item, rate an item, rank a collection or create a wish list. 

 Any collaborative filtering system mainly uses two steps to generate recommendations.  

1. The current user is compared against all other users in the system and similarity is 

calculated. 

2. Recommendations are made to the current user based on the items liked by 'like-minded 

users' (similar users). 

 

 The metric used for computing similarity in the experiments is cosine similarity which is 

explained in detail in chapter 4. The algorithms that are discussed in the later chapters like 

adsorption[5] and matrix factorization[6] are collaborative algorithms that use ratings and users 

preferences and make recommendations.. These collaborative filtering algorithms are analyzed in 

great detail in chapter 4. 

 Collaborative filtering suffers from 'cold start' problem. Whenever new ratings and 

reviews are posted, the similarity between two users changes and hence the recommendations 
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made also change. Hence the system needs to be constantly updated. It also suffers from sparsity 

in data. Most of the items in the system are not rated by the user. Accuracy of the results 

decreases because similarity between users changes  

 1.2.2 Content Based Filtering 

Content based filtering methods are based on the item description rather than user's 

explicit feedback like ratings or reviews. They are also dependent on user's preferences specified 

in his profile (things that the user likes, his hobbies, interests to make recommendations). 

Content based filtering algorithms store keywords to indicate what kind of items user likes (For 

example, if the user likes 'Conjuring movie' then you associate the keyword 'horror films' to this 

user).  

The content based filtering algorithms take into account things that user liked in the past ( 

based on his profile and also on the type of items that he liked) and try to recommend something 

similar. Various items are compared against the user's preferences and the top results are 

recommended.  

Based on the user's preferences a weighted vector is created for an item which is 

compared against other items and the top results are recommended. The weights in this vector 

can be computed using a variety of techniques like Bayesian Classifiers, cluster analysis, 

decision trees or artificial neural networks. 
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Chapter 2 - Data Acquisition 

Getting the data of recipes, reviews and cooks was a challenging problem because most 

websites provide RESTful services that applications can use to get data. But there were no 

RESTful API's that are provided by allrecipes.com. Hence I wrote a web crawler to extract data 

from allrecipes.com. The description of a web crawler is given below: 

 

 2.1 Web Crawler 

 A web crawler is a computer program that scans the world wide web and gathers 

information. Generally big search engines like Google, Ask, Yahoo use some kind of web 

crawlers to repeatedly crawl the web and extract data. The crawling policy of each web site is 

specified in robots.txt.  

 So I have checked the robots.txt of allrecipes.com and made sure I adhered to all the rules 

specified in the robots file. I have crawled the recipe, review and cook profiles using Apache 

Http Client API. I used xml parser called JSOUP to parse the HTML page that is returned by the 

Http Client. From the HTML page I extracted what details I wanted and put them into model 

objects described in the above class diagram. Later after extracting all details I need I have stored 

these objects as JSON strings in text files which can be used for processing by hadoop.  

The workflow of extracting the data from the website is explained in the following steps: 

1. The crawler bot sends request to the web server of allrecipes.com asking for the 

recipe/cook/review page. 

2. The server of allrecipes.com returns a web page which is in the form of HTML to 

the bot.  

3. The bot then passes this HTML file to the parser program to extract information 

from this HTML page. This parser fills in the model objects. 

4. The model objects are converted to JSON strings and JSON strings are stored in 

HTML file.  

  The  figure showing the above workflow is given below. 
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Figure 2.1 Workflow of extracting data 

  

 The preview of JSON data is shown in figures below: 

Figure 2.2 Review JSON file 
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Figure 2.3 Recipe JSON 

 

 

Figure 2.4 Cook profile JSON 

  

 There are three different files that store the review, recipe and cook profile data. These 

files store about 2 million reviews data,  60k recipes data and 20k user data respectively. This 

data is cleaned in the next step. The process of cleaning the data is explained in detail in chapter 

3. After cleaning the data the same data is regenerated but in a clean form. The cleaned data set 

is then given as an input to these algorithms that work on that data to produce results.  

The server of allrecipes.com blocks IP addresses that send more than 3 requests per second. 

Hence fewer requests were sent to the server. I used Beocat cluster to submit a job that ran for 80 

hours to crawl the entire data of recipes. Reviews and cook profiles took a lot more time to crawl 

because more requests had to be sent to the server. Overall almost entire data of allrecipes.com 

has been crawled.  
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Chapter 3 - Data Cleaning 

 Data cleaning is a process of removing unnecessary symbols, trimming unnecessary 

prefixes and suffixes and also removing commonly used words that have no special meaning 

(For example words like a, an, the which , when, why, what, are, for.. etc do not have any special 

meaning when it comes to explaining something about the domain). Such words are call stop 

words. A collection of such words is made and these all the words are removed from the data. 

We only clean ingredient data because recipe data is clean and cook profiles have unique 

usernames and hence the only thing that had be cleaned was the ingredients. Many ingredients 

are the same but the way of representing them by different users is different. For example salt is 

a common ingredient that is used by many users. Some users specify salt as pinch of salt, some 

as tea spoon of salt and others specify only salt. As a human we can say that all are the same but 

for a computer to be able to do that we must remove words like pinch, tea-spoon to tell the 

computer that they are the same.  

There are many steps that are followed by different researchers to clean their data. The 

steps that I followed to clean the data are: 

1. The first step is to trim the leading and trailing spaces in my text. 

2. The second step is to remove unnecessary symbols other that the alphabets (lower 

and upper case) and numbers. 

3. The third step is to remove the 'stop words' from the text. 

4. The fourth step is to split the input phrase into set of words and stem each word 

using an English Stemmer. A stemmer is a computer program that removes 

unnecessary prefixes and suffixes in a word.  

5. The next step is to remove one letter words that remain in the output document.  

6. The other remaining words are the clean words that are domain specific and are 

useful for our experiments. 

7. Such words are given unique ID's in the next step. 

8. The words in the original data set are replaced with the ID's that we assigned in -

the previous step.  

9. Now the input file contains ID's instead of raw text. 
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The diagram showing how input text is cleaned and how a new file is generated for the 

algorithm is shown below: 

  

 

 

 

Figure 3.1 showing data cleaning steps that are taken to clean input data file 

 

 The advantage of using an ID over raw text is that IDs are unique and there is no point of 

checking for redundancy in every experiment that we perform, data is consistent and also 

reliable. The figures showing the updated JSON's are given below: 

 

Figure 3.2 Recipe JSON file with ID 
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Figure 3.3 User with ID JSON file 

 

 Only 'kitchen approved' recipes are taken into consideration and all the kitchen approved 

recipes in the data set have unique ID's. Only these recipes are taken into consideration because 

other recipes are posted by different users but allrecipes.com has not approved it yet or the recipe 

is rejected after tested by the experts al allrecipes.com. Kitchen approved recipes are available 

public and all users of the website are able to see it. Personal recipes do not have public facing 

and receive very less or no views at all. These are generally because recipes of such type have 

already been posted before or they have not been approved. So among the data set we filter the 

kitchen approved recipes only and send these to the algorithms. The next step is running different 

algorithms for which some values need to be calculated which is explained in detail in chapter 4.  
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Some statistics of the data are: 

 Total number of recipes = 59805  

 Total number of users = 20268 

 Total number of ingredients = 14242 
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Chapter 4 - Recommendation Algorithms 

 There are several recommendation algorithms that have been used in my experiments and 

even combination of algorithms have been used. The major algorithms that I have worked with 

are adsorption, matrix factorization ALS with implicit and explicit feedback and link prediction 

in heterogeneous network using flow equation(influence propagation). For all these algorithms 

we must transform the JSON files into specific formats for this algorithms to work effectively. 

The main steps include graph construction, generating distribution, finding weights of nodes in 

the graph and finding neighborhood. Before all this is done the input data is divided into train 

and test data. The steps involved in preparing the graph, building neighborhood is shown below: 

1) From the recipe JSON file shown in figure 3.2 and 3.3 we generate user-ingredient count. For 

example in figure 3.3 we have 9_user who is associated with many recipes(79 to be precise). 

Among these recipes we pick the 'kitchen approved' recipes and see if the rating given to the 

kitchen approved recipe by the user is 4 or greater. For all such recipes we take ingredients 

specified in step 2 and emit (9_user,4567_ingredient) and 1 ( where 1 is the count of user-

ingredient pair). For all such recipes we emit the counts. we generate a CSV file that contains 

the user - ingredient count. 

2) The same step is repeated for the data in figure 3.3 where in all "kitchen approved" recipes 

are emitted along with their rating. For example in figure 3.3 we emit 9_user,9684_recipe,1. 

The '1' here is determined as given in the figure below: 

 

Figure 4.1 Edge length between the user-recipe and user-ingredient graph 
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3) Now that we have built the graph as shown in the figure the next step is to divide the data 

into train-test folds. The minimum condition for dividing the data into train and test folds is 

that a user should have at least two edges. All users with one or zero edges are removed in 

this step. The data is divided in the ratio of 70-30 percent in random fashion. Five such folds 

are created for user-recipe and user-ingredient graphs. We only tamper with the train folds 

but not the test folds. The test folds remain as they are throughout all the experiments. 

4) For each fold that we have we calculate a metric called 'distribution'. The distribution for a 

user is defined by the formula user-item count(where item is either recipe or ingredient 

depending on the graph we choose)/sum of counts of all items. We calculate distribution for 

each edge in the graph. 

5) Using the distribution file that we emitted in the previous step we calculate the degree of the 

user. Degree of the node is defined by the number of edges coming out of the node. The 

output of this step is user: degree     item1,item2,item3.... 

6) The next step in preparing the input for the algorithms is to calculate the neighborhood of the 

user. The neighborhood of the user is calculated in two steps: 

a) For every item in the output of step 5 we emit item and user: degree. For each item we 

create a file that stores the item name and the users that have the item. 

b) From the output in step 4 we take a user and an associated item. Then we look up for the 

item file and add the list of users of that item to the neighborhood. The weight will be 1 

and will be incremented if there are more than one items in common in between users. 

Finally after this step we emit user: degree user1:degree1:weight1, 

user2:degree2:weight2.... The neighborhood step is better explained in the diagram 

below: 
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- 

 

Figure 4.2 Neighbors and weights of neighbors are calculation 

  

 The algorithm described above is called Nearest Neighbor algorithm and a variant of it is 

called KNN, K-Nearest Neighbors. This is the first algorithm that is used in my experiments. The 

neighborhood is taken into consideration in all my experiments. The first algorithm that takes 

neighborhood and makes recommendations is adsorption and the other algorithm that is provided 

by the mahout framework is matrix factorization (alternating least squares) with implicit 

feedback. Each of these algorithms are described below: 

 4.1 Adsorption 

There are three kinds of ways knowledge can be learnt or something can be inferred from 

the data. They are supervised learning, unsupervised learning and semi-supervised learning. 
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Supervised learning algorithms have labeled data and try to infer based on the things learnt from 

the label data. Unsupervised learning does not have labeled data and such algorithms cluster 

group of data and try to infer from the cluster. Semi-supervised learning algorithms make use of 

labeled data and unlabeled data The semi-supervised algorithms have two steps in which the first 

step is that the labeled data determine what they think about group of unlabeled data, and from 

this discussion they learn about unlabeled data. 

Adsorption is a semi-supervised algorithm that is used on large scale graph data. The goal 

of adsorption is to label unlabeled examples and from the limited amount of knowledge they 

have from the labeled data. In our example, we have a user-user neighborhood. Between two 

users there are a few ingredients or recipes in common. We try to learn from other user's 

neighborhood and try to learn whether the user likes the recipes or ingredients liked by other 

users or not. The neighborhood and the distribution we have is labeled data and trying to 

determine links between users using the above data is unlabeled data and from the labeled data 

we are trying to infer something about unlabeled data. Adsorption is one such algorithm that 

works on semi supervised graph data. 

Adsorption propagates label-information from the labeled data to other data via edges. 

Given an undirected graph G(V,E,W) and a vertex v, and edge (a, b), where a, b belong to V and 

W(a,b) belongs to R
+
 where R is the strength of the similarity, such a graph is sent as an input to 

adsorption. 

The number of vertices in the graph are n, where n=|V| and nl is the number of labeled 

vertices and nu is the number of unlabeled vertices. nu+ nl = n. Let 'L' be the set of labels and 

m=|L|. Each vertex v is associated with a row vectors Yv and Y
^
v. The lth element of vector Yv 

indicates prior knowledge and a higher value of Yvl indicates that the vertex v should have label l 

and if Yvl=0 then it indicates that the vertex is not associated with the label. The algorithm 

computes Y
^
v which has similar semantics as Yv.  

To label any vertex v we start a random-walk at vertex v with three possible actions: 

inject, continue and abandon. Sum of these probabilities is 1 (p
inj

v+ p
cont

v+ p
abnd

v = 1).. We 

randomly walk through the graph in three stages. We randomly walk through the graph with 

probability p
inj

v and return Yv. We take p
inj

v=0 for unlabeled vertices. The second kind of random 

walk through the graph is done using p
abnd

v where we abandon labeling process and return a zero 

vector. Thirdly the random walk continues with probability p
cont

v to a neighbor of v, v' with a 
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probability of Wv,v' >=0. The weight W(v,v') is 0 if (v,v') do not belong to edge set E. the 

absorption algorithm and Pr[v'/v] calculation is shown below: 

Pr[v'/v] =  wv'v / ΣWuv (for all u and (u,v)  ∈ E)  if (v',v) ∈ E or  .........................(1) 

Pr[v'/v] = 0 

 The expected score Y
^
v is given by 

 Y
^
v
 
=  p

inj
v x Yv + p

cont
v x Σ Pr[v'/v] Y

^
v'(for (v,v') ∈ E ) + p

abnd
v x 0m .....................(2) 

 

Figure 4.3 Formulae to calculate P
cond

 and Y
v
 

  

  

 The below figure explains adsorption algorithm[4]: 

Input: 

-Graph: G = (V,E,W) 

-Prior labeling : Yv ∈ R
m+1 

for v ∈ V 

-Probabilities: p
inj

v, p
cont

v, p
abnd

v for v ∈ V 

Output: 

-Label Scores: Y
^
v ← Yv for v ∈ V 

repeat: 

 Dv ← ΣWuvY
^
u/ΣWuv for v ∈ V 

 for all v ∈ V do 

  Y
^
v ← p

inj
v x Yv + p

cont
v x Dv + p

abnd
v x r 

 end for 

until convergence 

 

Figure 4.4 Adsorption algorithm 

 

 The algorithm shown in the above figure represents the adsorption algorithm.  After 

running this algorithm on the above data set we get recommendations. For the user-recipe 

network we get recipes as recommendations among which top ten are chosen. The top ten recipes 

are picked based on their Y
^
 values and then MAP precision is run on the output of this algorithm 
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and the user-recipe train data. The results are shown in the chapter 5 and workflow is shown 

below 

 

Figure 4.5  Adsorption workflow for user-recipe network 

 

 4.2 Matrix Factorization 

Matrix factorization with alternating least squares having implicit and explicit feedback is 

provided by mahout framework. The algorithm proposed by [5] is built in the framework. T 

he basic matrix factorization algorithm takes N and M which are number of user and 

items respectively (u as index for users and i , j as index for items) and ratings of the user 

(denoted by rui) and tries to predict r
^
ui, which are the recommended ratings. There are two other 

vectors that are defined which are qi and pu. The elements of qi indicate whether the item 

possesses those factors. The pu vector indicated to what extent the user has interest in those 

items(N and M are stored in these vertices respectively). The dot product qi
T
pu captures the 

interest in item by a user[6]. 

rˆui = qi
T
pu. 

The matrix rˆui contains the recommendations made for the user. This is a basic matrix 

factorization technique. The system regularizes squared error on a set of known ratings as: 
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The mahout framework provides this algorithm and input data is sent to this algorithm 

and recommendations are returned we calculate the MAP ( Mean Average Precision) between 

the recommended data and the test data. The results are shown in chapter 5 For the user-recipe 

network the ALS algorithm returns a set of recipes. For the ingredient network the ALS 

algorithm returns set of ingredients. All ingredients are taken and cosine similarity is calculated 

between the output ingredients and all recipes. The top results are then taken and MAP is 

calculated between the returned results and the test data. The results of this is shown in detail in 

chapter 5 The adsorption algorithm workflow for ingredient network is shown below(The 

adsorption module can be replaced with matrix factorization in both cases): 

 

 

Figure 4.6  Adsorption workflow for user-ingredient network 

 4.3 Influence propagation in heterogeneous network 

 

The above two algorithms, adsorption and matrix factorization are algorithms that are run 

on homogenous network separately. It would be good if we could learn from one network and try 
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to infer things in other network. There is an algorithm that is proposed in the paper "Link 

Prediction in Heterogeneous Network" that introduces `flow` to propagate influence from one 

network to other network. Flow is computed using the formula 

 

Here u, v are two users in a graph and B is a katz factor which is generally 0.05 and σ(i, j) 

is the probability of having link type i given j. |E(u, v)| is the number of links between u,v. The 

score(v) is calculated by doing a BFS on the graph choosing a random node and then calculating 

the score between the parent and the child using the formula 

 

 Using this influence propagation formula we propagate influence between the two 

networks. After calculating flow values the top 10 flow values are chosen as neighbors. These 

neighbors are given as the input to the adsorption algorithm and the same procedure described in 

section 4.1 is repeated again for both ingredient and the recipe networks. 
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Figure 4.7 Workflow for calculating flow values 

 

Figure 4.8  Adsorption workflow for user-recipe network with flow values 

 4.4 Mean Average Precision 

Among all evaluation measures MAP has shown to have good discrimination and 

stability. The mean average precision is calculated by taking the average of precision of all 

queries[7]. 
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A sample example to calculate mean average precision is given below: 

i) If the user followed 1 and 3 and another node that wasn't recommended by the 

algorithm then the MAP is (1/1+2/3)/3=0.56 

ii) If the user  follows 1 and 2 and another node that wasn't recommended by the 

algorithm then the MAP is (1/1+2/2)/3 =0.67 

iii) If the user follows 1 and 3 and no other node and 1 and 3 were recommended then the 

MAP is (1/1+2/3)/2=0.83 

Precision and Recall (Algorithm Correctness) 

 To understand MAP well one needs to understand the what precision means in terms of 

information retrieval system. Precision and recall are the basic measures used in evaluating any 

kind of search strategy. It may involve searching for a document from a set of documents, 

recommending something to the user, searching for documents that involve some text etc. 

 We make certain assumptions in calculating the precision and recall. The assumption is 

that we already know what are the relevant documents in the data set given to us. In our case 

when we divide the data in to train and test folds we know for sure that the user likes 'x' and 'y' 

recipes and 'x' and 'y' ingredients. This is because we extracted this data from the input dataset. 

Such recipes or ingredients are considered to be relevant and other recipes that are not associated 

with the user are considered irrelevant.  But, there exists another problem that there might exists 

some recipe that can occur in train as well as in recommendations. Such recommendations are 

biased and we filter those recipes so that recipes that are not in the train set are taken and 

evaluated. This is called over sampling.  

 When we know the set of relevant recipes, we see whether the recommendations made 

contain these relevant recipes or not. If the recommended set contains those recipes in which 

position did we get the recommendation. For example for user 'A' recommendations 'R1','R2' and 

'R3' are made, then the position at which the recommendations were made are 1,2 and 3 

respectively. Precision is the number of relevant documents retrieved to the total number of 

relevant and irrelevant documents. 

 C: Number of irrelevant documents retrieved 
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 A: Number of relevant documents retrieved, then 

Precision = (A/(A+C) )*100% 

 MAP is the average of precision points in the recommendations made. MAP value for an 

algorithm indicates the average precision with which the algorithm recommended recipes to the 

user. The results section only contains the MAP values for the algorithm run on various folds. It 

indicates the average precision of the algorithm for that data set. MAP is the evaluation criteria 

used for all algorithms described in this paper. 
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Chapter 5 - Results 

The results of all the algorithm are explained and tabulated in this chapter. The tables 

start from the individual networks i.e. user-recipe and user-ingredient networks and move to the 

entire network (user-recipe-ingredient) and results are shown for the three algorithms described 

in chapter 4. Firstly there are tables that explain how many users, items are there in each fold and 

how many edges are there in each fold. There tables give insights about how large the data is. 

 

 5.1 Statistics of different networks 

 The input data is divided into five folds and each fold is randomly divided and we 

generate recommendations for each fold. Each fold's recommendations are evaluated against 

their corresponding test recommendations and results are shown in tables below. 

 

Table 5.1 Statistics of user-recipe network for all train folds 

 

Fold Users Items User-Item Count 

1 15376 53793 1589017 

2 15376 53754 1589017 

3 15376 53832 1589017 

4 15376 53778 1589017 

5 15376 53777 1589017 

  These statistics show that in the train data of the user-recipe network, there are 

15376 unique user vertices and approximately 53,770 (average of five folds) unique recipe 

vertices. There are about 1.5 million edges between user and recipe vertices in this graph. This 

graph is sent as input to the different algorithms and results are obtained.  
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Table 5.2 Statistics of user-recipe network for all test folds 

 

Fold Users Items User-Item Interaction 

1 15376 46588 680747 

2 15376 46624 680747 

3 15376 46587 680747 

4 15376 46573 680747 

5 15376 46658 680747 

 

In the test data there are 15376 unique user vertices and 46500(average of 5 folds) unique 

user vertices. There are about 680,700 user-recipe edges. This is graph which is compared 

against the recommended graph.  

For the user-ingredient network the test set is same as the user-recipe test set. It is 

because when the algorithm recommends ingredients we calculate cosine similarity between 

recommended ingredients and all recipes and only top ten recipes are taken and evaluated against 

the user recipe test set. The training data though consists of all those ingredients of recipes for 

which user gave the rating greater than or equal to 4.The statistics of the user-ingredient network 

are shown below 
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Table 5.3 Statistics for user-ingredient network 

Fold Users Items User-Item Interaction 

1 13868 8240 557050 

2 13868 8280 555803 

3 13868 8259 557752 

4 13868 8242 557767 

5 13868 8232 556125 

 

 The above table shows that in the user-ingredient network there are 13868 unique user 

vertices and 8250(average of five folds) unique ingredient vertices. There are about 550,700 

(average of five folds) user-ingredient edges in the input graph. Though there are more 

ingredients for one recipe we only take the ingredients of those recipes for whom user rated 4 or 

5. Since only these are taken into consideration we have relatively fewer edges in the graph. 

 5.2 Homogeneous Network Results 

The results for the user-recipe homogeneous network for both recipe and ingredient 

network after running the adsorption algorithm are given below: 

Table 5.4 Adsorption results for user-recipe network 

 

 

 

 

 

 

 

 

 

 

Fold Adsorption 

1 0.008905858648788604 

2 0.00985603092934859 

3 0.007987452436075213 

4 0.012890267076427202 

5 0.005056082104359651 

Average of all  folds  0.008939138238999852 
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 Table 5.5 Matrix factorization results for user-recipe network 

Fold 1 Average = 5.593648316072873E-5 

Fold 2 Average = 5.580228102340485E-5 

Fold 3 Average = 9.006253819599293E-5 

Fold 4 Average = 7.076065771435179E-5 

Fold 5 Average = 4.352610364298338E-5 

Average 6.32E-05 

Table 5.6 Adsorption results for user-ingredient network 

Fold A=1,L=0.01 A=1,L=0.1 A=5,L=0.01 A=5,L=0.1 

1 3.249498290471236E-5 8.852179442710141E-6 1.3600870455709165E-

5 

8.155360652759195E-6 

2 2.4721582181259604E-

5 

7.316597294484911E-5 1.695076226814E-5 8.671522719389524E-6 

3 5.6865574880663335E-

5 

5.3175016104256476E-

5 

5.428476454751169E-5 3.7883714880332987E-

5 

4 4.10426267281106E-5 4.7484329319657097E-

5 

5.0860029235419455E-

5 

4.3574401664932366E-

5 

5 5.16368531456981E-5 3.747336603736187E-5 6.915539368713145E-5 4.841600184992484E-5 

Average 

of all 

folds 

4.14E-05 

 

4.40302E-05 

 

4.09704E-05 

 

2.93402E-05 
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Table 5.7 Matrix factorization results for user-ingredient network 

 

A--Alpha L-Lambda 

 5.3 Heterogeneous Network Results 

 The heterogeneous algorithm involves calculating flow values for both networks and 

taking neighbors having top flow values. The top ten flow neighbors are picked and the 

adsorption algorithm is given this new neighborhood. The top results are taken and MAP is 

calculated with the test data. The result are shown for user-recipe and user-ingredient networks. 

 

 

 

Fold A=1,L=0.01 A=1,L=0.1 A=5,L=0.01 A=5,L=0.1 

1 2.0855270221165124E-

4 

9.267689906347549E-5 1.3029242473668853E-

4 

1.2480798771121354E-

4 

2 1.3566158556728276E-

4 

1.3196328435987644E-

4 

2.030065408057084E-4 1.41751007548354E-4 

3 1.945027707579737E-4 1.8218714384817398E-

4 

1.5479700378243563E-

4 

1.4415632277885144E-

4 

4 1.0918118114398032E-

4 

1.0406859587400687E-

4 

1.0805852864905936E-

4 

1.2216265711973307E-

4 

5 1.3526026956047767E-

4 

1.3264848950332822E-

4 

1.388217878202269E-4 1.1428602398295428E-

4 

Average 

of all 

folds 

1.57E-04 

 

1.29E-04 1.47E-04 

 

1.29E-04 
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Table 5.8 Heterogeneous algorithm results for user-ingredient network 

 

Fold Adsorption 

1 7.055161207736649E-5 

2 1.2226847034339227E-4 

3 1.5518154452207522E-4 

4 1.9133869728952968E-4 

5 1.4363757990188788E-4 

Average 1.37E-04 

Table 5.9 Heterogeneous algorithm results for user-recipe 

 network 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fold Adsorption 

1 0.007195661812678549 

2 0.00837349680497323 

3 0.009419522603670853 

4 0.009135502654760807 

5 0.008429704467803766 

Average of all  f[olds  0.008510778 
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 5.4 Inferences 

The heterogeneous algorithm is comparable to the matrix factorization in the user-

ingredient network and better than the adsorption algorithm. For the user-recipe network the 

heterogeneous algorithm is way better than the matrix factorization and comparable with the 

adsorption algorithm. We can say that this algorithm is comparable or better in some cases 

compared to the matrix factorization and the adsorption algorithm.  

 5.3.1 User-Recipe Network 

The adsorption algorithm for the user-recipe network yielded MAP value of 0.0089. The 

same adsorption algorithm while taking the top flow value neighbors yielded 0.0085. This is 

almost same as adsorption for homogeneous network. Since the data set is sparse the MAP 

values for both the algorithms are almost similar. For a denser data set the algorithm would 

perform even better. The top flow vales are selected by using a max priority queue. The priority 

queue filters the incoming flow values and arranges them in descending order.  

When compared to matrix factorization, adsorption performs way better in homogeneous and 

heterogeneous setting. In homogeneous setting for the user-recipe network matrix factorization 

yields a MAP of 3.89352E-05. This value is way less than that of adsorption in both 

homogeneous and heterogeneous setting. For the user-recipe network we can see that adsorption 

performed way better  than matrix factorization.  

 5.3.2 User-Ingredient Network 

For the user-ingredient network the workflow of computing the results is completely 

different compared to the user-recipe network. The workflow is explained in detail in chapter 4. 

The algorithm recommends ingredients to user. But we are trying to recommend recipes for user. 

So we calculate cosine similarity between the ingredients and all recipes in the network. The top 

ten cosine similarity recipes are assumed to be correct. The cosine similarity is a most common 

metric used in information retrieval systems to calculate the similarity between two entities. The 

procedure for calculating cosine similarity is given below, 

1) Assume for a user A the algorithm recommends ingredients I1,I2,I3. Assume there are 4 

recipes in a system and each recipe has the following ingredients 

a) R1:  I1,I2 

b) R2: I1,I2,I3,I4 
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c) R3: I1 

d) R4: I1,I2,I3 

2) We calculate cosine similarity using the following formula: cos(theta) = ΣwIjRj*wIjU/(|Rj||U|) 

(where j ranges from 1..4) 

3) Here the weights are usually taken as 1 since we only want to see if the ingredient appears in 

a recipe or not. The same is done for all the recipes and MAP is taken between the recipes 

that we calculated using cosine similarity and test recipes. The results are shown in the above 

tables. 

 The average of adsorption results for homogeneous network (user-ingredient) for 

the five folds is 6.32E-05 where as it is 1.37E-04 for the heterogeneous network. Since 

ingredients and recipes are interrelated taking neighbors with high flow values in this case is 

better than the homogeneous network. The matrix factorization average for different parameters 

is 0.0001405 which is slightly better than that of heterogeneous network. Hence in this case the 

heterogeneous algorithm is comparable to matrix factorization. Below is a table reflecting this 

comparison 

Type of Network Adsorption 

(Homogeneous) 

Matrix 

Factorization 

(Homogeneous) 

Adsorption 

(Heterogeneous) 

Ingredient 6.32E-05 0.0001405 1.37E-04 

Recipe 0.0089 0.0085 3.89352E-05 

Table 5.10 Comparison for all networks 

 

 5.5 Testing 

Unit Testing 

 Unit testing is the method by which individual components of the system are tested This 

project involves a lot of string parsing to be done. Data cleaning is the first step where a lot of 

string parsing is done. The different cases for which I have unit tests are: 

a) I have written test cases to check if two similar strings, after cleaning return the same 

output or not. For example the two strings pinch of salt and salt after cleaning should give 

salt. 
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b) I have written test cases to compute weights and degrees of one node. After testing it for 

some inputs I tested it on the input data set. 

c) I have written test cases to compute MAP between the recommends results and the test 

set for one user.  

d) I have written test cases to compute flow value of a node in one network and tested it 

using other data of similar kind. Both returned the same value and hence I deduced that 

the algorithm is computing the flow values correctly. 

e) I computing the K nearest neighbors we use a max priority queue. I have used the Java 

version of priority queue which is a min priority queue and converted the same to max 

and tested it on one line of the input and it worked correctly. 

Performance Testing 

 I have mainly used hadoop map reduce to write all my code hence performance is also a 

key factor in deciding the scalability of an algorithm. For example consider the statistics shown 

in Table 5.2. The number of user item interactions are  1589017. Before I talk about how 

performance and running time reduces greatly because of using hadoop I will talk about another 

technology called Titan. Titan is a graph database that uses either Hbase or Cassandra as it's back 

end. Titan stores graph in a form that is readable only by the software. It uses indexing and other 

methods to actually index keys in the graph for efficient and fast retrieval. 

 The advantages of Titan over other graph database are: 

a) We can easily plug in Titan to Hadoop and use it for efficient retrieval process.  

b) Indexing of nodes and labels in the graph allows faster retrieval when compared to other 

graph databases. 

c) Applications can be built on top of Titan. 

d) It also provides an application server that runs Titan applications in background. 

 While designing the workflows of this application I build graphs using Titan but there are 

two ways to build a graph using Titan standalone mode and distributed mode. Using hadoop we 

can create Titan graph database. I tried both the variants. The standalone mode of Titan took me 

about 1-1.30 Hrs to create the Graph where as the distributed mode took me about 10-20 min 

when 30 nodes were allocated.  
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 I decided not to use Titan and go ahead with standard text files because of the following 

reasons: 

a) Titan comes with other modules like an application server and application module which 

is not necessary for this project.  

b) Titan uses Hbase to store the graph and every time a query is issued to the graph Titan 

connects to the database builds the graph in memory and displays the results. Since 

database calls are expensive and the project that we intended to build does not require an 

exclusive graph database.  

c) Complexity of the project increases and such complexity is not required since the project 

does not require complex graph retrievals.  

 Because of the above mentioned reasons the idea of using Titan was dropped and we 

went ahead in our research using text files as input. When we require the recommendation 

system to be built as an application Titan comes in handy.  

 When we used the standard text files for processing the process of building the input only 

took 2 minutes approximately. So when large number of nodes are allocated for processing the 

input the process of building the graph becomes extremely quick. Since map-reduce is a 

framework build for distributed environment the programs make use of distributed memory to 

accomplish the task faster 
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Chapter 6 - Conclusion and Future Work 

 6.1 Conclusion 

 The heterogeneous algorithm is bound to give better results because it learns from other 

networks tries to pass on that knowledge each individual network. Since adsorption has proven 

to give better results(better than existing algorithms) in homogenous network, the 'flow' 

information from other networks increases the accuracy of the adsorption algorithm. 

 The results reflect the same in the results shown in chapter 5. Since the recipe data-set is 

sparse, meaning a recipe 'A' has few ingredients like salt, pepper which are found in almost all 

recipes and there are some ingredients only used in one or two recipes, the results do not 

improve that much but they are comparable to that of homogeneous network. This is a great 

sign because, using knowledge of other networks, it is able to give comparable results to that of 

homogeneous network. For a more denser data set the results would be even better. 

 

 6.2 Future Work 

 The following things can be done as a part of future work to this project: 

 

1. The heterogeneous algorithm described in this paper can be extended to other data sets to 

test its effectiveness.  

2. It can be tried on denser data sets to test whether it yields better results or not. 

3. There are several variants to the adsorption algorithm. These variants can use the flow 

data and we can see which variant of adsorption goes well with the flow data. 

4. The flow values can be plugged in to other algorithms as well other than adsorption to 

check if they work well  with other algorithms or not. 
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Appendix A -  Technologies 

The major technologies used in my research are: 

1. Apache Hadoop 

2. Mahout 

3. Pig 

4. Apache Http Client 

5. Google Gson Api 

 

 

 1.  Apache Hadoop 

Apache Hadoop is an open source software used to process huge amounts of data using 

distributed computing. As data is exploding day by day traditional file processing techniques 

become irrelevant when it comes processing huge data. In a distributed computing environment 

the nodes are prone to failures. Instead of relying on hardware to provide relentless service 

apache hadoop manages the nodes in the cluster, failure management, delivering highly available 

service on top of a cluster. 

Most of the technologies I have used in this project are Apache Hadoop related projects. 

The apache hadoop project includes Hadoop Common, HDFS, YARN and MapReduce[1]. I 

have mostly written MapReduce programs for my research.  

 

 1.1 MapReduce 

MapReduce programming model is used to process large data sets using distributed 

computing. The MapReduce programs usually have a map() task and a reduce() task. The names 

were  inspired by functions used in functional programming although the task performed differs 

from its original form[2]. The steps taken in a MapReduce program to take the input and 

generate output is as follows. 

1. The "MapReduce" framework divides the input data into chunks(64 Mb each) and 

sends it to different nodes in the cluster. Every 64 Mb chunk is called a "Map Task:", 

that is processed by a node. 
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2. The framework then calls the map method on each key value pair (K1) in the task 

and the output of this is also a key value pair K2. 

3. All the intermediate key-value pairs (K2) are sorted and all values belonging to key 

K2 are aggregated. 

4. The reduce operation is then called on the key-value pair K2 which now contains a 

key and a list of values to process. 

5. The reducer then emits an output key value pair K3 which is the final result. 

 

-  

 2 Mahout 

Mahout is a framework that provides implementations of scalable machine algorithms 

focused on collaborative filtering. The algorithm that I have used in Mahout framework for my 

project is matrix factorization. Mahout can be downloaded from the  Apache Mahout's home 

page (https://mahout.apache.org/)  

 

 3 Pig 

Pig is a high level tool for creating MapReduce programs using Hadoop. The language in 

which programs are written are called Pig Latin. Pig Latin abstracts the Java implementations of 

MapReduce to provide a SQL kind of tool for writing MapReduce programs. Users can also 

write user defined functions in Python, Groovy, Java to have their own implementations of 

MapReduce used. I have written Pig Latin queries to evaluate the results of the algorithm. 

 4 Apache Http Client 

Apache Http Client is a Java API that allows the user to make raw http requests to a web 

server. Usually REST API's in Java are built using this API  Using this API one can control 

number of connections made to the web server, parameters being sent along with the request to 

the server and also specify how many requests to make per second.  I used the Apache Http 

Client to send requests to allrecipes.com website and downloaded the response and parsed 

through the HTML file to get the data that I want. 
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 5 Google GSON API 

Google GSON API is used to convert model objects to JSON strings and vice versa. The 

data that I crawled from the website of allrecipes.com is parsed and stored in model objects. 

These model objects are converted to JSON strings which are stored in a text file. The text file is 

the input file that is sent to the algorithm for processing.  

 

The other API's that I used are JSOUP API which is used to parse XML documents. The 

API comes with a SAX parser but the advantage of using this API's over other API's (that parse 

XML documents) is that JSOUP provides DOM (Document Object Model) methods in Java 

Script in its library. So if we do know how to parse a DOM tree in Java Script then using this 

API is pretty simple. 

I have used beocat cluster provided by Kansas State University, CIS department to run all 

my jobs. Since I worked with beocat and submitted bunch of jobs, I had to write a lot of shell 

scripts. I used Eclipse IDE to code my project and Java was the only object oriented language 

that I used.  
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