THE APPROXIMATION OF JOINT DISTRIBUTION FUNCTIONS FOR APPLICATION IN PROBABILISTIC MECHANICAL DESIGN

by

BRUCE EUGENE SWANSON

B.S., Kansas State University, 1985

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1987

Approved by:

J. C. app

Major Professor

LU 2668 , 14 N11505 370528 ME 1787 592 C.2 TABLE OF CONTENTS Chapter

Page

I.	INTRODUCTION	1
II.	LITERATURE REVIEW	5
	Probabilistic Machine Design Monte Carlo Simulation Fast Probability Integration	5 6 0 1
III.	METHOD AND PROCEDURE 1	4
	Cell Development.14Discrete Point Representation.17Simulation.20Distribution Function.21Density Functions.21Example.24	6 7 0 1 2 4
IV.	PROGRAM DESCRIPTION 38	8
	Discrete Simulation	9 1 2 2
v.	COMPARISON 43	3
	Problem	5 5 0
VI.	CANTILEVER I-BEAM 72	2
	Problem	2

VII.	BOUNDING	94
VIII.	CONCLUSIONS	101
IX.	RECOMMENDATIONS FOR FURTHER STUDY	105
LIST C	OF REFERENCES	106
APPENI	A A XIC	110
	DISCSIM Program BOOK Subroutine. BOOKBOUND Subroutine. CELLR Subroutine. DIST Subroutine. FUNCTION Subroutine. NORMAL Subroutine. NORMINV Subroutine. OUTPUT Subroutine. OUTPUT Subroutine. SORT Subroutine. SPECIAL Subroutine. TRIANGLE Subroutine. UNIFORM Subroutine.	111 114 117 121 123 125 127 129 131 133 137 143 145 147 149
APPEND	DIX B	151
	DENSITY Program HISTOGRAM Subroutine OUTPUTD Subroutine SMOOTH Subroutine	152 154 156 157
APPEND	DIX C	162
	MANAGE Program	163
APPEND	DIX D	166
	GRAPH Program. AUTOSCL Subroutine. GVTDENSITY Subroutine. GVTDISTRIBUTION Subroutine. LABEL Subroutine. PLLABEL Subroutine. PLOTT Subroutine. TICKS Subroutine.	167 169 171 172 174 176 177

APPENDIX E	180
Flowchart for DISCSIM Program	181
APPENDIX F	183
Sample Output from the DISCSIM Program	184
APPENDIX G	189
Notes about the Comparison of the Monte Carlo Simulation vs. the	
Discrete Simulation	190

LIST OF TABLES

Table		Page
3.1	Normal Distribution Approximation Using Seven Discrete Points	. 20
3.2	Discrete Approximation of Random Variables X and Y Using Five Cells	. 28
3.3	Distribution of 25 Discrete Z Locations Z=(X*Y**2)/12	. 30
6.1	Random Variables for a Cantilever I-Beam	. 75
7.1	Bounding Probabilities of Failure of a Bar in Tension	100

LIST OF FIGURES

Figure		Page
3.1	Normal Distribution Divided into Seven Cells.	. 18
3.2	Seven Cell Discrete Approximation of a Normal Distribution	. 19
3.3	Five Cell Discrete Approximation of a Uniform Distribution	. 26
3.4	Five Cell Discrete Approximation of a Triangular Distribution	. 27
3.5	<pre>Z Distribution of 25 Discrete Locations (Z=X*Y**2)/12)</pre>	. 29
3.6	<pre>Z Distribution (Z=X*Y**2)/12)</pre>	. 31
3.7	<pre>Smoothed Cubic Spline Z Distribution, (Z=X*Y**2)/12) Tolerance=1.0</pre>	. 32
3.8	<pre>Smoothed Cubic Spline Z Distribution, (Z=X*Y**2)/12) Tolerance=1.5</pre>	. 33
3.9	Joint Probability Histogram (Z=X*Y**2)/12)	. 35
3.10	Cubic Spline Density Function (Z=X*Y**2)/12) Tolerance=1.0	. 36
3.11	Cubic Spline Density Function (Z=X*Y**2)/12) Tolerance=1.5	. 37
5.1	Approximation and Exact Joint Probability Distribution Functions	. 44
5.2	Exact Joint Probability Distribution Function	. 49

5.3	Exact Joint Probability Density Function	51
5.4	Joint Probability Distribution Function for the Discrete Simulation using 50 Discrete Points per Random Variable	53
5.5	Joint Probability Distribution Function for the Discrete Simulation using 50 Discrete Points per Random Variable and the Exact Solution	54
5.6	Joint Probability Distribution Function for the Monte Carlo Simulation using 325 Unique R Locations	55
5.7	Joint Probability Distribution Function for the Monte Carlo Simulation using 325 Unique R Locations and the Exact Solution	56
5.8	Joint Probability Distribution Function for the Discrete Simulation using 100 Discrete Points per Random Variable 9	58
5.9	Joint Probability Distribution Function for the Discrete Simulation using 100 Discrete Points per Random Variable and the Exact Solution	59
5.10	Joint Probability Distribution Function for the Monte Carlo Simulation using 1275 Unique R Location	50
5.11	Joint Probability Distribution Function for the Monte Carlo Simulation using 1275 Unique R Locations and the Exact Solution6	51
5.12	Joint Probability Distribution Function for the Discrete Simulation using 200 Discrete Points per Random Variable 6	52
5.13	Joint Probability Distribution Function for the Discrete Simulation using 200 Discrete Points per Random Variable and the Exact Solution	3

5.14	Joint Probability Distribution Function for the Monte Carlo Simulation using 5049 Unique R Location
5.15	Joint Probability Distribution Function for the Monte Carlo Simulation using 5049 Unique R Locations and the Exact Solution
5.16	Mean Squared Error vs. Number of Unique R Locations for the Monte Carlo and Discrete Simulation
5.17	Maximum Deviation vs. Number of Unique R Locations for the Monte Carlo and Discrete Simulation
5.18	Mean Squared Error vs. Computer Processing Unit Time for the Monte Carlo and Discrete Simulation
5.19	Maximum Deviation vs. Computer Processing Unit Time for the Monte Carlo and Discrete Simulation
6 . 1a	Cantilever I-Beam Subjected to a Uniform Load73
6.1b	Free-Body Diagram of a Cantilever I-Beam Subjected to a Uniform Load
6.2	Cross Section of the Cantilever I-Beam 74
6.3	Joint Probability Distribution Function of the Maximum Moment of a Cantilever I-Beam
6.4	Joint Probability Density Function of the Maximum Moment of a Cantilever I-Beam
6.5	Joint Probability Distribution Function of the Moment of Inertia of a Cantilever I-Beam
6.6	Joint Probability Density Function of the Moment of Inertia of a Cantilever I-Beam

6.7	Joint Probability Distribution Function of the Maximum Deflection of a Cantilever I-Beam	82
6.8	Joint Probability Density Function of the Maximum Deflection of a Cantilever I-Beam	83
6.9	Joint Probability Distribution Function of the Slope at the End of a Cantilever I-Beam	84
6.10	Joint Probability Density Function of the Slope at the End of a Cantilever I-Beam	85
6.11	Joint Probability Distribution Function of the Maximum Stress of a Cantilever I-Beam	87
6.12	Joint Probability Distribution Function of the Maximum Stress of a Cantilever I-Beam	88
6.13	Joint Probability Distribution Function of the Maximum Shear Stress of a Cantilever I-Beam	89
6.14	Joint Probability Distribution Function of the Maximum Shear Stress of a Cantilever I-Beam	90
6.15	Joint Probability Distribution Function of the Ratio S _{act} /S _{yield} of a Cantilever I-Beam	92
6.14	Joint Probability Distribution Function of the Ratio S _{act} /S _{yield} of a Cantilever I-Beam	93
7.1	Known Probability Density Functions for Random Variables 1 and 2	95
7.2	Upper and Lower Bounding Curves of a Hypothetical Joint Distribution Function.	97

7.3 The Exact Solution and the Bounding Curves for the Probabilistic Pythagorean Random Variable Using 100 Discrete Points..... 99

CHAPTER I

INTRODUCTION

Design engineers have begun to appreciate the limitations of the traditional or classical method of design. For example, the classical criteria for strength-limited design is that the overall strength of the system must be greater than the maximum applied load to the system multiplied by a factor of safety. This safety factor is usually a value between 1.3 and 6, depending on the structure and the materials. Although this approach is very simple in application, it often leads to designs that are overdesigned in terms of weight and bulk. Haugen [1] points out that "Since safety factors are not a performance-related measure there is no way by which an engineer can know whether his designs are near optimum or overconservative."

Designers are now starting to realize that applied loads, dimensions, material properties, etc. are all subject to variation. From this realization has emerged

a new design method called Probabilistic Design. Probabilistic Design treats the design inputs as random variables with each random variable having its own probability density function. After the variables have been defined, the problem can be solved using probability mathematics. The results can then be analyzed to determine if the design satisfies the operational and economic requirements with an acceptable reliability of success.

Although formulating the functional relationships of the random variables into a joint probability integral form is usually possible, evaluating this integral can be a very complex mathematical operation. Springer [2] has written an entire book on the subject of algebraic operations of random variables. Many of the chapters of his book deal with deriving the joint distribution and joint density functions of rather simple functions which contain random variables. Although the mathematical techniques that he describes are certainly important from a theoretical standpoint, there are some disadvantages in practical applications. The designer needs to have a working knowledge of differential and integral calculus, statistical inference, and probability distribution theory. Another drawback is that there are many

functions for which it is impossible to obtain the exact solution to the probability density function. Many times the system is so involved and cumbersome that the average engineer does not have the time or the knowledge to solve the problem.

alternative to the traditional An mathematical approach to Probabilistic Design is a technique known as Monte Carlo Simulation. Law and Kelton [3] define Monte Carlo simulation as "...a scheme employing random numbers which is used for solving certain stochastic or deterministic problems where the passage of time plays no substantive role". The random numbers are generated so that they simulate the physical random process of the probabilistic problem. The system is simulated many times so the frequencies of the events can be studied.

Monte Carlo [4] simulation originated as a tool for the development of the atomic bomb during World War TT. The scientists used Monte Carlo simulation to simulate the randomness of neutron diffusion in fissle material. In the last thirty years Monte Carlo techniques have been used for operational research and nuclear physics. Since the motions of neutrons are random. the nuclear physicists have used Monte Carlo to simulate the performance of nuclear reactors. The physicists can

simulate the reactor design without the dangers and expense of an actual physical experiment.

Although the Monte Carlo technique has been around for over 50 years, its application in mechanical engineering design has been limited. The purpose of this thesis is to develop a simulation algorithm that is capable of approximating the joint probability distribution function of complex algebraic expressions encountered in design engineering. This computer algorithm is similar to the Monte Carlo method of simulation. However, this new technique does not use generated random numbers to represent the probability density functions of the individual random variables. Instead, the program divides each density function into a given number of discrete sections with equal probabilities and then takes all possible outcomes into consideration before assembling the joint distribution and density curves.

The literature review that follows is an overall review of probabilistic design and how simulation has been used in different engineering applications.

CHAPTER II

LITERATURE REVIEW

Probabilistic Machine Design

Bury [5] compared the probabilistic machine design approach to the traditional design method of a simple tension link with a given safety factor, material property, applied load, and cross sectional area. Burv pointed out that many design engineers are dissatisfied [6] with the traditional method because applied loads, material properties, and actual machining dimensions can vary dramatically from one application to another. While the traditional method assumes the input variables to be deterministic, the probabilistic method assumes the variables to be random with unique probability density functions. Once the density functions have been determined, the problem can then be solved as а probabilistic event. However, he points out that this probabilistic approach can only be taken if data is available to properly describe the random variables.

Balkey, Meyer, and Witt [7] discussed the importance of using Probability Structural Mechanics as a tool for evaluating the reliability and structural risk of components and structures. Probability Structural Mechanics, or PMS, combines the traditional methods of structural mechanics with the probabilistic methods to determine the probability of structural failure. They pointed out the necessity of including uncertainties in the mechanical and structural design process. Thev concluded that "...as components and structures become more sophisticated, failure mechanisms will be probabilistically modeled from the beginning of the design process, and potential design improvements will be evaluated to assess their effects on reducing overall risk."

Monte Carlo Simulation

Haugen [1] discussed Monte Carlo simulation throughout his text. One rather simple example was a simulation of strain energy in a statically loaded wire. Haugen solved the problem by Monte Carlo simulation and by an approximate partial derivative method and compared the results. After 200 simulations the strain energy

values were plotted on normal and lognormal probability paper.

Elishakoff [8] used Monte Carlo simulation to predict the buckling time of an elastic bar. The initial imperfections of the bar were assumed to be normally distributed with a given mean and autocorrelation function. The problem was then simulated many times to determine the reliability of the structure. A histogram and distribution of the buckling time was plotted. The results were then compared to the previously published works of Linberg [9]. The Monte Carlo solution was very similar to the results obtained by Linberg.

Elishakoff continued his work of simulating structural imperfections using the Monte Carlo method. His later paper [10] discussed buckling of finite uniform columns resting on a "softening" nonlinear elastic foundation. The initial imperfections were again assumed to be normally distributed. The system was simulated many times and the reliability was plotted vs. nondimensional actual load. The nondimensional buckling loads were then plotted as a histogram and analyzed.

Elishakoff's latest research [11] was concerned with the effect of nonsymmetric random imperfections on the reliability of axially compressed cylindrical shells. He

used the Monte Carlo process to obtain the reliability functions of shells with asymmetric and axisymmetric imperfections. Using the results of his previous works, Elishakoff was able to use measured initial imperfections (variance-covariance matrices and the mean vectors) as a direct input for the Monte Carlo simulation.

Martin [12] developed vectorized and scalar particle transport Monte Carlo algorithms to simulate the transport of photons in a high-density, high-temperature plasma. The behavior of a photon was simulated by drawing random samples from probability distributions that describe the actual physical process. The results were tabulated to chart the overall tallies. Both algorithms were compared to a reference Monte Carlo code from Lawrence Livermore National Laboratory.

Ramsay [13] studied the variability of deflections of ten reinforced concrete fixed-ended T-beams and slabs. The dimensions of the beams, as well as the material properties and type of loadings were assumed to be random variables. A mathematical model was developed to describe the characteristics of the beams and slabs. The model considered the change of stiffness and the redistribution of moment along the length of the structure. Each of the structures was analyzed for four

different loading conditions. For each loading condition, 500 deflection values were generated using Monte Carlo simulation. These values were then converted to deflection ratios and statistically analyzed. The results of the simulation were compared the to deflections of those computed using the ACI 318-63 and ACI 318-71 Code procedures [14,15]. He concluded that the major causes of variability in deflections are the variability of the beam stiffness and the variability of the concrete strength.

and Massoud [16] discussed Dao-Thien the probabilistic distributions of stress and strength relationships. They presented a detailed mathematical background of a method used to obtain the stress and strength distribution functions. The densitv and distribution functions were written in the form of multiple integrals. A computer program was developed that assists the engineer in selecting a probability distribution (normal, log-normal, or Weibull) using linear regression. The program picks the distribution that minimizes the error function. An example was presented that illustrated a typical structural problem in the aerospace industry. The system was simulated 20,000 times using generated random numbers. The normal,

log-normal, and Weibull distributions were compared to the generated stress and strength data. The program picked the Weibull distribution as the best approximation of the design stress and the normal distribution for the design strength. The two distributions were compared to the histogram frequency distributions generated by the Monte Carlo method.

Fast Probability Integration

Hasofer-Lind [17], Rackwitz-Fiessler [18], Chen-Lind [19], and Wu [20] have developed a technique called Fast Probability Integration (FPI). The FPI method [21] assumes that all of the random variables are independent with known probability density functions. The random variable's density functions are transformed into equivalent normal random variables using a curve-fitting routine. The design point is then approximated using the scheme of normal tail approximation [22]. Wirsching and Wu [23] have tested various combinations of linear and nonlinear functions containing both normal and non-normal random variables. They report that the FPI method is more accurate and approximately 10 to 100 times faster than the Monte Carlo technique for approximating probabilities

of complicated functions involving several random variables. They point out that while the Monte Carlo method may be useful as a research tool, the large amount of computer processing unit time needed to approximate low values of probability tends to make the Monte Carlo method expensive and impractical.

Discrete Simulation

Lockwood [24] introduced a new method of computing the probability density functions in turbulent flows. Lockwood pointed out that the traditional method of probabilistic design has several shortcomings. The primary disadvantage is that the "...computational burden increases more or less exponentially with dimensionality." He added that he has developed a more economical approach to the solution of the probability density function of the transport equation. He applied his method to a fully turbulent jet having a given inlet pipe Reynolds number and temperature. He assumed the temperature to be a random variable. To calculate the temperature's probability density function, he divided the range into a finite number of discrete points. The various relations were applied to each discrete point. The total solution

was obtained by summing each discrete point. He compared the predicted probability density functions with the measured probability density functions and determined that the agreement was remarkably good. He concluded that his new method has an advantage over the traditional Monte Carlo simulation technique. Since the discrete method does not use generated random numbers, there is no statistical errors associated with the generation of the random numbers, as is the case with the Monte Carlo technique.

In this study, the probability density functions are divided into discrete points similar to the study conducted by Lockwood. However, this paper goes on to approximate the joint distribution function of algebraic expressions containing several independent random variables with known density functions. The methods and procedures for this simulation are discussed in Chapter 3. The computer programs that are used to approximate the joint probability distribution and density functions are described in Chapter 4. Ιn Chapter 5 the discrete approximation is compared to the traditional Monte Carlo technique for a joint probability distribution that can be solved exactly. Chapter 6 contains an example of how this probabilistic method can

be used as a tool by engineers to aid in the design and development of structures and components. In Chapter 7 a different technique is discussed that determines the upper and lower bounds of a joint probability distribution using the discrete approximation. The conclusions and recommendations for further study are given in Chapters 8 and 9 respectively.

CHAPTER III

METHOD AND PROCEDURE

The purpose of this thesis is to develop a simulation algorithm that is capable of approximating the joint probability distribution function of complex algebraic expressions containing several independent random variables with known density functions. If the complex algebraic expression is represented by a variable Z, then Z can be written as

$$Z = Z(X_1, X_2, \dots, X_n)$$
 (3.1)

where x_1, x_2, \ldots, x_n are continuous, independent random variables with individual probability density functions of $f_1(x_1)$, $f_2(x_2)$, $\ldots, f_n(x_n)$ respectively. Since the variables in this study are assumed to be independent, the joint probability density function of z can be written as the product of the X random variables' density functions.

$$f(z) = f_1(x_1) f_2(x_2) \dots f_n(x_n)$$
(3.2)

The joint probability distribution function of the random variable for any n-dimensional set of 2 can be written as,

$$\mathbf{F}(\mathbf{z}) = \iint_{\mathbf{z}} \cdots \int_{\mathbf{z}} \mathbf{f}_{1}(\mathbf{x}_{1}) \mathbf{f}_{2}(\mathbf{x}_{2}) \cdots \mathbf{f}_{n}(\mathbf{x}_{n}) d\mathbf{x}_{n} \cdots d\mathbf{x}_{2} d\mathbf{x}_{1}$$

$$\mathbf{z} \qquad (3.3)$$

If the random variables are bounded by the intervals (a_1, b_1) , (a_2, b_2) ,..., (a_n, b_n) , the probability

$$P(a_1 \leq x_1 \leq b_1, a_2 \leq x_2 \leq b_2, \dots, a_n \leq x_n \leq b_n) =$$

$$\int_{a_1}^{b_1} \int_{a_2}^{b_2} \int_{a_1}^{b_n} \int_{a_n}^{b_n} f(x_1, x_2, \dots, x_n) dx_n \dots dx_2 dx_1$$
(3.4)

Although formulating the density functions into a multiple integral form similar to equations 3.3 and 3.4 is usually possible, integrating the function over the range of the Z event can be a very complex mathematical operation.

In this chapter, a method that approximates the joint probability distribution function is discussed. The method, called discrete simulation, has four steps:

1. Cell Development

- 2. Discrete Point Representation
- 3. Simulation
- 4. Distribution Approximation

CELL DEVELOPMENT

In order to approximate the continuous density function of each random variable, the known density functions are divided into n sections or cells. Each cell is computed to have equal area, thus equal probability of occurrence.

1.
$$\int_{a_{0}}^{a_{1}} f(x) dx = \frac{1}{-} \qquad (3.5)$$
2.
$$\int_{a_{0}}^{a_{2}} f(x) dx = \frac{1}{-}$$
3.
$$\int_{a_{1}}^{a_{1}} n$$
4.
$$\int_{a_{1}}^{a_{1}} n$$
5.
$$\int_{a_{1}}^{a_{1}} n$$
6.
$$\int_{a_{1}-1}^{a_{1}} n$$

Figure 3.1 shows an example of a normal random variable density function divided into seven cells with each cell having equal area. For sake of illustration, the density function has been divided into only seven cells. For practical applications the density function can contain anywhere from 30 to 200 cells.

DISCRETE POINT REPRESENTATION

After the function has been divided into equal areas, each cell is represented by a single discrete point. This point is located at the cell's center of gravity where:

$$\begin{cases} a_{cg} \\ f(x) dx \\ a_{o} \end{cases} = \begin{cases} a_{1} & 1 \\ f(x) dx \\ a_{cg} & 2n \end{cases}$$
 (3.6)

and has a magnitude of 1/n. Figure 3.2 shows a normal density function divided into seven cells with its center of gravity locations. Table 3.1 lists the center of gravity locations of a normal distribution approximation for seven cells.

Table 3.1

Normal Distribution Approximation Using Seven Discrete Points

> Distribution: Normal Mean: 0.0 Variance: 1.0 Standard Deviation: 1.0 Number of Cells: 7

Cell	Center of Gravity
Number	Location
1	-1.4655158
2	-0.7914320
3	-0.3656621
4	0.000000
5	0.3656621
6	0.7914320
7	1.4655158

SIMULATION

Once each variable's density function has been chosen, all possible combinations of the expression are simulated. For example, if the joint probability distribution function of the equation

Z = A * B

is desired, and if the density functions of A and B are simulated using 100 and 150 discrete points respectively. The total possible combinations of Z is $100 \times 150 = 15,000$.

DISTRIBUTION FUNCTION

After the outcomes Z, have been computed, the data is sorted from smallest to largest. Each outcome has a probability of 1/m, where m is the number of total outcomes. The joint cumulative distribution function can then be assembled by summing the ordered value's probabilities.

$$F(z) = \begin{bmatrix} 0 & i < Z_{1} & (3.7) \\ F(z_{i-1}) + \frac{1}{m} & Z_{1} \leq z < Z_{i+1} \\ 1 & for \ i=1,2,\ldots,m-1 \\ 1 & Z_{m} \leq z \end{bmatrix}$$

If the values between the discrete points need to be known, a linear empirical distribution function can be written that interpolates between the known points:

$$G(z) = \begin{bmatrix} 0 & \text{if } z < Z_{0} & (3.8) \\ G(z_{i-1}) + \frac{z-Z_{i-1}}{Z_{i}-Z_{i-1}} & G(z_{i}) - G(z_{i-1}) & \text{if } Z_{i-1} \le z < Z_{i} \\ 1 & \text{if } Z_{m} \le z \end{bmatrix}$$

The computer program that performs the distribution approximation is listed in the Appendix.

DENSITY FUNCTIONS

Although developing a joint density function is not the primary purpose of this paper, two methods are used with reasonable success. These methods are only used to give an approximate shape of the joint probability density function and not an exact solution. The fitting of density functions is a complex problem in itself. The two methods are: histograms and cubic splines.

Histograms:

A histogram is simply a graphical estimate of the density function corresponding to the known data. To construct a histogram, the range of data is divided into k equal intervals. The data is then placed in its appropriate interval. Once all of the data has been sorted, the proportion of the values in each interval is determined.

The histogram is constructed using Sturge's [25] rule. The number of cells k is determined by the equation

$$k = 1 + 3.3 * \log_{10} m$$
 (3.9)

The range r, is estimated by the relationship

$$r = x_{max} - x_{min} \qquad (3.10)$$

And the width w, of each interval in the histogram is

$$w = r/k$$
 (3.11)

Although the histogram is easy to construct, the main disadvantage is the loss of information from grouping the data. Because of this, the histogram is used only as a reference to the possible density function's shape.

Cubic Splines:

A cubic spline is a set of cubic polynomials which is joined together to form a continuous function. A cubic spline subroutine is used to compute the first derivative of the function. The subroutine also determines a "smoother" approximation of the distribution function. The spline method uses a cubic interpolating function to approximate a "smooth" line through a given set of data points by minimizing the integral of the second derivative squared of the cubic function. A tolerance is imputed that allows the programmer to

tighten or loosen the curve fit. A detailed description of cubic splines can be found in reference [26].

The computer program listed in Appendix B performs the density approximations outlined above.

EXAMPLE

Given: Function Z = (X * Y * * 3)/12, where X and Y are continuous independent random variables. X is a uniform random variable with given probability density function:

$$f(\mathbf{x}) = \begin{bmatrix} 1/3 & 1 \le \mathbf{x} \le 4 \\ 0 & \text{otherwise} \end{bmatrix}$$

Y is a triangular random variable with a given probability density function:

$$f(y) = \begin{cases} \frac{2(y-4)}{7} & \frac{1 \le y \le 2.5}{5.25} \\ 0 & \text{otherwise} \end{cases}$$

Find: The joint probability distribution of random variable Z=Z(X,Y).

For simplicity each cell is approximated using only five cells. The area of each cell is equal to 1/5. The

bound for the first cell of variable X is found by using the relationship:

$$\int_{a_0}^{a_1} f(x) dx = \text{Area of the cell}$$

$$\int_{a_0}^{a_1} \frac{1}{3} dx = \frac{1}{5}$$

$$\frac{x}{3} \int_{1}^{a_1} \frac{1}{5} \frac{1}{5}$$

$$a_1 = \frac{8}{5}$$

The center of gravity for cell 1 is computed using equation 3.6

$$\int_{1}^{a_{cg}} \frac{1}{3} dx = 1/10$$

$$a_{cg} = 13/10$$

The remaining locations can be found using the same method. Figures 3.3 and 3.4 show the two density functions and their respective centers of gravity. Table 3.2 lists the center of gravity locations for both random variables.

Table 3.2

Discrete Approximation of Random Variables X and Y Using Five Cells

Random Variable: X	Rand	om Variable: Y
Distribution: Uniform	Dist	ribution: Triangular
Mean: 2.5	Mean	: 2.3333
Variance: 0.75	Vari	ance: 0.5139
Number of Cells: 5	Numb	er of Cells: 5
Center of Gravity	Cell	Center of Gravity
1.300000	Number 1	Location 1.336660
1.900000	2	1.949138
2.500000	3	2.370829
3.100000	4	2.745010
3.700000	5	3.275431

After computing all possible values, the 25 unique Z locations are sorted. Each Z location has a probability of 1/25. Figure 3.5 shows the 25 discrete Z locations. Using equations 3.7 and 3.8 a joint probability distribution function is assembled. Table 3.3 shows the sorted Z locations and their distribution values. Figure 3.6 shows the assembled Z distribution function.

Figures 3.7 and 3.8 show the Z distributions of the spline smoothing subroutine for a tolerance of 1.0 and 1.5 respectively.

Table 3.3

Distribution of 25 Discrete Z Locations Z=(X*Y**2)/12

Number	Z Location	Z Distribution
1	0.2587170	0.0400000
2	0.3781249	0.0800000
3	0.4975327	0.1200000
4	0.6169406	0.1600000
5	0.7363484	0.2000000
6	0.8022129	0.2400000
7	1.1724650	0.2800000
8	1.4436524	0.3200000
9	1.5427172	0.3600000
10	1.9129693	0.4000000
11	2.1099535	0.4400000
12	2.2407525	0.4800000
13	2.2832214	0.5200000
14	2.7762546	0.5600000
15	3.2749459	0.600000
16	3.4425557	0.6400000
17	3.8068655	0.6800000
18	4.1088568	0.7200000
19	4.3091393	0.7600000
20	5.3433328	0.8000000
21	5.5638804	0.8400000
22	6.3775262	0.8800000
23	7.3208952	0.9200000
24	9.0779101	0.9600000
25	10.8349250	1.0000000

The number of cells for the histogram is found using equation 3.9.

 $k = 1 + 3.3 * \log_{10} 25$ k = 6

Using equation 3.10, the range is equal to

```
r = 10.8349 - 0.2587
r = 10.5762
```

And each cell has a width of

w = 10.5762/6w = 1.7627

Figure 3.9 shows the histogram approximation for the function. The cubic spline density approximations are plotted in Figures 3.10 and 3.11. The cubic spline approximations are rough. However, if the number of cells per density function were increased, the cubic spline curves would tend to be smoother with less wiggle

It should be noted that this is a simplified case. In practice there could be an unlimited number of random variables with each random variable having 30 to 200 cells, resulting in literally thousands of calculations.

CHAPTER IV

PROGRAM DESCRIPTION

In this chapter, the computer programs that approximate the joint probability distribution and density functions are discussed. These programs are written in Fortran 77 on a Harris H-800 Super Mini-Computer. Because of storage problems, the simulation package had to be broken down into four separate programs. These programs are:

- 1. Discrete Simulation
- 2. Density Function Approximation
- 3. Data Management
- 4. Graphics

A complete listing of all the programs can be found in the Appendix.

DISCRETE SIMULATION

Program Name: DISCSIM

The discrete simulation program approximates the joint probability distribution function of two random variables with known probability density functions. Before executing the program, the desired function must be inserted in the "Function" subroutine. When run, the program prompts the user for the type of distribution of each random variable and the number of discrete points used to approximate each random variable's density function. The density functions available to the user are:

 Normal: The normal distribution can be used to represent quantities such as measured errors.

2. Triangular: The triangular distribution is used in the absence of data to approximate a rough model of a random variable's density function.

 Uniform: The uniform distribution is usually used as a first model for a variable that is suspected of being random.

4. Special: The special distribution is used if the user has a distribution function stored on file. e.g. If a distribution function was generated from experimental or measured results.

After the program has approximated the joint probability distribution function, the mean, variance, locations of the discrete points for each of the two random variables, and the joint probability distribution function of the algebraic expression is printed to work file "W2". The joint probability distribution is also printed to a file (designated by the user) that is compatible with the density program, the special distribution subroutine, the data management program, and the plotting programs.

Although this program simulates only two random variables, a joint probability distribution function of an algebraic expression containing more than two random variables can be approximated. To do this, the function must be separated into groups of two random variables. Using the special distribution subroutine, the joint probability distribution function of each group of two random variables can be combined to form the joint probability distribution function of the algebraic

expression. If an expression contains n random variables, the program must be run n-1 times to simulate the joint probability distribution function of the algebraic expression.

DENSITY FUNCTION APPROXIMATION

Program Name: DENSITY

The density function program is a compatible program used to approximate the density function after the joint probability distribution function has been simulated using the discrete simulation program. The density function is approximated using the first derivative of a cubic spline curve fit and a histogram (See Chapter 3). The density program prompts the user for the name of the joint distribution file. The user is able to control the tolerance of the cubic spline curve fit. With careful adjustment of the tolerance, a smooth density curve can be approximated. The histogram data is printed to work file "W1" and the spline data is printed to a file (designated by the user) that is compatible with the plotting programs.

DATA MANAGEMENT

Program Name: MANAGE

The data management program is used if a problem occurs with the calculation of the cubic spline approximation program. One of the drawbacks of the cubic spline curve fit is that if the data is grouped too close together, the program will halt because of a floating point overflow. The data management program sorts through the data and eliminates any data points that are closer than 0.000001 along the x axis.

GRAPHICS

Program Names: GRAPH

The plotting program is written using Precision Visuals' DI3000 computer graphics package. Program GRAPH plots the density and distribution functions on a Selanar Hirez 100 graphics terminal. The user is asked for the input data file name, title of the graph, and the X and Y axis labels. The plot is dumped to an Hewlett Packard 7470A plotter.

CHAPTER V

COMPARISON

In this chapter, the discrete simulation method discussed in Chapters 3 and 4 is compared to the Monte Carlo method. The joint distribution function of an equation is simulated using both methods and the results are compared to the exact solution of the joint distribution function. The accuracy of each method is measured using two parameters: Mean squared error and maximum deviation.

The mean squared error (MSE) is (See Figure 5.1),

MSE =
$$\sum_{i=1}^{n} \Delta h_{i}^{2}$$

where n is the number of r locations. The maximum deviation is equal to the largest absolute value of $\ \Delta h.$

PROBLEM

Consider the equation of a circle,

~

$$r = \sqrt{\chi^2 + \chi^2} \qquad 0 \le r \le \infty$$

where variables X and Y are normally distributed independent random variables. Each variable has a mean of zero and a standard deviation equal to one. Find the joint probability distribution function.

EXACT SOLUTION

The marginal probability density functions of X and Y are,

$$f_{\chi}(x) = \begin{bmatrix} \frac{1}{2\pi\sigma^2} & \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] & \text{for } -\infty \le x \le \infty \\ 0 & \text{otherwise} \end{bmatrix}$$
$$f_{\chi}(y) = \begin{bmatrix} \frac{1}{2\pi\sigma^2} & \exp\left[\frac{-(y-\mu)^2}{2\sigma^2}\right] & \text{for } \le y \le 0 \\ 0 & \text{otherwise} \end{bmatrix}$$

When $\mu_X = 0$, $\sigma_X^2 = 1$ and $\mu_Y = 0$, $\sigma_Y^2 = 1$, the marginal

probability density functions become,

$$f_{X}(x) = \begin{bmatrix} \frac{1}{\sqrt{2\pi}} & \exp\left[\frac{-x^{2}}{2}\right] & \text{for} - \infty \leq x \leq \infty \\ 0 & \text{otherwise} \end{bmatrix}$$
$$f_{Y}(y) = \begin{bmatrix} \frac{1}{\sqrt{2\pi}} & \exp\left[\frac{-y^{2}}{2}\right] & \text{for} - \infty \leq y \leq \infty \\ 0 & \text{otherwise} \end{bmatrix}$$

Since X and Y are mutually exclusive independent random variables, their joint probability density function is equal to the product of the two marginal probability density functions. Thus,

$$f(x,y) = f_{\chi}(x)f_{\chi}(y)$$

so,

$$f(x,y) = \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-x^2}{2}\right] \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-y^2}{2}\right]$$
$$= \frac{1}{2\pi} \exp\left[\frac{-(x^2+y^2)}{2}\right]$$

and the joint probability distribution is,

$$F(x,y) = \iint_{D} f(x,y) dxdy$$
$$= \frac{1}{2\pi} \int_{0}^{r} \int_{0}^{\sqrt{r^{2}-y^{2}}} \exp\left[-\frac{(x^{2}+y^{2})}{2}\right] dxdy$$

in polar form this can be written as,

$$F_{R}(r) = P(R \le r) = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{r} \exp\left[-\frac{r^{2}}{2}\right] r dr d\Theta$$

to integrate by parts let,

$$u = r^2/2$$
 and $du = rdr$

$$P(\underline{R} \leq r) = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{u} \exp(-u) du d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} -\exp(-u) \left| \begin{array}{c} u \\ d\Theta \\ 0 \end{array} \right|^{2\pi}$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \left[-\exp\left(-r^{2}/2\right)+1\right] d\Theta$$

$$= \frac{1}{2\pi} \left[-\exp(-r^2/2) + 1 \right] \Theta \begin{vmatrix} 2\pi \\ 0 \end{vmatrix}$$

$$Pr(R \le r) = 1 - exp(-r^2/2)$$

The joint probability distribution function is,

$$F_{R}(r) = \begin{bmatrix} 0 & r \le 0 \\ 1 - \exp(-r^{2}/2) & 0 < r \le \infty \end{bmatrix}$$

The exact joint probability distribution function is plotted in Figure 5.2

Differentiating the joint probability distribution function yields the joint probability density function.

NOTURISTER YILIRAROSA THIOL

$$f_{R}(r) = \begin{bmatrix} 0 & r \le 0 \\ r \exp(-r^{2}/2) & 0 < r \le \infty \end{bmatrix}$$

Figure 5.3 shows a plot of the exact joint probability density function.

MONTE CARLO SIMULATION vs. DISCRETE SIMULATION

A Monte Carlo computer program was developed to compare the accuracies of the two simulations with the exact solution. The Monte Carlo program generates random numbers that are normally distributed to approximate the X and Y random variable's density function. The subroutines used for generating the joint cumulative distribution function are the same subroutines used in the discrete approximation program.

The programs were run three times. The discrete simulation was run first. Each time an increasing number of discrete points was used to represent each random variable's density function. After each run, the number of unique r locations was noted. The Monte Carlo program was then run using the same number of unique r locations. A detailed explanation of the Monte Carlo method is located in Appendix G.

On the first run, 50 discrete points were used to approximate each random variable's density function.

JOINT PROBABILITY DENSITY

After all possible combinations were calculated, there were 325 unique r locations. Figure 5.4 shows the approximated joint probability distribution function of the discrete approximation. In Figure 5.5, the distribution function is plotted along with the exact solution. The first half of the discrete approximation is almost identical to the exact distribution function. However, in the upper 20% of the curve, the discrete approximation deviates quite a bit from the exact solution. The cause of the deviation could be the small number of discrete points used to represent the random variables density function. Because a relatively small number of points were used, the tails of the density functions were not adequately represented. The mean squared error and the maximum deviation for this approximation was 0.000028 and 0.0196446 respectively.

The Monte Carlo Simulation was then run using 325 unique r locations. The joint distribution function is plotted in Figure 5.6. Figure 5.7 shows the joint probability distribution function for the Monte Carlo approximation and the exact solution. As can be seen, the Monte Carlo approximation is not as good as the discrete approximation. The mean squared error is 0.0014709 and the maximum deviation is 0.0739843.

NOTURINTER YILIBABONG THIOL

NORURISTER THIRARORY THIOL

NOTURIATER YILIRABORY THIOL

NOTURIATSIG YTIJIRAEOAR TNIOL

On the second run, 100 discrete points were used to approximate the X and Y random variable's density functions. This simulation resulted in 1275 unique r locations. Figure 5.8 shows the approximation of the second discrete approximation. In Figure 5.9, the discrete distribution curve is plotted with the exact solution. The curve still has a small dip at the upper portion of the curve. However, the maximum deviation has decreased to 0.0101403 and the mean squared error is 0.0000041. The 100 point approximation is an improvement over the 50 point approximation.

Figure 5.10 shows the Monte Carlo approximation of the joint distribution function for 1275 unique r locations. The distribution curve is plotted with the exact solution in Figure 5.11. Although the accuracy of the Monte Carlo simulation has improved. the approximation is still not as good as the discrete approximation. The maximum deviation is equal to 0.0314508 and the mean squared error is 0.0002180.

On the final run, 200 discrete points were used to approximate each variable's density function. This resulted in 5049 unique r locations. The joint distribution function is plotted in Figure 5.12. Figure 5.13 shows the approximated joint distribution function with the exact solution. The two distribution functions

NORUEIRIER DISTRIBUTION

Figure 5.8

NORUEINTEIN TILIBAEONY TNIOL

Figure 5.9

NOTURIATER DISTRIBUTION

NOTURINTER VILLER DISTRIBUTION

NOTURIATER YILIRAROAN THIOL

JOINT PROBABILITY DISTRIBUTION

appear to be virtually identical. The dip that was present in the 50 and 100 point approximation is no longer noticeable. The error has been reduced to 0.0000006 and the maximum deviation is 0.0051283.

The Monte Carlo approximation for 5049 unique r locations is plotted in Figures 5.14 and 5.15. The Monte Carlo approximation has improved with an increase in r locations. Nevertheless, the discrete approximation is still more accurate than the Monte Carlo approximation. The mean squared error is 0.0000302, which is fifty times larger than the discrete approximation's error. The maximum deviation is three times larger than the discrete approximation at 0.0151759.

In Figure 5.16 and 5.17 the mean squared error and the maximum standard deviation is plotted as a function of unique r locations for both the discrete simulation program and the Monte Carlo program. In Figure 5.16, the discrete approximation approaches zero with little variation as the number of unique r locations increases. The Monte Carlo approximation decreased to zero also, however the distribution is scattered and unpredictable. In Figure 5.17, the maximum deviation of the two simulations decrease as the number of unique r locations increases. Again, the Monte Carlo data is scattered from one value to the next. The general trend of the Monte

JOINT PROBABILITY DISTRIBUTION

JOINT PROBABILITY DISTRIBUTION

Mean Squared Error vs. Number of Unique R Locations for the Monte Carlo and Discrete Simulation

NOTAIVE MUMIXAM

Carlo simulation is a decrease in the mean squared error and the maximum deviation as the number of r locations increase. The large scatter of error and deviation of the Monte Carlo method is caused by the statistical error associated with the generation of the random numbers. Because the generated numbers are random, the variation from one r location to the next is unpredictable.

In Figures 5.18 and 5.19 the mean squared error and the maximum deviation is plotted again for both the discrete simulation and the maximum deviation. However, in Figures 5.18 and 5.19 these values are plotted as functions of computer processing unit time. The figures are very similar to the previous two plots. The discrete simulation data is constantly decreasing and very predictable, while the Monte Carlo data is quite scattered.

A way to minimize the Monte Carlo scatter is to use a larger number of r locations. Increasing the number of r locations would lead to an increase of computing time and money. Therefor, the main advantage of the discrete simulation over the Monte Carlo simulation is that a predictable and more accurate representation of the joint probability distribution function can be approximated using fewer calculations and less computing time.

CHAPTER VI

CANTILEVER I-BEAM

The beam problem discussed in this section was chosen to illustrate how the discrete simulation program could be used in an engineering application. Each random variable's density function was simulated using 100 discrete points. The "special" distribution subroutine was used to construct the joint probability density functions of algebraic expressions containing more than two random variables.

PROBLEM

The cantilever I-beam, shown in Figures 6.1 and 6.2, is made by welding three steel (ASTM A7) plates together. Determine:

 a) The joint probability density and distribution functions for:

- 1. The maximum moment M
- 2. The deflection at B
- 3. The slope at B

Free-Body Diagram of a Cantilever I-Beam Subjected to a Uniform Load, W_o

- 4. The maximum stress
- 5. The maximum shear
- b) The reliability of the I-beam.

The dimensions and metal properties of the I-beam are assumed to be random variables with known probability density functions. These values are listed in Table 6.1.

	Table			6.1		
Random	Variables	for	а	Cantilever	I-Beam	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Random Variable	Mean	Standard Deviation	Units	Distribution
	a	6.00	0.2500	inches	Normal
$ \begin{array}{cccccc} c & 0.50 & 0.0625 & inches & Normal \\ d & 8.00 & 0.2500 & inches & Normal \\ e & 6.00 & 0.2500 & inches & Normal \\ f & 0.50 & 0.0625 & inches & Normal \\ E & 30E6 & 4.5E5 & psi & Normal \\ L & 16.00 & 1.0000 & feet & Normal \\ W_{0} & 45.00 & 33.3333 & 1b/inch & Uniform \\ S_{u} & 65.6E3 & 2.43E3 & psi & Normal \\ S_{y} & 42.7E3 & 4.86E3 & psi & Normal \\ \end{array} $	b	0.50	0.0625	inches	Normal
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.50	0.0625	inches	Normal
$\begin{array}{cccccccc} e & 6.00 & 0.2500 & inches & Normal \\ f & 0.50 & 0.0625 & inches & Normal \\ E & 30E6 & 4.5E5 & psi & Normal \\ L & 16.00 & 1.0000 & feet & Normal \\ W_0 & 45.00 & 33.3333 & 1b/inch & Uniform \\ S_u & 65.6E3 & 2.43E3 & psi & Normal \\ S_y & 42.7E3 & 4.86E3 & psi & Normal \\ \end{array}$	d	8.00	0.2500	inches	Normal
$\begin{array}{ccccccc} f & 0.50 & 0.0625 & inches & Normal \\ E & 30E6 & 4.5E5 & psi & Normal \\ L & 16.00 & 1.0000 & feet & Normal \\ W_0 & 45.00 & 33.3333 & lb/inch & Uniform \\ S_u & 65.6E3 & 2.43E3 & psi & Normal \\ S_y & 42.7E3 & 4.86E3 & psi & Normal \end{array}$	e	6.00	0.2500	inches	Normal
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f	0.50	0.0625	inches	Normal
L 16.00 1.0000 feet Normal W ₀ 45.00 33.3333 lb/inch Uniform S _u 65.6E3 2.43E3 psi Normal S _y 42.7E3 4.86E3 psi Normal	Е	30E6	4.5E5	psi	Normal
W _o 45.00 33.3333 lb/inch Uniform S _u 65.6E3 2.43E3 psi Normal S _v 42.7E3 4.86E3 psi Normal	L	16.00	1.0000	feet	Normal
S _u 65.6E3 2.43E3 psi Normal S _v 42.7E3 4.86E3 psi Normal	Wo	45.00	33.3333	lb/inch	Uniform
S_v 42.7E3 4.86E3 psi Normal	Su	65.6E3	2.43E3	psi	Normal
	s _v	42.7E3	4.86E3	psi	Normal

SOLUTION

 a) 1. The maximum moment for a cantilever beam with a uniform load can be expressed as,

$$M_{\max} = \frac{W_0 L^2}{2}$$
 (6.1)

Figures 6.3 and 6.4 show the joint probability distribution and density functions of the maximum moment. The maximum moment ranges from 59,877.02 to 78,638.19 foot-pounds with a mean value of 69,121.85 foot-pounds.

2. The maximum deflection at point B is equal to

$$Y_{max} = \frac{W_0 L^4}{8EI}$$
 (6.2)

Before the deflection can be calculated, the joint probability distribution function of the moment of inertia must be approximated. Using the Parallel-Axis Theorem, the moment of inertia can be expressed as the equation,

$$I = (ab^{3})/12 + ab(d/2 + b/2)^{2} + (cd^{3})/12 + (ef^{3})/12 + fe(f/2 + d/2)^{2}$$
(6.3)

Figures 6.5 and 6.6 show the probability distribution and density functions of the moment of inertia. Once the moment of inertia's distribution has been determined, the joint probability density and distribution functions for the maximum deflection are approximated. Figures 6.7 and 6.8 show the joint probability distribution and density functions of the deflection at point B. The expected value of the deflection is 1.977 inches with a minimum possible value of 1.4 and a maximum value of 2.82 inches.

3. The slope ϕ , at point B can be written as,

$$\phi = \frac{W_0 L^3}{6EI}$$
 (6.4)

The joint probability distribution and density functions are plotted in Figures 6.9 and 6.10. The discrete simulation predicts that the mean value of the slope at point B is 0.786 degrees, and the range of possible slope values is from 0.56 to 1.11 degrees.

4. The maximum stress of the cantilever I-beam occurs at the furthest distance from the neutral axis. The equation for the maximum stress is

$$S_{\max} = \frac{M(d/2+f)}{I}$$
(6.5)

The expected value of the maximum stress is 28,944.26 psi. It is interesting to note that the range of possible maximum stress values differ by as much as 22,000 psi. The joint probability density and distribution functions are plotted in Figures 6.11 and 6.12.

5. The maximum value of the first moment of area occurs at the neutral axis. Since the width of the beam is thin at the neutral axis, the maximum shearing stress occurs at this point. The equation for the maximum shear stress can be written as

$$\mathcal{T}_{\max} = \frac{W_0 L(ab(b/2+d/2) + cd^2/8)}{Ic}$$
(6.6)

The expected value of the maximum shearing stress is 2,280.38 psi, and the range of possible shear values is from 1,171 to 4,441 psi. The joint probability density and distribution functions are plotted in Figures 6.13 and 6.14.

b) The reliability of the beam is equal to unity minus the probability of failure. If the stress in the beam exceeds the yield stress, the beam is presumed to have failed. Using this criteria, if the ratio of the maximum

stress in the beam to the yield stress is greater than one, failure occurs. The joint probability and density functions for the stress ratio are plotted in Figures 6.15 and 6.16. Using the joint probability distribution, the reliability of the system can be determined. From Figure 6.15 the probability of the stress ratio being less than or equal to one is equal to approximately 98%. Therefore, the probability of failure is roughly 2% and the probable reliability of the I-beam structure is 98%.

CHAPTER VII

BOUNDING

During the development of the discrete simulation algorithm, a new technique was investigated that approximates the upper and lower bounds of a ioint probability distribution function of an algebraic expression containing several independent random variables. Although a formal proof of the bounding theory has not been written, the results of the program have been compared with several known solutions with good results. In this chapter, the procedure used to obtain the upper and lower bounds of a joint probability distribution function is discussed.

Using the same method of cell development as the discrete simulation technique discussed in Chapter 3, two curves are developed that bound the exact joint probability distribution function of an algebraic expression. The bounding approximation divides the two known random variables' density functions into a given

number of cells. The upper and lower bounds of each cell are noted as well as the cell's center of gravity (See Figure 7.1).

M and n are arbitrary cell divisions within the random variables', X_1 and X_2 , known density functions. Since each cell is represented using three locations, there are nine possible outcomes that need to be considered.

$$\begin{split} z_1 &= z \left(x_1 \left(a_{n-1} \right), x_2 \left(b_{m-1} \right) \right) & (7.1) \\ z_2 &= z \left(x_1 \left(a_{n-1} \right), x_2 \left(b_{cg} \right) \right) \\ z_3 &= z \left(x_1 \left(a_{n-1} \right), x_2 \left(b_m \right) \right) \\ z_4 &= z \left(x_1 \left(a_{cg} \right), x_2 \left(b_{m-1} \right) \right) \\ z_5 &= z \left(x_1 \left(a_{cg} \right), x_2 \left(b_{cg} \right) \right) \\ z_6 &= z \left(x_1 \left(a_{cg} \right), x_2 \left(b_m \right) \right) \\ z_7 &= z \left(x_1 \left(a_n \right), x_2 \left(b_{m-1} \right) \right) \\ z_8 &= z \left(x_1 \left(a_n \right), x_2 \left(b_{cg} \right) \right) \\ z_9 &= z \left(x_1 \left(a_n \right), x_2 \left(b_m \right) \right) \end{split}$$

The nine values are compared with each other. The maximum value is stored in the lower Z bounding array and the minimum value is stored in the upper Z bounding array. Each bounding distribution is then assembled independently using the same distribution and sort subroutines used for the discrete approximation. Figure 7.2 shows the upper and lower bounds of a hypothetical joint distribution function.

The bounding program was compared with the exact solution of the probabilistic pythagorean random variable discussed in Chapter 5. The bounding approximation bounded both the exact solution as well as the approximated joint probabilistic distribution function. Figure 7.3 shows the exact solution and the upper and lower bounding curves using 100 cells per random variable.

The bounding routine was also compared to Wu's fast probability integration (FPI) approximation 23 of the probability of failure of a bar in tension. The probability of failure, P_f is symbolized as

$$P_{\neq} = P(q \le 0) \qquad (7.2)$$

where g is equal to the equation

$$g = R - (4T/\pi D^2)$$
 (7.3)

R and D are independent normal random variables. R has a mean of 170.0 N/mm and a variance of 625.0 N/mm. D has a mean and variance of 29.4 mm and 9.0 mm respectively. T is equal to 50 kN. Table 7.1 lists Wu's approximation as well as the exact solution and the upper and lower bounding approximations. An example of the output using ten cells per random variable is listed in the Appendix.

Table 7.1 shows that as the number of cell divisions per density function increase for each random variable,

the upper and lower bounds converge toward the exact solution.

Table 7.1

Bounding Probabilities of Failure of a Bar in Tension

Number of Discrete Points/ Density Function	Lower Bound	Exact Solution	FPI Approx- imation	Upper Bound
100 120 150 200	0.00030 0.00032 0.00043 0.00061	0.00230	0.00229	0.0114 0.0098 0.0083 0.0068

The subroutines, Bookbound and Outputbound, that approximate the upper and lower bounds are listed in the Appendix.

CHAPTER VIII

CONCLUSIONS

The purpose of this study was to develop a computer simulation package that is capable of approximating the joint probability distribution function of a complex algebraic expression containing several independent random variables. A discrete simulation technique was developed and implemented on a Harris H-800 Super Mini-Computer.

In Chapter 3 the discrete simulation technique is discussed. Although the discrete simulation method is similar to the Monte Carlo technique, the discrete method divides each random variable's known density function into a given number of n discrete sections with equal Each area is then represented by a single areas. discrete point with a probability of 1/n. Using the discrete points, all possible combinations of the algebraic expression are simulated. After all the outcomes have been computed, the joint distribution

function is assembled by sorting the data and summing the ordered values probabilities. The approximate shape of the density function is simulated using cubic splines and a histogram.

The computer programs that are used to approximate the joint probability distribution and density functions are described in Chapter 4. Because of storage problems, the simulation package had to be divided into four separate programs. The programs are listed in the Appendix.

In Chapter 5 the discrete approximation is compared to the traditional Monte Carlo technique for a joint probability distribution that can be solved exactly. The joint probability distribution function of the equation of a circle is approximated using both methods and the results are compared to the exact solution of the ioint distribution function. The programs were run three times. Each time an increasing number of points was used to represent each random variable. The joint probability distributions are plotted vs. the exact solution for each case. As expected, the accuracy of each method improves with an increase of number of points used to represent each random variable's density function. However, the accuracy of the discrete simulation is better for each

case than the Monte Carlo simulation. The mean squared error and the maximum deviation is plotted as a function of number of unique outcomes and computer processing unit (CPU) time. The discrete simulation plots are very well behaved and consistently decreasing with an increasing number of outcomes and CPU time, while the Monte Carlo data is scattered and erratic.

In Chapter 6 an example of how the discrete simulation method can be used as a tool by engineers to aid in the design and development of structures and components is presented. А cantilever I-beam is analyzed. Each variable is assumed to be random with a known probability distribution. Using the discrete simulation programs, the joint probability and density functions are approximated for the maximum moment, the deflection at the end of the beam, the slope at the end of the beam, the maximum stress, the maximum shear, and the reliability of the beam.

In Chapter 7 a different technique is discussed that determines the upper and lower bounds of a joint probability distribution function using the discrete approximation. Although a formal proof has not been developed for the bounding theory, the program was run for several known cases with good results.

In summary, a discrete simulation algorithm was developed to approximate the joint probability distribution function of complex algebraic expressions containing several independent random variables. Although there are a few methods available for approximating the joint probability distribution functions of algebraic expressions, they usually involve complex mathematical operations that are too cumbersome for the average design engineer. The discrete simulation method developed in this study does not involve any complex mathematical operations, is easy to use, and is capable of being used in a wide variety of engineering applications.

CHAPTER IX

RECOMMENDATIONS FOR FURTHER STUDY

There are many possible extensions of the discrete simulation method that can be investigated following this study. A few suggestions are to:

- Develop a faster sorting routine which would decrease computing time.
- Expand the program to allow the use of more discrete points to represent each random variable's density function.
- Modify the program so that the variables are represented using double precision.
- Investigate the accuracy of the discrete simulation program for an algebraic expression containing more than two random variables in which an exact solution exists.
- Develop a formal proof of the bounding theory discussed in Chapter 7.

LIST OF REFERENCES

- Haugen, E.B., <u>Probabilistic Mechanical Design</u>, John Wiley & Sons, Inc., New York, 1980.
- Springer, M.D., <u>The Algebra of Random Variables</u>, John Wiley & Sons, Inc., New York, 1979.
- Law, A.M. and Kelton, W.D., <u>Simulation Modeling and</u> <u>Analysis</u>, McGraw-Hill Book Company, New York, 1982.
- Hammersly, J.M., and Handscomb, D.C., <u>Monte Carlo</u> <u>Methods</u>, John Wiley & Sons, Inc., New York, 1964.
- Bury, K.V., "On Probabilistic Design," Journal of Engineering for Industry, November 1974, pp. 1291-1295.
- Mittenbergs, A.A., "Fundamental Aspects of Mechanical Reliability," A.S.M.E. Design Conference, New York, 1965, pp. 17-35.
- Balkey, K.R., Meyer, T.A., and Witt, F.J., "Probabilistic Structural Mechanics, Chances Are...," Mechanical Engineering, July 1986, pp. 56-62.
- Elishakoff, I., "Impact Buckling of Thin Bar Via Monte Carlo Method," ASME Journal of Applied Mechanics, Vol. 45, September 1978, pp. 586-590.

- Lindberg, H.E., "Impact Buckling of a Thin Bar," ASME Journal of Applied Mechanics, Vol. 32, 1965, pp. 312-322.
- Elishakoff, I., "Buckling of a Stochastically Imperfect Finite Column on a Nonlinear Elastic Foundation-A Reliability Study," ASME Journal of Applied Mechanics, Vol. 46, 1979, pp. 411-416.
- Elishakoff, I., "Reliability of Axially Compressed Cylindrical Shells with General Nonsymmetric Imperfections," ASME Journal of Applied Mechanics, Vol. 52, 1985, pp. 122-128.
- Martin, W.R., Nowak, P.F., and Rathkopf, J.A., "Monte Carlo photon transport on a vector supercomputer," IBM J. Res. Develop., Vol. 30, No. 2, Marck 1986, pp. 193-201.
- Ramsay, R.J., Mirza, S.A., and MacGregor, J.G., "Monte Carlo Study of Short Time Deflections of Reinforced Concrete Beams," ACI Journal, August 1979, pp. 897-917.
- ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-63)," American Concrete Institute, Detroit, 1963, 144 pp.
- 15. ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-71)," American Concrete Institute, Detroit, 1971, 78 pp. Also ACI 318-77, 1977, 104 pp.
- Dao-Thien, M., Massoud, M., "On the Probabilistic Distributions of Stress and Strength in Design Problems," The American Society of Mechanical Engineers, Paper No. 74-WA/DE-7, 7 pp.

- Hasofer, A.M., and Lind, N.C., "Exact and Invariant Second-Moment Code Format," Journal of the Engineering Mechanics Division, ASCE, Vol. 100, No. EM1, Feb. 1974, pp. 111-121.
- Rackwitz, R., and Fiessler, B., "Structural Reliability Under Combined Random Load Sequences," Journal of Computers and Structures, Vol. 9, 1978, pp. 489-494.
- Chen, X., and Lind, N.C., "Fast Probability Integration by Three Parameter Normal Tail Approximation," Structural Safety, Vol. 1, 1983, pp. 169-176.
- Wu, Y.T., and Wirsching, P.H. "A New Algorithm for Structural Reliability Estimation," Submitted for review to Journal of Engineering Mechanics, ASCE, 1985.
- Wirsching, P.H., and Wu, Y.T., "Advanced Reliability Methods for Structural Evaluation," Journal of Engineering for Industry, Vol. 109, Feb. 1987, pp. 19-23.
- Ditlevsen, O., "Principle of Normal Tail Approximation," Journal of Engineering Mechanics Division, ASCE, Vol. 107, Dec. 1981, pp. 1191-1208.
- 23. Wu, Y.T., "Demonstration of a New, Fast Probability Integration Method for Reliability Analysis," Journal of Engineering for Industry, Vol. 109, Feb. 1987, pp. 24-28.
- Lockwood, F.C., and Shah, N.G., "New Method for the Computation of Probability Density Functions in Turbulent Flows," AIAA Journal, Vol. 20, No. 6, June 1982, pp. 860-862.

- Sturges, H.A., "The Choice of a Class Interval," ASA, 21, 1926, pp. 65-66.
- Hornbeck, R.W., <u>Numerical Methods</u>, Quantum Publishers, Inc., New York, 1975.
- Devore, J.L., <u>Probability and Statistics for</u> <u>Engineering and the Sciences</u>, Brooks/Cole Publishing Company, Monterey, California, 1982
- Hajek, J., and Dupac, V., <u>Probability in Science and</u> <u>Engineering</u>, Academic Press, New York, 1967.
- 29. H-S. Ang, A., and Tang, W.H., <u>Probability Concepts</u> in Engineering Planning and Design, Volume I-Basic Principles, John Wiley & Sons, Inc., New York, 1975.

APPENDIX A

DISCRETE SIMULATION PROGRAM

C * * C * PROGRAM NAME: DISCSIM (DISCRETE SIMULATION AND BOUNDING) * с* * C * WRITTEN BY: BRUCE SWANSON * C * * C * DATE: MARCH 26, 1987 * C * * C * PURPOSE: PROCRAM "DISCSIM" APPROXIMATES THE JOINT PROBABILITY * C * DISTRIBUTION FUNCTION OR THE UPPER AND LOWER BOUNDING * с* CURVES OF A DISTRIBUTION FUNCTION FOR AN ALGEBRAIC * C * EXPRESSION CONTAINING TWO INDEPENDENT RANDOM VARIABLES. * C * THE RANDOM VARIABLE'S DENSITY FUNCTIONS ARE APPROXIMATED * C * USING A FINITE NUMBER (2-200) OF DISCRETE LOCATIONS. THE * с* FUNCTION MUST BE INSERTED IN SUBROUTINE "FUNCTION". * С * * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES BOOK * с* BOOKBOUND * C * CELLR * C * DIST * с * DISTRIBUTION * с* FUNCTION * С* NORMAL * с* NORMINV * с* OUTPUT * C * OUTPUTBOUND * с* SORT * C * SPECIAL * с* TRIANCLE * C * UNIFORM * с* * C * DESCRIPTION OF PARAMETERS: * с* INPUT ARCUMENTS: * с * ANSB - CHARACTER*1 - IF ANSB IS EQUAL TO 'Y' THEN THE * с * PROGRAM COMPUTES THE UPPER AND LOWER BOUNDS OF * C * THE JOINT DISTRIBUTION FUNCTION AS WELL AS THE * C * DISCRETE APPROXIMATION FUNCTION. IF ANSE IS C * EQUAL TO 'N' THEN THE PROCRAM COMPUTES ONLY THE * с * DISCRETE APPROXIMATION OF THE JOINT с * DISTRIBUTION FUNCTION. * с* DISREP(NUM) - CHARACTER*10 - DISREP CONTAINS THE * * С TYPE OF PROBABILITY DISTRIBUTION FOR VARIABLE * C * NUM (NORMAL, UNIFORM, TRIANGULAR, SPECIAL). * с * DISTR(NUM) - INTEGER - THE NUMBER OF THE DISTRIBUTION * с* FOR RANDOM VARIABLE NUM (1=NORMAL, 2=UNIFORM, * с* 3=TRIANCULAR, 4=SPECIAL). с* NAME - CHARACTER*30 - NAME IS THE INPUT DATA FILE NAME * C * OF THE SPECIAL DISTRIBUTION FUNCTION FOR *

С	*	RANDOM VARIABLE NUM.	ł
С	*	NAME2 - CHARACTER*30 - NAME2 IS THE OUTPUT DATA FILE	-
С	*	NAME OF THE JOINT DISTRIBUTION FUNCTION.	4
С	*	NCELLS(NUM) - INTECER - THE NUMBER OF DISCRETE	k
С	*	LOCATIONS THAT APPROXIMATE THE PROBABILITY	*
С	*	DENSITY FUNCTION OF RANDOM VARIABLE NUM.	*
С	*	NUM - INTEGER - THE NUMBER OF THE RANDOM VARIABLE.	*
С	*	VARIANCE - REAL - THE VARIANCE VALUE FOR RANDOM	*
С	*	VARIABLE NUM.	*
С	*		*
С	 OUTPUT 	ARGUMENTS :	*
С	*	A(N) - REAL - WHERE N=NCELLS*2. ODD VALUES OF N	*
С	*	REPRESENT THE CENTER OF GRAVITY LOCATIONS AND	*
С	*	EVEN VALUES OF N INDICATE THE CELL BOUNDARIES	*
С	*	B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF	*
С	*	CRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY	*
С	*	DENSITY FUNCTION.	*
С	*	COUNT - INTECER - COUNT IS THE NUMBER OF UNIOUE 7	*
С	*	LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION	а. ж. т.
С	*	FUNCTION.	*
С	*	LB(NCELLS(),2) - REAL - CONTAINS THE LOWER BOUND	*
С	*	LOCATION FOR CELL NCELLS().	*
С	*	LBCOUNT - INTEGER - LBCOUNT IS THE NUMBER OF UNIOUS	*
С	*	LB(,) LOCATIONS OF THE LOWER BOIND	*
С	*	DISTRIBUTION FUNCTION.	*
С	*	MEAN(NUM) - REAL - THE MEAN VALUE FOR RANDOM VARIABLE	*
С	*	NUM.	*
С	*	UB(NCELLS(),2) - REAL - CONTAINS THE UPPER BOUND	*
С	*	LOCATION FOR CELL NCELLS().	*
С	*	UBCOUNT - INTEGER - UBCOUNT IS THE NUMBER OF UNIOUS	*
С	*	UB(,) LOCATIONS OF THE UPPER BOUND	*
С	*	DISTRIBUTION FUNCTION.	*
С	*	Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT	*
С	*	PROBABILITY DISTRIBUTION FUNCTION.	*
С	*	Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS	*
С	*	THAN OR EQUAL TO Z(COUNT.1).	*
C	*	Z(COUNT, 3) - REAL - THE NUMBER OF TIMES THE VALUE OF	*
C	*	TIMES Z(COUNT,1) WAS REPEATED DURING THE	*
C	*	SIMULATION.	*
C	k	ZLB(COUNT,1) - REAL - THE Z VALUE OF THE LOWER BOUND	*
C	*	OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION	*
С	k	ZLB(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS	*
C 1	*	THAN OR EQUAL TO ZLB(COUNT.1).	*
с·	k -	ZLB(COUNT, 3) - REAL - THE NUMBER OF TIMES THE VALUE OF	*
C 1	ŧ.	TIMES ZLB(COUNT, 1) WAS REPEATED DURING THE	*
С 1	ŧ	SIMULATION.	*
C :	*	ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY	*
С 1	*	DISTRIBUTION FUNCTION.	*

с* ZSTANDARD_DEV - REAL - THE STANDARD DEVIATION OF THE * с* JOINT PROBABILITY DISTRIBUTION Z. * с* ZUB(COUNT,1) - REAL - THE Z VALUE OF THE UPPER BOUND * с* OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION. * с* ZUB(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS * с* THAN OR EQUAL TO ZUB(COUNT.1). * с* ZUB(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF * C * TIMES ZUB(COUNT,1) WAS REPEATED DURING THE * С* SIMULATION. * с* ZVARIANCE - REAL - THE VARIANCE OF THE JOINT * с* PROBABILITY DISTRIBUTION FUNCTION. * с* * С INTEGER COUNT, BX, DISTR, NCELLS, NUM, N, UBCOUNT, LBCOUNT REAL A, B, Z, AREA, PROB, X, TOLERANCE, F, D, SX, W REAL VARIANCE, MEAN, ZMEAN, ZVARIANCE, UB, LB CHARACTER DISREP*10, NAME*20, NAME2*20, ANSB*1 COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT COMMON/SECOND/DISTR(2), NCELLS(2), VARIANCE(2), MEAN(2), DISREP(2) COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2),LB(0:400,2),ANSB COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT OPEN (UNIT=23,FILE='W2') 320 WRITE (3,*) WRITE (3,300) FORMAT (2X, 'SIMULATION AND BOUNDING (Y/N) ?') 300 READ (0,310) ANSB 310 FORMAT (A1) IF (ANSB.NE. Y'.AND.ANSB.NE. N') THEN GOTO 320 END IF DO 10 NUM=1,2 CALL DIST 10 CONTINUE IF (ANSB.EQ. Y') THEN CALL BOOKBOUND CALL OUTPUTBOUND ELSE CALL BOOK CALL OUTPUT END IF CLOSE 23 STOP END

SUBROUTINE BOOK С * * C * PROGRAM NAME: SUBROUTINE BOOK * с * * C * WRITTEN BY: BRUCE SWANSON С* * C * DATE: MARCH 4, 1987 * с* * C * PURPOSE: SUBROUTINE BOOK SIMULATES THE JOINT DISTRIBUTION FUNCTION * с* OF TWO RANDOM VARIABLES FOR THE DISCRETE APPROXIMATION. * с* * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES DISTRIBUTION * с* FUNCTION * с * SORT * с* s. C * USAGE: CALL BOOK * с * * C * DISCRIPTION OF PARAMETERS: * с* INPUT ARGUMENTS: * с * B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF * с* GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * с * PROBABILITY DENSITY FUNCTION. ÷ С * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * с* LOCATIONS USED TO APPROXIMATE THE PROBABILITY * C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с * NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE с* RANDOM VARIABLE. * C * OUTPUT ARGUMENTS: * с * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z * с* LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * C * FUNCTION. С* TIME - INTEGER*3 - VARIABLE TIME IS THE TOTAL CPU TIME * с * OF SIMULATION. * с * Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT * с* PROBABILITY DISTRIBUTION FUNCTION. * с * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS * C * THAN OR EQUAL TO Z(COUNT,1). * C * Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF * с * TIMES Z(COUNT,1) WAS REPEATED DURING THE * С * SIMULATION. * С* ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY * С* DISTRIBUTION FUNCTION. ÷ С* ZVARIANCE - REAL - THE VARIANCE OF THE JOINT * С * PROBABILITY DISTRIBUTION FUNCTION. * C * * С

```
COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT
        COMMON/SECOND/DISTR(2),NCELLS(2),VARIANCE(2),MEAN(2),DISREP(2)
        COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2),LB(0:400,2),ANSB
        COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT
        REAL B,Z,SX,F,D,WORK,A,VARIANCE,MEAN,ZMEAN,ZVARIANCE,TOTAL
        REAL ZZ, UB, LB
        INTEGER COUNT, FLAG, AX, X, Y, NCELLS, NUM, N, DISTR, UBCOUNT, LBCOUNT
        INTEGER*3 TIME
        CHARACTER DISREP*10,ANSB*1
        COUNT=0
        AX=0
        TOTAL=0.0
        CALL STIME
        Z(0,1) = -1.0E30
С
С
С
С
         SIMULATE ALL POSSIBLE COMBINATIONS OF THE FUNCTION Z
С
С
                         _____
С
        DO 10 X=1,NCELLS(1)
           DO 20 Y=1,NCELLS(2)
             AX = AX + 1
             CALL FUNCTION (B(X,1),B(Y,2),ZZ)
             CALL SORT (ZZ,Z,COUNT,AX)
             TOTAL=TOTAL+ZZ
20
          CONTINUE
10
        CONTINUE
С
С
                  С
С
                      END OF THE SIMULATION
С
С
С
       CALL WTIME
       CALL WTIME2 (TIME)
       WRITE (3,*) TIME
       ZMEAN=TOTAL/FLOAT(NCELLS(1)*NCELLS(2))
С
С
С
С
            CALCULATE THE JOINT PROBABILITY DISTRIBUTION FUNCTION
С
С
                    С
       CALL DISTRIBUTION (Z, COUNT, ZMEAN, ZVARIANCE, NCELLS(1),
```

RETURN END

*

NCELLS(2))

SUBROUTINE BOOKBOUND с * * C * PROGRAM NAME: SUBROUTINE BOOKBOUND * C * * C * WRITTEN BY: BRUCE SWANSON * с * C * DATE: MARCH 4, 1987 * с * ÷ C * PURPOSE: SUBROUTINE BOOK SIMULATES THE JOINT DISTRIBUTION FUNCTION с * OF THE TWO RANDOM VARIABLES. * с* * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES DISTRIBUTION * с* FUNCTION * с* SORT * с* * C * USAGE: CALL BOOK * C * * C * DISCRIPTION OF PARAMETERS: C * INPUT ARGUMENTS: с * BOUND(3,2) - REAL - ARRAY BOUND IS A TEMPORARY VARIABLE * с* THAT COMPUTES THE MINIMUM AND MAXIMUM с * COMBINATIONS OF THE TWO CELLS REPRESENTING THE * с * TWO RANDOM VARIABLES. С * B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF * C * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * C * PROBABILITY DENSITY FUNCTION. с* LB(NCELLS(),2) - REAL - CONTAINS THE LOWER BOUND * с* LOCATION FOR CELL NCELLS(). * с* NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * с* LOCATIONS USED TO APPROXIMATE THE PROBABILITY * С * DENSITY FUNCTION OF RANDOM VARIABLE NUM. ÷ C * NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE + C * RANDOM VARIABLE. C * UB(NCELLS(),2) - REAL - CONTAINS THE UPPER BOUND * с * LOCATION FOR CELL NCELLS(). с * OUTPUT ARGUMENTS: * с* COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z * С * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * с* FUNCTION. с* LBCOUNT - INTEGER - LBCOUNT IS THE NUMBER OF UNIQUE с* LB(,) LOCATIONS OF THE LOWER BOUND * С* DISTRIBUTION FUNCTION. * с * UBCOUNT - INTEGER - UBCOUNT IS THE NUMBER OF UNIQUE с* UB(,) LOCATIONS OF THE UPPER BOUND يە. с* DISTRIBUTION FUNCTION. с* TIME - INTEGER*3 - VARIABLE TIME IS THE TOTAL CPU TIME * С* OF SIMULATION. *

U	* Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT
С	* PROBABILITY DISTRIBUTION FUNCTION.
С	* Z(COUNT.2) - REAL - THE PROBABILITY OF 7 REINCLESS
С	* THAN OF FOLIAL TO Z COUNT 1)
č	
č	2(COUNT, 5) = REAL = THE NUMBER OF TIMES THE VALUE OF
-	TIMES Z(COUNT, 1) WAS REPEATED DURING THE
C	* SIMULATION.
С	* ZLB(COUNT,1) - REAL - THE Z VALUE OF THE LOWER BOUND
С	* OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION
С	* ZLB(COUNT.2) - REAL - THE PROBABILITY OF 7 BEING LESS
С	* THAN OR EQUAL TO ZIR(COUNT 1)
С	* ZLB(COINT 3) - PEAL - THE MURPER OF TARRA THE MARKET
č	*
2	TIMES ZLB(COUNT, I) WAS REPEATED DURING THE
2	SIMULATION.
C	ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY
С	* DISTRIBUTION FUNCTION. *
С	* ZUB(COUNT,1) - REAL - THE Z VALUE OF THE UPPER BOUND *
С	* OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION *
С	* ZUB(COUNT.2) - REAL - THE PROBABILITY OF 2 REINCIESS
С	* THAN OF FOUNT TO ZIRE COMPANIENT OF Z BEING LESS *
č	* ZIE(COUNT 2) NEW TO ZUB(COUNT,). *
č	200 (CONT, 5) - REAL - THE NUMBER OF TIMES THE VALUE OF *
2	TIMES ZUB(COUNT, I) WAS REPEATED DURING THE *
č	simulation. *
C.	ZVARIANCE - REAL - THE VARIANCE OF THE JOINT *
С	* PROBABILITY DISTRIBUTION FUNCTION. *
С	*
С	***************************************
С	
	COMMON/FIRST/A(0:400), B(0:400, 2), Z(0:40000, 3), COUNT
	COMMON/SECOND/DISTR(2) NOFILS(2) VARIANCE(2) NEAN(2) DISTR(2)
	COMMON/THIRD/NIM ZMEAN ZVARIANCE UR(2), MEAN(2), DISKEP(2)
	COM(0)/(CROUD)/21 = 20.0000000000000000000000000000000000
	DIMENSION DOWN (2) COUNT, LBCOUNT
	DIMENSION BOUND(3,3)
	REAL B, Z, SX, F, D, WORK, A, VARIANCE, MEAN, ZMEAN, ZVARIANCE, TOTAL
	REAL ZZ,UB,LB,UBTOTAL,LBTOTAL,UBMEAN,LBMEAN,UBVARIANCE
	REAL LEVARIANCE
	INTEGER COUNT, FLAG, AX, X, Y, NCELLS, NUM, N, DISTR, UBCOUNT, LBCOUNT
	INTEGER LBX.UBX
	INTECER*3 TIME
	CHARACTER DISREPTIO ANSET
	LDCUUNT=U
	AX =0
	AX=0 TOTAL=0.0
	AX=0 TOTAL=0.0 UBTOTAL=0.0
	AX=0 TOTAL=0.0 UBTOTAL=0.0 LBTOTAL=0.0
	AX=0 TOTAL=0.0 UBTOTAL=0.0 LBTOTAL=0.0 WRITE (3,123)

```
123
       FORMAT (2X, 'START SIMULATION')
       CALL STIME
       Z(0,1) = -1.0E30
С
C --
             -----
С
С
        SIMULATE ALL POSSIBLE COMBINATIONS OF THE FUNCTION Z
С
С
  С
       DO 10 X=1,NCELLS(1)
          WRITE (3,*) X
          DO 20 Y=1,NCELLS(2)
             AX=AX+1
            LBX=LBX+1
            UBX=UBX+1
            CALL FUNCTION (B(X,1),B(Y,2),ZZ)
            CALL SORT (ZZ,Z,COUNT,AX)
            ZMIN=1.0E38
            ZMAX=-1.0E38
            BOUND(1,1)=UB(X,1)
            BOUND(2,1)=LB(X,1)
            BOUND(3,1)=B(X,1)
            BOUND(1,2)=UB(Y,2)
            BOUND(2,2)=LB(Y,2)
            BOUND(3,2) = B(Y,2)
            DO 8000 K=1,3
               DO 8010 KK=1,3
                 CALL FUNCTION (BOUND(K,1), BOUND(KK,2), ZT)
                 IF (ZT.LT.ZMIN) THEN
                    ZMIN=ZT
                 END IF
                 IF (ZT.GT.ZMAX) THEN
                    ZMAX=ZT
                 END IF
8010
               CONTINUE
8000
            CONTINUE
            CALL SORT(ZMIN, ZUB, UBCOUNT, UBX)
            CALL SORT(ZMAX,ZLB,LBCOUNT,LBX)
            TOTAL=TOTAL+ZZ
            UBTOTAL=UBTOTAL+ZMIN
            LBTOTAL=LBTOTAL+ZMAX
20
         CONTINUE
10
      CONTINUE
С
с·
             С
С
                  END OF THE SIMULATION
```

С			
с с			
124 C		CALL WTIME CALL WTIME2 (TIME WRITE (3,*) TIME WRITE (3,124) FORMAT (2x, CAND O ZMEAN=TOTAL/FLOAT UBMEAN=UBTOTAL/FL LBMEAN=LBTOTAL/FL) F SIMULATION') (NCELLS(1)*NCELLS(2)) OAT(NCELLS(1)*NCELLS(2)) OAT(NCELLS(1)*NCELLS(2))
с с с с		CALCULATE TH FOR THE DISCRE	E JOINT PROBABILITY DISTRIBUTION FUNCTIONS TE APPROXIMATION AND THE TWO BOUNDING CURVES.
c			· · · · · · · · · · · · · · · · · · ·
	*	CALL DISTRIBUTION	<pre>(Z,COUNT,ZMEAN,ZVARIANCE,NCELLS(1), NCELLS(2))</pre>
	*	CALL DISTRIBUTION	<pre>(ZLB,LBCOUNT,LBMEAN,LBVARIANCE,NCELLS(1), NCELLS(2))</pre>
	*	CALL DISTRIBUTION	(ZUB, UBCOUNT, UBMEAN, UBVARIANCE, NCELLS(1), NCELLS(2))
		RETURN END	

SUBROUTINE CELLR С* 4 C * PROGRAM NAME: SUBROUTINE CELLR * с * * C * WRITTEN BY: BRUCE SWANSON ÷ C * * C * DATE: MARCH 3, 1987 C * 4 C * PURPOSE: SUBROUTINE CELLR COMPUTES THE CENTER OF GRAVITY LOCATIONS * с * FOR A GIVEN CELL WITH A KNOWN PROBABILITY DISTRIBUTION. * С* * C * USAGE: CALL CELLR * C * * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE * с * * C * DESCRIPTION OF PRAMETERS: * с * INPUT ARGUMENTS: * С * A(N) - REAL - WHERE N=NCELLS*2, ODD VALUES OF N * с* REPRESENT THE CENTER OF GRAVITY LOCATIONS, AND * с * THE EVEN VALUES OF N INDICATE THE CELL * с* BOUNDARIES. * с* ANSB - CHARACTER*1 - IF ANSB IS EQUAL TO 'Y' THEN THE * с* PROGRAM COMPUTES THE UPPER AND LOWER BOUNDS OF * с* THE JOINT DISTRIBUTION FUNCTION AS WELL AS THE * C * DISCRETE APPROXIMATION FUNCTION. IF ANSB IS ÷ с * EQUAL TO 'N' THEN THE PROGRAM COMPUTES ONLY THE * с* DISCRETE APPROXIMATION OF THE JOINT * с* DISTRIBUTION FUNCTION. * С* NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE 4 C * LOCATIONS THAT APPROXIMATE THE PROBABILITY * С* DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с* NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE * с * RANDOM VARIABLE. с* + с* OUTPUT ARGUMENTS: * C * B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF C * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * с* DENSITY FUNCTION. с* LB(NCELLS(),2) - REAL - CONTAINS THE LOWER BOUND * C * LOCATION FOR CELL NCELLS(). * C * UB(NCELLS(),2) - REAL - CONTAINS THE UPPER BOUND * с * LOCATION FOR CELL NCELLS(). ÷ С * OUTPUT ARGUMENTS: с * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z * С* LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * с * FUNCTION. * C * ب

C	***************************************
C	COMMON/FIRST/A(0.400) B(0.400.2) Z(0.40000.2) COUNT
	COMMON/SECOND/DISTR(2) NCELLS(2) VARIANCE(2) MEAN(2) DISPED(2)
	COMMON/THIRD/NIM. ZMEAN, ZVARIANCE UB(0.400 2) IB(0.400 2) ANGR
	COMMON/CBOUND/ZLB(0.40000.3), ZIB(0.40000.3) IBCOUNT I BCOUNT
	INTEGER BX . NCELLS . NUM . COUNT . DI STR . UBCOUNT . LECOUNT
	REAL A.B.Z. VARIANCE. MEAN. ZMEAN. ZVARIANCE. HB. LB
	CHARACTER DISREP*10, ANSR*1
	WRITE (3,2)
2	FORMAT (2x, 'ENTERED CELLR')
	BX=0
	DO 80 K=1,NCELLS(NUM)*2,2
	BX=BX+1
	B(BX, NUM) = A(K)
80	CONTINUE
С	
C C	FOR BOUNDINGFOR BOUNDINGFOR BOUNDING
	IF (ANSB.EQ. Y') THEN
	BX=1
	DO 10 I=0,NCELLS(NUM)*2,2
	LB(BX, NUM) = A(I)
	UB(BX, NUM) = A(1+2)
	BX=BX+1
10	CONTINUE
	END IF
С	
C C	END FOR BOUNDING
-	RETURN
	END

SUBROUTINE DIST C * * C * PROGRAM NAME: SUBROUTINE DIST * C * * C * WRITTEN BY: BRUCE SWANSON * С* * C * DATE: MARCH 3, 1987 * c * * C * PURPOSE: SUBROUTINE DIST INITIALIZES THE TYPE OF PROBABILITY * C * DISTRIBUTION FOR EACH RANDOM VARIABLE. * с* * C * USAGE: CALL DIST * C * * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES CELLR * с* NORMAL * C * NORMINV * с* TRIANGEL * С* UNIFORM * C * SPECIAL * с * * C * DESCRIPTION OF PARAMETERS: * с * INPUT ARGUMENTS: * с* DISTR(NUM) - INTEGER - THE NUMBER OF THE DISTRIBUTION * с* FOR RANDOM VARIABLE NUM (1=NORMAL, 2=UNIFORM, * с* 3=TRIANGULAR, 4=SPECIAL). * C * NUM - INTEGER - THE NUMBER OF THE RANDOM VARIABLE. * с* ÷ с * OUTPUT ARGUMENTS: * A(N) - REAL - WHERE N=NCELLS*2, ODD VALUES OF N C * * с * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND * с * EVEN VALUES OF N INDICATE THE CELL BOUNDARIES. * С* DISREP - CHARACTER*10 - DISREP CONTAINS THE TYPE OF * с * PROBABILITY DISTRIBUTION FOR VARIABLE NUM * C * (NORMAL, UNIFORM, TRIANGULAR, SPECIAL). * с * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * C * LOCATIONS THAT APPROXIMATE THE PROBABILITY * С* DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с * * С COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT COMMON/SECOND/DISTR(2), NCELLS(2), VARIANCE(2), MEAN(2), DISREP(2) COMMON/THIRD/NUM, ZMEAN, ZVARIANCE, UB(0:400,2), LB(0:400,2), ANSB COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT INTEGER DISTR, NUM, NCELLS, COUNT, LBCOUNT, UBCOUNT REAL VARIANCE, MEAN, A, B, Z, ZMEAN, ZVARIANCE, UB, LB

CHARACTER DISREP*10, ANSB*1

```
5
        WRITE (3,*)
        WRITE (3,10)
10
        FORMAT (2X, 'DISTRIBUTIONS')
        WRITE (3,20)
20
        FORMAT (2X, 1) NORMAL')
        WRITE (3,30)
        FORMAT (2X, '2) UNIFORM')
30
        WRITE (3,40)
40
        FORMAT (2X, '3) TRIANGULAR')
        WRITE (3,50)
50
        FORMAT (2x, '4) SPECIAL')
        WRITE (3,80) NUM
80
        FORMAT (2X, 'ENTER NUMBER OF DISTRIBUTION FOR VARIABLE', 13)
        READ (0,*) DISTR(NUM)
        IF (DISTR(NUM).GT.4) GOTO 5
        IF (DISTR(NUM).EQ.1) THEN
           DISREP(NUM) = 'NORMAL'
           CALL NORMAL
        ELSE
           IF (DISTR(NUM).EQ.2) THEN
              DISREP(NUM) = 'UNIFORM'
              CALL UNIFORM
           ELSE
              IF (DISTR(NUM).EQ.3) THEN
                 DISREP(NUM)= TRIANGULAR
                 CALL TRIANGLE
              ELSE
                 IF (DISTR(NUM).EQ.4) THEN
                    DISREP(NUM)='SPECIAL'
                    CALL SPECIAL
                 ELSE
                    GOTO 5
                 END IF
             END IF
          END IF
       END IF
       RETURN
       END
```

SUBROUTINE DISTRIBUTION (Z, COUNT, MEAN, VARIANCE, NC1, NC2) C * * C * PROCRAM NAME: SUBROUTINE DISTRIBUTION * C * * C * WRITTEN BY: BRUCE SWANSON * C * * C * DATE: MARCH 23, 1987 * C * * C * PURPOSE: SUBROUTINE DISTRIBUTION COMPUTES THE JOINT DISTRIBUTION * C * FUNCTION OF RANDOM VARIABLE Z. * с * * C * SUBROUTINES AND SUBPROCRAMS REQUIRED: NONE * C * * C * USACE: CALL DISTRIBUTION(Z,COUNT,MEAN,VARIANCE,NC1,NC2) * C * * C * DESCRIPTION OF PARAMETERS: * с * INPUT ARCUMENTS: * C * COUNT - INTECER - COUNT IS THE NUMBER OF UNIQUE Z * C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * C * FUNCTION. * с* MEAN - REAL - THE MEAN OF THE JOINT PROBABILITY * C * DISTRIBUTION FUNCTION. + с* NC1 - INTECER - THE NUMBER OF DISCRETE LOCATIONS THAT * C * APPROXIMATE THE PROBABILTIY DENSITY FUNCTION * С* OF RANDOM VARIABLE 1. * с * NC2 - INTECER - THE NUMBER OF DISCRETE LOCATIONS THAT * C * APPROXIMATE THE PROBABILTIY DENSITY FUNCTION * с* OF RANDOM VARIABLE 2. * с* Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT * с* PROBABILITY DISTRIBUTION FUNCTION. * C * Z(COUNT,2) - REAL - THE NUMBER OF TIMES THE VALUE OF * с* TIMES Z(COUNT, 1) WAS REPEATED DURING THE ÷ с * SIMULATION. * с* * с * OUTPUT ARCUMENTS: * C * VARIANCE - REAL - THE VARIANCE OF THE JOINT PROBABILITY * C * DISTRIBUTION FUNCTION. * C * Z(COUNT,3) - REAL - THE PROBABILITY OF Z BEINC LESS * C * THAN OR EQUAL TO Z(COUNT,1). * С* TIMES Z(COUNT,1) WAS REPEATED DURING THE * C * SIMULATION. * С* С DIMENSION Z(0:40000.3) REAL Z, ZT, MEAN, VARIANCE INTECER COUNT, NC1, NC2

```
ZT=0.0
VARIANCE=0.0
DO 80 I=1,COUNT
Z(I,3)=Z(I,2)
ZT=ZT+Z(I,3)
Z(I,2)=ZT/FLOAT(NC1*NC2)
VARIANCE=(((2(I,1)-MEAN)**2.0)*(Z(I,3)/FLOAT(NC1*NC2)))+
* VARIANCE
80 CONTINUE
RETURN
END
```

```
SUBROUTINE FUNCTION (X1,X2,ANSZ)
с*
                                                                 4
C * PROGRAM NAME: SUBROUTINE FUNCTION
                                                                 ÷
с*
                                                                 *
C * WRITTEN BY: BRUCE SWANSON
                                                                 *
c *
                                                                 *
C * DATE: MARCH 23, 1987
                                                                 *
С*
                                                                 *
C * PURPOSE: SUBROUTINE FUNCTION COMPUTES THE VALUE OF ANSZ GIVEN
                                                                 *
с *
            THE VARIABLES X1 AND X2.
                                                                 ÷
с*
                                                                 *
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE
                                                                 *
C *
                                                                 *
C * USAGE: CALL FUNCTION (X1,X2,ANSZ)
                                                                 *
С*
                                                                 *
C * DISCRIPTION OF PARAMETERS:
                                                                 4
с*
       INPUT ARGUMENTS:
                                                                 *
C *
              X1 - REAL - THE VALUE OF THE FIRST VARIABLE.
C *
              X2 - REAL - THE VALUE OF THE SECOND VARIABLE.
                                                                *
с*
       OUTPUT ARGUMENTS:
с*
              ANSZ - REAL - THE VALUE OF THE FUNCTION GIVEN THE
                                                                *
с*
                     VALUES OF THE TWO RANDOM VARIABLES X1 AND X2.
                                                                *
с*
С
       REAL X1,X2,ANSZ
       PI=3.141592654
С
С
                    С
С
                 ENTER FUNCTION TO BE SIMULATED
С
                      X1 = RANDOM VARIABLE 1
С
                      X2 = RANDOM VARIABLE 2
С
                      ANSZ = JOINT RANDOM VARIABLE
С
С
С
С
       ANSZ = (X1/2.0) + X2
С
      ANSZ=SQRT(X1**2+X2**2)
С
       ANSZ=X1*X2*12.0
С
       ANSZ=2.5-(X1*X2)
С
      ANSZ = (X1/2.0 + X2/2.0)
С
      ANSZ=(X1*X2**2.0)/2.0
С
      ANSZ=(X1*(X2**3.0))/6.0
С
      ANSZ=X1*(X2**2.0/8.0)
С
      ANSZ=X1*(1/X2)
      ANSZ=X1-((4*50000)/(3.141592654*X2**2))
```

С	ANSZ=x1/(1+x2)
С	ANSZ=LOG10((1+x1)/x2)
С	ANSZ=X1-((4.0*50000)/(PI*X2))
С	ANSZ = SQRT(X1 * 2 + X2 * 2.)
С	
С	
С	
	RETURN
	FND

SUBROUTINE NORMAL с* ÷ C * PROGRAM NAME: SUBROUTINE NORMAL * с * * C * WRITTEN BY: BRUCE SWANSON * c * * C * DATE: MARCH 3, 1987 * с * * C * PURPOSE: SUBROUTINE NORMAL FINDS THE NCELL LOCATION ON THE X AXIS * с* GIVEN A PROBABILITY (AREA) FOR A NORMAL RANDOM VARIABLE. * C * * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES CELLR * с * NORMINV * с* * C * USAGE: CALL NORMAL * с * * C * DISCRIPTION OF PARAMETERS: * C * INPUT ARGUMENTS: + с* MEAN(NUM) - REAL - THE MEAN VALUE FOR RANDOM VARIABLE * C * NUM. * с* NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * С* LOCATIONS THAT APPROXIMATE THE PROBABILITY * с* DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с* NUM - INTEGER - THE NUMBER OF THE RANDOM VARIABLE. * с* VARIANCE - REAL - THE VARIANCE VALUE FOR RANDOM * с * VARIABLE NUM. ÷ C * . * с* OUTPUT ARGUMENTS: * с * A(N) - REAL - WHERE N=NCELLS*2, ODD VALUES OF N * с* REPRESENT THE CENTER OF GRAVITY LOCATIONS AND * с* THE EVEN VALUES OF N INDICATE THE CELL * с * BOUNDARIES. * с* B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF * с* GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * C * DENSITY FUNCTION. * С* ******* С С COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT COMMON/SECOND/DISTR(2), NCELLS(2), VARIANCE(2), MEAN(2), DISREP(2) COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2),LB(0:400,2),ANSB COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT REAL AREA, A, X, PROB, KAREA, MEAN, VARIANCE, B, Z REAL ZMEAN, ZVARIANCE, UB, LB INTEGER NCELLS,K,NUM,COUNT,DISTR,UBCOUNT,LBCOUNT CHARACTER DISREP*10,ANSB*1 WRITE (3,*)

	WRITE (3,*)
	WRITE (3,20) NUM
20	FORMAT (2X, 'NORMAL DISTRIBUTION FOR VARIABLE', 13)
	WRITE (3,30)
30	FORMAT (2x, 'ENTER MEAN')
	READ (0,*) MEAN(NUM)
	WRITE (3,40)
40	FORMAT (2X, 'ENTER STANDARD DEVIATION')
	READ (0,*) VARIANCE(NUM)
	VARIANCE(NUM)=VARIANCE(NUM)**2.0
	WRITE (3,3) NUM
3	FORMAT (2X, 'ENTER NUMBER OF CELLS FOR VARIABLE', 13)
	READ (0,*) NCELLS(NUM)
	AREA=1/(FLOAT(NCELLS(NUM))*2.0)
	DO 10 K=1,NCELLS(NUM)*2.0
	KAREA=AREA*(FLOAT(K))
	P=KAREA
	CALL NORMINV(P,X,D,IE)
	A(K)=X*SQRT(VARIANCE(NUM))+MEAN(NUM)
10	CONTINUE
	A(0) = -A(NCELLS(NUM) + 2)
	CALL CELLR
	RETURN
	END

SUBROUTINE NORMINV (P,X,D,IE) с * C * PROGRAM NAME: NORMINV * с* * C * PURPOSE: SUBROUTINE NORMINV WAS SUPPLIED FROM THE SCIENTIFIC * C * SUBROUTINE PACKAGE (SSP). THE SSP CONTAINS A COLLECTION * с* OF MATHEMATICAL AND STATISTICAL ROUTINES FOR THE * с* HARRIS COMPUTER SYSTEM. * с * * С C..... C С SUBROUTINE NORMINV С С PURPOSE С COMPUTES X = $P^{**}(-1)(Y)$, THE ARGUMENT X SUCH THAT Y = P(X) = THE PROBABILITY THAT THE RANDOM VARIABLE U, DISTRIBUTED С С NORMALLY(0,1), IS LESS THAN OR EQUAL TO X. F(X), THE С ORDINATE OF THE NORMAL DENSITY, AT X, IS ALSO COMPUTED. С С USAGE С CALL NORMINV (P,X,D,IER) С С DESCRIPTION OF PARAMETERS С Р - INPUT PROBABILITY. С - OUTPUT ARGUMENT SUCH THAT P = Y = THE PROBABILITY THAT х С U, THE RANDOM VARIABLE, IS LESS THAN OR EQUAL TO X. С D - OUTPUT DENSITY, F(X). с IER - OUTPUT ERROR CODE С = -1 IF P IS NOT IN THE INTERVAL (0,1), INCLUSIVE. с X=D=.99999E+38 IN THIS CASE с = 0 IF THERE IS NO ERROR. SEE REMARKS, BELOW. С С REMARK S С MAXIMUM ERROR IS 0.00045. С IF P = 0, X IS SET TO -(10)**38. D IS SET TO 0. С IF P = 1, X IS SET TO (10)**38. D IS SET TO 0. С С SUBROUTINES AND SUBPROGRAMS REQUIRED С NONE С С METHOD С BASED ON APPROXIMATIONS IN C. HASTINGS, APPROXIMATIONS FOR С DIGITAL COMPUTERS, PRINCETON UNIV. PRESS, PRINCETON, N.J., С 1955. SEE EQUATION 26.2.23, HANDBOOK OF MATHEMATICAL С FUNCTIONS, ABRAMOWITZ AND STEGUN, DOVER PUBLICATIONS, INC.,

```
С
          NEW YORK.
С
c.
                     С
С
     REAL X, D, P, T2, T
     INTEGER IE
     IE=0
     X=1.7E+38
     D=X
     IF(P)1,4,2
   1 IE=-1
     GO TO 12
   2 IF (P-1.0)7,5,1
   4 X=-1.7E+38
   5 D=0.0
     GO TO 12
С
С
   7 D=P
     IF(D-0.5)9,9,8
   8 D=1.0-D
   9 T2=ALOG(1.0/(D*D))
     T=SQRT(T2)
     X=T-(2.515517+0.802853*T+0.010328*T2)/(1.0+1.432788*T+0.189269*T2
    1 +0.001308*T*T2)
     IF(P-0.5)10,10,11
  10 X=-X
  11 D=0.3989423*EXP(-X*X/2.0)
  12 RETURN
     END
```

SUBROUTINE OUTPUT с* * C * PROGRAM NAME: SUBROUTINE OUTPUT 4 с* * C * WRITTEN BY: BRUCE SWANSON * С* ÷ C * DATE: MARCH 3, 1987 * C * C * PURPOSE: SUBROUTINE OUTPUT PRINTS THE CENTER OF GRAVITY LOCATIONS * с* FOR RANDOM VARIABLES A AND B, AND THE JOINT PROBABILITY * с * DISTRIBUTION OF VARIABLE Z TO FILE W2. OUTPUT ALSO PRINTS * с * THE JOINT DISTRIBUTION FUNCTION TO A GIVEN FILE SO THE C * JOINT DISTRIBUTION CAN BE INPUT ACAIN AS A 'SPECIAL' + с * DISTRIBUTION FUNCTION. 4 с * * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE * с * * C * USAGE: CALL OUTPUT 4 С* C * DESCRIPTION OF PARAMETERS: С* INPUT ARGUMENTS: с * B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF * с* GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * с * DENSITY FUNCTION. * C * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z * с* LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * с * FUNCTION. * С* DISREP(NUM) - CHARACTER*10 - DISREP CONTAINS THE 4 с * TYPE OF PROBABILITY DISTRIBUTION FOR VARIABLE * С* NUM (NORMAL, UNIFORM, TRIANGULAR, SPECIAL). * с* MEAN(NUM) - REAL - THE MEAN VALUE FOR RANDOM VARIABLE * С* NUM. * с * NAME2 - CHARACTER*30 - NAME2 IS THE OUTPUT DATA FILE * с* NAME OF THE JOINT DISTRIBUTION FUNCTION. -5 с * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE 4 с * LOCATIONS THAT APPROXIMATE THE PROBABILITY * с * DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с* NUM - INTEGER - RANGE OF 1 TO 2, VARIABLE 'NUM' IS THE * C * NUMBER OF THE RANDOM VARIABLE. * с* VARIANCE(NUM) - REAL - THE VARIANCE VALUE FOR RANDOM * C * VARIABLE NUM. * с* Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT * С* PROBABILITY DISTRIBUTION FUNCTION. * с * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS * С* THAN OR EQUAL TO Z(COUNT,1). * с * Z(COUNT, 3) - REAL - THE NUMBER OF TIMES THE VALUE OF * C * TIMES Z(COUNT,1) WAS REPEATED DURING THE *

с * SIMULATION. * с * ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY * С* DISTRIBUTION FUNCTION. * с* ZVARIANCE - REAL - THE VARIANCE OF THE JOINT * C * PROBABILITY DISTRIBUTION FUNCTION. * с* * с * OUTPUT ARGUMENTS: * с* ZSTANDARD_DEV - REAL - THE STANDARD DEVIATION OF THE + с * JOINT PROBABILITY DISTRIBUTION Z. с* * С COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT COMMON/SECOND/DISTR(2), NCELLS(2), VARIANCE(2), MEAN(2), DISREP(2) COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2),LB(0:400,2),ANSB COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT REAL Z, MAXDEV, B, MEAN, VARIANCE, A, ZMEAN, ZVARIANCE, UB, LB INTEGER NCELLS, COUNT, DISTR, NUM, UBCOUNT, LBCOUNT CHARACTER DISREP*10, NAME*20, NAME2*20, ANSE*1 С С С С PRINT DATA TO FILE "W2" С C -С WRITE (23,*) WRITE (23,*) WRITE (23,70) 70 FORMAT (2X, 'RANDOM VARIABLE: 1', 18X, 'RANDOM VARIABLE: 2') WRITE (23,80) DISREP(1), DISREP(2) FORMAT (2x, DISTRIBUTION: ',All,11x, DISTRIBUTION: ',A) 80 WRITE (23,90) MEAN(1), MEAN(2) 90 FORMAT (2X, 'MEAN: ', F12.6, 18X, 'MEAN: ', F12.6) WRITE (23,100) VARIANCE(1), VARIANCE(2) 100 FORMAT (2x, VARIANCE: , F12.6, 14x, VARIANCE: , F12.6) . STANDARD_DEV1=SQRT(VARIANCE(1)) STANDARD_DEV2=SQRT(VARIANCE(2)) WRITE (23,101) STANDARD_DEV1,STANDARD_DEV2 101 FORMAT (2x, STANDARD DEVIATION: , F12.6,4x, * STANDARD DEVIATION: ,F12.6) WRITE (23,170) NCELLS(1), NCELLS(2) 170 FORMAT (2X, NUMBER OF CELLS : , 14, 15X, NUMBER OF CELLS: , 14) WRITE (23,*) WRITE (23,110) 110 FORMAT (6X, 'X LOCATION', 26X, 'X LOCATION') WRITE (23,120) 120 FORMAT (4X, FOR VARIABLE 1, 22X, FOR VARIABLE 2)
	WRITE (23,113)
113	FORMAT (4x, '', 22x, '')
	IF (NCELLS(1).GT.NCELLS(2)) THEN
	INCELLS=NCELLS(1)
	ELSE
	INCELLS=NCELLS(2)
	END IF
	DO 160 I=1.INCELLS
	IF (I.LE.NCELLS(1), AND T IE NOFILE(2)) THEN
	WRITE $(23, 130)$ B(T, 1) B(T, 2)
130	FORMAT $(4x, F12, 6, 23x, F12, 6)$
	ELSE
	IF (I.LE.NCELLS(1)) THEN
	WRITE (23, 140) B(1, 1)
140	FORMAT $(4x, F12, 6)$
	ELSE
	WRTTE (23, 150) B(T, 2)
150	FORMAT $(37x, F12, 6)$
	END IF
	ENDIF
160	CONTINUE
	WRITE (23,*)
	WRITE (23,161)
161	FORMAT (19X, '***** Z FUNCTION ******')
	WRITE (23.11) COUNT
11	FORMAT (15X, NUMBER OF UNIQUE Z LOCATIONS, 15)
	WRITE (23,34) ZMEAN
34	FORMAT(15X, 'MEAN: ',F12.6)
	WRITE (23,162) ZVARIANCE
162	FORMAT (15x, VARIANCE: , F12.6)
	ZSTANDARD_DEV=SQRT(ZVARIANCE)
	WRITE (23,163) ZSTANDARD DEV
163	FORMAT (15x, STANDARD DEVIATION: 1, F12, 6)
	WRITE (23,*)
	WRITE (23,13)
13	FORMAT (15x, 'CELL')
	WRITE (23,12)
12	FORMAT (16X, 'NO.', 3X, 'Z LOCATION', 7X, 'Z DISTRIBUTION')
	WRITE (23,132)
132	FORMAT (15x, '', 3x, '', 7x, '')
	DO 10 I=1,COUNT
	WRITE (23,20) I,Z(I,1),Z(I,2)
20	FORMAT (14x, 14, 2x, F12.6, 6x, F12.6)
10	CONTINUE
С	
с	
C	
0	PRINT DISTRIBUTION DATA TO NAME2 FILE

C	
C	
С	
	WRITE (3,116)
116	FORMAT (2X, ENTER DISTRIBUTION DATA FILE NAME)
	READ (0,117) NAME2
117	FORMAT (A20)
	OPEN (UNIT=25,FILE=NAME2)
	WRITE (25,538) NCELLS(1), NCELLS(2)
538	FORMAT (15,15)
	WRITE (25,189) COUNT
189	FORMAT (15)
	DO 89 I=1,COUNT
	WRITE $(25,112)$ Z(I,1),Z(I,2),Z(I,3)
112	FORMAT (F20.7.F12.7.F12.7)
89	CONTINUE
	CLOSE 25
30	RETURN
	END

SUBROUTINE OUTPUTBOUND с * ÷ C * PROGRAM NAME: SUBROUTINE OUTPUTBOUND * с * ۰ C * WRITTEN BY: BRUCE SWANSON C * C * DATE: MARCH 3, 1987 с* C * PURPOSE: SUBROUTINE OUTPUT PRINTS THE CENTER OF GRAVITY LOCATIONS * С* FOR RANDOM VARIABLES A AND B, AND THE JOINT PROBABILITY 4 С* DISTRIBUTION OF VARIABLE 2 TO FILE W2. OUTPUT ALSO PRINTS * с * THE JOINT DISTRIBUTION FUNCTION TO A GIVEN FILE SO THE ÷ с * JOINT DISTRIBUTION CAN BE INPUT AGAIN AS A "SPECIAL" с* DISTRIBUTION FUNCTION. 4 C * ÷ C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE * C * 4 C * USAGE: CALL OUTPUT c * C * DESCRIPTION OF PARAMETERS: с * INPUT ARGUMENTS: с * B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF с * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * с * DENSITY FUNCTION. ÷ с* COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z * C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * с* FUNCTION. * C * DISREP(NUM) - CHARACTER*10 - DISREP CONTAINS THE с * TYPE OF PROBABILITY DISTRIBUTION FOR VARIABLE * C * NUM (NORMAL, UNIFORM, TRIANGULAR, SPECIAL). * с * MEAN(NUM) - REAL - THE MEAN VALUE FOR RANDOM VARIABLE 4 с* NUM. * с * NAME2 - CHARACTER*30 - NAME2 IS THE OUTPUT DATA FILE * с* NAME OF THE JOINT DISTRIBUTION FUNCTION. 4 с * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE C * LOCATIONS THAT APPROXIMATE THE PROBABILITY * C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с* NUM - INTEGER - RANGE OF 1 TO 2, VARIABLE 'NUM' IS THE * с* NUMBER OF THE RANDOM VARIABLE. * с * VARIANCE(NUM) - REAL - THE VARIANCE VALUE FOR RANDOM * с * VARIABLE NUM. с * Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT * c * PROBABILITY DISTRIBUTION FUNCTION. * C * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS * с* THAN OR EQUAL TO Z(COUNT,1). * с* Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF * с * TIMES Z(COUNT, 1) WAS REPEATED DURING THE *

С	SIMULATION.	4
С	ZLB(COUNT,1) - REAL - THE Z VALUE OF THE LOWER BOUND	
С	OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION	
С	ZLB(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS	• •
С	THAN OR EQUAL TO ZLB(COUNT,1).	k
С	ZLB(COUNT, 3) - REAL - THE NUMBER OF TIMES THE VALUE OF	*
С	TIMES ZLB(COUNT,1) WAS REPEATED DURING THE	*
С	SIMULATION.	*
С	ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY	*
С	DISTRIBUTION FUNCTION.	*
С	ZUB(COUNT,1) ~ REAL - THE Z VALUE OF THE UPPER BOUND	*
C	OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION.	. *
C	ZUB(COUNT,2) - REAL - THE PROBABILITY OF Z BEINC LESS	*
C	THAN OR EQUAL TO ZUB(COUNT,1).	*
C	ZUB(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF	*
C	TIMES ZUB(COUNT, 1) WAS REPEATED DURINC THE	*
C	SIMULATION.	*
C C	ZVARIANCE - REAL - THE VARIANCE OF THE JOINT	*
č	PROBABILITY DISTRIBUTION FUNCTION.	*
č		*
č	ZSTANDADD DEV - DEAL	*
č	LOINT DECRAPTING DECISION OF THE	*
c	JOINT PROBABILITY DISTRIBUTION Z.	*
č	*****	*
ċ		**
	COMMON/FIRST/A(0:400), B(0:400, 2), Z(0:40000, 3), COUNT	
	COMMON/SECOND/DISTR(2), NCELLS(2), VARIANCE(2), MEAN(2), DISDED(2)	
	COMMON/THIRD/NUM.ZMEAN.ZVARIANCE UB(0:400 2) IB(0:400 2) AND	
	COMMON/CBOUND/ZLB(0.40000 3) ZUB(0.40000 3) UB(0.400,2) UB(0.400,2)	
	REAL Z. MAXDEV. B. MEAN VARIANCE A ZMEAN ZVADIANCE UP ID	
	INTECER NCELLS, COUNT DISTR NIM UBCOUNT I RCOUNT	
	CHARACTER DISREP*10. NAME*20 NAME2*20 ANSB*1	
С	To you we want to you we want to you want	
С		_
С		
С	PRINT DATA TO FILE "W2"	
С		
C ·		
С		
	WRITE (23,70)	
70	FORMAT (14X, TRANDOM VARIABLE: 1, 34X, TRANDOM VARIABLE: 2)	
	WRITE (23,80) DISREP(1), DISREP(2)	
80	FORMAT (14X, DISTRIBUTION: ,All, 27X, DISTRIBUTION: .A)	
	WRITE (23,90) MEAN(1), MEAN(2)	
90	FORMAT (14X, MEAN: , F12.6, 34X, MEAN: , F12.6)	
	WRITE (23,100) VARIANCE(1), VARIANCE(2)	
10(FORMAT (14X, VARIANCE: 1, F12, 6, 30X (VARIANCE, 1, F12, 6)	

```
STANDARD_DEV1=SQRT(VARIANCE(1))
        STANDARD_DEV2=SQRT(VARIANCE(2))
        WRITE (23,101) STANDARD_DEV1, STANDARD_DEV2
 101
        FORMAT (14X, STANDARD DEVIATION: , F12.6, 20X,
      * STANDARD DEVIATION: (,F12.6)
        WRITE (23,170) NCELLS(1), NCELLS(2)
 170
        FORMAT (14x, NUMBER OF CELLS : , 14, 31x, NUMBER OF CELLS: , 14)
        WRITE (23,*)
        WRITE (23,110)
        FORMAT (8x, 'X1 MINIMUM', 7X, 'CENTER OF', 6X, 'X1 MAXIMUM',
 110
     * 10X, 'X2 MINIMUM', 7X, 'CENTER OF', 6X, 'X2 MAXIMUM')
        WRITE (23,120)
        FORMAT (11x, 'VALUE', 10x, 'GRAVITY', 10x, 'VALUE', 15x, 'VALUE',
120
     * 10X, 'GRAVITY', 10X, 'VALUE')
        WRITE (23,123)
        123
     *,8X, '-----',4X, '-----',4X, '-----',4X, '------',4X, '------')
        IF (NCELLS(1).GT.NCELLS(2)) THEN
           INCELLS=NCELLS(1)
        ELSE
           INCELLS=NCELLS(2)
        END IF
        DO 160 I=1, INCELLS
           IF (I.LE.NCELLS(1).AND.I.LE.NCELLS(2)) THEN
              WRITE (23,130) LB(I,1),B(I,1),UB(I,1),LB(I,2),B(I,2),
                            UB(1,2)
130
              FORMAT (6x,F12.7,4x,F12.7,4x,F12.7,8x,F12.7,4x,F12.7,
                            4X,F12.7)
           ELSE
              IF (I.LE.NCELLS(1)) THEN
                WRITE (23,140) LB(I,1),B(I,1),UB(I,1)
140
                FORMAT (6X,F12.7,4X,F12.7,4X,F12.7)
             ELSE
                WRITE (23,150) LB(I,2),B(I,2),UB(I,2)
150
                FORMAT (39X, F12.7, 4X, F12.7, 4X, F12.7)
             END IF
          END IF
160
        CONTINUE
        WRITE (23,*)
        WRITE (23,*)
       WRITE (23,161)
161
        WRITE (23,11) COUNT
       FORMAT (38X, 'NUMBER OF UNIQUE Z LOCATIONS: ',15)
11
       WRITE (23,34) ZMEAN
       WRITE (23,162) ZVARIANCE
162
       FORMAT (38X, VARIANCE: , F12.5)
       ZSTANDARD_DEV=SQRT(ZVARIANCE)
```

```
WRITE (23,163) ZSTANDARD_DEV
        FORMAT (38X, STANDARD DEVIATION: ', F12.5)
163
34
        FORMAT(38X, 'MEAN: ', F12.5)
        WRITE (23,*)
        WRITE (23,13)
        FORMAT (2X, 'CELL', 6X, 'DISCRETE APPROXIMATION', 15X,
13
     * 'LOWER BOUNDS',20X,'UPPER BOUNDS')
        WRITE (23,12)
        FORMAT (3X, 'NO.', 9X, 'Z', 9X'DISTRIBUTION', 10X, 'Z', 9X,
12
     * 'DISTRIBUTION',10X,'Z',9X,'DISTRIBUTION')
        WRITE (23,2000)
        FORMAT (2X, '----', 3X, '-----', 4X, '-----', 4X, '-----', 4X,
2000
     * '-----',4X,'-----',4X,'-----',4X,
     * (______)
        ICOUNT=-9999
        IF (UBCOUNT.GT.ICOUNT) THEN
           ICOUNT=UBCOUNT
        ELSE
           IF (LBCOUNT.GT.ICOUNT) THEN
              ICOUNT=LBCOUNT
           ELSE
              ICOUNT=COUNT
           END IF
        END IF
        DO 10 I=1,ICOUNT
           IF (I.LE.UBCOUNT.AND.I.LE.LBCOUNT.AND.I.LE.COUNT) THEN
              WRITE (23,20) I,Z(I,1),Z(I,2),ZLB(I,1),ZLB(I,2),
                         ZUB(1,1),ZUB(1,2)
20
              FORMAT (1X, 14, 3X, F12.7, 4X, F12.7, 4X, F12.7, 4X, F12.7,
                         4X,F12.7,4X,F12.7)
           ELSE
              IF (I.LE.LBCOUNT.AND.I.LE.COUNT.AND.I.GT.UBCOUNT) THEN
                 WRITE (23,720) I,Z(I,1),Z(I,2),ZLB(I,1),ZLB(I,2)
720
                 FORMAT (1x,14,3x,F12.7,4x,F12.7,4x,F12.7,4x,F12.7)
              ELSE
                 IF (I.LE.LBCOUNT.AND.I.GT.COUNT.AND.I.LE.UBCOUNT)
     *
                    THEN
                    WRITE (23,730) I,ZLB(I,1),ZLB(I,2),ZUB(I,1),
                         ZUB(1,2)
730
                    FORMAT (1X, I4, 35X, F12.7, 4X, F12.7, 4X, F12.7
                          ,4X,F12.7)
                 ELSE
                    IF (I.GT.LBCOUNT.AND.I.LE.COUNT.AND.I.LE.UBCOUNT)
                       THEN
                       WRITE (23,740) I,Z(I,1),Z(I,2),
                             ZUB(I,1), ZUB(I,2)
740
                       FORMAT (1X,14,3X,F12.7,4X,F12.7,36X,F12.7,4X,
                             F12.7)
```

<pre>x IF (1.LE.LECOUNT.AND.I.GT.COUNT. AND.I.GT.UBCOUNT. THEN WRITE (23,750) 1,ZLB(1,1),ZLB(1,2) FORMAT (1X,14,35X,F12.7,4X,F12.7) ELSE x IF (1.LE.COUNT.AND.I.GT.LECOUNT. AND.I.GT.UBCOUNT) THEN WRITE (23,760) 1,Z(1,1),Z(1,2) FORMAT (1X,14,3X,F12.7,4X,F12.7) ELSE wRITE (23,760) 1,ZUB(1,1),ZUB(1,2) FORMAT (1X,14,67X,F12.7,4X,F12.7) END IF END IF END IF END IF END IF C THE CONTINUE C THE CONTINU</pre>		ELSE		
 AND.I.GT.UBCOUNT) THEN WRITE (23,750) I,ZLB(I,1),ZLB(I,2) FORMAT (IX,I4,35X,FI2.7,4X,FI2.7) ELSE IF (I.LE.COUNT.AND.I.GT.LBCOUNT. AND.I.GT.UBCOUNT) THEN WRITE (23,760) I,Z(I,1),Z(I,2) FORMAT (IX,I4,3X,FI2.7,4X,FI2.7) ELSE WRITE (23,770) I,ZUB(I,1),ZUB(I,2) FORMAT (IX,I4,3X,FI2.7,4X,FI2.7) END IF If (05,11) OPEN (UNIT-25,FILE=NAME2) WRITE (25,153) WRITE (25,163) WRITE (25,163) UBCOUNT, GLELS(1), NCELLS(2) FORMAT (15,15) IF (UBCOUNT, GLECOUNT THEN IF (UBCOUNT, GLECOUNT THEN IF (UBCOUNT, GLECOUNT THEN IF (UBCOUNT, GLECOUNT THEN IF (1.LE.LBCOUNT AND.I.LE.UBCOUNT) THEN IF (1.LE.LBCOUNT AND.I.LE.UBCOUNT) THEN WRITE (25,113) ZLB(I,1), ZLB(I,2) FORMAT (15,12) ZLB(I,1), ZLB(I,2) 		IF (I.LE.LBCOUNT.AND.I.GT.COUNT.		
WRITE (23,750) I,ZLB(I,1),ZLB(I,2) FORMAT (1X,14,35X,F12.7,4X,F12.7) ELSE * IF (I.LE.COUNT.AND.I.GT.LBCOUNT. AND.I.GT.UBCOUNT THEN WRITE (23,760) I,Z(I,1),Z(I,2) 760 FORMAT (1X,14,3X,F12.7,4X,F12.7) ELSE WRITE (23,770) I,ZUB(I,1),ZUB(I,2) 770 END IF END IF END IF END IF END IF END IF END IF C FORMAT (1X,14,67X,F12.7,4X,F12.7) C END IF END IF END IF END IF END IF C FORMAT (1X,14,67X,F12.7,4X,F12.7) C END IF END IF END IF END IF END IF C FORMAT (1X,14,67X,F12.7,4X,F12.7) C END IF END IF END IF END IF END IF C TONTINUE C FORMAT (1X,14,67X,F12.7,4X,F12.7) END IF END IF END IF END IF C TONTINUE C TONTINUE C TONTINUE C TONT DISTRIBUTION DATA FILE NAME?) <td></td> <td>* AND.I.GT.UBCOUNT) THEN</td> <td></td>		* AND.I.GT.UBCOUNT) THEN		
750 FORMAT (1X,14,35X,F12.7,4X,F12.7) ELSE IF (1.LE.COUNT.AND.I.GT.LBCOUNT. AND.I.GT.UBCOUNT) THEN WRITE (23,760) I,2(I,1),2(I,2) 760 FORMAT (1X,14,3X,F12.7,4X,F12.7) ELSE WRITE (23,770) I,2UB(I,1),ZUB(I,2) FORMAT (1X,14,3X,F12.7,4X,F12.7) ELSE WRITE (23,770) I,2UB(I,1),ZUB(I,2) FORMAT (1X,14,67X,F12.7,4X,F12.7) END IF END IF END IF END IF END IF END IF C PRINT DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 16 FORMAT (22, 'ENTER DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 16 FORMAT (23,166) 17 FORMAT (23,166) 17 FORMAT (23,166) 117 FORMAT (23,166) 117 FORMAT (23,166) 117 FORMAT (15,15) WRITE (23,538) NOELLS(1),NCELLS(2) STARME2) WRITE (25,538) NOELLS(1),NCELLS(2) STARME2) WRITE (25,120,UDCUNT,LBCOUNT <td colspa<="" td=""><td></td><td>WRITE (23,750) I.ZLB(I.1).ZLB(I.2)</td><td></td></td>	<td></td> <td>WRITE (23,750) I.ZLB(I.1).ZLB(I.2)</td> <td></td>		WRITE (23,750) I.ZLB(I.1).ZLB(I.2)	
ELSE IF (I.LE.COUNT.AND.I.GT.LECOUNT. * IF (I.LE.COUNT.AND.I.GT.LECOUNT. AND.I.GT.UBCOUNT) THEN WRITE (23,760) I.2(I,1),2(I,2) FORMAT (IX,I4,3X,FI2.7,4X,FI2.7) ELSE WRITE (23,770) I.2UB(I,1),ZUB(I,2) FORMAT (IX,I4,67X,FI2.7,4X,FI2.7) END IF END IF END IF END IF END IF END IF END IF END IF C C C WRITE (3,116) 10 CONTINUE C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (22, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (25,538) NCELLS(1),NCELLS(2) S38 FORMAT (15,15) WRITE (25,538) NCELLS(1),NCELLS(2) S38 FORMAT (15,15) IF (UBCOUNT.GT.LECOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LSCOUNT AND.I.LE.UBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)	750	FORMAT $(1X, 14, 35X, F12, 7, 4X, F12, 7)$		
<pre></pre>		ELSE		
* AND.I.GT.UBCOUNT) THEN AND.I.GT.UBCOUNT) THEN WRITE (23,760) I,Z(I,1),Z(I,2) FORMAT (1X,I4,3X,F12.7,4X,F12.7) ELSE WRITE (23,770) I,ZUB(I,1),ZUB(I,2) FORMAT (1X,I4,67X,F12.7,4X,F12.7) END IF END IF C WRITE (3,116) 16 FORMAT (2X, 'ENTER DISTRIBUTION DATA TO NAME2 FILE C WRITE (25,538) NCELLS(1),NCELLS(2) S38 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT,LBCOUNT END IF DO 89 I=1,ICOUNT END IF DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT,AND.I.LE.UBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		IF (I.LE.COUNT.AND.I.GT.LECOUNT		
760 WRITE (23,760) I, Z(I,1), Z(I,2) 760 FORMAT (1X,14,3X,F12.7,4X,F12.7) ELSE WRITE (23,770) I, ZUB(I,1), ZUB(I,2) FORMAT (1X,14,67X,F12.7,4X,F12.7) END IF C C C C C C C C C <td co<="" td=""><td></td><td>* AND I. GT. HECOHNT) THEN</td><td></td></td>	<td></td> <td>* AND I. GT. HECOHNT) THEN</td> <td></td>		* AND I. GT. HECOHNT) THEN	
760 FORMAT (1x,14,3x,F12.7,4x,F12.7) ELSE WRITE (23,770) I,ZUB(I,1),ZUB(I,2) FORMAT (1x,14,67x,F12.7,4x,F12.7) ELSE WRITE (23,770) I,ZUB(I,1),ZUB(I,2) FORMAT (1x,14,67x,F12.7,4x,F12.7) ELSE WRITE (23,770) I,ZUB(I,1),ZUB(I,2) END IF C PRINT DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) If FORMAT (22, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 WRITE (25,538) NEELS(1),NCELLS(2) WRITE (25,538) NEELS(1),NCELLS(2) WRI		WRITE $(23, 760)$ T $7(T 1)$ $7(T 2)$		
ELSE WRITE (23,770) I, ZUB(I,1), ZUB(I,2) FORMAT (1X,14,67X,F12.7,4X,F12.7) END IF END IF END IF END IF END IF END IF END IF END IT END IT C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 117 FORMAT (22, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (22, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (22, 538) NCELLS(1), NCELLS(2) 538 FORMAT (15,15) WRITE (25,169) UBCOUNT, LBCOUNT ELSE ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT END IF DO 89 I=1, ICOUNT IF (I.LE.LBCOUNT, AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1), ZUB(I,2), ZLB(I,1), ZLB(I,2) FORMAT (F12.6, 1X, F12.6, 1X, F12.6, 1X, F12.6] ELSE IF (1.LE.LBCOUNT THEN WRITE (25,113) ZLB(I,1), ZLB(I,2)	760	$\frac{1}{12} = \frac{1}{12} $		
WRITE (23,770) I,ZUB(I,1),ZUB(I,2) FORMAT (1X,I4,67X,F12.7,4X,F12.7) END IF END IF END IF END IF END IF END IF END IF END IF To continue C C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (22, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (25,538) NCELLS(1), NCELLS(2) S38 FORMAT (15,15) WRITE (25,189) UBCOUNT, LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT IF (I.LE.LBCOUNT AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1), ZUB(I,2), ZLB(I,1), ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT THEN WRITE (25,113) ZLB(I,1), ZLB(I,2)		ELSE		
770 FORMAT (1X,14,67X,F12.7,4X,F12.7) END IF END IF C C WRITE (3,116) 10 CONTINUE C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 117 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (22, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (25,538) NECLIS(1), NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT, LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT END IF D0 89 I=1, ICOUNT IF (1.LE.LBCOUNT, AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1), ZUB(1,2), ZLB(1,1), ZLB(1,2) FORMAT (F12.6, 1X, F12.6, 1X, F12.6, 1X, F12.6, 1X, F12.6) ELSE IF (1.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1), ZLB(1,2)		WRITE (23,770) T ZUR(T 1) ZUR(T 2)		
END IF END IF C C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA TO NAME2 FILE C C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 I17 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 I17 FORMAT (25, 538) NCELLS(1), NCELLS(2) S38 FORMAT (15, 15) WRITE (25, 189) UBCOUNT, LBCOUNT IF (UBCOUNT-GT.LBCOUNT) THEN IF (UBCOUNT-EBCOUNT) THEN WRITE (25, 112) ZUB(1,1), ZUB(1,2), ZLB(1,1), ZLB(1,2) FORMAT (F12.6, 1X, F12.6, 1X, F12.	770	$\frac{12}{12} (25,770) = \frac{12}{200} (1,1), 200 (1,2)$ FORMAT (1Y TA 67Y E12 7 AV E12 7)		
END IF END IF END IF END IF END IF END IF O CONTINUE C C PRINT DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (A20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT=LBCOUNT LBCOUNT) THEN ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT IF (1.LE.LBCOUNT,AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1),ZLB(1,2) FORMAT (F12.6,1X,F12.6,1X,F12.6) ELSE IF (1.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1),ZLB(1,2)		END IF		
END IF END IF END IF END IF END IF 10 CONTINUE C C C PRINT DISTRIBUTION DATA TO NAME2 FILE C C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (22, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (420) OPEN (UNIT=25, FILE=NAME2) WRITE (25,538) NCELLS(1), NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT, LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT-GT.LBCOUNT) THEN ICOUNT=UBCOUNT END IF D0 89 I=1, ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1), ZUB(I,2), ZLB(I,1), ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1), ZLB(I,2)		END TE		
END IF END IF END IF END IF END IF END IF C C C C C C C C C C C C C		END TF		
END IF END IF END IF END IF C C C PRINT DISTRIBUTION DATA TO NAME2 FILE C C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (25, 57 ILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICCOUNT=UBCOUNT ELSE ICCOUNT=LBCOUNT ELSE ICCOUNT=LBCOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1),ZUB(1,2),ZLB(1,1),ZLB(1,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1),ZLB(1,2)		END TF		
END IF 10 CONTINUE C C C C C C C C C C C C C		END IF		
<pre>10 CONTINUE 2 C C C C C C C C C C C C C C C C C C</pre>		END IF		
C C C C C C C C C C C C C C	10	CONTINUE		
CCC C PRINT DISTRIBUTION DATA TO NAME2 FILE C PRINT DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT IF (1.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1),ZUB(1,2),ZLB(1,1),ZLB(1,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (1.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1),ZLB(1,2)	С			
C PRINT DISTRIBUTION DATA TO NAME2 FILE C PRINT DISTRIBUTION DATA TO NAME2 FILE C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT ELSE IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1),ZLB(1,2),ZLB(1,1),ZLB(1,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1),ZLB(1,2)	С			
C PRINT DISTRIBUTION DATA TO NAME2 FILE C C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (25, 571L=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT ELSE IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZLB(I,2) 112 FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)	С			
C C WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (A20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT HEN ICCOUNT=UBCOUNT ELSE ICCOUNT=LBCOUNT ELSE ICCOUNT=LBCOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1),ZUB(1,2),ZLB(1,1),ZLB(1,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1),ZLB(1,2)	С	PRINT DISTRIBUTION DATA TO NAME2 FILE		
C C WRITE (3,116) 116 FORMAT (2X, ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (A20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICCUNT=UBCOUNT ELSE ICCUNT=LBCOUNT ELSE ICCUNT=LBCOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1),ZUB(1,2),ZLB(1,1),ZLB(1,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1),ZLB(1,2)	С			
C WRITE (3,116) 116 FORMAT (2X, ~ENTER DISTRIBUTION DATA FILE NAME ^) READ (0,117) NAME2 117 FORMAT (A20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICCOUNT=UBCOUNT ELSE ICCOUNT=LBCOUNT END IF DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)	C			
<pre>WRITE (3,116) 116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME') READ (0,117) NAME2 117 FORMAT (A20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) 112 FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)</pre>	С			
<pre>116 FORMAT (2X, ⁷ENTER DISTRIBUTION DATA FILE NAME[*]) READ (0,117) NAME2 117 FORMAT (420) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT ELSE ICOUNT=LBCOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1),ZUB(1,2),ZLB(1,1),ZLB(1,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1),ZLB(1,2)</pre>		WRITE (3,116)		
READ (0,117) NAME2 117 FORMAT (A20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT END IF DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)	116	FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME')		
<pre>117 FORMAT (A20) OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICCOUNT=UBCOUNT ELSE ICCUNT=LBCOUNT END IF D0 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)</pre>		READ (0,117) NAME2		
OPEN (UNIT=25,FILE=NAME2) WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICCOUNT=UBCOUNT ELSE ICCOUNT=LBCOUNT END IF DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(1,1),ZLB(1,2),ZLB(1,1),ZLB(1,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(1,1),ZLB(1,2)	117	FORMAT (A20)		
<pre>WRITE (25,538) NCELLS(1),NCELLS(2) 538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT END IF D0 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) 112 FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)</pre>		OPEN (UNIT=25,FILE=NAME2)		
<pre>538 FORMAT (15,15) WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT END IF D0 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) 112 FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)</pre>		WRITE (25,538) NCELLS(1), NCELLS(2)		
<pre>WRITE (25,189) UBCOUNT,LBCOUNT 189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT END IF DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)</pre>	538	FORMAT (15,15)		
<pre>189 FORMAT (15,15) IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT END IF D0 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)</pre>	1.0.0	WRITE (25,189) UBCOUNT, LBCOUNT		
<pre>IF (UBCOUNT.GT.LBCOUNT) THEN ICOUNT=UBCOUNT ELSE ICOUNT=LBCOUNT END IF D0 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)</pre>	189	FORMAT (15,15)		
ICCOUNT=UBCOUNT ELSE ICCUNT=LBCOUNT END IF DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) II2 FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		IF (UBCOUNT.GT.LBCOUNT) THEN		
ELSE ICOUNT=LBCOUNT END IF DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		ICOUNT=UBCOUNT		
ICOUNT=LECOUNT END IF DO 89 I=1,ICOUNT IF (I.LE.LECOUNT.AND.I.LE.UECOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) II2 FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LECOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		ELSE		
END IF DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6),1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		ICOUNT=LBCOUNT		
DO 89 I=1,ICOUNT IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		END IF		
IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		DO 89 I=1,ICOUNT		
WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2) FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN		
112 FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6) ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2)		
ELSE IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)	112	FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6)		
IF (I.LE.LBCOUNT) THEN WRITE (25,113) ZLB(I,1),ZLB(I,2)		ELSE		
WRITE (25,113) ZLB(I,1),ZLB(I,2)		IF (I.LE.LBCOUNT) THEN		
		WRITE $(25, 113)$ ZIB(T 1) ZIB(T 2)		

113	FORMAT (12X,1X,12X,1X,F12.6,1X,F12.6)
	ELSE
	WRITE (25,114) ZUB(1,1),ZUB(1,2)
114	FORMAT (F12.6,1X,F12.6)
	END IF
	END IF
89	CONTINUE
	CLOSE 25
30	RETURN
	END


```
SUBROUTINE SORT(ZZ,Z,COUNT,AX)
 с *
                                                                   *
 C * PROCRAM NAME: SUBROUTINE SORT
                                                                   *
 C *
                                                                   *
 C * WRITTEN BY: BRUCE SWANSON
                                                                   *
 C *
                                                                   4
C * DATE: MARCH 23, 1987
 C *
                                                                   4
C * PURPOSE: SUBROUTINE SORT DOES A BINARY SORT OF THE ARRAY Z.
                                                                   *
C *
                                                                   *
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE
                                                                   ÷
C *
                                                                   *
C * USACE: CALL SORT(ZZ,Z,COUNT,AX)
                                                                   *
с *
                                                                   *
C * DISCRIPTION OF PARAMETERS:
                                                                   *
с*
        INPUT ARCUMENTS:
                                                                   *
с *
               AX - INTECER - THE NUMBER OF Z VALUES PLUS ONE.
                                                                   *
C *
               ZZ - REAL - THE Z VALUE THAT NEEDS TO BE INSERTED INTO
                                                                  *
C *
                      ARRAY Z.
                                                                   *
       OUTPUT ARCUMENTS:
с*
                                                                   *
С*
               COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE
                                                                   *
с*
                      VALUES CONTAINED IN ARRAY Z.
                                                                  *
с*
               Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT
                                                                  *
с *
                      PROBABILITY DISTRIBUTION FUNCTION.
                                                                  *
с*
               Z(COUNT,2) - REAL - THE NUMBER OF TIMES THE VALUE OF
                                                                  *
C *
                      Z(COUNT,1) HAS BEEN REPEATED DURING THE
                                                                  *
с*
                      SIMULATION.
                                                                  ÷
C *
                                                                  *
с
       DIMENSION Z(0:40000.2)
       REAL ZZ.Z
       INTECER COUNT, AX
       Z(0,1) = -1.0E30
             IF (ZZ.GT.Z(AX-1,1).OR.AX.LE.1) THEN
               Z(AX, 1) = ZZ
                Z(AX, 2) = 1
                COUNT=COUNT+1
               RETURN
             END IF
С
С
С
С
                     START BINARY SORT
С
С
С
```

```
40
```

30

```
IXMIN=1
IXMAX=AX-1
JUMP=NINT((IXMAX-IXMIN)/2.0)+IXMIN
DIFFER=ABS(ZZ-Z(JUMP,1))
IF (ZZ.EQ.Z(JUMP,1).OR.DIFFER.LE.1.0E-7) THEN
   Z(JUMP,2)=Z(JUMP,2)+1
   AX = AX - 1
   RETURN
END IF
IF (ZZ.LT.Z(JUMP,1).AND.ZZ.GT.Z(JUMP-1,1)) THEN
   DO 30 K=AX, JUMP+1,-1
      Z(K,1)=Z(K-1,1)
      Z(K,2)=Z(K-1,2)
   CONTINUE
   Z(JUMP, 1) = ZZ
   Z(JUMP, 2)=1
   COUNT=COUNT+1
ELSE
   IF (ZZ.LT.Z(JUMP,1)) THEN
      IXMAX=JUMP-1
   ELSE
      IXMIN=JUMP
   END IF
   GOTO 40
END IF
RETURN
END
```

SUBROUTINE SPECIAL C * * C * PROGRAM NAME: SUBROUTINE SPECIAL * C * * C * WRITTEN BY: BRUCE SWANSON * C * * C * DATE: MARCH 4, 1987 * с * C * PURPOSE: SUBROUTINE SPECIAL READS A DISTRIBUTION FUNCTION STORED IN * с* A DATA FILE. SPECIAL THEN FINDS THE NCELL LOCATION ON THE * C * X AXIS GIVEN A PROBABILITY (AREA) FOR THE DISTRIBUTION * с * FUNCTION. * с* * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINE CELLR * C * * C * USAGE: CALL SPECIAL * C * * C * DISCRIPTION OF PARAMETERS: * С * INPUT ARGUMENTS: ٠ c * NAME - CHARACTER*30 - NAME IS THE INPUT DATA FILE NAME 4 C * OF THE SPECIAL DISTRIBUTION FUNCTION FOR * с* RANDOM VARIABLE NUM. * C * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * C * LOCATIONS THAT APPROXIMATE THE PROBABILITY * с* DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с * NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE * с* RANDOM VARIABLE. * с * OUTPUT ARGUMENTS: * с* A(N) - REAL - WHERE N=NCELLS*2, ODD VALUES OF N * с * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND * с * THE EVEN VALUES OF N INDICATE THE CELL * с* BOUNDARIES. * с * B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF * с * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * с * DENSITY FUNCTION. * с * MEAN(NUM) - REAL - MEAN(NUM) IS THE MEAN VALUE OF * с * RANDOM VARIABLE NUM. * с* VARIANCE(NUM) - REAL - VARIANCE(NUM) IS THE VARIANCE OF * C * RANDOM VARIABLE NUM. * C * * С REAL A, TOTAL, DS, AREA, KAREA, MEAN, VARIANCE, B, Z, UB, LB, P INTEGER NUM, INC, NCELLS, COUNT, DISTR, NUMBER, UBCOUNT, LBCOUNT INTEGER NC1, NC2 CHARACTER NAME*30, DISREP*10, ANSE*1 COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT

	COMMON/SECOND/DISTR(2), NCELLS(2), VARIANCE(2), MEAN(2), DISREP(2)
	COMMON/THIRD/NUM, ZMEAN, ZVARIANCE, UB(0:400,2), LB(0:400,2), ANSB
	COMMON/CSPECIAL/DS(40000,3)
	COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT
	WRITE (3,*)
10	WRITE (3,10) NUM
10	FORMAT (2X, SPECIAL DISTRIBUTION FOR VARIABLE', 13)
	WRITE (3,20)
20	FORMAT (2X, ENTER DATA DISTRIBUTION FILE NAME')
20	READ (0,30) NAME
30	FORMAT (A30)
110	WRITE (3,110) NUM
110	FORMAT (2X, ENTER NUMBER OF CELLS FOR VARIABLE', 13)
	READ (0,*) NCELLS(NUM)
	DEAD (OKII=26,FILE=NAME)
120	READ (26,120) NGI,NC2 RODMAT (15 TE)
120	PEAD (2((2)))
40	READ (26,40) NUMBER
40	$ \begin{array}{c} \text{FORMAT} (15) \\ \text{TOTAL} = 0 \\ 0 \end{array} $
	101AL-0.0
	$\frac{1}{1} = 1, \text{NUMBER}$
60	EOPMAT (E20, 00) DS(1,1), DS(1,2), DS(1,3)
00	$FORMAT (F2U_{*},F1Z_{*})$
50	CONTINUE
50	
	VARTANCE(MIN) = 0
	DO 90 I-1 MIMEER
	P = Dc(1, 2)/ELOAT(NC1+NC2)
	VARTANCE(NDM) = ((DC(T, 1)) VRAN(NDM)) + to) + R (NDM) = ((DC(T, 1)) VRAN(NDM)) + to) + R (NDM) = ((DC(T, 1)) VRAN(NDM)) + to) + R (NDM) = ((DC(T, 1)) + R (NDM)) + R (NDM)) + R (NDM) + R (NDM))
90	CONTINUE
20	CLOSE 26
	UNC=0
	AREA=1/(FIOAT(NCFIIS(NTW))+2 o)
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	KARFA=ARFA*(FIOAT(X))
100	INC=INC+1
	IF (DS(INC 2) OF KAPEA) THEN
	$\Delta(K) = ((KAPFA - DS(INC - 1 2)) + (DC(INC - 1)) DC(INC - 1 1))) $
*	(DS(INC 2)-DS(INC-1,2)) + DS(INC-1,1)))
	INC=INC-1
	ELSE
	GOTO 100
	END IF
70	CONTINUE
	CALL CELLR
	RETURN
	END

SUBROUTINE TRIANGLE с* C * PROGRAM NAME: SUBROUTINE TRIANGLE * C * * C * WRITTEN BY: BRUCE SWANSON * с* 4 C * DATE: MARCH 4, 1987 C * C * PURPOSE: SUBROUTINE TRIANGLE FINDS THE NCELL LOCATION ON THE X AXIS * C * GIVEN A PROBABILITY (AREA) FOR A TRIANGULAR RANDOM * с* VARIABLE. * с* C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINE CELLR * C * * C * USAGE: CALL TRIANGLE * с* 4 C * DISCRIPTION OF PARAMETERS: ب с* INPUT ARGUMENTS: -C * AA - REAL - VARIABLE AA IS THE MINIMUM VALUE OF THE * с* TRIANGULAR DENSITY FUNCTION. * с * BB - REAL - VARIABLE BB IS THE MAXIMUM VALUE OF THE * c * TRIANGULAR DENSITY FUNCTION. * с * CC - REAL - VARIABLE CC IS THE MEDIAN VALUE OF THE * с* TRIANGULAR DENSITY FUNCTION. * с* NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * C * LOCATIONS THAT APPROXIMATE THE PROBABILITY * С* THE PROBABILITY DENSITY FUNCTION OF RANDOM * с* VARIABLE NUM. * * С NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE * с* RANDOM VARIABLE. * OUPUT ARGUMENTS: С* * с* A(N) - REAL - WHERE N=NCELLS*2, ODD VALUES OF N * C * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND * C * THE EVEN VALUES OF N INDICATE THE CELL * с* BOUNDARIES. * С * B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF * С* GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * C * DENSITY FUNCTION. с * MEAN(NUM) - REAL - MEAN(NUM) IS THE MEAN VALUE OF * с * RANDOM VARIABLE NUM. С* VARIANCE(NUM) - REAL - VARIANCE(NUM) IS THE VARIANCE OF * C * RANDOM VARIABLE NUM. * С* С REAL AREA, KAREA, A, B, MEAN, VARIANCE, AA, BB, CC, TAREA, Z REAL ZMEAN, ZVARIANCE, UB, LB

	INTEGER NCELLS, NUM, K, COUNT, DISTR, UBCOUNT, LBCOUNT
	CHARACTER DISREP*10, ANSB
	COMMON/FIRST/A(0:400), B(0:400,2), Z(0.40000,3), COUNT
	COMMON/SECOND/DISTR(2) NCELLS(2) VARIANCE(2) MEAN(2) DISTRED(2)
	COMMON/THIRD/NUM ZWEAN ZWARIANCE UR(0.600 2) IR(0.600 2) AND
	COMMON/CROUND/71 B(0.0000 2) ZUB(0.0000 2) UBCOUND L 2000
5	UPITE (2 +)
2	
	WRITE (3,*)
10	WRITE (3,10) NUM
10	FORMAT (2X, TRIANGULAR DISTRIBUTION FOR VARIABLE',13)
••	WRITE (3,20)
20	FORMAT (2X, PARAMETERS: A <c<b<sup>-)</c<b<sup>
	WRITE (3,30)
30	FORMAT (2X, RANGE: (A,B))
	WRITE (3,40)
40	FORMAT (2X, 'ENTER "A" (MINIMUM) VALUE')
	READ (0,*) AA
	WRITE (3,50)
50	FORMAT (2X, 'ENTER "C" (MIDDLE) VALUE')
	READ (0,*) CC
	IF (CC-AA.LT.O) THEN
	GOTO 5
	END IF
	WRITE (3,60)
60	FORMAT (2X, ENTER "B" (MAXIMUM) VALUE()
	READ (0,*) BB
	IF (BB-CC.LT.O) THEN
	GOTO 5
	END IF
	WRITE (3.70) NUM
70	FORMAT (2% 'ENTER NUMBER OF CELLS FOR MARIARIES TO)
	READ (0 *) NOTIC(NDM)
	$\Delta RF \Delta = 1 / (EI O \Delta T (NCELLS (NOP)) + 2 O)$
	TADFA=(CC-AA)+(2/(BD-AA))/2
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	DU OU K-I, NCELLS(NUM)*2.0
	KARLA=ARLA*(FLUAT(K))
	IF (KAREA.GT.TAREA) THEN
	A(K) = BB - SQRT((1 - KAREA) * (BB - AA) * (BB - CC))
	ELSE
	A(K) = SQRT(KAREA*(BB=AA)*(CC=AA)) + AA
~~	END IF
80	CONTINUE
	MEAN(NUM) = (AA + BB + CC)/3
	VARIANCE(NUM)=(AA**2+BB**2+CC**2-AA*BB-AA*CC-BB*CC)/18
	CALL CELLR
	RETURN
	END

SUBROUTINE UNIFORM C * C * PROGRAM NAME: SUBROUTINE UNIFORM ÷ C * * C * WRITTEN BY: BRUCE SWANSON * с * * C * DATE: MARCH 4, 1987 * C * ٠ C * PURPOSE: SUBROUTINE UNIFORM FINDS THE NCELL LOCATION ON THE X AXIS * с* GIVEN A PROBABILITY (AREA) FOR A UNIFORM RANDOM VARIABLE. * C * 4 C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINE CELLR * С* * C * USAGE: CALL UNIFORM * C * * C * DISCRIPTION OF PARAMETERS: * C * INPUT ARGUMENTS: с* MAXX - REAL - MAXX IS THE MAXIMUM POSSIBLE VALUE FOR * с* THE UNIFORM RANDOM VARIABLE. * с* MINX - REAL - MINX IS THE MINIMUM POSSIBLE VALUE FOR * C * THE UNIFORM RANDOM VARIABLE. * с* NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * с * LOCATIONS THAT APPROXIMATE THE PROBABILITY * с* DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с* NUM - INTEGER - VARIABLE 'NUM' IS THE NUMBER OF THE с* RANDOM VARIABLE. ÷ с * OUTPUT ARGUMENTS: * с* A(N) - REAL - WHERE N=NCELLS*2, ODD VALUES OF N * С* REPRESENT THE CENTER OF GRAVITY LOCATIONS AND * C * THE EVEN VALUES OF N INDICATE THE CELL * с* BOUNDARIES. * с * B(NCELLS, NUM) - REAL - THE DISCRETE POINT (CENTER OF * с* GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY * С * DENSITY FUNCTION. * с* MEAN(NUM) - REAL - MEAN(NUM) IS THE MEAN VALUE OF * с* RANDOM VARIABLE NUM. ÷ С * VARIANCE(NUM) - REAL - VARIANCE(NUM) IS THE VARIANCE OF * C * RANDOM VARIABLE NUM. * C * С REAL AREA, KAREA, MINX, MAXX, A, B, MEAN, VARIANCE, Z, ZMEAN, ZVARIANCE REAL UB, LB INTEGER NCELLS, NUM, K, COUNT, DISTR, UBCOUNT, LBCOUNT CHARACTER DISREP*10, ANSB*1 COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT COMMON/SECOND/DISTR(2),NCELLS(2),VARIANCE(2),MEAN(2),DISREP(2)

	COMMON/THIRD/NUM, ZMEAN, ZVARIANCE, UB(0:400,2), LB(0:400,2), ANSB
	COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT
	WRITE (3,*)
	WRITE (3,*)
5	WRITE (3,10) NUM
10	FORMAT (2X, 'UNIFORM DISTRIBUTION FOR VARIABLE', 13)
	WRITE (3,30)
30	FORMAT (2X, 'RANGE (MINX, MAXX)')
	WRITE (3,40)
40	FORMAT (2x, 'ENTER MINX VALUE')
	READ (0,*) MINX
	WRITE (3,50)
50	FORMAT (2X, 'ENTER MAXX VALUE')
	READ (0,*) MAXX
	IF (MAXX-MINX.LT.O) THEN
	GOTO 5
	END IF
	WRITE (3,60) NUM
60	FORMAT (2X, 'ENTER NUMBER OF CELLS FOR VARIABLE', 13)
	READ (0,*) NCELLS(NUM)
	AREA=1/(FLOAT(NCELLS(NUM))*2.0)
	DO 20 K=1,NCELLS(NUM)*2.0
	KAREA=AREA*(FLOAT(K))
	A(K)=MINX+KAREA*(MAXX-MINX)
20	CONTINUE
	MEAN(NUM) = (MINX + MAXX)/2.0
	VARIANCE(NUM)=((MAXX-MINX)**2)/12.0
	CALL CELLR
	RETURN
	END

APPENDIX B

DENSITY FUNCTION PROGRAM

C * * C * PROGRAM NAME: DENSITY * C * * C * WRITTEN BY: BRUCE SWANSON + C * * C * DATE: MARCH 26, 1987 * с* * C * PURPOSE: PROGRAM "DENSITY" APPROXIMATES THE JOINT PROBABILITY * DENSITY FUNCTION USING A CUBIC SPLINE AND A HISTOGRAM. с* * C * THE DISTRIBUTION DATA IS READ IN FROM A FILE DETERMINED * C * BY THE USER. IF THE PROGRAM FAILS DURING THE * C * CUBIC SPLINE APPROXIMATION, THE "MANAGE" PROGRAM MUST BE * с* USED TO ADJUST THE DATA. * C * ٠ C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES HISTOGRAM 4 c * OUTPUTD * с* SMOOTH * с* * C * DESCRIPTION OF PARAMETERS: * с * INPUT ARGUMENTS: * C * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z ÷ C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * С* FUNCTION. с * NAME - CHARACTER*30 - NAME IS THE INPUT/OUTPUT DATA * с * FILE NAME OF THE DISTRIBUTION/DENSITY FUNCTION. * с* NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * с* LOCATIONS THAT APPROXIMATE THE PROBABILITY * с* DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с * Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT * С * PROBABILITY DISTRIBUTION FUNCTION. * с* Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS * C * THAN OR EQUAL TO Z(COUNT.1). * C * Z(COUNT.3) - REAL - THE NUMBER OF TIMES THE VALUE OF * С * TIMES Z(COUNT,1) WAS REPEATED DURING THE * с * SIMULATION. * с* * C * OUTPUT ARGUMENTS: * С* H(N,1) - REAL - THE Z LOCATION OF THE NTH CELL OF THE * с* HISTOGRAM. * с* H(N,2) - REAL - THE FRACTION OF Z LOCATIONS WITHIN THE * с* RANGE OF H(N,1). * с* NUMBER - REAL - THE NUMBER OF TOTAL DIVISIONS WITHIN * с* THE HISTOGRAM. * C * RANGE - REAL - THE RANGE OF VALUES OF THE HISTOGRAM. * с * R(N) - REAL - THE "SMOOTHED" VALUES OF THE Z * C * PROBABILITY DISTRIBUTION FOR VARIABLE N AFTER * C * THE CUBIC SPLINE APPROXIMATION. *

```
С*
               R1(N) - REAL - THE DENSITY FUNCTION AFTER THE CUBIC
                                                                   *
С*
                      SPINE APPROXIMATION.
                                                                   *
C *
               SIZE - REAL - THE SIZE OF EACH CELL WITHIN THE
                                                                   *
С*
                      HISTOGRAM.
                                                                   *
С*
                                                                   *
С
С
       INTEGER COUNT, NCELLS
       REAL Z
       CHARACTER NAME*30
       COMMON/MAIN/Z(20000,4),COUNT,NCELLS(2),H(200,2),R(20004),
    *
                  R1(20004), NUMBER
       WRITE (3,10)
10
       FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME')
       READ (0,20) NAME
20
       FORMAT (A30)
       OPEN (UNIT=23,FILE=NAME)
       READ (23,60) NCELLS(1), NCELLS(2)
60
       FORMAT (15,15)
       READ (23,30) COUNT
30
       FORMAT (15)
       DO 40 I=1,COUNT
          READ (23,50) Z(I,1),Z(I,2),Z(I,3)
50
          FORMAT (F20.7,F12.7,F12.7)
40
       CONTINUE
       CLOSE 23
       CALL HISTOGRAM
       CALL SMOOTH
       CALL OUTPUTD
       STOP
       END
```

SUBROUTINE HISTOGRAM с * * C * PROGRAM NAME: SUBROUTINE HISTOGRAM * С* * C * WRITTEN BY: BRUCE SWANSON * С* * C * DATE: MARCH 26, 1987 C * * C * PURPOSE: SUBROUTINE "HISTOGRAM" BUILDS A HISTOGRAM FROM A C * DISTRIBUTION FUNCTION STORED IN A DATA FILE. * с * * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE * C * * C * USAGE: CALL HISTOGRAM * C * * C * DESCRIPTION OF PARAMETERS: C * INPUT ARGUMENTS: С* COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z * C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * C * FUNCTION. * C * NAME - CHARACTER*30 - NAME IS THE OUTPUT DATA FILE NAME * c * OF THE HISTOGRAM. * C * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE * С* LOCATIONS THAT APPROXIMATE THE PROBABILITY * с* DENSITY FUNCTION OF RANDOM VARIABLE NUM. * с* Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT * С* PROBABILITY DISTRIBUTION FUNCTION. * с* Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS * C * THAN OR EQUAL TO Z(COUNT,1). * с* Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF * С* TIMES Z(COUNT,1) WAS REPEATED DURING THE * С* SIMULATION. * с* * с* OUTPUT ARGUMENTS: * с * H(N,1) - REAL - THE Z LOCATION OF THE NTH CELL OF THE * C * HISTOGRAM. с* H(N,2) - REAL - THE FRACTION OF Z LOCATIONS WITHIN THE * C * RANGE OF H(N,1). * C * NUMBER - REAL - THE NUMBER OF TOTAL DIVISIONS WITHIN * с* THE HISTOGRAM. * С* RANGE - REAL - THE RANGE OF VALUES OF THE HISTOGRAM. * с* SIZE - REAL - THE SIZE OF EACH CELL WITHIN THE * C * HISTOGRAM. * с * С REAL RANGE, SIZE, H, Z

		INTEGER NUMBER, COUNT, NCELLS
		CHARACTER NAME*30
		COMMON/MAIN/Z(20000,4), COUNT, NCELLS(2), H(200,2), R(20004).
	*	R1(20004), NUMBER
С		COMMON/
		NUMBER=NINT(1+3.3*LOG10(FLOAT(NCELLS(1)*NCELLS(2))))
		RANGE=Z(COUNT,1)-Z(1,1)
		SIZE=RANGE/FLOAT(NUMBER)
		DO 10 I=1,NUMBER
		H(I,1)=SIZE*FLOAT(I)+Z(1,1)
		H(1,2)=0.0
10		CONTINUE
		J=1
		DO 20 I=1,COUNT
30		DIFFER=ABS(Z(1,1)-H(J,1))
		IF (Z(I,1).LE.H(J,1).OR.DIFFER.LE.1.0E-6) THEN
		H(J,2)=H(J,2)+Z(I,3)
		ELSE
		J=J+1
		GOTO 30
		END IF
20		CONTINUE
		DO 40 I=1,NUMBER
		H(1,2)=H(1,2)/(NCELLS(1)*NCELLS(2))
40		CONTINUE
50		WRITE (3,50)
50		FORMAT (2X, ENTER HISTOGRAM DATA FILE NAME')
60		READ (0,60) NAME
00		FURMAT (A30)
		UPEN (UNIT=23,FILE=NAME)
70		WRITE (23,70) NUMBER
70		FURMAT (15)
		DU 90 1=1, NUMBER
80		WRITE (23,80) H(1,1), H(1,2) FORMATE (210, 7, 100, 7)
<u>an</u>		FORMAT (FIZ./,FIZ./)
20		CINCE 22
		SID

SUBROUTINE OUTPUTD С* * C * PROGRAM NAME: SUBROUTINE OUTPUTD * с* بد C * WRITTEN BY: BRUCE SWANSON * с* * C * DATE: MARCH 26, 1987 * с * * C * PURPOSE: SUBROUTINE OUTPUTD PRINTS THE JOINT PROBABILITY DENSITY * с* FUNCTION TO A FILE DESIGNATED BY THE USER. * С* * C * SUBROUTINES AND SUBPROCRAMS REQUIRED: NONE * С* * C * USAGE: CALL OUTPUTD * C * * C * DESCRIPTION OF PARAMETERS: * C * INPUT ARGUMENTS: * с* COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z 4 с* LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION * с * FUNCTION. с* NAME - CHARACTER*30 - NAME IS THE OUTPUT DATA FILE NAME * с * OF THE APPROXIMATED JOINT PROBABILITY DENSTIY * с* FUNCTION. * C * Z(COUNT,1) - REAL - THE Z VALUE OF THE JOINT * C * PROBABILITY DISTRIBUTION FUNCTION. * с * R(N) - REAL - THE "SMOOTHED" VALUES OF THE Z * C * PROBABILITY DISTRIBUTION FOR VARIABLE N AFTER * с* THE CUBIC SPLINE APPROXIMATION. ب С* R1(N) - REAL - THE DENSITY FUNCTION AFTER THE CUBIC * C * SPINE APPROXIMATION. * c * 4 С INTEGER NCELLS, COUNT, NUMBER REAL Z, RANGE, SIZE, H, R, R1 CHARACTER NAME*30 COMMON/MAIN/Z(20000,4), COUNT, NCELLS(2), H(200,2), R(20004), * R1(20004), NUMBER WRITE (3,60) 60 FORMAT (2X, 'ENTER SPLINE DATA FILE NAME') READ (0,70) NAME 70 FORMAT (A30) OPEN (UNIT=23,FILE=NAME) WRITE (23,80) COUNT 80 FORMAT (15) DO 90 I=1,COUNT WRITE (23,100) Z(I,1),R(I),R1(I) 100 FORMAT (F20.7,F12.7,F12.7) 90 CONTINUE CLOSE 23 RETURN END 156

```
SUBROUTINE SMOOTH
 с*
                                                                  ÷
 C * PROGRAM NAME: SUBROUTINE SMOOTH
                                                                  *
 с*
                                                                  ÷
 C * PURPOSE: SUBROUTINE SMOOTH APPROXIMATES THE DENSITY FUNCTION FROM
 C *
            A GIVEN SET OF DISTRIBUTION DATA.
                                                                  *
 C *
                                                                  *
 С
 С
 С
      SANDIA MATHEMATICAL PROCRAM LIBRARY
 С
      APPLIED MATHEMATICS DIVISION 2646
С
      SANDIA LABORATORIES
С
      ALBUQUERQUE, NEW MEXICO 87185
С
      CONTROL DATA 6600/7600 VERSION 8.1 AUCUST 1980
С
                  ******
С
                          ISSUED BY
                                        *
С
                  *
                     SANDIA LABORATORIES, *
С
                  *
                      A PRIME CONTRACTOR *
С
                  ******
                              TO THE
С
                         *
                           UNITED STATES *
С
                         *
                            DEPARTMENT
                                        *
С
                         *
                                OF
                                        ÷
С
                         *
                              ENERGY
                                        *
      С
С
      *THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED*
С
         BY THE UNITED STATES GOVERNMENT. NEITHER THE UNITED *
С
      *
          STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY.
                                                          *
С
      *
                     NOR ANY OF THEIR EMPLOYEES,
                                                          *
С
      * NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR *
С
      * EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR *
С
      * ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE
                                                          *
С
      *
                *******
                                        ******
                             ACCURACY,
                                                          *
С
      *
                ÷
                        *
                           COMPLETENESS
                                                *
                                                          ÷
С
      *
                *
                        *
                           OR USEFULNESS *
                                                *
                                                          4
С
      ÷
                *
                        *
                              OF ANY
                                        *
                                                ÷
                                                          *
С
      *
                *
                        *
                           INFORMATION,
                                        *
                                                *
                                                          *
С
      *
                *
                        *
                            APPARATUS,
                                        ÷
                                                *
                                                          *
С
      *
             ****
                        *
                              PRODUCT
                                        *
                                                ****
                                                          بد
С
      *
             *
                        *
                            OR PROCESS
                                        *
                                                  *
                                                          *
С
      *
             *
                        *
                            DISCLOSED,
                                        *
                                                  ÷
                                                          *
С
      *
             *
                        *
                           OR REPRESENTS *
                                                  *
                                                          *
С
      *
             *
                       **
                             THAT ITS
                                       **
                                                  *
                                                          *
С
      *
             *
                       **
                           USE WOULD NOT **
                                                  *
                                                          *
С
      ******
                       **
                            INFRINGE
                                       ي ب
                                                  *******
С
                       **
                            PRIVATELY
                                        **
С
                       **
                              OWNED
                                       **
С
                       **
                             RIGHTS.
                                       **
С
                       **
                                       **
С
                       **
                                       **
С
                       **
                                       **
С
                       ******
С
```

С CONVERSION FROM THE ALGOL BY RONDALL E JONES С REFERENCE -- NUMERISHE MATHEMATIK 10,177-183 (1967) C H REINSCH С С ABSTRACT С SMOO FITS A SMOOTH SPLINE THROUGH A CIVEN SET OF DATA POINTS BY MINIMIZINC THE INTEGRAL OF THE SECOND DERIVATIVE SQUARED, С С SUBJECT TO THE CONSTRAINT THAT С Ν С SUM ((R(I)-Y(I))/DY(I))**2 .LE. S С I=1 С (WHERE R(I) IS THE ORDINATE OF THE SMOOTH SPLINE AT X(I).) С SMOO RETURNS THE VALUES OF THE SPLINE FUNCTION, R, С ITS FIRST DERIVATIVE, R1, AND ITS SECOND DERIVATIVE, R2, С EVALUATED AT THE ABSCISSAS OF THE CIVEN DATA POINTS. с THE RESULTING SPLINE, DEFINED BY THE ARRAYS X, R, AND R2, С MAY THEN BE INTERPOLATED (IF DESIRED) USING SPLINT. FOR AN EXACT SPLINE FIT SEE SUBROUTINE SPLIFT. С С С DESCRIPTION OF ARGUMENTS С INPUT ARCUMENTS --С N - NUMBER OF DATA VALUES (AT LEAST 3) С X - ABSCISSA ARRAY (INCREASINC ORDER) С Y - ORDINATE ARRAY с DY - ARRAY OF ERROR ESTIMATES. DY(I) SHOULD BE AN ESTIMATE С OF THE ERROR (ACTUALLY, THE STANDARD DEVIATION) IN Y(I). С THUS, THE UNITS OF DY ARE THE SAME AS THE UNITS OF Y. С LARGER VALUES OF DY(I) ALLOW A LOOSER, SMOOTHER FIT. С SMALLER VALUES OF DY(1) CAUSE A TICHTER FIT. SETTINC С DY(I)=O AT ALL POINTS RESULTS IN AN EXACT FIT. (SEE SPLIFT) С BY APPROPRIATELY ADJUSTINC DY(I) AT EACH POINT, THE SPLINE с CAN BE MADE TICHT AT CRITICAL POINTS AND LOOSE AT OTHERS. С S - SHOULD NORMALLY = N. (NOTE-- S IS FLOATINC POINT - DONT С USE N DIRECTLY FOR S.) IF YOU WISH TO TIGHTEN OR LOOSEN С THE SPLINE FIT BY MULTIPLYINC EACH ELEMENT OF DY BY С SOME FACTOR F, YOU MAY ALTERNATIVELY SIMPLY MULTIPLY С S BY F**2. С OUTPUT ARGUMENTS -с A,B,C,D - CUBIC BETWEEN X(I) AND X(I+1) IS С A(I) + B(I)*H + C(I)*H**2 + D(I)*H**3с WHERE H IS DESIRED ABSCISSA MINUS X(I). С R - ARRAY OF SMOOTH SPLINE VALUES С R1 - ARRAY OF SMOOTH SPLINE DERIVATIVES С R2 - ARRAY OF SMOOTH SPLINE SECOND DERIVATIVES С T, T1, U, V - WORK ARRAYS С IERR- A STATUS CODE С --NORMAL CODE с =1 MEANS THE REQUESTED SPLINE WAS COMPUTED. с --ABNORMAL CODE С =2 MEANS EITHER N IS LESS THAN 3, OR S IS NECATIVE, С OR THE X-AXIS VALUES ARE MISORDERED. С С X,Y,DY,A,B,C,D MUST BE DIMENSIONED AT LEAST N с R,R1,R2,T,T1,U,V MUST BE DIMENSION AT LEAST N+2 с 158

```
С
       THE ORIGINAL NI WAS FIXED AT 1 TO AVOID WASTED WORK ARRAY SPACE
 С
       THE ORIGINAL N2 IS CALLED N HERE
 С
       ALL WORK ARRAY INDICES ARE 1 LARCER THAN IN THE ALGOL,
 С
       TO AVOID A ZERO SUBSCRIPT.
 С
         COMMON/MAIN/Z(20000,4), COUNT, NCELLS(2), HHH(200,2), R(20004),
      *
                      R1(20004), NUMBER
         COMMON/SM00/T(20004),T1(20004),U(20004),V(20004),R2(20004),
      *X(20000),Y(20000),DY(20000),A(20000),B(20000),C(20000),D(20000)
       INTECER COUNT
       REAL AAA, BBB, Z, R2, X, Y, DY, A, B, C, D
       WRITE (3,66)
       FORMAT(2X, 'ENTER TOLERANCE FOR SPLINE FIT')
 66
       READ (0,*) F
       S=.05**2
С
       S=FLOAT(COUNT)
       N=COUNT
       DO 15 I=1,COUNT
          X(I)=Z(I,1)
          Y(I)=Z(I,2)
          DY(I) = F
15
       CONTINUE
С
С
       CHECK INPUT DATA
С
       IERR = 1
       IF (N.LT.3) GO TO 10
       IF (S.LT.0.0) GO TO 10
      DO 5 I=2,N
      IF (X(I)-X(I-1)) 10,10,5
    5 CONTINUE
      CO TO 20
   10 WRITE (3,76)
      FORMAT (2x, 'PROGRAM BOMBED BECAUSE OF MISSORDER')
76
      IERR = 2
      RETURN
   20 CONTINUE
С
С
      INITIALIZE
С
      R(1) = 0.0
      R(2) = 0.0
      R1(N+1) = 0.0
      R2(N+1) = 0.0
      R2(N+2) = 0.0
      U(1) = 0.0
      U(2) = 0.0
      U(N+1) = 0.0
      U(N+2) = 0.0
      P = 0.0
      M2 = N-1
С
      H = X(2) - X(1)
      IF (H.EQ.0.0) THEN
                                    159
```

```
WRITE (3,439) X(2),X(1)
 439
          FORMAT (2x, 'X(2)=',F12.7, 'X(1)=',F12.7)
        END IF
        F = (Y(2) - Y(1))/H
       DO 100 I=2,M2
       G = H
       H = X(I+1) - X(I)
       E = F
       F = (Y(I+1)-Y(I))/H
       A(I) = F - E
       T(I+1) = 2.0*(G+H)/3.0
       T1(I+1) = H/3.0
       R2(I+1) = DY(I-1)/G
       R(I+1) = DY(I+1)/H
   100 \text{ R1(I+1)} = -DY(I)/G - DY(I)/H
 С
       DO 200 I=2,M2
       B(I) = R(I+1)*R(I+1) + R1(I+1)*R1(I+1) + R2(I+1)*R2(I+1)
       C(I) = R(I+1) * R1(I+2) + R1(I+1) * R2(I+2)
   200 D(I) = R(I+1)*R2(I+3)
       F2 = -S
 С
 С
       NEXT ITERATION
 С
   250 DO 300 I=2,M2
       R1(I) = F*R(I)
       R2(I-1) = G*R(I-1)
       R(I+1)=1.0/(P*B(I)+T(I+1)-F*R1(I)-G*R2(I-1))
       U(I+1)=A(I)-R1(I)*U(I)-R2(I-1)*U(I-1)
       F = P*C(I)+T1(I+1)-H*R1(I)
       G = H
  300 H = D(I)*P
с
       DO 400 J=2.M2
      I=M2-(J-2)
  400 U(I+1)=R(I+1)*U(I+1)-R1(I+1)*U(I+2)-R2(I+1)*U(I+3)
       E=0.0
      H=0.0
С
      DO 500 I=1,M2
      G = H
      H = (U(I+2)-U(I+1))/(X(I+1)-X(I))
      V(I+1) = (H-G)*DY(I)*DY(I)
  500 E = E + V(I+1) * (H-G)
      V(N+1) = -H*DY(N)*DY(N)
      G = V(N+1)
      E = E - G + H
      G = F2
      F2 = E*P*P
      IF ((F2.GE.S).OR.(F2.LE.G)) GO TO 650
      F = 0.0
      H = (V(3) - V(2)) / (X(2) - X(1))
С
      DO 600 I=2,M2
```

```
160
```

```
G ≃ H
       H = (V(I+2)-V(I+1))/(X(I+1)-X(I))
       G = H - G - R1(I) * R(I) - R2(I - I) * R(I - I)
       F = F + G * R(I+1) * G
  600 R(I+1) = G
       H = E - P \star F
       IF (H.LE.O.O) GO TO 650
       P = P + (S - F2) / ((SQRT(S/E) + P) * H)
       GO TO 250
С
С
       FINISH
С
  650 DO 700 I=1,N
       A(I)=Y(I)-P*V(I+1)
  700 C(I)=U(I+1)
С
      DO 800 I=1,M2
       H=X(I+1)-X(I)
      D(I)=(C(I+1)-C(I))/(3.0*H)
  800 B(I)=(A(I+1)-A(I))/H-(H*D(I)+C(I))*H
      B(N) = 0.0
      D(N)=0.0
С
С
      OUTPUT DERIVATIVES, ETC.
с
      DO 900 I=1,M2
      R(I) = A(I)
      R1(I) = B(I)
  900 R2(I) = 2.0*C(I)
      R(N) = A(N)
      H = X(N) - X(M2)
      R1(N) = (3.0*D(M2)*H+2.0*C(M2))*H+B(M2)
      R2(N) = 0.0
      DO 16 I=1,COUNT
          Z(I,3)=R(I)
         Z(I,4)=R1(I)
16
      CONTINUE
      RETURN
      END
```

161

APPENDIX C

DATA MANAGEMENT PROGRAM

C * * C * PROGRAM NAME: MANAGE * C * * C * WRITTEN BY: BRUCE SWANSON C * ÷ C * DATE: MARCH 6, 1987 * с* C * PURPOSE: PROGRAM "MANAGE" IS USED IF A PROBLEM OCCURS WITH THE * CALCULATION OF THE CUBIC SPLINE DENSITY APPROXIMATION C * * C * PROGRAM. THIS PROGRAM READS IN A DISTRIBUTION DATA FILE * с* AND FINDS THE SMALLEST ABSCISSA AND PRINTS OUT THE VALUE * C * TO THE SCREEN. IT THEN ELIMINATES ANY DATA POINTS THAT * C * ARE CLOSER THAN 0.000001 ALONG THE X AXIS. * C * ٠ C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE * C * * C * DESCRIPTION OF PARAMETERS: с* INPUT ARGUMENTS: * C * ANSWER - CHARACTER*1 - (Y OR N) AN INPUT VARIABLE USED * C * TO INDICATED IF THE USER WANTS TO PERFORM * C * DATA MANAGEMENT TO THE DISTRIBUTION FILE. * C * COUNT - INTEGER - NUMBER OF UNIQUE Z LOCATIONS. ÷ с* NAME - CHARACTER*30 - NAME IS THE INPUT DATA FILE NAME * C * OF THE JOINT DISTRIBUTION FUNCTION. * с* NAME2 - CHARACTER*30 - NAME2 IS THE OUTPUT DATA FILE * c * NAME OF THE JOINT DISTRIBUTION FUNCTION. * C * NCELLS(1 OR 2) - INTEGER - THE NUMBER OF DISCRETE * C * LOCATIONS THAT APPROXIMATE THE PROBABILITY * C * DENSITY FUNCTION OF RANDOM VARIABLE 1 OR 2. * C * SMALL - REAL - THE SMALLEST X INCREMENT VALUE OF THE * . C * JOINT DISTRIBUTION FUNCTION. * C * Z(COUNT,1) - REAL - THE ABSISCA VALUE OF THE JOINT * с* PROBABILITY DISTRIBUTION FUNCTION. * C * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS * с* THAN OR EQUAL TO Z(COUNT,1). * C * C * OUTPUT ARGUMENTS: -C * INC - REAL - THE NUMBER OF UNIQUE Z LOCATIONS AFTER * C * THE DATA MANAGEMENT HAS BEEN PERFORMED. С * ZD(INC,1) - REAL - THE ABSISCA VALUE OF THE JOINT * с* PROBABILITY DISTRIBUTION FUNCTION AFTER DATA * C * MANAGEMENT HAS BEEN PERFORMED. * с* ZD(INC,2) - REAL - THE PROBABILITY OF Z BEING LESS THAN * С * OR EQUAL TO Z(INC,1). * C * С

	REAL Z, DIFF1, DIFF2, SMALL, ZD, TOLERANCE
	INTEGER COUNT, NCELLS1, NCELLS2
	CHARACTER NAME*20,ANSWER*1,NAME2*20
	COMMON/MAIN/Z(2,10000),ZD(2,10000)
	TOLERANCE=.00001
	SMALL=99999
	WRITE (3,10)
10	FORMAT (2X, 'ENTER INPUT FILE NAME')
	READ (0,20) NAME
20	FORMAT (A20)
	OPEN (UNIT=23,FILE=NAME)
	READ (23,30) NCELLS1, NCELLS2
30	FORMAT (15,15)
	READ (23,40) COUNT
40	FORMAT (15)
	DO 50 I=1,COUNT
	READ (23,60) Z(1,I),Z(2,I),DUMMY
60	FORMAT (F20.7,F12.7,F12.7)
50	CONTINUE
	DO 70 I=2,COUNT
	DIFF1=ABS(Z(1,I)-Z(1,I-1))
	IF (DIFF1.LT.SMALL) THEN
	SMALL=DIFF1
	END IF
70	CONTINUE
	WRITE (3,80) SMALL
80	FORMAT (2X, 'SMALLEST X INCREMENT=', F12.7)
	CLOSE 23
	WRITE (3,90)
90	FORMAT (2X, 'PERFORM DATA MANAGEMENT? (Y/N)')
	READ (0,100) ANSWER
100	FORMAT (A1)
	IF (ANSWER.EQ. N) THEN
	GOTO 9999
	END IF
	WRITE (3,200)
200	FORMAT (2X, 'ENTER OUTPUT FILE NAME')
	READ (0,210) NAME2
210	FORMAT(A20)
	OPEN (UNIT=24,FILE=NAME2)
	INC=1
	ZD(1,1)=Z(1,1)
	ZD(2,1)=Z(2,1)
	DO 110 I=2,COUNT
	DIFF1=ABS(Z(1,I)-Z(1,I-1))
	IF (DIFF1.LT.TOLERANCE) THEN
	GOTO 110
	ELSE

	ZD(1, INC) = Z(1, I)
	ZD(2, INC) = Z(2, I)
	INC=INC+1
	END IF
110	CONTINUE
	INC=INC-1
	WRITE (24,220) NCELLS1, NCELLS2
220	FORMAT (15,15)
	WRITE (24,130) INC
130	FORMAT (15)
	DO 120 I=1,INC
	Z(I,1) = ZD(I,1)
	Z(1,2)=ZD(1,2)
	WRITE (24,140) ZD(1,1),ZD(2,1)
140	FORMAT (F20.7,F12.7)
120	CONTINUE
	CLOSE 24
9999	STOP
	END

APPENDIX D

GRAPHICS PROGRAM

```
C *
                                                                      *
C * PROGRAM NAME: GRAPH
                                                                      *
С*
                                                                      *
C * WRITTEN BY: BRUCE SWANSON
                                                                      *
С*
                                                                      *
C * DATE: MARCH 27, 1987
                                                                      *
C *
                                                                      *
C * PURPOSE: PROGRAM "GRAPH" PLOTS THE JOINT DISTRIBUTION AND DENSITY
                                                                      *
C *
             FUNCTIONS ON A HIREZ SELANAR GRAPHICS VT100 TERMINAL.
                                                                      *
C *
                                                                      ÷
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES AUTOSCL
                                                                      *
C *
                                                    GVTDENSITY
                                                                      *
с*
                                                    GVTDISTRIBUTION
                                                                      *
с *
                                                    LABEL
                                                                      *
C *
                                                    PLLABLE
                                                                      ×
C *
                                                    PLOTT
                                                                      *
с *
                                                    TICKS
                                                                     \dot{\mathbf{w}}
с*
                                                                     *
C * NOTE:
           SUBROUTINES AUTOSCL, LABEL, PLLABEL, PLOTT, AND TICKS WERE
                                                                     *
с *
             WRITTEN BY DONALD A. SMITH AND ARE USED BY PERMISSION.
                                                                     *
C *
                                                                     *
с *
                                                                     *
C * DESCRIPTION OF PARAMETERS:
                                                                     *
с*
        INPUT ARGUMENTS:
                                                                     *
с*
               COUNT - INTEGER - THE NUMBER OF POINTS TO BE PLOTTED.
                                                                     *
с *
               GTITLE - CHARACTER*35 - THE TITLE OF THE GRAPH.
                                                                     ÷
с *
               XLABEL - CHARACTER*30 - THE LABEL ON THE X AXIS OF THE
                                                                     *
с *
                        GRAPH.
                                                                     ÷
с*
               XX(N,M) - REAL - THE X VALUE FOR VARIABLE M, CURVE
                                                                     *
С*
                        NUMBER N.
                                                                     *
с *
               YLABEL - CHARACTER*30 - THE LABEL ON THE Y AXIS OF THE
                                                                     *
c *
                        GRAPH.
                                                                     *
с *
               YY(N,M) - REAL - THE Y VALUE FOR VARIABLE M, CURVE
                                                                     *
с *
                        NUMBER N.
                                                                     *
C *
                                                                     *
С
       REAL MATL, MITL, XX, YY, ZZ, ERROR, MAXDEV
       INTEGER COUNT, INCELLS, ICOUNT, ITIME, ANS
       CHARACTER XLABEL*30,YLABEL*30,GTITLE*35,NAME*20
       LOGICAL AUTOSC
       COMMON/ONE/XX(6,10000),YY(6,10000),COUNT
       COMMON/MISC/INCELLS(10000), ERROR(10000), MAXDEV(10000),
    *
                   ICOUNT(10000), ITIME(10000)
1
       WRITE (3,10)
10
       FORMAT (2X,
                      PLOTT: 1)
       WRITE (3,20)
```

```
167
```

20	FORMAT (2X, '1. DISTRIBUTION FUNCTION')
30	EODMAT (2Y 2) DENSITY EUNOTION()
50	WRITE (3.40)
40	FORMAT (2X, 'ENTER NUMBER FOR DESIRED CURVE')
	READ (0,*) ANS
	IF (ANS.EO.1) THEN
	CALL GVTDISTRIBUTION
	ELSE
	IF (ANS.EQ.2) THEN
	CALL GVTDENSITY
	ELSE
	GOTO 1
	END IF
	END IF
	ICURVES=1
	WRITE (3,*)
	DO 6000 I=1,COUNT
	WRITE (3,*) XX(1,I),YY(1,I)
6000	CONTINUE
	WRITE (3,90)
90	FORMAT (2X, 'ENTER TITLE')
	READ (0,100) GTITLE
100	FORMAT (A35)
	WRITE (3,92)
92	FORMAT (2X, 'ENTER X LABEL')
	READ (0,93) XLABEL
93	FORMAT (A3O)
~ /	WRITE (3,94)
94	FORMAT (2X, 'ENTER Y LABEL')
~	READ (0,96) YLABEL
96	FORMAT (A30)
	MATL=0.03
	MITL=0.01
	AUTUSCE.TRUE.
	GALL PLOIT (DI,DZ,D3,D4,MATL,MITL,XLABEL,YLABEL
	"GILLE, AA, 11, GOUNT, LOURVES, LDEV, AUTOSC)
	P. INL

```
SUBROUTINE AUTOSCL (XX,YY,K,XMAX,XMIN,YMAX,YMIN,MATSX,MITSX,
    0
                       MATSY .MITSY .AUTOSC .X START .Y START .
                       DX.DY)
    a
с*
C * PROGRAM NAME: SUBROUTINE AUTOSCL
                                                                *
c *
                                                                *
C * WRITTEN BY: DONALD A. SMITH
                                                                *
C *
с *
c *
С
     REAL XX(6,10000), YY(6,10000), MATSX, MATSY, MITSX, MITSY, DX(4),
                  DY(4)
    6
     LOGICAL AUTOSC
     IF (AUTOSC) THEN
     XMAX=XX(1,1)
     XMIN=XX(1.1)
     YMAX=YY(1.1)
     YMIN=YY(1,1)
     WRITE (3,2222)
2222 FORMAT (2X 'ENTERED AUTOSCL')
     DO 10 I=1.K
        IF (XX(1,I),GT,XMAX) XMAX=XX(1,I)
        IF (XX(1,I).LT.XMIN) XMIN=XX(1,I)
        IF (YY(1,I).GT.YMAX) YMAX=YY(1,I)
        IF (YY(1,I).LT.YMIN) YMIN=YY(1,I)
10
     CONTINUE
     ENDIF
     A=ABS((XMAX-XMIN)/5.)
     MATSX=A
     C=ABS((YMAX-YMIN)/5.)
     MATSY=C
     IF ((XMAX.GT.O.) .AND. (ABS(XMAX-XMIN).LT.ABS(XMAX))) THEN
             XSTART=XMIN
             GOTO 14
     ENDIF
     IF ((XMAX.LE.O.) .AND. (ABS(XMAX-XMIN).LT.ABS(XMIN)))
                                                      THE N
             XSTART=XMAX
          ELSE
             XSTART=0.
     ENDIF
14
     CONTINUE
     IF ((YMAX.GT.O.) .AND. (ABS(YMAX-YMIN).LT.ABS(YMAX))) THEN
             YSTART=YMIN
             GOTO 30
      ENDIF
```

```
IF ((YMAX.LE.O.) .AND. (ABS(XMAX-XMIN).LT.ABS(XMIN))) THEN
               YSTART=YMAX
            ELSE
               YSTART=0.
      ENDIF
  30 CONTINUE
D
      WRITE (3,*) 'TICKS CALC DX'
 210 CONTINUE
      DX(1)=(XMAX-XSTART)/MATSX
      DX(2)=(XMIN-XSTART)/MATSX
      MITSX=MATSX/5.
      DX(3)=(XMAX-XSTART)/MITSX
      DX(4)=(XMIN-XSTART)/MITSX
      DO 200 I=1,4
         DX(I)=INT(DX(I))
         DX(I)=REAL(DX(I))
         DX(I)=ABS(DX(I))
         IF ((I.LT.3) .AND. (DX(I).GT.20.)) THEN
            MATSX=MATSX*1.2
            GOTO 210
         ENDIF
 200 CONTINUE
D
      WRITE (3,*) 'TICKS CALC DY'
311
      CONTINUE
      DY(1)=(YMAX-YSTART)/MATSY
      DY(2)=(YMIN-YSTART)/MATSY
      MITSY=MATSY/5.
      DY(3)=(YMAX-YSTART)/MITSY
      DY(4)=(YMIN-YSTART)/MITSY
     DO 300 I=1,4
          DY(I) = INT(DY(I))
          DY(I)=REAL(DY(I))
          DY(I)=ABS(DY(I))
          IF ((1.LT.3) .AND.(DY(1).GT.20.)) THEN
             MATSY=1.2*MATSY
             GOTO 311
          ENDIF
300 CONTINUE
     RETURN
     END
```
SUBROUTINE GVTDENSITY C * * C * PROGRAM NAME: SUBROUTINE GVTDENSITY * с* * C * WRITTEN BY: BRUCE SWANSON * с* * C * DATE: MARCH 27, 1987 * с* * C * PURPOSE: SUBROUTINE "GVTDENSITY" READS IN THE DATA FORMATED FOR * с* THE JOINT DENSITY FUNCTION. * с* * C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE * с* * C * DESCRIPTION OF PARAMETERS: * С* INPUT ARGUMENTS: * с* COUNT - INTEGER - THE NUMBER OF POINTS TO BE PLOTTED. ÷ с* GRAPH. * ¢* XX(N,M) - REAL - THE X VALUE FOR VARIABLE M. CURVE * с* NUMBER N, FOR THE DENSITY FUNCTION. * с* YY(N,M) - REAL - THE Y VALUE FOR VARIABLE M, CURVE * с* NUMBER N, FOR THE DENSITY FUNCTIRON. * с* -С REAL MATL, MITL, XX, YY, ZZ, ERROR, MAXDEV INTEGER COUNT, INCELLS, ICOUNT, ITIME CHARACTER XLABEL*30, YLABEL*30, GTITLE*35, NAME*20 COMMON/ONE/XX(6,10000),YY(6,10000),COUNT COMMON/MISC/INCELLS(10000), ERROR(10000), MAXDEV(10000), * ICOUNT(10000), ITIME(10000) WRITE (3,51) 51 FORMAT (2X, 'PLOTTING ROUTINE FOR DENSITY FUNCTION') WRITE (3,50) 50 FORMAT (2X, 'ENTER DATA FILE NAME') READ (0,60) NAME 60 FORMAT (A20) OPEN (UNIT=23,FILE=NAME) READ (23,987) COUNT 987 FORMAT (15) WRITE (3.*) COUNT DO 30 I=1,COUNT READ (23,628) XX(1,1), DUMMY, YY(1,1) 628 FORMAT (F20.7,F12.7,F12.7) 30 CONTINUE RETURN END

SUBROUTINE GVTDISTRIBUTION с* C * PROGRAM NAME: SUBROUTINE GVTDISTRIBUTION * c * * C * WRITTEN BY: BRUCE SWANSON * c * * C * DATE: MARCH 27, 1987 * с * * C * PURPOSE: SUBROUTINE "GVTDISTRIBUTION" READS IN THE DATA FORMATED * с* FOR THE JOINT DISTRIBUTION FUNCTION. * с * + C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE * с * * C * DESCRIPTION OF PARAMETERS: * с* INPUT ARGUMENTS: * с * COUNT - INTEGER - THE NUMBER OF POINTS TO BE PLOTTED. ÷ с* GRAPH. * с * XX(N.M) - REAL - THE X VALUE FOR VARIABLE M, CURVE ÷ с* NUMBER N, FOR THE DISTRIBUTION FUNCTION. ٠ C * YY(N,M) - REAL - THE Y VALUE FOR VARIABLE M. CURVE * с * NUMBER N. FOR THE DISTRIBUTION FUNCTION. * с* С REAL MATL, MITL, XX, YY, ZZ, ERROR, MAXDEV INTEGER COUNT, INCELLS, ICOUNT, ITIME CHARACTER XLABEL*30, YLABEL*30, GTITLE*35, NAME*20 COMMON/ONE/XX(6,10000),YY(6,10000),COUNT COMMON/MISC/INCELLS(10000), ERROR(10000), MAXDEV(10000), * ICOUNT(10000).ITIME(10000) WRITE (3,5000) 5000 FORMAT (2X, 'PLOTTING ROUTINE FOR THE DISTRIBUTION FUNCTION') WRITE (3,50) 50 FORMAT (2X, 'ENTER DATA FILE NAME') READ (0,60) NAME 60 FORMAT. (A20) OPEN (UNIT=23.FILE=NAME) READ (23,4001) IDUMMY1, IDUMMY2 4001 FORMAT (15,15) READ (23,987) COUNT 987 FORMAT (15) WRITE (3,*) COUNT DO 30 I=1,COUNT READ (23,628) XX(1,I),YY(1,I),DUMMY 628 FORMAT (F20.7, F12.7, F12.7) WRITE (3,204) XX(1,1),YY(1,1) 204 FORMAT (F12.7,F12.7)

CONTINUE RETURN END

```
SUBROUTINE LABEL (XMAX,XMIN,YMAX,YMIN,DX,DY,MATSX,MATSY,
    å
                      XSTART, YSTART)
с *
                                                                  *
C * PROGRAM NAME: SUBROUTINE LABEL
                                                                  *
с *
                                                                  *
C * WRITTEN BY: DONALD A. SMITH
                                                                  *
с *
                                                                  *
C *
                                                                  *
с*
С
     CHARACTER CNT*10
     REAL DX(20), DY(20), MATSX, MATSY
     XZ=ABS(XMAX-XMIN)
     YZ=ABS(YMAX-YMIN)
     CALL JCOLOR(0)
     CALL JMOVE (XMIN, YSTART)
     CALL JRMOVE(-XZ*.1,0.)
     CALL JJUST (3,2)
     CALL JFONT (1)
     A= (4./100.)*XZ
     B= (3./100.)*YZ
     CALL JSIZE (A.B)
     DO 50 I=1.2
         IF (DY(1).LT.0.9) GOTO 60
         DO 70 CTT=0.,DY(I)
           WRITE (CNT, (F10.2)') CTT*MATSY+YSTART
          CALL JHSTRG (CNT)
           CALL JRMOVE (0.0, MATSY)
 70
         CONTINUE
 60
         CONTINUE
         CALL JMOVE (XMIN, YSTART)
         CALL JRMOVE (-XZ*.1,0.)
         MATSY =-MATSY
 50
     CONTINUE
     CALL JBASE (0.,1.,0.)
     CALL JMOVE (XSTART, YMIN)
     CALL JRMOVE (0.,-YZ*.1)
     CALL JSIZE (B*3./2.,A*2./3.)
D
     WRITE (3,*) DX(1), DX1', DX(2), DX2'
D
     WRITE (3,*) MATSX, 'MATSX', YMIN, 'YMIN', YMAX, 'YMAX'
     DO 10 I=1,2
         IF (DX(I).LT.0.9) GOTO 20
        DO 30 CTT=0., DX(I)
          WRITE (CNT, (F10.2) ') CTT*MATSX+XSTART
          CALL JHSTRG (CNT)
          CALL JRMOVE (MATSX,0.0)
```

30	CONTINUE
20	CONTINUE
	CALL JMOVE(XSTART,YMIN)
	CALL JRMOVE(0.,-YZ*.1)
	MATSX=-MATSX
10	CONTINUE
	CALL JBASE (1.,0.,0.)
	RETURN
	END

```
SUBROUTINE PLLABEL (XMAX, XMIN, YMAX, YMIN, XLABEL, YLABEL, GTITLE)
c *
                                                               *
C * PROGRAM NAME: SUBROUTINE PLLABEL
                                                               *
C *
                                                               *
C * WRITTEN BY: DONALD A. SMITH
                                                               *
C *
                                                               *
C *
                                                               *
C *
С
     CHARACTER XLABEL*30, YLABEL*30, GTITLE*35
     CALL JPEDGE (2)
     CALL JCOLOR(0)
С
     CALL JRECT (XMIN, YMIN, XMAX, YMAX)
     C=ABS(( 6./100.)*(XMAX-XMIN))
     D=ABS((5./100.)*(YMAX-YMIN))
С
     CALL NOBLNK (GTITLE)
     CALL JSIZE (C,D)
     CALL JJUST (1,2)
С
     CALL JMOVE (XMIN,YMAX)
     CALL JMOVE (-9.*(XMAX-XMIN)/19.,YMAX)
     CALL JRMOVE (0.,D*1.25)
     CALL JHSTRG (GTITLE)
     CALL JSIZE (0.66*C,C.66*D)
     CALL JMOVE (XMIN, YMIN)
     CALL JRMOVE (0.,-D*.4/.05)
     CALL JHSTRG (XLABEL)
     CALL JMOVE (XMIN, YMIN)
     CALL JRMOVE (-C*.4/.06,0.)
     CALL JBASE (0.,1.,0.)
     CALL JSIZE (0.66*D,0.66*C)
С
     CALL JBASE (0.,1.,0.)
     CALL JHSTRG (YLABEL)
     CALL JBASE (1.,0.,0.)
     RETURN
     END
```

```
SUBROUTINE PLOTT (XMAX, XMIN, YMAX, YMIN, MATL, MITL,
     Ø
                     XLABEL, YLABEL, GTITLE, XX, YY, IDATN.
                     IDATNY, IDEV, AUTOSC)
     a
с *
C * PROGRAM NAME: SUBROUTINE PLOTT
с*
C * WRITTEN BY: DONALD A. SMITH
c *
с *
c *
С
     REAL MATL, MITL, MATSX, MITSX, MATSY, MITSY, DX(4), DY(4),
          XX(6,10000),YY(6,10000),MALX,MALY,MILX,MILY
     LOGICAL AUTOSC
     CHARACTER XLABEL*30, YLABEL*30, GTITLE*35
D
     IF (AUTOSC) WRITE (3,*) 'AUTOSC TRUE PLOTT SUB'
       CALL AUTOSCL(XX(1,1),YY(1,1), IDATN, XMAX, XMIN, YMAX, YMIN, MATSX,
                   MITSX, MATSY, MITSY, AUTOSC, XSTART, YSTART, DX, DY)
D
     IF (AUTOSC) THEN
D
       WRITE (3,*) 'JUST DID AUTO SCALE'
D
     ELSE
D
       WRITE (3,*) 'NO AUTO SCALE'
D
     ENDIF
     CALL JBEGIN
     CALL JDINIT (IDEV)
     CALL JDEVON (IDEV)
     CALL JVPORT (-0.3,0.7,-0.2,0.8)
С
     IF (ABS(XMAX-XMIN).LT..1) XMIN=XMAX-.1
С
     IF (ABS(YMAX-YMIN).LT..1) YMIN=YMAX-.1
     CALL JWINDO (XMIN, XMAX, YMIN, YMAX)
     CALL JDEVWN (IDEV, -1.0, 1.0, -0.7, 1.0)
     CALL JOPEN
С
D
     WRITE (3,*) 'OPENED WINDOW'
     IW=10000
     MALY=MATL*ABS(XMAX-XMIN)
     MALX=MATL*ABS(YMAX-YMIN)
     MILY=MITL*ABS(XMAX-XMIN)
     MILX=MITL*ABS(YMAX-YMIN)
D
     WRITE (3,*) '1ST TICKS CALL'
     CALL TICKS (XMAX,XMIN,YMAX,YMIN,MATSX,MATSY,MALX,MALY,DX(1),
                  DY(1), IW, XSTART, YSTART)
D
     WRITE (3,*) '1ST LABEL CALL'
     CALL LABEL (XMAX, XMIN, YMAX, YMIN, DX(1), DY(1), MATSX, MATSY,
                 XSTART, YSTART)
    å
     IW=8000
```

```
D
      WRITE (3,*) '2ND TICKS CALL'
      CALL TICKS (XMAX,XMIN,YMAX,YMIN,MITSX,MITSY,MILX,MILY,
     δ
                   DX(3),DY(3),IW,XSTART,YSTART)
D
      WRITE (3,*) 'PLLABEL CALL'
      CALL PLLABEL (XMAX,XMIN,YMAX,YMIN,XLABEL,YLABEL,GTITLE)
      CALL JJUST (2,2)
      RR=(6./100.)*ABS(XMAX-XMIN)
      TT=(6./100.)*ABS(YMAX-YMIN)
      CALL JSIZE (RR,TT)
      CALL JJUST (2,2)
      CALL JSIZE (RR*2./6.,TT*2./6.)
      DO 500 J=1.IDATNY
С
      CALL JCOLOR(J)
      IF (J.GT.1) THEN
         CALL JLSTYL(3)
      END IF
      CALL JMOVE (XX(IDATNY,1),YY(IDATNY,1))
D
      WRITE (3,*) XX(IDATNY,1),YY(IDATNY,1)
      DO 100 I=2,IDATN
      IF ((XX(J,I).LE.XMAX) .AND.
         (XX(J,I).GE.XMIN) .AND.
     å
     å
         (YY(J,I).LE.YMAX) .AND.
         (YY(J,I).GE.YMIN)) THEN
     s
         CALL JDRAW (XX(J,I),YY(J,I))
D
         WRITE(3,*) XX(J,I),YY(J,I)
D
         WRITE(3,*) J, FIELD , I, COUNT
      ENDIF
 100
      CONTINUE
 500
      CONTI NUE
С
      CALL JCLOSE
      CALL JPAUSE (IDEV)
      CALL JDEVOF (IDEV)
      CALL JDEND (IDEV)
      CALL JEND
      RETURN
      END
```

```
SUBROUTINE TICKS (XMAX,XMIN,YMAX,YMIN,MATSX,MATSY,MLX,MLY,
     (d
                      DX, DY, IW, XSTART, YSTART)
с*
                                                                  *
C * PROGRAM NAME: SUBROUTINE TICKS
                                                                  *
с*
                                                                  *
C * WRITTEN BY: DONALD A. SMITH
                                                                  *
C *
                                                                  *
C *
                                                                  *
C *
                                                                  *
С
     REAL MATSX, MATSY, MLX, MLY, DX(20), DY(20)
     CALL JLSTYL (0)
     CALL JCOLOR (7)
     CALL JLWIDE (20000)
     CALL JMOVE (XMIN, YSTART)
     CALL JDRAW (XMAX, YSTART)
     CALL JMOVE (XSTART, YMAX)
     CALL JDRAW (XSTART, YMIN)
     CALL JMOVE (XSTART, YSTART)
D
     WRITE (3,*) XSTART, 'XSTART ', YSTART, 'YSTART'
     CALL JLWIDE (IW)
     DO 20 I=1,2
     DO 10 SP=1.,DX(I)
         CALL JRMOVE (MATSX, -MLX/2)
         CALL JRDRAW (0.,MLX)
         CALL JRMOVE (0.,-MLX/2)
 10
     CONTINUE
 15
     CONTINUE
     CALL JMOVE (XSTART, YSTART)
     MATSX =-MATSX
20
     CONTINUE
     CALL JMOVE (XSTART, YSTART)
D
     WRITE (3,*) 'TICKS CALC DY'
     DO 30 I=1,2
     DO 40 SP=1., DY(I)
        CALL JRMOVE (-MLY/2., MATSY)
        CALL JRDRAW (MLY.O.)
        CALL JRMOVE (-MLY/2.,0.)
40
     CONTINUE
45
     CONTINUE
     CALL JMOVE (XSTART, YSTART)
     MATSY =-MATSY
30
     CONTI NUE
     RETURN
     END
```


APPENDIX E

FLOWCHART FOR THE DISCSIM PROGRAM

APPENDIX F

SAMPLE OUTPUT OF THE DISCRETE SIMULATION PROGRAM

3-00000	X2 MAXIMUM Value	25-5548137 26-87548137 26-87548137 26-875429944 28-6412002 29-4000003 30-1587998 30-9720056 31-9241702	49-6556234 00UN05	0.010000 0.010000 0.0200000 0.0200000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0700000 0.0700000 0.0700000
I VARIABLE: 2 BUTION: NORMAL 29.400000 LE: 9.00000 RD EVIATION: 0.05 CELLS: 10	CENTER OF Gravity	24.4643657 26.2903055 26.2903055 27.3774326 28.2453687 29.0238570 29.7761430 30.5546313 31.4225674	34-3356343 34-33566343 00 UPPER	I -445.1651580 -445.2811629 -426.3347864 -421.0052830 -416.4032991 -418.490157 -401.1622231 -401.2616751
A ANDON DISTE DISTE MEANE SIANDA SIANDA NUMMEEN	X2 MINIMUM Value	-49-6556294 25-5548137 26-8756299 24-872629944 28-6412002 29-600003 30-9720056 31-9243705	33.2451863 VCTION ************************************	
25.00000	X1 MAXI4UM VALUE	137.9567811 146.953820 156.8939333 155.676683 170.0000025 176.3233317 176.3233317 183.1000467 191.0364180 202.0432189	338.7968616 ************ 2 FU ************ 2 FU *UM3ER OF UNIQUE NEMI: 94.251 Variance: 771 51A40aq0 Deviatio	49.8188562 60.3503526 60.3503526 60.3503526 64.3046270 64.3046270 57.951607 57.951992 58.7620284 71.3571536
VATIADLE: 1 UUTION: Y014AL 170.000000 170.000000 2: 525.070000 0 5 5 5 5 5 10 0 5 5 5 5 5 10	CENTER OF Gravity	128.857740 144.0872159 153.452715 160.3780729 160.8554752 173.1345248 173.1345248 173.57215285 195.8147285 195.9107671	APROXISTING	
RA400% 9157P1 91548 75488 744140 514ND 81488 NU1968	X1 MINIYUM VALUE	-333.796346 137.953781 146.953720 156.3999533 155.633499533 155.633537 156.3535463 176.323547 183.1007667 183.1007667 183.1007667 183.1007667	DISCRETE	22.5014176 35.7503186 37.7203185 45.7203185 46.7769751 46.0728955 51.9358175 51.9358175 51.9358175 51.9358175 51.9358175 51.9358175
		18	5	

					0210200 0-1500000	192807 0.1600000 C	7483597 0.1700000	3083719 0-1800000	(156519 0.1909000	1503526 0=2000000	1256572 0.210000	1317061 0.2200000	1046270 0-2300000	923669 0-2400000	551607 0.2500000	641992 0.260000	620284 0.270000	550353 0.280000	1571536 0.200000	914196 0.300000	157012 0-310000	915319 0.3200000	114279 0-3300000	919676 0-3400000	387434 0.350000	317504 0.360000	390304 0-3700000	710002 0-3500000	935248 0.390000	567680 0.400000	682469 0-4100000	620777 0.4200000	982205 0-4300000	477992 0-4400000	681216 0.450000	157454 0.460000	702398 0.4700000	987686 0-480000	073714 0.490000
0.46	~ ~ ~						22-1	22-25	59.4	60°-	60.6	53-6	64.3	66.1	66.1	67.9	68-1	6.0.9	71.1	71.5	72.5	74.6	75.3	75.4	75-5	76.7	78-8	78.9	79.2	80.3	81.4	81-8	82.5	83.2	84.6	85.6	85.0	86.4	86.9
0-1200000		00000110				0-10000	0.000001-0	0.180000	0.190000	0-200000	0-2100000	0-2200000	0.2300000	0-240000	0-2500000	0-2600000	0-270000	0.280000	0-290000	0-300000	0.3100000	0-320000	0.3300000	0.3400000	0-3500000	0-3600000	0-3700000	0.3800000	0" 3900000	0.400000	0.4100000	0-420000	0.430000	0-4400000	0-450000	0"460000	0-4700000	0.0008 2.0	0.490000
75-3114279		75-4919676	75-538725	CUUU120-82	70 701 70 707	047664746	0.001010000	51-4552469	81-8620777	82-5782205	83-2477992	86-0702398	86.4987686	86.9073714	87-7915812	88-1554069	90.0245142	90.5345917	91.3635690	92.3935741	93.6540864	94.1149104	94.4351398	94-9621219	96-3478484	97.3113068	98.7169033	2096662-66	102 9 200 - 001	100.8916254	101-2119548	102-6711776	102.8984931	103.6345410	105.4936183	106-0766552	106.3307499	107-5351890	105-5279965
0.120000		0-139000	0.1400000	0-150000	0.160000					0-200000	0-210000	0-000007-0	0-2300000	0000017-0	0.2500003	9-2500000	0.270000	0-2300000	0-2900000	0 • 3000000	0.3100000	0-3200000	0-3300000	0-240000	0-350000	0360000	0-270000	0.2800000		0-000000	0-00000	0000025-0	0-6300000	0-00000	0.4500000	0.000000	0-4/90000	0.480000	0000010
50.4971734		50.6793757	61.0413751	64.2923854	54.3939065	66.7667746	A2 2007076				20147C0-00		1050505051		26,10202.41	74-8701843	75-4415092	75.8983746	77.5717132	79.6134054	90-4364321	30.5312454	51-0311294		C116826-10	1774168-66	0410400-40	77 77 77 77 77		61-5165517 82 4070544	110/1/1-00	2004970-00	1404700-55		10000000	916167-16	74-101-240 7 00-01-10	1660-04-24 1467411 10	F1F0100404
÷	21	13	14	15	16	17	2			2:			32	5 ;	0;	01	22	28	59	20	5	22								2	; ;		2:	•	2:	0 M			

			1 2 2 2 2 2 2 0 0 0 2 2 0 0 0 0	1-2022090 0-540000	2. 5935741 0.55000	3-5521166 0.560000	3-6840364 0.570000	4-1149104 0-580000	4-4351398 0-590000	4-9621219 0_600000	5-6749225 0-610000	6-3478484 0-620000	7-3113068 0-630000	8-7169033 0-640000	9-2999402 0-650000	0-0074207 0-6600000	J-8916254 D_670000	-2118548 0-680000C	2-6711776 0-690000	2-8984931 0-700000	5-6346410 0-7100000		- 4936183 0-7300000	-0766552 0-7400000	- 3307499 0-7500000	- 5351890 0-760000	- 82/ 9966 0.7700000	- + 4 7 8 9 2 6 0 - 7 8 0 0 0 0	- 4579702 0-790000	0000009-0	-10/4649 0-810000	- 4299595 0- 820000	- 5555183 0-830000	-9052941 0-8400000	-7346852 0-850000	- 3842639 0-860000	-7233187 0-870000	-8347976 0-8800000	- 6352333 0-890000
	0.5300000	0.540000				6 000001 C	000000 0°	6 0000065°n	16 0000000 0	0.010000	0.020000 95	0.000000	0000000		66 ()0000 * 0				0.7100000 102	0-7300000 102																0.9500000			U- 48UUUUU 12U-
37111110101	112.1375535	112.3999495	113.1074649	113.4299405	113.8585142			2000401-011 0176761 111			120 414140	171 . T T T T T T T T T T T T T T T T T T	1255 277 257	124.4147005	124.4710545			178 574 575	111 000 1000 111	123 080 121		115 4778404	1 1 1 7 . BC7 1 1 7 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1		144.1907740	144.443749	150-5061061	157.240.8101	165.2171904	176.2239913	250.6589363	264.5484407	761-1904-19				274. 27514 1000	241.10A844	
	0.000132-0	0000css=n	J. 54 30999	0-550000	0.5,00000	0.5730000	0.00000	0.5200000	0.600000	0.610000	0.6200000	0.6500903	0.64 00000	0.650000	0.6500000	0.6700000	0.00000	0.000000	0.000000	0.7100000	0.720000	0.730000	0.00002.00	9-7500000	0.7 60000	000002.4.0	0-780000	0.790000	J. 5 00 00 0	0.910000	0.3209000	0.1300009	0.0000.8.0	1-450000	0.9500000	0.57000	0.4400630	0.00000	
35 0411474			Cechicc+14	34-6760301	99 . 1457424	99-3253996	100.1409371	101.3314172	101.9131648	102.3336577	105.275.17	104.0433683	104.7619396	104-9436365	106-3745433	105.6232394	107.0579010	107-5154195	103.6587174	110-9742234	111.2811702	111.4310934	112.3059461	112-5772390	115.0516209	115.1461197	116.1139597	118.5638902	11 7. 0264966	119.1349957	119.3346913	129-3372283	122.3789210	124-1076795	125-523939	125.1537251	125.5174327	127.7193435	
0				2	\$	57	58	59	çş	61	62	63	9	65	99	57	**	59	2	5	2	<u>.</u>	2	ŝ	9	~	80	•	0,	-	~	m		\$	ç	~		~	

	0000006*0 100	905 0.9100000	565 0.920000	337 0.930000	000000000000000000000000000000000000000	045 0.950000	371 0-9600000	0000026-0 6700000	574 0-9800000	055 0.990000	1-000000
	5C+0-121	124.4367	124.6710	125-5000	123-3910	128-5716	132.0506	133-4364	135-6778	139-5754(144.44320
	000000 · ·										
312-9776349											
0-990000	0.9100000	0.00000	0.930000	0-940000	100000	0.960000		0.00000	0-090000		
151-3334585	131 4549797	132, 2551 273	135-5567277	1 55- 57 35 51 3	139-3271784.	141.9112580	142-9394477	146-5544736	150- 3930502	157-1307569	
2	16	~~ ? ^	93	70	95	36	10	9.8	66	100	

APPENDIX G

NOTES ABOUT THE COMPARISON OF THE MONTE CARLO SIMULATION VS. THE DISCRETE SIMULATION

METHODS OF COMPARISON

The Monte Carlo program was written using some of the same subroutines that are used in the discrete simulation program. These subroutines are: DISTRIBUTION, FUNCTION, OUTPUT, and SORT. Subroutine BOOK is also used, however, a few lines of code had to be modified for the generation of the random numbers. The random numbers are generated using a normal random number generator provided by Harris Computer Systems.

Because the two methods are slightly different, a method of comparison had to be devised. Three methods were possible:

- Use the same number of points to represent the random variables' density functions.
- Use the same number of possible combinations of outcomes to represent the joint random variable's distribution function.
- Use the same number of unique outcomes to represent the joint random variable's distribution function.

Method 1 was thought to give a distinct advantage to the discrete approximation program, while method 2 would give an advantage to the Monte Carlo simulation. Method 3 was chosen to be used as the method of comparison because it is somewhat of a compromise between methods 1 and 2. However, this method does give the discrete simulation a slight advantage over the Monte Carlo method for the example discussed in Chapter 5.

The discrete simulation program was run first each time the two methods were compared. After each discrete approximation, the number of unique outcomes m, was noted. The joint distribution function was then approximated using the Monte Carlo program by generating m pairs of random variables X and Y.

CPU TIME COMPARISON

Figures 5.18 and 5.19 were plotted to give an overall comparison of the computer processing unit time for both programs. A binary sorting routine was used for both programs. Since the outcomes generated by the discrete method are somewhat ordered, the discrete values are sorted quicker than the data that is created randomly from the Monte Carlo program. It should be noted that

these times are largely dependent on the efficiency of the sorting routine. Quicker times could be achieved by using a faster method of sorting the outcomes. For example, a quick sort subroutine would decrease the run time of the Monte Carlo program since this method sorts random numbers faster than ordered numbers. Also, a heap sort could be used to decrease the CPU time for the ordered discrete values.

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Fredric C. Appl, Professor of Mechanical Engineering, for his guidance and encouragement throughout the course of this study.

I am also grateful to Dr. Hugh S. Walker and Dr. Mark S. McNulty for serving as graduate committee members.

Appreciation is also extended to the Department of Mechanical Engineering for their financial support throughout my graduate study.

My thanks are also due to Donald A. Smith for the graphics routines he wrote for the Harris computer system.

And finally, I would like to thank my parents for their moral and financial support during all of my years of study.

VITA

Bruce Eugene Swanson

Candidate for the Degree of

Master of Science

- Thesis: THE APPROXIMATION OF JOINT DISTRIBUTION FUNCTIONS FOR APPLICATION IN PROBABILISTIC MECHANICAL DESIGN
- Major Field: Mechanical Engineering

Biographical:

- Personal Data: Born in Kansas City, Kansas, January 22, 1963, the son of Eugene A. and Sylvia J. Swanson.
- Education: Graduated from Shawnee Mission East High School in 1981; received the Bachelor of Science degree from Kansas State University in 1985; completed the requirements for the Masters of Science degree from Kansas State University in 1987.
- Honors: Tau Beta Pi All Engineering Honorary Pi Tau Sigma - Mechanical Engineering Honorary
- Professional Experience: Two summers as an Engineer III in the Metal Products Department at Allied/Bendix, Kansas City Division. Have accepted employment with Sandia National Laboratories in Albuquerque, New Mexico, in the Rocket Systems Division II.

THE APPROXIMATION OF JOINT DISTRIBUTION FUNCTIONS FOR APPLICATION IN PROBABILISTIC MECHANICAL DESIGN

by

BRUCE EUGENE SWANSON

B.S., Kansas State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Mechanical Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

In this study, a discrete simulation technique is developed to approximate the joint probability distribution functions of complex algebraic expressions containing several independent random variables. The discrete simulation package is written in Fortran on a Harris H-800 Super Mini-Computer.

The discrete approximation is compared to the traditional Monte Carlo technique for a joint probability distribution function that can be solved exactly. The accuracy of the discrete simulation is found to be better than the Monte Carlo simulation.

A cantilever I-beam is analyzed to illustrate how the discrete simulation package can be used by design engineers in a variety of engineering applications.

A bounding program is also discussed that bounds the exact joint probability distribution function of an algebraic expression. Although a formal proof has not been developed, the results of several different examples show considerable promise for further study.