
THE APPROXIMATION OF JOINT DISTRIBUTION FUNCTIONS FOR
APPLICATION IN PROBABILISTIC MECHANICAL DESIGN,

by

BRUCE EUGENE SWANSON

B.S., Kansas State University, 1985

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Approved by:

Major Professor

,T4

512.

TABLE OF CONTENTS

Chapter Page

I . INTRODUCTION 1

II . LITERATURE REVIEW 5

Probabilistic Machine Design 5

Monte Carlo Simulation 6

Fast Probability Integration 10
Discrete Simulation 11

III. METHOD AND PROCEDURE 14

Cell Development 16
Discrete Point Representation 17
Simulation 20
Distribution Function 21
Density Functions 22
Example 24

IV. PROGRAM DESCRIPTION 38

Discrete Simulation 39
Density Function Approximation 41
Data Management 4 2
Graphics 42

V. COMPARISON 43

Problem 45
Exact Solution 45
Monte Carlo Simulation vs.

Discrete Simulation 50

VI . CANTILEVER I-BEAM 72

Problem 72
Solution 76

VII. BOUNDING 94

VIII. CONCLUSIONS 101

IX. RECOMMENDATIONS FOR FURTHER STUDY 105

LIST OF REFERENCES 106

APPENDIX A 110

DISCSIM Program Ill
BOOK Subroutine 114
BOOKBOUND Subroutine 117
CELLR Subroutine 121
DIST Subroutine 123
DISTRIBUTION Subroutine 125
FUNCTION Subroutine 127
NORMAL Subroutine 129
NORMINV Subroutine 131
OUTPUT Subroutine 133
OUTPUTBOUND Subroutine 137
SORT Subroutine 143
SPECIAL Subroutine 145
TRIANGLE Subroutine 147
UNIFORM Subroutine 149

APPENDIX B 151

DENSITY Program 152
HISTOGRAM Subroutine 154
OUTPUTD Subroutine 156
SMOOTH Subroutine 157

APPENDIX C 162

MANAGE Program 163

APPENDIX D 166

GRAPH Program 167
AUTOSCL Subroutine. 169
GVTDENSITY Subroutine 171
GVTDISTRIBUTION Subroutine 172
LABEL Subroutine 174
PLLABEL Subroutine 176
PLOTT Subroutine 177
TICKS Subroutine 179

iii

APPENDIX E 180

Flowchart for DISCSIM Program 181

APPENDIX F 183

Sample Output from the DISCSIM Program 184

APPENDIX G 189

Notes about the Comparison of the
Monte Carlo Simulation vs. the
Discrete Simulation 190

LIST OF TABLES

Table Page

3.1 Normal Distribution Approximation
Using Seven Discrete Points 20

3.2 Discrete Approximation of Random Variables
X and Y Using Five Cells 28

3.3 Distribution of 25 Discrete Z Locations
Z= (X*Y**2) /12 30

6.1 Random Variables for a Cantilever I-Beam 75

7.1 Bounding Probabilities of Failure of a
Bar in Tension 100

LIST OF FIGURES

Figure Page

3.1 Normal Distribution Divided into Seven Cells.. 18

3.2 Seven Cell Discrete Approximation of a
Normal Distribution 19

3.3 Five Cell Discrete Approximation of a
Uniform Distribution 26

3.4 Five Cell Discrete Approximation of a
Triangular Distribution 27

3.5 Z Distribution of 25 Discrete Locations
(Z=X*Y**2) /12) 29

3.6 Z Distribution (Z = X*Y**2) /12) 31

3.7 Smoothed Cubic Spline Z Distribution,
(Z=X*Y**2)/12) Tolerance=1.0 32

3.8 Smoothed Cubic Spline Z Distribution,
(Z=X*Y**2)/12) Tolerance = 1.5 33

3.9 Joint Probability Histogram (Z=X*Y**2) / 12) 35

3.10 Cubic Spline Density Function
(Z=X*Y**2) /12) Tolerance = 1.0 36

3.11 Cubic Spline Density Function
(Z=X*Y**2)/12) Tolerance = 1.5 37

5.1 Approximation and Exact Joint Probability
Distribution Functions 44

5.2 Exact Joint Probability
Distribution Function 49

vi

5.3 Exact Joint Probability
Density Function 51

5.4 Joint Probability Distribution Function
for the Discrete Simulation using
50 Discrete Points per Random Variable... 53

5.5 Joint Probability Distribution Function
for the Discrete Simulation using
50 Discrete Points per Random Variable
and the Exact Solution 54

5.6 Joint Probability Distribution Function
for the Monte Carlo Simulation using
325 Unique R Locations 55

5.7 Joint Probability Distribution Function
for the Monte Carlo Simulation using
325 Unique R Locations and the
Exact Solution 56

5.8 Joint Probability Distribution Function
for the Discrete Simulation using
100 Discrete Points per Random Variable.. 58

5.9 Joint Probability Distribution Function
for the Discrete Simulation using
100 Discrete Points per Random Variable
and the Exact Solution 59

5.10 Joint Probability Distribution Function
for the Monte Carlo Simulation using
1275 Unique R Location 60

5.11 Joint Probability Distribution Function
for the Monte Carlo Simulation using
1275 Unique R Locations and the
Exact Solution 61

5.12 Joint Probability Distribution Function
for the Discrete Simulation using
200 Discrete Points per Random Variable.. 62

5.13 Joint Probability Distribution Function
for the Discrete Simulation using
200 Discrete Points per Random Variable
and the Exact Solution 63

vii

5.14 Joint Probability Distribution Function
for the Monte Carlo Simulation using
5049 Unique R Location 65

5.15 Joint Probability Distribution Function
for the Monte Carlo Simulation using
5049 Unique R Locations and the
Exact Solution 66

5.16 Mean Squared Error vs. Number of Unique R
Locations for the Monte Carlo and
Discrete Simulation 67

5.17 Maximum Deviation vs. Number of Unique R
Locations for the Monte Carlo and
Discrete Simulation 68

5.18 Mean Squared Error vs. Computer Processing
Unit Time for the Monte Carlo and
Discrete Simulation 70

5.19 Maximum Deviation vs. Computer Processing
Unit Time for the Monte Carlo and
Discrete Simulation 71

6.1a Cantilever I-Beam Subjected to a
Uniform Load 73

6.1b Free-Body Diagram of a Cantilever I-Beam
Subjected to a Uniform Load 73

6.2 Cross Section of the Cantilever I-Beam 74

6.3 Joint Probability Distribution Function
of the Maximum Moment of a
Cantilever I-Beam 77

6.4 Joint Probability Density Function
of the Maximum Moment of a
Cantilever I-Beam 78

6.5 Joint Probability Distribution Function
of the Moment of Inertia of a
Cantilever I-Beam 80

6.6 Joint Probability Density Function
of the Moment of Inertia of a
Cantilever I-Beam 81

6.7 Joint Probability Distribution Function
of the Maximum Deflection of a
Cantilever I-Beam 82

6.8 Joint Probability Density Function
of the Maximum Deflection of a
Cantilever I-Beam 83

6.9 Joint Probability Distribution Function
of the Slope at the End of a
Cantilever I-Beam 84

6.10 Joint Probability Density Function
of the Slope at the End of a
Cantilever I-Beam 85

6.11 Joint Probability Distribution Function
of the Maximum Stress of a
Cantilever I-Beam 87

6.12 Joint Probability Distribution Function
of the Maximum Stress of a
Cantilever I-Beam 88

6.13 Joint Probability Distribution Function
of the Maximum Shear Stress of a
Cantilever I-Beam 89

6.14 Joint Probability Distribution Function
of the Maximum Shear Stress of a
Cantilever I-Beam 90

6.15 Joint Probability Distribution Function
of the Ratio Sact /S ield of a
Cantilever I-Beam. . 92

6.14 Joint Probability Distribution Function
of the Ratio Sact /S ield of a
Cantilever I-Beam. . 93

7.1 Known Probability Density Functions for
Random Variables 1 and 2 95

7.2 Upper and Lower Bounding Curves of a
Hypothetical Joint Distribution Function. 97

ix

7.3 The Exact Solution and the Bounding Curves
for the Probabilistic Pythagorean Random
Variable Using 100 Discrete Points 99

CHAPTER I

INTRODUCTION

Design engineers have begun to appreciate the

limitations of the traditional or classical method of

design. For example, the classical criteria for

strength-limited design is that the overall strength of

the system must be greater than the maximum applied load

to the system multiplied by a factor of safety. This

safety factor is usually a value between 1.3 and 6,

depending on the structure and the materials. Although

this approach is very simple in application, it often

leads to designs that are overdesigned in terms of weight

and bulk. Haugen [1] points out that "Since safety

factors are not a performance-related measure there is no

way by which an engineer can know whether his designs are

near optimum or overconservative.

"

Designers are now starting to realize that applied

loads, dimensions, material properties, etc. are all

subject to variation. From this realization has emerged

a new design method called Probabilistic Design.

Probabilistic Design treats the design inputs as random

variables with each random variable having its own

probability density function. After the variables have

been defined, the problem can be solved using probability

mathematics. The results can then be analyzed to

determine if the design satisfies the operational and

economic requirements with an acceptable reliability of

success

.

Although formulating the functional relationships of

the random variables into a joint probability integral

form is usually possible, evaluating this integral can be

a very complex mathematical operation. Springer [2] has

written an entire book on the subject of algebraic

operations of random variables. Many of the chapters of

his book deal with deriving the joint distribution and

joint density functions of rather simple functions which

contain random variables. Although the mathematical

techniques that he describes are certainly important from

a theoretical standpoint, there are some disadvantages in

practical applications. The designer needs to have a

working knowledge of differential and integral calculus,

statistical inference, and probability distribution

theory. Another drawback is that there are many

functions for which it is impossible to obtain the exact

solution to the probability density function. Many times

the system is so involved and cumbersome that the average

engineer does not have the time or the knowledge to solve

the problem.

An alternative to the traditional mathematical

approach to Probabilistic Design is a technique known as

Monte Carlo Simulation. Law and Kelton [3] define Monte

Carlo simulation as "...a scheme employing random numbers

which is used for solving certain stochastic or

deterministic problems where the passage of time plays no

substantive role ". The random numbers are generated so

that they simulate the physical random process of the

probabilistic problem. The system is simulated many

times so the frequencies of the events can be studied.

Monte Carlo [4] simulation originated as a tool for

the development of the atomic bomb during World War II.

The scientists used Monte Carlo simulation to simulate

the randomness of neutron diffusion in fissle material.

In the last thirty years Monte Carlo techniques have been

used for operational research and nuclear physics. Since

the motions of neutrons are random, the nuclear

physicists have used Monte Carlo to simulate the

performance of nuclear reactors. The physicists can

simulate the reactor design without the dangers and

expense of an actual physical experiment.

Although the Monte Carlo technique has been around

for over 50 years, its application in mechanical

engineering design has been limited. The purpose of this

thesis is to develop a simulation algorithm that is

capable of approximating the joint probability

distribution function of complex algebraic expressions

encountered in design engineering. This computer

algorithm is similar to the Monte Carlo method of

simulation. However, this new technique does not use

generated random numbers to represent the probability

density functions of the individual random variables.

Instead, the program divides each density function into a

given number of discrete sections with equal

probabilities and then takes all possible outcomes into

consideration before assembling the joint distribution

and density curves.

The literature review that follows is an overall

review of probabilistic design and how simulation has

been used in different engineering applications.

CHAPTER II

LITERATURE REVIEW

Probabilistic Machine Design

Bury [5] compared the probabilistic machine design

approach to the traditional design method of a simple

tension link with a given safety factor, material

property, applied load, and cross sectional area. Bury

pointed out that many design engineers are dissatisfied

[6] with the traditional method because applied loads,

material properties, and actual machining dimensions can

vary dramatically from one application to another, while

the traditional method assumes the input variables to be

deterministic, the probabilistic method assumes the

variables to be random with unigue probability density

functions. Once the density functions have been

determined, the problem can then be solved as a

probabilistic event. However, he points out that this

probabilistic approach can only be taken if data is

available to properly describe the random variables.

Balkey, Meyer, and Witt [7] discussed the importance

of using Probability Structural Mechanics as a tool for

evaluating the reliability and structural risk of

components and structures. Probability Structural

Mechanics, or PMS , combines the traditional methods of

structural mechanics with the probabilistic methods to

determine the probability of structural failure. They

pointed out the necessity of including uncertainties in

the mechanical and structural design process. They

concluded that "...as components and structures become

more sophisticated, failure mechanisms will be

probabilistically modeled from the beginning of the

design process, and potential design improvements will be

evaluated to assess their effects on reducing overall

risk."

Monte Carlo Simulation

Haugen [l] discussed Monte Carlo simulation

throughout his text. One rather simple example was a

simulation of strain energy in a statically loaded wire.

Haugen solved the problem by Monte Carlo simulation and

by an approximate partial derivative method and compared

the results. After 200 simulations the strain energy

values were plotted on normal and lognormal probability

paper

.

Elishakoff [8] used Monte Carlo simulation to

predict the buckling time of an elastic bar. The initial

imperfections of the bar were assumed to be normally

distributed with a given mean and autocorrelation

function. The problem was then simulated many times to

determine the reliability of the structure. A histogram

and distribution of the buckling time was plotted. The

results were then compared to the previously published

works of Linberg [9] . The Monte Carlo solution was very

similar to the results obtained by Linberg.

Elishakoff continued his work of simulating

structural imperfections using the Monte Carlo method.

His later paper [10] discussed buckling of finite uniform

columns resting on a "softening" nonlinear elastic

foundation. The initial imperfections were again assumed

to be normally distributed. The system was simulated

many times and the reliability was plotted vs.

nondimensional actual load. The nondimensional buckling

loads were then plotted as a histogram and analyzed.

Elishakoff s latest research [11] was concerned with

the effect of nonsymmetric random imperfections on the

reliability of axially compressed cylindrical shells. He

used the Monte Carlo process to obtain the reliability

functions of shells with asymmetric and axisymmetric

imperfections. Using the results of his previous works,

Elishakoff was able to use measured initial imperfections

(variance-covariance matrices and the mean vectors) as a

direct input for the Monte Carlo simulation.

Martin [12] developed vectorized and scalar particle

transport Monte Carlo algorithms to simulate the

transport of photons in a high-density, high-temperature

plasma. The behavior of a photon was simulated by

drawing random samples from probability distributions

that describe the actual physical process. The results

were tabulated to chart the overall tallies. Both

algorithms were compared to a reference Monte Carlo code

from Lawrence Livermore National Laboratory.

Ramsay [13] studied the variability of deflections

of ten reinforced concrete fixed-ended T-beams and slabs.

The dimensions of the beams, as well as the material

properties and type of loadings were assumed to be random

variables. A mathematical model was developed to

describe the characteristics of the beams and slabs. The

model considered the change of stiffness and the

redistribution of moment along the length of the

structure. Each of the structures was analyzed for four

different loading conditions. For each loading

condition, 500 deflection values were generated using

Monte Carlo simulation. These values were then converted

to deflection ratios and statistically analyzed. The

results of the simulation were compared to the

deflections of those computed using the ACI 318-63 and

ACI 318-71 Code procedures [14,15]. He concluded that

the major causes of variability in deflections are the

variability of the beam stiffness and the variability of

the concrete strength.

Dao-Thien and Massoud [16] discussed the

probabilistic distributions of stress and strength

relationships. They presented a detailed mathematical

background of a method used to obtain the stress and

strength distribution functions. The density and

distribution functions were written in the form of

multiple integrals. A computer program was developed

that assists the engineer in selecting a probability

distribution (normal, log-normal, or Weibull) using

linear regression. The program picks the distribution

that minimizes the error function. An example was

presented that illustrated a typical structural problem

in the aerospace industry. The system was simulated

20,000 times using generated random numbers. The normal,

log-normal, and Weibull distributions were compared to

the generated stress and strength data. The program

picked the Weibull distribution as the best approximation

of the design stress and the normal distribution for the

design strength. The two distributions were compared to

the histogram frequency distributions generated by the

Monte Carlo method.

Fast Probability Integration

Hasofer-Lind [17], Rackwitz-Fiessler [18], Chen-Lind

[19], and Wu [20] have developed a technique called Fast

Probability Integration (FPI). The FPI method [21]

assumes that all of the random variables are independent

with known probability density functions. The random

variable's density functions are transformed into

equivalent normal random variables using a curve-fitting

routine. The design point is then approximated using the

scheme of normal tail approximation [22] . Wirsching and

Wu [23] have tested various combinations of linear and

nonlinear functions containing both normal and non-normal

random variables. They report that the FPI method is more

accurate and approximately 10 to 100 times faster than

the Monte Carlo technique for approximating probabilities

10

of complicated functions involving several random

variables. They point out that while the Monte Carlo

method may be useful as a research tool, the large amount

of computer processing unit time needed to approximate

low values of probability tends to make the Monte Carlo

method expensive and impractical.

Discrete Simulation

Lockwood [24] introduced a new method of computing

the probability density functions in turbulent flows.

Lockwood pointed out that the traditional method of

probabilistic design has several shortcomings. The

primary disadvantage is that the "...computational burden

increases more or less exponentially with dimensionality."

He added that he has developed a more economical approach

to the solution of the probability density function of

the transport equation. He applied his method to a fully

turbulent jet having a given inlet pipe Reynolds number

and temperature. He assumed the temperature to be a

random variable. To calculate the temperature's

probability density function, he divided the range into a

finite number of discrete points. The various relations

were applied to each discrete point. The total solution

1 1

was obtained by summing each discrete point. He compared

the predicted probability density functions with the

measured probability density functions and determined

that the agreement was remarkably good. He concluded

that his new method has an advantage over the traditional

Monte Carlo simulation technique. Since the discrete

method does not use generated random numbers, there is no

statistical errors associated with the generation of the

random numbers, as is the case with the Monte Carlo

technique.

In this study, the probability density functions are

divided into discrete points similar to the study

conducted by Lockwood. However, this paper goes on to

approximate the joint distribution function of algebraic

expressions containing several independent random

variables with known density functions. The methods and

procedures for this simulation are discussed in

Chapter 3. The computer programs that are used to

approximate the joint probability distribution and

density functions are described in Chapter 4. In

Chapter 5 the discrete approximation is compared to the

traditional Monte Carlo technique for a joint probability

distribution that can be solved exactly. Chapter 6

contains an example of how this probabilistic method can

12

be used as a tool by engineers to aid in the design and

development of structures and components. In Chapter 7 a

different technique is discussed that determines the

upper and lower bounds of a joint probability

distribution using the discrete approximation. The

conclusions and recommendations for further study are

given in Chapters 8 and 9 respectively.

13

CHAPTER III

METHOD AND PROCEDURE

The purpose of this thesis is to develop a

simulation algorithm that is capable of approximating the

joint probability distribution function of complex

algebraic expressions containing several independent

random variables with known density functions. If the

complex algebraic expression is represented by a variable

Z, then Z can be written as

Z = Z(X
1
,X

2 , X
n) (3.1)

where X ,,X
2

/ X
n

are continuous, independent

random variables with individual probability density

functions of f^x^, f
2
(x

2
), f (x) respectively.

Since the variables in this study are assumed to be

independent, the joint probability density function of Z

can be written as the product of the X random variables'

density functions.

14

f (z) = £, (x,)f,(x,) f (x) (3.2)112 2 n n

The joint probability distribution function of the

random variable for any n-dimensional set of Z can be

written as,

F(z) = \
\

fJx.lf.UJ f (x)dx„ dxdx,
I 11122 nnn 21

Z (3.3)

If the random variables are bounded by the intervals

(a., b .) , (a,, b_) , , (a , b), the probability

P(a,<X.<b., a^X/b,, , a <X <b)1—1—1 2—2—2 n— n— n

b /'b
1 (2

f(x.,x_, ,x)dx dx.dx (3.4)

Although formulating the density functions into a

multiple integral form similar to equations 3.3 and 3.4

is usually possible, integrating the function over the

range of the Z event can be a very complex mathematical

operation.

l
r

.

In this chapter, a method that approximates the

joint probability distribution function is discussed.

The method, called discrete simulation, has four steps:

1. Cell Development

2. Discrete Point Representation

3. Simulation

4. Distribution Approximation

CELL DEVELOPMENT

In order to approximate the continuous density

function of each random variable, the known density

functions are divided into n sections or cells. Each

cell is computed to have equal area, thus equal

probability of occurrence.

f (x)dx
a

(3.5)

2.

a
2 1

f(x)dx = -

f(x)dx =

'Vl

16

Figure 3.1 shows an example of a normal random

variable density function divided into seven cells with

each cell having equal area. For sake of illustration,

the density function has been divided into only seven

cells. For practical applications the density function

can contain anywhere from 30 to 200 cells.

DISCRETE POINT REPRESENTATION

After the function has been divided into equal

areas, each cell is represented by a single discrete

point. This point is located at the cell's center of

gravity where:

a cg (*1 1

f(x)dx =
\ f (x)dx —

a a__ 2n
(3.6)

2n
eg

and has a magnitude of 1/n. Figure 3.2 shows a normal

density function divided into seven cells with its center

of gravity locations. Table 3.1 lists the center of

gravity locations of a normal distribution approximation

for seven cells.

17

- S3 x

m (M
(S3

<
x)i 'NOIlONfU A1ISN3Q AiniaVBOdd

L8

BJ x

CO C\J

<
x)i 'NoiioNnd AHSN3Q Ainiavaoad

19

Table 3.1

Normal Distribution Approximation
Using Seven Discrete Points

Distribution: Normal
Mean: 0.0
Variance: 1.0
Standard Deviation: 1.0
Number of Cells: 7

Cell Center of Gravity
Number Location

1 -1.4655158
2 -0.7914320
3 -0.3656621
4 0.0000000
5 0.3656621
6 0.7914320
7 1.4655158

SIMULATION

Once each variable's density function has been

chosen, all possible combinations of the expression are

simulated. For example, if the joint probability

distribution function of the equation

Z = A * B

is desired, and if the density functions of A and B are

simulated using 100 and 150 discrete points respectively.

The total possible combinations of Z is 100 * 150

15,000.

20

DISTRIBUTION FUNCTION

After the outcomes Z, have been computed, the data

is sorted from smallest to largest. Each outcome has a

probability of 1/m, where m is the number of total

outcomes. The joint cumulative distribution function can

then be assembled by summing the ordered value's

probabilities

.

F(z) F (z
i-1 1

1

i<z. (3.7)

Z, <z<Z. ,

fir i-i:i,.

Z <z
m—

.m-1

If the values between the discrete points need to be

known, a linear empirical distribution function can be

written that interpolates between the known points:

G(z) G(z
i-l'

l

i-l

V z
i-i

if z<Z (3.8)

G(z
i
)-G(z

i _ 1
) if Z

i _ 1
<z<Z.

if Z <zm—

The computer program that performs the distribution

approximation is listed in the Appendix.

21

DENSITY FUNCTIONS

Although developing a joint density function is not

the primary purpose of this paper, two methods are used

with reasonable success. These methods are only used to

give an approximate shape of the joint probability

density function and not an exact solution. The fitting

of density functions is a complex problem in itself. The

two methods are: histograms and cubic splines.

Histograms

:

A histogram is simply a graphical estimate of the

density function corresponding to the known data. To

construct a histogram, the range of data is divided into

k equal intervals. The data is then placed in its

appropriate interval. Once all of the data has been

sorted, the proportion of the values in each interval is

determined.

The histogram is constructed using Sturge's [25]

rule. The number of cells k is determined by the

equation

1 + 3.3 * log m (3.9)

22

The range r, is estimated by the relationship

r = x - x . (3.10)max min

And the width w, of each interval in the histogram is

w = r/k (3.11)

Although the histogram is easy to construct, the

main disadvantage is the loss of information from

grouping the data. Because of this, the histogram is

used only as a reference to the possible density

function's shape.

Cubic Splines:

A cubic spline is a set of cubic polynomials which

is joined together to form a continuous function. A

cubic spline subroutine is used to compute the first

derivative of the function. The subroutine also

determines a "smoother" approximation of the distribution

function. The spline method uses a cubic interpolating

function to approximate a "smooth" line through a given

set of data points by minimizing the integral of the

second derivative squared of the cubic function. A

tolerance is imputed that allows the programmer to

23

tighten or loosen the curve fit. A detailed description

of cubic splines can be found in reference [26].

The computer program listed in Appendix B performs

the density approximations outlined above.

EXAMPLE

Given: Function Z= (X*Y**3

)

1X2 , where X and Y are
H
continuous independent random variables. X is a uniform

random variable with given probability density function:

f(x) =
1/3 i-i*!4

otherwise

Y is a triangular random variable with a given

probability density function:

f (y)

2(y-4)

2(4-y)
5.25

l<y<2 .

5

2.5<y<4

otherwise

Find: The joint probability distribution of random

variable Z = Z (X, Y) .

For simplicity each cell is approximated using only

five cells. The area of each cell is equal to 1/5. The

24

bound for the first cell of variable X is found by using

the relationship:

f(x)dx = Area of the cell
a

l/3dx = 1/5
1

x/3| • 1

a = 8/5

The center of gravity for cell 1 is computed using

equation 3.6

eg
l/3dx = 1/10
1

a = 13/10
eg

The remaining locations can be found using the same

method. Figures 3.3 and 3.4 show the two density

functions and their respective centers of gravity. Table

3.2 lists the center of gravity locations for both random

variables

.

25

~iin

o
1— O< —

i

T. h-
i—

t

—>
X mo i—

i

00 cc
Q.

a

CD Q.< i—

i

LU
tx.

»—

1

u.

UJ
1—
LU

a

a:

U
t—

i

zQ ID

_l <
_l
LU U.U O
in

l 1 1 1 1

en

CM

ts>

en CM

<
x)j 'NoiioNnd AiisN3a Ainisvaoad

26

-iin

2g
i|

uJihQ:

UJ

IT)
1

I 1 1 1 1 I I I
I ' '

tO ID en <\i ^

<
x>i 'NonaNHd AiisN3a Ainiavaoad

27

Cell Center of Gravity
Number Location

1 1.336660
2 1.949138
3 2.370829
4 2.745010
5 3.275431

Table 3.2

Discrete Approximation
of Random Variables X and Y

Using Five Cells

Random Variable: X Random Variable: Y
Distribution: Uniform Distribution: Triangular
Mean: 2.5 Mean: 2.3333
Variance: 0.75 Variance: 0.5139
Number of Cells: 5 Number of Cells: 5

Center of Gravity
Location
1.300000
1.900000
2.500000
3.100000
3.700000

After computing all possible values, the 25 unique Z

locations are sorted. Each Z location has a probability

of 1/25. Figure 3.5 shows the 25 discrete Z locations.

Using equations 3.7 and 3.8 a joint probability

distribution function is assembled. Table 3.3 shows the

sorted Z locations and their distribution values. Figure

3.6 shows the assembled Z distribution function.

Figures 3.7 and 3.8 show the Z distributions of the

spline smoothing subroutine for a tolerance of 1.0 and

1.5 respectively.

2 8

LU

LU -i<X)
a: cm

m
<

>-
*x
\~*

iiM

<_>

CO
i-^

Q
IT)

ID
OJ

en U.

Ul O

o
Li-

h-3m
1—4

cc
1-
co
1—

<

a
M

O

<oo

- f^

(D

N

in

-3-

en

^^^^^m
— (M

w-t

J_
in in in
OJ OJ »-i —

<

s
» • • • 19

<
z
)
d 'Aini8V80Hd IN I Of

29

Table 3.3

Distribution of 25 Discrete
Z Locations

Z=(X*Y**2) /12

Number Z Location Z Distribution
1 0.2587170 0.0400000
2 0.3781249 0.0800000
3 0.4975327 0.1200000
4 0.6169406 0.1600000
5 0.7363484 0.2000000
6 0.8022129 0.2400000
7 1.1724650 0.2800000
3 1.4436524 0.3200000
9 1.5427172 0.3600000

10 1.9129693 0.4000000
11 2.1099535 0.4400000
12 2.2407525 0.4800000
13 2.2832214 0.5200000
14 2.7762546 0.5600000
15 3.2749459 0.6000000
lb 3.4425557 0.6400000
17 3.8068655 0.6800000
18 4.1088568 0.7200000
19 4.3091393 0.7600000
20 5.3433328 0.8000000
21 5.5638804 0.8400000
22 6.3775262 0.8800000
2 3 7.3208952 0.9200000
24 9.0779101 0.9600000
2 5 10.8349250 1.0000000

3

u. a

o CO
(O H-1 T-l

1— X
CO r) /~\m en
LU i—

i

<

QC QL >-
Z2 \- *
(J <S> X

' ' ' ' ' ' ' ' ' ' ' I ' I » I I » ' I'

O)00N(om*(i)(\it.i

<s

<
z)i 'NoiiGNnd Nonnaidisia iNior

31

CD

LU

o
i—

i

Li.

a
LUI
1—

•—

t

t—

m
oo
in

i—
CO
•—

1

Nl

- O)

- CD

- r»-

- (D

- LO

- •*

- 00

- CM

i i i i i r

0)(DN(Dmt(t)(\|H
ca

<
z)d 'NoiiONnd Nonnaiyisia iNior

32

QJ

0_
in

oo

m
LU
(X
ID

2 R

oo
*" i—

«

_

-

(M \
- \

s. \
-

^*> Im \
-

< \> \

x "> \w • \

11 V \M LU \ _

U \

JTION.
LERAN -

s< o \m h- \1—1 \
Qi \ —

I— \
en \ _
i—« \a \

v

i i i i i i i i i i if iN*

I—

I

CD

o

- O)

- 03

- t«-

- <D

- in

- oo

- CJ

s>

O)00N(Din<*C)(\|H
IS

<
2)j 'NonoNfii Nonnaiyisia iNior

33

The number of cells for the histogram is found using

equation 3.9.

k = 1 + 3.3 * log
1Q25

k = 6

Using equation 3.10, the range is equal to

r = 10.8349 - 0.2587

r = 10.5762

And each cell has a width of

w = 10.5762/6

w » 1.7627

Figure 3.9 shows the histogram approximation for the

function. The cubic spline density approximations aire

plotted in Figures 3.10 and 3.11. The cubic spline

approximations are rough. However, if the number of

cells per density function were increased, the cubic

spline curves would tend to be smoother with less wiggle

It should be noted that this is a simplified case.

In practice there could be an unlimited number of random

variables with each random variable having 30 to 200

cells, resulting in literally thousands of calculations.

34

1

"= O)

- 00

_iM
m< <

OJ
»—

1

"S

en
<

>-
*X

LU mo CDo
i—

o a. CO
—I

t- X
IIMz

in

I 1 1 L J I L

ro cm

(D

in

m

OJ

cs

(
z)H 'Ainiavaoad iNior

35

C9 LUz
i—*
1—

t—

1

o
CO _l

0_
z3

LU CO Ll

CD

U
m

>-
1—
»—

i

U_ 3O COz
LUO

l-H (\)

<

*x
IIM

(S

- O)

- 00

- (O

- If)

- CO

- (\l

in on ro
C9

<
z)i 'NOUONnd A1ISN3Q IN I Of

36

- w c\j

en

-* o n. 7
-> z a ii

g m t Sffl
r 3 w n pd
"- O Z M P

in

O)

- oo

CD

IT)

m

CM

ta

m C\J

ts

<
z)i 'NOUONPi A1ISN3Q IN I Of

37

CHAPTER IV

PROGRAM DESCRIPTION

In this chapter, the computer programs that

approximate the joint probability distribution and

density functions are discussed. These programs are

written in Fortran 77 on a Harris H-800 Super

Mini-Computer. Because of storage problems, the

simulation package had to be broken down into four

separate programs. These programs are:

1. Discrete Simulation

2. Density Function Approximation

3. Data Management

4. Graphics

A complete listing of all the programs can be found

in the Appendix.

3 8

DISCRETE SIMULATION

Program Name: DISCSIM

The discrete simulation program approximates the

joint probability distribution function of two random

variables with known probability density functions.

Before executing the program, the desired function must

be inserted in the "Function" subroutine. When run, the

program prompts the user for the type of distribution of

each random variable and the number of discrete points

used to approximate each random variable's density

function. The density functions available to the user

are:

1. Normal: The normal distribution can be used

to represent quantities such as measured

errors.

2. Triangular: The triangular distribution is

used in the absence of data to approximate a

rough model of a random variable's density

function.

3. Uniform: The uniform distribution is usually

used as a first model for a variable that is

suspected of being random.

39

4. Special: The special distribution is used if

the user has a distribution function stored on

file. e.g. If a distribution function was

generated from experimental or measured

results

.

After the program has approximated the joint

probability distribution function, the mean, variance,

locations of the discrete points for each of the two

random variables, and the joint probability distribution

function of the algebraic expression is printed to work

file "W2". The joint probability distribution is also

printed to a file (designated by the user) that is

compatible with the density program, the special

distribution subroutine, the data management program, and

the plotting programs.

Although this program simulates only two random

variables, a joint probability distribution function of

an algebraic expression containing more than two random

variables can be approximated. To do this, the function

must be separated into groups of two random variables.

Using the special distribution subroutine, the joint

probability distribution function of each group of two

random variables can be combined to form the joint

probability distribution function of the algebraic

40

expression. If an expression contains n random

variables, the program must be run n-1 times to simulate

the joint probability distribution function of the

algebraic expression.

DENSITY FUNCTION APPROXIMATION

Program Name: DENSITY

The density function program is a compatible program

used to approximate the density function after the joint

probability distribution function has been simulated

using the discrete simulation program. The density

function is approximated using the first derivative of a

cubic spline curve fit and a histogram (See Chapter 3).

The density program prompts the user for the name of the

joint distribution file. The user is able to control the

tolerance of the cubic spline curve fit. With careful

adjustment of the tolerance, a smooth density curve can

be approximated. The histogram data is printed to work

file "Wl" and the spline data is printed to a file

(designated by the user) that is compatible with the

plotting programs.

41

DATA MANAGEMENT

Program Name: MANAGE

The data management program is used if a problem

occurs with the calculation of the cubic spline

approximation program. One of the drawbacks of the cubic

spline curve fit is that if the data is grouped too close

together, the program will halt because of a floating

point overflow. The data management program sorts

through the data and eliminates any data points that are

closer than 0.000001 along the x axis.

GRAPHICS

Program Names: GRAPH

The plotting program is written using Precision

Visuals' DI3000 computer graphics package. Program GRAPH

plots the density and distribution functions on a Selanar

Hirez 100 graphics terminal. The user is asked for the

input data file name, title of the graph, and the X and Y

axis labels. The plot is dumped to an Hewlett Packard

7470A plotter.

42

CHAPTER V

COMPARISON

In this chapter, the discrete simulation method

discussed in Chapters 3 and 4 is compared to the Monte

Carlo method. The joint distribution function of an

equation is simulated using both methods and the results

are compared to the exact solution of the joint

distribution function. The accuracy of each method is

measured using two parameters: Mean squared error and

maximum deviation.

The mean squared error (MSE) is (See Figure 5.1),

MSE =S Ah 2

i = l T1

where n is the number of r locations. The maximum

deviation is equal to the largest absolute value of Ah.

4 3

Figure 5.1

Approximation and Exact
Joint Probability

Distribution Functions

i + 1

44

PROBLEM

Consider the equation of a circle,

fi2 2
0<r< oo

where variables X and Y are normally distributed

independent random variables. Each variable has a mean

of zero and a standard deviation equal to one. Find the

joint probability distribution function.

EXACT SOLUTION

The marginal probability density functions of X and

Y are,

£
x
(x)

f
Y (y) =

27T0
2

2 TO*
2

exp
-[X-yM)'

2tr

exp
To-"

for -oo<x< °°

otherwise

for _<y_<

otherwise

2 2When « = 0, 0"
x
= 1 and uv= 0, 0" = 1, the marginal

45

probability density functions become,

f
x
(x)

7= exp for-0O<x<oo

otherwise

f
y (y) =

exp
27

for-co<y<oo

otherwise

Since X and Y are mutually exclusive independent

random variables, their joint probability density

function is equal to the product of the two marginal

probability density functions. Thus,

So,

f(x,y) = f
x
(x)f

Y (y)

f(x,y) = -~ exp -A
1

-== exp
2 1/277

1 exp
27T

-(x 2
+ y

2
)

2

4 6

and the joint probability distribution is,

F(x,y) =
\ \f (x,y)dxdy

IT-
i

2T

y

exp i
2 2

>(x +y)

2

dxdy

in polar form this can be written as,

2% r

F (r) = P (R<r)
R

i

2TF

exp rdrde

to integrate by parts let.

u = r 12 and du = rdr

21.u

P(R<r) = _J^_ \ \ exp (-u) dude
2-7T

'0

47

2-n

1 \ -exp(-u) / de
2TT J

/

2TI

1

2ir

-exp(-r /2)+l de

l

27/

-exp(-r /2)+l

277

Pr(R<r) « 1 - exp(-r 12)

The joint probability distribution function is,

F
R

(r)

1 - exp(-r 12)

riO

0<r<e°

The exact joint probability distribution function is

plotted in Figure 5.2

Differentiating the joint probability distribution

function yields the joint probability density function.

48

H 4J

.Q o
nj c
ja
h

M
a. c

o

C 4J

•H 3
XI

1 -H
U

4J -P
U m

X Q
H

O
O

Nounaiyisia Ainiavaoad lNior

49

f
R
<r,

r<0

2rexp(-r /2) 0<r<oo

Figure 5.3 shows a plot of the exact joint probability

density function.

MONTE CARLO SIMULATION vs. DISCRETE SIMULATION

A Monte Carlo computer program was developed to

compare the accuracies of the two simulations with the

exact solution. The Monte Carlo program generates random

numbers that are normally distributed to approximate the

X and Y random variable's density function. The

subroutines used for generating the joint cumulative

distribution function are the same subroutines used in

the discrete approximation program.

The programs were run three times. The discrete

simulation was run first. Each time an increasing number

of discrete points was used to represent each random

variable's density function. After each run, the number

of unique r locations was noted. The Monte Carlo program

was then run using the same number of unique r locations.

A detailed explanation of the Monte Carlo method is

located in Appendix G.

On the first run, 50 discrete points were used to

approximate each random variable's density function.

50

OO-ST

k'V

c» - u

/UKnbq Ajjiiaveoad iniop

51

After all possible combinations were calculated, there

were 325 unique r locations. Figure 5.4 shows the

approximated joint probability distribution function of

the discrete approximation. In Figure 5.5, the

distribution function is plotted along with the exact

solution. The first half of the discrete approximation

is almost identical to the exact distribution function.

However, in the upper 20% of the curve, the discrete

approximation deviates quite a bit from the exact

solution. The cause of the deviation could be the small

number of discrete points used to represent the random

variables density function. Because a relatively small

number of points were used, the tails of the density

functions were not adequately represented. The mean

squared error and the maximum deviation for this

approximation was 0.000028 and 0.0196446 respectively.

The Monte Carlo Simulation was then run using 325

unique r locations. The joint distribution function is

plotted in Figure 5.6. Figure 5.7 shows the joint

probability distribution function for the Monte Carlo

approximation and the exact solution. As can be seen,

the Monte Carlo approximation is not as good as the

discrete approximation. The mean squared error is

0.0014709 and the maximum deviation is 0.0739843.

52

+ b:x

00'3

=« -o

Nounsiaisia Ainisvaoad iniop

53

+ az'c

DC * L

Nounaiaisia AiniavHoad iniop

54

OQ-C

0-+-B

©• • .

owo

Nounaiaisia -umaveoad lNior

55

OO'C

o+s

©•• u

OS:' L

OO'O

Nooneiaisia Ainiavaoad lNior

56

On the second run, 100 discrete points were used to

approximate the X and Y random variable's density

functions. This simulation resulted in 1275 unique r

locations. Figure 5.8 shows the approximation of the

second discrete approximation. In Figure 5.9, the

discrete distribution curve is plotted with the exact

solution. The curve still has a small dip at the upper

portion of the curve. However, the maximum deviation has

decreased to 0.0101403 and the mean squared error is

0.0000041. The 100 point approximation is an improvement

over the 50 point approximation.

Figure 5.10 shows the Monte Carlo approximation of

the joint distribution function for 1275 unique r

locations. The distribution curve is plotted with the

exact solution in Figure 5.11. Although the accuracy of

the Monte Carlo simulation has improved, the

approximation is still not as good as the discrete

approximation. The maximum deviation is equal to

0.0314508 and the mean squared error is 0.0002180.

On the final run, 200 discrete points were used to

approximate each variable's density function. This

resulted in 5049 unique r locations. The joint

distribution function is plotted in Figure 5.12. Figure

5.13 shows the approximated joint distribution function

with the exact solution. The two distribution functions

57

c
i—

i

•H X!
4-> cr 0!

C •H
c -H (J

3 CO a
fa 3 >

B B E
c

•r-t •H
~

,

4J 4J C
3 a 10

£1 r-H 2
H 3
U E M
4J •H -J

M CO a
•H
a

4J 4J

>< 111 c
p U •H
H

(0

H H
a 0)

4->

4J
u

1- i i i i
I

, , t i [i ,
. . 1

M * * \ * t * * '

04
>j

to

H
^ 3
C iu

o q a B * ci q
o " d d d

OU-Z

B» - U

Nounsiaisia AinifiVHoad iNior

58

c

XI
CT «

a
3

cH
3

lfl

>

c

•H
JJ

3
13

e

-H
4-1

IS

3
EH

T3
C
10

OS

c

•H
4->

3

M

Si

M
-J

en

u
O

-r-t

Q
4J

ca
as

X

4J

-H

•H

ro

01

n

w

0)

c

C
•H

<u

u
a)

0)

3
id

4J

0.
1-1 •H

4J

C
H
1-3

U-4

o
a
H

oo-z

9I.-B

O-l.

dl'O

Nounaiaisia AimsvHoad iniop

59

_ to

1 °

rn M

3

rH «

f os-«-

fVC

SQ'O

o'

Noiinaiaisia Aimavaoad iNior

c
O 01
H C

u 01

C 3
3
Cl, C

C-H
O -P

(

•H fa

r^
I i

01 O u

r-l 4J =

XI

O
l-l .

& 4J

4J K
CH U-i

*"»•«•

WO

-— QO'O

NounaiHisia Ainisvaoad jniop

61

3

X!
CD <0

3 >

c s
o o
•H TJ

H <D

en a
a; m
4-1 4J

i OJ c
U -H
o o

0)

x: i-i

u u

e^'O

Nounsiiusia .unisvsoad iNior

o?

en re

3 >
C 6
o o

+1 C
10 01H 05

•H (1)

w a,

11 0)

*J 4J

(1) C
M H
O n
en Li

H
Q (1)

4J

(!) CD

J5 U
+J

M -H
O Q

Nounaiaisia MiimvBQUd iniop

63

appear to be virtually identical. The dip that was

present in the 50 and 100 point approximation is no

longer noticeable. The error has been reduced to

0.0000006 and the maximum deviation is 0.0051283.

The Monte Carlo approximation for 5049 unique r

locations is plotted in Figures 5.14 and 5.15. The Monte

Carlo approximation has improved with an increase in r

locations. Nevertheless, the discrete approximation is

still more accurate than the Monte Carlo approximation.

The mean squared error is 0.0000302, which is fifty times

larger than the discrete approximation's error. The

maximum deviation is three times larger than the discrete

approximation at 0.0151759.

In Figure 5.16 and 5.17 the mean squared error and

the maximum standard deviation is plotted as a function

of unique r locations for both the discrete simulation

program and the Monte Carlo program. In Figure 5.16, the

discrete approximation approaches zero with little

variation as the number of unique r locations increases.

The Monte Carlo approximation decreased to zero also,

however the distribution is scattered and unpredictable.

In Figure 5.17, the maximum deviation of the two

simulations decrease as the number of unique r locations

increases. Again, the Monte Carlo data is scattered from

one value to the next. The general trend of the Monte

64

HI

u
3
01

™ 4J

3 ?

rt 0> •

f OC'«

ae-o

o

Nounaimsia AintavBoad iniop

65

f Of*-

*>•«•

OO'O

Noiinaiaisia Ainisvsoad iNior

b6

ow-*o-*

o*--«coc

oa-ozoz I

<ooooocn«) aoaaj caavnos NV3H

67

DX'T^OV

o»-«eoc

oo-ozoz

oa- uzo u

o
o

in

o

NOUWA3Q Wn^lXVW

68

Carlo simulation is a decrease in the mean squared error

and the maximum deviation as the number of r locations

increase. The large scatter of error and deviation of

the Monte Carlo method is caused by the statistical error

associated with the generation of the random numbers.

Because the generated numbers are random, the variation

from one r location to the next is unpredictable.

In Figures 5.18 and 5.19 the mean squared error and

the maximum deviation is plotted again for both the

discrete simulation and the maximum deviation. However,

in Figures 5.18 and 5.19 these values are plotted as

functions of computer processing unit time. The figures

are very similar to the previous two plots. The discrete

simulation data is constantly decreasing and very

predictable, while the Monte Carlo data is quite

scattered.

A way to minimize the Monte Carlo scatter is to use

a larger number of r locations. Increasing the number of

r locations would lead to an increase of computing time

and money. Therefor, the main advantage of the discrete

simulation over the Monte Carlo simulation is that a

predictable and more accurate representation of the joint

probability distribution function can be approximated

using fewer calculations and less computing time.

69

-r OW LC7

ac-os

(ooooooi-) aoaaa aauvnos nvbw

7

c
o
•H
+J

IB

3
a> E
E -H
-H CO
Ei

a)

en +j 4J

> -h <u

c u
c 3 u
O WH CTi-H
4J C D
(0 -rH

-H U] T3
> 0) c
a) a) io

Q o
o o

E U r-l

10

10 JJ <D

E 3 +J-
o, c
E O
O £
u

o

as«* lo^

vu'ti

S/1'OO L

acos

l/l

a
Z

a
y
a

u
2

F

3
a
u

N0UVIA33 (NniNIXVfl

71

CHAPTER VI

CANTILEVER I-BEAM

The beam problem discussed in this section was

chosen to illustrate how the discrete simulation program

could be used in an engineering application. Each random

variable's density function was simulated using 100

discrete points. The "special" distribution subroutine

was used to construct the joint probability density

functions of algebraic expressions containing more than

two random variables.

PROBLEM

The cantilever I-beam, shown in Figures 6.1 and 6.2,

is made by welding three steel (ASTM A7) plates together.

Determine

:

a) The joint probability density and distribution

functions for:

1. The maximum moment M

2. The deflection at B

3. The slope at B

72

Figure 6.1a

Cantilever I-Beam
Subjected to a Uniform Load, W

$-
/

A

Figure 6.1b

Free-Body Diagram
of a Cantilever I-Beam

Subjected to a Uniform Load,

U u V V , ,

T«

73

Figure 6.2

Cross Section of the Cantilever I-Beam

i=r=^

Neutral
axis

A-k.
i
f

74

4. The maximum stress

5. The maximum shear

b) The reliability of the I-beam.

The dimensions and metal properties of the I-beam

are assumed to be random variables with known probability

density functions. These values are listed in Table 6.1.

Table 6.1
Random Variables for a Cantilever I-Bean

Random Standard
Variable Mean Deviation Units Distribution

a 6.00 0.2500 inches Normal
b 0.50 0.0625 inches Normal
c 0.50 0.0625 inches Normal
d 8.00 0.2500 inches Normal
e 6.00 0.2500 inches Normal
f 0.50 0.0625 inches Normal
E 30E6 4.5E5 psi Normal
L 16.00 1.0000 feet Normal
wo 45.00 33.3333 lb/inch Uniform
S u 65.6E3 2.43E3 psi Normal
s
y

42.7E3 4.86E3 psi Normal

75

SOLUTION

a) 1. The maximum moment for a cantilever beam with a

uniform load can be expressed as,

M W L2
(6.1)max j

Figures 6.3 and 6.4 show the joint probability

distribution and density functions of the maximum moment.

The maximum moment ranges from 59,877.02 to 78,638.19

foot-pounds with a mean value of 69,121.85 foot-pounds.

2. The maximum deflection at point B is equal to

*max " Eoh
4

(6.2)
8EI

Before the deflection can be calculated, the joint

probability distribution function of the moment of

inertia must be approximated. Using the Parallel-Axis

Theorem, the moment of inertia can be expressed as the

equation,

(ab)/12 + ab(d/2 + b/2)
2

+ (cd
3
)/12 + (ef

3
)/12

+ fe(f/2 + d/2)
2

(6.3)

76

C 4J

O C

2«

H-3JS

•H J)

H 4-1

ja
fO 4-1

,

xi o
o
u

e L -acaaz

= Z. 'CC L L^.

a
c
a
o

i

+j

o
o

s-t^- L e?^9

BS'

co'iiaes

E
o

::

uopoanj uofq-nqT^^s-pa A:»TT.Tqi=qo;t<j ^uxor

77

i l -scaa^i

d n

9s*esa-fc-^.

:^i -cc i. u^.

•H .. to

xi 2 o
u ^ <0

s
H

e-t*- l acz.9

9Z'8S9C9

co -^L^e ©s

3
E
H
X
ra

uof^ounj A^tsusq A^ftfqeqojd ^ufop

Figures 6.5 and 6.6 show the probability

distribution and density functions of the moment of

inertia. Once the moment of inertia's distribution has

been determined, the joint probability density and

distribution functions for the maximum deflection are

approximated. Figures 6.7 and 6.8 show the joint

probability distribution and density functions of the

deflection at point B. The expected value of the

deflection is 1.977 inches with a minimum possible value

of 1.4 and a maximum value of 2.82 inches.

3. The slope <j>, at point B can be written as,

<(> = Woi
3

(6.4)
6EI

The joint probability distribution and density

functions are plotted in Figures 6.9 and 6.10. The

discrete simulation predicts that the mean value of the

slope at point B is 0.786 degrees, and the range of

possible slope values is from 0.56 to 1.11 degrees.

4. The maximum stress of the cantilever I-beam

occurs at the furthest distance from the neutral axis.

The equation for the maximum stress is

smax
= Mld/2+f) (6.5)

I

79

3 "-

i5
M

H E

H 0)

<u a
a I

>, E ^

IB

S'
u
A.

•P
c
H
o
ra

to

o

CQ-O^. L

3^. '-t^S I

u

c

s
o

uof^ounj uoxq-nqxa^sxa Aq.TT.Tqeqoja }U"F°r

c

H 1U

C io

3 -rH e
fa J-> ft

M 0)

>, 91 a
+J C I

rl M M
*£> en
• C u lj

iO 0) 0)

Q >
01 -U 0)

M >, c rH

3 4J CD -H
Oi •H E *J

H rH

H £
n3 a;

.0 £
4J

U
a, in

cH

c

u
10

IU

1
' '

i i i i i i 1 i

i i

i i

i
i i i i 1 i i »—i

i
i i i i

+ n a a
n a •-

e N CO D)

i h n C
n « IN r

a a a o

d D d d d

CO'O^ L

3^ '-t^S L

"J

-C

c

C

CB'SO I.

C
as

£H

z.

uoT^ounj Aq.TSU3Q A^TiTqeqojid q.ufor

81

C
O
H
4J

U
c
p
Cu C

o
C -H
O JJ

•H O
4J <D

3 ^
,

X! IP.

-H OJ

u a

P 10

•H E
,

^H
•H CD

XI J3
10 JJ

,

XI
O 4-1

M
ft

^«" L

B9' I

<1>

c

0)

Q

uoi^Dutij uoxq-nq-uj^sxa A^TTTqeqoja q.uxor

82

•H in 1-1

m a

Q = >

si-

H «

uox^ounj Aq.xsuaa A:}TXTqeqo;ra }ujor

S3

T I L'

^.9-0

V
u

0)

•D

C

I)

o

a

uox^aunj uoT^nqTiisxa Aq.TiTqeqoj<j ^uior

84

o
•H
+J

fc 5
E
10

5)

1

^1

a) t< 0)

>
(1)

-H
4J

G
m

3"
^5

u

£*K

oo-

01

•O

T3
C

Hi

J3

Z.9 -

0)

a*
o

p. ,_

(1 ID 1"

<t N

uox^ounj Aq.Tsuaa A^fxfqEqoad q-uxor

85

The expected value of the maximum stress is

28,944.26 psi. It is interesting to note that the range

of possible maximum stress values differ by as much as

22,000 psi. The joint probability density and

distribution functions are plotted in Figures 6.11 and

6.12.

5. The maximum value of the first moment of area

occurs at the neutral axis. Since the width of the beam

is thin at the neutral axis, the maximum shearing stress

occurs at this point. The equation for the maximum shear

stress can be written as

Tmax = M^ L(ab(b/2+d/2) + cd"/8) (6.6)
Ic

The expected value of the maximum shearing stress is

2,280.38 psi, and the range of possible shear values is

from 1,171 to 4,441 psi. The joint probability density

and distribution functions are plotted in Figures 6.13

and 6.14.

b) The reliability of the beam is equal to unity minus

the probability of failure. If the stress in the beam

exceeds the yield stress, the beam is presumed to have

failed. Using this criteria, if the ratio of the maximum

e

•H
+i

o
c
3
b

tion ress

Beam

H
3 -P
XI CO

M
^H

lity

Distri

he

Maximum

Cantilever

U3

o
M
3

H
i.

H -M M

««^
0 ° °

c;z*-b-ce L-b-

SZ *Z-t--b-^.C

OE>6i 6 U

uopoun^ uoT^nqijq.sTa A^T-[xqpqo^d ;uior

87

H »'

cz --b-ce l *-

s *z -t» -b- ^le

006/.6 L

N a «
N a N * N
r- a

a
a
a a

uoT^ourij A^isusa A^xtxqpqoJd ^utoc

c

•H
-P

a

txj CO

H>

C ki

4J

H W
4J

3 U
XI 10H (U

Vj -C
4J CO

a si
0,-H ^

sis
rO £
XI 4-1

o

o. o

4J

aH
o
>1

fO

L = " L t^-^-t^

ssva^e

SS'SitS

99'gzs I

o^- kZU

uox^Durij uoT^nqTj^sxa A^TixqeqoJd }uxor

c
o
•H
+>
u
a (0

II =

•H ^ tO

ss ^s,_ c

4- sa'6ii

+ 99'SZS L

o^.* k^ i- i

uoT^ounj A^xsuaa A^Tixqpqojca 4UTOf

90

stress in the beam to the yield stress is greater than

one, failure occurs. The joint probability and density

functions for the stress ratio are plotted in Figures

6.15 and 6.16. Using the joint probability distribution,

the reliability of the system can be determined. From

Figure 6.15 the probability of the stress ratio being

less than or equal to one is equal to approximately 98%.

Therefore, the probability of failure is roughly 2% and

the probable reliability of the I-beam structure is 98%.

91

c
oH
o
c
3

a
-he

: urn
, -HO)
; xn
en I

OK
KM)

W >

0-i
•rH -H
P JJ

1
10 C
a, m
u

(0
w

c
H
O

s^-o

>1

— SCO

o o a o o

92

c

H
+J

O
c
3 h e

0) [0H 0)

CUM
II CO 0)

Q W >
<D

I* O rl
+J -H -H
H J-l +JH« C
H OS (0

a u
id <u

J2 -C (0

O 4J

M M-l

0, U-l O
O

+ as -o

>-

ZZ.-0

^S'O

uopautij A^tsusq A^T-[TqeqoJd ^uior

=

1)

a

a

O
u

tfl

93

CHAPTER VII

BOUNDING

During the development of the discrete simulation

algorithm, a new technique was investigated that

approximates the upper and lower bounds of a joint

probability distribution function of an algebraic

expression containing several independent random

variables. Although a formal proof of the bounding

theory has not been written, the results of the program

have been compared with several known solutions with good

results. In this chapter, the procedure used to obtain

the
_
upper and lower bounds of a joint probability

distribution function is discussed.

Using the same method of cell development as the

discrete simulation technique discussed in Chapter 3, two

curves are developed that bound the exact joint

probability distribution function of an algebraic

expression. The bounding approximation divides the two

known random variables' density functions into a given

94

number of cells. The upper and lower bounds of each cell

are noted as well as the cell's center of gravity (See

Figure 7.1).

o
c
3

XI
(0

a
o
u

Figure 7.1

Known Probability Density Functions
for Random Variables 1 and 2

c

to

c
0)

a

X!
a)

X!

n-1 eg n

Random Variable 1

m-1 eg

Random Variable 2

M and n are arbitrary cell divisions within the

random variables', x
±
and Xj, known density functions.

Since each cell is represented using three locations,

95

there are nine possible outcomes that need to be

considered.

z
l = z < x l< a n-l>- x 2< b m-l>> < 7 -D

Z
2

- Z(X
1

(an _ 1), X
2
(bcg))

z
3

' z < xl< an-l>' X2<V>
z
4

" z < xl< acg>' x
2
(bm-l>>

z
5

= z < x l< acg)' x 2< b cg>>

Z
6

" z < xl< acg'' X2<V>
z
7 = «U1 <«n)' ,x2«bin-l>»

Z
8

= Z(X
1

(an), X
2
(bcg))

Z
g

= Z(Xl(an), X
2

(bm))

The nine values are compared with each other. The

maximum value is stored in the lower Z bounding array and

the minimum value is stored in the upper Z bounding

array. Each bounding distribution is then assembled

independently using the same distribution and sort

subroutines used for the discrete approximation. Figure

7.2 shows the upper and lower bounds of a hypothetical

joint distribution function.

96

Figure 7.2

Upper and Lower Bounding
Curves of a Hypothetical

Joint Distribution Function

The bounding program was compared with the exact

solution of the probabilistic Pythagorean random variable

discussed in Chapter 5. The bounding approximation

bounded both the exact solution as well as the

approximated joint probabilistic distribution function.

97

Figure 7.3 shows the exact solution and the upper and

lower bounding curves using 100 cells per random

variable

.

The bounding routine was also compared to Wu '

s

fast

probability integration (FPI) approximation 23 of the

probability of failure of a bar in tension. The

probability of failure, P is symbolized as

P
f

= P(g<0) (7.2)

where g is equal to the equation

g = R - (4T/7TD 2
) (7.3)

R and D are independent normal random variables. R

has a mean of 170.0 N/mm and a variance of 625.0 N/mm .

D has a mean and variance of 29.4 mm and 9.0 mm

respectively. T is equal to 50 kN. Table 7.1 lists Wu '

s

approximation as well as the exact solution and the upper

and lower bounding approximations. An example of the

output using ten cells per random variable is listed in

the Appendix.

Table 7.1 shows that as the number of cell divisions

per density function increase for each random variable,

9 8

T S6'Z

-r <?-* I

V-^'O

Nonnaiyisia Aimavaoad lNior

99

the upper and lower bounds converge toward the exact

solution.

Table 7.1

Bounding Probabilities of Failure
of a Bar in Tension

Number of FPI
Discrete Points/ Lower Exact Approx- Upper
Density Function Bound Solution imation Bound

100 0.00030 0.00230 0.00229 0.0114
120 0.00032 0.0098
150 0.00043 0.0083
200 0.00061 0.0068

The subroutines, Bookbound and Outputbound, that

approximate the upper and lower bounds are listed in the

Appendix.

105

CHAPTER VIII

CONCLUSIONS

The purpose of this study was to develop a computer

simulation package that is capable of approximating the

joint probability distribution function of a complex

algebraic expression containing several independent

random variables. A discrete simulation technique was

developed and implemented on a Harris H-800 Super

Mini-Computer

.

In Chapter 3 the discrete simulation technique is

discussed. Although the discrete simulation method is

similar to the Monte Carlo technique, the discrete method

divides each random variable's known density function

into a given number of n discrete sections with equal

areas. Each area is then represented by a single

discrete point with a probability of 1/n. Using the

discrete points, all possible combinations of the

algebraic expression are simulated. After all the

outcomes have been computed, the joint distribution

101

function is assembled by sorting the data and summing the

ordered values probabilities. The approximate shape of

the density function is simulated using cubic splines and

a histogram.

The computer programs that are used to approximate

the joint probability distribution and density functions

are described in Chapter 4. Because of storage problems,

the simulation package had to be divided into four

separate programs. The programs are listed in the

Appendix.

In Chapter 5 the discrete approximation is compared

to the traditional Monte Carlo technique for a joint

probability distribution that can be solved exactly. The

joint probability distribution function of the equation

f a circle is approximated using both methods and the

results are compared to the exact solution of the joint

distribution function. The programs were run three

times. Each time an increasing number of points was used

to represent each random variable. The joint probability

distributions are plotted vs. the exact solution for each

case. As expected, the accuracy of each method improves

with an increase of number of points used to represent

each random variable's density function. However, the

accuracy of the discrete simulation is better for each

102

o

case than the Monte Carlo simulation. The mean squared

error and the maximum deviation is plotted as a function

of number of unique outcomes and computer processing unit

(CPU) time. The discrete simulation plots are very well

behaved and consistently decreasing with an increasing

number of outcomes and CPU time, while the Monte Carlo

data is scattered and erratic.

In Chapter 6 an example of how the discrete

simulation method can be used as a tool by engineers to

aid in the design and development of structures and

components is presented. A cantilever I-beam is

analyzed. Each variable is assumed to be random with a

known probability distribution. Using the discrete

simulation programs, the joint probability and density

functions are approximated for the maximum moment, the

deflection at the end of the beam, the slope at the end

of the beam, the maximum stress, the maximum shear, and

the reliability of the beam.

In Chapter 7 a different technique is discussed that

determines the upper and lower bounds of a joint

probability distribution function using the discrete

approximation. Although a formal proof has not been

developed for the bounding theory, the program was run

for several known cases with good results.

103

In summary, a discrete simulation algorithm was

developed to approximate the joint probability

distribution function of complex algebraic expressions

containing several independent random variables.

Although there are a few methods available for

approximating the joint probability distribution

functions of algebraic expressions, they usually involve

complex mathematical operations that are too cumbersome

for the average design engineer. The discrete simulation

method developed in this study does not involve any

complex mathematical operations, is easy to use, and is

capable of being used in a wide variety of engineering

applications.

104

CHAPTER IX

RECOMMENDATIONS FOR FURTHER STUDY

There are many possible extensions of the discrete

simulation method that can be investigated following this

study. A few suggestions are to:

1. Develop a faster sorting routine which would

decrease computing time.

2. Expand the program to allow the use of more

discrete points to represent each random

variable's density function.

3. Modify the program so that the variables are

represented using double precision.

4. Investigate the accuracy of the discrete

simulation program for an algebraic

expression containing more than two random

variables in which an exact solution exists.

5. Develop a formal proof of the bounding

theory discussed in Chapter 7.

105

LIST OF REFERENCES

1. Haugen, E.B., Probabilistic Mechanical Design , John
Wiley & Sons, Inc., New York, 1980.

2. Springer, M.D., The Algebra of Random Variables ,

John Wiley & Sons, Inc., New York, 1979.

3. Law, A.M. and Kelton, W.D., Simulation Modeling and
Analysis , McGraw-Hill Book Company, New York, 1982.

4. Hammersly, J.M., and Handscomb, D.C., Monte Carlo
Methods , John Wiley & Sons, Inc., New York, 1964.

5. Bury, K.V. , "On Probabilistic Design," Journal of
Engineering for Industry, November 1974, pp.
1291-1295.

6. Mittenbergs, A. A., "Fundamental Aspects of
Mechanical Reliability," A.S.M.E. Design Conference,
New York, 1965, pp. 17-35.

7. Balkey, K.R., Meyer, T.A., and Witt, F.J.,
"Probabilistic Structural Mechanics, Chances Are...,"
Mechanical Engineering, July 1986, pp. 56-62.

8. Elishakoff, I., "Impact Buckling of Thin Bar Via
Monte Carlo Method," ASME Journal of Applied
Mechanics, Vol. 45, September 1978, pp. 586-590.

106

Lindberg, H.E., "Impact Buckling of a Thin Bar,"
ASME Journal of Applied Mechanics, Vol. 32, 1965,
pp. 312-322.

10. Elishakoff, I., "Buckling of a Stochastically
Imperfect Finite Column on a Nonlinear Elastic
Foundation-A Reliability Study," ASME Journal of
Applied Mechanics, Vol. 46, 1979, pp. 411-416.

11. Elishakoff, I., "Reliability of Axially Compressed
Cylindrical Shells with General Nonsymmetric
Imperfections," ASME Journal of Applied Mechanics,
Vol. 52, 1985, pp. 122-128.

12. Martin, W.R., Nowak, P.F., and Rathkopf, J. A.,
"Monte Carlo photon transport on a vector
supercomputer," IBM J. Res. Develop., Vol. 30,
2, Marck 1986, pp. 193-201.

13. Ramsay, R.J., Mirza, S.A., and MacGregor, J.G.

,

"Monte Carlo Study of Short Time Deflections of
Reinforced Concrete Beams," ACI Journal, August
1979, pp. 897-917.

14. ACI Committee 318, "Building Code Requirements for
Reinforced Concrete (ACI 318-63) ," American Concrete
Institute, Detroit, 1963, 144 pp.

15. ACI Committee 318, "Building Code Requirements for
Reinforced Concrete (ACI 318-71)," American Concrete
Institute, Detroit, 1971, 78 pp. Also ACI 318-77,
1977, 104 pp.

16. Dao-Thien, M., Massoud, M. , "On the Probabilistic
Distributions of Stress and Strength in Design
Problems," The American Society of Mechanical
Engineers, Paper No. 74-WA/DE-7, 7 pp.

107

17. Hasofer, A.M., and Lind, N.C., "Exact and Invariant
Second-Moment Code Format," Journal of the
Engineering Mechanics Division, ASCE, Vol. 100, No.
EMI, Feb. 1974, pp. 111-121.

Rackwitz, R., and Fiessler, B., "Structural
Reliability Under Combined Random Load Sequences,"
Journal of Computers and Structures, Vol. 9, 1978,
pp. 489-494.

19. Chen, X., and Lind, N.C., "Fast Probability
Integration by Three Parameter Normal Tail
Approximation," Structural Safety, Vol. 1, 1983, pp.
169-176.

20. Wu, Y.T., and Wirsching, P.H. "A New Algorithm for
Structural Reliability Estimation," Submitted for
review to Journal of Engineering Mechanics, ASCE
1985.

21. Wirsching, P.H., and Wu, Y.T., "Advanced Reliability
Methods for Structural Evaluation," Journal of
Engineering for Industry, Vol. 109, Feb. 1987, pd
19-23.

22. Ditlevsen, O. , "Principle of Normal Tail
Approximation, " Journal of Engineering Mechanics
Division, ASCE, Vol. 107, Dec. 1981, pp. 1191-1208.

23. Wu, Y.T., "Demonstration of a New, Fast Probability
Integration Method for Reliability Analysis,"
Journal of Engineering for Industry, Vol. 109, Feb
1987, pp. 24-28.

24. Lockwood, F.C., and Shah, N.G., "New Method for the
Computation of Probability Density Functions in
Turbulent Flows," AIAA Journal, Vol. 20, No. 6, June
1982, pp. 860-862.

108

25. Sturges, H.A., "The Choice of a Class Interval,"
ASA, 21, 1926, pp. 65-66.

26. Hornbeck, R.W. , Numerical Methods , Quantum
Publishers, Inc., New York, 1975.

27. Devore, J.L., Probability and Statistics for
Engineering and the Sciences , Brooks/Cole Publishing
Company, Monterey, California, 1982

28. Hajek, J., and Dupac, V., Probability in Science and
Engineering , Academic Press, New York, 1967.

29. H-S. Ang, A., and Tang, W.H., Probability Concepts
in Engineering Planning and Design . Volume I-Basic
Principles, John Wiley & Sons, Inc., New York, 1975.

109

APPENDIX A

DISCRETE SIMULATION PROGRAM

110

*

c ***
c * *
C * PROGRAM NAME: DISCSIM (DISCRETE SIMULATION AND BOUNDING) *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C *

C * DATE: MARCH 26, 1987
C *

C * PURPOSE: PROGRAM "DISCSIM" APPROXIMATES THE JOINT PROBABILITY
C * DISTRIBUTION FUNCTION OR THE UPPER AND LOWER BOUNDING
C * CURVES OF A DISTRIBUTION FUNCTION FOR AN ALGEBRAIC
C * EXPRESSION CONTAINING TWO INDEPENDENT RANDOM VARIABLES.
C * THE RANDOM VARIABLE'S DENSITY FUNCTIONS ARE APPROXIMATED
C * USING A FINITE NUMBER (2-200) OF DISCRETE LOCATIONS. THE
C * FUNCTION MUST BE INSERTED IN SUBROUTINE "FUNCTION".
C *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES BOOK
c * BOOKBOUND
c * CELLR
C * DIST
C * DISTRIBUTION
c * FUNCTION
c * NORMAL
C * NORMINV
C * OUTPUT
c * OUTPUTBOUND
c * SORT
C * SPECIAL
C * TRIANGLE
C * UNIFORM
C *

C * DESCRIPTION OF PARAMETERS:
C * INPUT ARGUMENTS: *
c * ANSB - CHARACTERS - IF ANSB IS EQUAL TO 'Y' THEN THE *
c * PROGRAM COMPUTES THE UPPER AND LOWER BOUNDS OF *
c * THE JOINT DISTRIBUTION FUNCTION AS WELL AS THE *
c * DISCRETE APPROXIMATION FUNCTION. IF ANSB IS *
c * EQUAL TO 'N' THEN THE PROGRAM COMPUTES ONLY THE *
c * DISCRETE APPROXIMATION OF THE JOINT *
C * DISTRIBUTION FUNCTION. *
c * DISREP(NUM) - CHARACTER*10 - DISREP CONTAINS THE *
c * TYPE OF PROBABILITY DISTRIBUTION FOR VARIABLE *
c * NUM (NORMAL, UNIFORM, TRIANGULAR, SPECIAL). *
c * DISTR(NUM) - INTEGER - THE NUMBER OF THE DISTRIBUTION *
c * FOR RANDOM VARIABLE NUM (l=NORMAL, 2=UNIFORM, *
c * 3=TRIANGULAR, 4=SPECIAL) . *
c * NAME - CHARACTER*30 - NAME IS THE INPUT DATA FILE NAME *
c * OF THE SPECIAL DISTRIBUTION FUNCTION FOR *

111

*

C * RANDOM VARIABLE NUM. 4

C * NAME2 - CHARACTER*30 - NAME2 IS THE OUTPUT DATA FILE *

C * NAME OF THE JOINT DISTRIBUTION FUNCTION. *

C * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
C * LOCATIONS THAT APPROXIMATE THE PROBABILITY *
C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
C * NUM - INTEGER - THE NUMBER OF THE RANDOM VARIABLE. *
C * VARIANCE - REAL - THE VARIANCE VALUE FOR RANDOM *
C * VARIABLE NUM. *
C * *
C * OUTPUT ARGUMENTS: *
C * A(N) - REAL - WHERE N=NCELLS*2 , ODD VALUES OF N *
c * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND *
c * EVEN VALUES OF N INDICATE THE CELL BOUNDARIES. *
c * B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *
c * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *
C * DENSITY FUNCTION. *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
c * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
c * LB(NCELLS() ,2) - REAL - CONTAINS THE LOWER BOUND *
c * LOCATION FOR CELL NCELLSt)

.

*
c * LBCOUNT - INTEGER - LBCOUNT IS THE NUMBER OF UNIQUE *
c * LB(,) LOCATIONS OF THE LOWER BOUND *
C * DISTRIBUTION FUNCTION. *
c * MEAN(NUM) - REAL - THE MEAN VALUE FOR RANDOM VARIABLE *
C * NUM. *
c * UB(NCELLS(),2) - REAL - CONTAINS THE UPPER BOUND *
c * LOCATION FOR CELL NCELLS(). *
c * UBCOUNT - INTEGER - UBCOUNT IS THE NUMBER OF UNIQUE *
c * UB(,) LOCATIONS OF THE UPPER BOUND *
C * DISTRIBUTION FUNCTION. *
c * Z(COUNT.l) - REAL - THE Z VALUE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
c * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
c * THAN OR EQUAL TO Z(COUNT,l). *
c * Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * TIMES Z(COUNT,l) WAS REPEATED DURING THE *
C * SIMULATION. *
C * ZLB(COUNT,l) - REAL - THE Z VALUE OF THE LOWER BOUND *
C * OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION. *
C * ZLB(C0UNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
c * THAN OR EQUAL TO ZLB(COUNT,l)

.

*
C * ZLB(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
C * TIMES ZLB(COUNT.l) WAS REPEATED DURING THE *
c * SIMULATION. *
c * ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY *
c * DISTRIBUTION FUNCTION. *

112

c * ZSTANDARD_DEV - REAL - THE STANDARD DEVIATION OF THE *
C * JOINT PROBABILITY DISTRIBUTION Z. *
c * ZUB(COUNT, 1) - REAL - THE Z VALUE OF THE UPPER BOUND *
c * OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION. *
c * ZUB(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
C * THAN OR EQUAL TO ZUB(COUNT,l)

.

*
c * ZUB(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * TIMES ZUB(COUNT.l) WAS REPEATED DURING THE *
C * SIMULATION. *
c * ZVARIANCE - REAL - THE VARIANCE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
C * *

c

INTEGER COUNT,BX,DISTR,NCELLS,NUM,N,UBCOUNT,LBCOUNT
REAL A, B,Z,AREA,PROB.X, TOLERANCE, F,D,SX,W
REAL VARIANCE ,MEAN , ZMEAN , ZVARIANCE , UB , LB
CHARACTER DISREP*10 ,NAME*20 ,NAME2*20 ,ANSB*1
COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT
COMMON/SECOND /DISTRC2) ,NCELLS(2) ,VARIANCES) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2) ,LB(0:400,2) ,ANSB
COMM0N/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBC0UNT
OPEN (UNIT=23,FILE='W2')

320 WRITE (3,*)
WRITE (3,300)

300 FORMAT (2X, 'SIMULATION AND BOUNDING (Y/N) ?')
READ (0,310) ANSB

310 FORMAT (Al)
IF (ANSB. NE.'Y'.AND.ANSB. NE.'N') THEN

GOTO 320
END IF

DO 10 NUM=1,2
CALL DIST

10 CONTINUE
IF (ANSB.EQ.'Y') THEN

CALL BOOKBOUND
CALL OUTPUTBOUND

ELSE
CALL BOOK
CALL OUTPUT

END IF

CLOSE 23

STOP
END

113

SUBROUTINE BOOK
C ***
C * *
C * PROGRAM NAME: SUBROUTINE BOOK *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C * *
C * DATE: MARCH 4, 1987 *
C * *
C * PURPOSE: SUBROUTINE BOOK SIMULATES THE JOINT DISTRIBUTION FUNCTION *
C * OF TWO RANDOM VARIABLES FOR THE DISCRETE APPROXIMATION. *

C * *
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES DISTRIBUTION *

C * FUNCTION *
C * SORT *

C * *
C * USAGE: CALL BOOK *
C * *
C * DISCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *

* B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *
C * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *
C * PROBABILITY DENSITY FUNCTION. *
C * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
c * LOCATIONS USED TO APPROXIMATE THE PROBABILITY *
C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *

* NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE *
C * RANDOM VARIABLE. *
C * OUTPUT ARGUMENTS: *
C * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
c * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
c * TIME - INTEGER*3 - VARIABLE TIME IS THE TOTAL CPU TIME *
C * OF SIMULATION. *
C * Z(COUNT,l) - REAL - THE Z VALUE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
c * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
C * THAN OR EQUAL TO Z(COUNT.l). *
c * Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * TIMES Z(COUNT,l) WAS REPEATED DURING THE *
C * SIMULATION. *
c * ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY *
C * DISTRIBUTION FUNCTION. *
c * ZVARIANCE - REAL - THE VARIANCE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
C *

c ***
c

114

COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT
C0MM0N/SEC0ND/DISTR(2) ,NCELLS(2) ,VARIANCE(2) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2),LB(0:400,2),ANSB
COMMON/CBOUND/ZLB(0:40000,3) ,ZUB(0:40000, 3) .UBCOUNT.LBCOUNT
REAL B.Z.SX.F.D .WORK,A, VARIANCE .MEAN, ZMEAN.ZVARIANCE, TOTAL
REAL ZZ.UB.LB
INTEGER COUNT,FLAG,AX,X.Y.NCELLS, NUM. N.DISTR, UBCOUNT.LBCOUNT
INTEGER*3 TIME
CHARACTER DISREP*10 ,ANSB*1
COUNT=0
AX=0
TOTAL=0.0
CALL STIME
Z(0,D—1.0E30

C

c

C

C SIMULATE ALL POSSIBLE COMBINATIONS OF THE FUNCTION Z
C

c

c

DO 10 X=1,NCELLS(1)
DO 20 Y=1,NCELLS(2)

AX=AX+1
CALL FUNCTION (B(X ,1) ,B(Y ,2) ,ZZ)
CALL SORT (ZZ.Z, COUNT, AX)
TOTAL=TOTAL+ZZ

20 CONTINUE
10 CONTINUE
C

c

c

C END OF THE SIMULATION
C

c

C

CALL WTIME
CALL WTIME2 (TIME)
WRITE (3,*) TIME
ZMEAN=TOTAL/FLOAT(NCELLS(l)*NCELLS(2))

C

C

C

C CALCULATE THE JOINT PROBABILITY DISTRIBUTION FUNCTION
C

C

C

CALL DISTRIBUTION (Z .COUNT, ZMEAN.ZVARIANCE ,NCELLS(1)

,

115

NCELLS(2))
RETURN
END

116

*

FUNCTION
SORT

*

SUBROUTINE BOOKBOUND

c * *
C * PROGRAM NAME: SUBROUTINE BOOKBOUND *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C *

C * DATE: MARCH 4, 1987
C *

C * PURPOSE: SUBROUTINE BOOK SIMULATES THE JOINT DISTRIBUTION FUNCTION
C * OF THE TWO RANDOM VARIABLES.
C *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES DISTRIBUTION
C *

C *

c *

C * USAGE: CALL BOOK *
C *

C * DISCRIPTION OF PARAMETERS:
C * INPUT ARGUMENTS: *

c * BOUND(3,2) - REAL - ARRAY BOUND IS A TEMPORARY VARIABLE *

c * THAT COMPUTES THE MINIMUM AND MAXIMUM *

c * COMBINATIONS OF THE TWO CELLS REPRESENTING THE *
C * TWO RANDOM VARIABLES. *

c * B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *
c * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *
c * PROBABILITY DENSITY FUNCTION. *
c * LB(NCELLS() ,2) - REAL - CONTAINS THE LOWER BOUND *
c * LOCATION FOR CELL NCELLSC). *
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
C * LOCATIONS USED TO APPROXIMATE THE PROBABILITY *
c * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
c * NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE *

* RANDOM VARIABLE. *
c * UB(NCELLS(),2) - REAL - CONTAINS THE UPPER BOUND *
c * LOCATION FOR CELL NCELLS(). *
C * OUTPUT ARGUMENTS: *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
c * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
c * LBCOUNT - INTEGER - LBCOUNT IS THE NUMBER OF UNIQUE *
c * LB(,) LOCATIONS OF THE LOWER BOUND *
c * DISTRIBUTION FUNCTION. *
C * UBCOUNT - INTEGER - UBCOUNT IS THE NUMBER OF UNIQUE *
c * UB(,) LOCATIONS OF THE UPPER BOUND *
c * DISTRIBUTION FUNCTION. *
C * TIME - INTEGER*3 - VARIABLE TIME IS THE TOTAL CPU TIME *
c * OF SIMULATION. *

117

c * Z(C0UNT,1) - REAL - THE Z VALUE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
c * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
c * THAN OR EQUAL TO Z(COUNT.l). *
c * Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * TIMES Z(COUNT.l) WAS REPEATED DURING THE *
C * SIMULATION. *
c * ZLB(COUNT.l) - REAL - THE Z VALUE OF THE LOWER BOUND *
c * OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION. *
c * ZLB(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
c * THAN OR EQUAL TO ZLB(COUNT.l)

.

*
c * ZLB(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * TIMES ZLB(COUNT.l) WAS REPEATED DURING THE *
C * SIMULATION. *
c * ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY *
c * DISTRIBUTION FUNCTION. *
C * ZUB(COUNT.l) - REAL - THE Z VALUE OF THE UPPER BOUND *
C * OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION. *
C * ZUB(C0UNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
c * THAN OR EQUAL TO ZUB(COUNT,l)

.

*
C * ZUB(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * TIMES ZUB(COUNT.l) WAS REPEATED DURING THE *
C * SIMULATION. *
c * ZVARIANCE - REAL - THE VARIANCE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
c *

c

COMMON/FIRST/A(0:400) ,B(0:400,2) ,Z(0:40000 ,3) .COUNT
COMMON/SECOND/DISTR(2) ,NCELLS(2) ,VARIANCE(2) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2) ,LB(0:400,2) ,ANSB
COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT
DIMENSION BOUND(3,3)
REAL B,Z,SX,F,D, WORK,A, VARIANCE, MEAN, ZMEAN.ZVARIANCE .TOTAL
REAL ZZ,UB,LB,UBTOTAL,LBTOTAL,UBMEAN,LBMEAN,UBVARIANCE
REAL LBVARIANCE
INTEGER COUNT,FLAG,AX,X,Y,NCELLS,NUM,N,DISTR,UBCOUNT,LBCOUNT
INTEGER LBX.UBX
INTEGER*3 TIME
CHARACTER DISREP*10 ,ANSB*1
COUNT=0
UBCOUNT=0
LBCOUNT=0
AX=0
TOTAL=0.0
UBTOTAL=0.0
LBTOTAL=0.0
WRITE (3,123)

! 18

123 FORMAT (2X, 'START SIMULATION')
CALL STIME
Z(0,D—1.0E30

C

c

c

C SIMULATE ALL POSSIBLE COMBINATIONS OF THE FUNCTION Z

DO 10 X=1,NCELLS(1)
WRITE (3,*) X
DO 20 Y=1,NCELLS(2)

AX=AX+1
LBX=LBX+1
UBX=UBX+1
CALL FUNCTION (B(X,1) ,B(Y ,2) ,ZZ)
CALL SORT (ZZ.Z.COUNT.AX)
ZMIN=1.0E38
ZMAX=-1.0E38
BOUND(l,l)=UB(X,l)
BOUND(2,l)=LB(X,l)
BOUND(3,l)=B(X,l)
BOUND(l,2)=UB(Y,2)
BOUND(2,2)=LB(Y,2)
BOUND(3,2)=B(Y,2)
DO 8000 K=l,3

DO 8010 KK=1,3
CALL FUNCTION (BOUND(K ,1) ,BOUND(KK ,2) ,ZT)
IF (ZT.LT.ZMIN) THEN

ZMIN=ZT
END IF

IF (ZT.GT.ZMAX) THEN
ZMAX=ZT

END IF
8010 CONTINUE
8000 CONTINUE

CALL SORT(ZMIN,ZUB,UBCOUNT,UBX)
CALL SORT(ZMAX,ZLB,LBCOUNT,LBX)
TOTAL=TOTAL+ZZ
UBTOTAL=UB TOTAL+ZMIN
LBTOTAL=LBTOTAL+ZMAX

20 CONTINUE
10 CONTINUE
C

C

C

C END OF THE SIMULATION

119

CALL WTIME
CALL WIIME2 (TIME)
WRITE (3,*) TIME
WRITE (3,124)

124 FORMAT (2X,'END OF SIMULATION')
ZMEAN=TOTAL/FLOAT(NCELLS(1)*NCELLS(2)

)

UBMEAN=UBTOTAL/FLOAT(NCELLS(1)*NCELLS(2)

)

LBMEAN=LBTOTAL/FLOAT(NCELLS(1)*NCELLS(2)

)

C

C

C

C CALCULATE THE JOINT PROBABILITY DISTRIBUTION FUNCTIONS
C FOR THE DISCRETE APPROXIMATION AND THE TWO BOUNDING CURVES
C

C

C

CALL DISTRIBUTION (Z .COUNT, ZMEAN , ZVARIANCE ,NCELLS(1)

,

* NCELLS(2))
CALL DISTRIBUTION (ZLB ,LBCOUNT,LBMEAN,LBVARIANCE,NCELLS(l

)

,

* NCELLS(2))
CALL DISTRIBUTION (ZUB,UBCOUNT,UBMEAN,UBVARIANCE,NCELLS(1)

,

* NCELLS(2))
RETURN
END

120

SUBROUTINE CELLR

c * *
C * PROGRAM NAME: SUBROUTINE CELLR *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C * *
C * DATE: MARCH 3, 1987 *
C * *
C * PURPOSE: SUBROUTINE CELLR COMPUTES THE CENTER OF GRAVITY LOCATIONS *

* FOR A GIVEN CELL WITH A KNOWN PROBABILITY DISTRIBUTION. *
C * *
C * USAGE: CALL CELLR *
C * *
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *
C * *
C * DESCRIPTION OF PRAMETERS: *
C * INPUT ARGUMENTS: *

* A(N) - REAL - WHERE N=NCELLS*2 , ODD VALUES OF N *
c * REPRESENT THE CENTER OF GRAVITY LOCATIONS, AND *
c * THE EVEN VALUES OF N INDICATE THE CELL *
C * BOUNDARIES. *
C * ANSB - CHARACTER*! - IF ANSB IS EQUAL TO T THEN THE *
c * PROGRAM COMPUTES THE UPPER AND LOWER BOUNDS OF *
c * THE JOINT DISTRIBUTION FUNCTION AS WELL AS THE *
c * DISCRETE APPROXIMATION FUNCTION. IF ANSB IS *
c * EQUAL TO 'N' THEN THE PROGRAM COMPUTES ONLY THE *
c * DISCRETE APPROXIMATION OF THE JOINT *
C * DISTRIBUTION FUNCTION. 4
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
c * LOCATIONS THAT APPROXIMATE THE PROBABILITY *
c * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
c * NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE *
C * RANDOM VARIABLE. *

* *
C * OUTPUT ARGUMENTS: *
c * B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *
c * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *
C * DENSITY FUNCTION. *
c * LB(NCELLS() ,2) - REAL - CONTAINS THE LOWER BOUND *
c * LOCATION FOR CELL NCELLS()

.

*
c * UB(NCELLS(),2) - REAL - CONTAINS THE UPPER BOUND *
c * LOCATION FOR CELL NCELLSC)

.

*
C * OUTPUT ARGUMENTS: *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
c * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
C *

121

C ***
C

COMMON/FIRST/A(0:400) ,B(0:400,2) ,Z(0:40000,3) .COUNT
COMMON/SECOND /DISTR(2) ,NCELLS(2) ,VARIANCE(2) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2),LB(0:400,2),ANSB
COMMON/CBOUND/ZLB(0:40000,3) ,ZUB(0:40000,3) ,UBCOUNT, LBCOUNT
INTEGER BX.NCELLS.NUM.COUNT.DISTR.UBCOUNT.LBCOUNT
REAL A, B,Z, VARIANCE ,MEAN,ZMEAN,ZVARIANCE ,UB,LB
CHARACTER DISREP*10 ,ANSB*1
WRITE (3,2)

2 FORMAT (2X, 'ENTERED CELLR')
BX=0
DO 80 K=1,NCELLS(NCM)*2,2

BX=BX+1
B(BX,NUM)=A(K)

80 CONTINUE
C

C FOR BOUNDING
C

IF (ANSB.EQ.'Y') THEN
BX=1

DO 10 I=0,NCELLS(NUM)*2,2
LB(BX,NUM)=A(I)
UB(BX,NUM)=A(I+2)
BX=BX+1

10 CONTINUE
END IF

C

C END F0R BOUNDING
C

RETURN
END

122

*

SUBROUTINE DIST
C ***
C * *
C * PROGRAM NAME: SUBROUTINE DIST *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C * *
C * DATE: MARCH 3, 1987 *
C * *
C * PURPOSE: SUBROUTINE DIST INITIALIZES THE TYPE OF PROBABILITY *
C * DISTRIBUTION FOR EACH RANDOM VARIABLE. *
C *

C * USAGE: CALL DIST
C * *
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES CELLR *
C * NORMAL *
C * NORMINV *
C * TRIANGEL *
C * UNIFORM *
C * SPECIAL *
C * *
C * DESCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * DISTR(NUM) - INTEGER - THE NUMBER OF THE DISTRIBUTION *
c * FOR RANDOM VARIABLE NUM (l=NORMAL, 2=UNIFORM, *
c * 3=TRIANGULAR, 4=SPECIAL)

.

*
c * NUM - INTEGER - THE NUMBER OF THE RANDOM VARIABLE. *
C *

*
C * OUTPUT ARGUMENTS: *
c * A(N) - REAL - WHERE N=NCELLS*2 , ODD VALUES OF N *
C * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND *
c * EVEN VALUES OF N INDICATE THE CELL BOUNDARIES. *
c * DISREP - CHARACTER*10 - DISREP CONTAINS THE TYPE OF *
C * PROBABILITY DISTRIBUTION FOR VARIABLE NUM *
c * (NORMAL, UNIFORM, TRIANGULAR, SPECIAL). *
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
C * LOCATIONS THAT APPROXIMATE THE PROBABILITY *

DENSITY FUNCTION OF RANDOM VARIABLE NUM. *C *

C * *
A***********************************^^^^^^^^^.^^^^^^^^^^^^^^^^^^

COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT
COMMON/SECOND /DISTR(2) ,NCELLS(2) ,VARIANCES) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2) ,LB(0:400,2) ,ANSB
COMMON/CBOUND/ZLB(0:40000,3) ,ZUB(0 :40000 ,3) ,UBCOUNT,LBCOUNT
INTEGER DISTR, NUM, NCELLS, COUNT, LBCOUNT.UBCOUNT
REAL VARIANCE, MEAN,A, B,Z,ZMEAN,ZVARIANCE,UB, LB
CHARACTER DISREP*10 ,ANSB*1

123

5 WRITE (3,*)
WRITE (3,10)

10 FORMAT (2X, 'DISTRIBUTIONS')
WRITE (3,20)

20 FORMAT (2X,'l) NORMAL')
WRITE (3,30)

30 FORMAT (2X,'2) UNIFORM')
WRITE (3,40)

40 FORMAT (2X,'3) TRIANGULAR')
WRITE (3,50)

50 FORMAT (2X,'4) SPECIAL')
WRITE (3,80) NUM

80 FORMAT (2X, 'ENTER NUMBER OF DISTRIBUTION FOR VARIABLE' ,13)
READ (0,*) DISTR(NUM)
IF (DISTR(NUM).GT.4) GOTO 5

IF (DISTR(NUM).EQ.l) THEN
DISREP(NUM) = 'NORMAL'
CALL NORMAL

ELSE
IF (DISTR(NUM).EQ.2) THEN

DISREP(NUM)='UNIFORM'
CALL UNIFORM

ELSE
IF (DISTR(NUM).EQ.3) THEN

DISREP(NUM)='TRIANGULAR'
CALL TRIANGLE

ELSE
IF (DISTR(NUM).EQ.4) THEN

DISREP(NUM)='SPECIAL'
CALL SPECIAL

ELSE
GOTO 5

END IF

END IF

END IF

END IF

RETURN
END

124

*

SUBROUTINE DISTRIBUTION (Z ,COUNT,MEAN, VARIANCE, NCI ,NC2)

C *

C * PROGRAM NAME: SUBROUTINE DISTRIBUTION *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C *

*
C * DATE: MARCH 23, 1987 *
C * *
C * PURPOSE: SUBROUTINE DISTRIBUTION COMPUTES THE JOINT DISTRIBUTION *
C * FUNCTION OF RANDOM VARIABLE Z. *
C * *
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *
C * *
C * USAGE: CALL DISTRIBUTION(Z,COUNT,MEAN, VARIANCE, NCI ,NC2) *
C * *
C * DESCRIPTION OF PARAMETERS:
C * INPUT ARGUMENTS: *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
c * MEAN - REAL - THE MEAN OF THE JOINT PROBABILITY *
c * DISTRIBUTION FUNCTION. *
c * NCI - INTEGER - THE NUMBER OF DISCRETE LOCATIONS THAT *
c * APPROXIMATE THE PROBABILTIY DENSITY FUNCTION *
c * OF RANDOM VARIABLE 1. *
c * NC2 - INTEGER - THE NUMBER OF DISCRETE LOCATIONS THAT *
C * APPROXIMATE THE PROBABILTIY DENSITY FUNCTION *
c * OF RANDOM VARIABLE 2. *
c * Z(COUNT,l) - REAL - THE Z VALUE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
c * Z(COUNT,2) - REAL - THE NUMBER OF TIMES THE VALUE OF *
C * TIMES Z(COUNT,l) WAS REPEATED DURING THE *
C * SIMULATION. *

C * OUTPUT ARGUMENTS: *
C * VARIANCE - REAL - THE VARIANCE OF THE JOINT PROBABILITY *
c * DISTRIBUTION FUNCTION. *
C * Z(COUNT,3) - REAL - THE PROBABILITY OF Z BEING LESS *
c * THAN OR EQUAL TO Z(COUNT.l). *
C * TIMES Z(COUNT.l) WAS REPEATED DURING THE *
C * SIMULATION. *
C *

c *************44M*WHiHtHMilj^^MMH4t44MittttiHti44i4(.4H

DIMENSION Z(0:40000,3)
REAL Z.ZT, MEAN, VARIANCE
INTEGER COUNT, NCI, NC2

125

ZT=0.0
VARIANCES.
DO 80 1=1, COUNT

Z(I,3)=Z(I,2)
ZT=ZT+Z(I,3)
Z(I,2)=ZT/FL0AT(NC1*NC2)
VARIANCES ((Z(1,1)-MEAN)**2.0)*(Z(1, 3) /FL0AT(NC1*NC2))^

* VARIANCE
80 CONTINUE

RETURN
END

126

SUBROUTINE FUNCTION (X1.X2.ANSZ)

C *

C * PROGRAM NAME: SUBROUTINE FUNCTION *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C *

*
C * DATE: MARCH 23, 1987 *
C *

*
C * PURPOSE: SUBROUTINE FUNCTION COMPUTES THE VALUE OF ANSZ GIVEN *
C * THE VARIABLES XI AND X2

.

*
C *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *

*
C * USAGE: CALL FUNCTION (X1.X2.ANSZ) *

*

C * DISCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * XI - REAL - THE VALUE OF THE FIRST VARIABLE. *
c * X2 - REAL - THE VALUE OF THE SECOND VARIABLE. *
C * OUTPUT ARGUMENTS: *
c * ANSZ - REAL - THE VALUE OF THE FUNCTION GIVEN THE *
c * VALUES OF THE TWO RANDOM VARIABLES XI AND X2 . *
C *

*

c

c

REAL XI ,X2 ,ANSZ
PI-3. 141592654

C

C

C

C ENTER FUNCTION TO BE SIMULATED
c XI • RANDOM VARIABLE 1

c X2 = RANDOM VARIABLE 2
C ANSZ = JOINT RANDOM VARIABLE
C

C

C

C ANSZ=(Xl/2.0)+X2
C ANSZ=SQRT(X1**2+X2**2)
C ANSZ=X1*X2*12.0
C ANSZ=2.5-(X1*X2)
C ANSZ=(Xl/2.0+X2/2.0)
C ANSZ=(Xl*X2**2.0)/2.0
C ANSZ=(X1*(X2**3.0))/6.0
C ANSZ=X1*(X2**2. 0/8.0)
C ANSZ=X1*(1/X2)

ANSZ=Xl-((4*50000)/(3. 141592654*X2**2))

127

C ANSZ=X1/(1+X2)
C ANSZ=LOG10(U+X1)/X2)
C ANSZ=Xl-((4.0*50000)/(PI*X2))
C ANSZ=SQRT(X1**2.+X2**2.)
C

C

C

RETURN
END

128

SUBROUTINE NORMAL
C ******************44444444444444444444*444444444444444444*4444444444444
C *

C * PROGRAM NAME: SUBROUTINE NORMAL *
C * 4
C * WRITTEN BY: BRUCE SWANSON *
C *

C * DATE: MARCH 3, 1987 *
C * *
C * PURPOSE: SUBROUTINE NORMAL FINDS THE NCELL LOCATION ON THE X AXIS *
C * GIVEN A PROBABILITY (AREA) FOR A NORMAL RANDOM VARIABLE. *
C *

*
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES CELLR *
C * NORMINV *
C *

*
C * USAGE: CALL NORMAL *

C * DISCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
C * MEAN(NUM) - REAL - THE MEAN VALUE FOR RANDOM VARIABLE *
C * NUM. 4
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
C * LOCATIONS THAT APPROXIMATE THE PROBABILITY *
c * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
C * NUM - INTEGER - THE NUMBER OF THE RANDOM VARIABLE. *
C * VARIANCE - REAL - THE VARIANCE VALUE FOR RANDOM *
C * VARIABLE NUM. 4

C * OUTPUT ARGUMENTS: *
c * A(N) - REAL - WHERE N=NCELLS*2 , ODD VALUES OF N *
C * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND *
C * THE EVEN VALUES OF N INDICATE THE CELL *
C * BOUNDARIES. 4
C * B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *
C * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *
c * DENSITY FUNCTION. 4
C *
C **********************444
C

COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT
COMMON/SECOND/DISTR(2) ,NCELLS(2) ,VARIANCES) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2) ,LB(0:400,2) ,ANSB
COMMON/CBOUND/ZLB(0:40000,3) ,ZUB(0:40000,3) ,UBCOUNT,LBCOUNT
REAL AREA, A,X.PROB.KAREA, MEAN, VARIANCE, B,Z
REAL ZMEAN,ZVARIANCE,UB,LB
INTEGER NCELLS.K.NUM, COUNT,DISTR.UBCOUNT.LBCOUNT
CHARACTER DISREP*10 ,ANSB*1
WRITE (3,*)

129

WRITE (3,*)
WRITE (3,20) NUM

20 FORMAT (2X, 'NORMAL DISTRIBUTION FOR VARIABLE' ,13)
WRITE (3,30)

30 FORMAT (2X, 'ENTER MEAN')
READ (0,*) MEAN(NUM)
WRITE (3,40)

40 FORMAT (2X, 'ENTER STANDARD DEVIATION')
READ (0,*) VARIANCE(NUM)
VARIANCE(NUM)=VARIANCE(NUM)**2.0
WRITE (3,3) NUM

3 FORMAT (2X, 'ENTER NUMBER OF CELLS FOR VARIABLE ', 13

)

READ (0,*) NCELLS(NUM)
AREA=1 /(FLOAK NCELLS(NUM))*2 .0)
DO 10 K=1,NCELLS(NUM)*2.0

KAREA=AREA*(FLOAT(K))

P=KAREA
CALL NORMINV(P,X,D,IE)
A(K) =X*SQRT(VARIANCE(NUM)) +MEAN(NUM)

10 CONTINUE
A(0)=-A(NCELLS(NUM)*2)
CALL CELLR
RETURN
END

130

c

SUBROUTINE NORMINV (P,X,D,IE)

c *
*

C * PROGRAM NAME: NORMINV *
C *

C * PURPOSE: SUBROUTINE NORMINV WAS SUPPLIED FROM THE SCIENTIFIC *
C * SUBROUTINE PACKAGE (SSP). THE SSP CONTAINS A COLLECTION *
C * OF MATHEMATICAL AND STATISTICAL ROUTINES FOR THE *
C * HARRIS COMPUTER SYSTEM. *

*

C

c

c

C SUBROUTINE NORMINV
C

C PURPOSE
C COMPUTES X - P**(-1)(Y), THE ARGUMENT X SUCH THAT Y= P(X) =
C THE PROBABILITY THAT THE RANDOM VARIABLE U, DISTRIBUTED
C NORMALLY (0,1). IS LESS THAN OR EQUAL TO X. F(X) , THE
C ORDINATE OF THE NORMAL DENSITY, AT X , IS ALSO COMPUTED.
C

C USAGE
C CALL NORMINV (P,X,D,IER)
C

C
.

DESCRIPTION OF PARAMETERS
C P - INPUT PROBABILITY.
C X - OUTPUT ARGUMENT SUCH THAT P » Y = THE PROBABILITY THAT
C U, THE RANDOM VARIABLE, IS LESS THAN OR EQUAL TO X.
C D OUTPUT DENSITY, F(X).
C IER - OUTPUT ERROR CODE
C = -1 IF P IS NOT IN THE INTERVAL (0,1), INCLUSIVE.
C X=D=.99999E+38 IN THIS CASE
C = IF THERE IS NO ERROR. SEE REMARKS, BELOW.
C

C REMARKS
C MAXIMUM ERROR IS 0.00045.
C IF P = 0, X IS SET TO -(10)**38. D IS SET TO 0.
C IF P = 1, X IS SET TO (10)**38. D IS SET TO 0.
C

C SUBROUTINES AND SUBPROGRAMS REQUIRED
C NONE
C

C METHOD
C BASED ON APPROXIMATIONS IN C. HASTINGS, APPROXIMATIONS FOR
C DIGITAL COMPUTERS, PRINCETON UNIV. PRESS, PRINCETON, N.J.
C 1955. SEE EQUATION 26.2.23, HANDBOOK OF MATHEMATICAL
C FUNCTIONS, ABRAMOWITZ AND STEGUN, DOVER PUBLICATIONS, INC.,

131

C NEW YORK.
C

REAL X,D,?,T2,T
INTEGER IE

IE=0
X=1.7E+38
D-X
IF(P)1,4,2

1 IE=-1

GO TO 12

2 IF (P-1.0)7,5,l
4 X=-1.7E+38
5 D=0.0
GO TO 12

7 D=P
IF(D-0.5)9,9,8

8 D=1.0-D
9 T2=ALOG(1.0/(D*D))
T=SQRT(T2)

X=T-(2. 515517+0. 802853*1+0. 010328*T2)/(1. 0+1. 432788*T+0.189269*T2
1 +0.001308*T*T2)
IF(P-0.5)10,10,11

10 X=-X
11 D=0.3989423*EXP(-X*X/2.0)
12 RETURN

END

132

SUBROUTINE OUTPUT

C * *
C * PROGRAM NAME: SUBROUTINE OUTPUT *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C * *
C * DATE: MARCH 3, 1987 *
e *

*
C * PURPOSE: SUBROUTINE OUTPUT PRINTS THE CENTER OF GRAVITY LOCATIONS *
c * FOR RANDOM VARIABLES A AND B, AND THE JOINT PROBABILITY *
c * DISTRIBUTION OF VARIABLE Z TO FILE W2 . OUTPUT ALSO PRINTS *
c * THE JOINT DISTRIBUTION FUNCTION TO A GIVEN FILE SO THE *
C * JOINT DISTRIBUTION CAN BE INPUT AGAIN AS A 'SPECIAL' *
C * DISTRIBUTION FUNCTION. *
C *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE
C *

C * USAGE: CALL OUTPUT
C *

C * DESCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *
c * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILTIY *
C * DENSITY FUNCTION. *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
c * DISREP(NUM) - CHARACTER*10 - DISREP CONTAINS THE *
C * TYPE OF PROBABILITY DISTRIBUTION FOR VARIABLE *
C * NUM (NORMAL, UNIFORM, TRIANGULAR, SPECIAL). *
c * MEAN(NUM) - REAL - THE MEAN VALUE FOR RANDOM VARIABLE *
C * NUM. *
c * NAME2 - CHARACTER*30 - NAME2 IS THE OUTPUT DATA FILE *
c * NAME OF THE JOINT DISTRIBUTION FUNCTION. *
C * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
C * LOCATIONS THAT APPROXIMATE THE PROBABILITY *
C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
C * NUM - INTEGER - RANGE OF 1 TO 2 , VARIABLE 'NUM' IS THE *
c * NUMBER OF THE RANDOM VARIABLE. *
C * VARIANCE(NUM) - REAL - THE VARIANCE VALUE FOR RANDOM *
c * VARIABLE NUM. *
C * Z(COUNT.l) - REAL - THE Z VALUE OF THE JOINT *
C * PROBABILITY DISTRIBUTION FUNCTION. *
C * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
C * THAN OR EQUAL TO Z(C0UNT,1). *
C * Z(C0UNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
C * TIMES Z(C0UNT,1) WAS REPEATED DURING THE *

133

C * SIMULATION. *
c * ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY *
C * DISTRIBUTION FUNCTION. *
c * ZVARIANCE - REAL - THE VARIANCE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
C * *
C * OUTPUT ARGUMENTS:
c * ZSTANDARD_DEV - REAL - THE STANDARD DEVIATION OF THE *
c * JOINT PROBABILITY DISTRIBUTION Z. *
C *

C ***4i*4i.iitft4Aftft4.4i44
c

COMMON/FIRST/A(0:400) ,B(0:400,2) ,Z(0:40000 ,3) .COUNT
COMMON/SECOND/DISTR(2) ,NCELLS(2) ,VARIANCES) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM. ZMEAN, ZVARIANCE, UB(0:400, 2) ,LB(0:400, 2) ,ANSB
COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT
REAL Z .MAXDEV , B .MEAN , VARIANCE ,A , ZMEAN , ZVARIANCE ,UB , LB
INTEGER NCELLS, COUNT,DISTR, NUM. UBCOUNT.LBCOUNT
CHARACTER DISREP*10 ,NAME*20 ,NAME2*20 ,ANSB*1

C

C

C

C PRINT DATA TO FILE "W2"
C

C

C

WRITE (23,*)
WRITE (23,*)
WRITE (23,70)

70 FORMAT (2X, 'RANDOM VARIABLE: 1 ' ,1 8X , 'RANDOM VARIABLE- 2')
WRITE (23,80) DISREP(1),DISREP(2)

80 FORMAT (2X, 'DISTRIBUTION: ' .All ,11X
,

'DISTRIBUTION: ',A)
WRITE (23,90) MEAN(1),MEAN(2)

90 FORMAT (2X,'MEAN: ' ,F12 .6 ,18X
,

'MEAN: '.F12.6)
WRITE (23,100) VARIANCE(l),VARIANCES)

100 FORMAT (2X, 'VARIANCE: ', F12. 6 ,14X, 'VARIANCE: '.F12.6)
STANDARD_DEV1 =SQRT(VARIANCE(1)

)

STANDARD_DEV2=SQRT(VARIANCE(2))

WRITE (23,101) STANDARDJJEV1 ,STANDARD_DEV2
101 FORMAT (2X, 'STANDARD DEVIATION: ',F12.6,4X,

'STANDARD DEVIATION: '.F12.6)
WRITE (23,170) NCELLS(1),NCELLS(2)

170 FORMAT (2X, 'NUMBER OF CELLS :' ,I4,15X, 'NUMBER OF CELLS- ' 14)
WRITE (23,*)
WRITE (23,110)

110 FORMAT (6X,'X LOCATION', 26X,'X LOCATION')
WRITE (23,120)

120 FORMAT (4X,'FOR VARIABLE l',22X,'FOR VARIABLE 2')

134

WRITE (23,113)
113 FORMAT (4X,' ',22X,' ')

IF (NCELLS(1).GT.NCELLS(2)) THEN
INCELLS=NCELLS(1)

ELSE
INCELLS=NCELLS(2)

END IF

DO 160 I=1,INCELLS
IF (I.LE.NCELLS(1).AND.I.LE.NCELLS(2)) THEN

WRITE (23,130) B(I,1),B(I,2)
130 FORMAT (4X,F12.6,23X,F12.6)

ELSE
IF (I.LE.NCELLS(l)) THEN

WRITE (23,140) B(I,1)
140 FORMAT (4X.F12.6)

ELSE
WRITE (23,150) B(I,2)

!50 FORMAT (37X.F12.6)
END IF

END IF
160 CONTINUE

WRITE (23,*)
WRITE (23,161)

161 FORMAT (19X, '****** z FUNCTION ******-)
WRITE (23,11) COUNT

11 FORMAT (15X, 'NUMBER OF UNIQUE Z LOCATIONS- ' 15)
WRITE (23,34) ZMEAN

34 FORMAT(15X,'MEAN: '.F12.6)
WRITE (23,162) ZVARIANCE

162 FORMAT (15X,'VARIANCE: '.F12.6)
ZSTANDARD_DEV=SQRT(ZVARIANCE)
WRITE (23,163) ZSTANDARD_DEV

163 FORMAT (15X, 'STANDARD DEVIATION: '.F12.6)
WRITE (23,*)
WRITE (23,13)

13 FORMAT (15X,'CELL')
WRITE (23,12)

12 FORMAT (16X,'NO.',3X,'Z LOCATION' ,7X, 'Z DISTRIBUTION')
WRITE (23,132)

132 FORMAT (15X,' ',3X,' ', 7X,' ')
DO 10 1=1 .COUNT

WRITE (23,20) I,Z(I,1),Z(I,2)
20 FORMAT (14X,I4,2X,F12.6,6X,F12.6)
10 CONTINUE
C

C

C

C PRINT DISTRIBUTION DATA TO NAME2 FILE

135

c

c

c

WRITE (3,116)
116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME')

READ (0,117) NAME2
117 FORMAT (A20)

OPEN (UNIT=25,FILE=NAME2)
WRITE (25,538) NCELLS(l) ,NCELLS(2)

538 FORMAT (15,15)
WRITE (25,189) COUNT

189 FORMAT (15)
DO 89 1=1 .COUNT

WRITE (25,112) Z(I,1),Z(I,2),Z(I,3)
112 FORMAT (F20.7,F12.7,F12.7)
89 CONTINUE

CLOSE 25
30 RETURN

END

136

SUBROUTINE OUTPUTBOUND
C ***

c * *

C * PROGRAM NAME: SUBROUTINE OUTPUTBOUND *

C * *

C * WRITTEN BY: BRUCE SWANSON *

C * *

C * DATE: MARCH 3, 1987 *

C * *

C * PURPOSE: SUBROUTINE OUTPUT PRINTS THE CENTER OF GRAVITY LOCATIONS *

C * FOR RANDOM VARIABLES A AND B, AND THE JOINT PROBABILITY *

C * DISTRIBUTION OF VARIABLE Z TO FILE W2. OUTPUT ALSO PRINTS *

C * THE JOINT DISTRIBUTION FUNCTION TO A GIVEN FILE SO THE *

C * JOINT DISTRIBUTION CAN BE INPUT AGAIN AS A 'SPECIAL' *

C * DISTRIBUTION FUNCTION. *

C * *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *

C * *

C * USAGE: CALL OUTPUT *

C * *

C * DESCRIPTION OF PARAMETERS: *

C * INPUT ARGUMENTS: *

C * B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *

C * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *

C * DENSITY FUNCTION. *

C * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *

C * FUNCTION. *

C * DISREP(NUM) - CHARACTER*^ - DISREP CONTAINS THE *

C * TYPE OF PROBABILITY DISTRIBUTION FOR VARIABLE *

C * NUM (NORMAL, UNIFORM, TRIANGULAR, SPECIAL). *

C * MEAN(NUM) - REAL - THE MEAN VALUE FOR RANDOM VARIABLE *
C * NUM. *

C * NAME2 - CHARACTER*30 - NAME2 IS THE OUTPUT DATA FILE *

C * NAME OF THE JOINT DISTRIBUTION FUNCTION. *

C * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *

C * LOCATIONS THAT APPROXIMATE THE PROBABILITY *

C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *

C * NUM - INTEGER - RANGE OF 1 TO 2 , VARIABLE 'NUM' IS THE *

C * NUMBER OF THE RANDOM VARIABLE. *

C * VARIANCE(NUM) - REAL - THE VARIANCE VALUE FOR RANDOM *

C * VARIABLE NUM. *
C * Z(COUNT.l) - REAL - THE Z VALUE OF THE JOINT *

C * PROBABILITY DISTRIBUTION FUNCTION. *

C * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
C * THAN OR EQUAL TO Z(COUNT.l). *
C * Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
C * TIMES Z(COUNT.l) WAS REPEATED DURING THE *

137

C * SIMULATION. *
c * ZLB(COUNT.l) - REAL - THE Z VALUE OF THE LOWER BOUND *
c * OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION. *
c * ZLB(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
C * THAN OR EQUAL TO ZLB(COUNT, 1)

.

*
c * ZLB(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * TIMES ZLB(COUNT,l) WAS REPEATED DURING THE *
C * SIMULATION. *

* ZMEAN - REAL - THE MEAN OF THE JOINT PROBABILITY *
C * DISTRIBUTION FUNCTION. *
c * ZUB(COUNT.l) - REAL - THE Z VALUE OF THE UPPER BOUND *
c * OF THE JOINT PROBABILITY DISTRIBUTION FUNCTION. *
c * ZUB(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
C * THAN OR EQUAL TO ZUB(COUNT,l)

.

*
c * ZUB(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * TIMES ZUB(COUNT.l) WAS REPEATED DURING THE *

* SIMULATION. *
c * ZVARIANCE - REAL - THE VARIANCE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
C *

C * OUTPUT ARGUMENTS: *
c * ZSTANDARD_DEV - REAL - THE STANDARD DEVIATION OF THE *
c * JOINT PROBABILITY DISTRIBUTION Z. *
C *

C

COMMON/FIRST/A(0:400) ,B(0:400,2) ,Z(0:40000,3) .COUNT
COMMON/SECOND/DISTR(2) ,NCELLS(2) ,VARIANCES) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVAIIIANCE,UB(0:400,2),LB(0:400,2),A1ISB
COMMON/CBOUND/ZLB(0:40000,3) ,ZUB(0 :40000 ,3) ,UBCOUNT,LBCOUNT
REAL Z .MAXDEV , B .MEAN , VARIANCE ,A , ZMEAN , ZVARIANCE , UB . LB
INTEGER NCELLS .COUNT,DISTR,NUM,UBCOUNT,LBCOUNT
CHARACTER DISREP*10,NAME*20,NAME2*2O,ANSB*l

C

C

C

C PRINT DATA TO FILE "W2"
C

c

c

WRITE (23,70)
70 FORMAT (14X, 'RANDOM VARIABLE: 1 ',34X, 'RANDOM VARIABLE: 2')

WRITE (23,80) DISREP(1),DISREP(2)
80 FORMAT (14X, 'DISTRIBUTION: ',All ,27X

, 'DISTRIBUTION- ' A)
WRITE (23,90) MEAN(1),MEAN(2)

90 FORMAT (14X.-MEAN: '.F12.6.34X, 'MEAN: ',F12.6)
WRITE (23,100) VARIANCE(l),VARIANCES)

100 FORMAT (14X, 'VARIANCE: ' ,F12 .6 ,30X
,

'VARIANCE: '.F12.6)

138

STANDARDJ)EV1 =SQRT(VARIANCE(1)

)

STANDARD_DEV2=SQRT(VARIANCES))
WRITE (23,101) STANDARD_DEV1,STANDARD_DEV2

101 FORMAT (14X, 'STANDARD DEVIATION: '.F12.6.20X,
'STANDARD DEVIATION: '.F12.6)

WRITE (23,170) NCELLS(1),NCELLS(2)
170 FORMAT (14X, 'NUMBER OF CELLS :', 14, 31X

,

'NUMBER OF CELLS: ',14)
WRITE (23,*)
WRITE (23,110)

110 FORMAT (8X,'X1 MINIMUM', 7X, 'CENTER OF', 6X, 'XI MAXIMUM',
* 10X,'X2 MINIMUM', 7X, 'CENTER OF',6X,'X2 MAXIMUM')

WRITE (23,120)
120 FORMAT (11X, 'VALUE', 10X, 'GRAVITY', 10X, 'VALUE', 15X, 'VALUE'

* 10X, 'GRAVITY', 10X, 'VALUE')
WRITE (23,123)

123 FORMAT (6X,' ',4X,' ' 4x ' -

*,8X,' ',4X,' -,4X,' ')

IF (NCELLS(1).GT.NCELLS(2)) THEN
INCELLS=NCELLS(1)

ELSE
INCELLS=NCELLS(2)

END IF

DO 160 I=1,INCELLS
IF (I.LE.NCELLS(1).AND.I.LE.NCELLS(2)) THEN

WRITE (23,130) LB(I,1),B(I,1),UB(I,1),LB(I,2),B(I,2),
* UB(I,2)

130 FORMAT (6X,F12.7,4X,F12.7,4X,F12.7,8X,F12.7,4X,F12.7,
* 4X.F12.7)

ELSE
IF (I.LE.NCELLS(l)) THEN

WRITE (23,140) LB(I,1),B(I,1),UB(I,1)
140 FORMAT (6X,F12.7,4X,F12.7,4X,F12.7)

ELSE
WRITE (23,150) LB(I,2),B(I,2),UB(I,2)

150 FORMAT (39X,F12.7,4X,F12.7,4X,F12.7)
END IF

END IF
160 CONTINUE

WRITE (23,*)
WRITE (23,*)
WRITE (23,161)

161 FORMAT (3 8X, '*********** z FUNCTION ***********')
WRITE (23,11) COUNT

11 FORMAT (38X, 'NUMBER OF UNIQUE Z LOCATIONS- ' 15)
WRITE (23,34) ZMEAN
WRITE (23,162) ZVARIANCE

162 FORMAT (

3

8X,'VARIANCE: '.F12.5)
2STANDARD_DEV=SQRT(ZVARIANCE)

139

WRITE (23,163) ZSTANDARD_DEV
163 FORMAT (3 8X

, 'STANDARD DEVIATION: '.F12.5)
34 FORMAT(38X,'MEAN: '.F12.5)

WRITE (23,*)
WRITE (23,13)

13 FORMAT (2X, 'CELL', 6X, 'DISCRETE APPROXIMATION' ,15X,
* 'LOWER BOUNDS', 20X, 'UPPER BOUNDS')

WRITE (23,12)
12 FORMAT (3X,'NO.',9X,'Z',9X'DISTRIBUTION',10X,'Z',9X,

* 'DISTRIBUTION', 10X,'Z',9X, 'DISTRIBUTION')
WRITE (23,2000)

2000 FORMAT (2X,' ',3X,' ',4X,' ',4X,
* ' ' , 4X ,

'
' , 4X

,

'

'
, 4X

,

* ' ')

ICOUNT=-9999
IF (UBCOUNT.GT.ICOUNT) THEN

ICOUNT=UBCOUNT
ELSE

IF (LBCOUNT.GT.ICOUNT) THEN
ICOUNT=LBCOUNT

ELSE
ICOUNT=COUNT

END IF

END IF

DO 10 I=1,IC0UNT
IF (I.LE.UBCOUNT.AND.I.LE.LBCOUNT.AND.I.LE.COUNT) THEN

WRITE (23,20) I,Z(I,1),Z(I,2),ZLB(I,1),ZLB(I,2),
* ZUB(I,1),ZUB(I,2)

20 FORMAT (1X,I4,3X,F12.7,4X,F12.7,4X,F12.7,4X,F12.7,
* 4X.F12.7.4X.F12.7)

ELSE
IF (I.LE.LBCOUNT.AND.I.LE.COUNT.AND.I.GT.UBCOUNT) THEN

WRITE (23,720) I,Z(I,1) ,Z(I,2) ,ZLB(I ,1) ,ZLB(I,2)
720 FORMAT (1X,I4,3X,F12.7 .4X.F12.7 .4X.F12.7 .4X.F12.7)

ELSE
IF (I.LE.LBCOUNT.AND.I.GT.COUNT.AND.I.LE.UBCOUNT)

* THEN
WRITE (23,730) I,ZLB(1,1) ,ZLB(I,2) ,ZUB(I,1)

,

* ZUB(I,2)
730 FORMAT (1X,I4,35X,F12.7,4X,F12.7,4X,F12.7

* ,4X,F12.7)
ELSE

IF (I.GT.LBCOUNT.AND.I.LE.COUNT.AND.I.LE.UBCOUNT)
* THEN

WRITE (23,740) I,Z(I,1) ,Z(I,2) ,

* ZUB(I,1),ZUB(I,2)
740 FORMAT (1X,I4,3X,F12.7 ,4X,F12.7 ,36X,F12.7,4X,

* F12.7)

140

ELSE
IF (I.LE.LBCOUNT.AND.I.GT.COUNT.

* AND.I.GT.UBCOUNI) THEN
WRITE (23,750) I,ZLB(I,1),ZLB(I,2)

750 FORMAT (1X,I4,35X,F12.7,4X,F12.7)
ELSE

IF (I.LE.COUNT.AND.I.GT.LBCOUNT.
* AND.I.GT.UBCOUNT) THEN

WRITE (23,760) I,Z(I,1) ,Z(I,2)
760 FORMAT (1X,I4,3X,F12.7,4X,F12.7)

ELSE
WRITE (23,770) I,ZUB(I,1) ,ZUB(I,2)

770 FORMAT (1X,I4,67X,F12.7,4X,F12.7)
END IF

END IF

END IF

END IF

END IF

END IF

10 CONTINUE
C

C

C

C PRINT DISTRIBUTION DATA TO NAME2 FILE
C

C

C

WRITE (3,116)
116 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME')

READ (0,117) NAME2
117 FORMAT (A20)

OPEN (UNIT=25,FILE=NAME2)
WRITE (25,538) NCELLS(l) ,NCELLS(2)

538 FORMAT (15,15)
WRITE (25,189) UBCOUNT.LBCOUNT

189 FORMAT (15,15)
IF (UBCOUNT.GT.LBCOUNT) THEN

ICOUNT=UBCOUNT
ELSE

ICOUNT=LBCOUNT
END IF

DO 89 I-l.ICOUNT
IF (I.LE.LBCOUNT.AND.I.LE.UBCOUNT) THEN

WRITE (25,112) ZUB(I,1),ZUB(I,2),ZLB(I,1),ZLB(I,2)
112 FORMAT (F12.6,1X,F12.6,1X,F12.6,1X,F12.6)

ELSE
IF (I.LE.LBCOUNT) THEN

WRITE (25,113) ZLB(I,1),ZLB(I,2)

141

113 FORMAT (12X,1X,12X > 1X,F12.6,1X >F12.6)
ELSE

WRITE (25,114) ZUB(I,1),ZUB(I,2)

114 FORMAT (F12.6,1X,F12.6)
END IF

END IF

89 CONTINUE
CLOSE 25

30 RETURN
END

142

c

SUBROUTINE SORT(ZZ ,Z .COUNT,AX)
C *******************i**************************4********4*A*t***ii4i.fti.ft4

c * *
C * PROGRAM NAME: SUBROUTINE SORT *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C * *
C * DATE: MARCH 23, 1987 *
C * *
C * PURPOSE: SUBROUTINE SORT DOES A BINARY SORT OF THE ARRAY Z. *
C * *
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *

*
C * USAGE: CALL SORT(ZZ,Z, COUNT,AX) *
C * *
C * DISCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * AX - INTEGER - THE NUMBER OF Z VALUES PLUS ONE. *
c * ZZ - REAL - THE Z VALUE THAT NEEDS TO BE INSERTED INTO *
C * ARRAY Z. *
C * OUTPUT ARGUMENTS: *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE *
c * VALUES CONTAINED IN ARRAY Z. *
c * Z(COUNT.l) - REAL - THE Z VALUE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
c * Z(COUNT,2) - REAL - THE NUMBER OF TIMES THE VALUE OF *
c * Z(COUNT, 1) HAS BEEN REPEATED DURING THE *
C * SIMULATION. *
C *

C **4***A**********ii4.*44ii44iiA4.

C

DIMENSION Z(0:40000,2)
REAL ZZ.Z
INTEGER COUNT,AX
Z(0,1)=-1.0E30

IF (ZZ.GT.Z(AX-l.l).OR.AX.LE.l) THEN
Z(AX,1)=ZZ
Z(AX,2)=1
COUNT=COUNT+1
RETURN

END IF
C

C

c

C START BINARY SORT
C

c

c

143

IXMIN=1
IXMAX=AX-1

40 JUMP=NINT((IXMAX-IXMIN)/2.0)+IXMIN
DIFFER=ABS(ZZ-Z(JUMP,1))
IF (ZZ.EQ.Z(JUMP,1). OR.DIFFER. LE.l.OE-7) THEN

Z(JUMP,2)=Z(JUMP,2)+1
AX=AX-1
RETURN

END IF

IF (ZZ.LT.Z(JUMP,1).AND.ZZ.GT.Z(JUMP-1,1)) THEN
DO 30 K=AX, JUMP +1,-1

Z(K,1)=Z(K-1,1)
Z(K,2)=Z(K-1,2)

30 CONTINUE
Z(JUMP,1)=ZZ
Z(JUMP,2)=1
COUNT=COUNT+l

ELSE
IF (ZZ.LT.Z(JUMP.l)) THEN

IXMAX=JUMP-1
ELSE

IXMIN=JUMP
END IF

GOTO 40
END IF

RETURN
END

144

C * PROGRAM NAME: SUBROUTINE SPECIAL
C *

*
C * WRITTEN BY: BRUCE SWANSON *
C *

*
C * DATE: MARCH 4, 1987 *
C *

C * PURPOSE: SUBROUTINE SPECIAL READS A DISTRIBUTION FUNCTION STORED IN *
c * A DATA FILE. SPECIAL THEN FINDS THE NCELL LOCATION ON THE *
c * X AXIS GIVEN A PROBABILITY (AREA) FOR THE DISTRIBUTION *
C * FUNCTION. *
C*
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINE CELLR *
C *

C * USAGE: CALL SPECIAL *
C *

*
C * DISCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * NAME - CHARACTER*30 - NAME IS THE INPUT DATA FILE NAME *
C * OF THE SPECIAL DISTRIBUTION FUNCTION FOR *
c * RANDOM VARIABLE NUM. *
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
c * LOCATIONS THAT APPROXIMATE THE PROBABILITY *
C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
c * NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE *
c * RANDOM VARIABLE. *
C * OUTPUT ARGUMENTS: *
c * A(N) - REAL - WHERE N=NCELLS*2, ODD VALUES OF N *
C * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND *
C * THE EVEN VALUES OF N INDICATE THE CELL *

* BOUNDARIES. *
C * B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *
C * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *
C * DENSITY FUNCTION. *
C * MEAN(NUM) - REAL - MEAN(NUM) IS THE MEAN VALUE OF *
c * RANDOM VARIABLE NUM. *
C * VARIANCE(NUM) - REAL - VARIANCE(NUM) IS THE VARIANCE OF *
c * RANDOM VARIABLE NUM. *
C *

C

REAL A.TOTAL.DS.AREA.KAREA.MEAN.VARIANCE.B.Z.UB.LB.P
INTEGER NUM.INC.NCELLS.COUNT.DISTR.NUMBER.UBCOUNT.LBCOUNT
INTEGER NCI ,NC2
CHARACTER NAME*30 ,DISREP*10 ,ANSB*1
COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000

> 3) > COUNT

145

COMMON/SECOND /DISTR(2) ,NCELLS(2) ,VARIANCE(2) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2),LB(0:400,2),ANSB
COMMON/CSPECIAL/DS(40000,3)
COMMON/CBOUND/ZLB(0:40000,3) ,ZUB(0 :40000 ,3) .UBCOUNT.LBCOUNT
WRITE (3,*)
WRITE (3,10) NUM

10 FORMAT (2X, 'SPECIAL DISTRIBUTION FOR VARIABLE' ,13)
WRITE (3,20)

20 FORMAT (2X, 'ENTER DATA DISTRIBUTION FILE NAME')
READ (0,30) NAME

30 FORMAT (A30)
WRITE (3,110) NUM

110 FORMAT (2X, 'ENTER NUMBER OF CELLS FOR VARIABLE' ,13)
READ (0,*) NCELLS(NUM)
OPEN (UNIT=26,FILE=NAME)
READ (26,120) NC1.NC2

120 FORMAT (15,15)
READ (26,40) NUMBER

40 FORMAT (15)

TOTAL=0.0
DO 50 1=1, NUMBER

READ (26,60) DS(I,1),DS(I,2),DS(I,3)
60 FORMAT (F20.7,F12.7,F12.7)

TOTAL=TOTAL+D S (1 , 1

)

50 CONTINUE
MEAN(NUM) =T0TAL/FL0AT(NUMBER)
VARIANCE(NUM)=0.0
DO 90 1=1, NUMBER

P=DS(I,3)/FL0AT(NC1*NC2)
VARIANCE(NUM) =((DS(1 , 1) -MEAN(NUM))**2)*P+VARIANCE(NUM)

90 CONTINUE
CLOSE 26
INC=0

AREA=1/(FLOAT(NCELLS(NUM))*2.0)
DO 70 K=1,NCELLS(NUM)*2

KAREA=AREA*(FLOAT(K))

100 INC=INC+1
IF (DS(INC,2).GE.KAREA) THEN

A(K)=((KAREA-DS(INC-1,2))*(DS(INC,1)-DS(INC-1,1)))/
* (DS(INC,2)-DS(INC-1,2))+DS(INC-1,1)

INC=INC-1
ELSE

GOTO 100
END IF

70 CONTINUE
CALL CELLR
RETURN
END

146

SUBROUTINE TRIANGLE

C *
*

C * PROGRAM NAME: SUBROUTINE TRIANGLE *
C *

*
C * WRITTEN BY: BRUCE SWANSON *
C *

*
C * DATE: MARCH 4, 1987 *
C *

C * PURPOSE: SUBROUTINE TRIANGLE FINDS THE NCELL LOCATION ON THE X AXIS *
C * GIVEN A PROBABILITY (AREA) FOR A TRIANGULAR RANDOM *
C * VARIABLE. *
C *
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINE CELLR *

* *
C * USAGE: CALL TRIANGLE *
C *

*
C * DISCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * AA - REAL - VARIABLE AA IS THE MINIMUM VALUE OF THE *
c * TRIANGULAR DENSITY FUNCTION. *
C * BB " REAL " VARIABLE BB IS THE MAXIMUM VALUE OF THE *
c * TRIANGULAR DENSITY FUNCTION. *
c * CC - REAL - VARIABLE CC IS THE MEDIAN VALUE OF THE *
c * TRIANGULAR DENSITY FUNCTION. *
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
C * LOCATIONS THAT APPROXIMATE THE PROBABILITY *
C * THE PROBABILITY DENSITY FUNCTION OF RANDOM *
c * VARIABLE NUM.
C * NUM - INTEGER - VARIABLE NUM IS THE NUMBER OF THE *
c * RANDOM VARIABLE. *
C * OUPUT ARGUMENTS: *
c * A(N) - REAL - WHERE N=NCELLS*2 , ODD VALUES OF N *
C * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND *
C * THE EVEN VALUES OF N INDICATE THE CELL *
C * BOUNDARIES. *
C * B(NCELLS.NUM) - REAL - THE DISCRETE POINT (CENTER OF *
C * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *
c * DENSITY FUNCTION. *
C * MEAN(NUM) - REAL - MEAN(NUM) IS THE MEAN VALUE OF *
c * RANDOM VARIABLE NUM. *
C * VARIANCE(NUM) - REAL - VARIANCE(NUM) IS THE VARIANCE OF *
c * RANDOM VARIABLE NUM. *
C *

C

REAL AREA .KAREA.A.B .MEAN, VARIANCE,AA.BB ,CC .TAREA Z
REAL ZMEAN.ZVARIANCE.UB.LB

147

INTEGER NCELLS, NUM ,K, COUNT,DISTR.UBCOUNT.LBCOUNT
CHARACTER DISREP*10 ,ANSB

COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT
COMMON/SECOND /DISTR(2) ,NCELLS(2) ,VARIANCE(2) ,MEAN(2) ,DISREP(2)
COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2) ,LB(0:400,2) ,ANSB
COMMON/CBOUND/ZLB(0:40000,3),ZUB(0:40000,3),UBCOUNT,LBCOUNT

5 WRITE (3,*)
WRITE (3,*)
WRITE (3,10) NUM

10 FORMAT (2X , 'TRIANGULAR DISTRIBUTION FOR VARIABLE' ,13)
WRITE (3,20)

20 FORMAT (2X, 'PARAMETERS: A<C<B')
WRITE (3,30)

30 FORMAT (2X, 'RANGE: (A,B)')
WRITE (3,40)

40 FORMAT (2X, 'ENTER "A" (MINIMUM) VALUE')
READ (0,*) AA
WRITE (3,50)

50 FORMAT (2X, 'ENTER "C" (MIDDLE) VALUE')
READ (0,*) CC
IF (CC-AA.LT.O) THEN

GOTO 5

END IF

WRITE (3,60)
60 FORMAT (2X, 'ENTER "B" (MAXIMUM) VALUE')

READ (0,*) BB

IF (BB-CC.LT.O) THEN
GOTO 5

END IF

WRITE (3,70) NUM
70 FORMAT (2X, 'ENTER NUMBER OF CELLS FOR VARIABLE', 13)

READ (0,*) NCELLS(NUM)
AREA=1/(FLOAT(NCELLS(NUM))*2.0)
TAREA=(CC-AA)*(2/(BB-AA))/2
DO 80 K=1,NCELLS(NUM)*2.0

KAREA=AREA* (FL0AT(K))

IF (KAREA.GT.TAREA) THEN
A(K)=BB-SQRT((1-KAREA)*(BB-AA)*(BB-CC))

ELSE

A(K)=SQRT(KAREA*(BB-AA)*(CC-AA))+AA
END IF

80 CONTINUE
MEAN(NUM) =(AA+BB+CC) /3

VARIANCE(NUM)=(AA**2+BB**2+CC**2-AA*BB-AA*CC-BB*CC)/18
CALL CELLR
RETURN
END

148

SUBROUTINE UNIFORM
C ***
C *

*
C * PROGRAM NAME: SUBROUTINE UNIFORM *
C *

C * WRITTEN BY: BRUCE SWANSON
*

*

*
C * DATE: MARCH 4, 1987 *

C

c

c

*
C * PURPOSE: SUBROUTINE UNIFORM FINDS THE NCELL LOCATION ON THE X AXIS *
C * GIVEN A PROBABILITY (AREA) FOR A UNIFORM RANDOM VARIABLE. *

*
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINE CELLR *
C*
C * USAGE: CALL UNIFORM *
c*
C * DISCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * MAXX " REAL - MAXX IS THE MAXIMUM POSSIBLE VALUE FOR *
c * THE UNIFORM RANDOM VARIABLE. *
C * MINX - REAL - MINX IS THE MINIMUM POSSIBLE VALUE FOR *
c * THE UNIFORM RANDOM VARIABLE. *
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
C * LOCATIONS THAT APPROXIMATE THE PROBABILITY *
C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
c * NUM - INTEGER - VARIABLE 'NUM' IS THE NUMBER OF THE *
C * RANDOM VARIABLE. *
C * OUTPUT ARGUMENTS: *
c * A(N) - REAL - WHERE N=NCELLS*2 , ODD VALUES OF N *
C * REPRESENT THE CENTER OF GRAVITY LOCATIONS AND *
C * THE EVEN VALUES OF N INDICATE THE CELL *
c * BOUNDARIES. *
C * B(NCELLS,NUM) - REAL - THE DISCRETE POINT (CENTER OF *
C * GRAVITY) REPRESENTATIONS FOR NUM'S PROBABILITY *
c * DENSITY FUNCTION. *
C * MEAN(NUM) - REAL - MEAN(NUM) IS THE MEAN VALUE OF *
c * RANDOM VARIABLE NUM. *
C * VARIANCE(NUM) - REAL - VARIANCE(NUM) IS THE VARIANCE OF *
c * RANDOM VARIABLE NUM. *
C *

C **i**i44.i*AAii4ii4ii4:ft4
c

REAL AREA.KAREA.MINX, MAXX,A, B.MEAN, VARIANCE. Z.ZMEAN.ZVARIANCE
REAL UB.LB
INTEGER NCELLS.NUM.K.COUNT.DISTR.UBCOUNT.LBCOUNT
CHARACTER DISREP*10 ,ANSB*1
COMMON/FIRST/A(0:400),B(0:400,2),Z(0:40000,3),COUNT
COMMON/SECOND /DISTR(2) ,NCELLS(2) ,VARIANCE(2) ,MEAN(2) ,DISREP(2)

149

COMMON/THIRD/NUM,ZMEAN,ZVARIANCE,UB(0:400,2),LB(0:400,2),ANSB
COMMON/CB0UND/ZLB(0:40000,3) ,ZUB(0 :40000 ,3) .UBCOUNT.LBCOUNT
WRITE (3,*)
WRITE (3,*)

5 WRITE (3,10) NUM
10 FORMAT (2X, 'UNIFORM DISTRIBUTION FOR VARIABLE' , 13)

WRITE (3,30)
30 FORMAT (2X, 'RANGE (MINX.MAXX) ')

WRITE (3,40)
40 FORMAT (2X, 'ENTER MINX VALUE')

READ (0,*) MINX
WRITE (3,50)

50 FORMAT (2X, 'ENTER MAXX VALUE')
READ (0,*) MAXX
IF (MAXX-MINX.LT.O) THEN

GOTO 5

END IF

WRITE (3,60) NUM
60 FORMAT (2X, 'ENTER NUMBER OF CELLS FOR VARIABLE ', 13

)

READ (0,*) NCELLS(NUM)
AREA=1/(FLOAT(NCELLS(NUM))*2.0)
DO 20 K=1,NCELLS(NUM)*2.0

KAREA=AREA*(FLOAT(K)

)

A(K) =MINX-*AREA*(MAXX-MINX)
20 CONTINUE

MEAN(NUM) =(MINX+MAXX) /2 .0
VARIANCE(NUM)=((MAXX-MINX)**2)/12 .0
CALL CELLR
RETURN
END

150

APPENDIX B

DENSITY FUNCTION PROGRAM

151

PROGRAM NAME: DENSITY

WRITTEN BY: BRUCE SWANSON

DATE: MARCH 26, 1987

PURPOSE: PROGRAM "DENSITY" APPROXIMATES THE JOINT PROBABILITY
DENSITY FUNCTION USING A CUBIC SPLINE AND A HISTOGRAM.
THE DISTRIBUTION DATA IS READ IN FROM A FILE DETERMINED
BY THE USER. IF THE PROGRAM FAILS DURING THE
CUBIC SPLINE APPROXIMATION, THE "MANAGE" PROGRAM MUST BE
USED TO ADJUST THE DATA.

*

* SUBROUTI

uuiruiu w
C * SMOOTH *

C * DESCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
C * NAME - CHARACTER*30 - NAME IS THE INPUT/OUTPUT DATA *
C * FILE NAME OF THE DISTRIBUTION/DENSITY FUNCTION. *
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
C * LOCATIONS THAT APPROXIMATE THE PROBABILITY *
C * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
C * Z(COUOT,l) - REAL - THE Z VALUE OF THE JOINT *
C * PROBABILITY DISTRIBUTION FUNCTION. *
C * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
c * THAN OR EQUAL TO Z(C0UNT,1). *
C * Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
C * TIMES Z(COUNT,l) WAS REPEATED DURING THE *
c * SIMULATION. *
C *
C * OUTPUT ARGUMENTS: *
C * H(N,1) - REAL - THE Z LOCATION OF THE NTH CELL OF THE *
c * HISTOGRAM. *
C * H(N,2) - REAL - THE FRACTION OF Z LOCATIONS WITHIN THE *
c * RANGE OF H(N,I). *
C * NUMBER - REAL - THE NUMBER OF TOTAL DIVISIONS WITHIN *
c * THE HISTOGRAM. *
C * KANGE - REAL - THE RANGE OF VALUES OF THE HISTOGRAM. *
C * R(N) - REAL - THE "SMOOTHED" VALUES OF THE Z *
C * PROBABILITY DISTRIBUTION FOR VARIABLE N AFTER *
C * THE CUBIC SPLINE APPROXIMATION. *

152

C

* R1(N) - REAL - THE DENSITY FUNCTION AFTER THE CUBIC *
C * SPINE APPROXIMATION. *
C * SIZE - REAL - THE SIZE OF EACH CELL WITHIN THE *
C * HISTOGRAM. *
C * *
C ***
c

c

INTEGER COUNT, NCELLS
REAL Z

CHARACTER NAME*30
COMMON/MAIN/Z(20000,4), COUNT, NCELLS(2),H(200, 2) ,R(20004),

* Rl(20004), NUMBER
WRITE (3,10)

10 FORMAT (2X, 'ENTER DISTRIBUTION DATA FILE NAME')
READ (0,20) NAME

20 FORMAT (A30)
OPEN (UNIT=23,FILE=NAME)
READ (23,60) NCELLS(l) ,NCELLS(2)

60 FORMAT (15,15)
READ (23,30) COUNT

30 FORMAT (15)
DO 40 1=1 .COUNT

READ (23,50) Z(I,1),Z(I,2),Z(I,3)
50 FORMAT (F20.7 ,F12 .7 ,F12 .7)
40 CONTINUE

CLOSE 23

CALL HISTOGRAM
CALL SMOOTH
CALL OUTPUTD
STOP

END

1 5 3

*

*

*

*

*

*

*

*

*

c

c

C * PROGRAM NAME: SUBROUTINE HISTOGRAM
C *

C * WRITTEN BY: BRUCE SWANSON
C *

C * DATE: MARCH 26, 1987
C *

C * PURPOSE: SUBROUTINE "HISTOGRAM" BUILDS A HISTOGRAM FROM A
* DISTRIBUTION FUNCTION STORED IN A DATA FILE.

C *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE
C*
C * USAGE: CALL HISTOGRAM *
C *

C * DESCRIPTION OF PARAMETERS:
C * INPUT ARGUMENTS: *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
C * NAME - CHARACTER*30 - NAME IS THE OUTPUT DATA FILE NAME *
c * OF THE HISTOGRAM. *
c * NCELLS(NUM) - INTEGER - THE NUMBER OF DISCRETE *
c * LOCATIONS THAT APPROXIMATE THE PROBABILTIY *
c * DENSITY FUNCTION OF RANDOM VARIABLE NUM. *
c * Z(COUNT,l) - REAL - THE Z VALUE OF THE JOINT *
c * PROBABILITY DISTRIBUTION FUNCTION. *
C * Z(C0UNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
c * THAN OR EQUAL TO Z(COUNT,l). *
C * Z(COUNT,3) - REAL - THE NUMBER OF TIMES THE VALUE OF *
C *

.
TIMES Z(COUNT.l) WAS REPEATED DURING THE *

C * SIMULATION. *
c*
C * OUTPUT ARGUMENTS: *
C * H(N,1) - REAL - THE Z LOCATION OF THE NTH CELL OF THE *
c * HISTOGRAM. *
C * H(N,2) - REAL - THE FRACTION OF Z LOCATIONS WITHIN THE *
c * RANGE OF H(N,1). *
C * NUMBER - REAL - THE NUMBER OF TOTAL DIVISIONS WITHIN *
c * THE HISTOGRAM. *
C * RANGE - REAL - THE RANGE OF VALUES OF THE HISTOGRAM. *
C * SIZE - REAL - THE SIZE OF EACH CELL WITHIN THE *
c * HISTOGRAM. *
C *

t

C

REAL RANGE, SIZE, H,Z

154

INTEGER NUMBER, COUNT, NCELLS
CHARACTER NAME*30
COMMON/MAIN/Z(20000,4),COUNT,NCELLS(2),H(200,2),R(20004),

* Rl(20004), NUMBER
C COMMON/

NUMBER=NINT(1+3.3*LOG10(FLOAT(NCELLS(1)*NCELLS(2))))
RANGE=Z(C0UNT,1)-Z(1,1)
SIZE=RANGE/FLOAT(NUMBER)
DO 10 1=1, NUMBER

H(I,l)=SIZE*FLOAT(I)+Z(l,l)
H(I,2)=0.0

10 CONTINUE
J=l

DO 20 1=1 .COUNT
30 DIFFER=ABS(Z(I,1)-H(J,D)

IF (Z(I,1).LE.H(J,1). OR.DIFFER. LE.1.0E-6) THEN
H(J,2)=H(J,2)+Z(I,3)

ELSE

J=J+1
GOTO 30

END IF
20 CONTINUE

DO 40 1=1, NUMBER
H(I,2)=H(I,2)/(NCELLS(1)*NCELLS(2))

40 CONTINUE
WRITE (3,50)

50 FORMAT (2X, 'ENTER HISTOGRAM DATA FILE NAME')
READ (0,60) NAME

60 FORMAT (A30)
OPEN (UNIT=23,FILE=NAME)
WRITE (23,70) NUMBER

70 FORMAT (15)
DO 90 1=1, NUMBER

WRITE (23,80) H(I,1) ,H(I,2)
80 FORMAT (F12.7.F12.7)
90 CONTINUE

CLOSE 23

RETURN
END

155

SUBROUTINE OUTPUTD

c *

C * PROGRAM NAME: SUBROUTINE OUTPUTD *
C *

C * WRITTEN BY: BRUCE SWANSON *
C *

C * DATE: MARCH 26, 1987 *
C * *
C * PURPOSE: SUBROUTINE OUTPUTD PRINTS THE JOINT PROBABILITY DENSITY *
c * FUNCTION TO A FILE DESIGNATED BY THE USER. *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *
c*
C * USAGE: CALL OUTPUTD *
C*
C * DESCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * COUNT - INTEGER - COUNT IS THE NUMBER OF UNIQUE Z *
C * LOCATIONS OF THE JOINT PROBABILITY DISTRIBUTION *
C * FUNCTION. *
C * NAME - CHARACTER*30 - NAME IS THE OUTPUT DATA FILE NAME *
C * OF THE APPROXIMATED JOINT PROBABILITY DENSTIY *
C * FUNCTION. *
C * Z(COUNT,l) - REAL - THE Z VALUE OF THE JOINT *
C * PROBABILITY DISTRIBUTION FUNCTION. *
C * R(N) - REAL - THE "SMOOTHED" VALUES OF THE Z *
C * PROBABILITY DISTRIBUTION FOR VARIABLE N AFTER *
c * THE CUBIC SPLINE APPROXIMATION. *
C * *1(N) - REAL - THE DENSITY FUNCTION AFTER THE CUBIC *
c * SPINE APPROXIMATION. *
C *

C

INTEGER NCELLS, COUNT, NUMBER
REAL Z, RANGE, SIZE, H.R.R1
CHARACTER NAME*30
COMMON/MAIN/Z(20000,4) .COUNT, NCELLS(2) ,H(200,2) ,R(20004)

,

* RI(20004), NUMBER
WRITE (3,60)

60 FORMAT (2X, 'ENTER SPLINE DATA FILE NAME')
READ (0,70) NAME

70 FORMAT (A30)
OPEN (UNIT=23,FILE=NAME)
WRITE (23,80) COUNT

80 FORMAT (15)
DO 90 1=1 .COUNT

WRITE (23,100) Z(I,1),R(I),R1(I)
100 FORMAT (F20.7.F12.7.F12.7)
90 CONTINUE

CLOSE 23

RETURN
END 156

SUBROUTINE SMOOTH
C ***
C * *
C * PROGRAM NAME: SUBROUTINE SMOOTH *
C * *
C * PURPOSE: SUBROUTINE SMOOTH APPROXIMATES THE DENSITY FUNCTION FROM *
C * A GIVEN SET OF DISTRIBUTION DATA. *
C * *
C **'»***i*i4*4ii4ftA4.444i4jt
c

c

C SANDIA MATHEMATICAL PROGRAM LIBRARY
C APPLIED MATHEMATICS DIVISION 2646
C SANDIA LABORATORIES
C ALBUQUERQUE, NEW MEXICO 87185
C CONTROL DATA 6600/7600 VERSION 8.1 AUGUST 1980
C *************************
C * ISSUED BY *
C * SANDIA LABORATORIES, *
C * A PRIME CONTRACTOR *
C ******** xo THE *
C * UNITED STATES *
c * DEPARTMENT *
C * OF *
C * ENERGY *
C ********************* NOTICE *********************
C *THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED*
C * BY THE UNITED STATES GOVERNMENT. NEITHER THE UNITED *
C * STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, *
c * NOR ANY OF THEIR EMPLOYEES, *
C * NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR *
C * EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR *
C * ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE *
C * ********** ACCURACY, ********** *
C * * * COMPLETENESS * * *
c * * * OR USEFULNESS * * *

OF ANY * * *

INFORMATION, * * *

APPARATUS, * * *

PRODUCT * **** *
c * * * OR PROCESS * * *
c * * * DISCLOSED, * * *
c * * OR REPRESENTS * * *

THAT ITS ** * *
USE WOULD NOT ** * *

INFRINGE ** *********

C * *
C *

c *

c *

c * * **
c * * **
c ********* **

c ** PRIVATELY **

OWNED **

RIGHTS. **
**
**
**

C

c **
c **
c **
c **
c ********************
c

157

C CONVERSION FROM THE ALGOL BY RONDALL E JONES
C REFERENCE — NUMERISHE MATHEMATIK 10,177-183 (1967) C H REINSCH
C

C ABSTRACT
C SMOO FITS A SMOOTH SPLINE THROUGH A GIVEN SET OF DATA POINTS
C BY MINIMIZING THE INTEGRAL OF THE SECOND DERIVATIVE SQUARED,
C SUBJECT TO THE CONSTRAINT THAT
C N
C SUM ((R(I)-Y(I))/DY(I))**2 .LE. S
C 1-1

C (WHERE R(I) IS THE ORDINATE OF THE SMOOTH SPLINE AT X(I).)
C SMOO RETURNS THE VALUES OF THE SPLINE FUNCTION, R,
C ITS FIRST DERIVATIVE, Rl , AND ITS SECOND DERIVATIVE, R2

,

C EVALUATED AT THE ABSCISSAS OF THE GIVEN DATA POINTS.
C THE RESULTING SPLINE, DEFINED BY THE ARRAYS X, R, AND R2

,

C MAY THEN BE INTERPOLATED (IF DESIRED) USING SPLINT.
C FOR AN EXACT SPLINE FIT SEE SUBROUTINE SPLIFT.
C

C DESCRIPTION OF ARGUMENTS
C INPUT ARGUMENTS —
C N - NUMBER OF DATA VALUES (AT LEAST 3)
C X - ABSCISSA ARRAY (INCREASING ORDER)
C Y - ORDINATE ARRAY
C DY - ARRAY OF ERROR ESTIMATES. DY(I) SHOULD BE AN ESTIMATE
C OF THE ERROR (ACTUALLY, THE STANDARD DEVIATION) IN Y(I).
C THUS, THE UNITS OF DY ARE THE SAME AS THE UNITS OF Y.
C LARGER VALUES OF DY(I) ALLOW A LOOSER, SMOOTHER FIT.
C SMALLER VALUES OF DY(I) CAUSE A TIGHTER FIT. SETTING
C DY(I)=0 AT ALL POINTS RESULTS IN AN EXACT FIT. (SEE SPLIFT)
C BY APPROPRIATELY ADJUSTING DY(I) AT EACH POINT, THE SPLINE
C CAN BE MADE TIGHT AT CRITICAL POINTS AND LOOSE AT OTHERS.
C S - SHOULD NORMALLY = N. (NOTE— S IS FLOATING POINT - DONT
C USE N DIRECTLY FOR S.) IF YOU WISH TO TIGHTEN OR LOOSEN
C THE SPLINE FIT BY MULTIPLYING EACH ELEMENT OF DY BY
C SOME FACTOR F, YOU MAY ALTERNATIVELY SIMPLY MULTIPLY
C S BY F**2.
C OUTPUT ARGUMENTS —
C A.B.C.D - CUBIC BETWEEN X(I) AND X(I+1) IS
C A(I) + B(I)*H + C(I)*H**2 + D(I)*H**3
C WHERE H IS DESIRED ABSCISSA MINUS X(I).
C R - ARRAY OF SMOOTH SPLINE VALUES
C Rl - ARRAY OF SMOOTH SPLINE DERIVATIVES
C R2 - ARRAY OF SMOOTH SPLINE SECOND DERIVATIVES
C T,T1,U,V - WORK ARRAYS
C IERR- A STATUS CODE
C —NORMAL CODE
C =1 MEANS THE REQUESTED SPLINE WAS COMPUTED.
C —ABNORMAL CODE
C =2 MEANS EITHER N IS LESS THAN 3, OR S IS NEGATIVE,
C OR THE X-AXIS VALUES ARE MISORDERED.
C

C X,Y,DY,A,B,C,D MUST BE DIMENSIONED AT LEAST N
C R,R1,R2,T,T1,U,V MUST BE DIMENSION AT LEAST N+2

158
C

C THE ORIGINAL Nl WAS FIXED AT 1 TO AVOID WASTED WORK ARRAY SPACE
C THE ORIGINAL N2 IS CALLED N HERE
C ALL WORK ARRAY INDICES ARE 1 LARGER THAN IN THE ALGOL,
C TO AVOID A ZERO SUBSCRIPT.
C

COMMON/MAIN/Z(20O00,4) ,COUNT,NCELLS(2) ,HHH(200,2) ,R(20004)

,

* RK20004), NUMBER
COMMON/SMOO/T(20004) .TK20004) ,U(20004) ,V(20004) ,R2(20004)

,

*X(20000) ,Y(20000) ,DY(20000) ,A(20000) ,B(20000) ,C(20000) ,D(20000)
INTEGER COUNT
REAL AAA,BBB,Z,R2,X,Y,DY,A,B,C,D
WRITE (3,66)

66 FORMAT(2X, 'ENTER TOLERANCE FOR SPLINE FIT')
READ (0,*) F

S=. 05**2
C S=FLOAT(COUNT)

N=COUNT
DO 15 1=1 .COUNT

X(I)=Z(I,1)
Y(I)=Z(I,2)
DY(I)=F

15 CONTINUE
C

C CHECK INPUT DATA
C

IERR = 1

IF (N.LT.3) GO TO 10
IF (S.LT.0.0) GO TO 10
DO 5 1=2,

N

IF (X(I)-X(I-l)) 10,10,5
5 CONTINUE

GO TO 20

10 WRITE (3,76)
76 FORMAT (2X, 'PROGRAM BOMBED BECAUSE OF MISSORDER')

IERR = 2

RETURN
20 CONTINUE

c

c INITIALIZE
c

R(l) = 0.0
R(2) = 0.0
R1(N+1) = 0.0
R2(N+1) = 0.0
R2(N+2) = 0.0
U(l) = 0.0
U(2) - 0.0
U(N+1) = 0.0
U(N+2) = 0.0
P - 0.0
M2 = N-l

H = X(2)-X(l)
IF (H.EQ.0.0) THEN

159

WRITE (3,439) X(2),X(1)
439 FORMAT (2X, 'X(2)=',F12.7, 'X(1)-',F12.7)

END IF

F - (Y(2)-Y(l))/H
DO 100 1-2 ,M2

G = H

H = X(I+1)-X(I)
E = F

F = (Y(I+1)-Y(I))/H
A(I) = F-E
T(I+1) = 2.0*(G+H)/3.0
T1(I+1) - H/3.0
R2(I+1) - DY(I-1)/G
R(I+1) - DY(I+1)/H

100 R1(I+1) - -DY(I)/G - DY(I)/H
C

DO 200 1=2 ,M2

B(I)= R(I+1)*R(I+1) + R1(I+1)*R1(I+1) + R2(I+1)*R2(I+1)
C(I)= R(I+l)*Rl(I+2) + Rl(I+l)*R2(I+2)

200 D(I)= R(I+l)*R2(I+3)
F2 = -S

C

C NEXT ITERATION
C

250 DO 300 1-2 ,M2
R1(I) = F*R(I)
R2U-1) - G*R(I-1)

R(I+1)=1.0/(P*B(I)+T(I+1)-F*R1(I)-G*R2(I-1))
U(I+1)=A(I)-R1(I)*U(I)-R2(I-1)*U(I-1)
F = P*C(I)+T1(I+1)-H*R1(I)
G = H

300 H = D(I)*P
C

DO 400 J-2.M2
I=M2-(J-2)

400 U(1+1)=R(1+1)*u(1+1) -Rl (1+1)*u(1+2) -R2(1+1)*u(1+3)
E-0.0
H-0.0

C

DO 500 1=1 ,M2
G - H
H = (D(I+2)-U(I+l))/(X(I+l)-X(I))
V(I+1) = (H-G)*DY(I)*DY(I)

500 E = E+V(I+1)*(H-G)
V(N+1) = -H*DY(N)*DY(N)
G = V(N+1)
E = E-G*H
G - F2
F2= E*P*P
IF ((F2.GE.S).0R.(F2.LE.G)) GO TO 650
F = 0.0
H = (V(3)-V(2))/(X(2)-X(1))

C

DO 600 1=2 ,M2

160

G = H

H = (V(I+2)-V(I+l))/(X(I+l)-X(D)
G=H-G-R1(I)*R(I)-R2(I-1)*R(I-1)
F = F+G*R(I+1)*G

600 R(I+1) = G
H = E-P*F
IF (H.LE.0.0) GO TO 650
P = P+(S-F2)/((SQRT(S/E)+P)*H)
GO TO 250

C

C FINISH
C

650 DO 700 1=1,

N

A(I)=Y(I)-P*V(I+1)
700 C(I)=U(I+1)

C

DO 800 1=1 ,M2

H=X(I+1)-X(I)
D(I)=(C(I+1)-C(I))/(3.0*H)

800 B(I)=(A(I+1)-A(I))/H-(H*D(I)+C(I))*H
B(N)=0.0
D(N)=0.0

C

C OUTPUT DERIVATIVES, ETC.
C

DO 900 1=1 ,M2

R(I) = A(I)
R1(I) = B(I)

900 R2(I) = 2.0*C(I)
R(N) = A(N)
H = X(N)-X(M2)

R1(N)=(3.0*D(M2)*H+2.0*C(M2))*H+B(M2)
R2(N) = 0.0
DO 16 1=1 .COUNT

Z(I,3)=R(I)
Z(I,4)=R1(I)

16 CONTINUE
RETURN
END

161

APPENDIX C

DATA MANAGEMENT PROGRAM

162

*

c

c *

c *

***************************ii44ii4ift44i4it444A^ii4i4Ai4M4^4i4iijl

*

C * PROGRAM NAME: MANAGE
C *

C * WRITTEN BY: BRUCE SWANSON
C *

C * DATE: MARCH 6, 1987
C *

C * PURPOSE: PROGRAM "MANAGE" IS USED IF A PROBLEM OCCURS WITH THE
C * CALCULATION OF THE CUBIC SPLINE DENSITY APPROXIMATION
C * PROGRAM. THIS PROGRAM READS IN A DISTRIBUTION DATA FILE *
C * AND "NDS THE SMALLEST ABSCISSA AND PRINTS OUT THE VALUE *
C * T° THE SCREEN. IT THEN ELIMINATES ANY DATA POINTS THAT *
c * ARE CLOSER THAN 0.000001 ALONG THE X AXIS. *
C *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *
C *

C * DESCRIPTION OF PARAMETERS:
C * INPUT ARGUMENTS: *
C * ANSWER - CHARACTERS - (Y OR N) AN INPUT VARIABLE USED *
C * TO INDICATED IF THE USER WANTS TO PERFORM *
C * DATA MANAGEMENT TO THE DISTRIBUTION FILE. *
C * COUNT - INTEGER - NUMBER OF UNIQUE Z LOCATIONS. *
C * NAME - CHARACTER*30 - NAME IS THE INPUT DATA FILE NAME *
C * OF THE JOINT DISTRIBUTION FUNCTION. *
C * NAME2 - CHARACTER*30 - NAME2 IS THE OUTPUT DATA FILE *

NAME OF THE JOINT DISTRIBUTION FUNCTION. *
C * NCELLS(1 OR 2) - INTEGER - THE NUMBER OF DISCRETE *

LOCATIONS THAT APPROXIMATE THE PROBABILTIY *
C * DENSITY FUNCTION OF RANDOM VARIABLE 1 OR 2

.

*
C * SMALL - REAL - THE SMALLEST X INCREMENT VALUE OF THE *
C * JOINT DISTRIBUTION FUNCTION. *

Z(COUNT,l) - REAL - THE ABSISCA VALUE OF THE JOINT *
PROBABILITY DISTRIBUTION FUNCTION. *

C * Z(COUNT,2) - REAL - THE PROBABILITY OF Z BEING LESS *
C THAN OR EQUAL TO Z(COUNT,l). *
C * *
C * OUTPUT ARGUMENTS:

ft

C * INC - REAL - THE NUMBER OF UNIQUE Z LOCATIONS AFTER *
C * THE DATA MANAGEMENT HAS BEEN PERFORMED. *

ZD(INC.l) - REAL - THE ABSISCA VALUE OF THE JOINT *
PROBABILITY DISTRIBUTION FUNCTION AFTER DATA *
MANAGEMENT HAS BEEN PERFORMED. *

ZD(INC,2) - REAL - THE PROBABILITY OF Z BEING LESS THAN *
OR EQUAL TO Z(INC.l). *

163

REAL Z.DIFF1 .DIFF2, SMALL, ZD, TOLERANCE
INTEGER COUNT,NCELLSl,NCELLS2
CHARACTER NAME*20 ,ANSWER*1 ,NAME2*20
COMMON/MAIN/Z(2,10000),ZD(2) 10000)
TOLERANCE'. 00001
SMALL=99999
WRITE (3,10)

10 FORMAT (2X, 'ENTER INPUT FILE NAME')
READ (0,20) NAME

20 FORMAT (A20)

OPEN (UNIT=23,FILE=NAME)
READ (23,30) NCELLS1 .NCELLS2

30 FORMAT (15,15)
READ (23,40) COUNT

40 FORMAT (15)
DO 50 1=1 .COUNT

READ (23,60) Z(l ,1) ,Z(2,I) .DUMMY
60 FORMAT (F20.7.F12.7.F12.7)
50 CONTINUE

DO 70 1=2 .COUNT
DIFF1-ABS(Z(1,I)-Z(1,I-1))
IF (DIFF1.LT. SMALL) THEN

SMALL=DIFF1
END IF

70 CONTINUE
WRITE (3,80) SMALL

80 FORMAT (2X, 'SMALLEST X INCREMENT"' ,F12. 7)

CLOSE 23

WRITE (3,90)
90 FORMAT (2X, 'PERFORM DATA MANAGEMENT? (Y/N)')

READ (0,100) ANSWER
100 FORMAT (Al)

IF (ANSWER. EQ.'N') THEN
GOTO 9999

END IF

WRITE (3,200)
200 FORMAT (2X, 'ENTER OUTPUT FILE NAME')

READ (0,210) NAME2
210 FORMAT(A20)

OPEN (UNIT=24,FILE=NAME2)
INC=1
ZD(1,1)=Z(1,1)
ZD(2,1)=Z(2,1)
DO 110 1=2, COUNT

DIFF1=ABS(Z(1,I)-Z(1,I-1))
IF (DIFF1.LT. TOLERANCE) THEN

GOTO 110

ELSE

164

ZD(1,INC)»Z(1,I)
ZD(2,INC)=Z(2,I)
INC-INC+1

END IF

110 CONTINUE
INC=INC-1
WRITE (24,220) NCELLS1.NCELLS2

220 FORMAT (15,15)
WRITE (24,130) INC

130 FORMAT (15)
DO 120 I-l.INC

Z(I,1)=ZD(I,1)
Z(I,2)=ZD(I,2)
WRITE (24,140) ZD(1,I),ZD(2,I)

140 FORMAT (F20.7 .F12.7)
120 CONTINUE

CLOSE 24

9999 STOP
END

165

APPENDIX D

GRAPHICS PROGRAM

! 66

C ***
C * *
C * PROGRAM NAME: GRAPH *
C * *
C * WRITTEN BY: BRUCE SWANSON *
C * *
C * DATE: MARCH 27, 1987 *
C * *
C * PURPOSE: PROGRAM "GRAPH" PLOTS THE JOINT DISTRIBUTION AND DENSITY *
c * FUNCTIONS ON A HIREZ SELANAR GRAPHICS VT100 TERMINAL. *
C *

*
C * SUBROUTINES AND SUBPROGRAMS REQUIRED: SUBROUTINES AUTOSCL *
C * GVTDENSITY *
C * GVTDISTRIBUTION *
C * LABEL *
C * PLLABLE *
C * PLOTT *
C * TICKS *
C * *
C * NOTE: SUBROUTINES AUTOSCL, LABEL, PLLABEL, PLOTT, AND TICKS WERE *
C * WRITTEN BY DONALD A. SMITH AND ARE USED BY PERMISSION. *

C * DESCRIPTION OF PARAMETERS: *
C * INPUT ARGUMENTS: *
c * COUNT - INTEGER - THE NUMBER OF POINTS TO BE PLOTTED. *
c * GTITLE - CHARACTER*35 - THE TITLE OF THE GRAPH. *
c * XLABEL - CHARACTER*30 - THE LABEL ON THE X AXIS OF THE *
C * GRAPH. *
C * XX(N,M) - REAL - THE X VALUE FOR VARIABLE M, CURVE *
C * NUMBER N. *
C * YLABEL - CHARACTER*30 - THE LABEL ON THE Y AXIS OF THE *
C * GRAPH. *
C * YY(N,M) - REAL - THE Y VALUE FOR VARIABLE M, CURVE *
C * NUMBER N. *
C *
C ***
c

REAL MATL,MITL,XX,YY,ZZ, ERROR, MAXDEV
INTEGER COUNT, INCELLS , ICOUNT.ITIME ,ANS
CHARACTER XLABEL*30 ,YLABEL*30 ,GTITLE*35 ,NAME*20
LOGICAL AUTOSC
COMMON/ONE/XXC6, 10000) ,YY(6, 10000) .COUNT
COMMON/MISC/INCELLSC 10000) ,ERROR(10000) ,MAXDEV(10000)

,

* ICOUNT(10000),ITIME(10000)
1 WRITE (3,10)
10 FORMAT (2X,' PLOTT:')

WRITE (3,20)

167

20 FORMAT (2X,'l. DISTRIBUTION FUNCTION')
WRITE (3,30)

30 FORMAT (2X,'2. DENSITY FUNCTION')
WRITE (3,40)

40 FORMAT (2X, 'ENTER NUMBER FOR DESIRED CURVE')
READ (0,*) ANS
IF (ANS.EQ.l) THEN

CALL GVTDISTRIBUTION
ELSE

IF (ANS.EQ.2) THEN
CALL GVTDENSITY

ELSE
GOTO 1

END IF

END IF

ICURVES=1
WRITE (3,*)
DO 6000 1=1 .COUNT

WRITE (3,*) XX(1,I),YY(1,I)
6000 CONTINUE

WRITE (3,90)
90 FORMAT (2X, 'ENTER TITLE')

READ (0,100) GTITLE
100 FORMAT (A35)

WRITE (3,92)
92 FORMAT (2X, 'ENTER X LABEL')

READ (0,93) XLABEL
93 FORMAT (A30)

WRITE (3,94)
94 FORMAT (2X, 'ENTER Y LABEL')

READ (0,96) YLABEL
96 FORMAT (A30)

MATL=0.03
MITL=0.01
IDEV=2
AUTOSC=.TRUE.
CALL PLOTT (Dl ,D2 ,D3 ,D4,MATL,MITL,XLABEL,YLABEL,

GTITLE ,XX ,YY .COUNT , ICURVES , IDEV ,AUTOSC)
END

168

SUBROUTINE AUTOSCL (XX.YY.K ,XMAX,XMIN,YMAX,YMIN,MATSX,MITSX,

@ MATSY,MITSY,AUTOSC,XSTART,Y START,

(DX.DY)

C * *

C * PROGRAM NAME: SUBROUTINE AUTOSCL *

C * *

C * WRITTEN BY: DONALD A. SMITH *

C * *

C * *

C * *
C AAA A*************

C

REAL XX(6,10000),YY(6,10000),MATSX,MATSY,MITSX,MITSY,DX(4),
9 DY(4)
LOGICAL AUTOSC
IF (AUTOSC) THEN
XMAX-XX(l.l)
XMIN=XX(1,1)
YMAX-YY(l.l)
YMIN-YY(l.l)
WRITE (3,2222)

2222 FORMAT (2X'ENTERED AUTOSCL')
DO 10 I-1.K

IF (XX(l.I).GT.XMAX) XMAX-XX(1,I)
IF (XX(l.I).LT.XMIN) XMIN-XX(l.I)
IF (YY(1,I).GT.YMAX) YMAX-YY(l.I)
IF (YY(l.I).LT.YMIN) YMIN-YY(l.I)

10 CONTINUE
END IF
A-ABS((XMAX-XMIN) /5 .

)

MATSX-A
C-ABS((YMAX-YMIN) /5 .

)

MATSY-C
IF ((XMAX.GT.O.) .AND. (ABS(XMAX-XMIN) .LT.ABS(XMAX))) THEN

XSTART»XMIN
GOTO 14

END IF

IF ((XMAX.LE.O.) .AND. (ABS(XMAX-XMIN) .LT.ABS(XMIN))) THEN
XSTART=XMAX

ELSE
XSTART=0

.

ENDIF
14 CONTINUE

IF ((YMAX.GT.O.) .AND. (ABS(YMAX-YMIN) .LT.ABS(YMAX))) THEN
YSTART=YMIN
GOTO 30

END IF

169

IF ((YMAX.LE.O.) .AND. (ABS(XMAX-XMIN) .LT.ABS(XMIN))) THEN
YSTART=YMAX

ELSE
YSTART=0

.

END IF
30 CONTINUE

D WRITE (3,*) 'TICKS CALC DX'
210 CONTINUE

DX(1
) =(XMAX-XSTART) /MATSX

DX(2) =(XMIN-XSTART) /MATSX
MITSX=MATSX/5.
DX(3) =(XMAX-XSTART) /MITSX
DX(4)=(XMIN-XSTART)/MITSX
DO 200 1=1,4

DX(I)=INT(DX(D)
DX(I)=REAL(DX(D)
DX(I)=ABS(DX(I))
IF ((I.LT.3) .AND. (DX(I) .GT.20.)) THEN

MATSX=MATSX*1.2
GOTO 210

ENDIF
200 CONTINUE

D WRITE (3,*) 'TICKS CALC DY'
311 CONTINUE

DY(1
) =(YMAX-YSTART) /MATSY

DY (2) =(YMIN-YSTART) /MATSY
MITSY=MATSY/5.
DY (3) =(YMAX-YSTART) /MITSY
DY(4)=(YMIN-YSTART) /MITSY
DO 300 1=1,4

DY(I)=INT(DY(D)
DY(I)=REAL(DY(D)
DY(I)=ABS(DY(I))
IF ((I.LT.3) . AND. (DY(I). GT.20.)) THEN

MATSY=1.2*MATSY
GOTO 311

ENDIF
300 CONTINUE

RETURN
END

170

SUBROUTINE GVTDENSITY
C ***

C * *

C * PROGRAM NAME: SUBROUTINE GVTDENSITY *

C * *

C * WRITTEN BY: BRUCE SWANSON *

C * *

C * DATE: MARCH 27, 1987 *

C * *

C * PURPOSE: SUBROUTINE "GVTDENSITY" READS IN THE DATA FORMATED FOR *

C * THE JOINT DENSITY FUNCTION. *

C * *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *

C * *

C * DESCRIPTION OF PARAMETERS: *

C * INPUT ARGUMENTS: *

C * COUNT - INTEGER - THE NUMBER OF POINTS TO BE PLOTTED. *
C * GRAPH. *

C * XX(N,M) - REAL - THE X VALUE FOR VARIABLE M, CURVE *

C * NUMBER N, FOR THE DENSITY FUNCTION. *

C * YY(N,M) - REAL - THE Y VALUE FOR VARIABLE M, CURVE *

C * NUMBER N, FOR THE DENSITY FUNCTIRON. *

C * *

C ***

C

REAL MATL.MITL.XX.YY.ZZ, ERROR, MAXDEV
INTEGER COUNT, INCELLS , ICOUNT.ITIME
CHARACTER XLABEL*30 ,YLABEL*30 ,GTITLE*35 ,NAME*20
COMMON/ONE/XX(6,10000) ,YY(6, 10000) .COUNT
COMMON/MISC/INCELLS(10000) ,ERROR(10000) ,MAXDEV(10000)

,

* ICOUNT(10000),ITIME(10000)
WRITE (3,51)

51 FORMAT (2X, 'PLOTTING ROUTINE FOR DENSITY FUNCTION')
WRITE (3,50)

50 FORMAT (2X, 'ENTER DATA FILE NAME')
READ (0,60) NAME

60 FORMAT (A20)

OPEN (UNIT=23,FILE=NAME)
READ (23,987) COUNT

987 FORMAT (15)
WRITE (3,*) COUNT
DO 30 1=1 .COUNT

READ (23,628) XX(1 ,1) .DUMMY.YYU ,1)
628 FORMAT (F20.7,F12.7,F12.7)
30 CONTINUE

RETURN
END

171

SUBROUTINE GVTDISTRIBUTION
C

C * *

C * PROGRAM NAME: SUBROUTINE GVTDISTRIBUTION *

C * *

C * WRITTEN BY: BRUCE SWANSON *

C * *

C * DATE: MARCH 27, 1987 *

C * *

C * PURPOSE: SUBROUTINE "GVTDISTRIBUTION" READS IN THE DATA FORMATED *

C * FOR THE JOINT DISTRIBUTION FUNCTION. *

C * *

C * SUBROUTINES AND SUBPROGRAMS REQUIRED: NONE *

C * *

C * DESCRIPTION OF PARAMETERS: *

C * INPUT ARGUMENTS: *

C * COUNT - INTEGER - THE NUMBER OF POINTS TO BE PLOTTED. *
C * GRAPH. *

C * XX(N,M) - REAL - THE X VALUE FOR VARIABLE M, CURVE *

C * NUMBER N, FOR THE DISTRIBUTION FUNCTION. *

C * YY(N,M) - REAL - THE Y VALUE FOR VARIABLE M, CURVE *

C * NUMBER N, FOR THE DISTRIBUTION FUNCTION. *

C * *

c ***

C

REAL MATL,MITL,XX,YY,ZZ, ERROR,MAXDEV
INTEGER COUNT, INCELLS.ICOUNT.ITIME
CHARACTER XLABEL*30 ,YLABEL*30 ,GTITLE*35 ,NAME*20
COMMON/ ONE/XX(6, 10000),YY(6, 10000), COUNT
COMMON/MISC/INCELLSC 10000) ,ERROR(10000) ,MAXDEV(10000)

,

* ICOUNT(10000),ITIME(10000)
WRITE (3,5000)

5000 FORMAT (2X
, 'PLOTTING ROUTINE FOR THE DISTRIBUTION FUNCTION')

WRITE (3,50)
50 FORMAT (2X, 'ENTER DATA FILE NAME')

READ (0,60) NAME
60 FORMAT (A20)

OPEN (UNIT=23,FILE=NAME)
READ (23,4001) IDUMMY1 .IDUMMY2

4001 FORMAT (15,15)
READ (23,987) COUNT

987 FORMAT (15)
WRITE (3,*) COUNT
DO 30 1=1 .COUNT

READ (23,628) XX(1 ,1) ,YY(1 ,1) .DUMMY
628 FORMAT (F20.7 ,F12 .7 ,F12 .7)

WRITE (3,204) XX(1,I),YY(1,I)
204 FORMAT (F12. 7 ,F12 .7)

172

30 CONTINUE
RETURN
END

173

SUBROUTINE LABEL (XMAX.XMIN.YMAX ,YMIN,DX ,DY ,MATSX ,MATSY

,

4 XSTART.YSTART)
C ************************************** * ** ***

C * *

C * PROGRAM NAME: SUBROUTINE LABEL *

C * *

C * WRITTEN BY: DONALD A. SMITH *
C * *

C * *
C * *

C

CHARACTER CNT*10
REAL DX(20),DY(20),MATSX,MATSY
XZ-ABS(XMAX-XMIN)
YZ-ABS(YMAX-YMIN)
CALL JCOLOR(O)
CALL JMOVE (XMIN.YSTART)
CALL JRMOVE(-XZ*.1,0.)
CALL JJUST (3,2)
CALL JFONT (1)
A- (4./100.)*XZ
B- (3./100.)*YZ
CALL JSIZE (A,B)

DO 50 1-1,2
IF (DY(I).LT.0.9) GOTO 60
DO 70 CTT=0.,DY(I)

WRITE (CNT,'(F10.2)') CTT*MATSY+YSTART
CALL JHSTRG (CNT)
CALL JRMOVE (O.O.MATSY)

70 CONTINUE
60 CONTINUE

CALL JMOVE (XMIN.YSTART)
CALL JRMOVE (-XZ*.1,0.)
MATSY=-MATSY

50 CONTINUE
CALL JBASE (0..1..0.)
CALL JMOVE (XSTART.YMIN)
CALL JRMOVE (0.,-YZ*.l)
CALL JSIZE (B*3./2.,A*2./3.)

D WRITE (3,*) DX(1),-DX1',DX(2),'DX2'
D WRITE (3,*) MATSX.'MATSX'.YMIN.'YMIN'.YMAX.'YMAX'

DO 10 1-1,2
IF (DX(I).LT.0.9) GOTO 20
DO 30 CTT-0.,DX(I)

WRITE (CNT,'(F10.2)') CTT*MATSX+XSTART
CALL JHSTRG (CNT)
CALL JRMOVE (MATSX.0.0)

174

30 CONTINUE
20 CONTINUE

CALL JMOVE(XSTART.YMIN)
CALL JRMOVE(0.,-YZ*.l)
MATSX=-MATSX

10 CONTINUE
CALL JBASE (1..0..0.)
RETURN
END

175

SUBROUTINE PLLABEL (XMAX,XMIN,YMAX,YMIN,XLABEL,YLABEL, GTITLE)

C * *

C * PROGRAM NAME: SUBROUTINE PLLABEL *

C * *

C * WRITTEN BY: DONALD A. SMITH *

C * *

C * *

C * *

C

CHARACTER XLABEL*30 ,YLABEL*30 ,GTITLE*35
CALL JPEDGE (2)
CALL JCOLOR(O)

C CALL JRECT (XMIN,YMIN,XMAX,YMAX)
C-ABS((6./100.)*(XMAX-XMIN))
D-ABS((5./100.)*(YMAX-YMIN))

C CALL NOBLNK (GTITLE)
CALL JSIZE (C,D)

CALL JJUST (1,2)
C CALL JMOVE (XMIN.YMAX)

CALL JMOVE (-9.*(XMAX-XMIN)/19.,YMAX)
CALL JSMOVE (0.,D*1.25)
CALL JHSTRG (GTITLE)
CALL JSIZE (0.66*C,C.66*D)
CALL JMOVE (XMIN.YMIN)
CALL JRMOVE (0. ,-D*.4/.05)
CALL JHSTRG (XLABEL)
CALL JMOVE (XMIN.YMIN)
CALL JRMOVE (-C*.4/.06,0.)
CALL JBASE (0..1..0.)
CALL JSIZE (0.66*D,O.66*C)

C CALL JBASE (0..1..0.)
CALL JHSTRG (YLABEL)
CALL JBASE Cl.,0.,0.)
RETURN
END

176

SUBROUTINE PLOTT (XMAX,XMIN,YMAX,YMIN,MATL,MITL,

8 XLABEL,YLABEL,GTITLE,XX,YY,IDATN,
@ IDATNY, IDEV,AUTOSC)

C * *

C * PROGRAM NAME: SUBROUTINE PLOTT *

C * *

C * WRITTEN BY: DONALD A. SMITH *

C * *

C * *

C * *

C

REAL MAIL,MITL.MATSX.MITSX,MATSY ,MITSY,DX(4),DY(4),
@ XX(6, 10000) ,YY(6, 10000) ,MALX,MALY ,MILX,MILY
LOGICAL AUTOSC
CHARACTER XLABEL*30 ,YLABEL*30 ,GTITLE*35

D IF (AUTOSC) WRITE (3,*) 'AUTOSC TRUE PLOTT SUB'
CALL AUTOSCL(XX(l,l),YY(l,l),IDATN,XMAX,XMIN,YMAX,YMIN,MATSX,

@ MITSX .MATSY .MITSY .AUTOSC .XSTART.YSTART ,DX ,DY)
D IT (AUTOSC) THEN
D WRITE (3,*) 'JUST DID AUTO SCALE'
D ELSE
D WRITE (3,*) 'NO AUTO SCALE'
D ENDIF

CALL JBEGIN
CALL JDINIT (IDEV)
CALL JDEVON (IDEV)
CALL JVPORT (-0.3,0.7,-0.2,0.8)

C IF (ABS(XMAX-XMIN).LT..l) XMIN-XMAX-.l
C IF (ABS(YMAX-YMIN).LT..l) YMIN-YMAX-.l

CALL JWINDO (XMIN.XMAX.YMIN.YMAX)
CALL JDEVWN (IDEV, -1 .0,1 .0,-0.7,1 .0)
CALL JOPEN

C

D WRITE (3,*) 'OPENED WINDOW'
IW-10000
MALY=MATL*ABS (XMAX-XMIN)
MALX-MATL*ABS(YMAX-YMIN)
MILY=MITL*ABS(XMAX-XMIN)
MILX=MITL*ABS(YMAX-YMIN)

D WRITE (3,*) '1ST TICKS CALL'
CALL TICKS (XMAX.XMIN.YMAX.YMIN,MATSX,MATSY ,MALX,MALY ,DX(1),

& DY(1),IW,XSTART,YSTART)
D WRITE (3,*) '1ST LABEL CALL'

CALL LABEL (XMAX,XMIN,YMAX,YMIN,DX(1) ,DY(1) ,MATSX,MATSY ,

& XSTART.YSTART)
IW-8000

177

D WRITE (3,*) '2ND TICKS CALL'
CALL TICKS (XMAX,XMIN,YMAX,YMIN,MITSX,MITSY,MILX,MILY,

& DX(3),DY(3),IW,XSTART,YSTART)
D WRITE (3,*) 'PLLABEL CALL'

CALL PLLABEL (XMAX,XMIN,YMAX,YMIN,XLABEL,YLABEL,GTITLE)
CALL JJUST (2,2)
RR=(6./100.)*ABS(XMAX-XMIN)
TT=(6./100.)*ABS(YMAX-YMIN)
CALL JSIZE (RR.TT)
CALL JJUST (2,2)
CALL JSIZE (RR*2./6.,TT*2./6.)
DO 500 J=1,IDATNY

C CALL JCOLOR(J)
IF (J.GT.l) THEN

CALL JLSTYL(3)
END IF

CALL JMOVE (XX(IDATNY,1),YY(IDATNY,1))
D WRITE (3,*) XX(IDATNY,1),YY(IDATNY,1)

DO 100 I=2,IDATN
IF ((XX(J,I).LE.XMAX) .AND.

& (XX(J.I).GE.XMIN) .AND.
& (YY(J,I).LE.YMAX) .AND.
& (YY(J.I).GE.YMIN)) THEN

CALL JDRAW (XX(J,I),YY(J,I))
D WRITE(3,*) XX(J,I),YY(J,I)
D WRITE(3,*) J, 'FIELD', I, 'COUNT'

ENDIF
100 CONTINUE
500 CONTINUE

C

CALL JCLOSE
CALL JPAUSE (IDEV)
CALL JDEVOF (IDEV)
CALL JDEND (IDEV)
CALL JEND
RETURN
END

178

SUBROUTINE TICKS (XMAX.XMIN.YMAX.YMIN.MATSX,MATSY .MLX.MLY,
8 DX.DY.IW.XSTART.YSTART)

c *

C * PROGRAM NAME: SUBROUTINE TICKS *
C*
C * WRITTEN BY: DONALD A. SMITH *
C*
C*
C*
C AAAAAA* ««* A AAAA *>A AA AA A A * A*AAAAA AAAAAA»****i>
C

REAL MATSX,MATSY,MLX,MLY,DX(20),DY(20)
CALL JLSTYL (0)
CALL JCOLOR (7)
CALL JLWIDE (20000)
CALL JMOVE (XMIN.YSTART)
CALL JDRAW (XMAX .YSTART)
CALL JMOVE (XSTART ,YMAX)
CALL JDRAW (XSTART ,YMIN)
CALL JMOVE (XSTART.YSTART)

D WRITE (3,*) XSTART, 'XSTART '.YSTART, 'YSTART'
CALL JLWIDE (IW)
DO 20 1-1,2
DO 10 SP=1.,DX(I)

CALL JRMOVE (MATSX.-MLX/2)
CALL JRDRAW (0..MLX)
CALL JRMOVE (0..-MLX/2)

10 CONTINUE
15 CONTINUE

CALL JMOVE (XSTART.YSTART)
MATSX=-MATSX

20 CONTINUE
CALL JMOVE (XSTART.YSTART)

D WRITE (3.*) 'TICKS CALC DY'
DO 30 1-1,2
DO 40 SP=1.,DY(I)

CALL JRMOVE (-MLY/2. .MATSY)
CALL JRDRAW (MLY.O.)
CALL JRMOVE (-MLY/2..0.)

40 CONTINUE
45 CONTINUE

CALL JMOVE (XSTART.YSTART)
MATSY—MATSY

30 CONTINUE
RETURN
END

179

APPENDIX E

FLOWCHART FOR THE DISCSIM PROGRAM

180

(start)

lb

2b

3b

'

Main Program
DISCSIM

Input: ANSB

"

c END

la-

2a-

3a-

la

Subroutine
NORMAL

Input: MEAN,
VARIANCE,
NCELLS
Calculate: A

Subroutine
NORMINV

Calculate: X

Subroutine
DIST

Input: DISTR

I
Subroutine
UNIFORM

Input: MINXX,
MAXX, NCELLS

Calculate : A
MEAN, VARIANCE

Subroutine
TRIANGLE

Input: AA,
BB,CC, NCELLS

Calculate: A
MEAN, VARIANCE

Subroutine
SPECIAL

Input: NAME,
NCELLS

Calculate: A
MEAN, VARIANCE

Subroutine
CELLR

Calculate:
B, LB, UB

lb

181

2a

Subroutine
BOOK

Calculate:
COUNT, Z,

Subroutine
BOOKBOUND

Calculate:
COUNT, Z,

Subroutine
FUNCTION

Calculate:
Z

Subroutine
SORT

Calculate:
Sort z Array

Subroutine
DISTRIBUTION

Calculate:
Z Distribution
Array,
ZVARIANCE

2b

182

3a
l

Subroutine
OUTPUT

Input: NAME2
Output: DISREP,MEAN,
VARIANCE, STANDARD DEV,
NCELLS , B , COUNT , ZMEAN , Z

,

ZVARIANCE,ZSTANDARD DEV

Subroutine
OUTPUTBOUND

Input: NAME2
Output: DISREP,MEAN
VARIANCE, STANDARD DEV,
NCELLS , B , COUNT , ZMEAN , Z

,

ZVARIANCE,ZSTANDARD DEV,
ZLB,ZUB

3b

183

APPENDIX F

SAMPLE OUTPUT OF THE DISCRETE SIMULATION PROGRAM

184

Ciu i e«
-r aj
-* O
» O
o aj

Ooo
o
o
o

< < I IA «? IE> I • •

*A «0
O ©>
O OO N.O BO
O IA

«A oo ^
O Ki

«© ja
rsj ©

j
oooooooooM

I

OOOOOOOOO
t !

5000000003 I OOOOOOOOO
SO

I

OOOOOOOOO
C»£ OOOOOOOOO
o w

j
ooooooooo

Ai (e o O XOOOO
•• Z O IMnu O » »- M
_J O
at

1 n. n jn o ow^mn
^- fwMAAiaof-Kt^N.^.*

£ £ !

,*'%' K, ~OK.«ft^w*»n

£ i" ^ S^ »"WI**'0^«»0*Of-A*,#

Of>*rO<r-N.m,-..-

>«»»ninio<i#nj*)

^A*»o<#*#h.^Aj
• • •

1 >rmNnjp> r ooo

o t- a; *- * 0*
ar v» < k « a:

* A. n<tNMB« Ai pa
K> frt «* «# o> m «
AJ ^ AI O" » O N- »
<o ma 0 ©- NDN O PA •-
>r> *r (A f» -OCD N «* ia
in w *- ai # O fs K rsi -*<oiAen *o *# »» O* » AJ

CK 4A « N- «»od ^ pa
-# aj MM M (M^ PA PA PA

o X I

*• O) OOOOOOOOOm MIOOOOOOOOO
a. ^<ooooooooo
t Ol OOOOOOOOO

N- CO I OOOOOOOOO
a* *4|**rwr'>irm>OK.ff>o>

at 1 ooooooooo
ia <»«» I OOOOOOOOO
IA * M I

un«<t z

lk3(Afl,H

*
I ^ AJ

3 I tO TO
Tin 1 ma«3 I *n* -J I ia «© <
« < t »Mc > 1 •

t ^ m *

•• I »A •# I* I «-^-<

•A 05
IA -O
» -c
r> *

irt pw r

aj *- «.

O fl *

O PAO FN
O AJ
o m

o -r
o -o
O to
•- O

AI »
•A -O
.* o-ON

• f\l CO
• O IA
• aj »n

I

I MK<OftJONNV«

I l--*lMMO^^-^^

I t>«~tOOO--Ofs.^-.

pr>T fc-000.. rr m
. «. "' >O IA ^ crt »- -KO A» « _j y o-O <<* t-i j U'

* > Ul uO U U

* AJ »- IM (n
r- — (s» f^ ^nmno-t
<*><»> IA » tA
-O « # Km ^

*> — ia — O
ruM M 10 ©
«• •- * O O
*A Ai IA ^ *A— -O 00 »

—

O 3

3 O O O O
3 O O O O
3 O O O O
3 O O O OSOOOO
- A* *A »» IA
3 O O O O

OOOOOOOOOOOOOOOOOOOO
•O K. <n t*OOOO

' I OOOOOOOOO

9. 1- y « or
O O. ••« quio *- *• i-t S- sir » < it « r
* - u' « fc- 3
»• o *: > irt z

I
*" »» *\! "I fo 1 *»win>

*" Mi 1 m K. tA o- >

•- O I -O O K> o ,^ -J 1 o> ia <a *>. r
•* < I N. & f» fl ,

K*» I • • t

K
I A^^^. t

IA S. I

Nf> »On .

«a e

OKl{ON(
S »r aj
> -O rA
3 »A •»-00
• •

1 •- Al
> 9- O
» ^- Al

H" I K «*0'ft*Mfl«
°c I *» ^ (^ (MO IP ». N
«-»A* I r*ow^ftj W<l9
f> I O « M«i K, Ml (v o^ I mM^ftKOO- MO

185

O O © O oo o o o oo o o o oo o o o o© o o o o© w- est wy •*

© o o
o © ©o Soo o o© o o

__
N- W O

• • • t t fl t • t «oooooooooo

oo
o o
o oO O
© o

OOOOOOOOOQOOOOOQOQOQOOOQOQooo ©oooo©oooooooooo©ooooQaoooooooooooooooooooooooooo©ooooooooooooooooooooooooo©ooooooooaoooooooooooooo©©
• • t • t t I . , , ,oooooooooooooooooooooooooo

OOOO
o o o oOOOOOOOOOOOO
•C *- EC t>
«* «# "* <*
• I •OOOO

OOOOOOOOOOOOOOO
O •- «st

OOOOOOOOOOOOOOOOooco
«"» «# ITS -O

OOO
© o oOOOOOOOOO
N. (O O

oooooooooooo

oo
******* ••••••»!If».», , I3000000000000000000000000

OOOOOOOOOOOOOOOOOOOO
-J- ~r ~r -»

• ' •OOOO

o o o e» ao o o o o© o o o oo o © o on o o e? o

o © n © ©

SSS22°22 0000000 °ooooooo©oooooooSSSS22S2 odooooodo ooooooo5oo5 5d5s2ss2222 oc,oooooogo °oooooooooooc2222222000000 ° 0000 °ooo

oooooooooooooooooooooeooooooooo

OOOOOOOOOOOOOOOOOOOO
<o *w ec <«-

OOO©

»»52!;*j*"'" o """, "','''""''-»
i

oo'-, »-«<'J

o O © oo o o oO O O O
o o o oo o o o
O ^ <N *AinvMnm

o o o
o o o
o o o
o o o
o o o
«# m ©
y> in wi

ooooooooooo

iiiiiiiiiliiliillilliliiiliiissss
sIiIIII!si!iiPIIfpiii§iIilIIIIl

o o o
o o o
o o o
O O O
o o o
O — <o

o oO O
o o
o o
o o

o o oo o oo o oo o oo o o«Kn
trt in »a

o o o
o o o
o o oo o oa o o
r> o —
y> -O •©

oooooorsoooo
IlilllillHIIIllilililillllll
ooooooooooooooooooo'ooo'ooooooo

t»-«:«:*-«;«;«;»;-*o235g£5;gS35S5;r3SS5aSSiSS35£

n o
O o
D o
o o
O o

n o
CI oo o
o o

o ci o
o o oo o n
o o o

'UOQ^OOQ

iiiiiiiiiiiiiiiiiiiiiiiiiiiii

eooooooooeo 0000 oeeoo 00000 000,

0000onor0000
o o O rs0000
41 *» Br- i>
*- :r» «r a-

55iiS55X2"£3fc::32SSiS32:ss*s2£i^'<»'-««>o»«r.

—

p-- f^ r«- n k t v <o n ec o? *v

187

OOOOOOOOOOOoooooooooooOOOOOOOOOOOoooooooooooooooooooooo
o~rMht.#tri<OK.«o».o
• • • • • • • • •ooooooooooo

Bn^>ooo<C'o«r(o*#r4
"**»-0»-oO<et».«»»**
fv^KOO-fwinmN-t^^Oo^^omwimo^oiA**

ooooooooooooooooooooooOOOOOOOOOOOOOOOOOOOOOOooooooooooo
cv ;> o- •> o- » o- r* r* o- o
ooooooooo©*-

•- »• M M- IA»^N«QK

APPENDIX G

NOTES ABOUT THE COMPARISON OF THE MONTE CARLO SIMULATION
VS. THE DISCRETE SIMULATION

189

METHODS OF COMPARISON

The Monte Carlo program was written using some of

the same subroutines that are used in the discrete

simulation program. These subroutines are: DISTRIBUTION,

FUNCTION, OUTPUT, and SORT. Subroutine BOOK is also

used, however, a few lines of code had to be modified for

the generation of the random numbers. The random numbers

are generated using a normal random number generator

provided by Harris Computer Systems.

Because the two methods are slightly different, a

method of comparison had to be devised. Three methods

were possible:

1. Use the same number of points to represent the

random variables' density functions.

2. Use the same number of possible combinations of

outcomes to represent the joint random

variable's distribution function.

3. Use the same number of unique outcomes to

represent the joint random variable's

distribution function.

190

Method 1 was thought to give a distinct advantage to

the discrete approximation program, while method 2 would

give an advantage to the Monte Carlo simulation. Method

3 was chosen to be used as the method of comparison

because it is somewhat of a compromise between methods 1

and 2. However, this method does give the discrete

simulation a slight advantage over the Monte Carlo method

for the example discussed in Chapter 5.

The discrete simulation program was run first each

time the two methods were compared. After each discrete

approximation, the number of unique outcomes m, was

noted. The joint distribution function was then

approximated using the Monte Carlo program by generating

m pairs of random variables X and Y.

CPU TIME COMPARISON

Figures 5.18 and 5.19 were plotted to give an

overall comparison of the computer processing unit time

for both programs. A binary sorting routine was used for

both programs. Since the outcomes generated by the

discrete method are somewhat ordered, the discrete values

are sorted quicker than the data that is created randomly

from the Monte Carlo program. It should be noted that

191

these times are largely dependent on the efficiency of

the sorting routine. Quicker times could be achieved by

using a faster method of sorting the outcomes. For

example, a quick sort subroutine would decrease the run

time of the Monte Carlo program since this method sorts

random numbers faster than ordered numbers. Also, a heap

sort could be used to decrease the CPU time for the

ordered discrete values.

192

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr.

Fredric C. Appl, Professor of Mechanical Engineering, for

his guidance and encouragement throughout the course of

this study.

I am also grateful to Dr. Hugh S. Walker and Dr.

Mark S. McNulty for serving as graduate committee

members

.

Appreciation is also extended to the Department of

Mechanical Engineering for their financial support

throughout my graduate study.

My thanks are also due to Donald A. Smith for the

graphics routines he wrote for the Harris computer

system.

And finally, I would like to thank my parents for

their moral and financial support during all of my years

of study.

VITA

Bruce Eugene Swanson

Candidate for the Degree of

Master of Science

Thesis: THE APPROXIMATION OF JOINT DISTRIBUTION
FUNCTIONS FOR APPLICATION IN PROBABILISTIC
MECHANICAL DESIGN

Major Field: Mechanical Engineering

Biographical

:

Personal Data: Born in Kansas City, Kansas,
January 22, 1963, the son of Eugene A. and
Sylvia J. Swanson.

Education: Graduated from Shawnee Mission East High
School in 1981; received the Bachelor of
Science degree from Kansas State University
in 1985; completed the requirements for the
Masters of Science degree from Kansas State
University in 1987.

Honors: Tau Beta Pi - All Engineering Honorary
Pi Tau Sigma - Mechanical Engineering Honorary

Professional Experience: Two summers as an
Engineer III in the Metal Products Department
at Allied/Bendix, Kansas City Division.
Have accepted employment with Sandia National
Laboratories in Albuquerque, New Mexico, in
the Rocket Systems Division II.

THE APPROXIMATION OF JOINT DISTRIBUTION FUNCTIONS FOR
APPLICATION IN PROBABILISTIC MECHANICAL DESIGN

by

BRUCE EUGENE SWANSON

B.S., Kansas State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

ABSTRACT

In this study, a discrete simulation technique is

developed to approximate the joint probability

distribution functions of complex algebraic expressions

containing several independent random variables. The

discrete simulation package is written in Fortran on a

Harris H-800 Super Mini-Computer.

The discrete approximation is compared to the

traditional Monte Carlo technique for a joint probability

distribution function that can be solved exactly. The

accuracy of the discrete simulation is found to be better

than the Monte Carlo simulation.

A cantilever I-beam is analyzed to illustrate how

the discrete simulation package can be used by design

engineers in a variety of engineering applications.

A bounding program is also discussed that bounds the

exact joint probability distribution function of an

algebraic expression. Although a formal proof has not

been developed, the results of several different examples

show considerable promise for further study.

