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Abstract 

 
Spatial resolution of soil datasets used in watershed modeling is known to affect simulated hydrological response. Two databases, the Soil 

Survey Geographic (SSURGO) and the State Soil Geographic (STATSGO), provide publicly available soil datasets for hydrologic modeling 

of watersheds in the U.S. This study evaluated three soil representations using the Soil and Water Assessment Tool (SWAT) model to 

simulate hydrologic response in the Black Kettle Creek Watershed in Kansas, U.S.A.: SWAT using either 1) STATSGO data, or 2) 

SSURGO data, or 3) a third HYBRID model that used STATSGO soil data with the more refined SSURGO spatial distribution. The 

SSURGO-ArcSWAT utility was used to facilitate development of detailed soil data for SWAT modeling projects. The SWAT model with 

STATSGO data produced the greatest surface runoff and streamflows among the three models, especially during higher-rainfall events, in 

part due to overrepresentation of hydrologic group C and D soils. The SWAT model with SSURGO data produced the best calibration 

statistics, and exhibited the least flashy surface runoff behavior. The model with HYBRID soil data exhibited lower percentage bias and 

improved Nash-Sutcliffe model efficiency compared to the model with STATSGO soil data, and it was attributed to increased spatial 

resolution of hydrologic response units (HRUs) inherited from the SSURGO soil dataset. Calibration results and hydrologic impact may vary 

in other areas of the United States and in the world, but benefits of using SSURGO soil dataset are expected to come from both greater 

resolution of soil property data and a greater number of HRUs. 
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INTRODUCTION 

 

Soil properties directly affect hydrologic processes in a 

watershed, including infiltration into the soil, surface runoff, 

subsurface flows, percolation to shallow aquifer, and 

baseflow contribution to streamflow. Spatial representation of 

the soils, soil taxonomy, and numerous soil parameters 

contained in a geospatial soil database are important inputs in 

watershed modeling.  

The State Soil Geographic (STATSGO) database and the 

Soil Survey Geographic (SSURGO) database have been 

widely used for watershed modeling in the United States 

(Mednick 2010). The STATSGO database (USDA-NRCS 

1994) was created on the 1:250,000-scale maps and the 

SSURGO dataset (USDA-NRCS 2009) was structured on the 

1:24,000-scale maps. The STATSGO and SSURGO 

databases were made from the same field soil surveys 

conducted by the USDA Soil Conservation Service. 

SSURGO soil maps were compiled using aerial photographs 

and field methods. Coarser STATSGO soil maps were 
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compiled by generalizing more detailed SSURGO soil survey 

maps. Each SSURGO soil map unit is composed of up to 

three survey identified soil components. Each soil component 

represents a soil type that covers a certain percentage of the 

map unit area and consists of multiple layers with unique 

physical properties. STATSGO soil map unit covers larger 

area in the map than SSURGO soil map unit and is composed 

of up to 21 soil components. Because of differences in 

resolution, STATSGO was intended for general land-use 

planning and management at the larger river basin scale, 

while the SSURGO dataset was recommended for projects at 

the catchment, township, and county scale. 

Watershed modeling projects benefit from SSURGO’s 

greater spatial data resolution because it provides more 

detailed geospatial representation of soil properties and better 

recognizes dominant soil components compared to 

STATSGO. Using SSURGO soils is preferable for modeling 

small watersheds, catchments, or individual fields. For larger-

scale projects, it increases the number of soil groups and 

improves representation of the soil spatial distribution; 

however, SSURGO also significantly increases the number of 

unique combinations of geospatial features, thus making the 

watershed representation more detailed and complex and 

increasing model computation time. One example is a soil-

slope-land use combination that is used to represent 

hydrologic response units (HRU) in Soil and Water 

Assessment Tool (SWAT) model (Arnold et al. 1998). 

Several watershed-modeling studies with SWAT have 

assessed the effectiveness of higher-resolution SSURGO soil 

data on hydrologic characteristics of watersheds, such as 

runoff, infiltration, water yield, and streamflow, as well as 

water-quality impacts, such as sediment and nutrient loads to 

streams. Kumar and Merwade (2009) found that using 

STATSGO soils provided better uncalibrated SWAT model 

performance than SSURGO soils for a 70,000-ha watershed 

in Michigan. Peschel et al. (2006) observed similar improved 

model performance using STATSGO soils, although none of 

the model runs produced satisfactory model simulation of 

USGS-observed data. Moriasi and Starks (2010) also found 

no significant differences between monthly model 

performance using SSURGO or STATSGO data in three 

Oklahoma watersheds (7,500 to 34,200 ha). In contrast, 

Daggupati et al. (2011a) found that SWAT simulations of a 

7,818-ha watershed in Kansas using SSURGO data produced 

slightly (about 10%) greater Nash-Sutcliffe model efficiencies 

(NSE) and substantially (61 to 88%) lower percentage bias 

(PBIAS) than STATSGO data for flow simulation. These 

differences resulted in substantially different field-scale 

results, such as 10 to 40% disagreement in the top-ranked 

sediment-yielding fields. Geza and McCray (2008) provided a 

comparison of SSURGO and STATSGO datasets applied to 

the same watershed before and after calibration. A finer-

resolution SSURGO dataset resulted in more areas with soil 

types having low infiltration potential resulting in greater 

stream discharges. The results of the SWAT study by Wang 

and Melesse (2006) indicated that the SSURGO dataset 

provided an overall better prediction of the streamflow 

discharges than the STATSGO dataset. Models with both 

datasets resulted in a comparable statistics of predicting the 

high streamflows, but the STATSGO model predicted the low 

streamflows more accurately. The discrepancies between the 

streamflow discharges predicted by these two SWAT models 

tended to be larger at upstream locations than at those farther 

downstream. Di Luzio et al. (2004) found greater sensitivity 

(and larger loads) for organic-N and organic-P loadings, and 

lower sensitivity for sediment and nitrates using SWAT with 

SSURGO soils on a small 55-ha watershed. They noted that 

greater soil carbon content for the two top soil layers using 

SSURGO might have contributed to the documented 

differences. Overall, these studies demonstrate that spatial 

misclassification of soil parameters can have a significant and 

pronounced effect on hydrologic and water-quality simulation 

accuracy.  

Calibration of model parameters typically improves 

model accuracy (Moriasi et al. 2007) but also alters model 

response to input data. As demonstrated by Kumar and 

Merwade (2009), independent calibration of a hydrologic 

model for two different soil datasets (e.g., STATSGO and 

SSURGO) may improve model performance in each case but 

also may amplify or attenuate effects from soil data spatial 

resolution and analytical spatial resolution (e.g., sub-basin 

size). In the studies cited above, model calibration ranged 

from use of unadjusted default values of model parameters to 

full parameter calibration, which may have contributed to the 

inconsistency in results. 

Although a number of studies were conducted to analyze 

impacts of soil datasets of different spatial resolution on 

hydrologic and water-quality conditions in the watersheds, 

the results appeared to be mixed. A combination of spatial 

resolution of the soil datasets with spatial resolution of the 

watershed models was not clearly investigated. The objective 

of this study was to assess modeled hydrologic response to 

the interactive effects of two soil datasets (STATSGO and 

SSURGO) and spatial scale of soil representation within the 

model (in this study, the distribution of HRUs in SWAT).  

 

 

MATERIALS AND METHODS 

 

Soil and Water Assessment Tool (SWAT) 

The SWAT model is a continuous, physically based 

hydrologic and water-quality model developed for water 

resource managers to assess the impacts of land practice 

management and climate variations on non-point source 
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pollution in complex watersheds, from catchment to river 

basin scale (Arnold et al. 1998; Santhi et al. 2001). SWAT 

model components include climate generation, hydrologic 

processes, sediment and nutrient routing, crop growth, and 

other modules. An overview of SWAT historical 

development, model components, and the current state of 

research was presented in Gassman et al. (2007), Douglas-

Mankin et al. (2010), and Tuppad et al. (2011). 

In SWAT, a watershed is divided into subwatersheds 

according to flow accumulation and stream network 

delineation procedures. Within each subwatershed, geo-

referenced homogeneous units with uniform average slope, 

land use, and soil type are further identified and aggregated 

into HRUs. Map units of the same soil type can be 

constrained within the same HRU if overlaid with the same 

land use and average slope range. Each HRU represents a 

collection of spatially disaggregated areas in which 

hydrologic balance, crop yields, biomass production, and 

pollutant losses are continuously simulated. Different soil 

coverage would result in a different collection of HRUs.  

Outputs from all HRUs within a subwatershed are 

summed and routed through the stream network to the 

watershed outlet. HRU-level processes depend on landscape 

characteristics, including soil properties. Daily surface runoff 

and amount of infiltrated water resulting from (sub) daily 

rainfall amounts falling onto the HRU area are simulated 

using either a modified NRCS curve number method (USDA-

NRCS 2004) or a Green-Ampt method (Green and Ampt 

1911). Soil properties are major characteristics used in both 

methods. 

 

Study area 

The Black Kettle Creek Watershed, a 7,818-ha (19,295-

ac) sub-watershed (HUC 110300120302) of the Little 

Arkansas River located within McPherson and Harvey 

Counties in south-central Kansas, was used as a study area 

(Figure 1). Land use in the watershed was predominantly 

cropland (84% of total area) followed by rangeland (12%), 

urban area (2%), and forest (2%). The cropland consisted 

mainly of wheat followed by sorghum, soybean, and corn. 

Soil was predominately silty clay loam (mean permeability 

0.5 cm/h), with an area along the mainstem of sandy silt. The 

relief generally consisted of gently sloping topography with a 

median slope of 1.5%. A detailed list of cropland 

management operations for 90% of the fields in the watershed 

was collected in 2009 (Daggupati et al. 2011a).  

A stream-monitoring station was established at 

coordinates 38°04’20”N latitude and 97°33’18” W longitude, 

about 8.5 km upstream of the Black Kettle Creek and Little 

Arkansas River confluence (Figure 1). Stream stage was 

recorded at 15-min. intervals from January 2007 to December 

2008 using an automated stage recorder (Model 6700 water 

sampler, Model 730 bubbler flow module, Isco, Inc., Lincoln, 

Neb.) and was averaged for each 24-h period (midnight to 

midnight). Average daily water depth was used with surveyed 

stream cross-sectional area, surveyed longitudinal channel 

slope, and estimated channel roughness coefficient (Cowan 

1956) to estimate average daily streamflow using Manning's 

equation (Grant and Dawson 2001). 

 

Soil datasets 

Two soil databases (STATSGO and SSURGO) were used 

for preparing soil datasets in this study. In these datasets, 

spatial soil variability is represented by map units that have 

an assigned identifier to an area of a certain soil type. For the 

same area the SSURGO dataset normally contains 10 to 20 

times more map units than the STATSGO dataset (Sheshukov 

et al. 2011). 

 
Figure 1 Map of Black Kettle Creek Watershed in south-central Kansas 
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Figure 2 Three soil coverages for Black Kettle Creek Watershed: (a) STATSGO dataset with 3 soil types and 3 map units, (b) HYBRID dataset with 3 soil 

types taken from STATSGO and 40 map units derived from SSURGO, and (c) SSURGO soil coverage with 18 soil types and 23 map units. 

 

Three soil datasets were prepared for this study: 

1. The first dataset was developed from a STATSGO 

soil dataset and contained three map units representing three 

soil types that covered the entire watershed (Figure 2a). The 

dataset was independent of county lines. 

2. The second dataset was developed from two county-

based SSURGO soil datasets downloaded for two counties 

and contained 23 map units of 23 soil types (USDA-NRCS, 

2009). Ten map units, five from each county, located adjacent 

to the county line between McPherson and Harvey Counties 

appeared to represent the same five soil types (Figure 2c); 

therefore, the total number of soil types for the watershed was 

reduced to 18. 

3. The third dataset was a combination of the previous 

two datasets. It was derived with STATSGO soils and the 

geospatial coverage shown in Figure 2a but contained map 

units identified from the SSURGO dataset. Soils from the 

SSURGO dataset were not utilized in this dataset. The 

number of soil types remained at three, the same as in the 

STATSGO dataset. The number of map units exceeded the 

number from SSURGO dataset, reaching 40 instead of the 

original SSURGO’s 23 (Figure 2c), due to additional division 

of SSURGO map units into the smaller units by the 

STATSGO soil separation boundaries (Figure 2b). The 

separation lines are clearly seen in subbasins 4, 6, and 8 in 

Figures 2a and 2b. This dataset is called HYBRID. 

 

STATSGO soils were of groups C and D only, whereas 

the SSURGO dataset also contained 0.03% of group A and 

10.40% of group B areas (Table 1). This difference would 

result in greater overall infiltration and less overall runoff for 

the SSURGO setup. The HYBRID dataset used the same soils 

as STATSGO. The average erodibility factor (USLE_K) was 

similar for all datasets (0.37 for STATSGO, 0.364 for 

SSURGO), with lower erodibility classes represented only in 

the SSURGO dataset (Table 1). 

 

Model setup 

The Black Kettle Creek Watershed was delineated using 

a 10 m × 10 m digital elevation model for McPherson and 

Harvey Counties (Gesch et al. 2002) into 9 sub-basins with 

the GIS module in SWAT (Figure 1). The watershed outlet 

was set at the streamflow gaging station location. The stream 

network was created during the delineation process. The 

watershed was divided into two subarea groups using a 2% 

slope threshold. Areas of high slope (>2%) occupy 17% of 

the watershed. The land-use layer was created based on field 

reconnaissance survey and used as the input land-use 

coverage for the SWAT model (Daggupati et al. 2011a). The 

watershed land-use types were mainly row crop agriculture 

(80.4% of watershed area), with 58.1% in winter wheat. 

Based on the field reconnaissance survey and analysis of 

digital ortho imagery, the following conservation practices 

were applied to crop lands: 12% of row-crop lands had 

terraces coupled with contour farming, 5% was in no-tillage 
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or residue management practice, and dominant management 

practices were traditional tillage and no-tillage (Daggupati et 

al. 2011a, b). 
 

Table 1 Delineation, HRU, and soil properties of three 

SWAT models developed for Black Kettle Creek Watershed 

  
STATSGO HYBRID SSURGO 

  Delineation properties 

G
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n
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a
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1 14 32 32 

2 10 28 28 

3 20 148 148 

4 35 237 186 

5 19 97 97 

6 35 122 90 

7 19 80 80 

8 31 117 91 

9 41 190 141 

 
Total 224 1051 893 

  HRU properties 
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A 0 0 0.03 

B 0 0 10.40 

C 66.15 66.15 62.02 

D 33.85 33.85 27.57 
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0.37 100.00 100.00 89.19 

0.32 0 0 9.84 

0.28 0 0 0.64 

0.20 0 0 0.28 

0.01 0 0 0.04 

 

Daily precipitation and maximum and minimum 

temperature data were acquired from three National Climatic 

Data Center (NCDC 2009) weather stations (COOP ID# 

143134, 143620, and 145744) located 5 to 15 km east of the 

watershed for the years of 1992 through 2008 (Figure 1). 

Daily values for other weather variables (solar radiation, 

relative humidity, and wind speed) were simulated with the 

weather generator embedded in SWAT.  

As described above, three geospatial soil data layers were 

prepared as inputs for the three SWAT models. The number 

of HRUs generated for the three model setups corresponded 

to the respective number of map units: 224 HRUs for the 

STATSGO dataset, 893 for SSURGO, and 1051 for HYBRID 

(Table 1). The number of HRUs in HYBRID setup exceeded 

the number of HRUs in SSURGO setup only in the sub-

basins (4, 6, 8, and 9) where SSURGO map units were split 

due to the county boundary, the subbsains 1, 2, 3, 5, and 7 

contained the same number of HRUs. 

 

Calibration 

The SWAT model was run from 1992 to 2008 with a 

three-year (1992-1994) warm-up period. Daily simulated 

streamflows from January 2007 to December 2008 were 

collected at the watershed outlet to compare with the stream-

monitoring station data available for this period only. The 

results from 1995 to 2006 were collected to analyze the 

watershed hydrologic response but not used for model 

calibration. 

Monthly model performance was assessed using 

coefficient of determination (R
2
), NSE, and PBIAS (Moriasi 

et al. 2007). A set of 14 model parameters were selected for 

model calibration (Table 2). The parameters were selected 

from SWAT modules on surface flow, baseflow, 

evapotranspiration, and weather (snowmelt and freezing). 

Parameters related to soil properties, such as available water 

capacity (SOIL_AWC) and saturated hydraulic conductivity 

(SOIL_K) in individual soil layers, which can also be used for 

calibration, remained unchanged from the original values 

stored in STATSGO and SSURGO databases. While these 

parameters may be sensitive to calibration results they were 

not adjusted to avoid introducing model bias to the soil 

datasets. Therefore, the calibration is determined to be limited 

and prevented reaching statistical characteristics higher than 

in the good to very good range, as proposed by Moriasi et al. 

(2007).  

The limited calibration was conducted on all three models 

by running the models many times (>30) until acceptable 

statistics were reached. The calibration parameters were 

iteratively adjusted in each run over allowable ranges. Range 

and final values of calibrated parameters are listed in Table 2. 

It was found that the values used to calibrate the SSURGO 

model provided the same degree of calibration accuracy if 

used in the other two models: STATSGO and HYBRID. A 

slight deviation from the SSURGO values did not lead to 

substantial improvement of either STATSGO or HYBRID 

models. Although, it is believed that adjustments to soil 

parameters could have improved the final statistics. 

Therefore, the values from the calibrated SSURGO model 

were used in final runs of the STATSGO and HYBRID 

models. In the discussion below the term calibration will refer 

to limited calibration and will be applied to the all three 

models. The final calibration statistics for daily, monthly, and 

annual streamflow are listed in Table 3; daily results rated 

good (R
2
, NSE) to very good (PBIAS) for the SSURGO 

model according to the criteria proposed by Moriasi et al. 

(2007). Higher values of individual statistical parameters 
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could have been reached for individual calibration runs by 

sacrificing the values of other parameters, using values 

outside recommended ranges, or adjusting soil-related 

parameters. This was considered unacceptable, and such 

model adjustments were not used. This approach helped focus 

attention on the effects of different soils without modifying 

the soil datasets.  

Statistics also were calculated for uncalibrated models 

using model default parameters. None of the uncalibrated 

models produced acceptable daily, monthly, or yearly 

statistics (Table 3). Daily and monthly statistics were slightly 

lower in STATSGO and HYBRID models compared to the 

SSURGO model, but were still within the acceptable limits, 

whereas the yearly statistics became substantially lower (due 

to the use of only two years in calibration). The greater 

negative PBIAS in the uncalibrated models indicates 

consistent overestimation of runoff events using the 

STATSGO dataset. We note that bias introduced by limited 

calibration to the STATSGO and HYBRID models was small 

comparing to the differences in soil properties between 

SSURGO and STATSGO soil datasets. Interestingly, the 

HYBRID model exhibited lower PBIAS and slightly 

improved NSE compared to the STATSGO model. This 

impact was attributed mainly to increased spatial resolution 

inherited from the SSURGO soil dataset, as discussed below. 

A scatter plot of monthly calibrated and uncalibrated 

streamflow data for three SWAT models compared with 

mean monthly observed flow data in 2007 and 2008 (Figure 

3) shows that all models, calibrated and uncalibrated, 

simulated low-flow conditions consistently higher than 

observed data. This overestimation is also verified by linear 

regression fits presented in Figure 3 for the SSURGO model. 

Regression fits for all calibrated models had values of R
2
 

higher than those for uncalibrated models. For the SSURGO 

model, the value of monthly R
2
 increased from 0.82 for the 

uncalibrated model to 0.96 for the calibrated model. The 

calibrated SSURGO model tended to underestimate the 

observed values for high-flow months, whereas the 

uncalibrated model consistently overestimated stream 

discharge. For flow values greater than 0.3 m
3
/s simulated 

results tended to cluster closer to observed results than for 

lesser values. The limited calibration improved performance 

for all models, with the SSURGO model producing better 

overall performance and statistics among both uncalibrated 

and calibrated models. 

 

Table 2 SWAT parameters, module, range, and final values used in model calibration 
Parameter Module Description Model range Value used 

ESCO Evapotranspiration Soil evaporation compensation factor 0 to 1 0.9 

EPCO Evapotranspiration Plant uptake compensation factor 0 to 1 0.1 

ALFA_BF  Baseflow Baseflow recession constant (days) 0 to 1 0.2 

ALFA_BNK Baseflow Baseflow factor for bank storage (days) 0 to 1 0.04 

SHALLST Baseflow Initial depth of shallow aquifer (mm) 0 to 1000 600 

GWQMIN Baseflow Depth of water in shallow aquifer required for return flow (mm) 0 to 5000 40 

GW_DELAY Baseflow Groundwater delay (days) 0 to 500 15 

GW_REVAP Baseflow Groundwater revap coefficient 0.02 to 0.2 0.04 

RCHRG_DP Baseflow Deep aquifer percolation factor 0 to 1 0.5 

REVAPMN Baseflow Threshold depth of water in shallow aquifer for revap to occur 

(mm) 

0 to 500 2 

SMTMP Snowmelt/Freezing Snow melt base temperature (°C) -5 to 5 -3 

SFTMP Snowmelt/Freezing Snowfall temperature (°C) -5 to 5 3 

SURLAG Surface flow Surface runoff lag coefficient 1 to 24 0.7 

CN2 Surface flow SCS runoff curve number ∆ -10 to 10% ∆ -5% 

 

Table 3 Daily, monthly, and annual statistics of calibrated and non-calibrated model (N/A refers to the statistics not defined due 

to too few [n=2] observations) 
  Calibrated Uncalibrated 

  R2 NSE PBIAS R2 NSE PBIAS 

SSURGO Daily 0.53 0.53 -1.3% 0.18 -3.26 -53.2% 

 Monthly 0.96 0.92 -1.6% 0.82 0.59 -53.3% 

 Yearly N/A 0.99 -1.3% N/A -6.71 -53.2% 

HYBRID Daily 0.56 0.49 -16.9% 0.17 -4.26 -63.3% 

 Monthly 0.97 0.95 -17.2% 0.86 0.46 -63.2% 

 Yearly N/A 0.43 -16.9% N/A -9.31 -63.3% 

STATSGO Daily 0.58 0.48 -40.4% 0.17 -2.8 -50.9% 

 Monthly 0.94 0.85 -40.7% 0.84 0.63 -50.8% 

 Yearly N/A -2.22 -40.4% N/A -5.53 -50.9% 
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Figure 3 Mean monthly simulated discharge against mean monthly measured 

discharge (m3/s) for three sets of calibrated and uncalibrated SWAT models 

 

 

RESULTS 

 

Calibrated versus uncalibrated streamflow 
Mean monthly streamflow values are plotted for the three 

calibrated SWAT models in Figure 4. The two years used for 

calibration (January 2007 through December 2008) were wet 

years, with annual precipitation 39% (2007) and 17% (2008) 

higher than annual mean precipitation for the watershed in the 

past 14 years (1995-2008). During these years, annual mean 

streamflows were 135% (2007) and 60% (2008) higher than 

annual mean streamflows averaged over the same 14-year 

period generated by the calibrated SSURGO model. During 

the calibration period, the STATSGO model continuously 

produced higher monthly values among the models, whereas 

the SSURGO model generated the lowest values. The 

HYBRID model generally produced results between the other 

two models. During the wet months of April, May, and June, 

the STATSGO model produced streamflows with values up 

to 40% greater than those from the SSURGO model. For dry 

months, low streamflow exhibited a similar pattern in all 

models. During years prior to the calibration period (1995 to 

2006), the pattern of streamflows in the three models was 

similar to the pattern observed in the calibration period (2007-

2008). 

 

 
Figure 4 Monthly average stream discharges simulated by the three models 

(STATSGO, HYBRID, and SSURGO). Time series of observed stream 

discharges are plotted for 2007 and 2008 years  

 

Hydrologic balance 

The impact of two soil datasets built into three SWAT 

models can be seen on individual components of the 

hydrologic balance, not only in the watershed but also in 

individual HRUs. This impact can be described using the 

hydrologic balance equation implemented in SWAT (Neitsch 

et al. 2005). The balance on a given day j is simulated based 

on a daily water balance equation within each HRU (all 

balance variables have units of mm H2O): 

 
where SW is the soil water content, PR is the amount of 

precipitation, RO is the amount of surface runoff, ET is the 

amount of evapotranspiration, DP is the amount of water 

exiting the root zone (to the vadose zone), and BF is the 

amount of baseflow (to the stream). The subscript 0 indicates 

the initial water content at the beginning of the simulations. 

All SWAT models built for this study used the NRCS runoff 

curve number method with daily adjustment using SWj to 

estimate RO, the Penman-Monteith method to estimate ET, 

the simplified transport decay method for groundwater, and 

the Muskingum method for channel routing. Annual total 

amounts of PR, RO, ET, BF, and outlet streamflow for both 

sets of three SWAT models, non-calibrated and calibrated, are 

presented in Figure 5. 
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Figure 5 Annual hydrologic balance components: (a) mean streamflow (m3/s), (b) mean baseflow (mm), (c) mean surface runoff (mm), and 

(d) mean actual evapotranspiration (mm). Mean annual observed streamflow is shown in (a) for 2007 and 2008. Total annual precipitation is 

shown as bars in (a) 

 

Within the 14-year period of SWAT simulations (1995-

2008), years 1996, 1998, 2001, and 2006 were considered dry 

years (annual precipitation less than 70% of average annual), 

whereas 1999, 2005, 2007, and 2008 were wet years (annual 

precipitation above 115% of average). Annual average 

streamflow for dry years fell below 0.2 m
3
/s. For wet years, 

RO, BF, and streamflow exhibited higher values. ET also 

increased during wet years. Among the models, BF is higher 

for the SSURGO model, which correlates to stronger 

infiltration compared to other models. Although BF plots 
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show a larger range of changes between the models in 2005 

and 2007, for example, the differences in actual values were 

much smaller compared to differences in RO. Interestingly, 

BF for the HYBRID model was lower than for the STATSGO 

model, which contradicted the trend observed for other 

hydrologic components. Higher ET for the SSURGO model 

indicated longer water storage time within HRU than storage 

time for the STATSGO model. 

 

 

DISCUSSION 

 

Simulation runs for all SWAT models, uncalibrated and 

calibrated, exhibited similar trends in hydrologic components. 

On the daily, monthly, and yearly scales, the smallest 

streamflows were produced by the SSURGO model, whereas 

the STATSGO model consistently generated the largest 

values. The lower streamflow values by the SSURGO dataset 

were related to a 10.4% greater area of soils classified in 

hydrologic soil group B in the SSURGO soil dataset (Table 

1), which generate less surface runoff (and streamflow) than 

soils in groups C and D. This inconsistent soil classification is 

prevalent in Kansas (Sheshukov et al. 2011). The higher 

values of hydraulic conductivity and infiltration rates in such 

soils provide additional near-surface conduction and storage 

of water during rainfall events and greater water percolation 

and recharge of groundwater. HRUs with less conductive 

soils of groups C and D generated greater runoff than HRUs 

with soils of group B, therefore contributing more water flow 

into the stream. Because the Black Kettle Creek streamflow is 

predominately from surface runoff, the daily streamflow 

exhibited a pattern similar to the daily surface runoff. 

The HYBRID model results fell between those from 

SSURGO and STATSGO models, demonstrating an 

interaction between soil parameters (defined by the soil 

database) and other watershed characteristics (defined by 

HRUs, which represent combinations of soil, land cover, and 

topography). The number of soil types and the spatial 

representation of soil map units were identical for HYBRID 

and STATSGO models; however, the HRU boundaries were 

identical for HYBRID and SSURGO models (except for 

several sub-watersheds along county boundaries). Thus, the 

HYBRID model represented STATSGO soil data (redefined 

at SSURGO spatial resolution) combined with greater-

resolution topographic and land-cover data, resulting in 

hydrologic results closer to those of the higher-resolution 

SSURGO model. Even though the soil parameter values did 

not change, the refined spatial resolution improved model 

performance in this watershed.   

Water storage time within the HRU is described by the 

time of concentration (Neitsch et al. 2005). Time of 

concentration is the duration from rainfall initiation until the 

entire drainage area contributes to flow, and is a sum of times 

for overland and channelized flows. For the same rainfall 

amount, greater time of concentration leads to less surface 

runoff and streamflow. Time of concentration depends on 

HRU properties, such as area, slope steepness, average slope 

length, channel flow length, and Manning’s roughness 

coefficient. By the semi-empirical Rational approach 

implemented in SWAT, time of concentration is increased by 

increasing channel length, slope length, HRU area, and 

Manning’s coefficient and decreasing slope steepness.  

The average HRU area is 34.9 ha for the STATSGO 

model, while it is substantially smaller for SSURGO (8.8 ha) 

and HYBRID (7.4 ha) models. The larger average HRU area 

of the STATSGO model should have increased the time of 

concentration and decreased surface runoff comparing to 

SSURGO and HYBRID models. However, even small 

changes (within several percent) in other factors, such as the 

decreased slope steepness and higher Manning’s coefficient 

for the HYBRID model and better inifiltrating soils in the 

SSURGO model (Table 1), offset the impact of larger HRU 

area in STATSGO on the time of concentration distribution 

within each subbasin, especially during high flow events. All 

of these factors combined, and not an individual model 

parameter, contributed to decreased surface runoff and lower 

streamflow. 

 

 

CONCLUSIONS 

 

The SSURGO-ArcSWAT soil conversion tool 

(Sheshukov et al. 2011) was utilized to analyze impact of soil 

spatial resolution on hydrologic response of Black Kettle 

Creek Watershed in south-central Kansas using three model 

setups built within the ArcSWAT model. STATSGO and 

SSURGO soil datasets were utilized in model development. 

An additional soil dataset (HYBRID), with STATSGO soils 

but SSURGO spatial distribution, was developed to analyze 

the interactive impacts of spatial soil resolution on watershed 

hydrologic response.  

For the predominantly agricultural watershed, the 

STATSGO model produced the greatest surface runoff and 

streamflows among the three models, especially during 

higher-rainfall events, and exhibited the least flashy surface 

runoff behavior. The HYBRID model exhibited lower PBIAS 

and improved NSE compared to the STATSGO model, which 

was attributed to increased spatial resolution of HRUs 

inherited from the SSURGO soil dataset. The SSURGO 

model produced the best PBIAS and NSE indices. Model 

performance of uncalibrated models was substantially worse 

than that of calibrated models. Additional adjustment of soil 

parameters in STATSGO and SSURGO datasets that were 
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left unchanged in this study could improve the model 

performance but introduce model bias to the soil datasets.  

Analysis of impact of HRU properties on hydrologic 

equations conducted by SWAT revealed model bias of larger 

time of concentration and smaller surface runoff toward 

smaller HRUs. The benefit of using SSURGO soil dataset 

was demonstrated to come from greater resolution of soil 

property data. The results generated were based on the SWAT 

model applied to an agricultural watershed in the Central 

Great Plains of the United States. In other areas with different 

soil, topography and climate conditions, hydrologic 

differences between STATSGO and SSURGO datasets may 

be different from the ones simulated in this study and the 

resulting changes in hydrologic regimes may vary, however 

the trend of model improvement with either higher soil 

resolution or smaller map units is expected to be preserved. 
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