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Abstract

For mod p Dirichlet characters χ1, χ2 the classical Jacobi sums

J(χ1, χ2, p) :=

p∑
x=1

χ1(x)χ2(1− x),

have a long history in number theory. In particular, it is well known that if χ1, χ2 and χ1χ2

are non-trivial characters, then J(χ1, χ2, p) can be written in terms of Gauss sums and

|J(χ1, χ2, p)| = p1/2,

though in general no evaluation is known without the absolute value. In this thesis we

consider some mod pm generalization of the Jacobi sums where we can obtain an explicit

evaluation (without the absolute value) for m sufficiently large. For example, if χ, χ1, · · · , χs

are mod pm Dirichlet characters the sums

J1 =

pm∑
x1=1

· · ·
pm∑
xs=1

A1x
k1
1 +···+Asxkss ≡B mod pm

χ1(x1) · · ·χs(xs),

where p - A1 · · ·AsB k1 · · · ks, and

J2 =

pm∑
x1=1

· · ·
pm∑
xs=1

χ1(x1) · · ·χs(xs)χ(A1x1 + · · ·+ Asxs +Bxw1
1 · · ·xwss ),

where p - 2A1 · · ·AsB(1−w1− · · · −ws), have simple evaluations when m ≥ 2. Exponential

or character sums with an explicit evaluation are rare. Interestingly the sums we consider

here can, like the classical Jacobi sums, be written in terms of Gauss sums.
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Chapter 1

Introduction

Exponential and character sums are used frequently in number theory so it is always inter-

esting when such a sum has an explicit evaluation. For example, for a non-trivial mod p

character χ the classical Gauss sums

G(χ, p) =

p∑
x=1

χ(x)ep(x),

where ek(x) := e2πix/k, satisfy

|G(χ, p)| = p1/2,

with an evaluation of G(χ, p) famously obtained by Gauss in the special case that χ(x) is

the Legendre symbol. Another much studied sum is the Jacobi sum, mentioned by Jacobi

[10] in a letter to Gauss dated February 8, 1827. For two characters χ1, χ2 mod p one defines

J(χ1, χ2, p) =

p∑
x=1

χ1(x)χ2(1− x).

An extensive history of Jacobi sums and their applications can be found in [4, Chapter 2]

and [11, Chapter 5]. It is well known that if χ1χ2 is a non-trivial character, then J(χ1, χ2, p)
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can be written in terms of Gauss sums

J(χ1, χ2, p) =
G(χ1, p)G(χ2, p)

G(χ1χ2, p)
,

and hence if χ1, χ2 and χ1χ2 are non-trivial

|J(χ1, χ2, p)| = p1/2.

These have natural generalization to characters on finite fields Fpm and to sums with more

than two characters (see [4, Theorem 2.1.3] and [11, Theorem 5.21]). For example, if

χ1, . . . , χs are mod p characters, we can define

J(χ1, . . . , χs, p) :=

p∑
x1=1

· · ·
p∑

xs=1
x1+···+xs≡1 mod p

χ1(x1) · · ·χs(xs). (1.1)

If χ1 · · ·χs is non-trivial, then we can write (1.1) in the form

J(χ1, . . . , χs, p) =

∏s
i=1G(χi, p)

G(χ1 · · ·χs, p)
,

and if χ1, . . . , χs, χ1 . . . χs are non-trivial characters, then

|J(χ1, . . . , χs, p)| = p
s−1
2 .

Here we are interested in working in the ring Zpm rather than the finite field Fpm . When

χ1, . . . , χs, are mod pm Dirichlet characters one can similarly define the Jacobi sums

J(χ1, . . . , χs, p
m) :=

pm∑
x1=1

· · ·
pm∑
xs=1

x1+···+xs≡1 mod pm

χ1(x1) · · ·χs(xs). (1.2)
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These had already been considered for s = 2 by Zhang and Yao [24] and for general s by

Zhang and Xu [23] who obtained a Gauss sum decomposition

J(χ1, . . . , χs, p
m) =

∏s
i=1G(χi, p

m)

G(χ1 · · ·χs, pm)
,

where

G(χ, pm) :=

pm∑
x=1

χ(x)epm(x), (1.3)

under the assumption that the χ1, . . . , χs, and χ1 · · ·χs are all primitive characters, and

hence

|J(χ1, . . . , χs, p
m)| = p

(s−1)m
2 ,

(see also Lemma 1 in [25]). Wang [20] had already obtained such an expression for Jacobi

sums over much more general rings of residues modulo prime powers and related the number

of solutions of the congruence xp1 + · · ·+xps ≡ 1 mod p2 to the number of certain real Jacobi

sums over rings. Jacobi sums over finite local rings can be found in Wang [21]. A slightly

more general sum

JB(χ1, . . . , χs, p
m) :=

pm∑
x1=1

· · ·
pm∑
xs=1

x1+···+xs≡B mod pm

χ1(x1) · · ·χs(xs), (1.4)

was evaluated in [15]. While mod p sums are usually difficult to evaluate, the method of

Cochrane and Zheng [7] can sometimes be used to evaluate mod pm sums when m ≥ 2, as

formulated in [17]. This technique was for instance used in [7, §9] to explicitly evaluate the

Gauss sums (1.3) for m ≥ 2. Slightly different evaluations can be found in [14], [12] and

[15]. In [15] the Jacobi sums (1.4) were written in terms of Gauss sums and the Gauss sum

evaluation used to obtain an evaluation of the Jacobi sums for m ≥ 2 (see (3.10) in Chapter

3).

Here we are interested in two different generalizations of the Jacobi sums (1.4) where we
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can also obtain an explicit evaluation. For example, if χ, χ1, · · · , χs are mod pm Dirichlet

characters the following Jacobi sums

J1 :=

pm∑
x1=1

· · ·
pm∑
xs=1

A1x
k1
1 +···+Asxkss ≡B mod pm

χ1(x1) · · ·χs(xs), (1.5)

where

p - A1 · · ·AsBk1 · · · ks, (1.6)

and

J2 :=

pm∑
x1=1

· · ·
pm∑
xs=1

χ1(x1) · · ·χs(xs)χ(A1x1 + · · ·+ Asxs +Bxw1
1 · · ·xwss ), (1.7)

where

p - 2A1 · · ·AsB(1− w1 − · · · − ws), (1.8)

have simple evaluations when m ≥ 2. Of course, the classical Jacobi sums (1.4) correspond

to taking all the Ai = 1 and ki = 1 in J1, and all the wi = 0 in J2.

The following evaluation of J1 is a special case of Theorem 3.0.2 which we shall prove in

Chapter 3. For simplicity, we have stated the result here for |J1|, but in fact we obtain an

evaluation for J1. The condition (1.6) can also be released if we take m sufficiently large.

We have a similar result for p = 2 with m ≥ 5 (see Theorem 3.3.1 in Chapter 3).

Theorem 1.0.1. Let p be an odd prime, χ1, . . . , χs be mod pm characters with at least one

of them primitive. Suppose that m ≥ 2 and (1.6) holds. If the χi = (χ′i)
ki for some primitive

characters χ′i mod pm such that χ′1 . . . χ
′
s is a primitive mod pm character, and for all i, the

A−1i Bc′iv
′−1 ≡ αkii mod pm for some αi, where for a primitive root a, the c′i are defined by

χ′i(a) = eφ(pm)(c
′
i), v′ := c′1 + · · ·+ c′s,
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then

|J1| = (k1, p− 1) · · · (ks, p− 1)p
m
2
(s−1).

Otherwise J1 = 0.

The following evaluation of J2 is a special case of Theorem 4.0.1 which we shall prove

in Chapter 4. Again we have stated the theorem here for |J2|, but in Theorem 4.0.1 in

Chapter 4 we obtain an evaluation for J2 without assuming that condition (1.8) holds. The

corresponding p = 2 result is given in Theorem 4.0.1 for J2.

Theorem 1.0.2. Let p be an odd prime and χ, χ1, . . . , χs be mod pm characters with χ

primitive. Suppose that m ≥ 2 and (1.8) holds. Let k := 1 −
∑s

i=1wi, where wi are

arbitrary integers. If χχ1 · · ·χs = χk∗ for some primitive mod pm character χ∗ such that the

χiχ
wi
∗ are all primitive characters mod pm, and λ defined as:

λ := −B
s∏
i=1

(
cic
−1
∗ + wi

)wi mod pm

is a kth power mod pm, then

|J2| = (k, p− 1)p
ms
2

where for a primitive root a, ci and c∗ are defined as

χi(a) = eφ(pm)(ci), χ∗(a) = eφ(pm−n)(c∗).

Otherwise J2 = 0.

Both sums J1 and J2 can be expressed in terms of the classical Gauss sums (1.3), see

Theorem 3.1.1 in Chapter 3 and Theorem 4.2.1 in Chapter 4. We could have used the Gauss

sum evaluations or the Cochrane and Zheng technique directly to evaluate our sums J1 and

J2, but we will use the evaluation of the Jacobi sums from [15].
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It would be nice if in the future one could determine which classes of exponential or

character sums possess an explicit representation in terms of Gauss sums.
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Chapter 2

Preliminaries

We shall start this chapter by introducing Dirichlet characters which will later be used to

define Gauss and Jacobi sums.

2.1 Dirichlet Characters

Characters

Let G be a finite abelian group. A character χ on G is a non-zero function from G to C

with χ(ab) = χ(a)χ(b) for all a, b ∈ G. If we denote the identity element of G as e, then

for any a ∈ G we clearly have χ(a) = χ(ae) = χ(a)χ(e). Since χ is a non-zero function,

we must have χ(e) = 1 and so, since a|G| = e, we get χ(a)|G| = χ(e) = 1. Thus χ(a) is

a |G|-th root of unity. The set of such characters will be denoted by Ĝ. Note Ĝ form a

group. For any two characters χ1, χ2 in Ĝ, we have that χ1χ2(a) := χ1(a)χ2(a) is also a

character where a ∈ G. The character which send every element to 1 acts as identity under

multiplication and is denoted as χ0, the principal character. The inverse of a character

χ is its complex conjugate defined by χ−1(x) = χ(x). If χ ∈ Ĝ, then χ−1 ∈ Ĝ. Ĝ is an

abelian group since multiplication in C∗ is commutative. Note G ∼= Zn1 ⊕ · · · ⊕ Znk so G is

generated by elements a1, . . . , ak of order n1, . . . , nk, respectively. Therefore χ is defined by
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χ(aj) where the χ(aj) are njth roots of unity. Thus we have nj choices for χ(aj) and have

n1 · · ·nk choices for χ. So |Ĝ| = n1 · · ·nk = |G|. In fact, it is easy to see that Ĝ is generated

by χ1, . . . , χk where χl(al) = e2πi/nl and χl(aj) = 1 for all j 6= l so that G ∼= Ĝ. In this thesis

we interested in the case G = Z∗q. Here we use Zq for Z/qZ, the ring of integers mod q and

Z∗q = {a ∈ Zq : (a, q) = 1}, the multiplicative group of units in Zq. There are φ(q) distinct

Dirichlet characters modulo q, where φ(q) is the Euler totient function. The φ(q) characters

on Z∗q can be extended to multiplicative functions on all of Zq by setting χ(x) = 0 when

x /∈ Z∗q.

Dirichlet Characters

For a positive integer q, we can think of a Dirichlet character mod q as a not identically

zero function χ : Z 7→ C with

(1) χ(a) = 0 if (a, q) > 1,

(2) χ is completely multiplicative, that is χ(ab) = χ(a)χ(b) for all a, b ∈ Z,

(3) χ is periodic with period q, that is χ(a+ q) = χ(a) for all a ∈ Z.

More elementary properties of characters can be found in [[3], Chapter 6] and [[9], pp.88-91].

Principal Character

The principal Dirichlet character χ0 (mod q) is the character with

χ0(a) :=


1, if (a, q) = 1,

0, else.

(2.1)

Example

When q = 1 or q = 2, then φ(q) = 1 and the principal character χ0 is the only Dirichlet

character. For q ≥ 3, then φ(q) ≥ 2 so there are at least two Dirichlet characters. The
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following tables display all the Dirichlet characters for q = 3, 4 and 5.

Table 2.1: q = 3, φ(q) = 2
n 1 2 3
χ1(n) 1 1 0
χ2(n) 1 -1 0

Table 2.2: q = 4, φ(q) = 2
n 1 2 3 4
χ1(n) 1 0 1 0
χ2(n) 1 0 -1 0

Table 2.3: q = 5, φ(q) = 4
n 1 2 3 4 5

χ1(n) 1 1 1 1 0
χ2(n) 1 -1 -1 1 0
χ3(n) 1 i −i -1 0
χ4(n) 1 −i i -1 0

We shall now introduce the Legendre symbol, which is an example of a Dirichlet char-

acter, but we need to know the following definition first to define the Legendre symbol.

Quadratic Residue

Let a and q be two integers with (a, q) = 1. Then a is called a quadratic residue mod q if

the congruence x2 ≡ a (mod q) has a solution. Otherwise a is called a quadratic nonresidue

mod q.

Legendre Symbol

Let a, b ∈ Z, and p be an odd rational prime. Then

(
a

p

)
:=


1, if a is a quadratic residue mod p,

−1, if a is a quadratic nonresidue mod p,

0, if p divides a.

(2.2)

There are a number of useful properties of the Legendre symbol. We would like to state

some of the properties in the following theorem.
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Theorem 2.1.1. Let p be an odd prime, then

(1)
(
a
p

)
≡ a(p−1)/2 (mod p).

(2)
(
ab
p

)
=
(
a
p

)(
b
p

)
.

(3) If a ≡ b (mod p), then
(
a
p

)
=
(
b
p

)
.

(4) If (a, p) = 1, then
(
a2

p

)
= 1 and

(
a2b
p

)
=
(
b
p

)
.

(5)
(

1
p

)
= 1 and

(
−1
p

)
= (−1)(p−1)/2 =


1, if p ≡ 1 mod 4,

−1, if p ≡ 3 mod 4.

(6)
(

2
p

)
= (−1)(p

2−1)/8 =


1, if p ≡ 1 or 7 mod 8,

−1, if p ≡ 3 or 5 mod 8.

(7) Gaussian reciprocity law: If p and q are distinct odd primes, then

(
p

q

)(
q

p

)
= (−1)

(p−1)
2

.
(q−1)

2 .

The proof of all the above properties can be found in [13, Chapter 3].

Induced Modulus

Let χ be a Dirichlet character mod q. For q1 | q we say that χ is an induced by a mod q1

character, χq1 , if

χ(a) :=


χq1(a), if (a, q) = 1,

0, otherwise.

Equivalently, q1 is called an induced modulus for χ if we have

χ(a) = 1 whenever (a, q) = 1 and a ≡ 1 mod q1.

Note that for any Dirichlet character χ mod q the modulus q itself is always an induced

modulus.
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Primitive Characters

A Dirichlet character mod q is said to be primitive if it has no induced modulus d < q. A

principal character χ0 mod q is an example of a nonprimitive character for any q ≥ 2 since

it has q1 = 1 as an induced modulus. If χ is a nonprincipal character mod p, where p is a

prime, then χ is a primitive character mod p (since 1 cannot be an induced modulus, which

is the only proper divisor of p). Thus, every nonprincipal character χ mod a prime p is a

primitive character mod p.

Primitive Root

An integer a is called a primitive root mod q if φ(q) is the smallest positive integer such

that aφ(q) ≡ 1 mod q. In this thesis we are concerned with the case where χ has prime

power modulus, q = pm where p is a prime. A primitive root always exists when q = pm

is a power of an odd prime, see [3, Chapter 10]. Let q = pα1
1 p

α2
2 · · · p

αk
k where p1, p2, . . . , pk

are distinct primes and α1, α2, . . . , αk are positive integers. Suppose we have the characters

χ1( mod pα1
1 ), χ2( mod pα2

2 ), . . . , χk( mod pαk1 ). Then, we can construct a mod q character

χ with

χ := χ1χ2 · · ·χk. (2.3)

We claim that if χi 6= χ
′
i for some i, then χ := χ1χ2 · · ·χk 6= χ

′
1χ
′
2 · · ·χ

′

k =: χ
′
.Without loss of

generality, suppose χ1 6= χ
′
1, then there exists an a with (a, pα1

1 ) = 1 such that χ1(a) 6= χ
′
1(a).

If we take m such that m ≡ a mod pα1
1 and m ≡ 1 mod pαii for all i = 2, 3, . . . , k, then

χ(m) = χ1(a)χ2(1) · · ·χk(1) = χ1(a), and χ
′
(m) = χ

′

1(a)χ
′

2(1) · · ·χ′k(1) = χ
′

1(a).

Since χ1(a) 6= χ′1(a) we get χ(m) 6= χ′(m) and so χ 6= χ
′
. Furthermore, there are φ(pαii )

characters mod pαii for all i = 1, 2, . . . , k, so we can make φ(pα1
1 )φ(pα2

2 ) · · ·φ(pαkk ) = φ(q)

distinct characters mod q. Consequently, every mod q character can be written as the product
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k mod q characters induced by mod pαii characters, i = 1, 2, . . . , k. Note that the value of ϕ

on prime powers pα is

φ(pα) = pα−1(p− 1).

Additionally, χ is a primitive character if and only if χ1, χ2, . . . , χk are primitive characters.

Lemma 2.1.1. Let χ be a Dirichlet character mod q. Then,

∑
a mod q

χ(a) =


φ(q), if χ = χ0 ,

0, otherwise.

(2.4)

Proof. Let

S :=
∑

a mod q

χ(a).

Let c be any integer with (c, q) = 1. Then,

χ(c)S =
∑

a mod q

χ(c)χ(a) =
∑

a mod q

χ(ca).

Define b := ca. Since a ranges over all the residue classes mod q, so does b. Therefore,

χ(c)S =
∑

b mod q

χ(b) = S.

Thus, either S = 0 or χ(c) = 1. Since c was an arbitrary reduced residue class mod q, we

must have either S = 0 or χ(c) = 1 for all reduced residue classes mod q. In other word,

either S = 0 or χ = χ0. When χ = χ0 we have

S =
∑

a mod q

χ0(a) = φ(q).
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Let ~f := (f1, . . . , fk) where fi ∈ Z[x1, . . . , xs] for all i = 1, . . . , k. Let ~χ = (χ1, . . . , χk)

denote k characters χi mod q, then for g ∈ Z[x1, . . . , xs], define the more general sum

S(~χ, ~f, q) :=

q∑
x1=1

· · ·
q∑

xs=1

g(x1,...,xs)≡0 mod q

χ1(f1(x1, . . . , xs)) · · ·χk(fk(x1, . . . , xs)). (2.5)

When q is composite the following lemma can be used to reduce sums of the form (2.5)

to the case of prime power modulus.

Lemma 2.1.2. Suppose that χ1, . . . , χk are mod uv characters with (u, v) = 1. Writing

χi = χ′iχ
′′
i for mod u and mod v characters χ′i and χ′′i respectively, where i = 1, . . . , k, then

S(~χ, ~f, uv) = S(~χ′, ~f , u)S( ~χ′′, ~f , v).

Proof. For all i = 1, . . . , k, suppose that χi is a mod uv character with (u, v) = 1, and

χi = χ′iχ
′′
i , where χ′i is a mod u and χ′′i is a mod v character. Write xi = eivv

−1 + tiuu
−1,

where uu−1 + vv−1 = 1 and ei = 1, . . . , u, ti = 1, . . . , v. Note

χi(fi(x1, . . . , xs)) = χ′iχ
′′
i (fi(e1vv

−1 + t1uu
−1, . . . , esvv

−1 + tsuu
−1))

= χ′i(fi(e1, . . . , es))χ
′′
i (fi(t1, . . . , ts)).

Since (u, v) = 1, we have

g(x1, . . . , xs) ≡ 0 mod uv ⇔


g(x1, . . . , xs) ≡ 0 mod u,

g(x1, . . . , xs) ≡ 0 mod v,

⇔


g(e1, . . . , es) ≡ 0 mod u,

g(t1, . . . , ts) ≡ 0 mod v.
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Writing S := S(~χ, ~f, uv), then we have

S =
u∑

e1=1

v∑
t1=1

· · ·
u∑

es=1

v∑
ts=1

g(e1,...,es)≡0 mod u
g(t1,...,ts)≡0 mod v

χ′1(f1(e1, . . . , es))χ
′′
1(f1(t1, . . . , ts)) · · ·χ′k(fk(e1, . . . , es))χ′′k(fk(t1, . . . , ts))

=
u∑

e1=1

· · ·
u∑

es=1

g(e1,...,es)≡0 mod u

χ′1(f1(e1, . . . , es)) · · ·χ′k(fk(e1, . . . , es))

×
v∑

t1=1

· · ·
v∑

ts=1

g(t1,...,ts)≡0 mod v

χ′′1(f1(t1, . . . , ts)) · · ·χ′′k(fk(t1, . . . , ts))

= S(~χ′, ~f , u)S( ~χ′′, ~f , v).

Since the sums in (1.5) and (1.7) are special case of (2.5), we can reduce them to the

case of prime power.

2.2 Gauss Sums

For a mod q Dirichlet character χ we define the Gauss sum by

G(χ, q) :=

q∑
x=1

χ(x)eq(x), (2.6)

where we recall that ek(x) = e2πix/k. In view of Lemma 2.1.2 we restrict ourself to the case

when q is a prime power, pm. When q = p and χ is the Legendre symbol, G(χ, p) is called

a quadratic Gauss sum, and will be denoted simply as Gp. We would like to start with the

following Lemma in order to understand the Gauss sums properties.

14



Lemma 2.2.1.

q−1∑
x=0

eq(Ax) =


q, if A ≡ 0 mod q,

0, else.

(2.7)

Proof. If A ≡ 0 mod q, then eq(Ax) = 1, and
∑q−1

x=0 eq(Ax) =
∑q−1

x=0 1 = q. If A 6≡ 0 mod q,

then eq(A) 6= 1 and
q−1∑
x=0

eq(Ax) =
1− eq(A)q

1− eq(A)
= 0.

More generally we can define

S(A,χ) :=

q∑
x=1

χ(x)eq(Ax). (2.8)

If A = 1, then S(1, χ) = G(χ, q).

Theorem 2.2.1. If χ is a primitive character mod q, then S(A,χ) = 0 for all (A, q) 6= 1.

Proof. Suppose S(A,χ) 6= 0 for some (A, q) > 1, then we need to show χ is imprimitive.

Take q1 := q/(A, q) and suppose that m ≡ 1 mod q1 with (m, q) = 1. Note

eq(Ajm) = e
2πiAjm

q = e
2πiAjm
q1(A,q)

= eq1

(
Aj

(A, q)
m

)
) = eq1

(
Aj

(A, q)

)
= e

2πiAj
q1(A,q) = e

2πiAj
q

= eq(Aj).
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Thus we have

S(A,χ) =
∑

j mod q

χ(j)eq(Aj)

=
∑

j mod q

χ(jm)eq(Ajm) j := jm

= χ(m)

q∑
j=1

χ(j)eq(Aj)

= χ(m)S(A,χ).

Since S(A,χ) 6= 0 we must have χ(m) = 1 which shows that χ is induced by a mod q1

character. Thus χ is imprimitive.

Proposition 2.2.1. If χ is any Dirichlet character mod q, then

S(A,χ) = χ(A)S(1, χ) whenever (A, q) = 1.

Proof. Let S(A,χ) =
∑q

x=1 χ(x)eq(Ax). When (A, q) = 1, the numbers Ax run through a

complete residue system mod q with x. Also, |χ(A)|2 = χ(A)χ(A) = 1 so

χ(x) = χ(A)χ(A)χ(x) = χ(A)χ(Ax).
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Therefore the sum defining S(A,χ) can be written as follows:

S(A,χ) =

q∑
x=1

χ(x)eq(Ax)

= χ(A)

q∑
x=1

χ(Ax)eq(Ax)

= χ(A)

q∑
y=1

χ(y)eq(y), y := Ax

= χ(A)S(1, χ).

Corollary 2.2.1. Assume q = p and χ =
(
x
p

)
, the Legendre symbol, then

S(A,χ) =

(
A

p

)
S(1, χ).

Proposition 2.2.2. If χ is a primitive character mod q, then

|S(A,χ)| =


√
q, if (A, q) = 1,

0, if (A, q) 6= 1.

Proof. Suppose χ is a primitive character mod q. From Theorem 2.2.1 we know that

S(A,χ) = 0 whenever (A, q) 6= 1. Now suppose (A, q) = 1. If A 6= 0, then by Proposi-

tion 2.2.1 we have S(A,χ) = χ(A)S(1, χ), and so

|S(A,χ)|2 = S(A,χ)S(A,χ)

=
(
χ(A)S(1, χ)

)(
χ(A)S(1, χ)

)
= |S(1, χ)|2.
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Furthermore

|S(1, χ)|2 =
∑

j mod q

χ(j)eq(j)
∑

k mod q

χ(k)eq(−k)

=
∑

(k,q)=1

χ(k)

(∑
j

χ(j)eq(j)

)
eq(−k)

=
∑

(k,q)=1

χ(k)

(∑
j

χ(jk)eq(jk)

)
eq(−k), j := jk

=
∑

(k,q)=1

eq(−k)

(∑
j

χ(j)eq(jk)

)
.

By Theorem 2.2.1 the sum
∑

j χ(j)eq(jk) = 0 if (k, q) 6= 1 thus

|S(1, χ)|2 =

q∑
k=1

q∑
j=1

χ(j)eq(k(j − 1))

=

q∑
j=1

χ(j)

(
q∑

k=1

eq(k(j − 1))

)
.

Since

q∑
k=1

eq(k(j − 1)) =


q, if j − 1 ≡ 0 (mod q),

0, if j − 1 6≡ 0 (mod q),

we have |S(1, χ)|2 = qχ(1) = q.

The following lemma plays a useful role for proofing the main sums in this thesis (1.5)

in Chapter 3 and (1.7) in Chapter 4 (which can be seen in [16]).
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Lemma 2.2.2. For any u with (u, p) = 1, if u is a kth power mod pm, then

∑
χk=χ0 mod pm

χ(u) = D :=


(k, φ(pm)), if p is odd or pm = 2, 4,

2(k, 2m−2), if p = 2, m ≥ 3, k is even,

1, if p = 2, m ≥ 3, k is odd.

(2.9)

If u is not a kth power mod pm, then

∑
χk=χ0 mod pm

χ(u) = 0.

Proof. We know that there are exactly φ(pm) characters mod pm. We claim that D of these

characters have the property χk = χ0 . For p is odd, we have a primitive root a mod pm

and define the character χ as

χ(a) = eφ(pm)(c), 1 ≤ c ≤ φ(pm).

If χk = χ0, then we have

eφ(pm)(c) = χ(a)k = χ0(a) = eφ(pm)(0).

Thus we have the congruence ck ≡ 0 mod φ(pm). Let D = (k, φ(pm)). Then c ≡ 0

mod φ(pm)/D so c = φ(pm)j/D where j = 1, . . . , (k, φ(pm)). Therefore there are exactly

D characters such that

χk = χD = χ0.

Thus if u is a kth power mod pm, then

∑
χD=χ0

χ(u) = D.
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If u is not a kth power mod pm, then u = aγ where γ 6≡ kγ′ mod φ(pm) for some γ′ and so

D - γ, and by using (2.7) we get

∑
χD=χ0

χ(u) =
∑
χD=χ0

χ(aγ) =
D∑
y=1

eφ(pm)

(
yγφ(pm)

D

)
=

D∑
y=1

e
(yγ
D

)
= 0.

For p = 2, m ≥ 3. We need two generators a = −1 and a = 5 for Z∗2m ( see [13]). Define

χ(−1) = e2(c0), 1 ≤ c0 ≤ 2, and χ(5) = e2m−2(c), 1 ≤ c ≤ 2m−2.

If χk = χ0, then we have the congruences kc ≡ 0 mod 2m−2 and kc0 ≡ 0 mod 2 which

have (k, 2m−2) and (k, 2) solutions, respectively. Therefore if k even, there are exactly

D = 2(k, 2m−2) characters such that χk = χ0. If (k, 2) = 1, then D = 1 and there is only

the principal character with χk = χ0. Thus, if u is a kth power mod 2m, then

∑
χk=χ0 mod pm

χ(u) =


2(k, 2m−2), if p = 2, m ≥ 3, k even,

1, if p = 2, m ≥ 3, k odd.

If k is odd then every odd u is a kth power. If u is not a kth power mod 2m and k even,

then u = (−1)γ(5)β where 2 - γ or (k, 2m−2) - β. Therefore by using again (2.7) we get

∑
χD=χ0

χ(u) =
∑
χD=χ0

χ(−1)γχ(5)β =
2∑

x=1

e2(xγ)
D∑
y=1

e

(
yβ

(k, 2m−2)

)
.

Therefore, if 2 - γ then the sum
∑2

x=1 e2(xγ) = 0 or if (k, 2m−2) - β. then the sum∑D
y=1 e

(
yβ

(k,2m−2)

)
= 0. Thus ∑

χD=χ0

χ(u) = 0.

Note, if p = 2, and m = 1, then φ(2) = 1 which shows that we have only one character, the
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principal character χ0 and uk ≡ u mod 2

χk(u) = χ0(u) = 1.

If p = 4, then as seen in Table 2.2 we have two characters χ1, χ2 where

χ1(u) =


0, if u is even,

1, if u is odd,

and χ2(u) =


1, if u ≡ 1 mod 4,

−1, if u ≡ 3 mod 4,

0, if u ≡ 0 mod 4.

Thus, we get

∑
χk=χ0

χ(u) =


0, if k even and u ≡ 3 mod 4,

2, if k is even and u ≡ 1 mod 4,

1, if k is odd.

Recall that Gp is the quadratic Gauss sum,

Gp :=

p−1∑
x=1

(
x

p

)
ep(x). (2.10)

where
(
x
p

)
is the Legendre symbol.

Lemma 2.2.3. For any odd prime p we have G2p =
(
−1
p

)
p. Moreover,

Gp :=

p−1∑
x=0

ep(x
2) =


±√p, if p ≡ 1 mod 4,

±i√p, if p ≡ 3 mod 4.

(2.11)

Proof. Determining the sign is a more difficult problem and will not be done here. In fact,
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Gauss proved the remarkable formula (see Theorem 1.3.4 in [4]),

Gp =


√
p, if p ≡ 1 mod 4,

i
√
p, if p ≡ 3 mod 4.

From the definition of the quadratic Gauss sum, we have

G2p =

p−1∑
x=1

(
x

p

)
ep(x)

p−1∑
y=1

(
y

p

)
ep(y)

=

p−1∑
x=1

(
x

p

)
ep(x)

(
p−1∑
y=1

(
xy

p

)
ep(xy)

)

=

p−1∑
y=1

(
y

p

) p−1∑
x=1

ep(x(y + 1)).

Now for y = 1, . . . , p− 2, x(y + 1) runs through a reduced residue system mod p as x goes

from 1 to p− 1 and so
∑p−1

x=1 ep(x(y + 1)) =
∑p−1

x=1 ep(x) = −1. For y = p− 1 the sum over

x is just a sum of 1’s. Thus we get

G2p = (−1)

p−2∑
y=1

(
y

p

)
+

(
−1

p

)
(p− 1)

= (−1)

p−1∑
y=1

(
y

p

)
+

(
−1

p

)
+

(
−1

p

)
(p− 1) =

(
−1

p

)
p.

From the property (5) in Lemma 2.1.1 we get the desired result.
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2.3 Jacobi Sums

Definition 2.3.1. For two Dirichlet characters χ1, χ2 mod q, we define the classical Jacobi

sums as

J(χ1, χ2, q) :=

q∑
x=1

χ1(x)χ2(1− x). (2.12)

Recall that a nonprincipal character is the same as a primitive character on Zp, when p

is a prime.

Theorem 2.3.1. Let χ1 and χ2 be characters on Zp, where p is a prime.

(a) If χ1 and χ2 are both principal characters, then J(χ1, χ2, p) = p− 2.

(b) If one of χ1 and χ2 is principal, then J(χ1, χ2, p) = −1.

(c) If χ is nonprincipal, then J(χ, χ, p) = −χ(−1).

Proof. (a) Since both χ1 and χ2 are principal, we have

J(χ1, χ2, p) =
∑
x∈Zp

χ1(x)χ2(1− x) =
∑
x 6=0,1

χ1(x)χ2(1− x) = p− 2.

(b) Suppose χ1 is principal and χ2 is nonprincipal. Then we have χ1(x) = 1 for x 6= 0 and

J(χ1, χ2, p) =
∑
x∈Z∗p

χ2(1− x) =
∑
x∈Zp

χ2(1− x)− χ2(1) = 0− χ2(1) = −1.

(c) If χ is nonprincipal, then

J(χ, χ, p) =
∑
x∈Z∗p

χ(x−1)χ(1− x) =
∑
x∈Z∗p

χ(x−1 − 1)

=
∑
x∈Z∗p

χ(x− 1) =
∑
x∈Zp

χ(x− 1)− χ(−1) = −χ(−1).

The following theorem shows that the mod q Jacobi sums (2.12) can be written in terms
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of Gauss sums (as in Theorem 2.1.3 of [4] or Theorem 5.21 of [11]).

Lemma 2.3.1. If χ1, χ2 are characters mod q such that χ1χ2 is primitive, then for any

z ∈ Z ∑∑
x1+x2≡z mod q

χ1(x1)χ2(x2) = χ1χ2(z)J(χ1, χ2, q).

Note, if (z, q) 6= 1, and χ1χ2 is primitive character mod q, then the above sum will be zero.

Proof. Suppose χ1, χ2 are characters mod q with (z, q) = 1, then from the change of variable

x1 7→ x1z and x2 7→ x2z we get

∑∑
x1+x2≡z mod q

χ1(x1)χ2(x2) = χ1χ2(z)
∑∑

x1+x2≡1 mod q

χ1(x1)χ2(x2)

= χ1χ2(z)J(χ1, χ2, q).

If (z, q) 6= 1, and χ1χ2 is primitive, then there is a u ≡ 1 mod q/(z, q) with χ1χ2(u) 6= 1

and (u, q) = 1. Thus, the change of variable xi 7→ xiu, i = 1, 2 with the observation that

z ≡ zu mod q give that

∑∑
x1+x2≡z mod q

χ1(x1)χ2(x2) = χ1χ2(u)
∑∑

x1+x2≡z mod q

χ1(x1)χ2(x2).

Hence ∑∑
x1+x2≡z mod q

χ1(x1)χ2(x2) = 0.

Theorem 2.3.2. Let χ1 and χ2 be mod q characters. If χ1χ2 is primitive, then

J(χ1, χ2, q) =
G(χ1, q)G(χ2, q)

G(χ1χ2, q)
,
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and if χ1, χ2, and χ1χ2 are all primitive, then

|J(χ1, χ2, q)| = q1/2.

Proof. By the definition of Gauss sums given in (2.6) and Lemma 2.3.1 we have

G(χ1, q)G(χ2, q) =
∑
x

∑
y

χ1(x)χ2(y)eq(x+ y)

=
∑
z

eq(z)
∑
x+y=z

χ1(x)χ2(y)

= J(χ1, χ2, q)
∑
z

χ1χ2(z)eq(z)

= J(χ1, χ2, q)G(χ1χ2, q).

Now suppose that χ1, χ2, and χ1χ2 are all primitive. Then from Proposition 2.2.2, we get

|J(χ1, χ2, q)| =
|G(χ1, q)||G(χ2, q)|
|G(χ1χ2, q)|

=
q1/2q1/2

q1/2
= q1/2.

2.4 Generalized Jacobi Sums

Definition 2.4.1. Let χ1, . . . , χs be mod q characters. Then the generalized Jacobi sum

J(χ1, . . . , χs, q) is defined by

J(χ1, . . . , χs, q) :=
∑

x1+···+xs≡1 mod q

χ1(x1) · · ·χs(xs), (2.13)

where the summation is taken over all qs−1 s-tuples (x1, . . . , xs) of elements of Zq with

x1 + · · ·+ xs = 1.
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When s = 1, the sum (2.13) is

J(χ1, q) = χ1(1) = 1.

When s = 2 this definition agrees with the definition given in (2.12). As usual we restrict

ourselves to the case of prime powers. Let χ1, . . . , χs be mod pm characters and B ∈ Z.

Define

JB(χ1, . . . , χs, p
m) :=

pm∑
x1=1

· · ·
pm∑
xs=1

x1+···+xs≡B mod pm

χ1(x1) · · ·χs(xs). (2.14)

When B = pnB′ where p - B′ and n < m, then the simple change of variables xi 7→ xiB
′,

i = 1, . . . , s gives

JB(χ1, . . . , χs, p
m) =

pm∑
x1=1

· · ·
pm∑
xs=1

B′(x1+···+xs)≡pnB′ mod pm

χ1(x1B
′) · · ·χs(xsB′)

= (χ1 · · ·χs)(B′)
pm∑
x1=1

· · ·
pm∑
xs=1

x1+···+xs≡pn mod pm

χ1(x1) · · ·χs(xs)

= (χ1 · · ·χs)(B′)Jpn(χ1, . . . , χs, p
m). (2.15)

For example JB(χ1, . . . , χs, p
m) = (χ1 · · ·χs)(B)J(χ1, . . . , χs, p

m) when p - B. The following

theorem shows the case when n ≥ m (i.e. B = 0) in (2.14).

Theorem 2.4.1. If χ1, . . . , χs are mod pm characters, then

J0(χ1, . . . , χs, p
m) =


φ(pm)χs(−1)J(χ1, . . . , χs−1, p

m), if χ1 · · ·χs = χ0,

0, if χ1 · · ·χs 6= χ0,

where χ0 is the principal character.
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Proof. In the sums below, the xi run through complete residue systems mod pm.

J0(χ1, . . . , χs, p
m) =

∑
x1+···+xs=0

χ1(x1) · · ·χs(xs)

=
∑
xs

( ∑
x1+···+xs−1=−xs

χ1(x1) · · ·χs−1(xs−1)

)
χs(xs)

=
∑

(xs,p)=1

( ∑
x1+···+xs−1=−xs

χ1(x1) · · ·χs−1(xs−1)

)
χs(xs)

=
∑

(xs,p)=1

((χ1 · · ·χs−1)(−xs)J(χ1, . . . , χs−1, p
m))χs(xs), xi 7→ −xixs

= χs(−1)J(χ1, . . . , χs−1, p
m)
∑
xs

(χ1 · · ·χs)(−xs)

= χs(−1)J(χ1, . . . , χs−1, p
m)
∑
xs

(χ1 · · ·χs)(xs).

Then the result follows from (2.4)

∑
xs

χ1 · · ·χs(xs) =


φ(pm), if χ1 · · ·χs = χ0,

0, if χ1 · · ·χs 6= χ0.
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Chapter 3

Evaluating Jacobi Type Sums Modulo

Prime Powers

For two Dirichlet characters χ1, χ2 mod q the classical Jacobi sum is

J(χ1, χ2, q) :=

q∑
x=1

χ1(x)χ2(1− x). (3.1)

More generally, for s characters χ1, . . . , χs mod q and an integer B, one can define a gener-

alized Jacobi sum

JB(χ1, . . . , χs, q) :=

q∑
x1=1

· · ·
q∑

xs=1
x1+···+xs≡B mod q

χ1(x1) · · ·χs(xs). (3.2)

A thorough discussion of mod p Jacobi sums and their extension to finite fields can be found

in Berndt, Evans and Williams [4]. Zhang and Yao [24] showed that the sums (3.1) had an

explicit evaluation when q is a perfect square and Zhang and Xu [23] obtained an evaluation

of the sums (3.2) for certain classes of squareful q (if p | q, then p2 | q) in the classic B = 1

case. In [15] Ostergaard, Pigno and Pinner extended this to more general squareful q and

general B, essentially using reduction techniques of Cochrane and Zheng [6].
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Here we are interested in an even more general sum. Let ~χ = (χ1, . . . , χs) denote s

characters χi mod q. Then for an h ∈ Z[x1, . . . , xs] and B ∈ Z we can define

JB(~χ, h, q) :=

q∑
x1=1

· · ·
q∑

xs=1

h(x1,...,xs)≡B mod q

χ1(x1) · · ·χs(xs). (3.3)

As demonstrated in Lemma 2.1.2 in Chapter 2 one can usually reduce such sums to the case

that q = pm is a prime power. In this chapter we will be concerned with h of the form

h1 = h1(x1, . . . , xs) := A1x
k1
1 + · · ·+ Asx

ks
s , p - A1 · · ·As, (3.4)

where the ki are non-zero integers, and

J1 := JB(~χ, h1, p
m) =

pm∑
x1=1

· · ·
pm∑
xs=1

A1x
k1
1 +···+Asxkss ≡B mod pm

χ1(x1) · · ·χs(xs). (3.5)

As well as (3.2) this generalization includes the binomial character sums

pm∑
x=1

χ1(x)χ2(Ax
k +B), (3.6)

shown to also have an explicit evaluation (see Theorem 3.1 in [18]). A different generalization

of these sums having an explicit evaluation in certain special cases is considered in [22]. We

define n to be the power of p dividing B

B = pnB′, p - B′. (3.7)
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The evaluation in [15] relied on expressing (3.2) in terms of Gauss sums

G(χ, pm) :=

pm∑
x=1

χ(x)epm(x), (3.8)

where ek(x) = e2πix/k. For example, if at least one of the χi is primitive mod pm and m > n

then JB(χ1, . . . , χs, p
m) = 0 unless χ1 · · ·χs is a mod pm−n character, in which case

JB(χ1, . . . , χs, p
m) = χ1 · · ·χs(B′)p−(m−n)G(χ1 · · ·χs, pm−n)

s∏
i=1

G(χi, p
m), (3.9)

(see for example [15, Theorem 2.2]). In particular if m ≥ n + 2 and at least one of the χi

is primitive we see that JB(χ1, . . . , χs, p
m) = 0 unless all the χi are primitive with χ1 · · ·χs

primitive mod pm−n. In this latter case (3.9) and a useful evaluation of the Gauss sum led

in [15] to the following explicit evaluation of (3.2):

JB(χ1, . . . , χs, p
m) = p

1
2
(m(s−1)+n)χ1(B

′c1) · · ·χs(B′cs)
χ1 · · ·χs(v)

δ(χ1, . . . , χs), (3.10)

where, when p is odd,

δ(χ1, . . . , χs) =

(
−2r

p

)m(s−1)+n(
v

p

)m−n(
c1 · · · cs

p

)m
εspmε

−1
pm−n , (3.11)

with an extra factor e3(rv) needed when p = m−n = 3, n > 0, and for a choice of primitive

root a mod pm, the integers r and ci are defined by

aφ(p) = 1 + rp, χi(a) = eφ(pm)(ci), 1 ≤ ci ≤ φ(pm). (3.12)
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Here, as usual,
(
x
y

)
denotes the Jacobi symbol,

εj :=


1, if j ≡ 1 mod 4,

i, if j ≡ 3 mod 4,

(3.13)

and

v := p−n(c1 + · · ·+ cs). (3.14)

The sums (3.6) can also be expressed in terms of Gauss sums as shown in [18]. As we shall

see in Theorem 3.1.1 below, our general sums (3.5) have a similar Gauss sum representation

that can be used to give an explicit evaluation for sufficiently large m, though here we shall

use an expression in terms of sums of type (3.2) and their evaluation (3.10). We define the

parameters ti and t by

pti || ki, t := max{t1, . . . , ts}. (3.15)

Note, it is natural to assume that m ≥ t + 1 (and m ≥ t + 2 for p = 2, m ≥ 3), since if

m ≤ ti we have xkii ≡ x
ki/p
i mod pm and one can replace ki by ki/p. We define di and Di by

di := (ki, p− 1), Di :=


ptidi, if p is odd,

2ti+1, if p = 2, ki even,

1, if p = 2, ki odd.

(3.16)

Theorem 3.0.2. Let p be an odd prime, χ1, . . . , χs be mod pm characters with at least one

of them primitive, and h1 be of the form (3.4). With n and t as in (3.7) and (3.15) we

suppose that m ≥ 2t+ n+ 2.

If the χi = (χ′i)
ki for some primitive characters χ′i mod pm such that χ′1 . . . χ

′
s is induced
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by a primitive mod pm−n character, and the A−1i B′c′iv
′−1 ≡ αkii mod pm for some αi, then

J1 = D1 · · ·Dsp
1
2
(m(s−1)+n)χ1(α1) · · ·χs(αs)δ(χ′1, . . . , χ′s), (3.17)

where the c′i define the χ′i as in (3.12), v′ = p−n(c′1 + · · ·+ c′s), δ(χ′1, . . . , χ
′
s) is as in (3.11)

with c′i and v′ replacing the ci and v.

Otherwise J1 = 0.

The corresponding p = 2 result is given in Theorem 3.3.1. It is perhaps worth noting

that the conditions A−1i B′c′iv
′−1 ≡ αkii mod pm for some αi, i = 1, . . . , s, lead to D1 · · ·Ds

non-trivial solutions to the congruence restriction A1α
k1
1 + · · ·+ Asα

ks
s ≡ B mod pm.

We prove the theorem in Section 3.2, but first we show that the χi must be kith powers

and express J1 in terms Jacobi sums (3.2) and hence in terms of Gauss sums.

3.1 Writing J1 in Terms of Gauss Sums

We first show that J1 = 0 unless each χi is a kith power. We actually consider a slightly

more general sum.

Lemma 3.1.1. For any prime p, multiplicative characters χ1, . . . , χs, χ mod pm, and

f, g, h ∈ Z[x1, . . . , xs], the sum

J =

pm∑
x1=1

· · ·
pm∑
xs=1

h(x
k1
1 ,...,xkss )≡B mod pm

χ1(x1) · · ·χs(xs)χ(f(xk11 , . . . , x
ks
s ))epm(g(xk11 , . . . , x

ks
s )),

is zero unless χi = (χ′i)
ki for some mod pm characters χ′i for all 1 ≤ i ≤ s.
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Proof. Let p be a prime. If zk11 = 1, then the change of variables x1 7→ x1z1 gives

J =

pm∑
x1=1

· · ·
pm∑
xs=1

h(x
k1
1 ,...,xkss )≡B mod pm

χ1(x1z1) · · ·χs(xs)χ
(
f(xk11 , . . . , x

ks
s )
)
epm

(
g(xk11 , . . . , x

ks
s )
)

= χ1(z1)J.

Hence if J 6= 0 we must have 1 = χ1(z1). For p odd we can choose z1 = aφ(p
m)/(k1,φ(pm)),

where a is a primitive root mod pm. Then 1 = χ1(z1) = χ1(a)φ(p
m)/(k1,φ(pm)) = e2πic1/(k1,φ(p

m))

and (k1, φ(pm)) | c1. Hence there is an integer c′1 satisfying

c1 ≡ c′1k1 mod φ(pm),

and χ1 = (χ′1)
k1 where χ′1 is the mod pm character with χ′1(a) = eφ(pm)(c

′
1).

For p = 2 and m ≥ 3 recall that Z∗2m needs two generators −1 and 5, where 5 has order

2m−2 (see for example [8]). Taking z1 = 52m−2/(k1,2m−2) we see that (k1, 2
m−2) | c1 and there

exists a c′1 with c′1k1 ≡ c1 mod 2m−2. Setting

χ′1(−1) = χ1(−1), χ′1(5) = e2m−2(c′1),

we have χ1(5) = (χ′1(5))k1 . If k1 is odd then χ1(−1) = (χ′1(−1))k1 . If k1 is even then z1 = −1

gives χ1(−1) = 1 = (χ′1(−1))k1 . Hence χ1 = (χ′1)
k1 .

The same technique gives χi = (χ′i)
ki for all i = 1, . . . , s.

From Lemma 3.1.1 we can thus assume that the χi are kith powers, enabling us to

express JB(~χ, h, pm) in terms of (3.2) sums and hence, by (3.9), Gauss sums.

Theorem 3.1.1. Let χ1, . . . , χs be mod pm characters with χi = (χ′i)
ki for some mod pm
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characters χ′i, 1 ≤ i ≤ s, h1 be of the form (3.4). Then,

J1 =
∑

(χ′′i )
ki=χ0

i=1,...,s

(
s∏
j=1

χ′jχ
′′
j (A

−1
j )

)
JB(χ′1χ

′′
1, . . . , χ

′
sχ
′′
s , p

m), (3.18)

where χ0 is the principal character mod pm.

Recall n is the power of p dividing B and t is the highest power of p dividing the ki. If

m ≥ n+ t+


2, for p odd,

3, for p = 2,

and at least one of the characters is primitive mod pm then J1 = 0 unless all the χ′i are

primitive mod pm with χ′1 . . . χ
′
s induced by a primitive mod pm−n character, in which case

J1 =
∑

(χ′′i )
ki=χ0

i=1,...,s

∏s
i=1 χ

′
iχ
′′
i (A

−1
i B′)G (χ′iχ

′′
i , p

m)

G (χ′1χ
′′
1 . . . χ

′
sχ
′′
s , p

m−n)
. (3.19)

Proof. Write χi = (χ′i)
ki . If p - u then from Lemma 2.2.2 the sum

∑
χki=χ0 mod pm

χ(u) = Di :=


(ki, φ(pm)), if p is odd or pm = 2, 4,

2(ki, 2
m−2), if p = 2, m ≥ 3, ki is even,

1, if p = 2, m ≥ 3, ki is odd,

(3.20)

if u is a kith power mod pm (where each kith power is achieved Di times) and equals zero

otherwise.
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Making the substitution ui 7→ A−1i ui, we have

J1 =

pm∑
x1=1

· · ·
pm∑
xs=1

A1x
k1
1 +···+Asxkss ≡B mod pm

χ′1(x
k1
1 ) · · ·χ′s(xkss )

=
∑

(χ′′i )
ki=χ0

i=1,...,s

pm∑
u1=1

· · ·
pm∑
us=1

A1u1+···+Asus≡B mod pm

χ′1χ
′′
1(u1) · · ·χ′sχ′′s(us)

=
∑

(χ′′i )
ki=χ0

i=1,...,s

χ′1χ
′′
1(A1) · · ·χ′sχ′′s(As)

pm∑
u1=1

· · ·
pm∑
us=1

u1+···+us≡B mod pm

χ′1χ
′′
1(u1) · · ·χ′sχ′′s(us), (3.21)

and (3.18) is clear. Note, if χi is primitive mod pm then χ′iχ
′′
i must be primitive for all χ′′i

mod pm with (χ′′i )
ki = χ0 (since χi = (χ′iχ

′′
i )
ki).

Hence, by (3.9), if m > n and at least one of the χi is primitive mod pm

J1 = p−(m−n)
∗∑

(χ′′i )
ki=χ0

i=1,...,s

G

(
s∏
j=1

χ′jχ
′′
j , p

m−n

)
s∏
i=1

χ′iχ
′′
i (A

−1
i B′)G (χ′iχ

′′
i , p

m) , (3.22)

where the * indicates the sum is restricted to the χ′′i mod pm such that
∏s

j=1 χ
′
jχ
′′
j is a mod

pm−n character. Suppose further that m ≥ n + t + 2 and p is odd. Since (χ′′i )
ki = χ0, that

is eφ(pm)(c
′′
i ki) = 1, and pti || ki, then

pm−ti−1 | c′′i ⇒ pn+1 | c′′i . (3.23)

Likewise for p = 2, if (χ′′i )
ki = χ0 and m ≥ n+ t+ 3, we have

2m−t−2|c′′i ⇒ 2n+1|c′′i . (3.24)

Hence p | (c′i + c′′i ) iff p | c′i and pn ||
∑s

i=1(c
′
i + c′′i ) iff pn ||

∑s
i=1 c

′
i. That is χ′iχ

′′
i is

primitive mod pm iff χ′i is primitive mod pm and
∏s

i=1 χ
′
iχ
′′
i is primitive mod pm−n iff

∏s
i=1 χ

′
i
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is primitive mod pm−n. Observing that for k ≥ 2 we have G(χ, pk) = 0 if χ is not primitive

mod pk we see that all the terms in (3.22) will be zero unless the χ′i are all primitive mod

pm with
∏s

i=1 χ
′
i primitive mod pm−n. Observing that |G(χ, pk)|2 = pk if χ is primitive mod

pk gives the form (3.19).

3.2 Proof of Theorem 3.0.2

Suppose that m ≥ n + t + 2 and at least one of the χi is primitive. From Lemma 3.1.1

and Theorem 3.1.1 we can assume that the χi = (χ′i)
ki with the χ′i primitive mod pm and∏s

i=1 χ
′
i primitive mod pm−n, else the sum is zero. As in the proof of Theorem 3.1.1 we know

that all the χ′iχ
′′
i are primitive mod pm with

∏s
i=1 χ

′
iχ
′′
i primitive mod pm−n. Hence using

(3.18) and the evaluation (3.10) from [15] we can write

J1 = p
1
2
(m(s−1)+n)

∑
(χ′′i )

ki=χ0

χ′1χ
′′
1(A−11 B′(c′1 + c′′1)) · · ·χ′sχ′′s(A−1s B′(c′s + c′′s))

χ′1χ
′′
1 · · ·χ′sχ′′s(v)

δ̃, (3.25)

where the

χ′iχ
′′
i (a) = eφ(pm)(c

′
i + c′′i ), v = p−n

s∑
i=1

(c′i + c′′i ),

and

δ̃ = δ(χ′1χ
′′
1, . . . , χ

′
sχ
′′
s) =

(
−2r

p

)m(s−1)+n(
v

p

)m−n(∏s
i=1(c

′
i + c′′i )

p

)m
εspmε

−1
pm−n ,

with εpm , and r as defined in (3.13) and (3.12), with an extra factor e3(rv) needed when

p = m− n = 3. From (3.23) we know that pn+1 | c′′i for all i, so c′i + c′′i ≡ c′i mod p, v ≡ v′

mod p, and

δ̃ = δ(χ′1χ
′′
1, . . . , χ

′
sχ
′′
s) = δ(χ′1, . . . , χ

′
s),
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and so may be pulled out of the sum straight away. Suppose now that

m ≥ n+ 2t+ 2. (3.26)

It is perhaps worth noting that in [18] the sums (3.6) genuinely required a different evaluation

in the range n + t + 2 ≤ m < n + 2t + 2 to that when m ≥ n + 2t + 2. Since pm−1−ti | c′′i
we certainly have pm−1−t | c′′i and the characters χ′′i and

∏s
i=1 χ

′′
i are mod pt+1 characters.

Condition (3.26) ensures pt+n+1 | c′′i , v ≡ v′ mod pt+1 and

χ′′i (c
′
i + c′′i ) = χ′′i (c

′
i), χ′′1 · · ·χ′′s(v) = χ′′1 · · ·χ′′s(v′). (3.27)

We define the integers Rj by

aφ(p
j) = 1 +Rjp

j. (3.28)

Since (1 +Ri+1p
i+1) = (1 +Rip

i)p we readily obtain Ri+1 ≡ Ri mod pi and

Rj ≡ Ri mod pi for all j ≥ i. Defining positive integers li with

li = (c′i)
−1(c′′i p

−(m−t−1))R−1m−t−1 mod pm,

and noting that 2(m− t− 1) ≥ m we have

c′i + c′′i ≡ c′i
(
1 + liRm−t−1p

m−t−1) mod pm

≡ c′i
(
1 +Rm−t−1p

m−t−1)li mod pm

≡ c′ia
liφ(p

m−t−1) mod pm,

and χ′i(c
′
i + c′′i ) = χ′i(c

′
i)ept+1(c′ili).
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Since m− t− n− 1 ≥ t+ 1 we have Rm−t−1 ≡ Rm−t−n−1 mod pt+1 and

s∏
i=1

χ′iχ
′′
i (c
′
i + c′′i ) = ept+1(L)

s∏
i=1

χ′iχ
′′
i (c
′
i), L := R−1m−t−n−1

s∑
i=1

c′′i p
−(m−t−1). (3.29)

Similarly, noting that 2(m− n− t− 1) ≥ m− n,

v = v′ + p−n(c′′1 + · · ·+ c′′s)

≡ v′
(
1 + (v′)−1LRm−n−t−1p

m−n−t−1) mod pm

≡ v′a(v
′)−1φ(pm−t−n−1)L mod pm−n,

and

χ′1χ
′′
1 · · ·χ′sχ′′s(v) = χ′1χ

′′
1 · · ·χ′sχ′′s(v′)eφ(pm)(p

nv′(v′)−1φ(pm−t−n−1)L)

= χ′1χ
′′
1 · · ·χ′sχ′′s(v′)ept+1(L). (3.30)

By substituting (3.29) and (3.30) in (3.25) we get

J1 = p
1
2
(m(s−1)+n)δ(χ′1, . . . , χ

′
s)

∑
(χ′′
i
)ki=χ0

i=1,...,s

χ′1χ
′′
1(A−11 B′c′1) · · ·χ′sχ′′s(A−1s B′c′s)

χ′1χ
′′
1 · · ·χ′sχ′′s(v′)

(3.31)

= p
1
2
(m(s−1)+n)δ(χ′1, . . . , χ

′
s)

s∏
j=1

χ′j(A
−1
j B′c′jv

′−1)
s∏
i=1

∑
(χ′′i )

ki=χ0

χ′′i (A
−1
i B′c′iv

′−1).

Clearly this sum is zero unless each A−1i B′c′iv
′−1 is a ki-th power, when

J1 = D1 · · ·Dsp
1
2
(m(s−1)+n)δ(χ′1, . . . , χ

′
s)

s∏
i=1

χ′i(A
−1
i B′c′iv

′−1).
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3.3 The Case p = 2

As shown in [15] the sums (3.2) still have an evaluation (3.10) when p = 2 and m− n ≥ 5,

with δ now defined by

δ(χ1, . . . , χs) =

(
2

v

)m−n(
2

c1 · · · cs

)m
ω(2n−1)v, (3.32)

where ci, v, and ω are defined as

χi(5) = e2m−2(ci), 1 ≤ ci ≤ 2m−2, 1 ≤ i ≤ s, (3.33)

and

v = 2−n(c1 + · · ·+ cs), ω := eπi/4. (3.34)

Theorem 3.3.1. Let χ1, . . . , χs be mod 2m characters with at least one of them primitive,

and h1 be of the form (3.4). Suppose that m ≥ 2t+ n+ 5.

If the χi = (χ′i)
ki for some primitive characters χ′i mod 2m such that χ′1 . . . χ

′
s is induced

by a primitive mod 2m−n character, and the A−1i B′c′iv
′−1 ≡ αkii mod 2m for some αi, then

J1 = 2
1
2
(m(s−1)+n)D1 · · ·Ds χ1(α1) · · ·χs(αs)δ(χ′1, . . . , χ′s), (3.35)

where the c′i are defined by χ′i(5) = e2m−2(c′i), v
′ = 2−n

∑s
i=1 c

′
i and δ(χ′1, . . . , χ

′
s) is as in

(3.32) with c′i and v′ replacing the ci and v.

Otherwise J1 = 0.

Proof. Suppose first that m ≥ n+ t+ 5 and at least one of the χi primitive mod 2m. From

Lemma 3.1.1 and Theorem 3.1.1 we can assume that χi = (χ′i)
ki with χ′i primitive mod 2m

and
∏s

i=1 χ
′
i primitive mod 2m−n, else the sum is zero. As in the proof of Theorem 3.1.1

we know that χ′iχ
′′
i is primitive mod 2m and

∏s
i=1 χ

′
iχ
′′
i is primitive mod 2m−n. Hence using
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(3.18) and the evaluation for case p = 2 from [15] we can write

J1 = 2
1
2
(m(s−1)+n)

∑
(χ′′i )

ki=χ0

χ′1χ
′′
1(A−11 B′(c′1 + c′′1)) · · ·χ′sχ′′s(A−1s B′(c′s + c′′s))

χ′1χ
′′
1 · · ·χ′sχ′′s(v)

δ̃, (3.36)

where the

χ′iχ
′′
i (5) = e2m−2(c′i + c′′i ), v = 2−n

s∑
i=1

(c′i + c′′i ),

and

δ̃ = δ(χ′1χ
′′
1, . . . , χ

′
sχ
′′
s) =

(
2

v

)m−n(
2∏s

i=1(c
′
i + c′′i )

)m
ω(2n−1)v.

From (χ′′i )
ki = 1 we have e2m−2(c′′i ki) = 1 and 2m−t−2|c′′i . Hence

c′i + c′′i ≡ c′i mod 2m−t−2, (3.37)

and

v = 2−n
s∑
i=1

(c′i + c′′i ) ≡ 2−n
s∑
i=1

c′i = v′ mod 2m−n−t−2. (3.38)

So for m ≥ n+ t+ 5 we have c′i + c′′i ≡ c′i mod 8, v ≡ v′ mod 8, giving

(
2

c′i + c′′i

)
=

(
2

c′i

)
,

(
v

p

)
=

(
v′

p

)
, ω(2n−1)v = ω(2n−1)v′ ,

and δ̃ = δ(χ′1χ
′′
1, . . . , χ

′
sχ
′′
s) = δ(χ′1, . . . , χ

′
s). From 2m−t−2 | c′′i we know that the χ′′i are all

mod 2t+2 characters. Suppose now that m ≥ 2t + n + 4. Then (3.37) and (3.38) give

c′i + c′′i ≡ c′i mod 2t+2, v ≡ v′ mod 2t+2, and

χ′′i (c
′
i + c′′i ) = χ′′i (c

′
i), χ′′1 · · ·χ′′s(v) = χ′′1 · · ·χ′′s(v′).

For p = 2 we define the integers Rj, j ≥ 2 by

52j−2

= 1 +Rj2j.
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From Ri+1 ≡ Ri + 2i−1R2
i we have the relationship Rj ≡ Ri mod 2i−1 for all

j ≥ i ≥ 2. Define a positive integer li := (c′i)
−1c′′i 2

−(m−t−2)R−1m−t−2 mod 2m. Since

2(m− t− 2) ≥ m we have

c′i + c′′i ≡ c′i
(
1 + liRm−t−22

m−t−2) mod 2m

≡ c′i
(
1 +Rm−t−22

m−t−2)li mod 2m

≡ c′i5
li2

m−t−4

mod 2m,

and χ′i(c
′
i + c′′i ) = χ′i(c

′
i)e2t+2(c′ili). If m ≥ 2t+ n+ 5, then

Rm−t−2 ≡ Rm−t−n−2 mod 2m−t−n−3 ≡ Rm−t−n−2 mod 2t+2

giving

s∏
i=1

χ′iχ
′′
i (c
′
i + c′′i ) = e2t+2(L)

s∏
i=1

χ′iχ
′′
i (c
′
i), L := R−1m−t−n−2

s∑
i=1

c′′i 2
−(m−t−2). (3.39)

Similarly, since 2(m− n− t− 2) ≥ m− n,

v = v′ + 2−n(c′′1 + · · ·+ c′′s)

≡ v′
(
1 + (v′)−1LRm−n−t−22

m−n−t−2)
≡ v′5(v′)−12m−t−n−4L mod 2m−n,

and

χ′1χ
′′
1 · · ·χ′sχ′′s(v) = χ′1χ

′′
1 · · ·χ′sχ′′s(v′)e2t+2(L). (3.40)

By substituting (3.39) and (3.40) in (3.36) we get (3.31) and the rest of the proof follows

unchanged from p odd.
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3.4 Imprimitive Characters

We assumed in Theorem 3.0.2 that at least one of the characters is primitive mod pm. This

is a fairly natural assumption. For example if p - ki for at least one i and none of the χi are

primitive mod pm then we can reduce to a mod pm−1 sum.

Lemma 3.4.1. Let p be an odd prime and h1 be of the form (3.4). If χ1, . . . , χs are im-

primitive characters mod pm with p - ki for some i and m ≥ 2, then

JB(~χ, h1, p
m) = ps−1JB(~χ, h1, p

m−1).

Proof. Suppose that χ1, . . . , χs are pm−1 characters with p - ki for some i. Writing

xi = ui + vip
m−1, with ui = 1, . . . , pm−1 and vi = 1, . . . , p gives

JB(~χ, h1, p
m) =

pm−1∑
u1,...,us=1

p∑
v1,...,vs=1∑s

i=1 Ai(ui+vip
m−1)ki≡B mod pm

χ1(u1) · · ·χs(us),

where the χi(ui) allow us to restrict to (ui, p) = 1. Expanding we see that

s∑
i=1

Ai(ui + vip
m−1)ki ≡

s∑
i=1

Aiu
ki
i + pm−1

(
s∑
i=1

Aikiu
ki−1
i vi

)
≡ B mod pm, (3.41)

as long as m ≥ 2. Thus the ui must satisfy

s∑
i=1

Aiu
ki
i ≡ B mod pm−1, (3.42)

and for any u1, . . . , us satisfying (3.42), to satisfy (3.41) the vi must satisfy

s∑
i=1

Aikiu
ki−1
i vi ≡ p−(m−1)

(
B −

s∑
i=1

Aiu
ki
i

)
mod p. (3.43)
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If p does not divide one of the exponents, p - k1 say, then for each of the ps−1 choices of

v2, . . . , vs there will be exactly one v1 satisfying (3.43)

v1 ≡

(
p−(m−1)

(
B −

s∑
i=1

Aiu
ki
i

)
−

s∑
i=2

Aikiu
ki−1
i vi

)(
A1k1u

k1−1
1

)−1
mod p,

and

JB(~χ, h1, p
m) = ps−1

pm−1∑
u1,...,us=1∑s

i=1 Aiu
ki
i ≡B mod pm−1

χ1(u1) · · ·χs(us) = ps−1JB(~χ, h1, p
m−1).

If the χi are all imprimitive mod pm and p | ki for all i then we still reduce to a mod

pm−1 sum, but as with a Heilbronn sum it seems unlikely that there is a nice evaluation:

JB(~χ, h1, p
m) = ps

pm−1∑
x1=1

· · ·
pm−1∑
xs=1

A1x
k1
1 +···+Asxkss ≡B mod pm

χ1(x1) · · ·χs(xs).
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Chapter 4

Character Sums with an Explicit

Evaluation

Let ~χ = (χ, χ1, . . . , χs) denote s + 1 multiplicative Dirichlet characters mod q. For an

h ∈ Z[x1, . . . , xs] we define the complete character sum

J(~χ, h, q) :=

q∑
x1=1

· · ·
q∑

xs=1

χ1(x1) · · ·χs(xs)χ(h(x1, . . . , xs)). (4.1)

From Lemma 2.1.2 in Chapter 2 we see that if (r, s) = 1, then splitting the mod rs characters

χi into mod r and mod s characters χ′i, χ
′′
i , that is χi = χ′iχ

′′
i ,

J(~χ, h, rs) = J(~χ′, h, r)J( ~χ′′, h, s).

Hence, we shall restrict our attention to prime power moduli q = pm. When m ≥ 2, methods

of Cochrane [5] (see also Cochrane and Zheng [6] & [7]) can be used to simplify the sums

and in some special cases obtain an explicit evaluation. For example, the sum

pm∑
x=1

χ1(x)χ2(Ax
k +B) (4.2)
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was evaluated in [18] (p odd) and [19] (p = 2) for m sufficiently large (for m ≥ 2 if p - 2ABk).

In [15] an evaluation was obtained for the Jacobi type sums

h(x1, . . . , xs) = x1 + · · ·+ xs +B, (4.3)

and in Chapter 3 for their generalization

h1(x1, . . . , xs) = A1x
k1
1 + · · ·+ Asx

ks
s +B, p - A1 · · ·As,

for m sufficiently large (for m ≥ 2 when p - 2Bk1 · · · ks). Zhang and Wang recently showed

in [22] that (4.1) has an explicit evaluation when

h(x1, . . . , xs) = x1 + · · ·+ xs +Bx−11 · · · x−1s , p - B,

with χi = χ0, the principal character mod pm, and

s = 2N − 1, m even, p ≡ 3 (mod 4), χ(−1) = 1. (4.4)

In this chapter we will consider the sum (4.1) for the more general

h(x1, . . . , xs) = A1x1 + · · ·+ Asxs +Bxw1
1 · · ·xwss , p - A1 · · ·As, (4.5)

where the wi are arbitrary integers, and obtain an evaluation when m is sufficiently large,

for m ≥ 2 if p - 2Bk where

k := 1− w1 − · · · − ws. (4.6)
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In particular, we shall see that the conditions (4.4) are not needed. Note, if we use the

change of variables xi 7→ xiA
−1
i for all i = 1, . . . , s , then for h of the form (4.5),

J(~χ, h, pm) = χ1(A1) · · ·χs(As)J(~χ, x1 + · · ·+ xs +BA−w1
1 · · ·A−wss xw1

1 · · ·xwss , pm).

Hence it is enough here to consider

h2 = h2(x1, . . . , xs) := x1 + · · ·+ xs +Bxw1
1 · · ·xwss (4.7)

and evaluate the sum

J2 := J(~χ, h2, p
m) =

pm∑
x1=1

· · ·
pm∑
xs=1

χ1(x1) · · ·χs(xs)χ(x1 + · · ·+ xs +Bxw1
1 · · ·xwss ). (4.8)

We use n and t to denote the power of p dividing B and k,

B = pnB1, p - B1, pt || k. (4.9)

To obtain our evaluation we shall first show in §2 that the sum is zero unless

χχ1 · · ·χs = χk∗, (4.10)

for some mod pm−n character χ∗. In §3 we write our sums in terms of Gauss sums, and

then in §4 we use the explicit evaluation of Gauss sums from [15] to obtain the evaluation

stated in Theorem 4.0.1 below. When p is odd, we suppose that a is a primitive root mod

pm. Writing

eq(x) := e2πix/q, (4.11)
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we define integers r := (ap−1 − 1)/p, 1 ≤ c, ci ≤ φ(pm), and 1 ≤ c∗ ≤ φ(pm−n), by

χ(a) = eφ(pm)(c), χi(a) = eφ(pm)(ci), χ∗(a) = eφ(pm−n)(c∗). (4.12)

When p = 2, we similarly define the integers 1 ≤ c, ci ≤ 2m−2, 1 ≤ c∗ ≤ 2m−n−2 by

χ(5) = e2m−2(c), χi(5) = e2m−2(ci), χ∗(5) = e2m−n−2(c∗). (4.13)

Define also λ and εpm as

λ := −B1

s∏
i=1

(
cic
−1
∗ + pnwi

)wi mod pm, εpm :=


1, if pm ≡ 1 mod 4,

i, if pm ≡ 3 mod 4.

(4.14)

Theorem 4.0.1. Let p be a prime and χ, χ1, . . . , χs be mod pm characters with χ primitive.

Let h2 be of the form (4.7) and n, k, t be as in (4.6) and (4.9). Suppose that

m ≥ 2t+ n+ 3β − 1, β :=


1, if p is odd,

2, if p = 2.

(4.15)

If χχ1 · · ·χs = χk∗ for some primitive mod pm−n character χ∗ such that the χiχ
wi
∗ are all

primitive characters mod pm and λ, defined in (4.14), is a kth power mod pm−n, then

J2 = (k, p− 1)p
ms+n

2
+αδ χ∗(λ)χ

(
s∑
i=1

cic
−1
∗ − pnk

)
s∏
i=1

χi(cic
−1
∗ + wip

n),

where

δ :=

(
2r

p

)sm−n(−1

p

)sm(
cm−n∗ cm

∏s
i=1(ci + wip

nc∗)
m

p

)
εs−1pm εpm−n (4.16)
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for p odd, unless pm−n = 33, n > 0 when an extra factor e3(rc∗) is needed,

δ :=

(
2

cm−n∗ cm
∏s

i=1(ci + wi2nc∗)m

)
e8((2

n − 1)c∗) (4.17)

for p = 2, and

α :=


t, if p is odd, or p = 2 and t = 0,

t+ 1, if p = 2 and t ≥ 1,

(4.18)

with ci, c, c∗ and εpm as defined in (4.12), (4.13) and (4.14).

Otherwise J2 = 0.

4.1 Preliminaries

We first observe that it is natural to assume that χ is a primitive character mod pm. If

all the χi and χ are imprimitive mod pm, then for any polynomial h we can simply reduce

(4.1) to a mod pm−1 sum, J(~χ, h, pm) = psJ(~χ, h, pm−1). If some χi is primitive, then there

is a u ≡ 1 mod pm−1 with χi(u) 6= 1, and if χ is imprimitive mod pm, then the change of

variable xi 7→ xiu gives J(~χ, h, pm) = χi(u)J(~χ, h, pm), and so J(~χ, h, pm) = 0.

It also seems natural to assume that n satisfies

m ≥ n+ β. (4.19)

If n ≥ m or n = m− 1 when p = 2, then as we will show in the proof of Lemma 4.1.1,

J(~χ, h2, p
m) =


φ(pm)J(~χξ, hξ, p

m), if χχ1 · · ·χs = χ0,

0, if χχ1 · · ·χs 6= χ0,

(4.20)

where χ0 is the principal character mod pm, and ~χξ := (χ, χ1, . . . , χs−1) and
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hξ := x1 + · · ·+ xs−1 + 1 +B have one less variable.

The following lemma shows that J2 = 0 unless χχ1 · · ·χs is a k-th power of a mod pm−n

character.

Lemma 4.1.1. For a prime p and multiplicative characters χ, χ1, . . . , χs mod pm, a sum

of the form (4.8) is zero unless χχ1 · · ·χs = χk∗ for some mod pm−n character χ∗ if (4.19)

holds or χχ1 · · ·χs = χ0 if (4.19) does not hold.

Proof. Observe that if zk ≡ 1 mod pm−n, then the change of variables xi 7→ xiz, 1 ≤ i ≤ s,

gives

J(~χ, h2, p
m) =

pm∑
x1=1

· · ·
pm∑
xs=1

χχ1 · · ·χs(z)χ1(x1) · · ·χs(xs)χ(x1 + · · ·+ xs +Bxw1
1 · · ·xwss z−k)

= χ̃(z)J(~χ, h2, p
m),

and so J(~χ, h2, p
m) = 0 unless χ̃(z) := χχ1 · · ·χs(z) = 1.

For p an odd prime and n < m, we can choose z = aφ(p
m−n)/(k,φ(pm−n)) where a is a

primitive root mod pm. Hence if J(~χ, h2, p
m) 6= 0, we must have

1 = χ̃(z) = χ̃(a)φ(p
m−n)/(k,φ(pm−n)) = e2πi(c̃/p

n(k,φ(pm−n))

and pn(k, φ(pm−n)) | c̃. Hence there is an integer c∗ satisfying pnkc∗ ≡ c̃ mod φ(pm), and

χ̃ = χk∗ where χ∗ is the mod pm−n character with χ∗(a) = eφ(pm−n)(c∗).

For p = 2 and m ≥ n+ 2, taking z = 52m−n−2/(k,2m−n−2) and writing χ̃(5) = e2m−2(c̃), we

similarly obtain that 2n(k, 2m−n−2) | c̃ and 2nkc∗ ≡ c̃ mod 2m−2 has a solution c∗. Setting

χ∗(5) = e2m−n−2(c∗), χ∗(−1) = χ̃(−1),

we have χ̃(5) = χ∗(5)k. If k is even, then taking z = −1 gives χ̃(−1) = 1 (hence χ̃(−1) =

χ∗(−1)k) and in all cases χ̃ = χk∗ where χ∗ is a mod 2m−n character.
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If (4.19) does not hold, then we can take any z with p - z and J(~χ, h2, p
m) = 0 or χ̃ = χ0.

If χ̃ = χ0, then the substitution xi 7→ xixs for all i < s gives the expression (4.20).

Lemma 4.1.1 is readily generalized. For example if gi, hj ∈ Z[x1, . . . , xs] are homogeneous

with degrees ki, dj respectively, and (4.19) holds, then the sum

J :=

q∑
x1=1

· · ·
q∑

xs=1

χ1(g1) · · ·χl(gl)χ(h1 +Bh2)

is zero unless χk11 · · ·χ
kl
l χ

d1 is a (d2 − d1)-th power of a mod pm−n character (if zd2−d1 ≡

1 mod pm−n, then xi 7→ zxi gives J = χk11 · · ·χ
kl
l χ

d1(z)J).

4.2 Writing J2 in Terms of Gauss Sums

For a character χ mod pm one defines the classical Gauss sum

G(χ, pm) :=

pm∑
x=1

χ(x)epm(x). (4.21)

From Lemma 4.1.1 we can assume that χχ1 · · ·χs is a kth power (otherwise the sum is zero),

enabling us to express (4.8) in terms of Gauss sums. Similar expressions were obtained for

the binomial character sums (4.2) in [18, Theorem 2.2] and the Jacobi sums (4.3) in [15,

Theorem 2.2].

Theorem 4.2.1. Let χ, χ1, . . . , χs be mod pm characters with χ primitive. Let h2 be of

the form (4.7) with n, B1 and t as defined in (4.9) and satisfying (4.19). Suppose that

χχ1 · · ·χs = χk∗ for some mod pm−n character χ∗. Then

J2 = pn
∑
χ′′∈Y

χ′′χ∗(B1)
G(χ′′χ∗, p

m−n)
∏s

i=1G(χi(χ
′′χ∗)

wi , pm)

G(χ, pm)
, (4.22)
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where Y denotes the mod pm−n characters χ′′ with (χ′′)k = χ0.

In particular, if

m > n+ t+ β, (4.23)

then J2 = 0 unless χ∗ is a primitive mod pm−n character and the χiχ
wi
∗ are all primitive

mod pm characters.

Proof. If χ is a primitive character mod pm, then

G(y) :=

pm∑
x=1

χ(x)epm(xy) = χ(y)G(χ, pm). (4.24)

for any y, If p - y, this is clear from x 7→ xy−1. If p | y, then taking u ≡ 1 mod pm−1

with χ(u) 6= 1, the change of variable x 7→ xu gives G(y) = χ(u)G(y), and so G(y) = 0.

Thus for χ primitive, applying (4.24) with y = h(x1, . . . , xs), followed by change of variables

xi 7→ xix
−1 and the substitution χχ1 · · ·χs = χk∗, gives

G(χ, pm)J2 =

pm∑
x=1

χ(x)

pm∑
x1=1

· · ·
pm∑
xs=1

χ1(x1) · · ·χs(xs)epm
(
x

(
s∑
i=1

xi +B
s∏
i=1

xwii

))

=

pm∑
x=1

pm∑
x1=1

· · ·
pm∑
xs=1

χχ1 · · ·χs(x)χ1(x1) · · ·χs(xs)epm
(

s∑
i=1

xi +Bxk
s∏
i=1

xwii

)

=

pm∑
x=1

pm∑
x1=1

· · ·
pm∑
xs=1

χ∗(x
k)epm

(
Bxk

s∏
i=1

xwii

)
s∏
i=1

χi(xi)epm(xi).

Recall by Lemma 2.2.2 if p - x, then the sum

∑
(χ′′)k=χ0 mod pm

χ′′(x) =


(k, φ(pm)), if p is odd or pm = 2, 4,

2(k, 2m−2), if p = 2, m ≥ 3, k is even,

1, if p = 2, m ≥ 3, k is odd,

(4.25)

if x is a kth power mod pm, with the right-hand side equalling the number of times a kth
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power is achieved mod pm, and equals zero otherwise. Thus we have

G(χ, pm)J2 =
∑

(χ′′)k=χ0 mod pm

pm∑
u=1

pm∑
x1=1

· · ·
pm∑
xs=1

χ′′χ∗(u)epm

(
pnB1u

s∏
i=1

xwii

)
s∏
i=1

χi(xi)epm(xi),

and substituting u 7→ uB−11 x−w1
1 · · ·x−wss we have

G(χ, pm)J2 =
∑

χ′′χ∗(B1)

(χ′′)k=χ0 mod pm

pm∑
u=1

χ′′χ∗(u)epm(pnu)
s∏
i=1

G(χi(χ
′′χ∗)

wi , pm).

If χ′′χ∗ is a primitive character mod pm−j for some j < n , then by (4.24)

pm∑
u=1

χ′′χ∗(u)epm(pnu) = pj
pm−j∑
u=1

χ′′χ∗(u)epm−j(p
n−ju) = 0. (4.26)

Hence only if the character χ′′χ∗ is a mod pm−n character will (4.26) give a non-zero contri-

bution, namely pnG(χ′′χ∗, p
m−n), to the sum. In particular, we can restrict the sum to the

mod pm−n characters χ′′.

Suppose that m > n+ t+ β. For p odd or p = 2 we (respectively) define c′′ by

χ′′(a) = eφ(pm−n)(c
′′) or χ′′(5) = e2m−n−2(c′′). (4.27)

Since (χ′′)k = χ0 mod pm−n, we have pm−n−t−β|c′′. So χ′′ and (χ′′)wi are all mod pt+β

characters with t+ β < m− n.

Hence for all the χ′′, we have that χ′′χ∗ is primitive mod pm−n iff χ∗ is primitive mod

pm−n and χi(χ
′′χ∗)

wi is primitive mod pm iff χiχ
wi
∗ is primitive mod pm. Observing that

G(χ, pj) = 0 if χ is an imprimitive character mod pj and j ≥ 2, we deduce that J2 = 0

unless χ∗ is primitive mod pm−n and the χiχ
wi
∗ are primitive mod pm.
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For p odd and a primitive root a mod pm, we define the integers Rj, j ≥ 1, as

aφ(p
j) = 1 +Rjp

j. (4.28)

Note that Rj ≡ Ri mod pi for any j ≥ i. For p = 2, we define Rj, j ≥ 2, as

52j−2

= 1 +Rj2
j, (4.29)

with Rj ≡ Ri mod 2i−1 for j ≥ i. We will need the following Gauss sum evaluation from

[15].

Lemma 4.2.1. Suppose that χ is a primitive character mod pm with m ≥ 2, then

G(χ, pm) = pm/2χ(−cR−1j )epm(−cR−1j )


(
−2rc
p

)m
εpm , if p 6= 2, pm 6= 27(

2
c

)m
ωc, if p = 2 and m ≥ 5,

(4.30)

for any j ≥ dm
2
e when p is odd and any j ≥ dm

2
e + 2 when p = 2 with ω = eπi/4, r,

and εpm as in (4.12) and (4.14). Rj is defined as in (4.28) or (4.29) with c as in (4.12) or

(4.13).

When pm = 27 an extra factor e3(−rc) is needed.

4.3 Proof of Theorem 4.0.1

Suppose that (4.15) holds. Since (4.23) plainly holds we can assume from Lemma 4.1.1 and

Lemma 4.2.1 that χχ1 · · ·χs = χk∗ for some primitive mod pm−n character χ∗ with the χiχ
wi
∗

all primitive mod pm (else the sum is zero). With β and c′′ as in (4.15) and (4.27), we have

pm−n−t−β | c′′ and χ′′ is a mod pt+β character. In particular, since m − n − t − β ≥ t + β,

we have

χ′′(c′′ + c∗) = χ′′(c∗). (4.31)
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Let l1 be a positive integer with

l1 ≡ c−1∗ c
′′R−1m p−(m−n−t−β) mod pt+β.

Since 2(m− n− t− β) ≥ m− n and, from the congruences after (4.28) and (4.29),

Rm ≡ Rm−n−t−β mod pt+β,

we have

c′′ + c∗ ≡ c∗
(
1 + l1Rmp

m−n−t−β) mod pm−n

≡ c∗
(
1 +Rm−n−t−βp

m−n−t−β)l1 mod pm−n

≡ c∗


al1φ(p

m−n−t−1) mod pm−n, for p odd,

5l12
m−n−t−4

mod 2m−n, for p = 2.

Hence,

χ∗(c
′′ + c∗) = χ∗(c∗)ept+β(−c∗l1) = χ∗(c∗)epm−n(−c′′R−1m ),

and by (4.30) we have

G(χ′′χ∗, p
m−n) = p

m−n
2 χ′′χ∗(c∗R

−1
m )epm−n(c∗R

−1
m )δa, (4.32)

where, since c′′ + c∗ ≡ c∗ mod p for p odd, c′′ + c∗ ≡ c∗ mod 8 for p = 2,

δa =


(

2rc∗
p

)m−n
εpm−n , for p odd, pm−n 6= 33,(

2
c∗

)m−n
ω−c∗ , for p = 2.

(4.33)
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Similarly, since 2(m− t− β) ≥ m, we have

ci + pnwi(c∗ + c′′) ≡ (ci + pnwic∗)


al2φ(p

m−t−1) mod pm, for p odd,

5l22
m−t−4

mod 2m, for p = 2,

where l2 is a positive integer with

l2 ≡ (ci + wip
nc∗)

−1wic
′′p−(m−n−t−β)R−1m mod pt+β.

Note (χ′′)wi(ci + pnwi(c∗ + c′′)) = (χ′′)wi(ci + pnwic∗), and so

χi(χ
′′χ∗)

wi(ci + wip
n(c∗ + c′′)) = χi(χ

′′χ∗)
wi(ci + wip

nc∗)ept+β(l2(ci + wip
nc∗))

= χi(χ
′′χ∗)

wi(ci + wip
nc∗)epm−n(wic

′′R−1m ).

Hence, using Lemma (4.2.1), we get

G(χi(χ
′′χ∗)

wi , pm) = p
m
2 χi(χ

′′χ∗)
wi(−(ci + wip

nc∗)R
−1
m )epm(−(ci + wip

nc∗)R
−1
m )δbi , (4.34)

where

δbi =


(
−2r(ci+wipnc∗)

p

)m
εpm , for p odd, pm 6= 33,(

2
ci+wi2nc∗

)m
ωci+wi2

nc∗ , for p = 2.

(4.35)

For c defined as in (4.12) we have

1

G(χ, pm)
= p−

m
2 χ(cR−1m )epm(−cR−1m )δc, (4.36)
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where

δc =


(

2rc
p

)m
ε−1pm , for p odd, pm 6= 33,(

2
c

)m
ωc, for p = 2.

(4.37)

Note, since χχ1 · · ·χs = χk∗ where k = 1− w1 − · · · − ws and (χ′′)k = χ0, we have

χ′′χ∗(−c∗R−1m )χ(−c∗R−1m )
s∏
i=1

χi(χ
′′χ∗)

wi(−c∗R−1m ) = 1.

Since c is defined mod φ(pm) we can replace c by c = kpnc∗ −
∑s

i=1 ci, and then

epm(pnc∗R
−1
m )epm(−cR−1m )

s∏
i=1

epm(−(ci + wip
nc∗)R

−1
m ) = 1,

with −c∗ +
∑s

i=1(ci + wi2
nc∗) + c = (2n − 1)c∗ when p = 2. By substituting (4.32), (4.34),

and (4.36) in (4.22) we get, for pm and pm−n 6= 33,

J2 = p
ms+n

2

∑
δ χ′′χ∗(−B1)

(χ′′)k=χ0 mod pm−n

χ(−cc−1∗ )
s∏
i=1

χi(χ
′′χ∗)

wi(cic
−1
∗ + wip

n)

= p
ms+n

2 δ χ∗(λ)χ(−cc−1∗ )
s∏
i=1

χi(cic
−1
∗ + wip

n)
∑

χ′′(λ)

(χ′′)k=χ0 mod pm−n

,

with λ as in (4.14) and δ = δaδc
∏s

i=1 δbi , with the product of the expressions in (4.33),

(4.35), and (4.37) simplifying to the formula for δ given in (4.16) for p odd and (4.17) for

p = 2. If λ is a kth power mod pm−n, then (4.25) and (k, φ(pm−n)) = (k, p− 1)pt give

J2 = (k, p− 1)p
ms+n

2
+αδχ∗(λ)χ(−cc−1∗ )

s∏
i=1

χi(cic
−1
∗ + wip

n),
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with α as in (4.18). If λ is not a kth power mod pm−n, then

∑
(χ′′)k=χ0 mod pm−n

χ′′(λ) = 0

and J2 = 0. For pm−n = 33, n > 0 we pick up an extra factor e3(rc∗) from G(χ′′χ∗, p
m−n).

When pm = 33 the additional factors in the Gauss sums cancel.

57



Bibliography

[1] B. Alsulmi, V. Pigno & C. Pinner, Jacobi Type Sums with an Explicit Evaluation Modulo

Prime Powers, (https://www.math.ksu.edu/ ∼ pinner/research.html preprint 45.)

[2] B. Alsulmi, V. Pigno & C. Pinner, Character Sums with an Explicit Evaluation, to

appear Math. Slovaca.

[3] T. Apostol, Introduction to Analytic Number Theory, Springer 1976.

[4] B. Berndt, R. Evans & K. Williams, Gauss and Jacobi Sums, Canadian Math. Soc.

Series of Monographs and Advanced Texts, vol. 21, Wiley, New York 1998.

[5] T. Cochrane, Exponential Sums Modulo Prime Powers, Acta Arith. 101 (2002), no. 2,

131-149.

[6] T. Cochrane & Z. Zheng, Pure and Mixed Exponential Sums, Acta Arith. 91 (1999),

no. 3, 249-278.

[7] T. Cochrane & Z. Zheng, A Survey on Pure and Mixed Exponential Sums Modulo

Prime Powers, Number Theory for the Millennium, I (Urbana, IL, 2000), 273-300, A.

K. Peters, Natick, MA, 2002.

[8] G. Hardy & E. Wright, An Introduction to the Theory of Numbers, Oxford University

Press, London 1979.

[9] K. Ireland & M. Rosen, A Classical Introduction to Modern Number Theory, Graduate

Texts in Mathematics 84. Springer-Verlag, New York, 1990.

[10] C. Jacobi, Brief an Gauss vom 8. Februar 1827, Gesammelte Werke, vol. 7, pp. 393-400,

Reimer, Berlin, 1891.

58



[11] R. Lidl & H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Appli-

cations 20, 2nd edition, Cambridge University Press, 1997.

[12] J.-L. Mauclaire, Sommes de Gauss modulo pα, I & II, Proc. Japan Acad. Ser. A 59

(1983), 109-112 & 161-163.

[13] I. Niven, H. Zuckerman & H. Montgomery, An Introduction to the Theory of Numbers,

Fifth Edition, John Wiley and Sons, Inc, New York, 1991.

[14] R. Odoni, On Gauss sums (mod pn), n ≥ 2, Bull. London Math. Soc. 5 (1973), 325-327.

[15] M. Ostergaard, V. Pigno & C. Pinner, Evaluating Prime Power Gauss and Jacobi Sums,

(http://www.math.ksu.edu/∼ pinner/research.html preprint 44.)

[16] V. Pigno, Prime Power Exponential and Character Sums with Explicit Evaluations,

Ph.D. Thesis, Kansas State University, 2014. (https://krex.k-state.edu).

[17] V. Pigno & C. Pinner, Twisted Monomial Gauss Sums Modulo Prime Powers, to appear

Funct. Approx. Comment. Math. 51 (2014), no 2, 285-301.

[18] V. Pigno & C. Pinner, Binomial Character Sums Modulo Prime Powers, J. Théor.
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