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Abstract

For mod p Dirichlet characters x1, x2 the classical Jacobi sums

J(x1, x2,p ZXl z)x2(1 — ),

have a long history in number theory. In particular, it is well known that if x1, x2 and x1x2

are non-trivial characters, then J(x1, x2,p) can be written in terms of Gauss sums and

’ (leXQa )’ -

though in general no evaluation is known without the absolute value. In this thesis we
consider some mod p™ generalization of the Jacobi sums where we can obtain an explicit
evaluation (without the absolute value) for m sufficiently large. For example, if x, x1," - , Xs

are mod p™ Dirichlet characters the sums

J= Y )@,

r1=1 rs=1

Alxlfl +---+Asx§s =B mod p™

where pt Ay -+ Ay Bky -+ kg, and

p P
j2 — Z “ e Z Xl(xl) e XS(xS>X(A1x1 _I_ “ e _|_ Asajs + Bajfivl .. .x’g}s),
r1=1 rs=1
where p {24y - -+ A;B(1 —wy — -+ - — wy), have simple evaluations when m > 2. Exponential
or character sums with an explicit evaluation are rare. Interestingly the sums we consider

here can, like the classical Jacobi sums, be written in terms of Gauss sums.
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Chapter 1

Introduction

Exponential and character sums are used frequently in number theory so it is always inter-
esting when such a sum has an explicit evaluation. For example, for a non-trivial mod p

character y the classical Gauss sums

G(X7p> - ZX<I>6P(I)7
=1
where e (z) := e?™®/F  satisfy
G(x.p) = p"/?

with an evaluation of G(x,p) famously obtained by Gauss in the special case that y(z) is
the Legendre symbol. Another much studied sum is the Jacobi sum, mentioned by Jacobi

[10] in a letter to Gauss dated February 8, 1827. For two characters y1, y2 mod p one defines

J(X1, X2, p le z)x2(1 — 7).

An extensive history of Jacobi sums and their applications can be found in [4, Chapter 2]

and [11, Chapter 5]. It is well known that if x;x2 is a non-trivial character, then J(x1, X2, p)



can be written in terms of Gauss sums

G(Xl,p)G(Xz, p)
G(X1X27p)

J(Xx1,X2,p) =

and hence if y1, x2 and x1Y2 are non-trivial

’J<X17 X2ap>’ = p1/2'

These have natural generalization to characters on finite fields F,» and to sums with more

than two characters (see [4, Theorem 2.1.3] and [11, Theorem 5.21]). For example, if

X1,--.,Xs are mod p characters, we can define

J(X1, -5 Xer D) = ZZ xi(z1) -

r1=1 rs=1
z1++xs=1 mod p

If x1 -+ xs is non-trivial, then we can write (1.1) in the form

J(X1,...7X57p) = G(XlX p)a

and if xq,...,Xs, X1--- Xs are non-trivial characters, then

s—1
|‘](X17"'7X57p)| =p 2.

Xs(s). (1.1)

Here we are interested in working in the ring Z,~ rather than the finite field F,». When

X1,---,Xs, are mod p™ Dirichlet characters one can similarly define the Jacobi sums

p™ p™
J(Xla"'aXSapm) = ZZ Xl(xl)'

r1=1 rs=1
z1+-+xs=1 mod p™

e xs(Ts). (1.2)



These had already been considered for s = 2 by Zhang and Yao [24] and for general s by

Zhang and Xu [23] who obtained a Gauss sum decomposition

_ 162 GOG, ™)

J(Xh s 7X8apm)

G(x1- X, p™)’
where N
o
Glx.p™) = > _ x(z)epn (), (1.3)
=1
under the assumption that the yi,...,xs, and xi---xs are all primitive characters, and
hence

(s—1)m

|J(X1’,,,7X57pm)|:p 2,

(see also Lemma 1 in [25]). Wang [20] had already obtained such an expression for Jacobi
sums over much more general rings of residues modulo prime powers and related the number
of solutions of the congruence ! + - - - + 2 = 1 mod p? to the number of certain real Jacobi
sums over rings. Jacobi sums over finite local rings can be found in Wang [21]. A slightly

more general sum

To(Xt,- X P™) = ) > xalm) - xs(a), (1.4)

x1=1 xrs=1
z1++xs=B mod p™

was evaluated in [15]. While mod p sums are usually difficult to evaluate, the method of
Cochrane and Zheng [7] can sometimes be used to evaluate mod p™ sums when m > 2, as
formulated in [17]. This technique was for instance used in [7, §9] to explicitly evaluate the
Gauss sums (1.3) for m > 2. Slightly different evaluations can be found in [14], [12] and
[15]. In [15] the Jacobi sums (1.4) were written in terms of Gauss sums and the Gauss sum
evaluation used to obtain an evaluation of the Jacobi sums for m > 2 (see (3.10) in Chapter
3).

Here we are interested in two different generalizations of the Jacobi sums (1.4) where we



can also obtain an explicit evaluation. For example, if x, x1,-- -, xs are mod p™ Dirichlet

characters the following Jacobi sums

Fi= Y ). (15)

r1=1 rs=1

Alxlfl +--~+Asx§5 =B mod p™

where
ptA - ABk -k, (1.6)
and . o
p p
T = Z o Z x1(z1) - Xs(ws) X (Arzy + - + Agzg + Bay -+ xd”), (1.7)
r1=1 zs=1
where
pi24s---AB(l —wy — - — wy), (1.8)

have simple evaluations when m > 2. Of course, the classical Jacobi sums (1.4) correspond
to taking all the A; =1 and k; = 1 in J;, and all the w; = 0 in 7.

The following evaluation of J; is a special case of Theorem 3.0.2 which we shall prove in
Chapter 3. For simplicity, we have stated the result here for | 73|, but in fact we obtain an
evaluation for 7;. The condition (1.6) can also be released if we take m sufficiently large.

We have a similar result for p = 2 with m > 5 (see Theorem 3.3.1 in Chapter 3).

Theorem 1.0.1. Let p be an odd prime, x1,...,Xs be mod p™ characters with at least one

of them primitive. Suppose that m > 2 and (1.6) holds. If the x; = (x})* for some primitive

!/
s

characters x; mod p™ such that x| ... X} is a primitive mod p™ character, and for all i, the

_ 1k L.
AT'BAY'™ = o) mod p™ for some oy, where for a primitive oot a, the ¢, are defined by

/

xi(a) = egpmy(c;), v =+ 4,



then

w[3

\Ji| = (k1,p— 1) - (kgyp — Dp2 7Y,

Otherwise J; = 0.

The following evaluation of 75 is a special case of Theorem 4.0.1 which we shall prove
in Chapter 4. Again we have stated the theorem here for ||, but in Theorem 4.0.1 in
Chapter 4 we obtain an evaluation for J> without assuming that condition (1.8) holds. The

corresponding p = 2 result is given in Theorem 4.0.1 for 7.

Theorem 1.0.2. Let p be an odd prime and X, X1,---,Xs be mod p™ characters with x

s

primitive.  Suppose that m > 2 and (1.8) holds. Let k := 1 — > ., w;, where w; are
arbitrary integers. If xx1---Xxs = X* for some primitive mod p™ character . such that the

XiXYi are all primitive characters mod p™, and \ defined as:
:—BH cic, —l—wZ i mod p™

18 a kth power mod p™, then

\To| = (k,p—1)p2

where for a primitive root a, ¢; and ¢, are defined as

Xi(a) = egpm)(ci), X«(a) = egpm-ny(cs).

Otherwise Jo = 0.

Both sums J; and J; can be expressed in terms of the classical Gauss sums (1.3), see
Theorem 3.1.1 in Chapter 3 and Theorem 4.2.1 in Chapter 4. We could have used the Gauss
sum evaluations or the Cochrane and Zheng technique directly to evaluate our sums 7; and

Jo, but we will use the evaluation of the Jacobi sums from [15].



It would be nice if in the future one could determine which classes of exponential or

character sums possess an explicit representation in terms of Gauss sums.



Chapter 2

Preliminaries

We shall start this chapter by introducing Dirichlet characters which will later be used to

define Gauss and Jacobi sums.

2.1 Dirichlet Characters

Characters

Let G be a finite abelian group. A character y on G is a non-zero function from G to C
with x(ab) = x(a)x(b) for all a, b € G. If we denote the identity element of G as e, then
for any a € G we clearly have x(a) = x(ae) = x(a)x(e). Since y is a non-zero function,
we must have x(e) = 1 and so, since al®l = e, we get x(a)®! = x(e) = 1. Thus x(a) is
a |G|-th root of unity. The set of such characters will be denoted by G. Note G form a
group. For any two characters yi,X» in G, we have that x1xz(a) = xi1(a)xa(a) is also a
character where a € G. The character which send every element to 1 acts as identity under
multiplication and is denoted as Y, the principal character. The inverse of a character
X is its complex conjugate defined by y~(z) = m If y € @, then Y~ ! € G. G is an
abelian group since multiplication in C* is commutative. Note G = Z,,, ® - -- ® Z,,, so G is

generated by elements aq, ..., a; of order nq, ..., ng, respectively. Therefore x is defined by



x(a;) where the x(a;) are n;th roots of unity. Thus we have n; choices for x(a;) and have
ny - - - ny, choices for x. So |@| =ny ---ng = |G|. In fact, it is easy to see that G is generated
by X1, -, x& where x;(a;) = €2™/™ and y;(a;) = 1 for all j # [ so that G = G. In this thesis
we interested in the case G = Z;. Here we use Z, for Z/qZ, the ring of integers mod ¢ and
Zy ={a € Zq : (a,q) = 1}, the multiplicative group of units in Z,. There are ¢(q) distinct
Dirichlet characters modulo ¢, where ¢(q) is the Euler totient function. The ¢(q) characters
on Z; can be extended to multiplicative functions on all of Z, by setting x(x) = 0 when

r ¢ 7.

Dirichlet Characters

For a positive integer ¢, we can think of a Dirichlet character mod ¢ as a not identically

zero function y : Z — C with

(1) x(a) = 01if (a,q) > 1,

(2) x is completely multiplicative, that is y(ab) = x(a)x(b) for all a,b € Z,

(3) x is periodic with period g, that is x(a + ¢) = x(a) for all a € Z.

More elementary properties of characters can be found in [[3], Chapter 6] and [[9], pp.88-91].

Principal Character

The principal Dirichlet character xo (mod ¢) is the character with

1, if(a,q) =1,
Xo(a) := (2.1)
0, else.

Example

When g = 1 or ¢ = 2, then ¢(q) = 1 and the principal character xq is the only Dirichlet

character. For ¢ > 3, then ¢(q) > 2 so there are at least two Dirichlet characters. The



following tables display all the Dirichlet characters for ¢ = 3,4 and 5.

Table 2.1: ¢ = 3, ¢(q) =2 Table 2.2: ¢ =4,¢(q) =
n 1 2 3 n 1 2 3 4
xin) 1.1 0 xin) 1 0 1 0
x2(n) 1 -1 0 x2(n) 1 0 -1 0

Table 2.3: ¢ = 5,¢(q) =4
n 1 2 3 4 5
xin) 11 1 1 0
x2(n) 1 -1 -1 1 0
xs(n) 1 i —i -1 0
xa(m) 1 —i ¢ -1 0

We shall now introduce the Legendre symbol, which is an example of a Dirichlet char-

acter, but we need to know the following definition first to define the Legendre symbol.

Quadratic Residue

Let a and g be two integers with (a,q) = 1. Then a is called a quadratic residue mod ¢ if
the congruence z? = a (mod ¢) has a solution. Otherwise a is called a quadratic nonresidue

mod gq.

Legendre Symbol

Let a,b € Z, and p be an odd rational prime. Then

(

1 if a is a quadratic residue mod p,

Y

a
(—) ‘=N —1, if ais a quadratic nonresidue mod p, (2.2)

0, if p divides a.

\

There are a number of useful properties of the Legendre symbol. We would like to state

some of the properties in the following theorem.



Theorem 2.1.1. Let p be an odd prime, then

(1) (%) = a»~Y/2 (mod p).

@ (3)=0) ()

(8) If a = b (mod p), then (%) = (%) .

(4) If (a,p) = 1, then (%) =1 and (%) = (1%) :

ifp=1 mod 4,

(5) (%) =1 and (%) = (=1)-D/2 = 1,
-1, ifp=3 mod 4.

1, ifp=1or7 mod 8,

(6) (%) = (1) V/8 =
-1, i p=3ord mod 8.

(7) Gaussian reciprocity law: If p and q are distinct odd primes, then

(-

The proof of all the above properties can be found in [13, Chapter 3.

Induced Modulus

Let x be a Dirichlet character mod q. For ¢; | ¢ we say that y is an induced by a mod ¢

character, x,,, if

Xa1 (a)7 if (CL, Q) =1,
x(a) :=
0, otherwise.

Equivalently, ¢ is called an induced modulus for y if we have
x(a) = 1 whenever (a,q) =1 and a = 1 mod ¢;.

Note that for any Dirichlet character xy mod ¢ the modulus ¢ itself is always an induced

modulus.

10



Primitive Characters

A Dirichlet character mod ¢ is said to be primitive if it has no induced modulus d < q. A
principal character yo mod ¢ is an example of a nonprimitive character for any g > 2 since
it has ¢; = 1 as an induced modulus. If x is a nonprincipal character mod p, where p is a
prime, then x is a primitive character mod p (since 1 cannot be an induced modulus, which
is the only proper divisor of p). Thus, every nonprincipal character y mod a prime p is a

primitive character mod p.

Primitive Root

An integer a is called a primitive root mod ¢ if ¢(q) is the smallest positive integer such
that a®? = 1 mod ¢. In this thesis we are concerned with the case where y has prime
power modulus, ¢ = p" where p is a prime. A primitive root always exists when ¢ = p™

is a power of an odd prime, see [3, Chapter 10]. Let ¢ = p{*p5?---pi* where p1,pa, ..., Pk

are distinct primes and aq, as, . .., oy are positive integers. Suppose we have the characters
x1( mod pi*), xo( mod p3?),. .., xx( mod pi*). Then, we can construct a mod ¢ character
X with

X = X1X2 " Xk- (2.3)

We claim that if x; # X; for some 7, then x == x1X2 - Xk % X1 X" - X;c =: \". Without loss of
generality, suppose x; # X}, then there exists an a with (a, p®) = 1 such that y,(a) # x}(a).

If we take m such that m = a mod p{* and m =1 mod p; for all i = 2,3,... k, then

x(m) = xa(a)xz(1) - xi(1) = xa(a), and x'(m) = X (a)xa(1) -~ x(1) = x;1(a).

Since x1(a) # x}(a) we get x(m) # x'(m) and so x # x . Furthermore, there are ¢(p)
characters mod p;* for all i« = 1,2,...,k, so we can make ¢(p{")p(ps?) - o(pr*) = ¢(q)

distinct characters mod ¢q. Consequently, every mod ¢ character can be written as the product

11



k mod ¢ characters induced by mod p{* characters, i = 1,2,..., k. Note that the value of ¢
on prime powers p® is

o(p*) =p*H(p—1).
Additionally, y is a primitive character if and only if x4, x2, ..., xx are primitive characters.

Lemma 2.1.1. Let x be a Dirichlet character mod q. Then,

S (o) o(q), i Xx=Xxo, 2.4)

a mod ¢ 0, otherwise.

Proof. Let

S = Z x(a).

a mod q

Let ¢ be any integer with (¢, q) = 1. Then,

X(@©S= Y x(ex(a)= Y xlca).

a mod q a mod q

Define b := ca. Since a ranges over all the residue classes mod ¢, so does b. Therefore,

b mod ¢q

Thus, either S = 0 or x(c¢) = 1. Since ¢ was an arbitrary reduced residue class mod ¢, we
must have either S = 0 or x(¢) = 1 for all reduced residue classes mod ¢. In other word,

either S =0 or x = xo. When x = xo we have

S= 3 xola) = olg).

a mod q

12



Let [ := (fi,..., fx) where f; € Zlxy,..., x5 forall e =1,... k. Let X = (x1,---, Xx)

denote k characters y; mod ¢, then for g € Z[z1, ..., x,], define the more general sum

Sfa) = Yy xalfilen. ) xalfulan o). (2:5)

r1=1 rs=1
g(z1,...,25)=0 mod ¢

When ¢ is composite the following lemma can be used to reduce sums of the form (2.5)

to the case of prime power modulus.

Lemma 2.1.2. Suppose that xi,...,xx are mod uv characters with (u,v) = 1. Writing

Xi = Xix? for mod u and mod v characters x, and X! respectively, where i =1,...,k, then

— - = — —

SO0 fruv) = SO f,w)S(X, £y ).

Proof. For all i = 1,...,k, suppose that y; is a mod uv character with (u,v) = 1, and

Xi = Xix!, where Y/} is a mod u and x/ is a mod v character. Write x; = e;uv™! + t;uu™,

where uu=! +ovv!=1ande; =1,...,u, t; =1,...,v. Note

Xi(fi(x1, ... x5)) = X;X;/(fi(elvv_l +tiuu L equvT + tsuu_l))

= xi(filer, . e))xi (filty, 1)

Since (u,v) = 1, we have

g(x1,...,zs) =0 mod u, glel,...,es) =0 mod u,
g(x1,...,x5) =0 mod uv < &

g(x1,...,25) =0 mod v, g(t1,...,ts) =0 mod v.

13



Writing S := S(X, f, uv), then we have

S=3 3 S S Milens e Dt ) Xfalens o)X il 1)

e1=1t:1=1 es=1ts=1
glet,...,es)=0 mod u
g(t1,..,ts)=0 mod v

— ZZ Xi(filer, .. es)) - xu(fuler, ... es))

e1=1 es=1
g(ei,...,es)=0 mod u

X Z e Z Xlll(fl(tla ces ,ts)) i 'X/k/(fk’(th e 7ts))

t1=1 ts=1
g(tlr-~7ts)50 mod v

—

= S, fLuw)S(X", fv).

]

Since the sums in (1.5) and (1.7) are special case of (2.5), we can reduce them to the

case of prime power.

2.2 Gauss Sums

For a mod ¢ Dirichlet character y we define the Gauss sum by
q
G(x,q) =Y _ x(x)eq(), (2.6)
=1

where we recall that e (z) = e2™*/*, In view of Lemma 2.1.2 we restrict ourself to the case
when ¢ is a prime power, p™. When ¢ = p and x is the Legendre symbol, G(x, p) is called
a quadratic Gauss sum, and will be denoted simply as G,. We would like to start with the

following Lemma in order to understand the Gauss sums properties.

14



Lemma 2.2.1.

a1 q, if A=0 mod q,

z=0 0, else.

(2.7)

Proof. If A =0mod ¢, then e,(Az) =1, and 3%} e,(Az) = 311 =¢q. If A# 0 mod g,

then e,(A) # 1 and

_1—e(A)
Zeq(Aa;) =TT e,A) 0.

=0

More generally we can define
q
S(A,x) == ) x(w)eq(Ax).
=1

If A=1, then &(1,x) = G(x,q).

(2.8)

Theorem 2.2.1. If x is a primitive character mod q, then S(A, x) = 0 for all (A, q) # 1.

Proof. Suppose &(A, x) # 0 for some (A,q) > 1, then we need to show x is imprimitive.

Take ¢1 := q/(A, q) and suppose that m =1 mod ¢; with (m,¢) = 1. Note

2wiAjm 2wiAjm
. _ _ e
eq(Ajm) —e ¢ =ca@q

= {gm) = (i

27iAg 2miAj
e 6(11(‘47(1) = e 49

= eq(Aj).

15
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Thus we have

S(A,X) = > x(i)eg(Aj)

7 mod ¢q

= > x(m)eg(Ajm) j:=jm

7 mod ¢q

X(m) D7 x()eq(45)

Since &(A,x) # 0 we must have x(m) = 1 which shows that y is induced by a mod ¢;

character. Thus y is imprimitive.

Proposition 2.2.1. If x is any Dirichlet character mod q, then

S(A,x) = x(A)S(1,x) whenever (A, q) = 1.

Proof. Let 6(A,x) = >.1_ x(x)e,(Ax). When (A4, q) = 1, the numbers Az run through a

complete residue system mod ¢ with z. Also, |x(A4)|? = x(A)x(A4) =1 so

x(7) = x(A)x(A)x(z) = x(A)x(Az)

16



Therefore the sum defining G(A, x) can be written as follows:

= X(4) Y x(Az)e,(Ax)
=X(A)) xWegly), = Az
= Xx(4)8(1,x)

Corollary 2.2.1. Assume ¢ =p and x = (%), the Legendre symbol, then

S(4,x) = (%) S(1, x).

Proposition 2.2.2. If x is a primitive character mod q, then

Vi if(Aq) =1,
0, if(Aq) #1.

16(4,x)] =

Proof. Suppose x is a primitive character mod ¢q. From Theorem 2.2.1 we know that
S(A,x) = 0 whenever (A,q) # 1. Now suppose (A,q) = 1. If A # 0, then by Proposi-
tion 2.2.1 we have &(A, x) = x(A)S(1, x), and so

[S(A, X)I? = 6(A, x)6(4, x)
— (@6(1&)) (x(A)G(Lx))

= |6(1,x)*

17



Furthermore

By Theorem 2.2.1 the sum » . x(j)eq(jk) = 0 if (k,q) # 1 thus

ISP =) x()eg(k(G —1))

=3 0) (Z ealk(i - 1))) .

Since

g, ifj—1=0 (mod q),
k=1 0, ifj—1#£0 (modq),

we have |&(1, x)|* = gx(1) = ¢.
O

The following lemma plays a useful role for proofing the main sums in this thesis (1.5)

in Chapter 3 and (1.7) in Chapter 4 (which can be seen in [16]).
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Lemma 2.2.2. For any u with (u,p) =1, if u is a kth power mod p™, then

(

(k,¢(p™)), if p is odd or p™ = 2,4,
Z x(u) =D := 2(k,2m72), ifp=2, m >3, k is even, (2.9)

1, ifp=2,m>3, k is odd.

\
If u is not a kth power mod p™, then

Z x(u) = 0.

x*=xo0 mod p™

Proof. We know that there are exactly ¢(p™) characters mod p™. We claim that D of these
characters have the property x* = xo . For p is odd, we have a primitive root a mod p™

and define the character y as

If x¥* = xo, then we have

esrm)(€) = x(a)" = x0(a) = egpm (0).

Thus we have the congruence ck = 0 mod ¢(p™). Let D = (k,¢(p™)). Then ¢ = 0
mod ¢(p™)/D so ¢ = ¢(p™)j/D where j = 1,...,(k,¢(p™)). Therefore there are exactly
D characters such that

' =x" = xo.

Thus if u is a kth power mod p™, then
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If w is not a kth power mod p™, then u = a” where v #Z k7' mod ¢(p™) for some +" and so

D {~, and by using (2.7) we get

Z x(u) = Z x(a?) = ED:%(pm) (%ﬁpm)) = XD:G (%) =0.

xP=xo0 xP=xo y=1 y=1

For p =2, m > 3. We need two generators a = —1 and a = 5 for Z3,. ( see [13]). Define
X(—=1) =ez(co), 1< <2, and x(5) =egm2(c), 1<c<2m2

If x* = X, then we have the congruences k¢ = 0 mod 2™~2 and kcy = 0 mod 2 which
have (k,2™2) and (k,2) solutions, respectively. Therefore if k even, there are exactly
D = 2(k,2™=2) characters such that x* = xq. If (k,2) = 1, then D = 1 and there is only

the principal character with x* = x,. Thus, if v is a kth power mod 2™, then

2(k,2m2), if p=2,m >3, k even,

> xw=

x*=x0 mod p™ 1, ifp=2m >3, kodd.

If £ is odd then every odd u is a kth power. If u is not a kth power mod 2™ and k even,

then u = (—1)7(5)? where 21~ or (k,2™2) { 8. Therefore by using again (2.7) we get

D
yB
5w = 3 A6 = Y ealen Yo (s )
xP=xo0 xP=xo0 z=1 y=1 ’
Therefore, if 2 t 7 then the sum Y)2_, es(zy) = 0 or if (k,2™72) t §. then the sum
D
Zy:l (& ((lﬁﬂy—ffz)) = 0. Thus

Z x(u) =0.

xP=xo0

Note, if p =2, and m = 1, then ¢(2) = 1 which shows that we have only one character, the
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principal character o and u* = u mod 2

X" (u) = xo(u) = 1.

If p =4, then as seen in Table 2.2 we have two characters 1, x2 where

(
1, if u =1 mod 4,
0, if u is even,
xi(u) = and  Xo(u) =19 —1, if u=3 mod 4,
1, if uwis odd,

0, if u=0 mod 4.
(

Thus, we get

0, if £ even and u = 3 mod 4,
Z x(u) = 2, if kis even and u = 1 mod 4,

1, if k is odd.

Recall that G, is the quadratic Gauss sum,

G, = 2 (%) ey(2).

where <%> is the Legendre symbol.

Lemma 2.2.3. For any odd prime p we have Qz = (_?1) p. Moreover,

r—1 +p,  ifp=1mod4,
Gy =) _epl”) =

z=0 +iy/p, if p=3 mod 4.

(2.10)

(2.11)

Proof. Determining the sign is a more difficult problem and will not be done here. In fact,
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Gauss proved the remarkable formula (see Theorem 1.3.4 in [4]),

VP, ifp=1mod 4,
Gy =

i/P, if p=3mod 4.

From the definition of the quadratic Gauss sum, we have

p—1 p—1

- () RAGEC
=1 y:
p—l 1
=1 (yzl )
p—1 p—1

= ( > Z ep y + ].
y=1 r=1
Now for y = 1,...,p — 2, x(y + 1) runs through a reduced residue system mod p as = goes

from 1 to p — 1 and so 3°_} e, (z(y + 1)) = 32"l e,(x) = —1. For y = p — 1 the sum over

x is just a sum of 1’s. Thus we get

B 5) (e - ()

From the property (5) in Lemma 2.1.1 we get the desired result.
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2.3 Jacobi Sums

Definition 2.3.1. For two Dirichlet characters x1, x2 mod q, we define the classical Jacobi

sums as

J(x1: X2, 4 le 2)x2(1 — ). (2.12)

Recall that a nonprincipal character is the same as a primitive character on Z,, when p

is a prime.

Theorem 2.3.1. Let x; and x2 be characters on Z,, where p is a prime.
(a) If x1 and x» are both principal characters, then J(x1, X2,p) = p — 2.
(b) If one of x1 and xs is principal, then J(x1, x2,p) = —1.

(c¢) If x is nonprincipal, then J(X,x,p) = —x(—1).

Proof. (a) Since both x; and x5 are principal, we have

J(x1, x2,p ZXl Ix2(1—x) = ZX1 Jx2(l—x)=p—2.

z€Lp x#0,1

(b) Suppose x; is principal and xs is nonprincipal. Then we have xi(xz) = 1 for x # 0 and

T(x1,X20) = D xal—2) = > xa(l—2) = x2(1) = 0 — xo(1) = —1.

TELy TELyp

(c) If x is nonprincipal, then

JXxp) =Y xax(l—z) =) x@@'-1)

=Y xe-1) = xa 1)~ x(~1) = —x(-1).

[
The following theorem shows that the mod ¢ Jacobi sums (2.12) can be written in terms
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of Gauss sums (as in Theorem 2.1.3 of [4] or Theorem 5.21 of [11]).

Lemma 2.3.1. If x1, x2 are characters mod q such that x1x2 is primitive, then for any

z €L

> xal@)xe(r:) = xixe(2)J (1, X2, 4)-

r1+x2=z mod ¢q

Note, if (z,q) # 1, and x1X2 is primitive character mod q, then the above sum will be zero.

Proof. Suppose x1, x2 are characters mod g with (z, ¢) = 1, then from the change of variable

r1 +— x12 and z9 — 19z We get

ZZ X1 (z1)x2(22) = x1x2(2) ZZ X1 (z1)x2(22)

r1+x2=z mod ¢q z1+x2=1 mod ¢

= X1X2(2)J(X17X2;Q)'

If (z,q) # 1, and x1x2 is primitive, then there is a v = 1 mod ¢/(z,q) with x1x2(u) # 1
and (u,q) = 1. Thus, the change of variable x; — x;u, i = 1,2 with the observation that

z = zu mod ¢ give that

ZZ X1(z1)x2(22) = X1x2(v) ZZ X1(71)x2(22).

r14+x2=2z mod ¢ r1+x2=z mod q

Hence

>3 xal@)xa(za) =0.

r1+x2=2z mod ¢q

Theorem 2.3.2. Let x; and x2 be mod q characters. If x1x2 ts primitive, then

G(x1,9)G(x2,9)
G(X1X2,Q)

J(Xla X2, Q) =
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and if x1, X2, and x1x2 are all primitive, then

’J<X17 X2, Q>’ = q1/2

Proof. By the definition of Gauss sums given in (2.6) and Lemma 2.3.1 we have

G(x1,9)G(x2: ¢ ZZXl yeq(z +y)
:Zeq(z) Z X1 (7)x2(y)

= J(X1,x2,9) Z X1X2(2)eq(2)

= J(X17X27Q)G(X1X27Q)'

Now suppose that xi, x2, and yjx2 are all primitive. Then from Proposition 2.2.2, we get

GO0 lIG0e @l _ a a7
|G(x1x2,9)| q'”?

|J(X17X27Q)| -

2.4 Generalized Jacobi Sums

Definition 2.4.1. Let x1,...,Xxs be mod q characters. Then the generalized Jacobi sum

J(X1s -5 Xs,q) is defined by

J(X1, - Xy @) = > x1(z1) -+ Xs (), (2.13)

z1++xs=1 mod ¢

where the summation is taken over all ¢°~' s-tuples (x1,...,xs) of elements of Z, with

1+ -+ zs=1.
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When s = 1, the sum (2.13) is

J(x1,9) = xa(1) = 1.

When s = 2 this definition agrees with the definition given in (2.12). As usual we restrict
ourselves to the case of prime powers. Let xi,...,xs be mod p™ characters and B € Z.

Define . .
p p
‘]B(Xlﬂ"'7XS7pm) = ZZ Xl(xl)'”XS('rS)' (214)

x1=1 rs=1
z1+-+xs=B mod p™

When B = p"B’ where p{ B’ and n < m, then the simple change of variables x; — x;B’,

1=1,...,s gives

p" p"
JB(Xh...,Xs,pm) — Z Z Xl(xlB/)"'Xs(st/)

r1=1 rs=1
B’ (z1++xs)=p™ B’ mod p™

= (X )B) D) ) (@)

r1=1 rs=1
r1+--+xs=p™ mod p™
= (1 Xs)(B)pn (X1, s X5, D). (2.15)

For example Jp(x1, .-, XsP™) = (X1 Xs)(B)J(x1,- -, Xs, P™) when p t B. The following

theorem shows the case when n > m (i.e. B =0) in (2.14).

Theorem 2.4.1. If x1,...,Xxs are mod p™ characters, then

. (" )xs (=1 (X1, -+ Xs-1,P™), W X1e Xs = Xo,
JO(Xl: -y Xss P ) =

07 Zlel"'Xs?éXOa

where xo s the principal character.
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Proof. In the sums below, the z; run through complete residue systems mod p™.

Joxt - xsP™) = > xa(r) - xa(xs)

z1+-4xs=0

=2 ( > ) -Xs—1($8—1)> ()

Ts 1+ +Ts—1=—Ts

- Z ( Z Xl(xl)"'Xs—l(%—l)) Xs(s)

(zs,p)=1 \T1++Ts—1=—Ts

= Z ((Xl T Xsfl)(_xS)J(Xla s 7Xsflapm>> XS(xS)a Tj b= —X;Ts
(zs,p)=1

= Xs<_1)J<X17 e 7Xs—1,]9m) Z(Xl e 'Xs)(—Is)

= Xs(_1>‘]<x17 cee 7Xsflapm) Z(Xl e XS)<:ES)

Then the result follows from (2.4)

o(™), i xi-Xs = Xo

Ts 07 lfxlxs#xo
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Chapter 3

Evaluating Jacobi Type Sums Modulo

Prime Powers

For two Dirichlet characters x1, x2 mod ¢ the classical Jacobi sum is

J(x1, X2, 4 Z)ﬁ z)x2(1 — ). (3.1)

More generally, for s characters yq,..., xs mod ¢ and an integer B, one can define a gener-

alized Jacobi sum

Je(X1s- s Xs: @) Z Z X1(21) - X () (3.2)

r1=1 rs=1
r1+-+xs=B mod ¢q

A thorough discussion of mod p Jacobi sums and their extension to finite fields can be found
in Berndt, Evans and Williams [4]. Zhang and Yao [24] showed that the sums (3.1) had an
explicit evaluation when ¢ is a perfect square and Zhang and Xu [23] obtained an evaluation
of the sums (3.2) for certain classes of squareful ¢ (if p | ¢, then p? | ¢) in the classic B = 1
case. In [15] Ostergaard, Pigno and Pinner extended this to more general squareful ¢ and

general B, essentially using reduction techniques of Cochrane and Zheng [6].
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Here we are interested in an even more general sum. Let X = (xi,...,xs) denote s

characters x; mod ¢. Then for an h € Z[x,...,zs] and B € Z we can define

Ts(0ohoq) = > > xalmn) - xa(ws). (33)

r1=1 rs=1
h(z1,...,xs)=B mod ¢

As demonstrated in Lemma 2.1.2 in Chapter 2 one can usually reduce such sums to the case

that ¢ = p™ is a prime power. In this chapter we will be concerned with h of the form

h1:h1($1,...,$s) = A1$T1+"'+Asl’ks p)fAl"‘As, (34)

s )

where the k; are non-zero integers, and

m m

p p
Ti= Ty = Y ) (e, (3.5)
r1=1 rs=1

Alx’fl +-4AszF =B mod pm

As well as (3.2) this generalization includes the binomial character sums

> xa(@)xa(Az" + B), (3.6)

shown to also have an explicit evaluation (see Theorem 3.1 in [18]). A different generalization
of these sums having an explicit evaluation in certain special cases is considered in [22]. We

define n to be the power of p dividing B

B=p"B', ptB. (3.7)
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The evaluation in [15] relied on expressing (3.2) in terms of Gauss sums

m

p

Gx.p™) = Y x(@)epn(2), (3:8)

=1

where ey (z) = e?™@/*_ For example, if at least one of the x; is primitive mod p™ and m > n

then Jp(x1,.-.,Xs,P™) = 0 unless x; - -+ x5 is a mod p™~™ character, in which case
S
Ta(X1s - X D) = X1+ Xs(B)p " Gl xe ™) [ Gl ™), (3.9)
i=1

(see for example [15, Theorem 2.2]). In particular if m > n + 2 and at least one of the x;
is primitive we see that Jg(x1, ..., Xs, p™) = 0 unless all the x; are primitive with xi - - xs
primitive mod p™~". In this latter case (3.9) and a useful evaluation of the Gauss sum led

in [15] to the following explicit evaluation of (3.2):

(m(s—1)+m X1 (B'e1) - Xs(B'cs) ¢
X1 Xs(v)

Je(X1s- - X, D) = P2 (X155 Xs)s (3.10)

where, when p is odd,

5 ) (—2>m<>+<>m<)m - (3.11)
X1s-+3Xs) = | — - E2mE mns .
' p p p e

with an extra factor e3(rv) needed when p = m —n = 3, n > 0, and for a choice of primitive

root @ mod p™, the integers r and ¢; are defined by

a®® =1+ rp,  xi(a) = egpmy(ci), 1< ¢ < o(p™). (3.12)
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Here, as usual, (%) denotes the Jacobi symbol,

1, if j=1mod 4,
g = (3.13)

1, if 7 =3 mod 4,

and

vi=p "(cr+ - Fcs). (3.14)

The sums (3.6) can also be expressed in terms of Gauss sums as shown in [18]. As we shall
see in Theorem 3.1.1 below, our general sums (3.5) have a similar Gauss sum representation
that can be used to give an explicit evaluation for sufficiently large m, though here we shall
use an expression in terms of sums of type (3.2) and their evaluation (3.10). We define the
parameters t; and t by

t;

p

ki, t:= max{tl, c. >ts}- (315)

Note, it is natural to assume that m >t + 1 (and m > ¢t 4+ 2 for p = 2, m > 3), since if

ki

m < t; we have z;" = xfi/ ” ' mod p™ and one can replace k; by k;/p. We define d; and D; by

(

plid;, if p is odd,
di = (ki,p—1), Dj:=qot+l  if p=2 Fk, even, (3.16)

1, if p=2, k; odd.

\

Theorem 3.0.2. Let p be an odd prime, x1,...,Xs be mod p™ characters with at least one
of them primitive, and hy be of the form (3.4). With n and t as in (3.7) and (3.15) we
suppose that m > 2t +n + 2.

/

" 15 induced

If the x; = (x))¥i for some primitive characters x; mod p™ such that x| ...x
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k;

by a primitive mod p™~" character, and the A; ' B'dv'™t = o' mod p™ for some «, then

Ji = Dy D™Dy (o) - (@) (X, - XD (3.17)

where the ¢, define the X} as in (3.12), v' =p "(cy + -+ ), 0(x}, .-, XL) is as in (3.11)
with ¢, and v replacing the ¢; and v.

Otherwise J; = 0.

The corresponding p = 2 result is given in Theorem 3.3.1. It is perhaps worth noting
that the conditions A;'B'civ/~! = ozfi mod p™ for some oy, 1 = 1,...,s, lead to Dy--- D,
non-trivial solutions to the congruence restriction Alo/fl + -+ 4 Asafs = B mod p™.

We prove the theorem in Section 3.2, but first we show that the x; must be k;th powers

and express J; in terms Jacobi sums (3.2) and hence in terms of Gauss sums.

3.1 Writing J; in Terms of Gauss Sums

We first show that [J; = 0 unless each x; is a k;th power. We actually consider a slightly

more general sum.

Lemma 3.1.1. For any prime p, multiplicative characters x1,...,Xs, X mod p™, and

fy9,h € Zlxy, ..., x4, the sum

J = Z Z Xl(x1>"'Xs(xs)x<f(xllﬂ7"'Jxls%))q?m(g(xllﬁw“7‘7:155))7

x1=1 rs=1

h(wlfl ,...,2§S )=B mod p™

is zero unless x; = (x})* for some mod p™ characters X} for all 1 <i < s.
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Proof. Let p be a prime. If 2/ = 1, then the change of variables x1 — x12; gives

J = ZZ X1(x121) - xs(Ts) X (f(:vlfl,,x’;é)) epm (g(x’fl,...,xfs))

x1=1 rs=1
k1 ksy_
h(z;t,...,zs°)=B mod p™
= X1 (Zl)J

Hence if J # 0 we must have 1 = x3(z1). For p odd we can choose z; = a®®™)/(k1.o(™))
where a is a primitive root mod p™. Then 1 = x1(21) = x1(a)?®")/(F1e@™) = g2micr/(k1¢(™))

and (k1,¢(p™)) | ¢1. Hence there is an integer ¢ satisfying

c1 = ¢ik; mod ¢(p™),

and x1 = (x})" where x} is the mod p™ character with x’(a) = esm)(c}).
For p =2 and m > 3 recall that Z3,. needs two generators —1 and 5, where 5 has order
22 (see for example [8]). Taking z; = 52" /12" 7*) we see that (k1,2™72) | ¢; and there

exists a ¢| with ¢jk; = ¢; mod 2™~2. Setting

Xi(=1) = xa(=1), Xi(5) = eam-2(cy),

we have x1(5) = (x}(5))*1. If ky is odd then xi(—1) = (3, (—=1))*. If k; is even then z; = —1

gives x1(—1) = 1= (xi(—1))". Hence x1 = (x1)"
The same technique gives x; = (x})* for alli =1,...,s.

]

From Lemma 3.1.1 we can thus assume that the y; are k;th powers, enabling us to

express Jp(X, h,p™) in terms of (3.2) sums and hence, by (3.9), Gauss sums.

Theorem 3.1.1. Let x1,...,Xs be mod p™ characters with x; = (x})* for some mod p™
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characters x%, 1 < i <'s, hy be of the form (3.4). Then,

VEEDY (HXEXQ' )JB(Xlxl,--.,x;x;’,pm), (3.18)

(X ki=xo \I=
i=1,...,s

where o is the principal character mod p™.

Recall n 1s the power of p dividing B and t is the highest power of p dividing the k;. If

2, forp odd,
m>n-+t+

3, forp=2,

and at least one of the characters is primitive mod p™ then Jy = 0 unless all the X} are

primitive mod p™ with X ... X, induced by a primitive mod p™ "

character, in which case

Z I 1x2x’/( BG (xixi,p™) (3.19)
(i G (XAXT - XaXE pm™)
i=1,...,5

Proof. Write x; = (x})*. If p{ u then from Lemma 2.2.2 the sum

4

(ki, 0(p™)), if pis odd or p"™ = 2,4,

> X(u) =D =2k, 2m2), ifp=2 m >3,k is even, (3.20)

x"i=xo0 mod p™

1, if p=2,m >3, k; is odd,

\

if u is a k;th power mod p™ (where each k;th power is achieved D; times) and equals zero

otherwise.
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Making the substitution u; — A; Lu;, we have

Ji= > > X)Xk

r1=1 rs=1

Alxlfl ++ Az =B mod pm

p™ p™
- ¥ Sy XX () - - XX (us)

()i =x0 w=1  u=1
i=1,....s Aiui+--+Asus=B mod p™

p™ p™
D OXAXI(AD - NXT(A) D) X () XX (), (3.21)
(x!)Fi=xo u1=1 us=1
i=1,...,s u1+-+us=B mod p™

Ny

and (3.18) is clear. Note, if y; is primitive mod p™ then x}x7 must be primitive for all x/
mod p™ with (x})" = xo (since x; = (xix/)").

Hence, by (3.9), if m > n and at least one of the y; is primitive mod p™

T = —(m n) Z G (HX;XQ/’ m— n) HX;X;, G(X;X;,:pm)y (3‘22)
(X )11 X0

where the * indicates the sum is restricted to the x7 mod p™ such that szl X;Xj is a mod
m=" character. Suppose further that m > n + ¢+ 2 and p is odd. Since (x7)* = xo, that
is eppmy(c/k;) =1, and p* || k;, then

m—t;—1

P = (3.23)

Likewise for p = 2, if (x/)* = xo and m > n +t + 3, we have
MR = o (3.24)

Hence p | (¢, +¢/) iff p | ¢ and p™ || D0 (¢ + ) iff p™ || D 7, ¢i. That is xjx/ is

7

primitive mod p™ iff y} is primitive mod p™ and [[;_, xix/ is primitive mod p™ ™ iff []7_, X}
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is primitive mod p™~". Observing that for k > 2 we have G(x, p*) = 0 if x is not primitive
mod p* we see that all the terms in (3.22) will be zero unless the y/ are all primitive mod
p™ with [[;_, X} primitive mod p™~". Observing that |G (x, p*)|* = p" if x is primitive mod
p* gives the form (3.19).

3.2 Proof of Theorem 3.0.2

Suppose that m > n +t + 2 and at least one of the y; is primitive. From Lemma 3.1.1
and Theorem 3.1.1 we can assume that the y; = (x})* with the y/} primitive mod p™ and

Hle X} primitive mod p™~", else the sum is zero. As in the proof of Theorem 3.1.1 we know

N/

that all the x}x/ are primitive mod p™ with []7_, xix/ primitive mod p

m—n

. Hence using

(3.18) and the evaluation (3.10) from [15] we can write

Nyl

P A=Y NN L =1 Y .
i = phme-tm 50 Xixi (A B4 a 03/)) XeXa (A B(es + CS>>5, (3.25)
XAXT - XaXE (v)

() *i=xo

where the

S

Xixi (@) = espmy(c + ), v=p" Y (4 ),
i=1

and

3 _9 m(s—1)+n m—n S+ M\
0= 0(XIXT; - - > XeX) = (—T) <9> <M> EgmEppm—ns

p p p

with e,m, and 7 as defined in (3.13) and (3.12), with an extra factor es(rv) needed when

— —
i =c;,modp, v=v

p=m —n = 3. From (3.23) we know that p"*' | ¢/ for all i, so ¢, + ¢
mod p, and

0 =300 XX =00 -, X,
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and so may be pulled out of the sum straight away. Suppose now that

m>n 4 2t + 2. (3.26)

It is perhaps worth noting that in [18] the sums (3.6) genuinely required a different evaluation

/!

in the range n +t +2 < m < n + 2t + 2 to that when m > n + 2t + 2. Since p™ 174 | ¢

1

we certainly have p™ 17" | ¢/ and the characters x/ and [[;_, x/ are mod p'*t! characters.

Condition (3.26) ensures p'™"*! | ¢/, v = v/ mod p'*! and
Xi (6 +¢) =xi(c),  Xi- - xi(v) = X1 x<(0), (3.27)
We define the integers R; by
) 14 Ry (3.28)

Since (1 + R, 1p"™) = (1 + R;p*)? we readily obtain R;;; = R; mod p’ and

R; = R; mod p' for all j > i. Defining positive integers I; with

= ()" Hp DY R-L . mod p™,

7 ) m—t—1

and noting that 2(m — ¢ — 1) > m we have

i+ = (14 LiRy——1p™ ") mod p™

=d (1+ Rm_t_lpm_t_l)li mod p"

= cgali¢(pm7t71) mod p",

and x;(c; + ¢f) = xi(c;)eprr1(cili).
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Sincem —t—n—1>t+1we have R,,_y_1 = Ry_s_n_1 mod p*! and
Hxixi’ & +d) = epn(L Hxixi’ ¢), L:=R], 126" Sl (3.29)

Similarly, noting that 2(m —n —t —1) > m —n,

b=t )
=0 (1+ (V) 'LRy—p—s—1p™ " """) mod p™

1, W) et L

=7v'a mod p™ ™"

and

XAXT - XaXa (0) = XAXT - - XoxS (V) ey (0" () T (p™ ) L)

= XIXT - XaXa (V) ey (L). (3.30)

By substituting (3.29) and (3.30) in (3.25) we get

—1 sy N/ -1/
1 XiX1 (A7 B'd) - XX (A B'e))
Jy=p2 OIS0 (3.31)
! o x’lx’l’ S (V)
zl 1,...,s ’
_ p%(m(s—l)—i-n)é le o 7Xs HX] 1B/ . 1 H E : 1B/ /- 1)‘

( //)k,b =x0

Clearly this sum is zero unless each A; ' B'cv'~! is a k;-th power, when

J = Dl...DSp%(m(s—l)—i-n Xla"->Xs sz 1B/ /- 1>‘ 0
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3.3 The Case p =2

As shown in [15] the sums (3.2) still have an evaluation (3.10) when p = 2 and m —n > 5,

with 0 now defined by

5(X1,.--7xs)=<2>m_n< & )mw@"‘””, (3.32)

v C1- - Cg

where ¢;, v, and w are defined as

xi(5) = egma(c;), 1<¢<2™2 1<i<s, (3.33)

and
v=2""(cy +---+c5), w:i=e (3.34)
Theorem 3.3.1. Let x1,...,Xxs be mod 2™ characters with at least one of them primitive,

and hy be of the form (3.4). Suppose that m > 2t +n + 5.

If the x; = (X)¥i for some primitive characters X mod 2™ such that X} ... X\ is induced
by a primitive mod 2™~" character, and the A; ' B'cy'~t = ocf" mod 2™ for some «;, then
Ji =220 Dy Doy (an) X (00 (X - XG)s (3.35)

where the ¢, are defined by Xi(5) = egm-2(c}), v' = 27> ¢ and 6(x4, ..., X}) is as in

(3.32) with ¢, and V' replacing the ¢; and v.
Otherwise J; = 0.

Proof. Suppose first that m > n + ¢+ 5 and at least one of the x; primitive mod 2™. From
Lemma 3.1.1 and Theorem 3.1.1 we can assume that x; = (}})* with x} primitive mod 2™
and [[;_, x} primitive mod 2™~", else the sum is zero. As in the proof of Theorem 3.1.1

we know that xjx/ is primitive mod 2™ and [[;_; x}x/ is primitive mod 2™ ". Hence using
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(3.18) and the evaluation for case p = 2 from [15] we can write

Ji = 2hme-m § XiXT (AL B (¢ + ) - XA B + ) 5 (3.36)
() Frexo XIXT - Xx§(0) |
where the

XX (5) = eana(cf+ ), v=2"") (d+¢)),

and

- 2\" " 2 ™ o
5= 5(' A" o AN 2" =1)v.
OAXTs - XoX6) (U) (Hf:l(clz‘ +C§/>> w

From (x/)¥ =1 we have eym-2(c/k;) = 1 and 2™~*=2|¢!. Hence

d 4+ = ¢ mod 2™ (3.37)
and
v=2"" Z(c; +dy=2"" Z ¢, = mod 2™ "2, (3.38)
i=1 i=1

So for m > n +t+ 5 we have ¢; + ¢/ = ¢, mod 8, v = v mod 8, giving

2 \_ (2 U (YY) e e
¢ +cf ) \p p)’ ’

Nyl

and & = 00, X7, .., X\xX") = 004, ..., X.). From 2772 | ¢ we know that the X/ are all
mod 22 characters. Suppose now that m > 2t + n + 4. Then (3.37) and (3.38) give

¢+ = ¢ mod 22 v =’ mod 272 and

"

Xi (G +c)=xi(c), X xiw) =x7 -} 0).
For p = 2 we define the integers R;,j > 2 by

527" =1+ Rj2.
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From R;11 = R; + 2! R? we have the relationship R; = R; mod 2~ for all
j > > 2. Define a positive integer I; := (c},)~ /2=t R 1 mod 2™. Since

2(m —t —2) > m we have

At = (14 liRp——22™"""?) mod 2™
= ¢/ (14 Rin—s-22""""%)" mod 2"

= 025“27”7“4 mod 2™,
and Xi(c; + ) = Xi(ch)eqer2(cil;). If m > 2t +n + 5, then
R, t5=Rpm tnomod2" " 3=pR . 5 mod?2+?
giving
HX;X;’ ¢+ ) = egei2(L HX;X;’ d), L=R", 228202'2(7"152). (3.39)
Similarly, since 2(m —n —t —2) > m —n,

v=0v+27"({+ -+ )
= 'U/ (1 + (Ul>7lLRm,n7t,22miniti2)

—12m—t—n—4L

= /5 mod 2",

and

Iy

XAXT - XaXa (V) = XAXT -+ - Xaxa (V) eaes2 (L). (3.40)

By substituting (3.39) and (3.40) in (3.36) we get (3.31) and the rest of the proof follows

unchanged from p odd.
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3.4 Imprimitive Characters

We assumed in Theorem 3.0.2 that at least one of the characters is primitive mod p™. This
is a fairly natural assumption. For example if p 1 k; for at least one i and none of the x; are

primitive mod p™ then we can reduce to a mod p™~! sum.

Lemma 3.4.1. Let p be an odd prime and hy be of the form (3.4). If x1,...,Xs are im-

primitive characters mod p™ with pt k; for some i and m > 2, then

JB(%; hlapm> - pS_IJB<>Z7 h17pm_1)'

Proof. Suppose that x1,...,xs are p™ ! characters with p { k; for some i. Writing

= u; +v;p™ 1t withw; = 1,...,p" Yand v; = 1,...,p gives

m—1

Ts(X, h,p™) = > X () -+ xo(uy),

U ,yeeyUs=1 V1,...,05=1
Zf:l qu(ui-‘rvipm*l)kiEB mod p™

where the y;(u;) allow us to restrict to (u;,p) = 1. Expanding we see that

Z Ai(u; +vp™ k= Z Azuf +pmt <Z Aikiuf"_lvi> = B mod p™, (3.41)
i=1 i=1 i=1

as long as m > 2. Thus the u; must satisfy

ZAsz’ = B mod p™ !, (3.42)

i=1

and for any uy, ..., u, satisfying (3.42), to satisfy (3.41) the v; must satisfy

Z Aikiufi_lvi = p(m=1) (B — Z Alufl> mod p. (3.43)
i=1 i=1
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s—1

If p does not divide one of the exponents, p t k; say, then for each of the p*~' choices of

vg, ..., vs there will be exactly one vy satisfying (3.43)

v = (p_(m_l) (B - Z Amf) — ZAikiufilvi> (Alklulfl_l)_l mod p,
i=1 i=2

and

m—1

p
JB()Zv h’lapm) :ps_l Z Xl(u1>”'Xs(us) :pS_IJB(%7 hlapm_l)'

UL yeeyUg=1

> AiufiEB mod pm—1
]

If the y; are all imprimitive mod p™ and p | k; for all i then we still reduce to a mod

m

p™~! sum, but as with a Heilbronn sum it seems unlikely that there is a nice evaluation:

pmfl pm—l
Ts(V b, p™) =p" > Y xale) e xs(@).

r1=1 rs=1

Almlfl +-4A.zF =B mod pm
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Chapter 4

Character Sums with an Explicit

Evaluation

Let X = (X, X1,---,Xs) denote s + 1 multiplicative Dirichlet characters mod ¢. For an

h € Z[z, ..., xs] we define the complete character sum

TG hea) =) - > xal@) - xs(@)x (b, 2y)). (4.1)

r1=1 rs=1

From Lemma 2.1.2 in Chapter 2 we see that if (r, s) = 1, then splitting the mod rs characters

X: into mod r and mod s characters x}, x7, that is x; = xix7,

J(X h,rs) = J(X' hor)J (X", R, s).

Hence, we shall restrict our attention to prime power moduli ¢ = p”. When m > 2, methods
of Cochrane [5] (see also Cochrane and Zheng [6] & [7]) can be used to simplify the sums

and in some special cases obtain an explicit evaluation. For example, the sum
pm
> xi(z)x2(Az* + B) (4.2)
r=1
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was evaluated in [18] (p odd) and [19] (p = 2) for m sufficiently large (for m > 2if p 1 2ABE).

In [15] an evaluation was obtained for the Jacobi type sums

hzy,...,x5) =21+ -+ 25+ B, (4.3)

and in Chapter 3 for their generalization

hy(zy, ... x5) = Ay 4+ 4 Agah 4+ B, ptA--- A,

for m sufficiently large (for m > 2 when p { 2Bk - - - ks). Zhang and Wang recently showed

in [22] that (4.1) has an explicit evaluation when
h(zy,...,05) =21+ +xs+ Br;t -2t piB,
with x; = xo, the principal character mod p™, and
s=2"—1, meven, p=3 (mod4), x(~1)=1. (4.4)
In this chapter we will consider the sum (4.1) for the more general
h(xy,...,xs) = Ajxy + -+ + Agzg + Bt -2, pfAp--- A, (4.5)

s

where the w; are arbitrary integers, and obtain an evaluation when m is sufficiently large,
for m > 2 if p { 2Bk where
Ei=1—w —- - —ws. (4.6)
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In particular, we shall see that the conditions (4.4) are not needed. Note, if we use the

change of variables x; — a:iAi_l foralli=1,... s, then for h of the form (4.5),
JOGh,p™) =X1(A1) - Xo(As) J(X 1 + -+ @ + BA™ - AT s p™).
Hence it is enough here to consider

hy = ho(xy,...,xs) == 21 + -+ + x5 + Ba}* - - a¥ (4.7)

S

and evaluate the sum

p’IIL p’VV'L
Joi= TXohop™) = 3 -3 xa(@n) - xolw (0 4o+ g+ Bt oal). (48)
r1=1 rs=1

We use n and t to denote the power of p dividing B and k,
B=p"By, ptBy, p'lk (4.9)

To obtain our evaluation we shall first show in §2 that the sum is zero unless

XX1° Xs = X0, (4.10)

for some mod p™~"™ character x,. In §3 we write our sums in terms of Gauss sums, and
then in §4 we use the explicit evaluation of Gauss sums from [15] to obtain the evaluation
stated in Theorem 4.0.1 below. When p is odd, we suppose that a is a primitive root mod
p™. Writing

eq(x) i= ¥/, (4.11)

46



we define integers r := (a1 — 1)/p, 1 < ¢, ¢; < ¢(p™), and 1 < ¢, < G(p™ "), by

x(a) = egrmy(€), Xi(a) = egmy(ci); Xe(a) = epm-n)(cs)- (4.12)

When p = 2, we similarly define the integers 1 < ¢,¢; < 2m2, 1 < ¢, < 2m "2 by

X(5) = egm—2(c), xi(5) = eam—2(¢;), X«(D) = €gm-n-2(cy). (4.13)

Define also A and e,m as

s X " 1, ifpm=1 mod 4,
A= —B; H (Cic*_ +pnwz‘) " mod p”,  gpm 1= (4.14)

i=1 7, if p" =3 mod 4.

Theorem 4.0.1. Let p be a prime and X, X1, ---,Xs be mod p™ characters with x primitive.
Let hy be of the form (4.7) and n, k, t be as in (4.6) and (4.9). Suppose that

1, if pis odd,
m>2t+n+38—1, f[:= (4.15)

2, ifp=2.

w

If xx1---Xs = X* for some primitive mod p™™ character Y, such that the x;x¥ are all

primitive characters mod p™ and X, defined in (4.14), is a kth power mod p™~", then

j2 _ (k‘,p B 1)pm52+n+a5 X*(A)X (Z CiC*_l _pnk,) HXi(cic*_l + wipn)7
1=1 =1

where

p p p

5= (21) <__1) (C* et wpe.) )e;mlapm_n (4.16)
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for p odd, unless p™" = 3%, n > 0 when an extra factor e3(rc.) is needed,

5= 2
o\ e [T (e + wi2ne,)

m) es((2" — 1)cy) (4.17)

forp =2, and

t, if p is odd, orp=2 andt =0,
Q= (4.18)

t+1, ifp=2andt>1,

with ¢;, ¢, ¢, and eym as defined in (4.12), (4.13) and (4.14).
Otherwise Jo = 0.

4.1 Preliminaries

We first observe that it is natural to assume that y is a primitive character mod p™. If
all the x; and x are imprimitive mod p™, then for any polynomial h we can simply reduce
(4.1) to a mod p™~! sum, J(X, h,p™) = p*J(X, h,p™ ). If some Y; is primitive, then there
is au=1mod p™ ! with y;(u) # 1, and if x is imprimitive mod p™, then the change of
variable z; — z;u gives J(X(, h,p™) = xi(u)J(X(, h, p™), and so J(X, h,p™) = 0.

It also seems natural to assume that n satisfies
m >n+ . (4.19)

If n>m or n =m — 1 when p = 2, then as we will show in the proof of Lemma 4.1.1,

I o) (Xe» he; ™), 3 xx1- - X5 = X0,

0, if xx1-°-Xs # Xo»

where o is the principal character mod p™, and X¢ := (X, X1, - - -, Xs—1) and
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he := 21+ -+ 2,1 + 1+ B have one less variable.
The following lemma shows that 7o = 0 unless xx1 - - - xs is a k-th power of a mod p™ ™"

character.

Lemma 4.1.1. For a prime p and multiplicative characters x, x1,--.,Xs mod p™, a sum
of the form (4.8) is zero unless xx1---Xs = X* for some mod p™~" character x, if (4.19)
holds or xx1---Xxs = Xo if (4.19) does not hold.

Proof. Observe that if 2¥ = 1 mod p™~", then the change of variables x; — 2;2, 1 < i < s,

gives

J(X, ha, p™" Z Zxxl (DDxa(@1) - Xol@)x (@ + - @+ Bz )

and so J(X, he,p™) = 0 unless x(z) := xx1--- xs(2) = 1.
For p an odd prime and n < m, we can choose z = a®®" ")/FE@™ ™) where a is a

primitive root mod p™. Hence if J(, ha, p™) # 0, we must have

1= X(Z) - X(a)¢(pm*")/(k,¢(pm*")) — o2mi(E/p" (k™))

and p"(k,p(p™ ")) | ¢. Hence there is an integer ¢, satisfying p"kc, = ¢ mod ¢(p™), and
X = x* where y, is the mod p™ ™ character with x.(a) = eg(pm—my(Cx).
For p =2 and m > n + 2, taking z = 52" " /(B:2"7"*) and writing ¥(5) = eym-2(¢), we

similarly obtain that 2"(k,2™ "72) | ¢ and 2"kc, = ¢ mod 2™~ 2 has a solution c,. Setting

X+(5) = egmn=a(c.), xa(=1) = X(=1),

we have ¥(5) = x.(5)*. If k is even, then taking z = —1 gives x(—1) = 1 (hence x(—1) =

x+(—1)%) and in all cases ¥ = x* where Y, is a mod 2™~ character.
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If (4.19) does not hold, then we can take any z with p 1 z and J (3, he,p™) = 0 or X = Xo.
If X = xo0, then the substitution z; — z;z, for all i < s gives the expression (4.20).

]

Lemma 4.1.1 is readily generalized. For example if g;, h; € Z[x1, ..., z;] are homogeneous

with degrees k;, d; respectively, and (4.19) holds, then the sum

J = Z Z x1(g1) -+ xa(g)x(hy + Bhy)

x1=1 rs=1

is zero unless Y& - X;’”Xdl is a (dy — dy)-th power of a mod p™ " character (if z%2~% =

1 mod p™ ", then z; — zx; gives J = ¥ ... Xflxdl(z)J).

4.2 Writing J5 in Terms of Gauss Sums

For a character y mod p™ one defines the classical Gauss sum

GO, p™) = Y x(x)epm(x). (4.21)

From Lemma 4.1.1 we can assume that xx; - - - xs is a kth power (otherwise the sum is zero),
enabling us to express (4.8) in terms of Gauss sums. Similar expressions were obtained for
the binomial character sums (4.2) in [18, Theorem 2.2] and the Jacobi sums (4.3) in [15,
Theorem 2.2].

Theorem 4.2.1. Let x, x1,-..,Xs be mod p™ characters with x primitive. Let hy be of
the form (4.7) with n, By and t as defined in (4.9) and satisfying (4.19). Suppose that

XX1--Xs = X¥ for some mod p™~" character x,. Then

GOX"X 0" ) T GO (X x)" ™)
G(x,p™)

Fo=p" Y X'x:(B)

Xlley

: (4.22)
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where ) denotes the mod p™™ characters X" with (x")* = xo.

In particular, if

m>n+t+ 6, (4.23)

then Jo = 0 unless x. 1S a primitive mod p™~" character and the x;x¥¢ are all primitive

mod p™ characters.

Proof. 1f x is a primitive character mod p™, then

Gy) == > _X(x)epm(zy) = x(y)G(X. P™). (4.24)

for any y, If p t y, this is clear from x — zy~!. If p | y, then taking u = 1 mod p™!
with x(u) # 1, the change of variable z — zu gives G(y) = X(u)G(y), and so G(y) = 0.
Thus for x primitive, applying (4.24) with y = h(x1,...,zs), followed by change of variables

x; — x;z71 and the substitution yxi - - - xs = X%, gives

G =S @) S S vl - vl e ( (Z +BH:C;M>)

r1=1 rs=1
pm p™ p" s 5
S S () e (z I H)
r=1 z1=1 rs=1 =1 =1
p" zlvm p" s s
55 S w84 Tt ) T
=1 x1=1 rs=1 i=1 =1

Recall by Lemma 2.2.2 if p { x, then the sum

(

(k. $(p™)), if pis odd or p™ = 2,4,

> X'@ =S 2k, 2m2), ifp=2m >3, kis even, (4.25)

1

, if p=2,m >3, kisodd,

\
if x is a kth power mod p™, with the right-hand side equalling the number of times a kth
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ower is achieved mod p™, and equals zero otherwise. Thus we have
)

m

G p") = Y, Z Z N ()

(xX"")F=x0 mod p™ zs=1

S S
epm (p"Blu H a:j”l> H Xi(xi)epm (x
i=1 i=1

and substituting u — uB; 'z - - 27% we have

G(X ZX X«(B1) Zx”x* wepn (p'u) [T GOa(x)" p™).
=1

x"k=x0 mod p™ u=1

If x"x» is a primitive character mod p™~7 for some j < n , then by (4.24)

7n J

ZX X* pj Z X X* ( " ju) =0. (426>

Hence only if the character x”x, is a mod p™ " character will (4.26) give a non-zero contri-
bution, namely p"G(x"x,,p™ "), to the sum. In particular, we can restrict the sum to the
mod p™~" characters y”.

Suppose that m > n + ¢+ 8. For p odd or p = 2 we (respectively) define ¢’ by

X" (a) = egpm-ny(c’) or x"(5) = egm-—n—2(c"). (4.27)

m—n mfnftfﬁlc//

Since (x")* = xo mod p™", we have p So x” and (x”)* are all mod p'*
characters with t + < m — n.

Hence for all the x”, we have that x”y, is primitive mod p™ " iff y, is primitive mod
p™ ™ and y;(x"x«)" is primitive mod p™ iff x;x¥i is primitive mod p™. Observing that
G(x,p’) = 0 if x is an imprimitive character mod p/ and j > 2, we deduce that J» = 0

unless y. is primitive mod p™~" and the y;x¥* are primitive mod p™.
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For p odd and a primitive root a mod p™, we define the integers R;, j > 1, as
a®®) — 1 4 R;jp. (4.28)
Note that R; = R; mod p* for any j > . For p = 2, we define R;, j > 2, as
5770 =14 R, (4.29)

with R; = R; mod 2! for j > i. We will need the following Gauss sum evaluation from

15].

Lemma 4.2.1. Suppose that x is a primitive character mod p™ with m > 2, then

(72rc>m€m pr%2pm7é27
— _ P )
Glx,p™) = p™*x(—cR; eym(—cR;) N 7
(3)"wr, ifp=2 and m > 5,

(4.30)

for any j > [2] when p is odd and any j > [2] + 2 when p = 2 with w = ™/, r,
and eym as in (4.12) and (4.14). R; is defined as in (4.28) or (4.29) with ¢ as in (4.12) or
(4.13).

When p™ = 27 an extra factor e3(—rc) is needed.

4.3 Proof of Theorem 4.0.1

Suppose that (4.15) holds. Since (4.23) plainly holds we can assume from Lemma 4.1.1 and
Lemma 4.2.1 that yx1 -+ xs = x* for some primitive mod p™~" character y, with the y;x"
all primitive mod p™ (else the sum is zero). With § and ¢’ as in (4.15) and (4.27), we have
pm =B " and }” is a mod p'*? character. In particular, since m —n —t — 3 >t + 3,
we have

X' (" +c.) = X"(c.). (4.31)
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Let [; be a positive integer with

= R p M) mod ptte

Since 2(m —n —t — ) > m — n and, from the congruences after (4.28) and (4.29),

Rm = Rmfnftfﬁ mod pH—ﬂ?

we have
¢+ e = e (L+ L Ryup™ " 77) mod p™ "
=c, (1 + Rmfnftfﬁpminitiﬁ)ll mod pmfn
Al @™ Y mod p™=", for p odd,
=c,
50277 mod 2mm, for p = 2.
Hence,

X'+ 0) = Xa(ew)epres (—edi) = Xalen)epm—n(—¢"R),

and by (4.30) we have

G(W*, pm_n) = P%m* (C*R;zl)epm*” (C*R;ml)ém (4'32)

where, since ¢’ + ¢, = ¢, mod p for p odd, ¢’ + ¢, = ¢, mod 8 for p = 2,

(2’"6*)min€ m-n, for podd, p"" #£ 33
P AN g (4.33)

(%) B W™, for p = 2.
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Similarly, since 2(m —t — ) > m, we have

m—t—1

al2¢(P
¢ + pwi(ce + ") = (¢ + plwicy)
522" mod 2m, for p = 2,

) mod p™, for p odd,

where [, is a positive integer with

Iy = (¢; + wip"e,) twd"p~ M TA R mod ptto.

Note (x")¥ (¢; + p"w;(c. + ")) = (X)) (¢; + p"wscy), and so

Xi (X" x) (i + wip™ (s + 7)) = xa(Xx) " (¢ + wip" cx)epees (I2(¢; + wip™es))

= xi(X"X+)" (¢; + wip"c.)epm—n (wicd" R1).
Hence, using Lemma (4.2.1), we get

GO x)" ™) = 22 Xa(X "X )" (= (¢; + wip" ) Ry epm (— (¢ + wip"cs) Ryt )6y, (4.34)

where
(M)m%m, for p odd, p™ # 33,
5y, = (4.35)
<Ci+w2i2"c*> WCi+wi2nC*7 for pP= 2.
For ¢ defined as in (4.12) we have
_ P2 x(cReym(—cRHO (4.36)
G(x,p™) "o "
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where

<2Lc)m€7}l, for p odd, p™ # 33,

I A (4.37)
(%)mwc, for p = 2.

Note, since xx1---xs = x* where k =1 —w; — --- — w, and (x")* = xo, we have

X~ Ry DX (e R T o %)™ (—eRy!) = 1.
=1

Since ¢ is defined mod ¢(p™) we can replace ¢ by ¢ = kp"c, — Y ;_, ¢;, and then

S

ey (p"e Ry e (—cR) [ [ e (= (ci + wipc) Ry') = 1,

=1

with —e, + >0 (¢ + w;2"¢,) + ¢ = (2" — 1)c, when p = 2. By substituting (4.32), (4.34),
and (4.36) in (4.22) we get, for p™ and p™™" # 33,

'm.s+n w
T = > X" x(=B1) x Hxlxx* e+ wip")
(x")*=x0 mod p™—n
ms+n
=p 7 dx.(A sz e+ wp™) > X'(N)

(x"")k=x0 mod pm—"

with A as in (4.14) and 0 = 6,0.[];_, dp;, with the product of the expressions in (4.33),
(4.35), and (4.37) simplifying to the formula for § given in (4.16) for p odd and (4.17) for
p=2. If X is a kth power mod p™ ™, then (4.25) and (k, p(p™ ™)) = (k,p — 1)p* give

ms+n

Jo = (k,p—1)p™ 7 0. (A sz cic,t +wip™),

o6



with a as in (4.18). If A is not a kth power mod p™~", then

> X'=o0

(X"")*¥=x0 mod pm—"

and Jo = 0. For p™™" = 33 n > 0 we pick up an extra factor ez(rc,) from G(x"x,,p™ ™).

When p™ = 33 the additional factors in the Gauss sums cancel.
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