/&HE IMDLEHENTATION QF
A SUBSET DATA DICTIONARY VERIFIE%/

§ B
by

JACQUELYN FERN CLINE
. Iz

B.S., Central State University, Edmond, Oklahoma, 1974

A MASTER’S REPORT
submitted in partial fulfiliment of the

reguirements for the degree.
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

Dr. David B. Qustafson

TABLE OF CONTENTS

E

TITLE

The Role of Data Dictionaries
and a Verifigation
Implementation

0 Introduction ‘
1 Software design crisis
2 Data definition and management
3 The concept behind data
dictionaries
4 The role of data dictionary systems
.5 The role of data dictionaries
in software development
6 The benefits of data dictionaries
7 The role of the Subset Data
Dictionary Verifier
1.8 The henefits of the Subset Data
Dictionary Verifier

The Subset Data Dictionary Verifier
Requirements

The Subset Data Dictionary Verifier
Design

The Subset Data Dictionary Verifier
Implementation

Conclusions and Extensions
References

Appendices
Detailed Specifications in BNF format
User“s Manual
Source Code
Detailed Module Specifications

ALl202 99L185

PAGE

13

17

22

27

29

30
34
35
56

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

CHAPTER 1
THE ROLE OF DATA DICTIONARIES
AND A VERIFICATION IMPLEMENTATION

1. Introduction

This paper introduces the concepts of data,didtipnaries and a
verification process calleg a Subsgt Data Dictidna;y Verifier. The
Subset Data Dictionary Verifier is developed to verify the frames
in a data dictionary in relatien to a mastef?data dictionary. Both
dictionaries used in the verificatibn‘prggess are derivad from the
Entity Relationship Attribute (EﬁA) Specification. The verifier
will show the discrepancies between the suhséf data dicticnary and

the master data dictionary.
1.1 BSoftware Design Crisis

It has been suggested that we are in a software design crisis
resulting from cheaper hardware technology and increasing software
design costs. "The crisis is created by the labor-intensive nature
of design methods..." (1) The hardware costs are decreasing
rapidly; in fact, those costs are being cut to the bone. -ﬁowever,
hardware only constitutes approximately 30% of the,ﬁotal-ccst of a
system. The software costs, likewise, need to be Ccut to a minimal
figure. No longer can we continue to support "made to ofder“
applications. Technology is continuing to strive towards better
firmware and more generalized hardware. Software, on the other

hand, is continuing to fall farther and farther behind.

This crisis is ameliorated if fne computer technology
implements the philosophies and. structures of: automated
programming and design aids, such as data ﬁictionaries and data
base management systems; direct access to cqmputéps‘by end users,
such as user-friendly and user-maintainable quéry syétems; and
project management technidques and tools for software development

projects.

We are quickly approaching the need for knowledge information
processing systems (KIPS) using data inference and artificial
intelligence. The Japanese are in a fast paced race to complete
such a task by 1991. "That means all tne'vigcrous hand cranking,
throttling, and wrenching a pioneer now accepts as the inevitable
price of using the machine -- the difficult programming languages,
the struggle to make different programs compatible, the problems of
putting human knowledge into machine form -- are to disappear,

eliminated in the new Japanese Fifth Generation of computers.” (2)

Each analyst designs systems individually with lit;le regard
to the way other analysts design systems; programmers code programs
as individually as their personalities and background allow.
Technology has been rapidly changing and now we must draw these
concepts together into a unified assembly. Company guidelines‘are
issued to analysts and designers to make sure a development effort
is flexible, user-friendly, and user-maintainable. Programmers are
being given strict guidelines to insure programming products are
cohesive, consistent, and understandable. ‘"We have made great

gains in the consistency and rigorousness with which we apply these

tools to the development of data processing systems." (3) The age
of data processing is truly eveclving inte data automation. The
needs are there to provide data suppert and autcomation in line with

the fast paced advances of technology.
1.2 Data Definition and Management

Information is simply data with meaning applied. The amount of
data stored on the computer is growing tremendously. Storing,
manipulating, and retrieving data is increasing significantly due
to technological advances. "The sheer volume cof the information
that is stored on computer equipment has fostered an atmosphere
that has encouraged technological experimentation to bring about
ways of storing and retrieving that information more efficiently.”

(4)

The process of defining data and the management of such
definitions is a primary and necessary Step. Being able to
cohesively control the data definition process allows greater
flexibility, integrity, and understanding. In order to manage the
control and definition of the data, a data management system or
tool is helpful. "A data management system is a collection of
separable operations that define, store, update and retrieve data
and also provide security, integrity, backup and recovery of

information of various kinds..." (5).

Data is an expensive and time consuming corporate resource.
The corporate dollars spent on salaries and benefits of those who

manipulate data continue to increase. The cost of storage is

decreasing. Advancing hardware technology has provided solutions
to storage capacity in such a fashion to virtually eliminate the
high cost of data storage. Now we look to the area of software

development to find sclutions te the rising costs in that area.

It is increasingly necessary for data to be readily available
for all persons in the corporation, including the managers,
terminal operators, systems programmers, users, and application
programmers. And in order for those persons to do their jobs
effectively and as efficiently as possible, we look to improved
communications with data and its definition. "It is desirable that
there should be centralized control over the data and their
structuring but nevertheless, that usage of the data should develop

freely by the using departments." (&)

Disorder is the by-product of lack of data definition and
management tools. We are slowly bringing discipline to this
disorder. Discipline needs to continue to be applied toc this
discrder tc keep communication flowing and understanding clear at
all levels. The level of frustration rises when coemmunication and
understanding ceases between organizations or groups who are
"responsible™ for data integrity. How can we build structures
without knowing the properties involved? How can we contreol
infermation without knowing the data involved? "Although we have
become more efficient in the methods we use to collect, compute,
and disseminate data, we are still relative novices in our
understanding of the characteristics and relationships of the data

itself." (&)

1.3 The Concept of Data Dictionaries

The concept of data dicticharies as a central coliection point for
data creates a more efficient system of data management. "2 data
dicticonary, in concept, is somewhat like & word dictionary. Within
a data dictionary reside the terms used tco identify the data
elements used in computer applications, as well as terms used to

define the components found in computer networks." (8)

Data dictionaries are tools defined to maintain cchesive
understanding of each piece of data. This allows the data to be
examined and dissected into its elementary components so that they
are viewable by all parties. This allows the collection process to
be complete and the dictionary to provide complete data definition

and control.
1.4 The Role of Data Dictionary Systems

The reole of data dictionéries is for collection of data as well as
implementation of data bases. The initial cost of generating a data
dictionary 1s easily justified when compared with the cost of
determining maintenance changes to an existing system. When time
is applied to the development of the data dictionary, success is
more easily achieved. "There is a direct proportion between the
effort and thorcughness invested in developing a dictionary and the

success of the proposed database." (9)

There are three functional areas that most likely are to be

addressed by a data dictionary system. The first area is the design

of the data base system. The second functional area is the
implementation of the data base system. And the third functional

Area is the "in-line" operational aids.

In the first area, the data dicticnary is called a design aid.
"...the data dictionary serves as a repository of information
cocllected during the analysis that leads to the creation of the
data base."” (10) This data dictionary when used as a design aid
stores what is called structural knowledge. This information
includes the data element definition, approximation of ﬁsage
frequencies, security by user as well as program, and so forth.
Before the implementation occurs, this information serves as
documentation and alsc a meonitoring base. These components give us
structural knowledge of the database. "We define structural
knowledge to be the knowledge we have about dependencies and
constraints among the data, restricting ourselves to general and
intensional information." (11) This structural knowledge directly

feeds the database design phase.

The second functional area is the implementation of the data
base system. "A data dicticnary can provide a number of services,
which collectively improve the productivity of data base
administration and programming." (10) Areas gerviced here include
data base description, sub-schema generation, and data description
for application programs. IBM“s IMS system uses this technique to
create such things as data base definitions, segment search
arguments, control blocks, and support blecks. These are called

administrative aids.

The third functional area is "in-line" cperaticnal aids. In
this sense, the data dictionary becomes an integral part of the
executing data base management system. The data dictionary
contains information which assists in scheduling jobs, verification
of security, and validation of transactions. Also, statistics of
data base usage can be collected at this time. "A& data dicticnary
is a repository of infeormaticn about the data base system.”" (10)

A data dictionary system uses this information tc one or more of

the functions discussed here.
1.5 The Role of Data Dictionaries in Software Development

A data dictionary is extremely valuable to designers and
pregrammers in many phases of software development among which are:
analysis, design, implementation, requirements, definitiocn,

ceding, testing, and maintenance.

The analysis phase is critical to establishing a firm
foundation for the proposed new or modified system. The process of
analyzing a preoblem and developing a scolution is aided by the data
dicticnary in several ways. "The dictionary can identify the use
of data as it relates to the functions (processes) of the
enterprise, and it can produce a description of data requirements
in terms of an entity/attribute/relationship data (conceptual)

model." (12)

This analysis phase is generally used to investigate and
define the problems as well as the sclutions. The designer

benefits from elementary data stored in the dictionary. This data

enables the designer to present an accurate and comprehensive

statement of the preoblem along with an orderly solution.

Another phase, the design phase, is generally used to analy=ze
user regquirements and ultimately determine a proposed system to
meet such demands. At this time, the designer determines any
secondary links that have been made into'other existing systems.
The data dictionary which shows "where used" information is
exXtremely helpful in solving this prqblem quickly. The designer
adds to the dictionary details of the data structures which will

lead to the constructicn of the implemenﬁation model.

The implementation phase needs the dictionary tec contain all
possible information about data elements, programs using the
elements, validation rules, frequency of use, any access paths to
be followed, ranges of values, and detailed description of the data
structure. During the implementation phase, the designer or
programmer uses the dictionarf as a consistency and validation

tool.

- The ceoding, testing, ana maintenance phases all are benefitted
by the inclusion of the data dictionary. This inclusion allows
each area a check and balance rcoutine for up-to-date information.
Tﬁe verification process allows these phases the luxury of knowing

they are using the latest information and structures.

1.6 The Benefits of Data Dictionaries

The benefits of implementing a data dictionary exceeds the effort
expended. The édata dictiocnary requires the technical expertise to
implement a vendor purchased system or the expertise to write an
individual system. However, once in place and once the training
has been accomplished then the continued use of the system allows

for open communicaticn and understanding.

The data dictionary eliminates the fear that the information
is lost when the person who "knows about the data" takes vacation
or guits. No longer is the perscn with the most senerity on a
system tied to the technology transfer or education of "new hires".

The answers are derived from the data dictiocnary system.

Additional benefits are derived from the data dicticnary
system. These include: (1) Data about data is efficiently stored
and retrieved for later use. (2) All levels of expertise (i.e.
managers to terminal users) become invelved in capture and
maintenance of data. (3) Documentation effort is a product of the
organization structure applied to centrally control the data
infbrmation. (4) Data security can be incorporated into the
storage attributes allowing the data dictioconary or thé data base

management system tc be responsible.
1.7 The Role of the Subset Data Dictionary Verifier

This project invelves the maintenance of data integrity with a

master data dictionafy and a subset data dictionary. The Subset

Data Dictionary Verifier will examine the subset dictionary in

relaticn to a master data dictionary.

The master data dictionary is one that has been developed from
the Entity Relationship Attribute (ERA) specification. The ERA
specificaticon defines the data entities in keyworded elements
called frames. All elements should be found in the master
dictionary. New elements would not be generated in the creation
process of develcping the subset data dictionary. The master data
dicticnary may, con the other hand, contain elements net defined in

the subset data dictionary.

The verification process is to insure that the entities in the
subset data dictionary are consistent with those contained in the
master data dictionary.. The verificaticn process alsc increases
the confidence level in the data contained in the subset data

dictionary.

The result of the project shows the missing frames or
discrepancies encountered between the subset daté dictionary and
the master data dictionary. The verification process is keyword
oriented, therefore it can show that some pieces of data included
in the frame may in actuality -be valid while other pieces of data

in the same frame are not.
1.8 The Benefits of the Subset Data Dictionary Verifier

Automated verification is a benefit that is derived from the Subset

Data Dictionary Verifier. The automated process of verification

gives notification of discrepancies based on the concept that the
master dicticnary is all-inclusive. Therefore, if all kevworded
elements are precisely derived from the master dictionary, data
integrity can be assumed. Also 100% confidence levels can exist
when the subset data dictionary has been verified with the frames

involved.

Some data definition systems allows a security level to be
identified on each unit of data. This security definition is often
the responsibility of the data base administrator. The
organization or perscns viewing these definitions sometimes
constitute the security level hecessary. A properly applied
security level allows information and data to be applied to the

regponsible organizatiocns.

The integrity derived from data definition contrel is
beneficial. When there are multiple persons or organizations
depending on the same data, it is extremely critical that all
persons involﬁed can depend on data definition integrity.
Information is of no subsequent value to the dependent organization
if allowed to "age" or "grow obsclete". Furthermore, we can assure
ourselves that the data definitions are consistent among all
organizations because there is only cone version of the data

definiticon, not multiple versions.

Verification process checking keeps those concerned aware of
changeé or updates. Frustration levels can be reduced if the data

definitions stored in the dictionary are kept current; this will

_11..

ease the pains of the maintenance process. 0Once we allow our data
definitions teo become archaic then our entire system of programs,

documentation, and communication have also become archaic.

The verification process insures discrepancies can be
highlighted and integrity maintained when properly applied. Once
the subset dictionary has been extracted, the verification process
also assures the user he has up-teo-date information. The
capability to invoke the verification routine allows the subset

data dictionary tec continue independent of the master dictionary.

_12-

CHAPTER 2

THE SUBSET DATA DICTIONARY VERIFIER REQUIREMENTS

This project is a Subset Data Dictionary Verifier. The
software verifies the frames in a subset data dictionary as
consistent with a master data dictionary. This.Subset Data
Dictionary Verifier provides the user with & beneficial package
that enhances the application of data dicticnaries and their

relationships and independencies.

The Subset Data Dictionary Verifier reads two data
dictionaries as input (figure 2.a)}. One dictionary is called the
subset data dictionary and the other is called the master data
dictionary. The data dictionaries consist of a set of frames
(figure 2.b). The frame is not in a predefined fixed order. Each
frame contains information about one entity and each frame starts
on a newline. The first line of the frame contains the keyword
that describes the type of the entity and the frame of the entity.
The type and the name are separated by & colon. At least one blank
line separates each frame. The BNF for the data dictionaries 1is

found in Appendix A.

The subset data dictionary may have been developed from the
master data dictionary; however, this is not a requirement. It is
assumed that the master data dictionary is all-inclusive and nc
elements have been developed in the eXtract process. The
verification process highlights any discrepancies found between the

subset data dictionary and its master data dictionary. The output

- 13 -

shows the frames from the subset data dictionary which can not be
located on the master data dictionary as well as discrepancies
between elements of the frames on both dicticnaries. The
comparison is performed at the keyword level insuring greater

flexibility in the system.

The ocutput error messages from the verification process is
routed to standard cutput. If the subset frame can not be located
on the master data dictionary, then an appropriate error messagé is
written and the subset frame found in error. If the subset frame
has entities which does not match the master frame entities, then
an appropriate error message is generated showing which lines are

in error and the subset frame and the master frame.

Many requirements were expected and received from the
implementation of the Subset Data Dicticnary Verifier. Among these
requirements are order independence of the keywords within each
frame, order independence of the data within each data dictionary,
modularity of the code to provide ease in maintenance, and ho
limitations tc the number of keywords. The flexibility and
maintainability requirements is achieved through the meodularity of
the code. The useage of the programming language C allows the

additional benefits of portabkility on various Unix based systems.

This project allows increasing control among "using”
organizations for data that is relevant to their needs. However,
absolute control is maintained on the master data dictionary by the

responsible support organization.

14

Subset Data

Master
Data
Diction-

Dictionary Data Flow Diagram

Master
Frame
Table

ary

Subset

Load Frame Tables

Subset
Frame

Table

Compare Subset
Table to Master
Table

Exrror
Table

Master
Frame
Table

Error
Table

Write Errors
Encountered

/TN

Tror \
f———
\ Messages

(figure 2.2a)

-15-

NAME : $Spiece$

COMPOSITION

NAME : Sranks

COMPOSITION

Sample Data Dicticnary Format

a string from the set {Kr,Kk,Kb,K.Q,Qb,0k,Qr,.p}

a string from the set {1,2,...8}

NAME : $board description$
SOURCE : keyboard

COMPOSITION

.
-
-
-
.

‘white’ set of $piece position$
‘plack’ set of $Spiece position$
“end’

NAME : Screates
SCURCE : keybecard
COMPOSITION :

‘create’

(figure 2.b)

16

CHAPTER 3

THE SUBSET DATA DICTIONARY VERIFIER DESIGN

The Subset Data Dictionary Verifier is a software package
designed tc enhance data integrity and data independence among
interrelated data dictionaries. It allows the user the flexibility
of having a subset data dictionary pertinent to his needs yet it
can be verified against its master data dictionary for possible
updates. The user then only needs to become concerned with his
"need to know" data or information. The results show any
discrepancies found between the master data dictionary and the

subset data dictionary.

The main processing function of the scftware is divided into 3
sub-functions; load entity tables, compare subset table to master
table, and error condition encountered (figure 3.a). Each sub-
function works with the frames in the dictionaries as keyword

oriented data. Detailed specifications are found in Appendix D.

The first sub-function (figure 3.b), load frame tables,
performs the functions of loading the subset frame into an internal
subset table, finding the matching master frame, and then loading
the master frame into an internal master table. Dﬁring the lcad of
the internal subset table and the internal master table, the
keyword is identified and placed into the table separate from its
data. If the subset frame can not be found on the master

dictionary then an error flag is set.

- 1T -

The second sub-function (figure 3.c) compares the internal
subset table with the internal master table. The keyword in .the
subset table is found in the master table, else an error flag is
set. The data of the subset keywerd is compared to the data of the

master keyword. If discrepancies exist an error flag is set.

The errors flagged in the first and second sub-functions, are
reported in the third sub-function (figure 3.d) called "error
condition encountered”". If a subset frame is not found on the
master data dictionary, then an error condition is reported. If an
element in the subset frame does not agree with the master frame,

then an error cendition is reported.

Internally the Subset Data Dicticnary Verifier uses an error
table. The error table’s function is to hold the line number of
the error detected during the keyword by keyword comparison

process.

The error table has the subset element subscript and the
master element subscript matched in the same error table entry.
This matching shows which subset line disagrees with which master
line. This matching shows the keyword can be matched but the
values are different. If the subset frame element keyword can not
be matched to the master frame element, then only the subset line
number is in the error table entry; and the master line number

entry is null.

The cutput from the Subset Data Dictionary Verifier is a

printed report showing discrepancies found dquring the verification

.18

process. When a "not found" condition exists, the error message
and subset frame is printed. When a "mismatch" error occurs, the
error message denoting the line(s) in error, the subset data
dictionary frame, and the master data dictionary frame is printed.
The error table which contains the master and subset line
subscripts in error is printed at this time as the line(s) in

error.

The Subset Data Dictiocnary Verifier is designed to be modular
in concept. Each function in the hierarchy diagram (figures 3.a -7
3.d) is intended to have a single task'to perform. The complete
verification process is designed to manipulate keyworded elements
within a frame regardless of the extent of the data associated with

the element.

The Subset Data Dicticnary Verifier is also designed to be as
flexible as possible. This process allows greater flexibility than
the BNF format as outlined in Appendix A. This allows the
flexibility of single data items in a keyword or multiple data
items in a keyword. This concept allows greater flexibility and

integrity among data dictionaries using the master/subset concept.

The Subset Data Dictionary Verifier also provides an easily
readable form of any discrepancies found in the input dictionaries
which are using the ERA specification format as their basis.
Meaningful ergor messages are used to'hélp clarify any

discrepancies.

- 19 -

Hierarchy diagram for the
Subset Data Dictionary Verifier

VERIFY A
SUBSET DATA
DICTIONARY
LOAD COMPARE WRITE
FRAME SUBSET TABLE ERRORS
TABLES TC MASTER ENCOUNTERED
TABLE
(figure 3.a)
LOAD FRAME TABLES
LOAD SUBSET FIND MASTER LOAD
FRAME FRAME MASTER
FRAME

{figure 3.D)

20

TABLE
TABLE

COMPARE SUBSET

TO MASTER

EXTRACT KEYWORD

COMPARE DATA
ELEMENTS FOR
KEYWORD

CALCULATE
RANGE

(figure 3.c)

WRITE ERRORS
ENCOUNTERED

WRITE NOT FOUND
ERROR

WRITE
NOT EQUAL ERROR

(figure 3.48)

- 21 -

CHAPTER 4

THE SUBSET DATA DICTIOKARY VERIFIER IMPLEMENTATION

The Subset Data Dictionary Verifier is implemented on the B/32
at Kansas State University. This scftware is written in C and has
approximately 500 lines of code. The inputs to the Subset Data
Dictionary Verifier are two data dictionafies (figure 4.a); one is
named "subset" and the other is named "master". If the program is
invoked with 1less than 2 input files, an error messadge is printed

that reads "need 2 files for input/subset & master™".

The two dictionaries are compared using internal tables
(figure 4.b) to store the frames to be compared. The logic uses an

error table (figure 4.c) to store the line numbers in error.

The output consists of twe possible error conditions. If the
frame from the subset data dictionary can not be found on the
master data dictionary then an error is printed along with the
subset frame (figure 4.d). If any element in the subset disagrees
with the master, then an error is printed as well as the subset

frame and the master frame (figure 4.e).

When the verification process terminates successfully, i.e. no
errors, then the program completes without listing any errors. A

completion message is issued at termination.

- 22 -

Example of a data dictiocnary from the
ERA Specification

NAME : $piece_position$
SOURCE : crt
COMPOSITION : $piece$”,”$positions

NAME : §store$
SOURCE : crt
COMPCSITION : “store’$name of_games$

NAME : Stime_outs

SOURCE : crt

COMPOSITION : “tooc much time - game over”
NAME : $computer_move_message$

SBOURCE : crt : _
COMPOSITION : “computer”s move is $position$ “tc’ $position$é

(figure 4.a)

- 23 =

Subset and Master Tables

struct s_array /* subset frame table */
{ char skey[MAXKEY];
char sdata[MAXDAT];
} subtab[MAXFRM];

struct m_array /* master frame table */
{ char mkey[MAXKEY];
char mdata[MAXDAT];
} mastab[MAXFRM];

#define MAXKEY 15 /* maximum number of chars in the key */
#define MAXDAT 80 /* maximum number of chars in the data */
#define MAXFRM 100 /* maximum number of entries in a frame */

(figure 4.Db)

- 24 -

Internal Error Table

struct err_array;
{ int serr;

int merr;
} errtab[MAXFRM];

#define MAXFREM 100 /* maximum entries in a frame */

(figure 4.c)

25

THE FOLLOWING SUBSET ELEMENT COULD NOT BE FOUND IN
THE MAJOR DICTIONARY

Input : Spiece positicn$
media:crt
structure : $piece$”, $positiong

(figure 4.4)

AN ERROR HAS OCCURRED ON LINE(S8): M2/82; M4/54; M5/S5; S8

Major Dictionary

M1 Input : $board description$

M2 media : crt

M3 structure : “white”

M4 set of $piece position$
M5 “black”

M6E set of $piece_position$
M7 “end”

Subset Dictionary

81 Input : $board description$

52 media : crd

83 structure : “white”

sS4 set of $pieces$

55 “blk”

56 set of $piece position$
87 ‘end”

g8 “finished~”

(figure 4.e)

- 26 -

CHAPTER 5

CONCLUSIONS AND EXTENSIONS

The Subset Data Dicticnary Verifier design provides a software
toocl to Dbe used to validate a subset data dictionary and a master
data dictionary for consistency between frame entities. The
verification process is keyword criented achieving great
flexibility. This flexibility allows the capability of verifying
the Entity Relationship Attribute specification directly. The
software package has greater flexibility with the input
dicticonaries Dbecause the verification process is not dependent on
any given sequence or order ameng the entities or the frames. The
subset dictionary is verified directly against the master

dictionary.

An extensicn to this design package would be to incorporate
more user interface with the program directly. This system is
currently a batch system; the user executes the program and sees
the errors printed. If the user could interact with the software
directly at a terminal, benefits such as verifying only a

particular portion of the dictionary at a time could be achieved.

Modifying the program to allow the wuser to input a subset
frame for direct verification with an online gata dictionary would
be an additional enhancement to the current system. This benefit
would be extremely helpful for the design and modification phases

when elementary data is being captured to provide a foundation for

- 27 -

the acceptance or rejection of a preoject. Alsc a programmer could
verify a given subset frame in relation to an ohline master
dictionary frame when he 3is in the process of program cocding or

maintenance.

Also, direct feedback from the program to the user could allow
the user the option of selecting the "correct" master frame to
replace the "incorrect" subset frame. This selectioﬁ would
generate a new up-to-date subset data dictionary. This benefit
would minimize the process of creating a subset dictionary by

another mechanism.

The Subset Data Dictionary Verifier has been designed to
provide flexibility to the verification process. Also, the
modularity of the coding has enabled the implementation to Dbe a
smooth transition. The modularity will provide dgreater ease should

any of the above enhancements be applied.

- 28 -

REFERENCES

(1) Graham, Alan K., "Software Design: Breaking the Bottleneck",
IFEFE Spectrum, Vol 19, No 3, Mar 1982, p 43

(2) Edward A. Feigenbaum and Pamela McCorduck, The Fifth
Generation, Reading, Massachusetts:Addison-Wesley Publishing Co.,
1883, p.l11

(3) William Durell, "Disorder +to Discipline Via the Data
Dicticnary", Journal of Systems Management, May 1983, p 12

(4) Myers E. Walsh, Database & Data Communications Systems: A
Guide for Managers, Reston Publishing Ce. Inc., Reston, Virginia,
1983, p. 125

{(5) Elizabeth Unger, Paul Fisher, and Jacob Slonim, "Evolving to
distributed database environments", Computer Communications, Vol.
5, No. 1, Feb 1982, p 17

(6) James Martin, Principles of Data-Base Management, Engléwood
Cliffs, N.J.:Prentice-Hall, Inc, 1976, p 221

(7) William Durell, "Disorder to Distipline Via the Data
Dictionary", Journal of Systems Management, Vol 34, May 1983, p 12

{8) 1Ibid, p.128

(9) Roy Graham, "How to Develop Databases and Data Dictionaries",
Management World, Vol 10, Oct 1981, p. 33

(10) Leo J. Cohen, "Data Dictionary Systems, What Are They?", Data
Base Newsletter, Performance Development Corp, Sept. 1977, pp 2-3

{(11) Wiederhold, Gio, "Knowledge and Database Management", JIEEE
Software, Vol 1. No 1., Jan 1984, p 65

(12) J. Van Duyn, Developing a Data Dictionary System, Englewood
Cliffs, N.J.:Prentice-Hall, Inc., 1982, p 106

- 29 -

Appendix A
Detailed Specifications in BNF Format

General Description

The era specification will consist of a set of frames.
The order of the frame 4is not fixed. Each frame will contain
information about one entity. Each frame will start on a
newline. The first line in the frame will contain the keyword
that describes the type cof the entity and the name of the entity.
The first letter in the type is capitalized. The type and the name
are separated by a colon. At least one blank line will separate
each frame. -

The information in a frame is generally in the - form of
relations between this entity and other entities. Some of the
information is in the form of attributes. An attribute gives
information about this entity without referring to other entities.
The order of these relations/attributes is not fixed.

Each relation/attribute is specified by a keyword that
specifies the relation/attribute and its wvalue. The wvalue 1is
either the name of the entity that has that relation or a text
description of the attribute wvalue. A colon separates the keyword
and 1its wvalue. Each relation/attribute starts on a new line. If
a relation/attribute continues on to another 1line, the
continuation line starts with a blank field feollowed by a colon.
Multiple occurences of a relation/attribute is represented by
multiple occurences of the keyword.

Entity Types

These entity types are not fixed. Additional entity types
may be defined in the future. All entity types will start with a
capital letter.

Activity
Type
Input
Cutput
Periodic function
Input_output
Data
Constant
Comment
* additional entity types may be added at any time

30

Appendix A

Relations/Attributes

keywords
input

output
required mode
necessary_condition
occurence
asserticen
action
comment

media
structure
type

units
subpart_is
subpart_of
uses

* additional entity types may be added at any time

Syntax Description

<era_spec> ::=
<era_title> <era body> <mode_table>

<era_title> ::=
PROCESS : <text>

<era_body> ::=
<frame>] <frame> <era_body>

<frame> ::=
<NL> <NL> <frame header> <frame_body>
| <NL> <NL> Comment : <text lines>

<frame_header> ::=
<i o data header> : <i_o_data name>
| <function_header> : <CAPITAL_WORD>

<i o data header> ::=
Type | Input | Output | Input_output | Data
| Constant | <CAPITAL_WORD>

<function_header> ::=
Activity | Periedic function | <CAPITAL_WORD>

<frame body> ::=
<relation> l <relation> <frame body>

31

Appendix B

<relation> ::=
<NL_B> <relation_type> : <relation value>

<relation type> ::=
keywords | input | cutput | required_mode
necessary condition | occurence | assertion
action | comment | media | structure | type
units | subpart_is | subpart_of | uses | <WORD>

<relation_value> ::i=
<text_lines> | <structure>

<structure> ::=
<struct> | <struct> <NL_B> : <structure>

<struct> ::=
<name> | <text> | <name> <structure> | <text> <structure>

<name> ii=
<mode_name> | <i_o_data name>

<i_o_data_name> ::=
$ <WORD> §

<mode_name> ::=
* <WORD> *

<mede_table> ::=
<NL> <NL> MODE TABLE <mode_list> <inital mode> <transition_body>

<mode_list> ::=
<mode> | <mode> <mode_list>
<NL_B> Mode : <mode_name>

<initial mode> ::=
<NL> <NL_ B> Initial_Mode : <mode_name>

<transition body> ::=
<NL> <NL_ B> Allowed Mode Transitions : <transition_list>

<transition list> ::=
<transition> | <transition> <transition_list>

<transition> ::=
<NL_B> <event> : <mode_name> -> <mode_name>

<event> ::=
<i o data name>

32

Avpendix A

<i_o_data_name> = 7 <text> 7
<function header>

<text_lines> ::=
<text> | <text> <text_cont>

<WORD> [<WORD> <text>

<text_cont> ::=
<NL B> : <text> <NL> : <text> <text cont>

<NL> 7 s

Lexical Scanner Information

Tokéns used in the preoductions above may begin with <char> or
one of the following characters: *$,7:-={} Blanks can delimit
tokens as well.

The following tokens are important above:
<WORD> ::= <char> | <char> <WORD>
<CAPITAL_WORD> ::= <capital letter> <WORD>
<char> ::=

<lower case_char> | <symbol>

<lower case_char> ::=
alb| ...

<sympbol> ::=

There exists a set of "reserved word" tokens which includes:
{xeyboard,crt,internal, secondary_storage,NONE,every,mode}

33.

Appendix B

USER”S MANUAL

This program is a non-interractive program which was written
to be executed in background mode. To invoke the program, enter
the following:

where:

cc sddv
a.out subfilename masterfilename > sub.out 2»errors.out

sddv = program code name

subfilename = subset data dictionary to be used
masterfilename = master data dictionary to be used
sub.out = file tc contain new compared equal file
errors.out = file to contain any error messages

- 34 -

\Dpendix C

*

SOURCE CODE LISTING

#include <stdio.h>
#include <strings.h>

#define
#define
#define
#define

/*

MAXFRM 100 /*
MAXLNE B0 /%
MAXKEY 15 /j*
MAXDAT 80 /*

max
max
max
max

global variables follow

int
int
int
int
int
int
int
int
int
int
int
int
int

err_sub;
sub_sub;
mas_subj;
endall;
error;
sub_stop
mas_stop
max_subj;
max mas;
endit;
line_sub
err code
*masptr;
int *subptr;
int error_ct;

char line[MAXLNE];
char save[MAXLNE];

-~ we

e e

struct m_array
{ char mkey[MAXKEY];
char mdata[MAXDAT]:
} mastab[MAXFRM];

struct s_array
{ char skey[MAXKEY]
char sdata[MAXDAT
1 subtab[MAXFRM];

.

3

].
’

struct err_array
{ int serr;
int merr;

} errtab[MAXFRM];

FILE *insub, *inmas;

entries per frame
characters per line
characters per key
characters in data

*

-35_

*/
%/
Y
¢

Appendix C

T this is the main function for the ki
b Subset Data Dictionary Verifier */
/* X/
main{argc,argv)

int argc;

char *argvl[];

{

endit = 0O;

max sub =

if (argec == 3)

r

else
{ printf("need 2 files for input/subset & master0);
return; }

insub = fopen(*++argv,"r");
inmas = fopen{*++argv,"r");

printf ("begin sddv main0);
cleanout();

loademn();

while (endit == 0)
{

if (sub _sub == 0) break; /* no entries */

if (err_code == Q)
{ cmpar();
if (err_code != 0)
err();
¥

else

{ err();
cleanout();
loadem();

}

printf{"end sddv main0};

}

/* end of the main function code */

¥

_36—

hAppendix C

/* this is the cleanout function. this function will
/* set the subset keyword & data table to null lines
/* as well as the master keyword & data table.

/* this function is called f

Tom main function */

/x
cleanout()

{

int cl_sub;
int subit;

‘for (subit = 0;
subhit <= MAXFRM;
subit++)
for (cl_sub 0;
cl_sub <= MAXKEY;
cl sub ++)
{ mastab[subit].mkey[cl_sub] = ~
subtab[subit].skey[cl sub]

I

|

Y

N
-y ™8
e

for {(subit = 0Q;
subit <= MAXFRM;
subit++)
for (cl_sub = 0;
cl_sub <= MAXDAT;
cl sub++)

{ mastap[subit].mdatalcl_sub] = < “;
subtap[subit].sdata[cl_sub] = 7 7; }
}
& end cleanout function */

- 37 -

Appendix C

/* this is the loadem function. */
/* this function builds the L
/* subset array with the frame to */
/* be verified, and */
/* it also builds the master array */
/* from the matching */
/* frame entity. &'
/* this function is called from */
/* main iy
/* /g
loadem({)
{

int subit;

int maximum;
int next sub;
int chk_strg;

subit = 0
next_sub
chk_strg

Il =

loadsub(};

if (endit != 0)
return;

max sub = sub_sub;

for (sub_sub = 1;
sub sub < max_sub;
sub sub ++)
{ if (subtab[sub_sub].skey[0] == ~ 7)
r
else
{
for (next_sub= sub_sub+l;
next sub < max_sub;
next_sub++)
{ if (subtab[next sub].skey[0] == ~)

-
r

else
{ chk_strg=(strcmp(subtab[sub_sub].skey,
subtab[next sub].skey));

38

Appendix C

if (chk_strg == 0)

{ subtab[next subl.skey[0] = 7 *;
subtab[next_sub].skey[1] = 7 “;
¥

¥
}
3
}
findmas();
if (err_code == 1)
return;
loadmas();
max_mas = mas_sub + 1;
for (mas_sub = 1j
mas_sub < max_mas;
mas_sub ++)
{ if (mastab[mas_sub].mkey[0] == 7)
else
{
for (next sub= mas_sub+l;
next_sub < max_mas;
next_sub++) -
{ if (mastab[next sub].mkey[0] == 7)

r
else)
{ chk _strg=(strcmp(mastab[mas_sub].mkey,
mastab[next_sub].mkey));
if (chk_strg == 0)
{ mastab[next_sub].mkey[0] = 7 ~
mastab[next_sub].mkey[1] = 7 73
}

N~

vt b

}

¥ end of the loadem function x/

/" */

- 39 -

/*

Appendix C

this function loads the subset d&ictionary */
taple with one complete frame. */
Endit becomes "one" when null =/
character is found. */
this function is called by loadem ot
*/
loadsub()
{
sub_sub = 0;
line_sub = 0;
endit = 1;
another:
if ((subptr =fgets(line,MAXLNE,insub)) == NULL)
{ return; }
if (line[0] == “0)
return;
endit = 0;
if (line[line_sub] == ~ 7)
{ subtw3ab[sub_sub].skey[0] = 7 7;
subdata(); }
else
{ subkey();
line_sub++;
subdata()}; }
sub_ sub++;
line_sub = 0;
goto another;
}
end loadsub function rof

- 40 -

Appendix C

/* this function loads the key position of the */

/* frame into the subset table. */
/* this function is called by loadsub */
/* aF
subkey()
{

int key_sub;
key sub = 03
while (line[line sub] != “:7)
{ subtab[sub_sub].skey[key_sub] = line[line sub];

key_sub++;
line sub++; 1}

/* end of subkey function */

- 41 -

Appendix C

/¥ +this function loads the data portion of the */

/* frame into the subset table. */
/* this function is called by loadsub %/
A/ */
subdata()
{

int data_sub;

data sub = 0;
while (line[line_sub] != NULL)
{ subtab[sub_sub].sdata[data_sub] = line[line sub];

data_sub++;
line_sub++; }

£* end of subdata function xS

- 42 -

Appendix C

/* this function tries to find a matching frame con the */
P master dictionary. this function expects the master®*/
/* files needs to be rewound tc begin processing at the*/

/* beginning of the file. x/
/* this function is called by loadem function. */
/* */
findmas()
{

int chk strg;
mas_sub = 0;
line_sub = 0;
err_code = 1;

rewind(inmas);

again:
if ({masptr= fgets(line,MAXLNE,inmas)) == NULL)
return;
if (line[0] == “0)
goto again;
if (line[0] == 7 7}

goto again;

line_sub = 0;
maskev();
line_subt+;
masdata();

chk_strg = (strcmp(mastab[0].mkey,subtab[0].skey));
if (chk_strg == 0)
{ chk_strg = (strcmp(mastab[0].mdata,subtab[0].sdata));
if (chk_strg == 0)
{ err_code = 0;
return; }
else
gocto again; }
else
goto again;

/* end findmas function ®/

Appendix C

/* this function builds the keyword */

/* in the master table. xef

/* this function is called by */

/* findmas & loadmas xy

/* *®
/

maskey ()
{

int key_sub;

for (key_sub = 0;
key sub <= MAXKEY;
key sub++)
mastab[mas_sub].mkey[key sub] = 7 “;

key sub = 0;
while (line[line_sub] != “:7)
{ mastab[mas_sub].mkey[key_sub] = line[line sub];

key sub++;
line sub++; }

/* end maskey function */

44

’/*
/'k
/*
/*

Appendix C

this function loads the data portion
of the master frame
this function is called by

& findmas

data_sub <= MAXDAT;

mastab[mas_sub].mdata[data_sub]

!'= NULL)

{ mastab[mas_sub].mdata[data_sub]

masdata

loadmas
masdatal()
{
int data_ sub;
for (data sub = 0;
data_sub++)
data sub = 0;
while (line[line sub]
data_sub++;
line_sub++; 1}
}
/* end of

function

45

%

line[line_sub];

/'k
/-k
/*

/*

Appendix C

this function loads the frame that was located in
findmas function in the master array.
this function is called by loadem function
loadmas()
{
line_sub = 0;
readm:
if ((masptr = fgets(line,MAXLNE,inmas)) == NULL)
return;
if (linelQ] == 70)
return;
mas_sub++;
if (linel[0Q] == * “)
{ mastab[mas_sub].mkey[0] = 7 7;
masdatal(); }
else
{ maskey();
line sub++;
masdata(); }
line_sub = 0;
goto readm;
%
end loadmas function */

- 46 -

/‘k

Appendix C

this function calls the function

locate the keywords

in the subset and master tables;

calls the function

to

and

that compares the data and prepares

the error table

this function is called by main

cmpar()

while (endall == 0)
{ mas_sub = 07
extract();
match();

:

}

the end of the cmpar function

- 47 -

*f

/-x
/*
/*
/*

Appendix C

this function finds the ne
and master tables.
this function is called by

extract()

{

/*

i

int chk_strg;

while (subtab{sub sub].skey
sub_sub < max_sub)
sub_ sub++;

if (sub_sub >= max_sub)
{ endall = 1;
return; }

keyword:
chk strg =

Xt keyword in the subset

cmpar function

[0] == 7 ~ &&

(stremp(mastab[mas_sub].mkey, subtab[sub_subl.skey));

if (chk_strg != 0)
if (mas_sub < max_mas
{ mas_sub++;
goto keyword;

error = 0;
if (mas_sub >= max_mas)
err_code = 2;

error = 3;
return; }

extract function end

)
}

/* error mismatch found */
/* keyword missing xr

*/-

- 48 -

Appendix C

/* this function compares the data lines in the */
/* subset table with the master table. */
/* this function is called by cmpar function */

match()

{

int ok;

int next sub;
int mas_held;
int mas_err;

if (endall == 1) /* no more keywords, get out*/
return;
if (error == 3) /* keyword missing */

{ errtablerr subl].merr = 7 *;
errtablerr_sub].serr = sub sub;
err sub++;
sub_sub++;
while (subtab[sub_sub].skey[0O] == 7 ~ &&
sub_sub < max_sub)

{ errtablerr_sub].merr
errtablerr sub]l.serr
err_sub++;
sub_sub++; }

return;

nn
n
=}
o
|
0]
e
o

}

range();
mas _hold = mas_subj

loop: ok = 0;

check_next:
while (mas_sub < mas_stop)
{
if (strcmp(subtabl[sub_sub].sdata,
mastab[mas_sub].mdata)
i ok = 2;

mas_err = mas_sub;
mas_sub++;

1l
(@}

}

else
{ ok = 1;

Appendix C

mas_sub = mas_stop; }

}

if (ok == 0) /* no
{ errtablerr_sub].merr
errtablerr_sub].serr
err_subt+;
err _code = 2;

match encountered */

S .
]

sub sub;

if (ok == 2) /* mismatch encountered */
{ errtablerr_sub].merr = mas_err;

errtablerr_sub].serr
err_sub++;
err_code = Z;

}

sub_sub++;
mas_sub = mas_hold;

if (sub_sub < sub_stop)
- goto loop;

P end match function

sub_sub;

*/

- KD -

Appendix C

/¥ this function calculates the end of the */

/* data associated with the keyword. x/

/* this function is called by match functieon */
range()

{

int beging

begin = 1;
sub_stop = sub_sub + 1;
mas_stop = mas_sub + 1;

while (begin == 1)
{
if (subtab[sub_stop].skey[0] == 7 7)
sub_stop++;
else ‘
begin = 0;
}

begin = 1;

while (begin == 1)
i
if (mastab[mas_stop].mkey[0] == 7 7)
mas_stop++;
else
begin = 0;

/* end range function x5/

_51—.

/‘*

Appendix C

this functicon is called when an error has occurred.
it determines which error message function heeds
to be invoked.
this function is called from the main function.
err{)
{
if (err_code == 1)
notfnd();
else
notequal();
err_code = 03
}
end of the err function wg
R

= BT =

Appendix C

/* this is the function to print an error message for */
a subset frame not found in the master frames.
b bset £ t f d in th T f x/
/* the printout contains an error message and the v
/* subset frame in error. #/
/* this function is called by err function x4
/* */
notfnd()
{
int sub;
putchar(-0);
printf("The following subset frame could not ");
printf("be found in the master dictionaryQ);
putchar(-0);
for (sub = 0O;
sub < max_sub;
sub++)
printf ("%s %s",cubtab[subl.skey, subtabl{subl.sdata);
}
/* end of notfnd function */

- 53 =

Appendix C

this is the function to print an error message */

for the subset frame not equal the master frame.*/
the printout has: error message, lines in error, */
the subset frame, and the master frame. x4
this function is called byerr function */

notequal()

{

int line_ct;

int hold error;

int sub;

line ct = 34;

sub = 0; .

hold error = error_ct;

sub = 0;

putchar{-0); '
printf("An error has occurred on line{s): ");:

while (sub < err_sub)

{

if (errtab[subl.serr != 7 “ &&
errtab[sub].merr '= - 7)
printf("s%3d / M%340,errtab[sub]l.serr,errtab[sub].merr);
else

if (errtab[sub]l.serr != < 7 }
printf("8%3d0o,errtan{sub].serr);
else

I
subt+;
i /* end while statement */

printf("10ubset frameQ};

for (sub = 0;
sub < max_sub;
sub ++)
printf("s%34 %s %s",sub,subtab[sub].skey,subtab[sub]l.sdata);

printf("0aster frame0);

for (sub = 0;
sub < max _mas;
sub++)

Appendix C

printf ("M%3d %s %s",sub,mastablsub].mkey,mastablsub].mdata);

}

1F end notequal function 77

- K5 =

Appendix D

Detailed Design Specifications

Hierarchy diagram module name: Verify a Subset Data Dictionary
Executable name: sd4dv
Module name: Main

Input: Subset Data Dictionary
Master Data Dictionary

QOutput: Error Message for less than Z input files
Begin proceseing message
End processing message

Global Variables established: err_ sub, sub sub, mas_sub, endall,
' errcr, sub stop, mas_stop, max_sub,
max mas, endit, line sub, err_code,
error_ct, m_array, s_array,
err_array

Global Variables modified: endit, max sub, max mas, err_ code

This is the main function for the Subset Data Dicticnary
Verifier. This module modifies global variables: endit, max sub,
max mas, and err_code.

The global variables function as follows. Endit is set at end
of file to "other than Zero". Max sub is used to determine maximum
subset entries in the frame that is loaded into the internal table.
Max mas is used to determine maxXimum master entries in the frame
that is loaded into the internal table. And err code is useé@ to
report to the error printing rcutine the error mgssage to be
printed.

The main function calls 4 sub-functions. These are cleanout,
loadem, cmpar, and err.

_56-—

Appendix D

Module name: Cleanout
Input: Master Frame Table
Subset Frame Table

Output: Master Frame Table
Subset Frame Table

Gleobal Variables Accessed: MAXFRM, MAXDAT
Glebal Variables Modified: s_array, m_array

This is the cleancut function that is invoked from the main
function. This function sets the subset frame table and master
frame table keyword and data fields to null. This eliminates the

possibility of garbage from a previcus frame accidentally being
left in either table.

Appendix D

Module name: Loadem

Input: Subset Data Dictionary Table
Master Data Dictionary Table

Output: None

Global Variables Accessed: endit, max sub, sub sub, max_mas,
err_code, s_array, n_array

Global Variables Modified: max sub, sub_sub, max mas, mas_sub

This is the loadem function that is invoked from the main
function. This function calls three sub-functions. They are:
loadsub, findmas, and lecadmas. If no matching master frame is
located by findmas, then an error flag tells this function to
return to the main function without invoking loadmas. Otherwise
all three functions are invoked by loadem and then loadem returns
to the main function.

- 58 -

Appendix D

Module name: Loadsub

Input: Subset Data Dicticnary
Output: None
Global Variables Accessed: endit, sub_sub
Global Variables Modified: endit, sub sub

This functicn is invoked by the function leoadem. This
functions purpose is to load into the subset frame table the next
subset frame found in the subset data dictionary file. If there
are no mere frames in the input file, then this functicon returns to

the calling function, loadem.

This functions calls two functions. The first function is
subkey and the second is subdata.

Mcdule name: Subkey

Input: Subset Data Dictionary
Qutput: Subset Frame Table
Global Variables Accessed: s_array, sub_sub
Global Variables Modified: s_array, sub_sub

This function is invoked by the function loadsub. This
function loads into the keyword field in the subset frame table the
keyword found in the subset data dictionary input file. This
function looks for the colon that separates the keyword and data to

determine it is at the end of the keyword before returning to
functicen loadsub.

_59—

Appendix D

Module name: Subdata
Input: Subset Data Dictionary
Output: Subset Frame Table
Global Variables Accessed: s array, sub sub
Global Variables Modified: s array, sub_sub
This function is invoked from the function lcadsub. This
function loads intoc the data field in the subset frame table the
data found in the subset data dictionary input file. This function

looks for a null character to determine it is at the end of the
data before returning to the function loadsub.

- B0 -

Appendix D

Module name: Findmas

Input: Master Data Dictionary
Cutput: None
Global Variables Accessed: mas_sub, m_array, err_code, line_sub

Global Variables Modified: mas_sub, line_ sub, err code

This functicen is inveked by loadem. This function tries to
find a frame on the master data dicticnary file toc match the frame
previously loaded by lcadsub.

This function calls twe functions. The first function is
maskey and the seccnd function is masdata.

Findmas then performs a string compare through the subset
frame and master frame for an equal condition on the keywords. If
the keywords are found, then a string compare is performed on the
data for that keyword. If an equal condition occurs, the error
code is set to zero; else an error of “1° is returned to the
calling function loadem. The error condition “1° indicates it
cannot find a matching frame cn the master data dictionary input
file.

Findmas returns to function loadem cn two conditions. The
first is the condition of an error present which is denoted by an
error code “1“. The other condition is when a null character is
found which denotes an end of file condition on the master data
dictionary input file. ’

_61-—

Appendix D

Module name: Maskey
Input: Master Data Dictionary
Qutput: Master frame table
Global Variables Accessed: MAXKEY, m_array, line_sub
Global Variables Modified: m array, line_sub

This function is invoked by the functiocns loadmas and findmas.
This functions loads inte the keyword field in the master frame
table the keyword found in the master data dicticnary input file.
This function looks for the colon that separates the keyword and

data to determine it is at the end of the keyword before returning
to the calling function.

Module name: Masdata
Input: Master data dicticnary
Output: Master frame table
Global Variables Accessed: MAXDAT, m_array, line_sub
Global Variables Modified: m_array, line_sub
This function is invoked by the functions lcadmas and findmas.
This function lcads intc the data field in the master frame table
the data found in the master data dictionary input file. This

function looks for a null character to determine it is at the end
of the data before returning to the calling function.

52

Appendix D

Mcdule name: Loadmas

Input: Master Data Dicticnary

Output: Master frame table

Global Variables Accessed: line_sub, m_array

Glcbal Variables Modified: m_array, line_ sub

This function is invoked by the lecadem function. This
function is invoked when a master frame has been located by findmas
that is equal tec the subset frame lcaded in the subset table.

This function calls two functions. The first function is
maskey and the second function is masdata.

This function returns to the lcadem function when a null
character is detected on the master data dictionary input file.

Appendix D

Module name: Cmpar

Input: none

Cutput: none

Global Variables Accessed: endall, sub_sub, mas_sub, err sub

Glopal Variables Mcdified: mas_ sub

This function is invoked by the main function. This function
calls two functions. The first function is extract and the second
function is match. There is a variable named endall that is set to
Zerc. This variable is used by the extract function to tell cmpar
when to return to the main function.

- pd -

Appendix D

Mcdule name: Extract

Input: Subset frame table
Master frame table

Output: Subset frame table
Master frame table

Global Variables Accessed: s_array, m_array, max _sub, sub_sub,
max_mas, mas_sub, err_code, endall

Global Variables Modified: endall, mas_sub, sub_sub, err_code

This function is invoked by the function cmpar. This
functions responsibility is to locate the next keyword in the
subset frame table as well as the matching master frame keyword.

If nc match on the keyword is found, then an error code is returned
to cmpar.

If the subset frame index exceeds the maximum subset index set
as a result eof the loadsulbyr fuhction, then this function returns to
cmpar with the endall wvariable set om.

If the master frame index exceeds the maximum master index set
as a result of the lecadmas function while there is still subset
data left to verify, then an error conditicn is set and this
function returns to the cmpar function.

- g5 -

Appendix D

Module name: Match

Input: Subset frame table
Master frame table

Output: Error table

Global Variables Accessed: endall, err_ array, mas_sub, mas_stop,
err_sub, sub_sub, mas_err, err_code
sub_stop

Glcbal Variables Modified: err_array, err_sub, sub_sub, mas_err, mas_sub,
err_code

This function is invoked by the function cmpar. This function
returns to cmpar when no more keywords are available in the subset
frame table. This function calls one subfunction. That
subfunction is range.

If the extract functien could not find a matching keyword on
the subset frame and master frame, than an error was set by
extract. This error code is passed by cmpar to match and match
puts the errcr informatiocn into an error table and returns to
cmpar.

If there is matching keywords in the subset frame and master
frame then this function does a string compare on the data in the
subset frame table and the master frame table. If the string
compare locates a mismatch in the data portion of the subset frame
and master frame then appropriate error information is set in the
error table by this function.

66

Bppendix D

Module name: Range

Input: Subset frame table
Master frame table

Qutput: Number of data linesg

Global Variables Accessed: s _array, m_array, sub_sub, mas_sub,
sub_stop, mas_stop

Global Variables Modified: sub stop, mas_stop

This function is invoked by match to determine how many data
lines are associated with a keyword within the subset frame table.

- g7 -

Appendix D

Module name: Err

Input: None

Output: None

Global Variable Accessed: err_code

Gleobal Variable Modified: err_code

This function is called by the main function when an error
condition occurs. The function calls one cof two sub—functions.
One sub-function is called notfnd. The other is called notegual.
This function then returns to main with an error flag set to zero
again.

Mcdule name: Notind
Input: Subset frame table

Output: Error Message
Subset frame entry

Gleobal Variables Accessed: max_sub, s_array
Global Variables Modified: None

This function is called by the function err. This function
prints an error message for a subset frame not found in the master
data dictionary input file. This function prints the error messade

"The following subset frame could not be found in the master
dictionary" followed by the subset frame found.

- BB -

Appendix D

Module name: Notequal

Input: Error Table Array
Subset frame table
Master frame table

Qutput: Error Message
Subset frame entry
Master frame entry

Global Variables Accessed: error_ct, err_array, s_array, m_array,
T max_sub, err_sub, max_mas

Global Variables Modified: None

This functicn is called by the function err. This function
prints the error message "An error has occurred on line(s):"
followed by the associated line numbers of the lines found to be in
error. This function then prints an error message "Subset frame"”
followed by the subset frame. This function then prints an error
message "Master frame" followed by the master frame.

69

THE IMPLEMENTATION OF
& SUBSET DATA DICTIONARY VERIFIER

by

JACQUELYN FERN CLINE

B.8., Central State University, Edmond, Oklahoma, 1974

AN ABSTRACT OF A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Abstract

Tnis implementation project 1s a Subset Data Dictionary
Jerifier. It is used to verify & subset data dictionary against a
naster data dictionarv. Both input dicticnaries have been
jeveloped from an Entity Relationship Attribute (ERAZ)
specification. The master dictionary is considered to be complete;
cherefore all information found on the subset dictionary should be

included in the master dicticnary.

Both dicticnaries have entities called frames. Each frame is
jenoted by a keyword and an entity name. The elements within a
‘rame are not order sensitive. Each element is also keyworded, and

zach frame is separated by at least one newline character.

The output may consist of two error conditions. One is a "not
Found” condition; it is encountered if a frame on a subset
jictionary can not be located on a master dicticnary. The second
is an "element mismatch" error; this is encountered when the data
slement keywerd or its data in the subset frame does not agree with

the master dictionary frame.

1430-60Q
€D-53"

