SOWE WORK CYCLE CHARACTERISTICS OF A STHPLE, HICH RATE, FORCED-PACE ASSEMBLY OPERATION
by

SANAT NATWARLAL PARIKH
D. K. E., Noharage Sayagirao Univereity of Baroda Daroda, India, 1955
D. E. E., Kaharaja Sayajirao Univereity of Baroda Baroda, India, 1956

A MASTER's HHESIS

gubmitted in partial fulfillment of the reguirements for the degree

MASTER OF SCIENCE

Department of Industrial Eneineerine

KANSAS STATE UNIVERSITY Nanhattan, Kansas
LD
2668
14
C. 2
Documents.
TABLE OF CONTENTS
INTRODUCTION. 1
EXPERTMETTAL PROCEDURES. 2
General Methoc. 2
Equipmont 2
The Experiment. 7
Seloction of Rates, Cycles, Oporators and Groups. 12
Analytical Technique. 15
ANALYSIS OF DATA. 21
Over-all Analysis. 21
$\overline{\mathrm{X}}$ and R Marts. 21
Analyels of Variance. 26
HIstograms. 32
SUIMAARY OF RRSULTS. 35
ACKVOULEDGHENTS. 46
RESERETVCES. 47
APPENDIX A. 49
The Nature of Employmont as Operators. 50
Complete Setup of tho Equipment. 50
Sumarry of Analysig of Vorlance. 50
APPENDIX B. 54
Computer Program for control Chart Limits. 55

INTRODUCTION

In the course of the last quarter century, many predetermined olemental time systems have been ceveloped, which are designed to take place of the tracitional time study method. As a result of this technique, many authors have written numerous articles recardine the validity as woll as Invalidity of the use of the standard time values for ratine procedures. The main comment acainst these standard time values is that they vary too much and therefore will not provide the sane resulte. So, it has been pointed out In many papers and articles that standard times are not reliable enough for practical purposes.

The supporters of the predetermined motion time techniques frequently desoribe them as an accurate system. They agree there is a slicht variation between work oycles, but they argue that these variations are not large enouch to hinder the establishment of a range of standard times for elemental motions.

Due to this conflict between authors, it was felt that a study of some of the characteristics of a apecifle type of assembly work might prove to be of some value. The type of assembly work chosen was that of a simple, hlch-rate, forcod-pace assembly operation. Moving pletures were taken of this type of operation in order to obtain data to be used in the stuaty.

EXPERTMENTAL PROCEDURES

General Method

The data used in this project were obtalned from a micromotion f1lm. With ingtruction from dopartmont personnel, the writer prepared the equipment required for this experiment and illmed a number of operntors whlle they were assembling sets of specially dealened parts, Fig. 1. This project wan the third phase of a project begun as doctoral research performed at the Univorsity or I111no1s (12).

The films were used to obtain data concerning the leneth of time spent by the operators in performing an aasembly.

Statistical analysis of tho data wes dono as expleined later. From the Indines of this data, and from the eraphical examination, some useful conclusione were formulsted. Details of the equipment used, procedures followed, and othor information is presented in the paces that follow.

Equipment

The data were obtained by using 50 sets of simple brase parts. These parts were in in. thick and $111 / 16$ in. In diameter, F1E. 1. The weleht of an assembly of the three parts was approximately one pound. The f1lm was taken when the operators were preparing the assembly of the three parts and disposing of $1 t$.

Fie. 1. Parts assembly.

A work surface was prepared at ordinary table hoight. Three chutes, each fillod up with one type of the brase parte, eupplied the parts to the work surface. Cycle startine switches, delivery chute, pacinc device, and timer were also located on the woric surface, F1es. 2 and 3.

In order to get a front view and top view simultaneousiy In each frome of film , a mirror was fixed above the work surface. The mirror was fixed in a separate frome and this frame was boited to the main structure. Special provisions were made so that the mixror could be ralsed or lowered as required and the inclination could also be adjusted, if necessary.

The forced-pace mechanism consiated of a box-shaped obstruction, operated by a solenold throuch a lever, Fig. 4. To avold vibration and shock, the complete mechanim was mounted on a separate table which was located below the work surface. only the box-shaped obstruction could come above the work surface.

The timer used to operste the solonold was from the Eacle slenal corporation. It could be set from 0 to 20 seconds at intervals of $1 / 12$ of a second. It was set at different locations for the investigation.

The camera mount was made from steel tubes. The mount provided a means of controling vertical movement, rotating movement, and also for leveline the canera in the horizontal plane, Fle. 5. The comera used for this project was a 16 mm .

Fig. 2. The work place as filmed.

F1g. 3. Over-all view of apparatus. (ourtalns iffted upwards)

Fig. 4. Specially desiened forced pacer. (show in two positions)

P1g. 5. Camera and mount.

Bell and Howell - 70-TinR, operated at 32 frames per second and using a 10 mm . wide angle lens.

A continuous reading microchronometer was placed near the work surface, MEs. 2 and 3. Mins technique proviced a method of determining time while analyzing the film.

The projector used for analyelnc the flim was a Bell and Howell projector with a hand crank, rrame counter, and a $5 / 8 \mathrm{in}$. vide ancle lens.

Two flood lampseach of 375 watts were used to provide eufficient light on the work surface while f1lming. A third lamp of the same type was used on the microchronometer. Temperature, humidity, and barometric pressure were noted for each operator setting as chown in FiE. 6. The chair used by the operator was an ordinary wooden chair without arms, FIes. 2 anci 3.

The Experiment

The data were produced by filming three sets of work cjeles at three rates of production for il different operatore. The rates set as goals wero:

Fate A: 127/2000 minute per assembly
Rate B: $110 / 2000$ minuto per assembly
Rate C : $97 / 2000$ minute per assembly
These times were taken from a phase of the experiment perm formed at the University of Nebrenka during the school year of 1958-59. These were the mean times to prepare one complete assembly at the three different rates.

FIMMING RECORD FORE

Fig. 6. An example of the stendard form used to record filming dsta. (with typlcal auta)

Then, the sum of mean times for the standard motions $7 R$, 8 R , and dellvery (see rable 1) were found from the same data and subtracted from the total time. The remaining time for each rate, known as "paced time", was as follows:

Rate A:	$77 / 2000$ minute
Rate E:	$70 / 2000$ minute
Rate C:	$64 / 2000$ minute

This was the most important part of this experiment. As the neme of this experiment indicates, all operators were forced to Erasp the third brass part to complete the assembly before the "paced time" was over. Mhenever the operator miseed the "paced time", he would not be able to rinish that assembly. A specielly desiened force pacer was introduced in this experiment to prevent the operator from performing anymore woik once the "peced time" elapsed. A complete electrical ofrcuit of the pacer is shown in Fi8. 7. As soon as the operator removed his finger tipe from the two cyole starting switches, the timer atarted automatically. After the "paced time" elapoed, the energized solenoid IIfted the box shaped obstruction into the up position so the thire part could not be gresped by the operator.

This meant that for each rate, the operator was forced to eresp the third part before the respective "paced time" elapsed, otherwise, the third part vas blocked by the pacer. When this happens, the assembly romains incomplete.
Table 1. Standard Notion Pattern

Kotion	R1cht hand	Motion	Left hand
Start	First finger over cycle starting button, 11 cht just out.	start	First fineer over cycle startine button.
1R	Transport Fmpty to end of motion, fincers over part 2.	1L	Transport Empty to end of motion, fineers over part 1.
2 R	Grasn to noint where part lifts clear	2L	Grasp to point where part lifts clear
3R	Transport Loaded until motion stops for assembly	32	Transport Loadod until motion stops for assembly
4R	Assenbly to point where richt hand clears parts.	4 L	Assombly to point where richt hand clears parts
5R	Transport impty to and of motion, fincers over part 3.	51	Hold to contact of parts
6R	Grasn to noint where nart lifts clear		
7R	Transport Loaded until motion stons for assombly		
8R	```Assembly to point where elther hand clears.```	6L	```Assembly to point whoro elther hand clears.```
Del.	Delivery to point where assombly arops below work surface.	Del.	Delivery to point where assombly drops below work surface.

N. C. - Normally closed micro switch
N. O. - Normally open micro switch
M. - Motor to run timer
T. - Timer, Eagle Signal Corm.
type-HG90A6 110 V. 60 cycles
10 amps. max. cycle time 20 sec.
S. - Solenoid for pacing device
C. - Solenoid for breaking circuit

Square D. Company. 110 V. 60 cycles

FiE. 7. Electrical circuit of the pacer.

Three rolls of 100 feet of f1lm were used for each operetor. Esch roll consibted of all three rates, wilch were shot in random order. The order ves determined from a table of randors numbers, except for the flrBt rete of the first roll, which was the slowest rate. For each filming, each operator was given some practice time.

Selection of Rates, Cycles, Operators, and Oroups

Rate Selection. At tire outset of this project, rate C alone was selected for analysis. The followlug wes the reason for selectine rate C :

The data of rate C were more conslstent. The other rates usually did not require as much effort by the operator to maintain the required pace. Rate C, however, was difficult to achieve and required a consistent effort by the operators at all times. While performing rates A and B, some of the oper ators needed to try harder to achieve the rate, whereas, to achleve rate C, an all out effort was required by all operators.

Cycio Selection. All complete cycles of rete c were used for the analyais, except those in which the operator made a sertous positioning error or dropped one of the parts., It was obvious that if these cycles were included in the anelysis, they would injoct emoneoue data into the results.
operator Selection. During the experiment, eleven operators were recrulted and date were collected for all. The data
of operator No. 8 had to be omitted from the study because he delivered the assembled parts alternatively with both hands. Grouping Selection. The data obtained by analyeing rate C cycles were broken into four eroups. The eroups wore chosen according to the leneth of time spent from the beginnine of the assembly to the end of the delivery of the assembled parts. Group I included all cycie times faster than the goal. This eroup had a time value rance from $75 / 2000$ minute to $87 / 2000$ minute or a $13 / 2000$ minute included cycle, F1C. 8. Group II included all cycle times from $88 / 2000$ minute to $100 / 2000$ minute. This meant that this group also had the rance of $13 / 2000$ minute, F1g. 8.

Group III was also chosen with the same time value range. Thus, the values of this group ran from $101 / 2000$ minute to 113/2000 minute, FiE. 8.

Group IV included all cycle time, values ereater than $114 / 2000$. Above this cycle time value, observations were soattered and varied. The number of readings in this eroup was too small to compute a comparable analysis with the rest of the groups. Most of the points of this group were caused by some positionine error by the operators while assembling the parts.

Since these errors were not found in the other groups and since there was insufficient data in this eroup, the fourth eroup was omitted from the analyais.

Anelyt1cal Technique

overall P1lm Analysis. The first otep in tho over-all analysis was to record the total time of all complete cycles of three different rates. As mentioned previousiy, in each roll of Illm , an operator was fllmed at the three different rates and for each rate the data was rocorded on a form as shown in FIE. 9.

A special coding was usod while recording the obserm vations. The scene number was noted in the ordinary way, such as, a coce number, consisting of operator number, roll number, and rate. Location of this particular rate in the roll was desienated by 1,2 , or 3. For example, if 2 was written in the blank, it meant that the location of the rate in this particular roll was in the middle portion of the roll. Simllarly, 1 and 3 were noted for the flrst portion and last portion of the roll, respectively.

In the second and third colum of the form, the roadines of the microchronometer were recorded. Column four was calculated by finding the difference between the and and 3 rd column. The remark column was used to note the type of error comaitted durlne the cycle. If the eycle was acceptable, no coments were noted. $\mathrm{E}-1, \mathrm{E}-2$, etc, were the codes used to indicate the causes to reject the cycle. The last column was for some future investigation. A sumary of these readings,

Scene No. VI 22 C
Location

Sr. No.	1 Unit $=1 / 2000$ N1n.		Remark	Select or Reject	
	Start	End			
1	120	213	93		
2	282	382	100		
3	445	525	80		
4	605	697	92		
5	702	777	-	$E-1$	
6	858	935	77		
7	020	110	-	$E-5$	$E-1$
8	205	285	-		
9	358	433	75		

Good Cycles	Sub Total	F1lm Ave.
6	517	86.17

Fic. 9. An example of the standard form used to record cycle time and film averace with a typical set of values.
the number of eood cycles, the total of all cyole time, and the everace fllm time were noted in tabular form.

Detalled F1lm Analysis. After completinc the ovemall analyele of the film, a detalled film analysis for rate C was periormed. The first stop in this detailed analysis was to break the assembly cycle into the component motions to be studied. The same motions as those used in the previous study (i2) were used in this study. The standard motion pattern used is show in Table 1.

It may be noted from this table that the atarting point of a cycle is indicated by a jlashine light, which vas obtained whon the starting buttons were pushed sirultaneously. The switches and licht are shown in Figs. 2 and 3.

After the atandard motion pattern was identified, all cyoles of rate C were projected on a soreen and the time for each component part wes recorded. An example of the form and a sot of typioal oycle time values is ahown in FIE. 10. The cycle number consisted of soene number and serial number, both as noted in 51g. 9. After recording the time for each component part and checking the total time with the one recorded previously, the eroup number for the cyele was noted.
cycie Percentaco Deta. After recording the time values and component motions for each cycle, the component motions were converted into the percentace of their respective total cyole times. The percentace oycle times were also recorded in the motion pattern time data form, F1g. 10.

MOTION PATTERN TIME DATA

Cycle No. II 09 C-8

	Richt	Hand		Left Hand			
Yotion	Becin	Req' ${ }^{\text {d }}$	Cycle\%	Yotion	Beein	Req'd	Cycle\%
1	360			1	360		
2	369	9	2.47	2	371	11	11.57
3	379	10	10.52	3	380	9	9.47
4	338	9	2.47	4	388	8	8.42
5	407	19	19.99	5	407	19	---
6	411	4	4.21	6	421	14	---
7	414	3	3.16	7	448	27	---
8	421	7	7.36	8	454	6)	
9	4.48	27	28.40	9	455	1)	
10	469	2.1	---	10	469	14	---

Cycle Time 95
Group No. II

Fif. 10. An example of the otandard form usod to record motion time values, cycle time, Group No. and cycle\%. (with typical values).

There were two reaoons for convertine the absolute time values for the component motions into a percentage of the total cycle time;

1. Thls wethod allowed for a comparison, of the percentage values to the absolute values, to be made and thus eave a more complete stucy of the available data.
2. If absolute values would have been used when conslderine a component motion time value which varled between Eroups, it could be ascertained only that the component motion time values did vary betwoen the eroups. By usine per centaces, the variance could be tested first to see whether the percentace between eroups was the same or if they still contalned a significant variance. After performing this test, it could be detemined if a particular component motion time value increased or decreased in proportion to the increase or decrease of the total oyele time for different groups.

After recording all dats in the table, the forms were sortod according to the eroup olasalfication. Then a final summery was prepared for each rate in each group. This was done by rearranging the percentage eycle time of each sheet. This gave the final aumary of all rates separately. Then the time value averace for each operator was calculated for each rate, Fle. 11.
SUITARY OF CYCLE PERCEliTAGE DATA

ARALYSIS OF DATA

Over-all Analysia

The next step after recordine all time values for all retes, was to prepare the sumaries for the three rates. The mumber of good cycles, the total of ell cycle times, and the averge film time from each time data form was tranaferred to the respective summary sheets accorolinc to the rate classification. Then the final averace film averacos wore calculated by aivicinc the total of all cyole timea by the total number of cood cycles. This wss the method used to calculate the three final averace film times.

A table was prepared showing allowable time and actual mean time of tils project for each rate. The percentage ohange (drop or rise) was calculated as ahown in Table 2.
\bar{X} and R Charts

After completing the tables of the sumary of the cycle percentage cata, one of the rirst phases of the analysis wes to determine whether the operators were performing the various motions of the assembly cycie in a similar and homogeneous pattern.

One of the methods of checkine homogeneity recarding the data is by means of constructing \bar{X} and R oharts. A control
Table 2．Summary of the cycle times．

	$\begin{array}{r} 0 \\ 60 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{ccc} 10 & 0 \\ c & 0 \\ c & \ddots \\ 0 & 0 \\ 0 & 0 \\ \infty & 0 \\ 0 \\ 0 \end{array}$	
	$\begin{aligned} & \text { M } \\ & \text { © } \end{aligned}$	\hat{i}	$\stackrel{\mathrm{N}}{\mathrm{U}}$
	$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { M } \\ & \dot{O} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$
	$\begin{aligned} & \text { on } \\ & \text { a } \\ & \text { B } \\ & \text { N } \end{aligned}$		
	4	\oplus	0

chart is a statistical device used principally for the otudy and control of repotitive processes, such as the operation performed in this project.

The component motion percentace of total time as reoorded in Fig. 10 was defined as the x values. Similariy, the Cifference between the largest and mallest X value per operator, which was called the range, R, was calculated. The points plotted on the \bar{X} chart and R chart were the \bar{X} values and R valueb.

According to the standard procedure of the statisticel methods, it was necessery to determine the control 11mits for both types of charts. This complete data was recorded on a control chart data form as shown in FiE. 12. The upper and lower limits for the control charte were set at plus and minus throe standard deviations. This gave 99.7% surety that any point that fell out of control had an aselgnable cause. In this case it could be said that a lack of homogenelty appeared among the operators.

CONTROL CHART DATA
Group III
Time 1R

$$
\begin{gathered}
\overline{\bar{X}}=\frac{\Sigma X}{N}=7.820 \\
\sigma X^{\prime}=\Sigma\left(: 2 / d_{2}\right) / n=1.565 \\
U C L_{X}=\bar{X}+A \sigma X^{\prime} \\
L C L_{X}=\bar{X}-A \sigma X^{\prime}
\end{gathered} \quad \begin{array}{ll}
U C L_{R}=D_{2} \sigma X^{\prime} \\
& \quad L C L_{R}=D_{1} \sigma X^{\prime}
\end{array}
$$

Fie. 12. An example of the standard form used to record the control chart data with a typical set of values.

The method of obtalnine the limita for the control chart 1s used by A. J. Duncan (4) and recorded in the forms as follows:

Row $1: n$, the number of observations per operator.
Row 2: \bar{X}, the averace percentace per operator.
Row 3 : R, the range of X values of operetor.
Row $4: d_{2}$, conatant from Duncan, pace 886.
Row $5: \mathrm{P} / \mathrm{d}_{2}$, calculated.
Row $62 \mathrm{D}_{2}$, constant from Duncan, pace Ba6.
How $7: D_{1}$, constant from Duncan, page 886.
Row 8: $D_{2} \sigma X^{\prime}$, caloulated, vCL for R chart.
Rov $9: D_{1} \sigma X^{\prime}$, calculated, LCL for R ohert.
Row 10: A , constant from Duncan, page 886.
Row 11: A σX^{\prime}, calculated.
TR 12: $\overline{\bar{X}}+A \sigma X^{\prime}$, calculated, UCL for \bar{X} chart.
Row 13: $\overline{\bar{X}}-\mathrm{A} \sigma \mathrm{X}^{\prime}$, calculated, LCL for $\overline{\mathrm{X}}$ ohart.
For completion of the calculation, it was necessary to compute $\overline{\bar{X}}$ and σX^{\prime} for each date form. The procedure for this calculation has been noted on the data form.

Most of this computation seemed to be repetitive and similar in procedure, so, a computer program was written in SOAP and the IBM 650 Computer was used for the calculatione. The complete progran is shown in Appendix B.

It was found from the printed output of the accounting machine (IMM 402) that 31 points fell outside the control limits of \bar{X} chart and R chart. This led to an immediate
question of wether any one operator or any one motion within a. certain group conteined more points out of control than the other operetors or motions. So, to discover an answer to this question, rables 3 and 4 were oonstructed.

Analyais of Variance

One of the most powerrul tools of statistical analysis is the analyais of varlance. Baslcally, it consiste of classifying and cross-clasglifing the deta and testing whether the means of a specifled classification dirfer sieniflcantly.

In this project, it was desired to know whether the percentages of total cycle time for each motion varled sieniflcantly from eroup to erouy and from operator to operator. Thus, this was the two-way classiflcation analysis of variance, for operatora and eroups.

A table was propared for one motion time dats and it was realized that in some of the cells of the table there were no data. This happened because of the different characteristies used to propare the assembly by different operators. So, to analyze the data for the analysis of varlance it was nocessary to divice the data into two parts.

In the first part there were four operators and three Eroups, Fig. 13, while in the second part, there were four oporators and two eroups, F1E. 14.

Table 3. Summary of points outside the control limits from the \bar{X} and R Charts comparine operators acainst croups.

H - is a point that foll above the upper control limit.
L - is a point thet foll below the lower control limit.

Table 4. Summary of points outside the control limits from the \bar{X} and R Charts comparine motions aceinst croups.

ANALYSIS OF VARIANCE
Time 1 ?

Oper.	Grouns			$\overline{\mathrm{X}} 1$
	I	II	III	
2	9.68	9.61	8.95	28.24
4	10.29	8.92	7.62	26.83
8	7.22	7.48	6.57	21.37
9	8.04	8.73	6.87	23.64
$\bar{X} \jmath$.	35.23	34.74	30.11	100.08

(1) $\Sigma\left(\Sigma \bar{x}_{1} .\right)^{2} / 3=2352.87 / 3=344.29$
(2) $\Sigma\left(\Sigma \bar{X}_{\jmath} .\right)^{2} / 4=3554.63 / 4=838.66$
(3) $\Sigma\left(\bar{x}_{1} \jmath\right)^{2}=850.29$
(4) $\left(\Sigma \bar{X}_{1 j}\right)^{2} / 12=10016.01 / 12=834.67$
(5) $(1)-(4)=9.62$
(6) $(2)-(4)=3.99$
(7) $(8)-(5)-(6)=2.01$
(0) $(3)-(4)=15.62$

Source of Variation	Sum of Squares	D.F.	liean Square	Variance Ratio
Operators	9.62	3	3.21	9.44%
Groups	3.99	2	2.00	5.68%
Residuals	2.01	6	0.34	

Fic. 13. An example of the standard Form No. 1 used to record computations of analysis of variance with typical values.

AMALYSIS OF VARIAN:CE
The 1R

Oper.	Groups		$\overline{\mathrm{X}}_{1}$
	II	III	
3	9.30	9.35	18.65
5	7.38	6.50	13.38
7	7.38	7.35	15.23
10	8.33	8.21	16.54
$\overline{\mathrm{X}}_{3}$.	32.39	31.41	64.30

(1) $\quad \Sigma\left(\because \bar{x}_{1} .\right)^{2} / 2=1046.00 / 2=523.00$
(2) $\sum\left(\Sigma \bar{X}_{j}\right)^{2} / 4=2068.34 / 4=517.09$
($\sum \mathrm{L}(\overline{\mathrm{X}} 1 j)^{2}=523.54$
(4) $\quad(:=\overline{\mathrm{X}} 15)^{2} / \varepsilon=4134.49 / 3=516.81$
(5)
$(1)-(4)=6.19$
(G)
$(2)-(4)=0.28$
(7)
$(8)-(5)-(6)=0.26$
(8)
$(3)-(4)=6.73$

Source of Variation	Sum of Squares	D.F.	Mean Square	Variance Ratio
Operators	6.19	3	2.06	22.89%
Groups	0.28	1	0.28	3.11
Residuals	0.26	3	0.09	

FiE. 14. An example of the standard form No. 2 used to record computations of analysis of varlance with typical values.

The method, used to compute the analysie of varlance for these data, was to find the mean aquares for the operators and Eroups, and compare the veriance ratios to the critical $F_{0.05}$ and $F_{0.01}$ values found in the table of "Porcentece point of the F-D1stribution", such as may be found in Duncan (4).

For the first part of the data, the computational procedure was as follows:
(1) A teble of the cycle percentace averacos per operator por eroup was constructed as shown in He. 13.
(2) The $\Sigma \bar{X}_{1}$ and $\Sigma \bar{X}_{g}$ were computed for the rows and coluans reapectively.
(3) Complete computation of the aum of equares was done as shown in the eight steps in the form, Fig. 13.
(4) The next step was to detemine the degreen of freedom.
(a) For the operator, the number of degrees of freedom was one lebs than the number of rowe or three dogrees of ireedom.
(b) Eim12ariy for eroups, the number of degrees of freedom was two.
(c) The residual doerees of freedom was equal to the operator's degrees of froedom, times the Eroup's degrees of freedom, or alx degrees of freedom.
(5) The mean squares were computed by dividing the sum of squares by the respective degrees of freedom.
(6) The mean squares of the operatore and the eroups were diviced by the mean squares of residuals and these two ratios, znown as variance ratios, were tabulated in the last column of Fic. 13.
(7) The oritical variance ratio, F, was detarmined for the operators for $n_{1}=3$ desrees of freedom, $n_{2}=6$ decrees of freedom at the 5\% and $1, \%$ level of Bigniricance. It was aiso deternined for the eroups at 2 and 6 decrees of freedom at both Bignirleanoe levels,
(8) The last sten was the conparison. The varlance ratios found in stop 5 were compared, for hotil operators and eroups, with the ortical variance ration derived in step 7 at both the 5% and 1% levels of sienificance. If the varlanes ration were lareer than the oritionl variance ratio values, the source of varlations (θ ither operstors or groups) were sieniflcant sources of variation at the level of sienificance tested. variance ration that are sienificant at the 0.05 levol are starred. Those sienlrleant at the 0.01 level are double starrea.

A sumary of the onalysis of variance for all twelve motions is shown in Tables 5 and 6.

Histograms
For the eraphical analysis two histograms were constructed. The main purpose of these two histoerams was to compare

Table 5. The summary of analysis of variance accordine to the types of motions for Form No. 1.

Notion	Comparison of	Sicnificant Voriance ?		Motion Type
		5\%	1\%	
1 R	Operators	Yes	NO	Reach
	Groups	Yes	No	
2 R	Operators	Yes	Yes	Grasp
	Groups	Ho	No	
3R	Operators	$\therefore 0$	No	Return
	Groups	$\therefore 0$	No	
4R	Operators	No	No	Assembly
	Groups	1%	ilo	
5R	Operators	Yes	No	Reach
	Groups	Yes	No	
$6 R$	Operators	No	No	Grasp
	Grouns	No	No.	
7 R	Operators	No	No	Return
	Groups	3o	No	
8R	Operators	1io	No	Assembly
	Groups	Yes	Yes	
1L	Operators	Yes	Yes	Reach
	Groups	N:O	No	
2 L	Operators	Yes	Yes	Grasp
	Groups	No	No	
32	Operators	Yés	No.	Return
	Groups	No	No	
Del.	Operators	Yes	Yes	Delivery
	Groups	Yes	Yes	

Table 6. The summary of analysis of variance accordine to the types of motions for Form 1io. 2.

Motion	$\underset{\text { of }}{\text { Comparison }}$	Sienificant Variance ?		$\begin{aligned} & \text { Yotion } \\ & \text { Typo } \end{aligned}$
		5\%	1\%	
1R	Operators Groups	$\begin{aligned} & \text { Yes } \\ & 110 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Reach
2 R	Operators Groups	$\begin{aligned} & 110 \\ & 1: 0 \end{aligned}$	No No	Grasp
3R	operators Groups	$\begin{array}{\|l\|l} \text { No } \\ \text { No } \end{array}$	No	Return
4R	overators Groups	$\begin{aligned} & \text { Yes } \\ & \text { Yos } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Assembly
5R	Operators Groups	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Reach
6R	Operatore Groups	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Grasp
7R	Operators Groups	$\left\lvert\, \begin{aligned} & \text { 1io } \\ & \text { No } \end{aligned}\right.$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Return
8R	operators Grouns	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Assombly
12	Onerators Groups	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Reach
2 L	Operators Groups	$\begin{aligned} & \text { Yes } \\ & \text { :io } \end{aligned}$	$\begin{aligned} & \text { I: } \\ & \text { I:o } \end{aligned}$	Grasp
32	Operators Groups	$\begin{aligned} & \text { yo } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { i:o } \end{aligned}$	Return
Del.	Operators Groups	$\left\lvert\, \begin{aligned} & 100 \\ & 100 \end{aligned}\right.$	$\begin{aligned} & \text { 1.0 } \\ & \text { 110 } \end{aligned}$	Delivery

graphically the anount of time needed, and the percentage of total cycle time needed to complete a component of motion for the three eroups. The hiotocrans constructed appeer in Figs. 15 and 16. These two histograns peraltted a complete comparieon of increases and decreases in time from eroup to eroup for all component motions to be mado.

As the percentagen of total cycle time vere plotted for both hande on the same histogram, the sumasation of the withineroup percentage did not total 100%. The same thins was true for the motion time histogram. If motions $1 R$ throuch "delivery" were plotted, they would total 100\%. S1milarly, if all loft hand motions were plotted, they would also total 100%

SUMMARY OF RESULTS

An examination of Table 2 provides some intereating aspects of the charncteristies of the work eyoles at different rates. It could be pointed out from Table 2 that in the slower rates, the mean of total cycle time dropped considerably, wh1e the cycle time for rate C remaina constant.

This indicates thet at the slower rates, A and B, even thouch the operator had more time to complete the assembly he tried to work faster because of the forced-pece device. Once the operator had startad in such an environment, he could not adjust his speed in the last few operations where there were no restrictions.

Fie. 15. Histogram: Group comparison of time percentage per motion.

This may be a paycholocical effect or human nature that if the operator starts any operation, like an assembly fob of this projeot at a hich rate, he cannot slow com speed for some operations and again return to the orieinal speed. In other worde, it cen be said that it is very dieflcult to perform some motions within the cycle at high rate and some motions at slow rate.

Out of the 504 pointe calculated for the control charta, 31 points fell outside the control limits. In other words, 6.15, of the total points were out of control. Out of these 31 points, 27 were \bar{X} chart points, mile the remainine 4 were range chart points. The analysin of the data leacs to the following remarics.

The percentace of total cycle time values of the operatore definitely lacked in homogenelty between one another beoause too many points fell outelde the control limits of \bar{X} charts. If the operators had been performing the asseably in a homogeneous manner, all points would have fallen within the control limits of $\overline{\mathrm{X}}$ charts.

Even though there were 27 points out of control on \bar{x} charts, there were only 4 points out of control on R charts and all of these points were above the upper control 11 imit. Since there were 4 pointe out of control, it is obvious that there vas variability, but as the number of points out of control on the R charts was few in comparison with the \vec{X} charts,
this provides a point that probably should be investigated further in a later study.

Iven thouch a ereat deal of variation was present between operators, the time valuos of any particular motion of any operator vere not found to be blg or mall with any regularity. In other words, it 1 s safe to conclude that in any forced pace operation there the operators alweys need to try harder to achleve the rate, the time value of any motion would soldom be too ble or small, even though varlablilty vas present.

As mentioned previously, Tables 3 sind 4 wer constructec In an attempt to check whether any one operator or any one motion within a eroup contained more points out of control than the other operators or motions.

Table 3 comparing operators against eroups, shows a falryy even range of values of asta that was analynod. However, operator No. 2 had more pointe out of control than the trend of the otinerb. For operator No. 2, all points of the $\overline{\mathrm{X}}$ chart which were out of control fell above the upper control 11m1t. For the other operators there was no speciric trend. It eppears that each operator attalnod a cortaln level at which he was groducine h1s percentege of total eycle time values and, in eeneral, this lovel was different from the other operetors.

Table 4, comparing motions against the groups, Bhowed two motions with more points out of control than any other motions.

The motions out of control vere 2 R and 2 L . This wds an interesting point as both these motions were erasps that wore performed simultaneously by the richt and left hands. An explanation for this micht be that the part being eresped was not picked up securely and the operator may have temporarily losi control of the part. Consequentiy, the operator had to reerrasp it which caused a ereat deal of varlability. These slips could happen because the tro pieces vere being ploked up simultaneously by both hands. It was observed that while picking up two pieces, the operators looked directiy at one plece even thouph both pleces wore being ploked up together. This often lec to poor eresping of the plece which was not viewed. The explanation was backed by the fact that motion $6 R$, which is also a erasp by the rieht hand while the left hand aimply holds the e1rest two assembled perts, did not contain any points out of control.

Notions $1 R$ and it also conteined a larce number of points Which were out of contrcl. The reacon for this could be because of the different reaction time of the operators. In thia motion, the operator had to preas the two switches simultaneously and then start the ojcle, so efter pressine the switches, some of the operators were slightly alover to stert the cyclo which caused this variability.

Thile alsposing of the complete assembly, some operators usec a slichtly dirferent way wioh caused some of those points to fall outalde the control IImits.

Even thouch motions $4 R$ and $8 R$ were the assembly operations, they did not contain a significant number of points out of control. This was an interestine point, that these motions which were variable between eroups and operators, were not variable within a group of given motions.
rables 5 and 6 were condensed and tabulated, es shown in Table 7 and 8 , accordine to the types of motions. The main purpose of condensing the aummary was to check the characteristics of similar motions within the oycle.

A study of the four tables points out some specific trende followed during the motions. The percentage of the total cycle time spent on the reach motions from the different Tables 5 throuch 8 , seemed to be a alenirioant source of variation for the operators at the 5% level, but at 1%, there was no sieniricant variation. There was a split in the significance at the 5\% level and no elenificance at the 1% level for group to eroup comparison. This indicates that ovon thouch there was alenificant variance between the percentace values of the operators, there was very little variability between the percentace values of the operators.
similariy, the percentages of the total cycle time spent on all other motions were etudied. It was found that each motion had signspicant variance at the 5% level and ilttle variabillty at the $1 / 8$ level for the operator to operator comparison.

Table 7. A condensation of the summary of the analysis of variance accordine to the types of motions in Form No. 1.

Notion Type	Vumber of Rotion Types	$\begin{gathered} \text { Comparison } \\ \text { of } \end{gathered}$	Sienificant Variance ?	
			5\%	1\%
Reach	3	Operators Groups	Yes Split	Split I:
Return	3	Operators Groups	Split No	No No
Grasn	3	Operators Grouns	Epl1t No	Split 1:O
Assembly	2	Operators Groups	No Split	No Split
Delivery	1	Operators Groups	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$

Table 8 . A condensation of the sumary of the analysis of variance according to the types of motion in Form lio. 2.

\because otion Type	Number of Motion Types	$\begin{gathered} \text { Comparison } \\ \text { of } \end{gathered}$	Sienificant Variance?	
			5\%	1%
Reach	3	Operators Groups	Yes Split	Split 1.0
Return	3	Operators Grouns	No Split	iio No
Grasp	3	Operators Groups	Spl1t No	No No
Assembly	2	Operatora Groups	Yes Yes	Spl1t No
Delivery	1	Operators Groups	Ho No	No No

The amount of cycle time apent on the graep showed no olenifleant variance at elther the 5% or the 1% levels for the Eroup to eroup comparison. All other motions shoved a split In the sienificant variance at the 5% and very ilttle variabil1ty at 1% for the Eroup to eroup comparison.

In other words, it could be asid that the variabllity was present, randomly scattered, in all the motions of this assembly operation.

Some interesting relations were noted from Fig. 15, the "Group Comparison of Total Cycle Time per Motion" and Fie. 16, the "Group Comparison of TIme Percentace per Motion".

It was a noticesble point that the sssembly motions, $4 R$ and $8 R$, took the ereatest peroentage of total cycle time and showed the greatest over-all chance from Group 1 to Group 3. Even thouch the motion $4 R$ was most variable from eroup to group, it was the most consistant with respect to its change from one eroup to another. The same was true for the leas complex assembly motion 8R. It was clear from the histograms that nearly $a 11$ of the incroase in the total cycle time from Group 1 to Group 3 was because of these sssembly operations.

When comparing the romaining motions, they showed nearly the same relative chance from one eroup to another. However, the chances did not increase in proportion to the analysis of varlence. These changes varied randomiy from one eroup to the next. So, even though the change in percentage of total cyele
time taken by the motion was nearly the same when comparing the motions, it was atill variable in ite relative chance when compared to the total cyele time chance between groups.

ACKNOWLEDCSEENTS

The writer gratefully acknowledges the invaluable assistance rendered by the faculty and staff members in the Department of Industrial Encineorine. In particular, the writer wishes to express his sincere eratitude to Dr. Irvin L. Reis, Head of the Department of Industrial Encineering, for sucesstions and encouragement during the formulation and initial phases of the thesis. Further erratitude is due Professor Morris h. Schnelder for the valuable counsel offered in the construction of the thesis. While they remain anonymous, the stucents and the shop personnel who gave their time to serve as operators, ceserve a apecial thanks.

REFETENCES

1. Bailey, G. B. and B. Presgrave Bacie Motion T1me Study. Now York: MeGraw H121 Boolz CO. 1958.
2. Barmes, R. N. Yotion and Time Btudy. Fourth Ed., New Yorks John W11ey and Sons, 1958.
3. Burfa, E. S. "Pacinc Effects in Production Innes", Journal of Industrial Encineering, Vol. 12, No. 6. Hovember and December, 1961, pp. 383-386.
4. Duncan, A. J. quaility Control and Industrial Statistics, Rev. Ed. Homewood, Illino1s: Richerd Imwin, 1959.
5. Krick, E. V. "Hyperenthusiastic and Hyporceritical Writines on Fredetermined Motion Times", Journal of Incustrial pneineering, Vol. 9, No. 3. Kay and June, 1953. pp. 158-161.
6. Maynard, H. B.
($\mathbb{E d}$) , Industrial Meineorine Handbook, First Ed., New York: NeGraw H112 Book co., 1956.
7. MOYYOw, R. L. Motion Economy and Vork reaeurement, Second Ed., New York: The Ronald sreas Co., 1957.
8. Noyer, J. W.

A Study of the Variability of Work Crelee in a Simple, H2लh-IRto, Rachino-Paced Aspembly Opergtion, Unpublished M. S. Thesis, University of Nobreska, Lincoin, Nebraska, January 1960.
9. Nuncel, H . E . Notion and Time Study, Third EA., New York: PrenticeHe11, 1960.
10. NLebel, B. W. Motion and gime Study, Rev. Ed., Homewood, Il11nols: R2chard Imin, 1953.

REFSRENCAS (concl.)

11. Presgrave, R.

The Dynamics of Time study, second Ed., New York: MeGraw H111 इook Co., 1945.
12. Reis, I. L.

An Investication of the Means by Mhloh a Worker Achleves a Chance in production Pete in simple, operator-ruced Assembly Vori, Unpublished Ph.D. Diasartation, University of ILlinois, Urbana, I2linois, Naroh, 1957.
13. Snedecor, G. W. Statistical Methods, MIfth $\mathbb{E C}$. . The Iowa state college press, Ames, Iowa. 1259.

APPENDIX A

The Nature of mployment as Operators

Eleven operators were employed for this project from the starf members, students, and workehop personnel. The time schodules were fixed at their convenience. Each operator was called four times, ilirst time for dexterity test and remaining three times for filming. Duah time it took nearly thirty minutes to finiah the operation.

On the first call, a peg board test was given to oach operator as a dexterlty test, and then some practice on the work surface to give some idea what they were aupposed to do.

Each time while filming an operator, 100 feet of film was used. The operator filled out a Personal conditions Form as shown in Fig. 17. The purpose of this fom was to check the general conditions of the operator while he was operating.

Complete Setup of the Equipment

The worit surface was fixed to the floor by bolts after leveling. The cemera mount was also fixed in the position as shom in the schematic diagram, Flg. 18.

Sumary of Analysis of Vardance

While dolng calculations for analyals of variance, the aata were divided into two parts as discussed in the thesis, and the separate sumarles are presented in rables 5 and 6. An attempt

PERSOHAL CONDITYONS FOR

Date \qquad
Hour \qquad
Personnel Code
Approximate hourg of sloep last nicht \qquad
Have you any unuaual personal worrles at the moment? Yes \qquad No \qquad Cheok any of the followine whioh may apply to you at this time

\qquad
\qquad
\qquad Sleepy

Have Indicestion
Have a cold
Phyoionily tired
Fental1y Fatigued
Headache
Stuffy (too muah sood)
\qquad Nervous.
Other a.12ments (specify) \qquad
\qquad
\qquad

Note: All information on thie questionnalre will bo held strictiy confldential and will be avallable in coded form only.

FIg. 17. Perbonal conditions form.
wes made to combine these summaries into one table and condensed sumarles into another table to see whether some apecial hareo teristics was present. The combined sumaries did not give any better result, so, it is not included in the thesis.

APPENDIX B

Computer Proeram for Control Chart Limits

This program calculated the upper and lower limits of $\overline{\mathrm{X}}$ and R charts. The Input and Output for this program were in the form of floating point numbers. For this program the IEN 650 computer and BOAP lancuace were used. The input to the program consisted of the following seven words:

| Word 1 | 1 to 10 | \bar{X} | |
| :--- | :--- | :--- | :--- | :--- |
| Word | 2 | 11 to 20 | $\frac{X}{X}$ |
| Word | 3 | 21 to 30 | σX |
| Word | 4 | 31 to 40 | R |
| Nord | 5 | 41 to 50 | D_{2} |
| Word | 6 | 51 to 60 | D_{2} |
| Word 7 | 61 to 70 | A^{1} | |

since one data card eave rull data to calculate the roquired imite for \bar{X} and R charts for one motion, it was not neceasary to atore any data. Each card was read and the anaver was punched out before the noxt card was read in.

The program was as followe:
CALCULATE CONTROL LIMITS 1

	REG	20027	0036	PUITCh AREA
	Ras	81951	1960	read area
START	RCD	1951		READ CARD
	LDD	R000 1		TRANSFER
	STD	P0002		X bar
	LLD	80004		TRANSFER
	STD	P0005		R
	RAU	R0007		Bra ${ }^{\text {a }}$

FMP	80003	A SIGMA XP
STU	70007	SIOA
FAD	R0002	UCL X
STU	P0001	STOR VCL X
RAU	R0002	$\times 2 \mathrm{BAR}$
PSB	180007	LCL X
STU	P0003	STOR LCL X
RAU	R0005	D2
ERP	80003	UCL R
STU	P0004	STOR UCL R
PAU	R0006	D 1
PMP	R0003	LCL R
STU	P0006	STOR LCL R
PGH	90001	PUNCH CARD

Output vas also in floating point and consisted as follows:
Word 1 ito 10 Üpper Limit for $\overline{\mathrm{X}}$ Chart. Hord 2 il to 20 X Word 31 to 30 Lower Limit for $\overline{\mathrm{X}}$ Chart. Word 4 Word 5 Word 6 31 to 40 Upper Limit for R Chart. 41 to 50 R. 51 to 60 Lower IImit for R Chart.

In the IBM 533, the Generel Purpose 80-80 Input-Output board was used. After gettine the output rrom In 533, some changes were made before printing the reaults on the accounting machine. The firnt three worde of the ansver cards were trangremed to other blank cards in the firat thirty apaces. Then, a special code word wes punched on each card to identify the motion. It was coded as followe:

Digite 31-32 indicates the operator number.
Dielts 33-34 indicates the motion number.
D1E1t 35 1ndicates the Group number.
Digit 36 inalcates the type of chart
(1 1ndicates $\overline{\mathrm{X}}$ chart)
(2 1ndicates R chart)
Example: Suppose the code number is 110231
This means that these are the limits of the eleventh operator second motion in the third group for the $\overline{\mathrm{X}}$ chart.

In the same way the remaining three words for the R chart were also transferred to blank cards in the first thirty spaces and the code words were punched.

The last operation after printine the answers was to check the points which were out of control. All points which were out of control were marked.

All the answers for the control limits are printed and show on the following paces.

877119605176200000517028804051010111 *964239205196800000516157608051020111 * 100337265210290000525766274051040111 881043005173200000516989570051060111

857847205160100000515301528051010211 * 102169445211630000523663056051020211 104529325210290000522927068051040211 865226005184700000515227740051060211

14399046521330000052 1589809252120000005 ? 16571451521213000052 $1446655552 \quad 1263000052$

1140095452010311 9901908051020311 9228549051040311 1133344552060311 242831505223240000521947685052010411 2668630052 1976000052 1707370052020411 2776577552 1695000052 1599422552040411 243913755222430000521936862552060411

707107805153000000514848922051010511 818215605154300000513737844051020511 868124305173200000513238757051040511 712111505164900000514798885051060511

416580805134500000512974192051010611 $476161605134800000512378384051 \quad 020611$ 50292480513640000051 2110752051 040611 419264005138400000512947360051060611

102250985296600000518054902051010711 113101965277600000516969804051020711 117976135290800000516482387051040711 102739655283700000518006035051060711

229769705220260000521770303052010811 256139405220540000521506606052020811 267984455 2 2298000052 1388155552 040811 230957255220590000521758427552060811

107875865210070000529192414051010911 * 115851725212000000528394828051020911 $11 y 434415210290000528036559051040911$ 108235055295200000519156495051060911
$85037500515340000051 \quad 5256250051011011$ * 101275005211620000523632500051021011 108568755210330000522903125051041011 857687505170400000515183125051061011

133304325211530000529949568051011111 $1502086452968000005188259136051 \quad 021111$ 157801925212100000527499808051041111 13406560521187000052.9873440051061111

130024485211110000528277552051011211 153648965210460000525915104051021211 164260885273200000514853912051041211 131088405298200000518171160051061211

562555205126900000519295440050010112 $43841480512230000051 \quad 20112$

37081160515800000050 40112 556720405143400000518168720050060112

105800645240600000511748208051010212 82453360514810000051 20212 69739120515800000050 40212 10470328529410000051 1536304051060212 96797520514040000051 1599444051010312 75436980515700000051 20312 63804660517400000050 40312 957935405152700000511405572051060312

155178005286800000512564100051010412 1209345052210000005120412 1022865052139000005140412 153568505210490000522253300051060412

717453605131900000511185492051010512 55913140511230000051 20512 47291380512870000051 40512

710012205127900000511041796051060512
$3847296051 \quad 12000000516357120050 \quad 010612$ $2998304051 \quad 2250000051$ 25359680512200000050 20612 40612 380739205127200000515586560050060612

700677605151200000511157772051010712 5460574051252000005120712 4618558051660000005040712 693410205143400000511017436051060712

170276405256400000512813580051010812 1327011052375000005120812

11223870523450000051 40812 168510305 2 164200005 ? 247254005106081 ? 515023205111600000518510040050010912 40137180513330000051 20912 33948060515800000050 40912 509681405126800000517478520050060912 104850005288600000511732500051011012 81712500512700000050 69112500511840000051 2101 ?

41012 103762505294900000511522500051061012

1091558452	5110000051	1803648051	011112
8506816051	4740000051		21112
7195072051	1690000051		41112
1080236852	6150000051	1585024051	061112

152549765210080000522520672051011212
$11888624523590000051 \quad 21212$
$1005540852 \quad 287000005141212$
150967525210000000522215136051061212
$914700005175400000517253000051 \quad 010121$
*909870305196100000517301297051 020121 $936007505193000000517039925051 \quad 030121$ 902010205189200000517379898051040121 920476705173800000517195233051050121

* 936007505160100000517039925051060121 947087405178800000516929126051070121 $909870305174800000517301297051 \quad 090121$ 914700005187300000517253000051100121 984020405183300000516559796051110121

864100005156700000514539000051010221 $853639905182700000514643601051 \quad 020221$
*9102475051 39400000514077525051 030221

* 836616605189500000514813834051040221 876611105145400000514413889051050221 $910247505181900000514077525051 \quad 060221$ 934244205191000000513837558051070221 853639905162400000514643601051090221
\# $864100005130700000514539000051 \quad 100221$ 101423325293300000513037668051110221

14609000521213000052 14491751521232000052 15126275521456000052 14300934521163000052 14749239521233000052 15126275521130000052 15395258521038000052 14491751521180000052 14609000521432000052 16291868521200000052

1001100052010321 1012824952020321 9493725051030321 1031906652040321 9870761051050321 9493725051060321 9224742051070321 1012824952090321 1001100052100321 8328132051110321

1689500052010421 1708701552020421 1604787552030421 1739951052040421 1666533552050421 1604787552060421 1560737052070421 1708701552090421 1689500052100421 1413902052110421
$7812000051 \quad 56600000513488000051010521$ 770173805151700000513598262051020521 829845005148500000513001550051030521 752229205158200000513777708051040521 794388205147700000513356118051050521 829845005149300000513001550051060521 855140405164300000512748596051070521 770173805159400000513598262051090521 $781200005167300000513488000051 \quad 100521$ 939458405163300000511905416051110521

391200005133000000512748000051010621 388231805128600000512777682051020621 404295005129300000512617050051030621 383401205133900000512825988051040621 394750205133800000512712498051050621 $40429500513270000051 \quad 2617050051 \quad 060621$ 411104405139400000512548956051070621 3.88231805131800000512777682051090621 391200005136600000512748000051100621 433802405140000000512321976051110621

118670005294300000517953000051010721 117671935297800000518052807051020721 123073255210680000527512675051030721 116047625210620000528215238051040721 119863775283000000517833623051050721 123073255279600000517512675051060721 125362945211620000527283706051070721 117671935291200000518052807051090721 * 118670005212020000527953000051100721 132995245290000000516520476051110721

26160000522090000052 25422850522033000052 27206250522068000052 25536900522257000052 2644365052338800005 2 27206250522546000052 27750300522051000052 25922850522214000052 26160000521873000052 2956380052 1833000052

1686000052
010821 1709715052020821 1581375052030821 1748310052040821 1657635052050821 1581375052060821 1526970052070821 1709715052090821 1686000052100821 1345620052

110821

* 104540005210500000528126000051010921 $103946365210250000528185364051 \quad 020921$ 107159005296700000517864100051030921 102980245292700000518281976051040921
* 105250045280300000518054996051050921 107159005289300000517864100051060921 108520885287200000517727912051070921
* 103946365281000000518185364051090921 104540005298000000518126000051100921 113060485293300000517273952051110921
\#92060000514940000051 5334000051 011021
*910726405198500000515432736051 021021
*8946576051 1020000052 5593424051 031021 964160005186300000514898400051041021 $93240960515570000051 \quad 5215904051051021$ 964160005167700000514898400051061021 986811205178700000514671888051071021 $910726405164600000515432736051 \quad 091021$ *9206000051 4260000051 5334000051 101021 106231525276700000513916848051111021

121070005299000000518973000051011121 120270835210120000529052917051021121 124595755295100000518620425051031121 118970225210010000529182978051041121 122025875210750000528877413051051121 124595755298100000518620425051061121 126429145210780000528437086051071121 12027083521097000052 y052917051 091121 121070005212070000528973000051101121 132540445212670000527825956051111121

145430005211900000529077000051011221 144036175210550000529216383051021221 151579255213640000528462075051031221 *14176778527640000051 9443222051 041221 147097135214290000528910287051051221 *151579255274700000518462075051 061221 154776865211610000528142314051071221 14403617521394000052 y216383051 091221 145430005214050000529077000051101221 *16543556521733000052 7076444051111221

Abstract

510811805112800000515170620050010122 51791430513150000051650589005002012 2 4808866051262000005130122 529562405119200000518750280050040122 50257290512120000051366489005005012 2 $480886605134 \% 000005160122$ $46573460513160000051 \quad 70122$ $517914305129700000516505890050 \quad 090122$ 510811805140900000515170620050100122 41270260511000000051110122

110630945246600000511119846051010222 112169195 ? $92600000511409037051 \quad 02022$ 2 1041497852384000005130222 114691925253200000511895124051040222 $108846575230600000517937370050 \quad 05022$ 2 1041497852432000005160222 1008681852464000005170222 112169195261600000511409037051090222 110630945220600000511119846051100222

* 89382580519000000051 110222

124008065244400000511255254051010322 *125732315213550000521579413051020322 11674322525780000051 30322 128560085264700000512124276051040322 122007935291900000518897130050050322 11674322526660000051 60322

11306482523490000051 70322

12573231525570000051
1579413051090322 12400806525610000051 1255254051100322 10019042523000000051 110322

2030841052 2059078552 1911867052 2105388052 $19 y 808555$? 1911867052 1394000052 4160000051 1163000052 1402000052 6000000051

2055690051010422 2586555051020422 30422 3478860051040422 1457055051050422 60422 70422

2586555051090422 2055690051100422 110422

116618285243000000511180452051010522 118239785229900000511485294051020522 10978636521560000051 30522

12089904523740000051
1997688051040522 114737345218200000518366940050050522 10978636523490000051 60522

10632716521360000051 70522 118239785238800000511485294051090522 116618285230400000511180452051100522 94219960513000000051 110522

31393080511150000051
177720050010622
31829580512190000051
3998340050020622
29553960512040000051 30622

32545440512190000051
30886740512400000051
29553960512170000051
5377680050040622
2252340050050622 60622

28622760511090000051
318295805111200000513998340050090622 313930805121200000513177720050100622 2536356051

110622

$105560585 月$	7350000051	1068522051	010722
1070283352	9160000051	1344459051	020722
9937646051	6470000051		30722
1094354452	6730000051	1808268051	040722
1038579952	3230000051	7573590050	050722
9937646051	5190000051		60722
9624526051	2620000051		70722
1070283352	5210000051	1344459051	090722
1055605852	5100000051	1068522051	100722
8528606051	3000000051		110722

250821005222720000522538900051010822 254308505213980000523194550051020822 23612700521300000052 260028005211380000524296600051040822 246775505216830000521799550051050822 23612700521888000052 22868700524260000051 254308505 2 7990000051 25082100529330000051 20264700528000000051

30822 60822

70822
3194550051090822 2538900051100822

110822

62786160515550000051 $636591605134900000517996680050 \quad 020922$ 59107920511750000051 65090880512360000051 $6177348051 \quad 1750000051$ 59107920515160000051 57245520512410000051 63659160513150000051 62786160512180000051 50727120513000000051 6355440050 100922 110922

104427845271000000511057056051011022 $10587984527420000051 \quad 1330032051021022$ 108261125210690000521788864051 031022 98310080514110000051 41022 $102743525232800000517492320050 \quad 051022$ 98310080517110000051 61022

9521248051312000005171022
105879845241300000511330032051091022 104427845236500000511057056051101022 84370880513000000051

84523980513410000051855582005001112 2 $856992305150000000511076529051 \quad 021122$ 79572260514000000051 31122 876266405155500000511447908051041122 831606905168900000516064290050051122 79572260515160000051

77065060511040000051
71122 856992305140800000511076529051091122 845239805130300000518555820050101122 68289860514000000051 111122

* 147418025215420000521492218051011222 149467775257700000511877571051021222 13878174525340000051 31222 152829365295100000512525292051041222 145040315297100000511057671051051222 13878174528030000051 13440894524160000051 $14946777524980000051 \quad 1877571051091222$ $1474180252.6790000051149221805110122 \%$ 11910414525000000051 111222

105305805289500000515109420051020131 $99202300519350000051 \quad 5719770051030131$ 101675005265000000515472500051050131 $9594710051 \quad 7350000051 \quad 6045290051 \quad 070131$ 111393655266700000514500635051090131 105305805268400000515109420051100131 948046505182100000516159535051110131

* 108178845211810000523242116051020231 996495405166600000514095046051030231 $103105005255100000513749500051 \quad 050231$ 951005805179000000514549942051070231 116686275276200000512391373051090231 108178845239000000513242116051100231 935040705165800000514709593051110231

137411365299000000518378864051020331 131374165211400000528982584051030331 133820005298600000518738000051050331 1281543252 1068000052 9304568051070331 143433085213330000527776692051090331 137411365212370000528378864051100331 127024285210640000529417572051110331

235332205222330000521284678052020431 223300705220290000521404993052030431 228175005222660000521356250052050431 216883905220850000521469161052070431 247332855215710000521164671552090431 23533220521661000052 1284678052100431 21463185521771000052 1491681552110431

681242805144700000513767572051020531 *6469618051 39800000514110382051 030531 660850005143400000513971500051050531 628678605161500000514293214051070531 715435905147600000513425641051090531 681242805165000000513767572051100531 622261905159000000514357381051110531

393779605125600000512022204051020631 372212605126600000512237874051030631 380950005133700000512150500051050631 360710205126800000512352898051070631 415291305133400000511807087051090631 393779605132500000512022204051100631 356673305132400000512393267051110631

117349005286200000517145100051020731 112181505287300000517661850051030731 114275005286000000517452500051050731 $10 y 425505210560000527937450051070731$ 122503255290500000516629675051090731 117349005210100000527145100051100731 108458255294800000518034175051110731

326088765223630000521791112452020831 30954106522465000052 1956589452030831 31624500523074000052 1889550052050831 2044843852070831 1626059752090831 1791112452100831 2075817752110831

113292765210230000526330724051020931 107665065293300000516893494051030931 109945005281700000516665500051050931 104663625289900000517193638051070931 118906035276200000515769397051090931 113292765281400000516330724051100931 103610235287800000517298977051110931
*1060070052 11810000523759300051021031 983045005191400000514529550051031031 101425005250400000514217500051051031 941965005171900000514940350051071031 1136897552714000005129910250510091031 106007005242200000513759300051101031 9275475051613000005155084525051111031

116189845286300000516901016051021131 110878045289400000517432196051031131 113030005286600000517217000051051131 108045085297500000517715492051071131 * 121488025212860000526371198051091131 116189845210740000526901016051101131 107050825210530000527814918051111131

158000005276600000517140000051021231 148250005212230000528115000051031231 152200005283900000517720000051051231 143050005210560000528635000051071231 167725005211900000526167500051091231 158000005211400000527140000051101231 * 141225005215520000528817500051111231
68202700514000000051 20132 30132

$$
50132
$$

$$
3208250050
$$

$$
070132
$$

$$
90132
$$

$$
100132
$$

$$
110132
$$

9530946051	6660000051	20232	
1075566652	5640000051		30232
1027452652	2830000051		50232
1137896152	3330000051	4483350050	070232
8061282051	3810000051		90232
9530946051	1880000051		100232
1160640952	5280000051	8463690050	110232

674618405121000000517613064051211000005120332
30332
5033272725040512710000051
*80542440519920000051 3173400050 070332570592805119000000519033267461840511940000051100332
821523605124800000515990760050 110332

1344443052	6300000051		20432
1517203052	7840000051		30432
1449333052	1163000052		50432
1605125552	5550000051	6324250050	070432
1137131052	2860000051		90432
1344443052	2300000051		100432
1637209552	8260000051	1193895051	110432
3830682051	1040000051		20532
4322922051	1790000051		30532
4129542051	3030000051		50532
4573437051	1920000051	1801950050	070532
3239994051	50		90532
3830682051	3780000051		100532
4664853051	1010000051	3401730050	110532
2409974051	1010000051		20632
2719654051	1070000051		30632
2597994051	1230000051		50632
2877259051	1060000051	1133650050	070632
2038358051	9500000050		90632
2409974051	9700000050		100632
2934771051	1170000051	2140110050	110632

57743500511900000051 20732
65163500513540000051 30732 50732
689397505137000000512716250050070732 48839500519500000050 90732

57743500512160000051100732

703177505158400000515127750050

110732

18490994522850000051
20867074521558000052
19933614521244000052
220763295280000000518698150050 15639698525710000051 18490994523900000050 22517601521999000052

62885940512120000051
70966740514910000051
67792140511640000051
750792905144800000512958150050070932
53188980511910000051
62885940512120000051
765800105138100000515584410050

20832
30832
50832
070832
90832
100832
110832

20932
30932
50932 90932

100932
110932

8607050051	4760000051	21032
9713050051	3490000051	31032
9278550051	2830000051	
1027592552	6430000051	4048750050
7279850051	2860000051	
8607050051	2850000051	
1048132552	4370000051	7643250050
		11032
	101032	
		11032

5935596051	2080000051	21132
6698316051	3070000051	31132
6398676051	2630000051	
7086486051	5260000051	2792100050
5020332051	9500000050	
5935596051	2910000051	
7228134051	3410000051	5270940050

| 1089500052 | 1780000051 | |
| :--- | :--- | :--- | :--- |
| 1229500052 | 9670000051 | |
| 1174500052 | 4080000051 | |
| 1300750052 | 4200000051 | 5125000050 |
| 9215000051 | 2860000051 | |
| 1089500052 | 3170000051 | |
| 1326750052 | 1238000052 | 9675000050 |

21232
31232
51232
071232
91232 101232

111232

SOKE WORK CYCLE CHARACTERISTICS OF A SIMPLE, HIGH RATE, FORCED-PACE ASSFIELY OPERATIOI
by

SANAT NATWARLAL PARIKH
D. H. E., Kaharaja Sayag1rao Univorgity of Baroda Baroda, India, 1955
D. E. E., Maharaja Sayagirao Univeraity of Baroda Baroda, India, 1956

AN ABSTRACT OF A MASTER'S MESIS
subritted in partial fulsillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Encineerinc

KANSAS STATE UNIVERSITY
Manhettan, Kansas

The purpose of this thesis was to study the characteristice of some work cycles in a simple, hich rate, forced-pace assembly operation. The data obtalned from micromotion films, were analyzed by using statistical and graphical methods. Certain conclusions regarding the source of variability present in the work cyeles and the possible causer of this variability were drawn. The writer feels that the implications found from this project are just and valid.

By comparing and combining the experimental conclusions of the project, certain general conclusions wore drawn as follows:
(1) One of the conclusions of this project was the laree anount of variability that was present in the time values of dirferent motions and even in the percentages of these times based on total cycle time. It was found that the operators produced variable over-all oycle times conslating of varlable times for motions within the cycles.

As this stuçy was carried out for only one type of assembly work, these conclusions should not be interpreted as necessarlly being true for other types of assembly worl. Because of these $12 m 1 t a t i o n s$ of this project, it was felt that the conclusions do not prove the hypereritical foelines that have appoared in most time and Motion Study books regardine the rellabillty of pre-determined time standards.
(2) Next, it was realized that each operator produced the over-all cycle time and the component motion time in his own way which was usually different from the other operators. Some operators were producing the assemblies in such a way that there was not a single reading in Group 1 , while some were following a different patterm and they did not have any readine in Group III. This was the reason why the data were divided into two parts while analyuing for analysis of variance.
(3) It was noted that one of the principle causes of cycle varlablilty was speed with which some of the operators worked. The ascembly motions were the most variable of the motions and also accounted for the larrest percentage of the total cycle time. So, it appeare that the most sienirlcant motion to be considered for improving the over-all cycle time would be the assembly motion.
(4) In all general cases the path of travel curline the motion $3 R, 7 R$, and $3 L$ was a straicht ilne or slichtly curved, but, aurine motion 7 , an interesting path was notod for some operstors. When the erasping of the third part and rising of the obetruction took place at the same time, come operators were afrald of the pacer. As a result of this, the path was distorted. In such cases, instead of stralcht travel, the hand vent stralcht upward and then the operator tried to bring it back for assembly operation. Even thouch the pacer was safe, and th1s was known to all operators, they changed the usual path unconselously.

