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Abstract 

Wheat is a vital cereal crop, providing 20 % of the daily nutritional requirements for 

consumers worldwide. Although there has been a substantial increase in production and yield 

gains, food demands will still be on the rise in future decades, and wheat yields must continue to 

increase rapidly to meet these demands. Grain yield can be inhibited by biotic factors 

(pathogens), which require the development of resistant varieties against pathogens. Stripe 

(yellow) rust produces massive yield losses in wheat production, and ample resistance against 

stripe rust is achieved by pyramiding multiple resistant genes together. Yield also can be 

improved by characterizing the underlying mechanisms that define yield and yield-related traits. 

We used breeding technology tools to dissect the genetic architecture of yield-related traits, 

yield, and stripe rust resistance to identify genomic regions that can improve these traits in wheat 

germplasm and broaden the genetic resources available for breeders to develop robust breeding 

germplasm that can improve the profitability and resilience of wheat production. 

Stripe (yellow) rust, caused by Puccinia striiformis (Pst), is a devastating disease of 

wheat worldwide. In commercial production, stripe rust reduces forage yield, grain yield and 

grain quality. Yield losses caused by stripe rust range from 10% to 70%. This study was 

conducted using two different wheat reference genomes (IWGSC v2.1(‘Chinese Spring’) and 

‘Jagger’) to identify quantitative trait loci (QTL) associated with adult plant field resistance to 

stripe rust in the hard winter wheat RIL population, ‘Overley’ x ‘Overland’ to provide breeders 

with identified genomic regions associated with quantitative field resistance. Our QTL analysis 

identified genomic regions on 2AS (2NvS translocation), 2BS, 2BL, and 2DL using two different 

mapping methods (Inclusive Composite Interval Mapping and Multi-Environmental Trial 

Analysis) that were associated with stripe rust resistance for both infection type and severity 



 

using genetic maps from both genomes. There were no meaningful differences in interpreting the 

data from the two maps. Overley contributed the resistance alleles at the 2AS and 2BL QTLs. 

Overland contributed the resistance alleles at the 2BS and 2DL QTLs. The 2DL QTL 

(QYr.hwwg-2D) will be further refined due its environmental stability for resistance. We 

designed PCR-based SNP marker assays to efficiently identify these genomic regions in breeding 

populations.   

Yield improvement can be facilitated by a deeper understanding of the underlying 

infrastructure of components that determine grain yield. We performed a QTL analysis on the 

population Overley x Overland, to identify genomic regions in our population can explain the 

variation in yield and its components in field trials using the two different reference maps. We 

identified major QTLs in both reference maps for yield (3BL), single kernel weight (4AL), plant 

height (6AS), grains per spike (4AL), thousand grain weight (4AL), and physiological maturity 

(2BS). The Jagger map identified more QTLs (40 QTLs) than the IWGSCv2.1 map (30 QTLs). 

The future direction of these studies will be marker development to utilize these QTLs in yield-

improvement breeding programs.  
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Abstract 

Wheat is a vital cereal crop, providing 20 % of the daily nutritional requirements for 

consumers worldwide. Although there has been a substantial increase in production and yield 

gains, food demands will still be on the rise in future decades, and wheat yields must continue to 

increase rapidly to meet these demands. Grain yield can be inhibited by biotic factors 

(pathogens), which require the development of resistant varieties against pathogens. Stripe 

(yellow) rust produces massive yield losses in wheat production, and ample resistance against 

stripe rust is achieved by pyramiding multiple resistant genes together. Yield also can be 

improved by characterizing the underlying mechanisms that define yield and yield-related traits. 

We used breeding technology tools to dissect the genetic architecture of yield-related traits, 

yield, and stripe rust resistance to identify genomic regions that can improve these traits in wheat 

germplasm and broaden the genetic resources available for breeders to develop robust breeding 

germplasm that can improve the profitability and resilience of wheat production. 

Stripe (yellow) rust, caused by Puccinia striiformis (Pst), is a devastating disease of 

wheat worldwide. In commercial production, stripe rust reduces forage yield, grain yield and 

grain quality. Yield losses caused by stripe rust range from 10% to 70%. This study was 

conducted using two different wheat reference genomes (IWGSC v2.1(‘Chinese Spring’) and 

‘Jagger’) to identify quantitative trait loci (QTL) associated with adult plant field resistance to 

stripe rust in the hard winter wheat RIL population, ‘Overley’ x ‘Overland’ to provide breeders 

with identified genomic regions associated with quantitative field resistance. Our QTL analysis 

identified genomic regions on 2AS (2NvS translocation), 2BS, 2BL, and 2DL using two different 

mapping methods (Inclusive Composite Interval Mapping and Multi-Environmental Trial 

Analysis) that were associated with stripe rust resistance for both infection type and severity 



 

using genetic maps from both genomes. There were no meaningful differences in interpreting the 

data from the two maps. Overley contributed the resistance alleles at the 2AS and 2BL QTLs. 

Overland contributed the resistance alleles at the 2BS and 2DL QTLs. The 2DL QTL 

(QYr.hwwg-2D) will be further refined due its environmental stability for resistance. We 

designed PCR-based SNP marker assays to efficiently identify these genomic regions in breeding 

populations.   

Yield improvement can be facilitated by a deeper understanding of the underlying 

infrastructure of components that determine grain yield. We performed a QTL analysis on the 

population Overley x Overland, to identify genomic regions in our population can explain the 

variation in yield and its components in field trials using the two different reference maps. We 

identified major QTLs in both reference maps for yield (3BL), single kernel weight (4AL), plant 

height (6AS), grains per spike (4AL), thousand grain weight (4AL), and physiological maturity 

(2BS). The Jagger map identified more QTLs (40 QTLs) than the IWGSCv2.1 map (30 QTLs). 

The future direction of these studies will be marker development to utilize these QTLs in yield-

improvement breeding programs.  
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Chapter 1 - Mapping the Quantitative Field Resistance to 

Stripe Rust in a Hard Winter Wheat Population ‘Overley’ x 

‘Overland’ 

 Introduction 

Stripe (yellow) rust, caused by the fungus Puccinia striiformis Westend. f. sp. tritici 

Erikss (Pst) is among the most harmful diseases in wheat. The pathogen typically infects the 

green plant tissues of cereal crops and grasses. In wheat, infection occurs at all growth stages 

(Chen, 2005), with varied infection rates depending on plant resistance levels and moisture and 

temperature conditions during the infection. Symptoms can appear about one week after 

infection, and sporulation starts about two weeks after infection. The pathogen produces yellow-

orange rust pustules (uredia), and each uredium contains thousands of urediniospores, which 

make the characteristic orange stripes. The pathogen uses water and nutrients from the host plant 

to spread infection (Chen, 2005). In commercial wheat production, stripe rust reduces forage 

yield, grain yield, and quality of seeds. If stripe rust occurs very early and continues its 

progression throughout the growing season, it can cause a 100% yield loss (Chen, 2005). Wheat-

producing regions commonly have losses caused by stripe rust ranging from 10% to 70%. The 

severity of yield (YLD) loss depends on infection timing, rate of disease progression, disease 

duration, and wheat cultivar susceptibility (Chen, 2005). Before 2000, stripe rust epidemics had 

commonly occurred in the western U.S. wheat-producing States, including California, 

Washington, Idaho, and Oregon. Stripe rust has since become more prominent in the Great 

Plains (Kansas, Colorado, Nebraska, Missouri, Oklahoma, Texas, and South Dakota) and 

southern wheat-producing states (Louisiana, Mississippi, Texas, and Arkansas) after 2000. In 
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Kansas, the largest wheat-producing state in the United States, crop losses to stripe rust have 

been episodic, with an average of 7.6% from 2015 to 2019, ranging from 0.3% in 2018 to 15.4% 

in 2015 (https://agriculture.ks.gov/docs/default-source/pp-disease-reports-2012/wheat-disease-

report-2019.pdf?sfvrsn=4ef189c1_0; Accessed 7/23/20). Fungicide applications and resistant 

cultivars are used to reduce YLD losses from this disease (Chen, 2005; Cruppe et al., 2021; 

Jaenisch et al., 2019). Yield loss underestimates the total economic cost of stripe rust as it does 

not incorporate the cost of fungicide applications made to control the disease, or potential losses 

in grain and seed quality resulting from severe infections. 

Wheat host plant resistance to stripe rust is broadly categorized into two types: all-stage 

resistance (ASR), also known as seedling resistance, and adult-plant resistance (APR). All-stage 

resistance is typically effective from the seedling stage through all wheat growth stages, and 

ASR generally is race-specific (Chen, 2013). All-stage resistance is mainly controlled by major-

effect single genes. Wheat genotypes with APR typically are susceptible to stripe rust as 

seedlings but become more resistant at adult growth stages. Some APR is race non-specific and 

has been durable, while other APR is race-specific. Adult plant resistance (APR) may also 

increase in effectiveness under high temperatures (high-temperature adult-plant resistance, 

HTAP) (Chen, 2013; Kumar et al., 2020). Adult plant resistance genes often provide partial, 

additive resistance. Large-effect APR genes have been identified (e.g., 

Lr34/Yr18/Sr57/Pm58/Ltn1, Lr46/Yr29/Sr58/Pm39/Ltn2, Sr2/Yr30) and have been used by 

breeders for decades (Krattinger et al., 2009; Singh et al., 2011; William et al., 2003). However, 

other unnamed genes have also provided durable resistance. Genetic rust resistance can be 

improved by stacking multiple resistance genes together in wheat cultivars (Singh et al., 2000; 

Singh et al., 2005). For example, field trials in Mexico evaluated susceptible seedlings that 

https://agriculture.ks.gov/docs/default-source/pp-disease-reports-2012/wheat-disease-report-2019.pdf?sfvrsn=4ef189c1_0
https://agriculture.ks.gov/docs/default-source/pp-disease-reports-2012/wheat-disease-report-2019.pdf?sfvrsn=4ef189c1_0
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demonstrated durable resistance expressed in Yr gene complexes (known Yr genes and unknown 

genes) that contributed to adult plant resistance. These Yr gene complexes included Lr34/Yr18 

plus four unknown genes, Lr46/Yr29, Sr2/Yr30, and one unknown gene. Lr34/Yr18, together 

with other unnamed slow rusting genes, is involved in the durable resistance of ‘Frontana’ and 

other wheat lines (Singh et al., 1992). Lr46/Yr29 and unnamed genes provided durable resistance 

in ‘Pavon76’ (Singh et al., 1998). Due to the continuous rise in genetic variation of the 

pathogens, the durable stacking strategy of combining effective race-specific and non-race-

specific resistance genes is needed (Maccaferri et al., 2015). Genetic markers can facilitate the 

construction of these durable stacks for the partial resistance genes in the germplasm pool 

because ASR genes mask the presence of partial resistance genes in phenotypic screening. 

The Yr17 stripe resistance gene has been commercially important in the Great Plains.  

Yr17 entered the cultivated hexaploid bread wheat germplasm pool through the French cultivar, 

‘VPM1,’ derived from a bridge cross of Aegilops ventricosa Tausch, T. persicum, and T. 

aestivum (Bayles et al., 2000). As chronicled in Carter et al. (2020), this breeding lineage was 

initially developed for eyespot resistance rather than rust resistance. The USDA-ARS breeding 

program in Pullman, WA, led by Dr. Robert Allan, received two VPM1 derivatives from France 

in 1973 and used these as parents in crossing. The VPM1-derived parents provided rust 

resistance with three named genes: Yr17, leaf rust (caused by P. recondita Rob. Ex. Desm. f. sp. 

tritici) resistance gene Lr37, and stem rust (caused by P. graminis subsp. graminis Pers.:Pers) 

resistance gene Sr38. Bariana and McIntosh (1993) subsequently demonstrated that the rust 

resistance from VPM1 was carried on a 2NvS/2AS translocation, which is distinct from the 

7Dv/7DL translocation that confers eyespot resistance. The VPM1-derived winter wheat 

germplasm from the USDA-ARS Pullman breeding program was broadly used by Great Plains 
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breeding programs, leading to the development of commercially important Yr17/Lr37/Sr38-

carrying cultivars such as ‘Jagger’ (Gao et al., 2020; Sears et al., 1997). Yr17 is highly prevalent 

in Great Plains hard winter wheat (HWW) germplasm. A recent survey of regional breeding 

nurseries (Mu et al. 2020) identified Yr17 in over 60% of the lines sampled. Yr17 was initially 

described as an ASR gene (Bariana et al. 1993). However, virulence to Yr17 was identified in 

North America in 1990 and again in 2007. In 2010, the frequency of virulence to Yr17 in isolates 

collected from North America was 82.5% in seedling tests (Wan et al., 2014). Yet, Milus et al. 

(2015) observed that winter wheat lines with Yr17 appeared to have APR in the field when 

inoculated with Yr17-virulent isolates of stripe rust. Other studies have described seedling 

susceptibility and adult plant resistance on Yr17 genotypes. When a Jagger × ‘2174’ population 

was characterized in seedling and adult plant tests (Fang et al., 2011) with six Yr17-avirulent 

races, Yr17 was identified only in the adult plant tests. These authors therefore characterized 

Yr17 as an APR gene.   

Several mapping studies have characterized genetic APR to stripe rust in hard red winter 

wheat populations adapted to the Great Plains of the United States. As discussed above, stripe 

rust resistance has been mapped in the Jagger × 2174 recombinant inbred population (Fang et al., 

2011). This study identified a QTL for adult plant stripe resistance on the 2A chromosome, 

where Jagger had the resistance allele, and the QTL is presumed to be the effect of Yr17. In 

addition, a novel resistance QTL was found on chromosome 5A, where Jagger again contributed 

to the resistance. Stripe rust resistance also has been mapped in a ‘TAM 112’ × ‘TAM 111’ 

population (Yang et al., 2019). A total of eight QTLs (chromosomes 1A, 2A, 2B, 4A, 4B, 6B, 

and 7D) were identified, and two of them were novel. The most consistent QTL was located on 

the 2B chromosome (QYr.tamu-2B). This QTL had epistatic interactions with another QTL 
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(QYr.tamu-2A1) for both disease severity (SEV) and infection type (IT). High-temperature adult 

plant resistance to stripe rust also was mapped in ‘Rio Blanco’ × ‘IDO444’ (Chen et al., 2012). 

Eight QTLs were identified on six chromosomes, with QTLs on chromosomes 2B and 4A 

explaining the largest proportion of the phenotypic variation. A recent GWAS analysis of APR 

in North American winter wheat identified 20 significantly associated markers (Mu et al., 2020).  

Nearly all the APR-associated markers were present in the Great Plains HWW surveyed, some at 

frequencies > 50%. 

To support the development of cultivars with durable resistance to stripe rust, the genetic 

architecture of adult plant resistance and the effect of the 2NvS/2AS translocation, which confers 

Yr17, in the presence of other partial resistance genes, requires further characterization in the 

germplasm pool of regionally adapted hard winter wheat. The first objective of this study was to 

identify genomic regions associated with quantitative resistance to stripe rust in field trials using 

a mapping population derived from ‘Overley’ × ‘Overland’, varieties with contrasting stripe rust 

mean severity and infection type. Overley (PI 364974, pedigree U1275-1-4-2-2/ ‘Heyne’ sib// 

Jagger) is a hard red winter wheat variety released by Kansas State University in 2003. Overley 

carries the 2NvS/2AS translocation with Yr17 and perhaps other unidentified partial resistance 

alleles. Overland (PI 647959, pedigree ‘Millennium’ sib// ‘Seward’/ ‘Archer’) was released by 

the University of Nebraska in 2007 (Baenziger et al., 2008). It was described at release as 

moderately resistant to stripe rust. The genetic basis of the partial resistance in Overland is 

unknown. Overland has a distinctive phenotypic reaction to stripe rust in the field, displaying a 

high degree of chlorosis and permitting only minimal sporulation of the pathogen. From 2013 to 

2017, in the USDA-ARS screening nursery at Rossville, KS, the mean infection type (IT, 1 to 9 

scale) for Overland was 5.4, an intermediate reaction. The mean severity (SEV) for Overland 
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was 52.8%. Overley, in comparison, had a lower mean IT (3.8) and lower mean SEV (7.4%). 

Both Overley and Overland have been successful commercial cultivars, and both have been used 

as parents in regional breeding programs. Overley was in peak production in 2007 (23.3 %) and 

2009 (13.7 %) in Kansas 

(https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/Cooperative_Projects/Whea

t_Varieties/; Accessed August 2, 2022).  In Nebraska, Overland accounted for 4.7 % of the 

acreage in 2015 and 4.2 % in 2016 

(https://www.nass.usda.gov/Statistics_by_State/Nebraska/Publications/Cooperative_Projects/ind

ex.php; Accessed August 2, 2022). This study aimed to provide marker technology to facilitate 

the retention of genomic regions associated with quantitative resistance to stripe rust during the 

development of new cultivars with additional stripe rust resistance alleles. 

The second objective of this study was to compare the utility of two wheat genome 

references for SNP calling and genetic map construction. The IWGSC v2.1 reference sequence 

(Zhu et al., 2021; https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations) is based on 

the reference genotype, ‘Chinese Spring’. The 10+ genomes project (Wheat Genomes Project 

(http://www.10wheatgenomes.com/10-wheat-genomes-project-and-the-wheat-initiative/) has 

made available additional reference sequences, among which is a reference sequence for the hard 

winter wheat cultivar, Jagger. Jagger represents 50% of the parentage of Overley. Therefore, the 

genome of Jagger might be expected to improve reference-based SNP calling for map 

construction in the Overley × Overland population. Consequently, we report the results of 

reference-based SNP calling, map construction, and QTL detection using both the IWGSC v2.1 

reference sequence and the Jagger reference sequence. 

https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/Cooperative_Projects/Wheat_Varieties/
https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/Cooperative_Projects/Wheat_Varieties/
https://www.nass.usda.gov/Statistics_by_State/Nebraska/Publications/Cooperative_Projects/index.php
https://www.nass.usda.gov/Statistics_by_State/Nebraska/Publications/Cooperative_Projects/index.php
http://www.10wheatgenomes.com/10-wheat-genomes-project-and-the-wheat-initiative/
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 Materials and Methods 

  Population Construction and Phenotyping   

The mapping population consisted of 204 recombinant inbred lines (RILs) developed 

through single seed descent, which proceeded to the F9 generation for 178 families and the F6 

generation for 26 families. The population was developed by USDA Central Small Grain 

Genotyping Laboratory in Manhattan, KS. Individual F6 or F9 plants were grown in the 

greenhouse to produce F6:7 and F9:10 seeds. The RILs were then grown in single-row plots and 

hand-harvested in Yuma, AZ, to produce seeds for evaluation in field trials. 

Field resistance to stripe rust was evaluated in seven trials: Rossville, KS (2018, 2019), 

Hays, KS (2019), Pullman, WA (2019, 2020), and Central Ferry, WA (2019, 2020).  

Abbreviations designating each environment are included in Table 1.1. The experimental design 

at Rossville, KS, was augmented design with highly replicated checks and two full replications 

of RILs. Here, entries were planted in single-row plots 1.4-m long and 30-cm apart with the 

parents as repeated checks. The field experiment at Hays was arranged in a partially replicated 

augmented design with one or two replications of each RIL. The parental checks (Overley and 

Overland) were represented in three blocks for each of the two replications at Hays, and RILs 

were distributed among blocks; not all RILs were present in each replication. Entries at Hays 

were planted in 6-row plots, 1.5-m wide and 3-m long. Entries at Pullman and Central Ferry 

were arranged in an augmented design with two replications and were planted in single-row 

plots, 1-m long and 50-cm apart, with the parents as repeated checks.   

The trials at Rossville were inoculated using an inoculum consisting of equal parts of four 

isolates that were all virulent on Yr9. Two isolates were collected in Kansas in 2010 and had 

virulence to Yr17 but not QYr.tamu-2B. The other two isolates were from Kansas in 2012 and 
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had virulence to QYr.tamu-2B, but not Yr17. Susceptible spreader rows (‘KS89180B’ carrying 

Yr9) were inoculated several times during the tillering stage in the evenings with an ultra-low 

volume sprayer using a suspension of 2 mL of fresh urediniospores in 1 L of Soltrol 170 

(Chevron Phillips Chemical Company, The Woodlands, TX) isoparaffin oil. Trials at Pullman 

and Central Ferry were evaluated under natural inoculum supplemented by a mixture of isolates 

collected in the previous field season. The trial at Hays was assessed under natural infection.   

Data collection at Rossville began once the susceptible check (KS89180B) had an 

infection severity coverage of ~10% and continued until senescence. In Rossville, disease ratings 

(infection type and severity) were collected on the 28th of May 2018 and 16, 22, and 28th of May 

2019. In Pullman, disease ratings were collected on the 1st and 12th of July 2019. In Central 

Ferry, disease ratings were taken on the 12th and 18th of June 2019. The second ratings in 

Pullman and Central Ferry were recorded on June 26th and June 12th 2020, respectively. The 

second rating date was used for subsequent statistical analysis. Disease ratings in Hays were 

taken on June 1, 2019. Stripe rust evaluations were measured using two disease rating scales: IT 

(0-9; from no infection to highly susceptible) and SEV based on visual estimation of flag leaf 

area occluded by the pathogen (0-100%) and taken after heading. 

 Genotyping and Map Construction  

Deoxyribonucleic acid was extracted from seedlings, and genotyping-by-sequencing 

(GBS) was conducted as described previously (Liu et al., 2020) on a subset of 189 lines (187 

RILS and two parents), of which 23 were F6-derived. Single nucleotide polymorphisms (SNPs) 

were identified in parallel using reference-based calling in the TASSEL (Trait Analysis by 

aSSociation, Evolution and Linkage pipeline) (Bradbury et al., 2007) using both the IWGSC 

v2.1 reference genome (Zhu et al., 2021) and the Jagger reference sequence (Wheat Genomes 
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Project; http://www.10wheatgenomes.com/10-wheat-genomes-project-and-the-wheat-initiative/). 

The TASSEL pipeline was executed using the default parameters. The resulting SNP datasets 

derived from each reference sequence were filtered in TASSEL by taxa (RILs) and sites (SNPs). 

The RILs were filtered to include those RILs for which at least 20% sites were present. The sites 

were filtered to include sites for which > 60% of RILs were called, minor allele frequency 

(MAF) > 0.25, and maximum heterozygous proportion < 0.25. The ABH plugin (parental allele 

assignment) in TASSEL was applied to this reduced dataset to identify parental genotypes.  

A set of trait-specific competitive non-GBS KASP assay markers were added to the 

biparental SNP datasets prior to linkage mapping: Lr37-Yr17-Sr38, IWB29391, Ppd_D1_D2, 

KS0617_287045, KS617_288635, and Vrn_A1E4 (Table 3.12a). These KASP SNP assays were 

conducted for the RILs using the primer sequences and amplification conditions in Table 3.12b. 

The marker Lr37-Yr17-Sr38 was used to identify genotypes carrying the 2NvS segment from 

Overley. The marker IWB29391 was associated with the QYr.tamu-2B QTL (Yang et al., 2019). 

The Ppd_D1_D2 and Vrn_A1E4 markers identified the genes for photoperiod and early release 

from vernalization in Overley. The two remaining KASP markers, KS0617_288536 and 

KS0617_287045, were developed from polymorphisms between Overley and Overland 

identified in the exome capture data, which delimited the 2DL genomic region for a YLD-related 

QTL.  

The enriched biparental SNP datasets were further filtered through R/QTL and ASMap 

packages in R statistical computing software v.4.1.1 to produce a robust set of SNPs for genetic 

map construction (Broman et al., 2003; R Core Team, 2021). The ABH datasets of the reference 

maps were first filtered to remove RILs with missing genotype data using the number of 

genotyped markers per individual (ntyped() function) at cut-off threshold values of ntyped =  600 

http://www.10wheatgenomes.com/10-wheat-genomes-project-and-the-wheat-initiative/
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(IWGSC v2.1) and ntyped = 900 (Jagger). The ntyped values differed due to differences in the 

marker densities of the two reference maps. Information of the marker data sets of both genomes 

was plotted to measure the number of genotyped markers for each individual, ntyped values were 

selected to exclude outliers. These bi-parental SNP datasets for each reference genome were then 

filtered to drop duplicate markers and markers with >80% identical information; RILs with 

>80% matching genotypes among all individuals were also removed. Markers which were not 

segregating 1:1 were identified at a p-value < 0.05, and those with a p-value < 1e-10 were 

removed. Markers in these datasets also were checked for flipped allele calls using the 

checkAlleles function. From these filtered SNP datasets, linkage groups were produced using the 

formLinkageGroups() function at the parameters of maximum recombination frequency (max.rf) 

= 0.35 and a minimum LOD (min.lod)= 6.0. Linkage groups that contained < 3 markers were 

excluded. The remaining set of linkage groups was used for genetic map construction.  

Linkage map construction was done using the MSTmap package, which is part of the 

ASMap package (Taylor et al., 2017). Genetic distances were obtained through the Kosambi 

function, and markers were clustered at a p-value = 1e-12. The markers remaining in the linkage 

map from this filter were processed through the pull.cross function using the following 

parameters: co-located, segregation distortion, and missing. The co-located parameter of the 

pull.cross function pulled co-located markers from the linkage map using the findDupMarkers 

infrastructure, a feature in the qtl package. These markers were set aside and stored in a co-

located element. The seg.thresh parameter (seg.thresh = 0.02) within the pull.cross function 

removed any markers under the given threshold and stored those markers into a seg.distortion 

element. In the same pull.cross function the miss.thresh parameter (miss.thresh = 0.04) removed 

any markers with a proportional amount of missing allele data set aside into a missing element. 
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The updated makers in the linkage map were then re-clustered using MSTmap at p-value = 1e-

10. The push.cross function was then used to push some of the markers pulled from the 

pull.cross into the linkage map with parameters set at seg.threshold =0.001 and miss.thresh = 0.5  

to push pulled makers that followed these parameters back into the linkage map.  

The genetic map was then constructed using the Kosambi function, and markers were 

added back into the linkage map from the push.cross function was clustered at a p-value = 2 to 

retain the linkage group structure. In addition, this map was scanned for genotype clones, using 

the function genClones(), looking for pairs of genotypes with a proportion of matching alleles 

>0.85 to be discarded. Marker profiles (profileMark) were evaluated for: segregation distortion, 

allele proportions, and the proportion of missing values of each marker using the Bonferroni 

method at a critical value of α = 0.05. The marker profiles were also evaluated to remove RILs 

and markers with excessive recombination due to high numbers of crossover, double-crossover 

events, and missing data at the expected recombination rate of 100. The new subset data was 

processed through MSTmap at a p-value = 1e-10 to cluster the markers to linkage groups. 

Markers with a double crossover rate >2 were excluded, and the markers within linkage groups 

were ordered (p-value =2). This process was repeated four times with each reduced genetic map 

to produce reliable SNPs for QTL analysis.  

Linkage groups within the reduced genetic map associated with the same chromosome 

were merged. The initial mapping parameters applied to order the combined linkage groups was 

the Kosambi mapping function (p-value = 2) using MSTmap. The secondary screening of the 

merged linkage groups of the genetic map was done at p-value = 1e-06, resulting in some of the 

linkage groups being split. This genetic linkage map was then processed through restoration 

analysis. The purpose of the restoration analysis was to ensure that all SNPs with significant trait 
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associations in single marker analysis were included in the final linkage map and subsequent 

QTL detection processes. All the markers present in the ABH dataset produced by TASSEL and 

excluded in the succeeding filtering in map construction were extracted. Single marker analysis 

was conducted in JMP Genomics 9.0 (SAS Institute, Inc., Cary, NC) to test the individual marker 

effects on IT and SEV from the multi-location BLUPs. Those SNPs (19 SNPs in IWGSC v2.1-

based map: 41.85% avg. missing data rate, and 23 SNPs in Jagger-based map: 37.15% avg. data 

missing rate) that had significant associations (p-value < 0.001) with IT or SEV were pulled back 

into the genetic linkage map and mapped within the specific linkage groups to which they 

belonged. The linkage groups affected by this marker restoration included 2A, 2B.1, 2B.2, 2D.2, 

and 3A.2. The number of RILs, SNPs, and linkage groups at each stage of map construction is 

provided in Table 3.13. These refined linkage maps were used for QTL analysis.   

 QTL and Other Statistical Analyses  

Phenotypic data were analyzed using the augmented design structure in JMP Genomics 

9.0 (Segall et al.,  2010;  SAS Institute, Inc., Cary, NC). Check entries and environments were fit 

as fixed effects. Replications and RILs were fit as random effects. Inspection of the conditional 

residuals from model fit confirmed that IT and SEV could be analyzed as normally distributed, 

independent variables without transformation. The least-square means were estimated as 

intercept-adjusted best linear unbiased predictors (BLUPs) in each environment and across 

environments in JMP Genomics. Broad-sense heritability (H2) was estimated on an entry-mean 

basis:  

𝐻2 =  
𝜎𝑔

2

𝜎𝑔
2 +  

𝜎𝑔𝑒
2

𝐸 +  
𝜎𝑒𝑟𝑟𝑜𝑟

2

𝐸 ∗ 𝑟
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where 𝜎𝑔
2 is genotypic variance, 𝜎𝑔𝑒

2  is the genotype-by-environment variance, 𝜎𝑒𝑟𝑟𝑜𝑟
2  is the 

residual error variance, r is the number of replications, and E is the number of environments.  

Quantitative trait locus (QTL) analysis was performed using inclusive composite interval 

mapping in IciMapping v4.1 (Meng, Li, Zhang, & Wang, 2015). The QTL analysis for IT and 

SEV was conducted across all environments and in individual environments using BLUPs 

obtained from the analysis of the phenotypic data. The following parameters were used for QTL 

mapping: a 1 cM distance between QTL testing points; empirical LOD permutation testing with 

1000 permutations and an experiment-wise alpha = 0.05; the control marker number = 10 and 

test window size = 7 cM; control marker selection via stepwise regression; significance level for 

entry into the model = significance level for staying in the model = 0.001 (Hussain et al., 2017). 

The Inclusive Composite Interval Mapping of digenic EPIstatic QTL (ICIM-EPI) module was 

used to identify QTLs with a significant epistatic interaction (Li et al., 2008). QTL × 

environment interactions (QEI) were evaluated using the ICIM-MET (Inclusive Composite 

Interval Mapping-Multiple Environmental Trials) module with empirical LOD thresholds.   

 Design and Analysis of QTL-associated Competitive SNP Assays 

Overley and Overland are part of a large set of WheatCAP germplasm using the wheat 

exome capture data designed in collaboration with Nimblegen (Krasileva et al., 2017). The 

captured samples were prepared following the manufacturer’s protocol. They were sequenced 

using an Illumina NextSeq 500 sequencer at Kansas State University Integrated Genomics 

Facility, producing 150 bp pair-end reads for all samples. Raw sequencing reads were checked 

for quality using NGSQC toolkit version 2.3.3 (Patel et al., 2012), and high-quality reads were 

exported for alignment to the IWGSC reference genome v.2.1 (Zhu et al., 2021) using HiSat2. 

Only uniquely mapped reads were retained for further analysis, and resulting alignments were 
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subsequently run through the GATK pipeline (McKenna et al., 2010) to generate variants 

segregating in the germplasm collection. SNPs between Overley and Overland within QTL 

regions (2BS: 50536339-58321611, 2BL: 770650575 – 771858040, 2DL: S2D_637621998 – 

S2D_639629011) were filtered using a custom Perl script. They were considered high quality if 

flanked by > 100bp of non-polymorphic sequence. High-quality SNPs and flanking sequences 

were subsequently processed through Polymarker software (Ramirez-Gonzalez et al., 2015) to 

design primers that discriminate the Overley and Overland genotypes in the polyploid genome. 

Candidate primer sets were selected from among the 88 designed primer sets based on their 

identification as chromosome-specific or chromosome-semi-specific (22 sets) and further filtered 

for those primer sets with three or fewer total BLAST hits (18 sets). This process produced seven 

primer sets for the 2BS (QYr.hwwgIT–2B.1a and QYr.hwwgSEV–2B.1a) region and primer sets 

for the 2BL (QYr.hwwgIT–2B.2a) region and eight primer sets for the 2DL (QYr.hwwgIT–2Da 

and QYr.hwwgSEV–2Da) region. Primer sets were evaluated for functionality using parents and a 

synthetic heterozygote. Exome-capture data for the 2BL region, which contained SNPs and were 

processed through Polymarker, from which candidate primer sets were designed and evaluated 

using the parents and a synthetic heterozygote.  

Predicted effects of QTL-associated SNPs were evaluated using single marker regression 

analysis and multiple regression analysis with model selection. Single marker analysis was 

conducted by fitting linear models for marker effect with the multi-location BLUPs as the 

response variable and marker scores expressed as Overland = 0, Overley = 2. Model selection 

and multiple regression analysis were conducted using PROC REG in SAS v9.4 (Segall et al., 

2010; SAS Institute, Cary, NC) to administer stepwise forward/reverse model selection (Table 
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1.7). The criteria to enter the model set to α = 0.10, and the requirements to remain in the model 

set to α = 0.10. 

 Results 

 Phenotypic Data  

Stripe rust IT varied with locations (F-value = 21.9***), with higher average IT (more 

susceptible, 6.3 to 6.9) observed in the PNW environments than those (4.5 to 4.8) observed in the 

Kansas environments (Table 1.1). The IT of the two parents (Overley = 5.7 ± 0.9, Overland = 5.9 

± 0.9) did not differ significantly, and the mean IT of the RILs (5.8 ± 0.1) was intermediate 

between the two parents. Disease severity also varied among environments (F-value = 76.5***).  

Site SEV means of the RIL population ranged from 7.7 ± 5.6% at Rossville, KS, in 2018 to 66.8 

± 5.6% at Central Ferry, WA, in 2020. The average SEV of the RILs (35.5% ± 1.2%) was 

intermediate between Overley (31.6% ± 10.5%) and Overland (38.4% ± 10.5%). 
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Table 1.1. Summary of field responses of IT and SEV. 

Stripe rust infection type (IT) and severity (SEV) of the (A) recombinant inbred lines (RILs) 

were evaluated in seven environments. Data are least-squares means with standard errors in 

parentheses. 

 

Environment IT (1 to 9) SEV (%) 

Central Ferry, WA 2019 (CF19) 6.2 (0.77) 19.5 (8.5) 

Central Ferry, WA 2020 (CF20) 6.8 (0.76) 66.8 (8.4) 

Hays, KS 2019 (HZ19) 4.8 (0.83) 18.4 (9.1) 

Pullman, WA 2019 (PL19) 6.9 (0.76) 58.9 (8.4) 

Pullman, WA 2020 (PL20) 6.4 (0.76) 53.1 (8.4) 

Rossville, KS 2018 (RS18) 4.5 (0.76) 7.7 (8.4) 

Rossville, KS 2019 (RS19) 4.8 (0.76) 22.0 (8.5) 

 

Genotypic variance and genotype × environment variance component estimates for IT and 

SEV were highly significant in Wald tests (Table 3.14). The broad-sense heritability estimates 

were high for IT (0.80) and SEV (0.82). The RIL population had a wide and continuous 

distribution for IT and SEV in each environment, with transgressive segregation in both 

directions (Figure 1.1). Median values for IT (Overley = 5.7, Overland = 5.9, RILs = 5.8) and 

SEV (Overley = 31.6, Overland = 38.4, RILs = 35.5) of the RILs were similar to both parents. 

Pairwise correlations of IT and SEV of RILs among the seven environments were also high 

(Table 1.2). The correlation of SEV among environments was generally greater than the 

correlation of IT. 
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Table 1.2. Pairwise correlation matrix of stripe rust infection type and severity responses. 

Pairwise correlation of infection type (above the diagonal) and severity (below the diagonal) of best linear unbiased predictors of RILs 

evaluated in seven environments.   

 

 Pairwise correlation coefficient (r)* 

Environment CF19 CF20 HZ19 PL19 PL20 RS18 RS19 

CF19 -- 0.686 0.552 0.683 0.699 0.652 0.632 

CF20 0.765 -- 0.650 0.648 0.862 0.628 0.577 

HZ19 0.761 0.718 -- 0.647 0.643 0.680 0.705 

PL19 0.814 0.817 0.734 -- 0.638 0.715 0.703 

PL20 0.791 0.843 0.709 0.774 -- 0.637 0.571 

RS18 0.860 0.749 0.783 0.781 0.730 -- 0.760 

RS19 0.738 0.709 0.726 0.710 0.668 0.809 -- 

* All correlations are significant (p < 0.001). 

 

 

Figure 1.1. Phenotypic data distributions of stripe rust field response of IT and SEV. 

Distribution of best linear unbiased predictors (BLUPs) of stripe rust infection type (A) and severity (B) ratings across all 

environments in the Overley x Overland RIL population. Environments: CF19=Central Ferry, WA 2019; CF20=Central Ferry, WA 

2020; HZ19 = Hays, KS 2019; PL19 = Pullman, WA 2019; PL20 = Pullman, WA 2020; RS18 = Rossville, KS 2018; RS19 = 

Rossville, KS 2019; MET = Multi-Environmental Trial. 
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 SNP Calling and Genetic Map 

The initial filtering process for missing data and minor allele frequency identified more 

SNP sites (30,286 SNP sites) using the Jagger reference sequence than those identified using the 

IWGSC v2.1 Chinese Spring reference sequence (29,832 sites, Table 1.3). The Jagger reference 

sequence called more SNP sites (2,716 sites, Table 1.3) than the Chinese Spring reference 

sequence (2,607 sites, Table 1.3). The reason why there are more SNPs detected in the Jagger 

reference sequence than in the IWGSCv2.1 reference sequence is due that Jagger is a parent of 

Overley. Therefore, there is a higher rate of alignment and SNP detection during GBS between 

the Jagger reference sequence and our population in comparison to the IWGSCv2.1 reference 

sequence. After the biparental SNP calling filter, the Jagger pipeline identified 41% more sites 

(1,664) than the IWGSC v2.1 pipeline (1,177 SNPs) (Table 1.3). 

Further filtering for missing data, identical data (correlation > 0.8), and excess double-

crossovers (>2) reduced the number of RILs used in map construction to 162 in the IWGSC v2.1 

pipeline and 158 in the Jagger pipeline. After restoration analysis, the final numbers of RILs 

used for map construction were 162 for the IWGSCv2.1 pipeline and 158 for the Jagger pipeline. 

The final numbers of SNPs used in map construction were 1,156 for the Jagger pipeline and 802 

for the IWGSC v2.1 pipeline (Table 1.3). These filters keep the markers and RILs that are the 

most informative. The SNPs identified through GBS for both reference genomes were both 

different. Studies have presented the importance of using curated, data to build genetic maps 

(Broman, 2012; Taylor et al., 2017). Using raw, unfiltered data can give rise to issues such as 

genotyping errors and segregation distortions that can deleteriously impact the genetic map. In 

addition, missing data can lead to problems in constructing the genetic map. Therefore, it is 



20 

 

preferred to use curated, parsimonious data to produce the most informative and robust genetic 

map for further analysis.   
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Table 1.3. Summary statistics of SNP calling and genetic map constructions of reference genomes. 

Statistics for SNP calling and map construction pipelines using two alternative reference genomes, IWGSC v2.1 and Jagger. 

 

IWGSC v2.1 Reference 

Pipeline 

Jagger 

 Reference Pipeline 

Procedure RILs SNPs RILs SNPs 

TASSEL SNP identification 184 29,832 184 30,286 

TASSEL taxa & site filtering1 182 2,607 182 2,716 

TASSEL ABH biparental plugin 182 1,177 182 1,664 

R/QTL missing data filter2 180 1,177 179 1,604 

Discard identical data3 162 877 162 1,246 

Discard linkage groups < 3 SNPs 162 844 162 1,205 

Filter RILs and SNPs for double crossovers4 162 783 158 1,133 

Restoration  162 802 158 1,156 
1Filter to remove RILs with < 20% data present. SNPs were filtered to contain a minimum count of 110 sites (60%) present, minor 

allele frequency (MAF) = 0.25, maximum allele frequency = 0.75, maximum heterozygous proportion = 0.25, and removal of minor 

SNP states (Tassel converts rare SNP states to missing data “N” to remove sequencing errors). 

2Filter to remove RILs with < 50% data present. SNPs were filtered to contain a minimum count of 100 sites (56%).  

3SNPs and RILs with a high proportion of matching information were removed at a threshold of ≥ 80%. 
4SNPs and RILs with > 2 double-crossovers were removed. 
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The final linkage map was constructed using 802 SNPs called by the IWGSC v2.1 

reference sequence distributed across 36 linkage groups representing all 21 chromosomes (Table 

3.13, Table 3.15). Chromosomes 1A, 1B, 2B, 2D, 3A, 3B, 4A, 4B, 5A, 5B, 7B, and 7D were 

split into multiple linkage groups. The linkage map length constructed using the IWGSC v2.1 

reference map was 3498.8 cM, with an average distance between markers of 4.60 cM. The A, B, 

and D genomes contained 350, 351, and 101 markers, respectively. The total map lengths of the 

sub-genomes were 1722.8 cM, 1419.1 cM, and 356.9 cM, respectively. Among the three 

genomes, the D genome had the lowest marker density (0.13 markers cM-1), followed by the A 

genome (0.44 markers cM-1) and B genome (0.44 markers cM-1). 

The linkage map constructed using SNPs called by the Jagger reference map contained 

1,156 SNP markers distributed across 27 linkage groups representing all 21 chromosomes (Table 

3.16). Chromosomes 1B, 1D, 2D, 3B, 5B, 7B, and 7D were split into multiple linkage groups. 

The total map length was 3981.9 cM, with an average distance of 3.50 cM between markers. The 

A, B, and D genomes contained 529, 488, and 139 markers with total lengths of 1943.8, 1534.1, 

and 504.2 cM, respectively. The D genome had the lowest marker density (0.12 markers cM-1), 

followed by the B genome (0.42 markers cM-1) and the A genome (0.46 markers cM-1).  

 QTL Identification  

Given the limited genotype × environment interaction (Table 3.14) and relatively high 

heritability (80%) of the traits, the BLUPs from the combined, multi-location analysis were used 

for QTL identification. Maps based on the SNPs called using the two reference genomes 

generally identified the same genomic regions with the most significant regions on chromosome 

group 2 (2AS, 2BS, 2BL, and 2DL) (Table 1.4 and Table 3.17). Results from both maps showed 

a difference for the 2BL QTLs, which were identified using the IWGSC v2.1 map but not the 
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Jagger map. Looking closely at QTL locations in the IWGSC v2.1 map, many genomic regions 

for IT and SEV overlap except for the 2BL QTL, whose genomic regions are adjacent (Table 

1.4, Figure 1.2). The Jagger map also showed similar overlapping or identical genomic regions 

(Table 3.17, Figure 3.6). Therefore, the QTL regions on 2AS, 2BS, 2BL, and 2DL identified 

using both maps for both traits were consistently named QYr.hwwg-2A, QYr.hwwg-2B.1, 

QYr.hwwg-2B.2, QYr.hwwg-2D, with different QTL regions designated with a different letter 

(e.g., QYr.hwwgIT–2Aa). 

The QTL analysis using the IWGSC v2.1-derived map indicated that Overley contributed 

the favorable alleles (resistance) for IT and SEV at QYr.hwwg-2A (QYr.hwwgIT–2Aa, 

QYr.hwwgSEV–2Aa) and QYr.hwwg-2B.2 (QYr.hwwgIT–2B.2a, QYr.hwwgSEV–2B.2c) as 

indicated by negative values (favorable) of the additive effects of the Overley alleles (Table 1.4). 

The favorable alleles for IT and SEV at QYr.hwwg-2B.1 (QYr.hwwgIT–2B.1a, QYr.hwwgSEV–

2B.1a) and QYr.hwwg-2D (QYr.hwwgIT–2Da, QYr.hwwgSEV–2Da) were contributed by 

Overland, as indicated by positive values (unfavorable) of the additive effects of the Overley 

alleles. The QTL analysis using the Jagger map assigned alleles favorable for resistance at 

QYr.hwwg-2A (QYr.hwwgIT–2Ab, QYr.hwwgSEV–2Ab) and QYr.hwwg-2B.2 (QYr.hwwgSEV–

2B.2b) to Overley and the favorable alleles at QYr.hwwg-2B.1(QYr.hwwgIT–2B.1a, 

QYr.hwwgSEV–2B.1a) and QYr.hwwg-2D (QYr.hwwgIT–2Db, QYr.hwwgSEV–2Db) to Overland 

(Table 1.4 and Table 3.17).  
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Table 1.4. QTLs identified from multi-location BLUPs using MET-QTL analysis for stripe rust IT and SEV response using the 

IWGSv2.1 reference map.  

List of QTLs identified for stripe rust infection type (IT) and severity (SEV) using multi-location best linear unbiased predictors (ML-

BLUP) for both reference genomes. The additive effect is expressed as the effect of the Overley allele.  LOD = log odds ratio; PVE = 

percentage of variance explained. The LOD scores for the reference genomes are 3.29 (IWGSC v2.1; IT) and 3.40 (IWGSC v2.1; 

SEV). 

QTL Response Chr. Marker Interval LOD 
PVE  

(%) 
A

1
 C.I.

2
 P.A.

3
 

QYr.hwwgIT–2Aa IT 2AS 
S2A_13657961 – 

S2A_6171309 
9.7 14.11 -0.32 score 11.5 – 19.5 OY 

QYr.hwwgSEV–2Aa SEV 2AS 

 

S2A_13657961 – 
S2A_6171309 

16.1 25.22 -4.81% 13.5 – 18.5 OY 

QYr.hwwgIT–2B.1a IT 2BS 

 

S2B_51126334 – 

S2B_72963487 

8.8 14.81 0.33 score 37.5 – 47.5 OD 

QYr.hwwgSEV–
2B.1a 

SEV 2BS 

 

S2B_51126334 – 

S2B_72963487 

3.8 5.41 2.23%  35.5 – 47.5 OD 

QYr.hwwgIT–2B.2a IT 2BL 

 

S2B_776572012 – 

S2B_779238540 

5.9 7.91 -0.24 score 173.5 – 179.5 OY 

QYr.hwwgSEV–

2B.2c 
SEV 2BL 

 

S2B_781640346 – 

S2B_784820218 

7.2 9.90 -3.01% 186.5 – 193.5 OY 

QYr.hwwgIT–2Da IT 2DL 
 

S2D_650602042 – 

S2D_650725039 

9.3 13.38 0.31 score 47.5 – 52 OD 

QYr.hwwgSEV–

2Da 
SEV 2DL 

 
S2D_650602042 – 

S2D_650725039 

8.9 12.6 3.39% 47.5 – 52 OD 

1Additive effect of the Overley allele  
2Confidence interval (cM)  
3Favorable parental allele contributing to resistance; OY = Overley OD = Overland. 
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All the QTL regions identified on 2AS (Table 1.4) containing the Lr37-Yr17-Sr38_GBG-

KASP marker may be associated with the 2NvS translocation conferring Yr17. The marker was 

mapped 4.05 cM away from the right interval marker (S2A_6171309) and 8.14 cM from the left 

interval marker (S2A_13657961) of the QTL using the IWGSCv2.1 map. In the Jagger map, the 

2AS QTLs for IT and SEV were on the interval of S2A_20860853 – S2A_6690360. The Lr37-

Yr17-Sr38_GBG-KASP marker is 3.94 cM from the right interval marker (S2A_6690360) and 

2.04 cM from the left interval marker (S2A_20860853). The 2AS QTL is classified as 

QYr.hwwg–2A; they are designated by stripe rust disease type and continuous alphabetic terms 

such as QYr.hwwgIT–2Aa and QYr.hwwgSEV–2Aa. The QYr.hwwg–2A QTLs identified from the 

ML-BLUP data explained a similar proportion of PVE in both maps for IT (14.11% in the 

IWGSC v2.1 map and 14.88% in the Jagger map) and SEV (25.22% in IWGSC v2.1 map and 

26.52% in the Jagger map) (Table 1.4; Table 3.17).    

The 2BS QTL designated as QYr.hwwg-2B.1 explained a greater proportion of the 

phenotypic variance for IT (14.81%) with the IWGSC v2.1 map than that from the Jagger map 

(11.04%). QYr.hwwg-2B.1 explained similar phenotypic variation for SEV (5.41% from the 

IWGSC v2.1 map and 5.28% from the Jagger map). The 2BL QTL, QYr.hwwg-2B.2, explained 

7.91% of the phenotypic variation for IT and was only identified in the IWGSC v2.1 map.  

However, QYr.hwwg-2B.2 was identified for SEV in both maps, with PVE of 9.90% and 7.52% 

using the IWGSC v2.1 and Jagger maps, respectively. The 2DL QTL, QYr.hwwg-2D, was 

identified for both IT and SEV using both maps, with similar PVE identified for IT (13.38% - 

IWGSCV2.1 map; 18.6% Jagger map) using both maps and greater PVE for SEV (12.6% - 

IWGSCv2.1; 14.68% Jagger map) identified using the Jagger map (Table 1.4; Table 3.17).    
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Multi-environment analysis (MET) of QTLs evaluated the size of QTL x Environment (Q 

x E) interaction effects under seven environments (Table 1.5; Table 3.18). Major QTLs identified 

across seven environments using the IWGSC v2.1 map are presented in Table 1.5 and Figure 1.3. 

Similarly, QTLs mapped using the Jagger-derived map are presented in Table 3.18 and Figure 

3.7. Major QTLs are claimed with LOD > 10. The MET analysis identified QTLs on 2A using 

both maps. Using the IWGSC v2.1-derived map, QYr.hwwgIT–2Aa explained 8.75% of the 

phenotypic variation and was not identified using the Jagger map (Table 1.5). QYr.hwwgSEV–

2Aa, which explained a phenotypic variation of 27.40%, was not identified in the Jagger map. 

QYr.hwwgIT–2Ab explained a phenotypic variation of 14.48% and 15.97%, respectively, 

identified in the IWGSCv.2.1 and Jagger map. QYr.hwwgSEV–2Ab explained 5.31% phenotypic 

variation in the Jagger map. QYr.hwwgIT–2Ac, was identified only in the Jagger map with a 

phenotypic variation of 26.94%.  

The MET analysis also identified QTLs on 2B using both reference maps. QYr.hwwgIT–

2B.1a explained 10.37% of the phenotypic variation for IT using the IWGSC v2.1 map ,and 

13.65% of the phenotypic variation for IT using the Jagger map and 5.98% for SEV only in the 

IWGSC v2.1 map. QYr.hwwgIT–2B.1b explained the 7.50% PVE in the IWGSCv2.1 map. 

QYr.hwwgIT–2B.2a, which was only identified in the IWGSCv2.1 map, explained 7.49% of the 

phenotypic variation for IT. Similarly, QYr.hwwgSEV–2B.2a explained 6.79% of the phenotypic 

variation using the Jagger map. QYr.hwwg–2B.2b was only identified with the IWGSC v2.1 map 

with a similar PVE of 5.89% for IT and 7.54% for SEV. QYr.hwwgIT–2Da explained 17.35% of 

the phenotypic variation for IT using the IWGSC v2.1 map. QYr.hwwgIT–2Db and 

QYr.hwwgSEV–2Db were identified using the Jagger map. They explained 21.54% and 19.11% 

of the phenotypic variation, respectively. These QTLs have different marker intervals (physical 
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positions) and confidence intervals. As shown in Table 1.5 and Table 3.18 QYr.hwwgIT–2Da 

(S2D_650602042 -S2D_650725039; 50.5 – 52; IWGSCv2.1) and QYr.hwwgIT–2Db 

(S2D_665681641 – S2D_666306598; 37.5 – 41.5; Jagger) are both located at the distal ends of 

2DL. For SEV, QYr.hwwgSEV–2Da explained 13.35% of the phenotypic variation using the 

IWGSC v2.1 map and 19.11% using the Jagger map (QYr.hwwgSEV–2Db). 

Compared to ICIM ML-BLUP QTL analysis (Table 1.4), ICIM MET analysis (Table 1.5) 

identified more fragmented QTLs across both maps. For example, there were two adjacent QTLs 

for IT on 2A (QYr.hwwgIT–2Aa, QYr.hwwgIT–2Ab), 2BS (QYr.hwwgIT–2B.1a), and 2BL 

(QYr.hwwgIT–2B.2b). ICIM MET analysis also identified an adjacent QTL for SEV on the 2BL.  

Some minor QTLs (PVE ≥ 3%) were also identified in the MET analysis for IT on 1AL, 4AL, 

and 5AL that were not identified in Table 1.4. The MET-QTL analysis also identified minor 

QTLs for SEV on the 3AS, 4BL, 4DL, 5BL, 6BS, and 6AS using the IWGSC v2.1 map. The 

Jagger map also identified minor QTLs for IT on the 2BL, 5AS, 6AS, 2BS, 4AL, and 1BS, and 

for SEV on the 2AS, 2BL, 2BS, 6AL, 5AS, 4AL, and 4BL.    
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Table 1.5. QTLs identified from MET-QTL analysis for stripe rust IT and SEV across multiple locations in the IWGSCv2.1 

reference map. 

List of QTLs identified using the multi-environment trial (MET)-QTL analysis based on permutation LOD: IT (6.64) and SEV (6.48) 

for best linear unbiased predictors for stripe rust infection type (IT) and severity (SEV) in each of seven trials using the IWGSCv2.1 

reference-derived map   LOD = log odds ratio; PVE = percentage of variance explained.  A = additive (main) effect of genotype, A × 

E = additive effect × environment interaction. 

 

QTL Name Resp.
*
 Chr. Marker Interval LOD 

PVE 

(%) 
PVE

1
 PVE

2
 A

3
 C.I.

4
 P.A.

5
 

QYr.hwwgIT–

2Aa 
IT 2AS 

 

S2A_13657985 – 
S2A_13657961 

24.5 8.75 5.01 3.74 
-0.19 

score 

13.5 – 

17.5 
OY 

QYr.hwwgIT–
2Ab 

IT 2AS 

 

S2A_18817759 – 

S2A_21578103 

26.2 14.48 5.20 9.27 
-0.19 
score 

23.5 – 
27.5 

OY 
 

QYr.hwwgSEV–
2Aa 

SEV 2AS 

 

S2A_13657961 – 

S2A_6171309 

81.70 27.40 23.87 3.53 -4.97% 
15.5 – 
17.5 

OY 

QYr.hwwgIT–
2B.1a 

IT 
 

2BS 

 

S2B_51126334 – 

S2B_72963487 

24.6 10.37 7.30 3.06 
0.23 
score 

41.5 – 
47.5 

OD 

QYr.hwwgIT–

2B.1b 
IT 2BS 

 

S2B_80274906 – 

S2B_89895913 

17.6 7.50 2.14 5.36 
0.12 

score 

53.5 – 

59.5 
OD 

QYr.hwwgSEV–

2B.1a 
SEV 2BS 

 
S2B_72963470 – 

S2B_80117186 

18.6 5.98 3.76 2.23 1.97% 
47.5 – 

50.5 
OD 

QYr.hwwgIT–

2B.2a 
IT 2BL 

 
S2B_776572012 – 

S2B_779238540 

19.2 7.49 4.36 3.14 
-0.18 

score 

176.5 – 

178.5 
OY 

QYr.hwwgIT–

2B.2b 
IT 2BL 

 

S2B_778217149 – 
S2B_784550723 

16.2 5.89 2.82 3.07 
-0.14 

score 

181.5–

183.5 
OY 

QYr.hwwgSEV–

2B.2b 
SEV 2BL 

 

S2B_778217149 – 
S2B_784550723 

23.9 7.54 4.32 3.23 -2.11% 
182.5 – 

183.5 
OY 
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QYr.hwwgIT–

2Da 
IT 2DL 

 

S2D_650602042 – 
S2D_650725039 

46.9 17.35 17.11 0.25 
0.35 

score 

50.5 – 

52 
OD 

QYr.hwwgSEV–

2Da 
SEV 2DL 

 

S2D_650602042 – 

S2D_650725039 

42.4 13.35 12.05 1.30 3.53% 
49.5 – 

52 
OD 

 
1PVE due to additive effect (A) 
2PVE due to A x E interaction 
3Additive effect of the Overley allele.  
4Confidence interval (cM) 
5Favorable parental allele contributing to resistance; OY = Overley OD = Overland. 
*Response stripe rust disease trait: IT = Infection Type, SEV = Severity 
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Table 1.6. Additive effects and AX E effects at each of the seven environments for stripe rust using the IWGSCv2.1 reference 

map. 

The A x E effects for IT and SEV resistance across locations associated with QTLs on the IWGSCv2.1 reference map from MET 

analysis, from Table 1.5 and Table 3.18. C.I. =Confidence interval (cM). 

 

 

    A x E  

QTL Name Chr. Unit A CF19 CF20 HZ19 PL19 PL20 RS18 RS19 P.A.
1
 

QYr.hwwgIT–2Aa 2AS score -0.19 -0.14 0.12 -0.07 -0.31 0.11 0.15 0.13 OY 

QYr.hwwgSEV–

2Aa 
2AS percent -4.97 0.29 1.24 0.68 -4.32 1.69 1.17 -0.76 OY 

QYr.hwwgIT–2Ab 2AS score -0.19 0.15 0.16 0.19 0.14 0.17 -0.38 -0.43 OY 

QYr.hwwgIT–
2B.1a 

2BS score 0.23 0.21 -0.05 0.07 0.02 -0.02 0.30 -0.11 OD 

QYr.hwwgSEV–
2B.1a 

2BS percent 1.97 -0.78 0.17 -0.39 0.52 -0.83 -1.95 3.26 OD 

QYr.hwwgIT–

2B.2a 
2BL score -0.18 0.14 0.15 -0.04 -0.06 -0.17 -0.21 0.18 OY 

QYr.hwwgIT–

2B.2b 
2BL score -0.14 -0.19 -0.10 0.14 0.13 0.12 0.10 -0.21 OY 

QYr.hwwgSEV–

2B.2b 
2BL percent -2.11 -1.26 1.83 0.22 -1.53 -3.00 1.90 1.85 OY 

QYr.hwwgIT–

2Da 
2DL score 0.35 -0.04 -0.05 -0.04 0.006 0.05 0.05 0.03 OD 

QYr.hwwgSEV–

2Da 
2DL percent 3.53 0.06 0.50 -0.84 2.35 0.23 -1.46 -0.85 OD 

1Favorable parental allele contributing to resistance; OY = Overley OD = Overland 

*Additive effect of the Overley allele 
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  Additive x environment (AxE) interactions of the major QTL(s) across locations were 

identified using the IWGSVv2.1 map (Table 1.6) and Jagger map (Table 3.19). Using the 

IWGSCv2.1 map, the additive effects of the Overley allele for the IT QTLs (QYr.hwwgIT–2Aa, 

QYr.hwwgIT–2Ab, and QYr.hwwgIT–2B.2a) was negative, indicating more resistance to stripe 

rust. The Overley allele of QYr.hwwgIT–2Aa was most favorable for resistance at PL19, relative 

to all other locations. The Overley allele of QYr.hwwgIT–2Ab was most favorable for resistance 

at RS18 and RS19, relative to all other locations (Table 1.6). The Overley allele of QYr.hwwgIT–

2B.2a was most favorable for resistance at RS18, relative to all other locations. The Overley 

allele of QYr.hwwgIT–2B.2b was most favorable for resistance at RS19 as well, relative to all 

other locations (Table 1.6). The additive effects of the Overland parental allele for the IT QTLs 

(QYr.hwwgIT–2B.1a and QYr.hwwgIT–2Da) were positive, indicating more resistance to stripe 

rust. The Overland allele of QYr.hwwgIT–2B.1a was most favorable at CF19 and RS18 relative to 

all other locations. The Overland allele of QYr.hwwgIT–2Da was most favorable at PL20 and 

RS18 relative to all other locations (Table 1.6). The QTL x E interaction effect did not 

predominate the additive effect for the list QTLs.  

Using the IWGSCv2.1 map, the additive effects of the Overley allele for the SEV QTLs 

(QYr.hwwgSEV–2Aa and QYr.hwwgSEV–2B.2b) were negative, indicating more resistance to 

stripe rust (Table 1.6). The Overley allele of QYr.hwwgSEV–2Aa was most favorable for 

resistance at PL19, relative to all other locations. The Overley allele of QYr.hwwgSEV–2B.2b was 

most favorable at PL20 relative to all other locations (Table 1.6). The Overland allele for the SEV QTLs 

(QYr.hwwgSEV–2B.1a and QYr.hwwgSEV–2Da was positive, indicating more resistance to stripe rust. The 

Overland allele of QYr.hwwgSEV–2B.1a was most favorable at RS19 relative to all other locations (Table 

1.6). The Overland allele of QYr.hwwgSEV–2Da was most favorable at PL19, relative to all other 

locations. 
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Figure 1.2. Linkage maps of IWGSCv2.1 map using ML-BLUPs for stripe rust infection type and severity. 

Linkage maps of chromosome group 2 (2A, 2B, and 2D) using the IWGSCv2.1 map showing QTL peaks for A) IT and B) SEV using 

multi-location BLUPs (ML-BLUP).  

 

A.) Stripe rust infection type 
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B.) Stripe rust severity 
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Figure 1.3. Genetic linkage maps of significant QTLs using MET- analysis for stripe rust IT and SEV using the IWGSCv2.1 

reference map. 

Major QTLs using a linkage map developed from SNPs identified for stripe rust infection type (IT) (A) and severity (SEV) (B) across 

seven trials (MET-analysis; Table 1.5) using the IWGSCv2.1 reference-derived map. 

A.) Stripe rust infection type 
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B.) Stripe rust severity 
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 QTL-associated SNP Assays 

Kompetitive allele-specific PCR (KASP) marker assays were developed by using the 

exome capture marker data (https://wheat-arsks.triticeaetoolbox.org). The 2B KASP assays 

(2BS:53467101 and 2BS:57674889) were most reliable for QYr.hwwgIT–2B.1a and 

QYr.hwwgSEV–2B.1a. In addition, one useful KASP assay was identified for QYr.hwwgIT–2B.2a 

(2BL:770650575) that detects adjacent SNPs at 779821067 in the IWGSC v2.1 reference. The 

2D KASP assays 2D:638369560 and 2D:639534738 were most reliable for QYr.hwwgIT–2Da 

and QYr.hwwgSEV–2Da. Single marker analysis for the effect of these specific SNPs and the 

marker for the 2NvS translocation are shown in Table 1.7. The multiple regression model 

incorporated SNPs for the four primary QTLs on chromosomes 2A, 2B, and 2D, which 

explained 55% of the phenotypic variation for IT and SEV (Table 1.7). All SNP assays are listed 

in Table 3.12. 

https://wheat-arsks.triticeaetoolbox.org/
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Table 1.7. Marker regression analysis for stripe rust IT and SEV. 

Marker regression analyses to predict multilocation best linear unbiased predictors of stripe rust infection type and severity expressed 

as the effect of the Overley allele. Coefficients for multiple regression models were developed using forward-reverse regression 

analysis. Standard errors are shown in parentheses. 

 

 

 

 

 

 

 Single marker regression  

 Infection type (Score) Severity (%) Multiple regression coefficients 

Marker assay R2 Effect R2 Effect Infection type (Score) Severity (%) 

Lr37-Yr17-

Sr38_GBG-KASP 
0.09 

-0.25 

(0.06) 
0.20 

-4.10 

(0.61) 
-0.29 (0.04) -4.61 (0.49) 

2B:53467101 0.08 
0.24 

(0.06) 
0.01 

1.21 

(0.67) 
  

2B:57674889 0.09 
0.33 

(0.06) 
0.02 

1.52 

(0.69) 
0.31 (0.04) 2.17 (0.50) 

2B:770650575 0.04 
-0.18 

(0.06) 
0.08 

-2.77 

(0.68) 
-0.26 (0.04) -3.23 (0.52) 

2D:638369560 0.13 
0.33 

(0.06) 
0.08 

2.99 

(0.76) 
  

2D:639534738 0.20 
0.36 

(0.06) 
0.13 

3.31 

(0.65) 
0.43 (0.04) 4.25 (0.49) 

Intercept     5.57 (0.09) 38.38 (1.03) 

Model R2     0.55 0.55 
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 Discussion 

Our study evaluated genomic regions associated with the IWGSC v2.1 and Jagger 

reference-derived maps. We identified four genomic regions (2AS, 2BS, 2BL, and 2DL) 

associated with field resistance to stripe rust. The QTL analysis using both stripe rust IT and 

SEV generally identified the same genomic regions with a relatively high correlation (r = 0.88) 

between the two traits. Our results showed that Overley contributed the resistance alleles at 2AS 

(QYr.hwwgIT–2Aa, QYr.hwwgSEV–2Aa) and 2BL (QYr.hwwgIT–2B.2a, QYr.hwwgSEV–2B.2c) 

QTL, whereas Overland contributed the resistance alleles at 2BS (QYr.hwwgIT–2B.1a, 

QYr.hwwgSEV–2B.1a) and 2DL (QYr.hwwgIT–2Da, QYr.hwwgSEV–2Da) QTLs. There were no 

meaningful differences in interpreting the data from both maps, beyond the Jagger linkage map 

being longer due to fragmentation within the map. Analysis using the multi-location (average 

across environments) BLUPs presented a more concise interpretation of the genomic regions 

associated with rust resistance than multi-environmental trial analysis. The multi-environment 

QTL analysis presented more fragmented QTL analysis results, which may be indicative of the 

reactive nature of each environment in response to stripe rust field resistance.      

The 2NvS translocation segment from Aegilops ventricosa has been utilized in wheat 

disease-resistant breeding programs since the 1990s (Gao et al., 2020). This segment has been 

known to provide resistance to different diseases such as stem rust, leaf rust, stripe rust, and root 

knot nematode (Meloidogyne spp). The 2AS QTL is associated with the 2NvS translocation 

conferring Yr17. This translocation has been characterized in a recent study using de novo 

assembly in ‘CDC Stanley’ and Jagger that delimited the translocation to a 33 Mb region. Gao et 

al. (2020) outlined the 2NvS translocation to a genomic segment size of 32.53 Mb in Jagger and 

24.64 Mb in Chinese Spring. All SNPs associated with the QTL on 2AS identified in our map 
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were in the distal region of the 2AS, which fits into the 2NvS translocation region. 

Recombination was not observed within the < 24.64 Mb region where the Lr37-Yr17-

Sr38_GBG-KASP marker was mapped in the IWGSC v2.1 map. The Jagger map included 36 

SNPs together with the Lr37-Yr17-Sr38_GBG-KASP marker within the 33 Mb translocation 

region. Gao et al. (2020) determined that the 2NvS translocation does not recombine with the 

wheat chromosome, so any recombination events discovered in our study can be due to 

alignment or sequencing errors when implementing the TASSEL-SNP calling pipeline. The 2AS 

QTLs identified in our study are within the 2NvS translocation region, where the favorable allele 

for resistance is from Overley. Therefore, all 2AS QTLs identified in this 2AS region are the 

QTLs of 2NvS translocation (QYr.hwwg-2A: QYr.hwwgIT–2Aa, QYr.hwwgSEV–2Aa, 

QYr.hwwgIT–2Ab, QYr.hwwgSEV–2Ab, QYr.hwwgSEV–2Ac)  

The 2AS QTLs associated with the 2NvS translocation was important for IT and SEV in 

the Overley × Overland population, although virulence to Yr17 occurred in the pathogen 

population. A similar trend of this QTL was observed in the Jagger × 2174 population (Qyr.osu-

2A) but explained a much larger proportion of the phenotypic variation (80 - 93%) in four U.S. 

environments tested between 2008 and 2010 (Fang et al., 2011). In 2010, a predominant race of 

stripe rust broke the long-effective Yr17 resistance in the U.S. Great Plains. However, a few 

cultivars remained resistant to the Yr17-virulent race (Basnet et al., 2014). The reduced 

effectiveness of the 2AS QTL in our study relative to the earlier study in Jagger × 2174 likely is 

likely due to differences in virulence to Yr17. The findings in our study indicated that resistance 

of the 2AS QTLs is from the 2NvS translocation and could be associated with the Yr17 gene 

continuing to provide effective resistance. The Yr17 gene has not been cloned, and the 2NvS 

fragment has no recombination with wheat. So, the Yr gene may consist of several genes, some 
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lacking resistance but others still resistant. The recent de novo assembly of the 2NvS segment in 

Jagger and ‘CDC Stanley’ (Gao et al., 2020) identified 535 high-confidence genes in this 33 Mb 

segment, among which 58 genes were annotated as containing > 10% nucleotide-binding domain 

leucine-rich repeats (NLRs), and several genes were annotated as ABC transporters which may 

serve as candidates for disease resistance against multiple fungal pathogens. In addition, 

evaluation of NLR genes found that the number of NLR gene(s) in 2NvS (n = 58) was greater 

than that in Chinese Spring (n = 35). Further investigation may determine the specific gene(s) 

within the 2NvS segment that confers the partial APR to Yr17-virulent pathogen populations. 

The 2B chromosome provides a rich source of genes for resistance to the stripe rust 

pathogen. The Catalog of Gene Symbols of Wheat 

(https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp, accessed October 26, 2020) 

lists Yr5 and Yr7, which appear to be allelic (Zhang et al., 2009), Yr27, Yr31, Yr41, Yr43, Yr44, 

Yr53, and Yr72. A meta-analysis of adult plant resistance QTLs (Rosewarne et al., 2013) grouped 

the numerous QTL into four meta-QTL regions, QRYr2B.1 to QRYr2B.4. The QRYr2B.1 region 

is located at the telomere of 2BS, which is not consistent with the location of QYr.hwwg-2B.1. 

The genomic positions of flanking markers of QYr.hwwg-2B.1 (51.3 – 89.89 Mb, IWGSC 

v2.1map) are consistent with the QTL region QRYr2B.2, which is flanked by Xwmc154 (41.2 

Mb, IWGSC v2.1 map), and includes wPt0079 (195.6 Mb, IWGSC v2.1 map). The genomic 

positions of flanking markers of QYr.hwwg-2B.2 (776.6 – 784.8 Mb, IWGSC v2.1 map) are 

consistent with the QTL region QRYr2B.4, which includes WMS526 (Yr7) (782.3 Mb, IWGSC 

v2.1 map). The major QTL in the hard winter wheat TAM 111, QYr.tamu-2BL (Basnet et al., 

2014b), was mapped to the interval 154.3 – 159.7 Mb (Yang et al., 2019). No QTLs were 

identified in this region in the Overley × Overland population. A GWAS on North American 

https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
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winter wheat (Mu et al., 2020) identified APR-associated SNPs at 9 and 47 Mb.  QYr.hwwg-2B.1 

may be related to QYrwww.wgp.2B-2 at 47 Mb. The GWAS analysis did not identify any APR-

associated SNPs in the region of QYr.hwwg-2B.2 identified in our study.  

The named stripe rust resistance genes on 2D include Yr8, Yr16, Yr37, Yr54, and Yr55. 

The SNPs flanking QYr.hwwg–2D was at 650.6 and 650.7 Mb (IWGSC v2.1 map) near the distal 

end of 2DL. This position is consistent with the adult plant resistance gene Yr54 from the spring 

wheat ‘Quaiu’ (Basnet et al., 2014a). The DArT markers wPt-667054 (654.3 Mb, IWGSC v2.1 

map) and wPt-667485 (652.0 Mb, IWGSC v2.1 map) were associated with the QTL QYr.tam-2D 

as well as microsatellite marker Xgwm301 (648.9 Mb, IWGSC v2.1 map) (Somers et al., 2004), 

which was designated Yr54 and explained 49-54% of phenotypic variation. Xgwm301 is located 

at 649Mb, relatively close to the QTLs associated with QYr.hwwg–2D. In our initial map 

construction, the telomeric region of 2DL was eliminated based on filtering parameters, as 

described in the genotyping and map construction section. Still, using the ASMap package, the 

2DL telomeric region was recovered through restoration analysis. This QTL was not identified in 

the GWAS of North American Winter Wheat (Mu et al., 2020).  

The combination of KASP marker assays for the QTLs identified in this study explained 

a substantial proportion of the phenotypic variation (55%) across seven environments. In our 

study, the 2AS and 2DL QTLs generally explained a larger proportion of variance for both 

disease traits using both the Jagger and IWGCS v2.1 reference maps than the QTLs identified on 

2B. The KASP-SNPs associated with QYr.hwwg-2B.1, QYr.hwwg-2B.2, and QYr.hwwg-2D in 

combination with the KASP assay for the 2NvS translocation explained 55% of the phenotypic 

variation for IT and 55% of the variation for severity. The markers designed in this study can be 

used by breeders working with germplasm derived from the Overley and Overland pedigrees.  
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Further efforts to refine the QTL intervals would be challenging for QYr.hwwg-2B.1 and 

QYr.hwwg-2B.2, which have relatively modest and environmentally responsive effects in regions 

with abundant resistance genes. Further efforts to refine the QTL interval for QYr.hwwg-2D 

might be more advantageous due to better environmental stability of this resistance and larger 

effect.   

Our QTL x environment results from MET analysis were significant for both 

IWGSCv2.1 and Jagger reference maps. We identified the same chromosomal arms in both maps 

from this analysis (2AS, 2BS, 2BL, and 2DL). But the key observation from the MET analysis 

was that the QTLs were significantly stronger (LOD > 12; PVE > 10 %) and more fragmented 

than the results from ML-BLUP data. Our results effectively identified environments that 

contributed to the responses of major QTLs for both maps. In addition, this analysis could 

identify which QTL and which environment contributed to the QTLs identified for IT or SEV 

resistance. The 2NvS segment (2AS) for IT and SEV resistance identified strong QTLs using the 

IWGSCv2.1 map in 2019 (CF: IT, RS: IT, PL: SEV). Using the Jagger map, the 2NvS segment 

identified strong QTLs for stripe rust resistance in 2019 (CF: IT) and 2020 (PL: SEV) which had 

more resistance to stripe rust at the respective locations. The 2BS QTLs for IT and SEV were 

strong in 2019 (RS: IT and SEV) using the IWGSCv2.1 map, indicating more stripe rust 

resistance. Using the Jagger map for IT, there was strong stripe rust resistance in 2020 (CF and 

PL) on 2BS. There were no stripe rust SEV QTL identified on 2BS. The 2BL QTLs for IT were 

stronger, indicating more stripe rust resistance in 2018 and 2019 using the IWGSCv2.1 map 

(2018: RS; 2019: RS and CF). For SEV resistance, the QTLs were stronger in 2020 (PL) than in 

2019. Using the Jagger map QTLs for resistance to stripe rust severity were found on 2BL in 

2018 (RS). The 2DL QTLs using the IWGSCv2.1 map were strong for IT resistance in 2018 
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(RS) and 2020 (PL). The 2DL QTLs for SEV resistance were stronger in CF and PL relative to 

all other environments in 2019 than in 2020. Using the Jagger map for IT, the 2DL QTLs were 

stronger in 2018 (RS) than in the other years, and for SEV, the QTLs were stronger in 2020 (CF 

and PL) for stripe rust resistance than in 2018 (RS).  

Conclusion 

We learned two lessons in conducting this analysis.  First, the construction of genetic 

maps using the two alternative reference sequences produced similar resulting final maps.  

Although one of the parents of the population, Overley, has Jagger as a direct parent, the map 

developed on the Jagger reference sequence did not appear to have obvious advantages for this 

population. The second lesson is that it is vital to exercise caution in filtering SNPs before map 

construction. While it is desirable to ensure that SNPs used in map construction are high quality 

and that a parsimonious set of SNPs are used, there is a real risk of losing valuable information 

in filtering. A review of discarded SNPs can be instrumental in retaining valuable information. 

The take-home messages for breeders using the Great Plains germplasm pool are that: 1) 

the 2NvS translocation conferring Lr37-Yr17-Sr38 continues to have additive value for adult 

plant resistance to stripe rust; QTL regions on 2BS and 2BL contribute additive resistance to 

stripe rust; the region defined by QYr.hwwg-2D, also contributes allele(s) for adult plant 

resistance to stripe rust; and 2) The four major QTL regions identified in this study would be 

valuable to retain in combination with new, major gene resistance alleles as part of a long-term 

strategy for durable resistance to stripe rust. 

 

 

 



44 

 

 References 

Alaux, M., Rogers, J., Letellier, T., Flores, R., Alfama, F., Pommier, C., … Quesneville, H. 

(2018). Linking the International Wheat Genome Sequencing Consortium bread wheat 

reference genome sequence to wheat genetic and phenomic data. Genome Biology. 

https://doi.org/10.1186/s13059-018-1491-4 

Baenziger, P. S., Beecher, B., Graybosch, R. A., Ibrahim, A. M. H., Baltensperger, D. D., 

Nelson, L. A., … Bai, G. (2008). Registration of ‘NE01643’ Wheat. Journal of Plant 

Registrations. https://doi.org/10.3198/jpr2007.06.0327crc 

Bariana, H. S., & McIntosh, R. A. (1993). Cytogentic studies in wheat. XV. Location of rust 

resistance genes in VPM1 and their genetic linkage with other disease resistance genes in 

chromosome 2A. Genome. https://doi.org/10.1139/g93-065 

Basnet, B. R., Singh, R. P., Ibrahim, A. M. H., Herrera-Foessel, S. A., Huerta-Espino, J., Lan, C., 

& Rudd, J. C. (2014). Characterization of Yr54 and other genes associated with adult plant 

resistance to yellow rust and leaf rust in common wheat Quaiu 3. Molecular Breeding, 

33(2), 385–399. https://doi.org/10.1007/s11032-013-9957-2 

Basnet, Bhoja R., Ibrahim, A. M. H., Chen, X., Singh, R. P., Mason, E. R., Bowden, R. L., … 

Rudd, J. C. (2014a). Molecular mapping of stripe rust resistance in hard red winter wheat 

TAM 111 adapted to the U.S. High Plains. Crop Science. 

https://doi.org/10.2135/cropsci2013.09.0625 

Basnet, Bhoja R., Ibrahim, A. M. H., Chen, X., Singh, R. P., Mason, E. R., Bowden, R. L., … 

Rudd, J. C. (2014b). Molecular mapping of stripe rust resistance in hard red winter wheat 

TAM 111 adapted to the U.S. High Plains. Crop Science, 54(4), 1361–1373. 

https://doi.org/10.2135/cropsci2013.09.0625 

Bayles, R. A., Flath, K., Hovmoller, M. S., & De Vallavieille-Pope, C. (2000). Breakdown of the 

Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie. 

https://doi.org/10.1051/agro:2000176 

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. 

(2007). TASSEL: Software for association mapping of complex traits in diverse samples. 

Bioinformatics. https://doi.org/10.1093/bioinformatics/btm308 

Broman, K. W., Wu, H., Sen, Ś., & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental 

crosses. Bioinformatics, 19(7), 889–890. https://doi.org/10.1093/bioinformatics/btg112 

Carter, A. H., Allan, R. E., Shelton, G. B., Burke, A. B., Balow, K. A., Hagemeyer, K. E., … 

Klarquist, E. F. (2020). How ‘Madsen’ has shaped Pacific Northwest wheat and beyond. 

Journal of Plant Registrations. https://doi.org/10.1002/plr2.20049 

 

 

https://doi.org/10.1186/s13059-018-1491-4
https://doi.org/10.3198/jpr2007.06.0327crc
https://doi.org/10.1139/g93-065
https://doi.org/10.1007/s11032-013-9957-2
https://doi.org/10.2135/cropsci2013.09.0625
https://doi.org/10.2135/cropsci2013.09.0625
https://doi.org/10.1051/agro:2000176
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1093/bioinformatics/btg112
https://doi.org/10.1002/plr2.20049


45 

 

Chen, J., Chu, C., Souza, E. J., Guttieri, M. J., Chen, X., Xu, S., … Zemetra, R. (2012). Genome-

wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to 

stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Molecular Breeding. 

https://doi.org/10.1007/s11032-011-9590-x 

Chen, X. (2013). Review Article: High-Temperature Adult-Plant Resistance, Key for Sustainable 

Control of Stripe Rust. American Journal of Plant Sciences. 

https://doi.org/10.4236/ajps.2013.43080 

Chen, X. M. (2005a). Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] 

on wheat. Canadian Journal of Plant Pathology. 

https://doi.org/10.1080/07060660509507230 

Chen, X. M. (2005b). Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] 

on wheat. Canadian Journal of Plant Pathology, 27(3), 314–337. 

https://doi.org/10.1080/07060660509507230 

Cruppe, G., DeWolf, E., Jaenisch, B. R., Andersen Onofre, K., Valent, B., Fritz, A. K., & 

Lollato, R. P. (2021). Experimental and producer-reported data quantify the value of foliar 

fungicide to winter wheat and its dependency on genotype and environment in the U.S. 

central Great Plains. Field Crops Research, 273(September), 108300. 

https://doi.org/10.1016/j.fcr.2021.108300 

Fang, T., Campbell, K. G., Liu, Z. Y., Chen, X., Wan, A., Li, S., … Yan, L. (2011). Stripe rust 

resistance in the wheat cultivar Jagger is due to Yr17 and a novel resistance gene. Crop 

Science, 51(6), 2455–2465. https://doi.org/10.2135/cropsci2011.03.0161 

Gao, L., Koo, D. H., Juliana, P., Rife, T., Singh, D., Lemes da Silva, C., … Poland, J. (2020). 

The Aegilops ventricosa 2NvS segment in bread wheat: cytology, genomics and breeding. 

Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-020-03712-y 

Hussain, W., Stephen Baenziger, P., Belamkar, V., Guttieri, M. J., Venegas, J. P., Easterly, A., 

… Poland, J. (2017). Genotyping-by-Sequencing Derived High-Density Linkage Map and 

its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat. Scientific Reports. 

https://doi.org/10.1038/s41598-017-16006-z 

Jaenisch, B. R., de Oliveira Silva, A., DeWolf, E., Ruiz-Diaz, D. A., & Lollato, R. P. (2019). 

Plant population and fungicide economically reduced winter wheat yield gap in kansas. 

Agronomy Journal, 111(2), 650–665. https://doi.org/10.2134/agronj2018.03.0223 

Krasileva, K. V., Vasquez-Gross, H. A., Howell, T., Bailey, P., Paraiso, F., Clissold, L., … 

Dubcovsky, J. (2017). Uncovering hidden variation in polyploid wheat. Proceedings of the 

National Academy of Sciences, 114(6), E913–E921. 

https://doi.org/10.1073/PNAS.1619268114 

Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, 

H., … Keller, B. (2009). A Putative ABC Transporter Confers Durable Resistance to 

Multiple Fungal Pathogens in Wheat. Science, 323(5919), 1360 LP – 1363. 

https://doi.org/10.1007/s11032-011-9590-x
https://doi.org/10.4236/ajps.2013.43080
https://doi.org/10.1080/07060660509507230
https://doi.org/10.1080/07060660509507230
https://doi.org/10.1016/j.fcr.2021.108300
https://doi.org/10.2135/cropsci2011.03.0161
https://doi.org/10.1007/s00122-020-03712-y
https://doi.org/10.1038/s41598-017-16006-z
https://doi.org/10.2134/agronj2018.03.0223
https://doi.org/10.1073/PNAS.1619268114


46 

 

https://doi.org/10.1126/science.1166453 

Kumar, D., Kumar, A., Chhokar, V., Gangwar, O. P., Bhardwaj, S. C., Sivasamy, M., … Tiwari, 

R. (2020). Genome-Wide Association Studies in Diverse Spring Wheat Panel for Stripe, 

Stem, and Leaf Rust Resistance. Frontiers in Plant Science. 

https://doi.org/10.3389/fpls.2020.00748 

Li, H., Ribaut, J. M., Li, Z., & Wang, J. (2008). Inclusive composite interval mapping (ICIM) for 

digenic epistasis of quantitative traits in biparental populations. Theoretical and Applied 

Genetics. https://doi.org/10.1007/s00122-007-0663-5 

Liu, G., Liu, X., Xu, Y., Bernardo, A., Chen, M., Li, Y., … Bai, G. (2020). Reassigning Hessian 

fly resistance genes H7 and H8 to chromosomes 6A and 2B of the wheat cultivar ‘Seneca’ 

using genotyping-by-sequencing. Crop Science, 60(3). https://doi.org/10.1002/csc2.20148 

Maccaferri, M., Zhang, J., Bulli, P., Abate, Z., Chao, S., Cantu, D., … Dubcovsky, J. (2015). A 

genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) 

in a worldwide collection of hexaploid spring wheat (Triticum aestivum L). G3: Genes, 

Genomes, Genetics, 5(3), 449–465. https://doi.org/10.1534/g3.114.014563 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., … DePristo, 

M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Research, 20(9), 1297–1303. 

https://doi.org/10.1101/gr.107524.110 

Meng, L., Li, H., Zhang, L., & Wang, J. (2015). QTL IciMapping: Integrated software for 

genetic linkage map construction and quantitative trait locus mapping in biparental 

populations. Crop Journal. https://doi.org/10.1016/j.cj.2015.01.001 

Milus, E. A., Lee, K. D., & Brown-Guedira, G. (2015). Characterization of stripe rust resistance 

in wheat lines with resistance gene Yr17 and implications for evaluating resistance and 

virulence. Phytopathology. https://doi.org/10.1094/PHYTO-11-14-0304-R 

Mu, J., Liu, L., Liu, Y., Wang, M., See, D. R., Han, D., & Chen, X. (2020). Genome-Wide 

Association Study and Gene Specific Markers Identified 51 Genes or QTL for Resistance to 

Stripe Rust in U.S. Winter Wheat Cultivars and Breeding Lines. Frontiers in Plant Science, 

11(July). https://doi.org/10.3389/fpls.2020.00998 

Patel, R. K., & Jain, M. (2012). NGS QC toolkit: A toolkit for quality control of next generation 

sequencing data. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030619 

Ramirez-Gonzalez, R. H., Uauy, C., & Caccamo, M. (2015). PolyMarker: A fast polyploid 

primer design pipeline. Bioinformatics, 31(12), 2038–2039. 

https://doi.org/10.1093/bioinformatics/btv069 

Rathore, A., & Icrisat, B. U. (2012). Genetic map construction with R / qtl. 1–41. Retrieved from 

http://www.rqtl.org 

https://doi.org/10.1126/science.1166453
https://doi.org/10.3389/fpls.2020.00748
https://doi.org/10.1007/s00122-007-0663-5
https://doi.org/10.1002/csc2.20148
https://doi.org/10.1534/g3.114.014563
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1016/j.cj.2015.01.001
https://doi.org/10.1094/PHYTO-11-14-0304-R
https://doi.org/10.3389/fpls.2020.00998
https://doi.org/10.1371/journal.pone.0030619
https://doi.org/10.1093/bioinformatics/btv069
http://www.rqtl.org/


47 

 

Rosewarne, G. M., Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Lan, C. X., & He, Z. 

H. (2013). Quantitative trait loci of stripe rust resistance in wheat. TAG. Theoretical and 

Applied Genetics. Theoretische Und Angewandte Genetik, 126(10), 2427–2449. 

https://doi.org/10.1007/s00122-013-2159-9 

Sears, R. G., Moffatt, J. M., Martin, T. J., Cox, T. S., Bequette, R. K., Curran, S. P., … Witt, M. 

D. (1997). Registration of ‘Jagger’ Wheat. Crop Science. 

https://doi.org/10.2135/cropsci1997.0011183x003700030062x 

Segall, R. S., Zhang, Q., & Pierce, R. M. (2010). Data mining supercomputing with SAS JMP® 

genomics. WMSCI 2010 - The 14th World Multi-Conference on Systemics, Cybernetics and 

Informatics, Proceedings. 

Singh, R. P., Huerta-Espino, J., Bhavani, S., Herrera-Foessel, S. A., Singh, D., Singh, P. K., … 

Crossa, J. (2011). Race non-specific resistance to rust diseases in CIMMYT spring wheats. 

Euphytica, 179(1), 175–186. https://doi.org/10.1007/s10681-010-0322-9 

Singh, R. P., Huerta-Espino, J., & Rajaram, S. (2000). Achieving Near-immunity to Leaf and 

Stripe Rusts in Wheat by Combining Slow Rusting Resistance Genes. Acta 

Phytopathologica et Entomologica Hungarica. 

Singh, R. P., Mujeeb-Kazi, A., & Huerta-Espino, J. (1998). Lr46: A gene conferring slow-rusting 

resistance to leaf rust in wheat. Phytopathology, 88(9), 890–894. 

https://doi.org/10.1094/PHYTO.1998.88.9.890 

Singh, R. P., & Rajaram, S. (1992). Genetics of adult-plant resistance of leaf rust in “Frontana” 

and three CIMMYT wheats. Genome, 35(1), 24–31. https://doi.org/10.1139/g92-004 

Singh, Ravi Prakash, Huerta-Espino, J., & William, H. M. (2005). Genetics and breeding for 

durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and 

Forestry, 29(2), 121–127. https://doi.org/10.3906/tar-0402-2 

Somers, D. J., Isaac, P., & Edwards, K. (2004). A high-density microsatellite consensus map for 

bread wheat (Triticum aestivum L). Theoretical and Applied Genetics, 109(6), 1105–1114. 

https://doi.org/10.1007/s00122-004-1740-7 

Taylor, A. J., Butler, D., & Taylor, M. J. (2018). Package ‘ ASMap .’ 

Taylor, J., & Butler, D. (2017). R package ASMap: Efficient genetic linkage map construction 

and diagnosis. Journal of Statistical Software, 79(Stam 1993). 

https://doi.org/10.18637/jss.v079.i06 

Wan, A., & Chen, X. (2014). Virulence characterization of puccinia striiformis f. Sp. tritici using 

a new set of yr single-gene line differentials in the united states in 2010. Plant Disease, 

98(11), 1534–1542. https://doi.org/10.1094/PDIS-01-14-0071-RE 

William, M., Singh, R. P., Huerta-Espino, J., Ortiz Islas, S., & Hoisington, D. (2003). Molecular 

marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust 

https://doi.org/10.1007/s00122-013-2159-9
https://doi.org/10.2135/cropsci1997.0011183x003700030062x
https://doi.org/10.1007/s10681-010-0322-9
https://doi.org/10.1094/PHYTO.1998.88.9.890
https://doi.org/10.1139/g92-004
https://doi.org/10.3906/tar-0402-2
https://doi.org/10.1007/s00122-004-1740-7
https://doi.org/10.18637/jss.v079.i06
https://doi.org/10.1094/PDIS-01-14-0071-RE


48 

 

resistance gene Yr29 in wheat. Phytopathology. 

https://doi.org/10.1094/PHYTO.2003.93.2.153 

Yang, Y., Basnet, B. R., Ibrahim, A. M. H., Rudd, J. C., Chen, X., Bowden, R. L., … Liu, S. 

(2019). Developing KASP markers on a major stripe rust resistance QTL in a popular wheat 

TAM 111 using 90K array and genotyping-by-sequencing SNPs. Crop Science, 59(1), 165–

175. https://doi.org/10.2135/cropsci2018.05.0349 

Zhang, P., McIntosh, R. A., Hoxha, S., & Dong, C. (2009). Wheat stripe rust resistance genes 

Yr5 and Yr7 are allelic. Theoretical and Applied Genetics, 120(1), 25–29. 

https://doi.org/10.1007/s00122-009-1156-5 

Zhu, T., Wang, L., Rimbert, H., Rodriguez, J. C., Deal, K. R., De Oliveira, R., … Luo, M. C. 

(2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome 

assembly. Plant Journal, 107(1), 303–314. https://doi.org/10.1111/tpj.15289 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 - Review of Genetic Architecture of Wheat Yield 

Components 

 

https://doi.org/10.1094/PHYTO.2003.93.2.153
https://doi.org/10.2135/cropsci2018.05.0349
https://doi.org/10.1007/s00122-009-1156-5
https://doi.org/10.1111/tpj.15289


49 

 Introduction 

Bread wheat (Triticum aestivum L) is an allohexaploid species derived from two 

hybridization events and has evolved through ancient human migration across the world 

(Balfourier et al., 2019). The dispersion of wheat across Europe and Asia led to domesticated 

wheat populations adapting to local environments, producing landraces. In the past two 

centuries, breeding programs were developed in Europe and Asia to improve these landraces. 

(Balfourier et al., 2019). Wheat is a major staple food crop that provides 20% of energy and 

protein in the human diet globally. But, there will be a tremendous increase in food demand by 

2050 due to population growth, socio-economic needs, and dietary changes (Crespo-Herrera et 

al., 2018).  

In wheat, grain yield (GY) is the product of plant density, tiller number, number of spikes 

per plant, spikelet number per spike (SNS), grain number per spike (GNS), and grain weight 

(GWT) per unit of land area (https://smallgrains.ucanr.edu/Growth_-

_Development/Yield_Components/ ; Slafer et al., 2022). These components of GY can be 

associated with pleiotropic factors such as plant height (PHT), flowering time (FT), and 

physiological maturity (PMAT) (Chen, 2005b; Slafer et al., 1990; Trachsel et al., 2017). The 

genetic architecture of these traits affects the individual components of GY. Individual 

components of GY can be defined as spikes per area, GNS, and average GWT, which all have 

relatively high heritability (Zhang et al., 2018). Therefore, understanding the underlying genetic 

mechanisms these yield (YLD) components is essential to increasing GY and satisfying food 

demands (Fischer, 2008; Serrago et al., 2013; Slafer et al., 2014). Characterizing the phenotypic 

expression of these traits in different genetic backgrounds can make it possible to identify better 

performing cultivars. In addition, this characterization can determine how each YLD-related trait 

https://smallgrains.ucanr.edu/Growth_-_Development/Yield_Components/
https://smallgrains.ucanr.edu/Growth_-_Development/Yield_Components/
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contributes to the genetic improvement of YLD. Many QTL studies have identified genomic 

regions that contribute to the phenotypic expression of YLD-related traits (Cao et al., 2020; 

Dubcovsky et al., 2006; Li et al., 2019; Maccaferri et al., 2008; Muhammad et al., 2020; Naruoka 

et al., 2011; Tyagi et al., 2015). In this review, we will discuss the findings of these studies to 

explain the genetic architecture of YLD components. 
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Table 2.1. Equations to Characterize Yield and Yield Components. 

Equations modified from Acquaah, G. (2009). Principles of plant genetics and breeding. John Wiley & Sons. 

Equation No. Equation Details 

 

[1.0] 

 

 

𝐺 ∗ 𝑊

 𝐴
=

𝐺𝑛

 𝐴
 ×  

 𝑊

 𝐺𝑖
 

 

G*W = grain weight; A = unit area; Gn = number of grains; Gi = 

individual grain; W = Weight.  

Yield in this equation is measured by grain weight per unit area 

focusing on the number of grains per unit area as the object of 

measurement. 

 

[1.1] 

 

 

 
𝐺𝑛

𝐴
=

𝑆𝑝

𝐴
×

𝐺𝑛

𝑆𝑝
 

 

Gn = number of grains; A = unit area; Sp = number of spikes. 

Yield is measured by the number of grains per unit area. Yield in 

this equation uses the wheat spike density and prolificacy to 

measure the number of grains per unit area. 

 

 

 

 

[1.2] 

 

 

 

 
𝐺𝑛

𝑆𝑝
=  

𝑆𝑝𝑙

𝑆𝑝
 × 

𝐺𝑛

𝑆𝑝𝑙
 

 

Gn = number of grains; Sp = number of spikes; Spl = number of 

spikelets. 

Yield in this equation is using the wheat spike and spikelet 

structures to measure the number of grains per spike. 

 

[1.3] 

 

 

 

 
𝐺 ∗ 𝑊 

 𝐴
=

𝑃

𝐴
 ×  

𝑆𝑝

𝑃
×

𝑆𝑝𝑙

𝑆𝑝
 × 

𝐺𝑛

𝑆𝑝𝑙
  × 

 𝑊

 𝐺𝑖
 

 

 

 

G*W = grain weight; A= unit area; P = number of plants; Sp = 

number of spikes; Spl = number of spikelets; Gi = number of 

grains; W = weight.  

Yield in this equation combines all previous variables described in 

equations [1.0] - [1.2] to measure the grain weight per unit area. 
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 Genetic Architecture of Grain, Spikelet, and Yield Components 

Grain development in wheat begins with fertilizing the ovary, a maternal structure 

containing the ovule, and ends with the mature grain. The ripe grain is comprised of three 

primary tissues, the embryo, endosperm, and maternal outer layers (Brinton et al., 2019). These 

tissues contain large amounts of starch, proteins, and other nutrients accumulated during grain 

development (Brinton et al., 2019). Nutrient uptake efficiency also plays a role in grain 

development and improvement in GY. Nutrient uptake efficiency depends on the crop root traits 

and nutrient mobility in the soil (Thorup-Kristensen, 2001). Two complementary characteristics 

in the root system regulate the efficiency of nutrient distribution within a crop—first, the 

capacity of the root to explore the soil profile (rate of root-soil penetration). The second is the 

roots' ability to capture nitrogen (e.g., nitrogen uptake per unit root length) (Rasmussen et al., 

2015).  Winter wheat roots reach a depth of  2.2 m due to an extended growth period (Thorup-

Kristensen et al., 2009; Rasmussen et al., 2015). Breeding to improve nutrient uptake efficiency 

by targeting thinner roots would have more capacity to extract nutrients and enhance the grain 

development traits such as GWT (Aziz et al., 2017). The importance of acquiring nutrients by 

using the wheat roots system is defined by three main mechanisms: (i) mass flow, which is 

mainly dependent on water flow and soil solution concentration, and (ii) diffusion, which is 

dependent on soil characteristics such as soil buffer capacity, porosity tortuosity, water content 

and the concentration gradient from soil particles to root surface, and (iii) the rhizosphere effect, 

which is particularly vital for the interaction between crop roots, soil, and microorganisms 

(Slafer et al., 2020). Nutrient accumulation in wheat tissues is divided into two groups based on 

biomass accumulation. Group I: N, P, K, S, Ca, and Fe accumulate in advance to biomass, and 

group II: Mg, Zn, Cu, Mn, and B are delayed in early developmental stages based on the 
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availability of the element in the soil (Slafer et al., 2020). At anthesis, 70%, 80%, and 90% of the 

total N, P, and K uptake has occurred (Clarke et al., 1990; Malhi et al., 2007). 

Flowering time, measured at 10.5.1-10.5.3 on the Feekes scale, typically occurs after the 

head has fully emerged and lasts 3-5 days. Grain development, which is characterized by the 

grain filling (Feekes 10.5.4 – 11.3) and grain ripening stages (Feekes 11.4), continues during the 

days post-anthesis (DPA) (White et al., 2008). In early DPA, the grain increases in size relative 

to the ovary. At this early stage, cytokinin levels are highest, which initiates a phase of rapid cell 

division (Hess et al., 2002). Trehalose-6-Phosphate (T6P), a sugar metabolite that regulates 

growth and development in response to assimilate availability, is also at very high levels in the 

grain tissue during the pre-grain filling and early grain development stages (Martínez-Barajas et 

al., 2011; O’Hara et al., 2013).  

After the basic structure of the grain has been established, the grain filling period begins. 

The grain-filling period can be divided into four phases that evaluate the dynamics of grain 

growth post-pollination  (Loss et al., 1989; Malloch et al., 1986; Slafer et al.,  2020). The first 

phase in grain development is either the “lag phase” (a delay in starting growth), “grain set 

phase” (pollinated fertile florets may abort immediately after anthesis), or “watery ripe” (grain 

water uptake drives a rapid increase in volume (> 70%)) phase (Slafer et al., 2020). In this phase, 

cell division and endosperm development occur first, with the embryo's development later 

(Slafer et al., 2020). First, the endosperm creates the sink strength for each grain by producing 

the endosperm cells where dry matter is accumulated during grain filling. Then, grain weight 

potential (GWP) is established by the size of the ovary, which is determined by the number of 

endosperm cells and the volume of each grain (Slafer et al., 2020). 
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The second phase of grain development (“milky ripe”) shows a strong liner relationship 

with GWT increasing dramatically. The water content of the grains has stabilized, and > 70% of 

the grain is starch, which is the driving force for grain growth (Slafer et al., 2020). Protein in the 

grain structure is only essential for grain quality, and complex carbohydrates are a source of 

dietary fibers developed in this phase (Slafer et al., 2020). The third phase of grain development 

(“dough grain”) is the final stage, where the accumulation of dry matter and water content begins 

to decrease. This phase reaches completion when PMAT is reached, which is the state when the 

dry matter has peaked and the grain enters a quiescent state (Malloch et al., 1986). 

 The simplified calculation of GY is the product of grain number (GN) per unit area and 

grain size (GS), which has a positive correlation to grain weight (GWT) (Fischer, 2008; Li et al., 

2017; Sinclair et al., 2006). Therefore, YLD improvement depends on the relationship between 

GWT and GN in all cereal crops. Grain weight is the simplest component to measure for GY, as 

explained by equation [1.0] (Table 2.1). It can be further defined by its sub-components, 

including carpel size, grain morphological parameters (length, width, height), and the dynamics 

of grain development that influence grain filling rate (Brinton et al., 2019; Slafer, 2007; Xie et 

al., 2015). Typically, a wheat spike consists of 15-20 spikelets, each containing two glumes and a 

variable number of florets. Each floret consists of a lemma and palea, encompassing the carpel 

and stamens, fertilizing to produce grain (Brinton et al., 2019; Slafer et al., 2020). Grains can 

vary in the developmental stage, weight, number, and fruiting efficiency when comparing 

different spikelets and even within individual spikelets of the same spike (Philipp et al., 2018). 

Variation in GWT can be due to the developmental rate of the spike and spikelet structures and 

competition for resource availability – although wheat is rarely sink-limited (Borrás et al., 2004). 

Not all spike and spikelet structures initiate or develop simultaneously. The time frame for 
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developing these structures can vary by day(s) or week(s), varying among cultivars. But, the 

general rule is that spike growth takes place approximately three weeks before anthesis  (Kirby et 

al., 1987; González et al., 2003a). During this short period of spike development, florets have 

completed their development, presenting a strong correlation between the number of fertile 

florets and spike dry matter during anthesis (Slafer et al., 2020). After anthesis, grains become 

the major sink as reserves have accumulated to fill the grains (Slafer et al., 2020). Spike and 

spikelet development usually progresses bi-directionally, initiating from the center of the spike. 

Grains in the central spikelets are higher in GWT than in the remaining structure (Brinton et al., 

2019). Floret development in a single spikelet can also present GWT variation. The floret 

structure develops sequentially and uni-directionally from the bottom up with alternating sides 

on the spikelet meristem (Brinton et al., 2019). In this structure, florets produced later develop 

smaller grains than the bottom basal floret that carries the larger grains. Previous studies have 

identified a strong association between carpel size and GWT (Brinton et al., 2019).  

Different genes and molecular functions characterize GS and GWT by regulating cell 

numbers, which can affect cell size.  For example, the GW2 gene controls GS by hindering rice 

and wheat cell division. The cell size reduction occurs due to the interaction with DA1, a 

downstream target of the Arabidopsis GW2 ortholog that negatively regulates cell number, and 

the two genes work together to influence GS (Dong et al., 2017; Song et al., 2007; Xia et al., 

2013). Cell size can be modified directly or indirectly with different proteins or genes. For 

example, XTH is a gene that results in cellular expansion, and expansins are proteins that loosen 

the plant cell wall. They affect grain length in some cereal crops by disrupting the structural 

framework in cells. Simmonds et al. (2016) performed a study evaluating the gw2-A1 mutant 

allele that shifted GS in tetraploid and hexaploid wheat across 13 experiments. A fundamental 
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discovery in this study is that TaGW2 increases the carpel size by 10% in the A-genome mutant 

lines compared to the wild-type lines, increasing final GWT. Plant cell death (PCD) is also a 

factor involved in grain development in various tissues and stages of growth. For example, PCD 

plays a crucial role in enlarging the pericarp to supplement endosperm growth (Radchuk et al., 

2018; Radchuk et al., 2011). In wheat, the size of the maternal outer layer tissues determines the 

final GS and allows for a greater capacity for grain filling (e.g., increased sink strength) 

(Adamski et al., 2009; Brinton et al., 2017; Calderini et al., 1999; Hasan et al., 2011; Xie et al., 

2015).   

Grain number (GN) is defined as the number of grains m-2 and is one of the most critical 

determinants of YLD in wheat (Abbate et al., 1995). Grain number can be increased genetically 

by modifying day length phases, influencing GN determination, and increasing YLD in various 

environmental conditions (Ochagavía et al., 2021). Grain number tends to be correlated with 

growth conditions that favor growth in the 20-d period preceding flowering plus the subsequent 

10-d period post-flowering (Fischer, 1985; Miralles et al., 2000; Slafer et al., 2001). 

Furthermore, GN can reflect the availability and accumulation of resources such as carbon and 

water, affecting the development of different plant structures. Complex G × E × M interaction 

driving greater availability of plant-development resources can result in greater tillering ability, 

resulting in more fertile tillers, spike number, and GN (Jaenisch et al., 2022). The positive trend 

of these traits can all increase GY (equation [1.3], Table 2.1). The same factors may control GN 

and YLD as both positively correlate. Furthermore, based on equation [1.3] (Table 2.1), GY is 

expected to increase as GWT and GN increase under ideal conditions. But, studies have shown 

that intra-plant competition, genetic variability among cultivars, and nutrient and water 

availability can affect the balance among these GY-related variables, many times resulting in a 
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trade-off where increased GN reduces GWT (Fischer, 2008; Sinclair et al., 2006; Sinclair et al., 

2004).   

Only florets that develop fully functioning floral organs (pollen and ovules) at the time of 

spike emergence can potentially develop grains (Langer et al., 1973; Sibony et al., 1988). 

Nitrogen use has shown to influence GN and GNS as it has a major role in reproductive 

development. Fischer (1993) showed a high correlation (r2 = 0.94) between nitrogen 

accumulation at 50% anthesis and GN. High nitrogen levels can expedite the rate of spikelet 

development, floret initiation, and GNS. Sibony (1988) showed that nitrogen fertilizer treatments 

increased florets and GNS. Demotes-Mainard et al. (1999, 2004)  also presented similar findings 

between GNS and spike nitrogen which had high correlations. 

There have been reports on QTL studies involved with GN. Lin et al. (2021) performed a 

QTL mapping study for GNS using a high-density genetic map using a RIL population of ‘H461’ 

x ‘Chinese Spring’ where H461 had high GNS, and Chinese Spring had low GNS. The mapping 

population was genotyped using a 55K SNP array that produced a genetic map containing 21,197 

SNPs with markers spanning the wheat genome with a total linkage of 3792.7 cM. Three QTL 

were identified for GNS, one on 2B (QGns.sicau-2B) and two on 2D (QGns.sicau-2D-1 and 

QGns.sicau-2D-2), where the alleles for increasing GNS came from H461. The phenotypic 

variation of these three QTLs ranged from 3.07 % - 26.57 %, out of all the QTLs QGns.sicau-

2D-2 (222.96 cM – 229.64 cM) presented the highest phenotypic variation of 19.59% – 26.57%. 

Other previously reported grain number genes have been on 2A (GNI-A1), 2B (GNI-B1: 

573,974,813 bp – 573,975,706 bp), and 2D (GNI-D1: 490,117,188 bp – 490,117,827 bp). The 

different locations of the QTLs indicate that they are novel loci. Zhai et al. (2018) performed a 

fine-mapping study identifying a novel allele of TaGW2-A1, which had pleiotropic effects on 
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TGW, GNS, and other grain parameters. The gene produced an inverse relationship between 

GWT (increases) and GN (decreases). In this study, 191 RILs were evaluated, and genomic 

regions were identified on chromosomes 1B, 3A, 3B, 5B, 6A, and 7A. The QTL of interest was 

on the 6A (QTgw/Gns.cau-6A), which was mapped at an interval < 0.538 cM using NILs. The 

NILs showed that TGW increased by 8.3%, and GNS decreased by 3.1% due to the 6A QTL, 

QTgw/Gns.cau-6A. Grain Weight 2 (TaGW2-A1) is a gene that negatively regulates TGW, and 

grain width was near QTgw/Gns.cau-6A. As TGW increases, the promoter activity of TaGW2-A1 

decreases, and the trade-off between TGW and GNS can help develop cultivars with 

higher/lower TGW or GNS (Zhai et al., 2018). 

Average GWT is an essential element of YLD, and agronomic characteristics such as 

seedling vigor can affect grain and embryo size (Richards et al., 2002; Slafer et al., 2020). 

Average GWT is linked to grain weight potential (GWP), is defined as the intrinsic capacity of 

grains to accumulate dry matter (Bremner et al., 1978). In wheat, the grain growing period is 

between anthesis and PMAT (Slafer et al., 2020). The simplest way to evaluate GWP is through 

the characterization of the rate and duration of dry matter accumulation in grain in the absence of 

growth restrictions (pests, disease, and other stresses) (Slafer et al., 2020). Variation in GWP is 

due to the variation in the rate of grain filling during the duration from anthesis to PMAT 

(Asanar & Williams, 1965; Calderini & Reynolds, 2000; Loss et al., 1989; Millet & Pinthus, 

1984; Miralles et al., 1996; Wardlaw et al., 1994). Other components that influence GWP are 

tissue structures of grain development in wheat  (Brinton et al., 2019). Studies have shown that 

final GWT is associated with endosperm cell number (Brocklehurst, 1977), which supports the 

concept of the capacity of the grain to accumulate carbohydrates into the inner tissues, which 

regulates GWP (Slafer et al., 2020). In addition, there is also an association between GWT and 
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the volume of the floret cavity, which indicates that the development of maternal tissues could 

affect the growth of the endosperm (Millet, 1986). The relationships between final GWT, ovary 

size, and endosperm cell number as components of GWP are not mutually exclusive due to 

endosperm cell division which starts at the pericarp (Slafer et al., 2020). This relationship 

indicates that the number of endosperm cells is linked to the size of the pericarp and the internal 

volume delimited by the pericarp, which impacts GWT and GY (Brinton et al., 2019; Hasan et 

al., 2011; Kino et al., 2020). 

Yield, the product of the number of grains per m2 and average GWT, has a unique 

relationship with the YLD components (Slafer et al., 2020). Due to trade-offs between the YLD 

components, the components are not independent. Improving one YTC will not neccesarily  

increase net GY. The elements contributing to the feedback mechanism are the overlapping GN, 

potential GWT, grain set, and storage of water-soluble carbohydrates that fill the grains (Slafer et 

al., 2020). The lack of feedback is due to competition, which can arise due to a short supply of 

assimilates to meet the demands of growing grains. Through this process, the final GWT reflects 

the availability of resources pre-grain set and the rate of grain growth during the grain filling 

stage will be reflected based on the avaliabilityof assimilates(Acreche & Slafer, 2006; Miralles et 

al., 1995). Any increase in grain (increasing grain number per m2) would result in smaller grain 

if at a distal position within spikelets or a lower-rank spike (Slafer et al., 2020). The strength of 

the sink and sources during grain filling impact the positive relationship between GY and GN. 

Wheat may have evolved to a conservative strategy to handle high source:sink ratio  (Borrill et 

al., 2015; Reynolds et al., 2005; Serrago et al., 2013; Borrill et al., 2015) that would guarantee 

grain fill and viable GS in majority circumstances (Sadras, 2007; Sadras & Slafer, 2012). Yield 
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can therefore increase if the number of grains is improved without any hindrances to the size of 

the grains and vice versa if GS improves without any restrictions to GN (Slafer et al., 2020). 

Several studies have evaluated grain traits, such as GWT and GS, which are important 

when characterizing GY. Gaining a deeper understanding of the genetic architecture of different 

grain traits can aid the development of robust breeding programs for crop yield improvement. 

Tyagi et al. (2015) performed MQTL (Meta Quantitative Trait Loci) analysis using 16 published 

QTL studies that evaluated grain traits in > 30 different mapping populations, identifying 322 

QTLs across all wheat chromosomes. The distribution of these QTLs across the sub-genomes 

was reported as follows A and B (~40%) genomes than the D (20%) genomes. In addition to the 

MQTL analysis, an ICIM analysis evaluated GWT and other grain traits using a ‘Rye Selection 

111’ x Chinese Spring RIL population (n = 92). The ICIM (Interval Composite Interval 

Mapping) analysis identified 45 QTLs across 19 wheat chromosomes; 19 QTLs for grain traits 

were identified on 2A,3B, 6B, 6D, 7A, and 7D. For the MQTL analysis, 80 individual QTLs that 

were previously identified mostly on the 1B, 2A, 2D, 3B, 4A, 5A, 6A, and 6B chromosomes 

across these studies were used. The QTLs for all the traits were on the following chromosomes: 

grain length (1B, 2A, 2B, 3A, 3B, 5A, 6B, 7A, 7B), grain width (1D, 2A, 3B,6B,6D,7D), grain 

surface area (2A, 2B, 3B, 4B,5A, 5B, 6D, 7A), grain volume (2A, 4B, 6A, 7D), grain vertical 

perimeter (2B, 3B, 5D, 7D). The PVE for the traits measured in this study ranged from 6.97 % 

(grain length) to 29.87 % (grain surface area). From these 80 QTLs, those with sufficient 

information were integrated to produce 23 MQTLs. Out of 23 MQTLs that were identified in this 

study, only 17 MQTLs were useful, 2A (4), 5A (3), 1B (2), 2D (2), 4A (2), 6A (2), 3B (1), 6B 

(1). Six MQTLs identified were associated with resistance to Yr, Lr, FHB, tan spot, GWT, and 

PHT (Tyagi et al., 2015; Zhang et al., 2010).  MQTL4 (2A: GWT; Huang et al., 2003; Wang et 
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al., 2009), MQTL8 (2D: Lr22a; Zhang et al., 2010 ), MQTL 20 (6A: GWT, size, TGW; 3.51cM 

away from Tagw2-6A; Mir et al., 2012; Su et al., 2011; Yang et al., 2007).  

 Zhang et al. (2018) evaluated YLD and YLD-related traits in the GWAS (Genome-Wide 

Association Study) study, including GY, SNS, GNS, and GWT (Refer to List of Abbreviations). 

A total of 14 QTLs were validated for GY, 15 for SNS, one for GNS, and 11 for GWT. Grain 

yield QTLs were identified on the 1A, 1B, 1D, 3A, 3B, 4A, 4B, 5A, and 6B across two 

environments, full irrigation and terminal drought conditions (H2
irr = 0.68; H2

dry = 0.47). Grain 

weight QTLs were identified on 2A, 2B, 4A, 5A, 5B, 6A, 6D, 7D (H2
irr = 0.86; H2

dry = 0.83). 

Spikelet number per spike QTLs were identified on 1A, 1B, 2B, 3D, 4B, 5A, 5B, 6A, and 7A 

(H2
irr = 0.84; H2

dry = 0.59). Grain number per spike QTLs were identified only on 6A (H2
irr = 

0.64; H2
dry = 0.40). 

Genetic studies on cereal crops have reported many QTLs and genetic regulatory 

pathways responsible for GS. More than 40 genes have been identified, and these genes have 

primarily been associated with three genetic pathways: proteasomal degradation, G-protein 

signaling, and phytohormone signaling (Li et al., 2015; Orozco-Arroyo et al., 2015; Zuo et al., 

2014). In addition to these pathways, new genes have been identified for grain traits such as GS, 

GWT, and grain length (GL). Genes identified for these traits include GS2 (Hu et al., 2015), GS5 

(Li et al., 2011), GLW7 (Si et al., 2016), GW5 (Duan et al., 2017; Weng et al., 2008), GW7 

(Wang et al., 2015), GW8 (Wang et al., 2012) in rice.  At the cellular level, genes that could 

result in increased GS due to an increase in cell number within the grain structure of rice are GS5 

(Li et al., 2011), FER (Yu et al., 2014), and GLW7 (Si et al.2016), and GS2 (Hu et al. 2015). 

Grain size in wheat has shown variation across different cultivars and morphological subspecies 

through domestication due to significant genes and QTLs (Gegas et al., 2010). Recent studies 
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have identified wheat homologs of rice GS through QTL and association mapping studies that 

increase GWT and GS. These homologs are GW2, TaGW2-6A, and TaGW2-6B (Jaiswal et al., 

2015; Qin et al., 2014; Su et al., 2011) and TaGW2 RNAi transgenic wheat (Hong et al., 2014), 

which increase GS and GW. 

 Increases in YLD tend to be associated with modifying the number and arrangement of 

spikelets on a plant (Boden et al., 2015; Brinton & Uauy, 2019; Gustavo A. Slafer et al., 2020; 

Zhou et al., 2021). Multiple genes that control spikelet development have been identified in other 

cereal crops such as maize, rice, and barley (Ashikari et al., 2005; Boden et al., 2015; Miura et 

al., 2010; Ramsay et al., 2011; Vollbrecht et al., 2005). The physical architecture of the wheat 

spike is characterized as unbranched with single spikelets at opposite ends of the central rachis in 

alternating phyllotaxy, with a terminal spikelet at the distal end of the spike. The spikelet is 

indeterminate and typically has three to four fertile florets (Boden et al., 2015). The acquisition 

and distribution of photoassimilates determine GY assimilates in sink organs. Sink size is 

influenced by the signaling networks regulating sink strength and source resources. Sink size is 

typically characterized by SNS, GNS, and GWT. The variation in GY due to these components is 

described by equations [1.1] and [1.2] (Table 2.1). Spikelet number per spike is determined by 

the number of lateral spikelet meristems generated by the spike meristem before it proceeds to 

terminal spikelet formation (Ma et al., 2019). Environmentally, SNS can be affected by levels of 

nitrogen nutrition, day length, temperature, light intensity, duration of spike development, and 

plant spacing (Ma et al., 2019). Day length and temperature also influence spike length and 

spikelet number. The genetic influence of these environmental factors is regulated by Ppd, Vrn, 

and Eps genes which secure the reproductive success of wheat. Typically, a long spike combined 

with proper climate conditions promotes the initiation of more spikelets. Studies have already 
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discovered genes (e.g., Ppd-1, TEOSINTE BRANCHED 1, and FRIZZY PANICLE) that influence 

the spike or spikelet architecture (Boden et al., 2015; Dobrovolskaya et al., 2015; Dixon et al., 

2018). Spikelet number per spike can be influenced by the TtBH-A1, which controls the spike-

branching phenotype that can support SNS and potentially increase GNS and GY. But this 

depends on spikelet fertility, the development of reproductive organs, and environmental 

conditions. Grain number per spike is affected more by the abortion of florets and grains in the 

latter part of the growing season. The strength of these traits is driven by high heritability 

associated with them, average SNS (H2 = 0.84), and GNS (H2 = 0.64) (Kuzay et al., 2019;  

Zhang et al., 2018). More spikelets will produce more grains for a single spikelet with fertile 

florets. But, the increase in SNS may potentially reduce GWT due to two distinct reasons: (i) due 

to physiological conditions where a single grain assimilates fewer nutrients, as increased SNS 

compliments increased GNS due to competition with nutrients under nutrient-limited conditions 

(Pinthus et al., 1978), or (ii) due to a greater number of grains developed in distal positions of the 

spike and spikelets, which are naturally smaller, concomitantly reducing GWT due to a greater 

proportion of smaller grains.    

Boden’s (2015) study on structural features involved in spikelet development indicated 

that regulatory pathways might contribute to the spikelet structure. Comprehensive QTL analyses 

with a four-way, multi- paired advanced intercross generation MAGIC (Multiparent advanced 

generation intercross) population and a 90K SNP array identified 104 QTLs (> 80%). These 

QTLs were refined to evaluate only 18 QTLs with co-located markers associated with paired 

spikelets. Robust QTLs were designated with a high LOD score and appeared across multiple 

locations. These QTLs were identified on 1B, 2D, 3A, 5B, with 2D being the strongest (LOD = 

11.32). The QTL on the 2D was associated with the Ppd-D1 gene.   
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 Kuzay et al. (2019) identified three significant QTLs for SNS on 2BS, 7AS, and 7AL 

from the ‘Berkut’ x ‘RAC875’ population. All QTLs had LOD > 2.0 and had significant (p-value 

< 0.05) interactions among the QTLs were not significant.  The 7AL QTL contains a candidate 

gene (87 kb) flanked by Treas1400-I4V and IWA5913 markers. The QTL is responsible for SNS, 

whose genetic contribution is explained by the WAPO-1 gene, identified as a wheat ortholog of 

rice gene APO-1. Other GWAS studies have identified associations between GNS and SNS. 

Reports on QTLs associated with SNS were found on  1A, 1D, 2A, 2B,  3A, 5B,  6A, and 7A in 

wheat (Boeven et al., 2016; Ward et al., 2019; Voss-Fels et al., 2019). The 7AL chromosomal 

region has also been identified in other wheat crosses as a source of spikelet architecture. These 

crosses include Chinese Spring x ‘SQ1’ (Quarrie et al., 2006) and ‘Q1028’ x ‘Zhengmai 9023’ 

(Luo et al., 2016).  The candidate gene region identified in this study contained four genes, 

TraesCS7A02G481600, TraesCS7A02G481500, TraesCS7A02G481700, and 

TraesCS7A02G481800 responsible for the SNS QTL. TraesCS7A02G481500 and 

TraesCS7A02G481800 are excluded from the SNS QTL because the promoter region of these 

genes is outside the candidate gene region. TraesCS7A02G481700 is within the candidate gene 

(CG) region. Still, the SNPs within this CG were not conserved in the promoter region or the 

transcription factor (TF) binding site. This led to the CG being excluded from any genetic 

regulation pathways for spike architecture. The WAPO-1 gene (TraesCS7A02G481600) affects 

the number of spikelets per panicle in rice (Ikeda-Kawakatsu et al., 2009) and has a similar 

function in wheat. There are two alleles in the WAPO-1 gene (WAPO-1a and WAPO-1b) 

involved in the functionality of the gene. The different amino acid compositions in these alleles 

and the expression levels of the WAPO-1 gene influence the fluctuations in SNS; therefore, the 

WAPO-1 gene is heavily involved in spikelet architecture.   
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Cui et al. (2014) identified a QTL for GNS, QKnps-4A.1, Cao et al. (2020) identified the 

same QTL, QKNS.caas-4AL. A further fine-mapping study by Cui et al. (2017) for a QTL for 

GNS, QKnps-4A, which was 40Mb from QKnps-4A.1 and QKNS.caas-4AL. Another QTL 

QGns.cau.-4A.4 was near QKnps-4A (Guan et al., 2018). This finding confirmed that at least one 

major QTL controls GNS in a target region on 4A and that QKnps-4A and QGns.cau.-4A.4 are 

potentially controlled by the same gene. Final findings on the genetic architecture of these traits 

indicate that different allelic combinations and QTLs/MQTLs influence the phenotypic 

expression of yield-trait components (YTCs).  

Several comprehensive studies have evaluated YLD and YLD-related traits, which gives 

a scope on the current progress of characterizing the genetic architecture of YLD. For example, 

Zhang et al. (2010) performed a comprehensive meta-QTL analysis study on YTCs. A total of 

541 QTLs were identified for YLD (178), GNS (68), grain weight per spike (GWS) (47), SNS 

(47), TGW (116), and plant height (PHT) (85). These QTLs were distributed across the whole 

wheat genome. Grain yield had the greatest coverage (33 %), followed by TGW (21%) and PHT 

(16%). The frequency distribution of the QTLs across the ABD genome is as follows, A (40%), 

B (~30%), and D (~30%). Regarding individual traits, chromosome 2 had the most QTLs 

associated with TGW, SNS, GWS, and GNS.  

The meta-QTL analysis for YLD and YLD-related traits revealed a total of 257 QTLs, 

which produced a total of 55 MQTLs identified among which 12 were significant and located on 

chromsomes1B (2 MQTLs), 2A (2 MQTLs), 2D (2 MQTLs), 3B (2 MQTLs), 4A (1 MQTL), 

and 5A (3 MQTLs). Previous QTLs have been identified on 1BL associated with YLD (Huang et 

al., 2003; Maccaferri et al., 2008), GWS and GNS (Verma et al., 2005), YLD, SNS, and GNS 

(Peng et al., 2003), and TGW (Wang et al., 2009a; Wang et al., 2009b). In addition, initial QTLs 
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that were repeatedly identified in several different studies and associated with several traits 

clustered into MQTLs were considered significant. These MQTLs were MQTL4 (1B), MQTL5 

(1B), MQTL8 (2A), MQTL9 (2A), MQTL14 (2D), MQTL16 (2D), MQTL24 (3B), MQTL26 

(3B), MQTL32 (4A), MQTL39 (5A), MQTL40 (5A), and MQTL42 (5A) which were all 

associated with different YLD and YLD-related traits. In addition, there have been 8 QTLs 

identified on 2AS linked to YLD and YLD-related characteristics (Huang et al., 2003; Huang et 

al., 2004; McCartney et al., 2005; Kunert et al., 2007; Li et al., 2007; Sun et al., 2009; Yao et al., 

2009), MQTLs identified in this study for 2AS (MQTL8:19.11 cM; MQTL9: 53.6cM)  were 

associated with GNS. In addition, the 2D MQTLs (MQTL14:17.55 cM; MQTL16: 30.2 cM) 

identified were associated with Rht8.  

Several QTLs on chromosome 3B have been linked to the YTCs discussed in previous 

reports (Börner et al., 2002; Cuthbert et al., 2008; Elouafi et al., 2004; Groos et al., 2003; Huang 

et al., 2004; Li et al., 2007; Marza et al., 2006; Wang et al., 2009a). In this comprehensive study 

(Zhang et al., 2010), an MQTL spanned the centromeric region of 3B and was associated with 

TGW. Meta-QTLs identified on 4AL (MQTL 30-4A: 57.23cM) were also linked to TGW. The 

MQTLs on 5AL (MQTL41: 68.02 cM) were near Vrn-A1, and previous studies have presumed 

that QTLs in this region contribute to the expression of traits such as tiller number, spike length, 

and heading date (Chu et al., 2008; Cuthbert et al., 2008; Groos et al., 2003; Huang et al., 2006; 

Kato et al., 1999, 2000; Kumar et al., 2007; Ma et al., 2007; Mathews et al., 2008). The 

information gathered in this study could improve the genetic characterization of wheat YLD 

traits in the future. 

A recent comprehensive review by Cao et al. (2020) dissected the genetic architecture of 

YTC in wheat from the past decade (2009 – 2019). There have been 253 QTLs reported, which 
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spanned all 21 chromosomes with different distribution patterns. Chromosomes containing > 20 

QTLs were 4B, 5A, and 7A, whereas < 3 QTLs were identified on 1D, 6B, and 6D. No QTLs for 

YTCs were identified on 3DS, 5BS, 5DS, 6BS, and 6DL. The distribution of QTLs associated 

with YTCs are TGW (139), GNS (67), and spike number per square meter (SN) (34). Different 

types of association analyses using different molecular markers used to identify YTCs. 

Association mapping studies using SNPs, DarT, and SSR marker systems have identified 142 

YTC-associated loci (Breseghello et al., 2007; Garcia et al., 2019; Griffiths et al., 2012; Guo et 

al., 2015; Li et al., 2019;  Liu et al., 2017; Lozada et al., 2018; Shi et al., 2017; Sukumaran et al., 

2015; Sukumaran et al., 2018; Sun et al., 2017; Wang et al., 2017; Wang et al., 2012; Wang et 

al., 2017; Yao et al., 2009; Zhang et al., 2012; Zhang et al., 2012). Further dissection of the 142 

YTC-associated loci from the association mapping studies showed that the most QTLs were 

identified for  TGW (88), GNS (18), and SN (5). A closer evaluation of the association loci 

distribution showed that > 10 loci were on 2A, 5A, 5B, 6A, and 7A. Chromosome 5B carried 26 

loci associated with YTC (Ma et al., 2018). Although association mapping studies identified one 

YTC-related loci on 4B, linkage mapping studies identified 28 YTC-QTLs, with most associated 

loci linked to TGW, GNS, and SN.  

Cao et al. (2020) identified 58 QTL-rich clusters (QRC), regions with two or more QTLs 

for the same trait from different studies. There were 27 QRCs exclusive to TGW; two QRCs 

were exclusive to GNS and SN. Yield trait component combinations identified 24 QRCs for 

TGW and GNS; 13 QRCs were associated with all three traits. Chromosomal distributions of 

QRCs showed that 30 QRCs were identified on sub-genome A and 14 on sub-genomes B and D. 

These findings indicate that sub-genome A possesses the most genetic variation compared to B 

and D sub-genomes for YTCs. Smaller clusters were identified on 2A, 5A,6A, and 7A. 
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 Different genes involved in the physiological mechanisms contribute to the variation in 

the phenotypic of GY and GY-related traits. For example, Ppd-D1 is a regulator gene that 

controls the photoperiod-dependent floral induction responses. It is a member of the pseudo-

response regulator (PRR) gene family that contains components related to the circadian clock 

that directly monitors the expression of the core genes and transcription factors (Li et al., 2011; 

Nakamichi et al., 2005). The allelic variations of the Ppd-1 gene influences day length 

photoperiod sensitivity, both long-day (LD) and short-day (SD). The loss of function of the 

alleles results in a delayed flowering response when transitioning from SD to LD. Conversely, 

the insensitive alleles will encourage LD response to all photoperiods (Beales et al., 2007; Díaz 

et al., 2012; Shaw et al., 2013; Shaw et al., 2012; Turner et al., 2005). In addition, variation in 

day length can affect the YLD output. Boden et al. (2015) performed a study comparing the 

inflorescences phenotypes of NILs, which were photoperiod insensitive (flower early regardless 

of photoperiod) or strongly photoperiod sensitive (flower earlier in LD than SD photoperiods). 

The sensitive lines carried a single copy of Ppd-B1 and sensitive Ppd-D1 allele. The insensitive 

lines carried a single copy of the Ppd-D1a allele and three copies of the Ppd-B1 gene. Under SD 

conditions (12 hr. light/ 12 hr. dark), the sensitive lines flowered later, produced more spikelets, 

and 20% more rachis nodes. Under LD conditions (16 hr. light/ 8 hr. dark), the sensitive lines 

had fewer spikelets, and both lines (sensitive/insensitive) flowered earlier. These results 

indicated that LD photoperiods and Ppd-1 alleles suppress spikelet development, and there was 

no significant difference in transcript expression levels for Ppd-D1, Ppd-B1, Ppd-A1.   

FLOWERING LOCUS T (FT) is a crucial component in the flowering pathway that can 

interact with photoperiod pathways and fluctuate transcript expression levels. Spikelet 

architecture development is associated with reduced expression of FT in the early stages of spike 
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development. Weak floral signals result in a delayed conversion of axillary meristems to spikelet 

meristems. These spikes produce a spike with lateral and terminal spikelets instead of a single 

spikelet with a short branch. The genetic basis of this behavior may be due to the Ppd-D1a 

sequence, which may include mutations that enhance the expression of meristem identity genes 

as in maize and rice (Endo-Higashi et al., 2011; McSteen et al., 2000). Modifying the expression 

of these flowering genes can allow a more robust arrangement and increased number of grain-

producing spikelets (Boden et al., 2015). Different transcription factors (TF) regulate spikelet 

development. TEOSINTE BRANCHED 1 (TB1) is a TF that regulates spikelet inflorescence 

(Dixon et al., 2018). Grain Number Increase 1 (GN1) is a TF responsible for increased floret 

fertility in wheat (Sakuma et al., 2019). FRIZZY PANICLE (FZP) encodes the APETALA2 TF 

that produces supernumerary spikelets in wheat (Dobrovolskaya et al., 2015). Genes identified as 

spike regulators are, TaAGLG1-5A, TaTFL1-2D, and TaHOX2-2B (Wang et al., 2017a, b). 

 Genetic Architecture of Anthesis and Physiological Maturity 

Wheat breeding programs focus on developing cultivars that thrive under different 

environmental conditions ensuring maximum crop production and GY stability. Developing 

robust cultivars depends on germplasm selection and understanding genetic factors that control 

the cultivars’ adaptability. Flowering time plays a vital role in cultivar adaptability, which is 

characterized by vernalization (Vrn), photoperiod (Ppd), and earliness per se (Eps) genetic 

systems (Kamran et al., 2014). The three respective gene systems account for different 

percentages (Vrn = 75%, Ppd = 25%, Eps = 5%)  of genetic variability in heading time in wheat 

(Stelmakh, 1998). Photoperiod and vernalization response genes can accelerate or stall the FT in 

response to environmental conditions (Law et al., 1997).  



70 

Vernalization is defined as the acceleration of flowering ability due to chilling 

temperatures (Chouard, 1960). The rate of vernalization depends on the intensity of cold 

temperatures and the duration of exposure to temperatures below a given threshold (Rawson et 

al., 1998; Wang et al., 1995). Differences in vernalization are due to genetic and allelic 

variability expressed as, Vrn-1, Vrn-2, Vrn-3, and Vrn-4 loci  (Distelfeld et al., 2009; Flood et al., 

1986). Winter wheat contains the dominant allele of Vrn-2 and recessive forms of the other 

vernalization genes, which results in the demand for cold exposure before the onset of flowering. 

The Vrn-2 is a floral repressor, which can delay flowering until vernalization. Trevaskis et al. 

(2007) performed a study in barley, which determined that the Vrn-2 gene transcribed a protein 

with a zinc-finger motif, which represses the long-day flowering gene. Vernalization (Vrn-1) 

genes are generally orthologous genes (Vrn-A1, Vrn-B1, and Vrn-D1) which are located on the 

5A, 5B, and 5D chromosomes (Dubcovsky et al., 1998; Fu et al., 2005; Law et al.,1976; Pugsley, 

1971). Vernalization genes can each have a different effect on a plant’s growth and development.  

The Vrn-A1 gene has the most potent effect of inhibiting vernalization, and Vrn-B1 is the 

weakest (Goncharov, 2004). The expression of these genes occurs at different stages of 

development. The different alleles within these Vrn genes (Vrn-A1, Vrn-B1, and Vrn-D1) can 

regulate the response in FT, PHT, and YLD components among wheat cultivars. Specifically, 

allelic combinations can influence floral initiation, the number of leaves, tiller number, and 

timing of growth stages until flag leaf emergence (Levy et al., 1972). Other studies have reported 

that Vrn genes (Vrn-A1 and Vrn-D1) can increase the number of spikelets and spikelet initiation 

rate (González et al., 2002; Whitechurch et al., 2003). It has also been reported that spikelet 

fertility at anthesis increases with an extended period of stem growth (González et al., 2003a). 

Dominant Vrn genes expedite vegetative growth from emergence to floral initiation and reduce 
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final leaf number (Whitechurch et al., 2003; Hay et al., 1991; Slafer et al., 1944; Wang et al., 

1995). The recessive Vrn alleles extend the vegetative phase with an increase in the number of 

leaves due to a constant growth rate of leaf primordia. These recessive Vrn alleles delay flag leaf 

appearance (Amir et al., 1991; Kirby, 1990; Miglietta, 1989). The Vrn genes have a more 

noticeable effect during the vegetative phase (e.g., floral initiation), after which there is no 

developmental response (Wang et al., 2003; Whitechurch et al., 2003). 

Photoperiod is the second component of the genetic system that relates to FT. Flowering 

time is determined by sensitivity or insensitivity to photoperiod. A photoperiod-insensitive 

cultivar can switch to reproductive growth when temperature increases. A photoperiod-sensitive 

cultivar remains in the vegetative state until an increase in day length meets the photoperiod 

requirements. Different photoperiod genes define the architecture and underlying genetic 

mechanisms influencing plant development (Kamran et al., 2014). Photoperiod response is 

genetically influenced by Ppd genes located on homoeologous group 2 chromosomes of wheat 

(Worland et al., 2001). The genes are Ppd-A1, Ppd-B1, and Ppd-D1, located on the 2A, 2B, and 

2D chromosomes (Law et al., 1978; Scarth et al., 1983). The Ppd-D1 is the most insensitive to 

photoperiod (Ppd-D1a), followed by Ppd-B1, then Ppd-A1  (Worland, 1996). González et al. 

(2003) found that both fertile spikelets and spike dry weight increased at anthesis during late 

reproductive phases due to greater portioning of assimilates to the spike than the stem. In 

addition, close associations have been found between spikelet fertility and stem elongation, 

which increases GY potential by improving the GNS (Slafer et al., 1996).  

Kato et al. (2001) defined earliness per se (Eps) as “the difference in flowering time of 

varieties whose requirements of vernalization and photoperiod have been fulfilled.” Photoperiod 

and vernalization genes (Vrn) control FT in response to specific day lengths and temperature 
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conditions. In contrast, earliness per se genes affect flowering time independent of the stimuli 

from the environment (Worland et al., 1996). Therefore, earliness can be determined by a 

minimum vegetative growth that can instigate floral primordia independent of external stimuli. 

Earliness per se is a quantitatively inherited trait controlled by mostly minor genes whose effect 

can only be determined without the confounding effects of Ppd and Vrn genes (Kato et al., 

1999). The heritability of Eps is generally high (H2 = 0.90-0.99). Therefore, it can be used in 

breeding programs to reduce the life cycle of wheat independent of environmental factors that 

modify FT (Kato et al., 1999a, 1999b, 1999c). The first Eps gene was reported on 2BL affecting 

ear emergence time in recombinant inbred lines of Chinese Spring (Scarth et al., 1983).  

Many QTL studies have identified chromosomal regions associated with FT and other 

related traits across the wheat genome. For example, Kamran et al. (2014) reported that QTLs for 

earliness per se were located on 1A (Bennett et al., 2012; Bullrich et al., 2002; Shindo et al., 

2003),3A (Miura et al., 1994),  4A, 4B (Bennett et al., 2012; Hanocq et al., 2007), 5A (Bennett et 

al., 2012; Kato et al., 1999a,1999b) 1B, 5B (Bennett et al., 2012; Hanocq et al., 2004; Hanocq et 

al., 2007; Kamran et al., 2013; Tóth et al., 2003), 2B, 2D (Hanocq et al., 2007; Hanocq et al., 

2004), 7A (Bennett et al., 2012; Hanocq et al., 2007), 7B (Bennett et al., 2012) and 7D (Carter et 

al., 2011). The Eps genes/QTL have been reported to be most frequent on 5A (Kato et al., 

1999a,1999b; Griffiths et al., 2009; Bennett et al., 2012), 2B (Scarth et al., 1983; Sourdille et al., 

2003; Shindo et al., 2003; Maccaferri et al., 2008), 3A (Hoogendoorn, 1985; Miura et al.,1994) , 

5B, 7B, and 4D (Hoogendoorn 1985; Kulwal et al. 2003; Lin et al. 2008). 

For heading, QTLs were found on 1A (Shindo et al., 2003), 1B (Griffiths et al., 2009; 

Zhang et al., 2009), 1D (Griffiths et al., 2009), 2A (Griffiths et al., 2009; Maccaferri et al., 2008), 

2B (Maccaferri et al., 2008), 2D (Kulwal et al., 2003), 3A, 3B, 4B (Griffiths et al., 2009), 4D 



73 

(Griffiths et al., 2009; Sourdille et al., 2003; Zhang et al., 2009), 5A, 5B, 6A, 6B (Griffiths et al., 

2009),6D (Shindo et al., 2009), 7A (Griffiths et al., 2009), 7B (Griffiths et al., 2009; Maccaferri 

et al.; 2008; Sourdille et al., 2003), and 7D (Griffiths et al., 2009; Shindo et al., 2003; Sourdille 

et al., 2003). Vernalization QTLs were identified on the 2A, 3A, 4D (Shindo et al; 2003), 5A, 

2B, 5B, 6D (Hanocq et al; 2004). Photoperiod QTLs were identified on 5A, 7A, 2B, 5B, 7B, 

(Shindo et al., 2003), 4B (Shindo et al., 2003; Sourdille et al., 2003), 2D,7D (Hanocq et 

al.,2004). Flowering time QTLs were found across all the chromosomes in wheat (Kamran et al., 

2014); the frequency (%) of the QTLs across the sub-genomes were as follows, B genome 

(41%), A genome (30%), and D genome (28.5%).  Chromosomes 2 and 5 contained the most 

QTLs pertaining to vernalization and photoperiod genes, which leads to the conclusion that these 

chromosomes influence FT-related genes the most.  

When a crop reaches maximum GY potential at physiological maturity, grains cease 

growing. Physiological maturity has complex underlying genetic mechanisms. Three QTLs 

associated with FT genes were discovered on 2D, 5A, and 7D in the Jagger x ‘2174’ RIL 

population, which contributed to the variation in the final developmental stages of wheat (Chen 

et al., 2010). Flowering time genes identified were VRN-A1 (5A), PPD-D1 (2D), and VRN-D3 

(7D). All of the flowering genes evaluated in this study expressed different degrees of variation. 

VRN-A1 explained 21.5 % of phenotypic variation for stem elongation and 17.4 % of phenotypic 

variation for PMAT. PPD-1 explained 6.7% of phenotypic variation for stem elongation, 29.7 % 

of phenotypic variation was explained for FT, and 20.1 % of phenotypic variation was explained 

for PMAT. VRN-D3 had a more significant effect on FT (14.6 % of PVE) and PMAT (20.5 % of 

PVE) rather than stem elongation. Ultimately, these three genes have the most critical influence 

on PMAT, heading, and stem elongation. The source behind the variability of these traits 
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ultimately then depends on different allele combinations of these genes that regulate the gene 

expression of these traits.  

In addition to the QTLs reported by Chen et al. (2010), other QTLs were also discovered 

on 1B (Wang et al., 2009), 1D (Kulwal et al., 2003), 2A, 2B, 3D, 4B (Wang et al., 2009), 5D 

(Haung et al., 2006), 6D (Wang et al., 2009), 7B (Kulwal et al., 2003). These QTLs always 

appear in conjunction with other FT genes and traits. Tahmasebi et al. (2016) performed a QTL 

study evaluating a RIL population, ‘SeriM82’ x ‘Babax,’ under drought and heat stress 

conditions. Physiological maturity QTLs were identified on the 1D, 3A, 5A,6D, and 7D 

chromosomes. The PVE of these QTLs spanned from 0.5-5.7 %. In addition, the MQTLs on 1D, 

6D, and 7D have significant epistatic interactions. In conclusion, FT and PMAT have a complex 

underlying genetic architecture. Underlying factors such as polygenic, epistatic, and allelic 

combinations influence the phenotypic expression of these traits.  

 Genetic Architecture of Plant Height 

Plant height has pleiotropic effects on crop development which can influence GY 

response. Tall plants are at a greater risk of lodging, so PHT reduction is a target trait in breeding 

programs  (Berry et al., 2003). There have been 25 Rht genes identified from previous studies 

Rht1-Rht25 (Chen et al., 2015; Li et al., 2015; McIntosh et al., 2013; Mo et al., 2018; Tian et al., 

2017; Würschum et al., 2017; Zhao et al., 2018) which are distributed across the wheat genome. 

Chromosomal locations of known Rht genes include: Rht1 (4B), Rht2 (4D), Rht3 (4B), Rht4 

(2B), Rht5 (3B), Rht7 (2A), Rht8 (2D), Rht9 (7B), Rht12 (5A) Rht13 (7B), Rht14 (6A), Rht16 

(6A), Rht17 (6A), Rht18 (6A), Rht22(7A), Rht23 (5D), Rht24 (6A), Rht25 (6A) (McIntosh et al., 

2013). During the Green Revolution, semi-dwarfing genes, Rht-B1b and Rht-D1b led to dramatic 

increases in GY. Dwarfism is caused by the partial inability of internode cells to elongate in 
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response to internal gibberellic acid. Grain yield is a secondary consequence of reduced stem 

growth rates during ear development, leading to heavier ears and more fertile florets. 

Additionally, shorter plants can fertilize with greater N rates, and reduced lodging risk, which 

drove about 75% of the wheat YLD gain during the Green Revolution (Fischer et al., 2022). 

The reduction in height is caused by the limited response to phytochrome gibberellic acid 

(GA), leading to better resistance to stem lodging and YLD through increased GN. These genes 

encode the DELLA proteins, which repress the growth mechanisms related to GA (Pearce et al., 

2011). As a result, these genes improve harvest index, biomass, and spikelet fertility. These YLD 

advantages from the Rht genes are due to the increased portioning of assimilates to the spike 

(Maeoka et al., 2020) and reducing the need for stem elongation. This mechanism reduces pre-

anthesis abortion of distal florets in each spikelet and increases the total number of viable florets 

at anthesis (Youssefian et al., 1992a, 1992b). Reductions in assimilate demand for stem growth 

are due to potent combinations of Rht alleles that increase spikelet fertility. Previous studies have 

noted that maximum GYs are gathered from plants of medium height that experience varied Rht 

effects based on their genetic background (Allan, 1989; Fischer et al., 1990; Richards, 1992). 

Law et al. (1978) proposed the “tall dwarf” model, which argues that GY can be maximized by 

combining gibberellin-insensitive Rht alleles with other genes which increase both PHT and GY.  

Interactions between genotype and temperature also influence the effects of Rht on PHT, 

leaf size, spike weight, and grain set. Stress during spike initiation reduces the number of 

functional florets, while heat stress hinders grain-filling after anthesis. These conditions vary 

based on the genetic background in which the Rht alleles are evaluated. The best plants are 

defined by their genotypic, environmental, and agronomic variables. These variables produce 

phenotypic variation in PHT (Bush et al., 1988; Flintham et al., 1997). In addition to these 
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factors, both pleiotropic and epistatic effects play a meaningful role in producing the phenotypic 

variation of Rht genotypes. Pleiotropic association between GA-insensitivity and dwarfism 

comes from the strong correlations between the degree of dwarfism and the inhibition of the 

elongation growth response to GA in lines possessing different Rht alleles (Appleford et al., 

1991; Lenton et al., 1987; Pinthus et al., 1989). The effects of different allelic combinations 

influence plant stature, biomass, and other YTC components, thus correlating with their impact 

on cell length and number. Evidence suggests that Rht genes reach these effects by expediting 

the loss of cell wall pliability, thus lowering the time available for cell elongation growth 

(Tonkinson et al., 1995). 

Flintham et al. (1997) evaluated four sets of near-isogenic lines (NIL) with different 

allelic combinations of Rht-B1b, Rht-D1b, and Rht-B1c for GA-insensitive dwarfism. Yield 

advantages of shorter plants relative to tall controls were evident. Rht genotypes were the key 

source of variation in PHT, with differences between varieties being consistent and associated 

with significant Rht x variety interactions. Reduction in PHT were due to different Rht allelic 

combinations, Rht-B1b (14%), Rht-D1b (17%), Rht-B1c (50%), Rht-B1b+ Rht-D1b (42%), Rht-

B1c+ Rht-D1b (59%). The Rht-B1b and Rht-D1b genotypes showed increased GY by increasing 

harvest index while maintaining total biomass. In this study, the highest yielding variety was the 

shortest, and the highest overall yields occurred in semi-dwarf cultivars – which are similar to 

the results presented by Maeoka et al. (2020). The average yields of Rht-B1b, Rht-D1b, Rht-B1b 

+ Rht-D1b, and Rht-B1c NILs were similar, but the tall controls had lower yields in all trials. 

Across six trials, there was variation in tiller number, GN, and GWT.   In most cases, the Rht 

alleles increased GN over the tall controls, except for Rht-Bc + Rht-Db genotype, but GWT was 

varied.  
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Spikelet number is not affected by Rht dwarfism, as the increase in GN is due to an 

increase in the fertility of distal florets within spikelets (Greco et al., 2012; Sakuma et al., 2019). 

Increased post-antithetic assimilate increases sink size due to increased grain numbers and is 

essential to the physiological component of Rht YLD advantages ( Ferrante et al., 2013; Gambín 

et al., 2008; Nazir et al., 2021; Rotundoet al., 2009; Spiertz, 1977; Tao et al., 2021). Since 

average GS is reduced as GN increases, successful grain filling from the proper supply of 

assimilates is required to sustain the YLD potential (Flintham et al., 1997). Therefore, the best 

strategy for maximizing GY is to use Rht alleles that reduce PHT at an optimum level, reducing 

potential GY penalties linked to reduced biomass and GS in substandard environments (Flintham 

et al., 1997). Still, identifying more genes that can reduce plant height without reducing GY 

potential is necessary to create more robust breeding programs.   

 Griffiths et al. (2012) identified multiple QTL regions responsible for the variation in 

crop height among four elite European cultivar populations in an MQTL analysis study. There 

were 104 individual QTLs identified among the four populations. There were 16 MQTLs 

identified on chromosomes 1A-1D, 2A-2D, 3A, 3B, 4B, 4D, 5A, 5B, 6A-6D, and 7D. Results 

showed a high correlation for the variability of PHT among all populations and environments (r2 

> 0.69). The Rht genes (Rht-D1b and Rht-B1b) had varying degrees of segregation among the 

four double haploid populations evaluated (‘Charger’ x ‘Badger’ (C x B); ‘Spark’ x ‘Rialto’ (S x 

R); ‘Savannah’ x ‘Rialto’ (Sv x R), and ‘Avalon’ x ‘Cadenza’ (A x C)). Rht-D1 was segregating 

for the A x C and S x R populations. Their additive effects were 4.4 cm – 7.2 cm (S x R) and 2.5 

cm – 4.8cm (A x C) across environments. The 2DS QTL had an additive effect of 6.4 cm in the 

A x C population, which coincides with the Xgwm261 marker, linked to the GA-sensitive semi-

dwarfing gene Rht8. In the same population, the 2AS QTL is located in Xgwm359, distal to Ppd-
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A1 (Griffiths et al., 2012; Mcintosh et al., 2013). Stronger evidence of PHT segregation was 

present in QTLs identified on the 3AS (all populations), 3BS (3 populations), and 6A (3 

populations) in the centromeric regions; allelic variations of genes controlling PHT may be in 

common for these loci. Zhang et al. (2010) identified 85 QTLs in an MQTL analysis study 

associated with PHT. Although PHT QTLs were identified across all 21 chromosomes, 

chromosome 4B contained the most QTLs. MQTLs mapped on group 4 (MQTL34-4B: 59.23 

cM) may have contained the Rht gene (Rht-B1). 

 Zanke et al. (2014) did a GWAS study on PHT in wheat and found similar overlapping 

QTL regions as presented in Griffith et al. (2012) through marker-trait associations (MTA) with 

SSR markers. The overlapping QTL regions were identified on chromosomes, 1A, 1D, 2A- 2D, 

3A, 4B, 4D, 5A, 5B, 6A, 6D, and 7D. This study also identified the same 2DS QTL associated 

with Rht8 and Ppd-D1 identified by the GWM4815 and GWM1481 markers. Additional Rht 

genes identified in this study were Rht4 (2BL), Rht5 (3BS), Rht9 (5AL), Rht12 (5AL), and Rht13 

(7B). The genomic regions that showed the greatest reduction in PHT were on chromosomes 2A-

2D, 5A-5D, and 7B. Furthermore, candidate gene (CG) analysis in this study identified 

cytochrome P450 as the functional gene responsible for PHT. In recent years, the correlation 

between crop PHT and GY (Law et al., 1978) has been dissected into single QTL effects 

(Maccaferri et al., 2008; Zhang et al., 2004), showing that crop-height-increasing effects also 

increase GY in some cases. The optimal combinations of these alleles are most likely necessary 

for GY potential in any target environment.  

 Conclusion 

Yield is generally characterized by low heritability, large G x E interactions, and epistatic 

interactions among multiple QTLs or genes. Due to this complexity, there are challenges in 
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pinpointing the causal genes responsible for YTC traits. This review supplied genetic studies on 

the YLD and YTC of spikelet, FT, PMAT, PHT, and grain traits. Information provided includes 

QTLs, MQTLs, genes, and candidate genes responsible for each trait’s morphological and 

underlying genetic properties. Findings reported in this review may help validate future findings 

in breeding programs related to YTC and implement the development of versatile high-yielding 

wheat cultivars.  
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Chapter 3 - QTL Analysis of Yield and Yield-related Components in 

‘Overley’ x ‘Overland’ Population  

 Introduction   

  In 2021, the U.S. planted 1.9 x 107 ha, harvested 1.5 x 107 ha, and produced 4.49 x 107 

metric tons of wheat. Kansas has produced 9.91 x 107 metric tons of wheat 

(https://www.nass.usda.gov  March 11, 2022). Grain yield (GY) of cereal crops is a complex 

trait, reflecting the cumulative nature of different developmental stages and their interactions 

with the environment. Despite its complexity, yield is still the trait of most importance to 

breeders. Therefore, identifying stably expressed genes that lead to higher GY is crucial for 

wheat breeding. Increasing GY can be done by increasing either the total biomass produced by 

the crop or the proportion of the total biomass accumulated in grains (de Oliveira et al., 2020; 

Maeoka et al., 2020). Grain yield represents the product of grain number and mean weight per 

grain (Quarrie et al., 2006). Generally, components determining grain number per area are plants 

per area, spike number per plant, and grain number per spike (GNS); the latter two are 

determined by the number of spikelets per spike (SNS) and GNS (Quarrie et al., 2006). Slafer 

(2003) compartmentalized the determinants of yield components into different phases of the 

plant’s life cycle, with some overlap between phases. Typically, SNS is determined before GNS 

both overlapping with the determination of spikes per plant (Quarrie et al., 2006). By studying 

how different yield components vary within a particular genetic background, one can understand 

the potential function of one or more genes that influence yield. 

  There have been many QTL studies which have looked into different yield components 

such as thousand grain weight (TGW), GNS, and SNS (Avni et al., 2018; Cao et al., 2020; Liu et 

https://www.nass.usda.gov/
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al., 2020; Saini et al., 2022; Swamy et al., 2011; Tyagi et al., 2015; Zhang et al., 2010). These 

studies have identified numerous QTLs for any given yield trait component (YTC). These QTLs 

are spread across different wheat chromosomes, reflecting the polygenic nature of the yield 

(YLD) and YLD-related components. Zhang et al. (2010) identified over 500 QTLs related to 

YTCs, yield (YLD: 178), grain number per spike (GNS: 68), grain weight (GWT: 47), spikelet 

number per spike (SNS: 47), thousand grain weight (TGW: 116), and plant height (PHT: 85). 

The QTLs for these traits were identified on 2A, 2B, 2D, 3B, and 4A. In addition to the YTCs, 

studies have also been performed on other factors that influence YLD with pleiotropic effects, 

including flowering time (FT) and physiological maturity (PMAT) (refer to chapter 2). Further 

characterization of genes in the germplasm pool of regionally adapted hard winter wheat is 

imperative for breeding programs to support the development of high-yielding cultivars. 

Therefore, this study aimed to identify genomic regions associated with the variation in yield and 

its components in field trials with a recombinant inbred population derived from Overley x 

Overland.  

 Materials & Methods 

 Population Construction and Phenotyping   

  Overley is a bronze-chaffed semi-dwarf hard winter wheat variety with medium height, 

good straw strength, and good yield potential. It is an early maturing cultivar with good winter 

hardness and a large seed (Fritz et al., 2004). Overland is a bright-chaffed semi-dwarf cultivar 

with medium maturity and plant height. It has good straw strength, winter hardness, and yield 

potential (Wolf, 1994). Both Overley and Overland have been successful commercial cultivars, 

and both have been used as parents in regional breeding programs. Population construction is 

described in Chapter 1, where the population was developed by USDA Central Small Grain 
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Genotyping Laboratory in Manhattan, KS. The population consisted of 204 RILs through SSD 

(single seed descent) to the F6 and F9 generations. The experiment was conducted in two crop 

years, 2018 and 2019, at two locations, Ashland Bottoms, KS, and Hays, KS. The RILs were 

arranged in a partially replicated augmented design. The partially replicated augmented design 

consisted of blocks which contained 50 plots, 5 of which were check cultivars (Overley, 

Overland, Tatanka, TAM114, and WB-Grainfield). The plot dimensions for 2018 and 2019 were 

15 rows by 20 ranges with a plot size of 4.6 m2. Information on the experimental design is 

presented in Table 3.1. 

Table 3.1. Field design of yield trials. 

 2018  

Ashland Bottoms 

2019 

Ashland Bottoms  

2018 

Hays 

2019 

Hays 

Trials AS18 AS19 HZ18 HZ19 

Number of Entries 144 209 182 208 

Number of Plots 300 300 300 300 

Replications 2 2 2 2 

Date Planted 10/28/2017 10/24/2018 10/30/2017 9/28/2018 

Date Harvested 7/6/2018 7/7/2019 7/2/2018 7/1/2019 

 

Data Collection 

 From these trials, sub-samples of spikes were collected from Hays (6 spikes) and 

Ashland (10 spikes) for the 2018 and 2019 trials. Each spike was manually counted for SNS  

measurements, then threshed using a Wintersteiger LD180 Laboratory Thresher (Wintersteiger 

AG, 2018; https://www.agriexpo.online/prod/wintersteiger-ag/product-175745-20776.html). 

Seed samples were counted on the Seed Counter R-25 Plus (https://data-

technologies.com/product/seed-counter-r25plus/). These seed samples were then weighed, and 

data was compiled for statistical analysis. In addition, a sub-sample of 50g was collected from 

each plot from the Ashland trials in 2018 and 2019 for SKCS (Single Grain Characterization 

https://www.agriexpo.online/prod/wintersteiger-ag/product-175745-20776.html
https://data-technologies.com/product/seed-counter-r25plus/
https://data-technologies.com/product/seed-counter-r25plus/


105 

System 4100; Perten Instruments, Springfield, IL). The SKCS analyzed 300 grains per sample, 

providing an output of average GWT (mg), grain diameter (GDM) (mm), moisture content, and 

hardness index. The samples from Hays 2018 and 2019 were not analyzed by SKCS because 

subsamples were not collected at harvest. 

From the four locations, field data on other agronomic traits were measured. Field data on 

PHT was recorded at all locations as the height of plants at maturity, excluding awns. Flowering 

time data was recorded when 50% of the anthers emerged from the spike at all location-years. 

Physiological maturity data was recorded at Ashland Bottoms in both years when the peduncle 

was yellow, the glumes and flag leaf had lost their green color. Grain yield in 2018 (Ashland 

Bottoms, KS) was harvested using the Hege combine, and the grain was weighed to obtain GY 

data. In all other years GY was measured using the HarvestMaster weighing system (Zürn 150 

combine), which provided GY data for each plot.  

 Genotyping and Map Construction  

Refer to Chapter 1 for more information on constructing GBS libraries, obtaining SNP 

data, and building genetic maps using RefSeq of IWGSCv2.1 and Jagger.  

 QTL and Other Statistical Analyses  

Refer to Chapter 1 for more information on QTL software and respective parameters 

implemented for QTL analysis; major QTLs were selected based on the threshold of LOD ≥ 4.5 

and PVE ≥ 10%. Statistical analysis such as correlations and mixed model analysis for obtaining 

BLUPs were processed in JMP (SAS Institute, Inc., Cary, NC). Further, information on the 

statistical model and analysis are provided in Chapter 1. 
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 Results 

 Phenotypic Data  

  The YLD traits and other factors responded differently in the different locations 

evaluated in this study. There were differences for YLD, GWT, GDM, and PHT among our 

environments (Table 3.2). Yield showed differences across all locations, with HZ19 being the 

highest yielding environment (4318.5 ± 111.7 kg/ha) and AS18 the lowest yielding environment 

(1833 ± 112.5 kg/ha). The G x E interactions for YLD were predominate (𝜎𝐺 𝑥 𝐸= 148473.3***; 

Table 3.4), and yield had low heritability (H2 = 0.19; Table 3.4). There were differences in GWT 

among the two years at Ashland, in 2018 (20.8 ± 0.7 mg), and in 2019 (29.3 ± 0.7 mg), with high 

heritability (H2 = 0.76; Table 3.4). Grain diameter also was measured in two locations, AS18 and 

AS19. Grain diameter was higher in AS19 (2.8 ± 0.02 mm) than AS18 (2.3 ± 0.02 mm). Among 

the locations, plants were taller in HZ19 (85.6 ± 1.4 cm) than in the other locations, AS19 (69.6 

± 1.4 cm), AS18 (68.2 ± 1.4 cm), HZ18 (68.2 ± 1.4 cm). Flowering time, measured in Julian 

Days (J.D), was similar across both locations (133 ± 0.6 J.D). Spikelet per spike, which was 

measured across four year-locations (AS18, AS19, HZ18, HZ19), was higher in AS19 than the 

other locations AS18 and HZ18. Spike samples collected in all location-years were used to 

measure data on TGW and GNS. Thousand grain weight was higher in AS19 (33.1 ± 0.9 g) 

compared to the other locations AS18 (21.4 ± 0.9 g), HZ18 (29.2 ± 0.9 g), and HZ19 (30.2 ± 0.9 

g). Number of grains per spike presented small differences across locations. Physiological 

maturity differed between AS18 (162.8 ± 0.4 J.D) and AS19 (169.7 ± 0.4 J.D) The means of the 

RILs were typically intermediate between the parents (Table 3.3).  

Genotype and genotype × environment (G x E) variance component estimates for FT, 

GNS, GWT, and TGW were highly significant (p < 0.001) (Table 3.4). Strong G x E 
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significance was seen for YLD, PMAT, and GDM. The genotypic variance was highly 

significant for SNS and PHT. The broad-sense heritability estimates (Table 3.4) were generally 

high for most traits ranging from (H2: 0.50 – 0.88); but lower broad-sense heritability was 

observed for YLD (0.19), PMAT (0.13), and GDM (0.18). 
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 Table 3.2. Summary of yield and yield components performance across field trials. 

The mean performance in each trial for each trait. Data are least-squares means with standard errors in parentheses. 

 

 
 Environment  

Trait AS18 AS19 HZ18 HZ19 

Yield (kg/h) 
1833.0 

(112.5) 

3193.8 

(111.6) 

2251.2 

(111.9) 

4318.5 

(111.7) 

Plant Height (cm) 
68.2 

(1.4) 

69.6 

(1.4) 

68.2 

(1.4) 

85.6 

(1.4) 

Flowering Time* 
133.4 

(0.6) 

133.5 

(0.6) 

133.4 

(0.6) 

133.4 

(0.6) 

Physiological 

Maturity 

162.8 

(0.4) 

169.7 

(0.4) 
- - 

Grain Weight 

(mg) 

20.8 

(0.7) 

29.3 

(0.7) 
- - 

Grain Diameter 

(mm) 

2.3 

(0.02) 

2.8 

(0.02) 
  

Spikelet per Spike 
14.0 

(0.3) 

14.3 

(0.3) 

13.8 

(0.3) 

14.3 

(0.3) 

Thousand Grain 

Weight (g) 

21.4 

(0.9) 

33.1 

(0.9) 

29.2 

(0.9) 

30.2 

(0.9) 

Grains per Spike 
33.3 

(1.3) 

32.7 

(1.3) 

34.7 

(1.3) 

34.1 

(1.3) 
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Table 3.3. Summary of yield and yield components of parents and RIL population across field trials. 

The mean performance of the parents and the population of RILs averaged across all environments.  

 

 

Trait Overley Overland RILs 

Yield (kg/ha-1) 
2758 

(250) 

2965 

(251) 

2889 

(150) 

Plant Height (cm) 
71.3 

(2.8) 

76.6 

(2.8) 

72.95 

(2.06) 

Flowering Time* 
133.3 

(1.6) 

137.3 

(1.6) 

135.0 

(0.89) 

Physiological 

Maturity* 

166 

(0.9) 

167.6 

(0.9) 

166.2 

(0.47) 

Grain Weight (mg) 
27.3 

(1.8) 

25.5 

(1.8) 

25.0 

(1.2) 

Grain Diameter (mm) 
2.7 

(0.06) 

2.6 

(0.06) 

2.6 

(0.03) 

Spikelet per Spike 
13.3 

(0.7) 

13.9 

(0.7) 

14.1 

(0.5) 

Thousand Grain 

Weight (g) 

31.5 

(2.3) 

27.8 

(2.3) 

28.5 

(1.5) 

Grains per Spike 
34.6 

(3.0) 

30.1 

(3.0) 

33.7 

(2.0) 

*Measured in Julian Days (J.D) 

 

 

 



110 

Table 3.4. Estimated variances and broad-sense heritabilities of yield and other related components. 

   Estimated Variance   

Traits 
Block 

(Environment) 
Genotype 

Genotype x 

Environment 
Residual 

Heritability 

(H2) 

Yield (kg/ha-1) 15823.4 ns 15614.7 ns 148473.3*** 223242.1 0.19 

Grain Weight 

(mg) 
0.332 ns 2.7*** 0.778 *** 1.8 0.76 

Spikelet 
Number per 

Spike 

0.1 ns 0.431*** 0.139* 1.1 0.65 

Plant Height 

(cm) 
5.0ns 4.9 *** 5.7*** 28.4 0.50 

Physiological 

Maturity 
0.146 ns 0.119 ns 1.081*** 1.0 0.13 

Flowering 

Time 
0.09 ns 2.4*** 0.829*** 1.0 0.88 

Grains per 

Spike 

1.4 ns 

 

7.9 *** 

 

2.7 *** 

 

14.4 

 
0.76 

Thousand 

Grain Weight 
(g) 

0.482 

 

4.5*** 

 

2.1*** 

 

7.5 

 
0.75 

Grain Diameter 

(mm) 

0.0001 ns 

 

0.0007 ns 

 

0.005*** 

 

0.003 

 
0.18 

*, *** indicate significance of variance of estimates using Wald tests at p < 0.05, 0.001, respectively; ns, non-significant. 
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Figure 3.1. Distributions of best linear unbiased predictors (BLUPs) for GNS and SNS in the Overley x Overland RIL 

population at Ashland Bottoms and Hays in 2018 and 2019. 

Distribution of best linear unbiased predictors (BLUPs) of A) GNS and B) SNS. Environments: AS18 = Ashland Bottoms, KS, 2018; 

AS19 = Ashland Bottoms, KS, 2019; HZ=Hays, KS 2019; MET=Multi-environment BLUPs. The white dot is the median, the black 

box is the interquartile range, and the lines extending from the black box represents the rest of the distribution measured as 

interquartile range * 1.5. Parent least-square means are indicated by green (Overley) and blue (Overland) lines. 

 

A.) Grain Number per Spike                     B) Spikelet Number per Spike 
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Figure 3.2. Distributions of best linear unbiased predictors (BLUPs) for yield in the Overley x Overland RIL population at 

Ashland Bottoms and Hays in 2018 and 2019. 

Distribution of best linear unbiased predictors (BLUPs) of yield. Environments: AS18 = Ashland Bottoms, KS, 2018; AS19 = Ashland 

Bottoms, KS, 2019; HZ=Hays, KS 2019; MET=Multi-environment BLUPs. The white dot is the median, the black box is the 

interquartile range, and the lines extending from the black box represents the rest of the distribution measured as interquartile range * 

1.5. Parent least-square means are indicated by green (Overley) and blue (Overland) lines. 
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Figure 3.3. Distributions of best linear unbiased predictors (BLUPs) for GDM and GWT in the Overley x Overland RIL 

population at Ashland Bottoms and Hays in 2018 and 2019. 

Distribution of best linear unbiased predictors (BLUPs) of A) GDM and B) GWT. Environments: AS18 = Ashland Bottoms, KS, 

2018; AS19 = Ashland Bottoms, KS; MET=Multi-environment BLUPs. The white dot is the median, the black box is the interquartile 

range, and the lines extending from the black box represents the rest of the distribution measured as interquartile range * 1.5. Parent 

least-square means are indicated by green (Overley) and blue (Overland) lines. 

 

A.) Grain Diameter      B) Grain Weight  

 



114 

The RIL population had a wide and continuous distribution for all traits evaluated in each 

environment, and the parents' relative performance varied with environments (Table 3.2 and 

Table 3.3; Figure 3.1 - Figure 3.3 and Figure 3.8). Pairwise genotypic correlations of the traits 

for RILs are presented in Table 3.5. Correlations of YLD were low (r < 0.2) with all yield 

component traits. Correlation of GWT with TGW was high (r = 0.71) as would be expected, 

SNS (rSNS:GNS =0.65, rSNS:FT =0.47), and PMAT (rPMAT:FT =0.67) were strong and positive. Grain 

weight and TGW also were correlated with GDM. We observed an inverse relationship between 

GWT and SNS (r =-0.23; p = 0.001), and GNS (r = -0.44; p < 0.0001). The correlation indicates 

that RILs that set more seed produced seeds with lower GWT. In addition to these grain traits, 

there was a relationship between rGWT:FT = -0.41 ,and rGWT:PMAT = -0.25. The correlations indicate 

that early flowering and early maturing RILs produced seed with greater diameter and weight.  
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Table 3.5. Genotypic correlation of yield and yield components. 

Pairwise correlations among yield traits evaluated. Significant (p < 0.001) positive correlations are in blue, significant negative 

correlations are in red, and non-significant correlations are in gray. 

 

   Pearson Correlation Coefficient (r)    

GNS 0.10 0.15 -0.44 0.28 0.45 0.65 -0.22 -0.45 -- 
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 QTL identification: Multi-location BLUPs 

Given the presence of genotype x environment interaction for all traits (Table 3.4), and 

high heritability for yield trait components and relatively high heritability of the traits (e.g. 

𝐻𝐺𝑊𝑇
2 = 76%, 𝐻𝐺𝑁𝑆

2 = 76%, and 𝐻𝑆𝑁𝑆
2 = 65%), the BLUPs from the combined, multi-location 

analysis (ML-BLUPs) across multiple environments were used for QTL identification. The 

QTLs identified from ML-BLUP analysis are presented in Table 3.6 (IWGSCv2.1 map; 15 

QTLs) and Table 3.7 (Jagger map; 19 QTLs).  Multi-environmental analysis (MET) of QTLs 

evaluated the size of QTL x Environment (Q x E) interaction effects under four environments 

(Table 3.8, Table 3.9). The QTLs identified from multiple environments (MET analysis) are 

presented in Table 3.8 (IWGSCv2.1 map; 15 QTLs) and Table 3.9 (Jagger map; 21 QTLs). 

Strong QTLs were defined as having a LOD > 4.5 and PVE > 10% in all cases. Maps based on 

the SNPs using the two reference genomes generally identified the same genomic regions with 

overlap among both reference maps for some of the traits evaluated in this study. Comparing the 

list of QTLs identified in the multiple environment trial analysis (Table 3.8 and Table 3.9), the 

Jagger map identified more QTLs (21 QTLs) for the traits evaluated in comparison to the 

IWGSCv2.1 map (15 QTLs).  

Major QTLs were identified using the ML-BLUPs with both reference maps (Table 3.6 

and Table 3.7). Using the IWGSCv2.1 map, major QTLs were identified for GNS 

(Qyld.hwwgGNS -4A.2a: LOD = 9.10, PVE = 18.35%) and GWT (Qyld.hwwgGWT -4A.2b: LOD 

= 9.34, PVE = 14.93%) using ML-BLUPs (Table 3.6). Using the Jagger map, major QTLs 

identified using ML-BLUPs were TGW (Qyld.hwwgTGW-2B.1a: LOD = 6.09, PVE = 12.07%) 

and GNS (Qyld. hwwgGNS-4A.2b: LOD = 18.32, PVE = 25.54%; Table 3.7). Major QTLs also 

were identified in the MET analysis across multiple environments using both reference maps 
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(Table 3.8 and Table 3.9). Using the IWGSCv2.1 map (Table 3.8) major QTLs were identified 

for GNS (Qyld.hwwgGNS -4A.2a: LOD = 30.95, PVE = 18.31%) and GWT (Qyld.hwwgGWT-

4A.2a: LOD = 13.77, PVE = 16.28%). Using the Jagger map (Table 3.9), major QTLs identified 

were YLD (Qyld.hwwgYLD-3B.2c: LOD = 9.04, PVE = 15.77%) and GNS (Qyld. hwwgGNS-

4A.2b: LOD = 56.68, PVE = 27.56%). The reference-based maps of both genomes also provide 

overlapping results for combinations of traits. For example, a QTL for GNS (Qyld.hwwgGNS -

4A.2a) overlapped with a QTL for GWT (Qyld.hwwgGWT-4A.2b) in the IWGSCv2.1 reference 

map (Table 3.6). Using the Jagger map, GNS (Qyld.hwwgGNS-4A.2b) overlapped with GWT 

(Qyld.hwwgGWT-4A.2c) among other traits (Table 3.7). These identified QTLs may indicate that 

similar genomic regions may influence or interact with similar traits that characterize yield due 

to underlying pleiotropic effects. 

The QTL results using ML-BLUPs are presented in Table 3.6, Table 3.7, Figure 3.4 and 

Figure 3.5. The YLD QTLs were designated as Qyld.hwwgYLD-3B.2b (IWGSCv2.1 map) and 

Qyld.hwwgYLD-3B.2d (Jagger map), respectively. The PVE rates of QTLs were similar to each 

other 9.36 % (IWGSCv2.1 map) and 10.69% (Jagger map). For YLD the Overley parental alleles 

had the less favorable response of lower yield unfavorable yield response of lower yield for both 

reference maps. The desirable response for GWT is the higher GWT, which would increase GY. 

Using the IWGSCv2.1 map (Table 3.6) three GWT QTLs were identified, Qyld.hwwgGWT-

2A.2a, Qyld.hwwgGWT-4A.2b, and Qyld.hwwgGWT-6B.2a. The PVE of these QTLs were 5.59%, 

14.93%, and 8.71%. Out of the three GWT QTLs, Qyld.hwwgGWT-6B.2a was the only QTL 

where the Overley parental allele had a favorable response of higher GWT. The Jagger map 

(Table 3.7) also identified two GWT QTLs designated as, Qyld.hwwgGWT-1A.2b and 

Qyld.hwwgGWT-4A.2c with the unfavorable response (lower GWT) for these QTLs was due to 
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the Overley allele. The phenotypic variation explained by these QTLs was 9.25% and 11.56%. 

Two GDM QTLs were identified, one on each reference map, respectively. Using the 

IWGSCv2.1 map (Table 3.6) the GDM QTL was designated as Qyld.hwwgGDM-5A.2a and using 

the Jagger map (Table 3.7) as Qyld.hwwgGDM-5A.2b. The QTLs in both maps had similar PVE 

responses of 10.78% and 13.07% with the favorable response (higher GDM) due to the parental 

allele of Overley.   

Two TGW QTLs were identified using the IWGSCv2.1 map and three QTLs using the 

Jagger map. Using the IWGSCv2.1 map the QTLs identified were Qyld.hwwgTGW-2B.2a and 

Qyld.hwwgTGW-4A.2a with PVE of 8.04% and 12.04% (Table 3.6). Out of the two QTLs 

Qyld.hwwgTGW-2B.2a  indicated the favorable response of higher TGW due the Overley parental 

allele, the other QTL had a favorable response due to the Overland parental allele. The QTLs 

identified using the Jagger map (Table 3.7) were designated as Qyld.hwwgTGW-2A.2a, 

Qyld.hwwgTGW-2B.1a, and Qyld.hwwgTGW-4A.2b. The PVE of these QTLs using the Jagger 

map were 9.29%,12.07%, and 9.16%, respectively. Out of these three QTLs, Qyld.hwwgTGW-

2B.2a demonstrated the favorable response of higher TGW with respect to the Overley parental 

allele, the others were attributed to the Overland allele (Table 3.7).  

There were a total of six GNS QTLs identified in the maps. Using the IWGSCv2.1 map, 

the two GNS QTLs were Qyld.hwwgGNS-2A.2a and Qyld.hwwgGNS-4A.2a (Table 3.6). The PVE 

of these QTLs were 8.34% and 18.35%, respectively with the favorable response of higher GNS 

due to the Overley parental allele. Using the Jagger map (Table 3.7) there were four GNS QTLs 

designated as Qyld.hwwgGNS-2A.2c, Qyld.hwwgGNS-2B.1b, Qyld.hwwgGNS-4A.2b, and 

Qyld.hwwgGNS-5A.2a. The respective phenotypic variation explained by theses QTLs are as 

follows, 9.2%, 6.06%, 25.54%, and 5.48%, respectively. From the QTLs listed using the Jagger 
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map, Qyld.hwwgGNS-2A.2c and Qyld.hwwgGNS-5A.2a demonstrated the favorable response 

(higher GNS) due to the Overley parental allele, the favorable responses of the other QTLs were 

attributed to the Overland allele.  

Other traits evaluated were FT, SNS, PMAT, and PHT. For FT, the favorable response 

was later flowering. Using the IWGSCv2.1 map (Table 3.6), there was only one FT QTL 

designated as Qyld.hwwgFT-5A.2a, with a PVE of 8.34% with the Overley parental allele 

demonstrating the unfavorable response (early flowering time). Using the Jagger map (Table 

3.7), there were three FT QTLs designated as Qyld.hwwgFT-2B.1c, Qyld.hwwgFT-3B.2a, and 

Qyld.hwwgFT-5A.2b. The PVE of the QTLs identified in the Jagger map were 38.27%, 7.40%, 

and 4.53%, respectively with all QTLs demonstrating a favorable response (later flowering) to 

the Overley allele except Qyld.hwwgFT-2B.1c. Three QTLs in total were associated with PMAT 

in both maps. One PMAT QTL designated as Qyld.hwwgPMAT-2B.1b was identified using the 

IWGSCv2.1 map (Table 3.6) with a PVE of 11.49% and the favorable parental allele 

contribution from Overley. Using the Jagger map (Table 3.7), two QTLs were associated with 

PMAT which were designated as, Qyld.hwwgPMAT-2B.1a and Qyld.hwwgPMAT-5A.2a, 

Qyld.hwwgPMAT-2B.1a was the only QTL of the two that demonstrated the favorable response 

(late maturity) from the Overley parental allele. The respective PVE of the QTLs were 4.68% 

and 16.44%, respectively. There was only overlap with Qyld.hwwgPMAT-2B.1a (Jagger map) 

and Qyld.hwwgFT-2B.1a (Jagger map).  

Spikelet numbers per spike associated QTLs were identified in both reference maps. 

They were designated as Qyld.hwwgSNS-4A.2a (PVE = 8.43%) using the IWGSCv2.1 map 

(Table 3.6) and Qyld.hwwgSNS-2B.1b (PVE = 4.86%) using the Jagger map (Table 3.7). 

Qyld.hwwgSNS-4A.2a  demonstrated the favorable response from the Overley parental allele. 
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Both maps also identified PHT QTLs that were designated as Qyld.hwwgPHT-6A.1a 

(IWGSCv2.1 map) and Qyld.hwwgPHT-6A.1c (Jagger map), whose favorable parental allele was 

Overley (shorter height), with PVE responses similar to each other at 17.31% and 17.9%, 

respectively.  

Among the QTLs identified in Table 3.6 and Table 3.7 (ML-BLUPs), both maps 

identified overlapping QTLs associated with grain characteristics. Using the IWGSCv2.1 map 

the overlapping QTLs were Qyld.hwwgGNS-4A.2a, and Qyld.hwwgTGW-4A.2a whose marker 

intervals were S4A_682313475 – S4A_671836181 and S4A_626473103 – S4A_682313475, 

respectively (Table 3.6). In addition, Qyld.hwwgGWT-4A.2b (S4A_682313475 – S4A_67183618) 

overlapped with QTLs mentioned earlier. Using the Jagger map the overlapping QTLs were 

Qyld.hwwgGNS-2B.1b, Qyld.hwwgPMAT-2B.1a, and Qyld.hwwgSNS-2B.1b, and Qyld.hwwgFT-

3B.2c whose marker intervals were S2B_48673126 – SUN_24253245, SUN_24253245 – 

S2B_70479277, and SUN_24253245 –S2B_7047927, respectively (Table 3.7). Qyld.hwwgGNS-

4A.2b overlapped with Qyld.hwwgGWT-4A.2c with marker intervals of S4A_633516822 – 

S4A_647775911 and S4A_633516822 – S4A_647775911, respectively. Qyld.hwwgFT-5A.2b and 

Qyld.hwwgGDM-5A.2b overlapped with marker intervals of S5A_598382451 –Vrn-A1-E4-vern-

KASP and Vrn-A1-E4-vern-KASP – S5A_618710758, respectively.  There were no overlapping 

QTLs in the IWGSCv2.1 map for these traits.  

There were also major QTLs (LOD ≥ 4.5, PVE ≥ 10%) identified in both maps. Using the 

IWGSCv2.1 map (Table 3.6) the major QTLs were Qyld.hwwgPMAT-2B.1b, Qyld.hwwgGNS-

4A.2a, Qyld.hwwgGWT-4A.2b, and Qyld.hwwgPHT-6A.1a. There were also map- and analysis-

specific QTLs observed with both reference maps using ML-BLUPs (Table 3.6 and Table 3.7). 

These QTLs were present in only one reference map. Using the IWGSCv2.1 map the QTLs were 
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GWT (6BL, 2AL), SNS (4AL, 7AS), and TGW (2BL). For the Jagger reference map, there were 

QTLs for GWT (1AL), TGW (2AL, 2BS), FT (2BS, 3BL), PMAT (5AL), and GNS (2BS, 5AL).               
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Table 3.6. QTLs identified from multi-location BLUPs for yield and yield components with the IWGSv2.1 reference map.  

List of QTLs identified for yield traits and other traits using multi-location best linear unbiased predictors (ML-BLUP) with the 

IWGSCv2.1 reference-derived map. The LOD threshold was set by permutation tests repeated 1,000 times at  = 0.05 LOD = log 

odds ratio; PVE = percentage of variance explained.  

 

QTL Resp. Chr. Marker Interval 
LOD 

Threshold 
LOD 

PVE 

 (%) 
A

1
 C.I.

2
 

Qyld.hwwgGWT-2A.2a GWT 2AL 
S2A_207315203 – 

S2A_203818355 
3.28 3.87 5.59 -0.32 mg 122.5 – 125.5 

Qyld.hwwgGNS-2A.2a GNS 2AL 
S2A_646416484 – 
S2A_626218088 

3.35 4.94 8.34 0.68 grains spike-1 63.5 – 73.5 

Qyld.hwwgSNS-2B.1a SNS 2BS 
S2B_51126334 – 

S2B_72963487 
3.37 4.18 10.41 

-0.16  

spikelet spike-1 
24.5 – 41.5 

Qyld.hwwgPMAT-

2B.1b 
PMAT 2BS 

S2B_34401825 – 

S2B_47353125 
3.36 4.65 11.49 0.15 Days 59.5 – 72.5 

Qyld.hwwgTGW-2B.2a TGW 2BL 
S2B_463723493 – 

S2B_483900966 
3.31 3.77 8.04 0.49 g 59.5 – 72.5 

Qyld.hwwgYLD-3B.2b YLD 3BL 
S3B_756599263 – 

S3B_754456717 
3.37 3.52 9.36 -14.57 kg ha-1 105.5 – 109.5 

Qyld.hwwgGNS-4A.2a GNS 4AL 
S4A_682313475 – 

S4A_671836181 
3.35 9.10 18.35 1.00 grains spike-1 125.5 – 129.5 

Qyld.hwwgTGW-4A.2a TGW 4AL 
S4A_626473103 – 

S4A_682313475 
3.31 4.32 12.04 -0.59 g 59.5 – 72.5 

Qyld.hwwgSNS-4A.2a SNS 4AL 
S4A_619213122 – 

S4A_624993521 
3.37 3.72 8.43 0.15 spikelet spike-1 41.5 – 55.5 

Qyld.hwwgGWT-4A.2b GWT 4AL 
S4A_682313475 – 

S4A_671836181 
3.28 9.34 14.93 -0.52 mg 63.5 – 73.5 

Qyld.hwwgFT-5A.2a FT 5AL 
S5A_481667813 – 

S5A_482347862 
3.24 3.02 8.34 -0.42 Days 139.5 – 151.5 

Qyld.hwwgGDM-5A.2a 

 
GDM 5AL 

S5A_615280034 – 

S5A_618936457 
3.18 3.22 10.78 0.003 mm 59.5 – 72.5 
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Qyld.hwwgPHT-6A.1a PHT 6AS 
S6A_80483834 – 

S6A_65650958 
3.30 8.26 17.31 -0.65 cm 100.5 – 107.5 

Qyld.hwwgGWT-6B.2a GWT 6BL 
S6B_479824020 – 

S6B_458739122 
3.28 5.83 8.71 0.40 mg 113.5 – 119.5 

Qyld.hwwgSNS-7A.1a SNS 7AS 
S7A_89224345 – 
S7A_95661462 

3.37 3.84 8.43 -0.15 spikelet spike-1 126.5 – 134.5 

1Additive Effect of the Overley allele  
2Confidence interval (cM)  
3 Favorable parental allele for yield and other traits; OY = Overley OD = Overland 
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Figure 3.4. Major QTLs identified for yield and yield components using the IWGSCv2.1 map with multi-location best linear 

unbiased predictors. 
Linkage maps of major QTLs from table 3.5 (ML-BLUP; LOD ≥4.5 and PVE ≥10%) using the IWGSCv2.1 map for yield and other 

traits. Permutations were used to obtain LOD thresholds listed for ML-BLUPs. 

 

A.) Plant height 
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B.) Grain weight 
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C.) Grain number per spike 
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D.) Physiological maturity 
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Table 3.7. QTLs identified from multi-location BLUPs for yield and yield components using the Jagger map. 

List of QTLs identified for yield traits and other traits using multi-location best linear unbiased predictors (ML-BLUP) with the Jagger 

reference-derived map. The LOD threshold was set by permutation tests repeated 1,000 times at  = 0.05 LOD = log odds ratio; PVE 

= percentage of variance explained.  

 

QTL Name Resp. Chr. Marker Interval 
LOD 

Threshold 
LOD 

PVE 

(%) 
A

1
 C.I.

2
 

Qyld.hwwgGWT-

1A.2b 
GWT 1AL 

S1A_566818453 – 

S1A_576782223 
3.97 5.23 9.25 -0.38 mg 210.5 – 215.5 

Qyld.hwwgGWT-

1A.2c 
GWT 1AL 

S1A_375153723 – 

S1A_463488574 
3.97 4.66 6.32 0.31 mg 102.5 – 107.5 

Qyld.hwwgTGW-

2A.2 a 
TGW 2AL 

S2A_638220735 – 

S2A_648997997 
3.23 4.79 9.29 -0.5 g 123.5 – 129.5 

Qyld.hwwgGNS-

2A.2c 
GNS 2AL 

S2A_215641731 – 

S2A_659513001 
3.54 7.87 9.2 0.77 grains spike-1 121.5 – 123.5 

Qyld.hwwgTGW-

2B.1 a 
TGW 2BS 

S2B_70476108 – 

S2B_77745640 
3.23 6.09 12.07 0.57 g 116.5 – 124.5 

Qyld.hwwgGNS-

2B.1b 
GNS 2BS 

S2B_48673126 – 

SUN_24253245 
3.54 4.55 6.06 -0.62 grains spike-1 95.5 – 108.5 

Qyld.hwwgPMAT-

2B.1a 
PMAT 2BS 

SUN_24253245 – 

S2B_70479277 
3.32 6.56 4.68 0.17 days 111.5 – 116.5 

Qyld.hwwgSNS-

2B.1b 
SNS 2BS 

S2B_48673126 – 

SUN_24253245 
3.24 4.86 13.19 -0.18 spikelet spike-1 97.5 – 108.5 

Qyld.hwwgFT-

2B.1c 
FT 2BS 

SUN_24253245 –

S2B_70479277 
3.28 25.60 38.27 -0.95 days 110.5 –115.5 

Qyld.hwwgFT-

3B.2a 
FT 3BL 

SUN_112692714 – 

S3B_793708361 
3.28 2.60 7.4 0.39 days 184.5 – 193.5 

Qyld.hwwgYLD-

3B.2d 
YLD 3BL 

S3B_771823448 – 

S3B_771959309 
5.11 3.24 10.69 -14.01 kg ha-1 159.5 – 162.5 

Qyld.hwwgGNS-

4A.2b 
GNS 4AL 

S4A_633516822 – 

S4A_647775911 
3.54 18.32 25.54 1.28 grains spike-1 117.5 – 122.5 



129 

Qyld.hwwgTGW-

4A.2b 
TGW 4AL 

S4A_740652590 – 

S4A_741021326 
3.23 4.47 9.16 -0.49 g 235.5 – 242.5 

Qyld.hwwgGWT-

4A.2c 
GWT 4AL 

S4A_633516822 – 

S4A_647775911 
3.97 6.02 11.56 -0.42 mg 115.5 – 119.5 

Qyld.hwwgFT-

5A.2b 
FT 5AL 

S5A_598382451 –Vrn-

A1-E4-vern-KASP 
3.28 4.53 4.53 0.34 Days. 273.5 –281.5 

Qyld.hwwgGNS-

5A.2a 
GNS 5AL 

S5A_588428650 – 

S5A_592083734 
3.54 5.04 5.48 0.59 grains spike-1 265.5 – 269.5 

Qyld.hwwgGDM-

5A.2b 
GDM 5AL 

Vrn-A1-E4-vern-KASP 

– S5A_618710758 
3.39 3.44 13.07 0.003 mm 284.5 – 289.5 

Qyld.hwwgPMAT-

5A.2a 
PMAT 5AL 

S5A_668553847 – 

S5A_671845643 
3.32 18.3 16.44 -0.31 days 328.5 – 332.5 

Qyld.hwwgPHT-

6A.1c 
PHT 6AS 

S6A_429204568 – 

S6A_453486127 
3.35 8.11 17.9 -0.64 cm 115.5 – 120.5 

1Additive Effect of Overley allele  
2Confidence interval (cM)  
3 Favorable parental allele contributing to the desired response for yield and other traits; OY = Overley OD = Overland 
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Figure 3.5. Major QTLs identified for yield and yield components using with the Jagger 

map with multi-location best linear unbiased predictors. 

Linkage maps of major QTLs from table 3.5 (ML-BLUP; LOD ≥4.5 and PVE ≥10%) using the 

Jagger map for yield and other traits. Permutations were used to obtain LOD thresholds listed for 

ML-BLUPs. 
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B.) Yield 
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C.) Grain weight 
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D.) Spikelet per spike 
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E.) Physiological maturity 
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F) Grain number per spike 
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G) Thousand grain weight 
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H) Flowering time 
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 QTL identification: Multi Environment Trials Analysis 

Results from ICIM MET analysis are presented in Table 3.8 (IWGSCv2.1 map) and 

Table 3.9 (Jagger map). Using the IWGSCv2.1 map there was a total of 15 QTLs and using the 

Jagger map there were a total of 21 QTLs. In total there were two YLD QTLs for both reference 

maps that were designated as, Qyld.hwwgYLD-3B.2a (IWGSCv2.1 map) and Qyld.hwwgYLD-

3B.2c (Jagger map), respectively. The PVE of these QTLs were 20.29% and 15.77%, respectively 

with the unfavorable response (lower yield) due to the Overley parental allele. There were four 

GWT QTLs identified in total for both maps. Using the IWGSCv2.1 map the QTLs were 

Qyld.hwwgGWT-1A.2a   and Qyld.hwwgGWT-4A.2a (Table 3.8). The PVE of these QTLs were 

6.61% and 16.28%, respectively, and with the Overley parental allele being the unfavorable 

(lower GWT) parental allele. Using the Jagger map, the GWT QTLs were designated as 

Qyld.hwwgGWT-1A.2b   and Qyld.hwwgGWT-4A.2c (Table 3.9). The PVE of these QTLs was 

9.37% and 12.74%, respectively, and Overley was the unfavorable parental allele. There were in 

total three QTLs for GDM. Using the IWGSCv2.1 map the GDM QTLs were designated as 

Qyld.hwwgGDM-1A.2a and Qyld.hwwgGDM-2B.1a (Table 3.8). The PVE of these QTLs were 

26.59% and 24.26%, respectively with only Qyld.hwwgGDM-2B.1a demonstrating the favorable 

response (higher GDM) due to the Overley parental allele. Using the Jagger map the GDM QTL 

was Qyld.hwwgGDM-2B.1b with a PVE of 33%, and the favorable parental allele being Overley 

(Table 3.9).  

For GNS, three QTLs were identified using the IWGSCv2.1 map and four using the 

Jagger map (Table 3.8 and Table 3.9). Using the IWGSCv2.1 map, the QTLs were designated as 

Qyld.hwwgGNS-2A.2a, Qyld.hwwgGNS-2D.1a, and Qyld.hwwgGNS-4A.2a. The PVE of these 

QTLs were 4.93%, 5.88%, and 18.31% respectively. Using the Jagger map, the QTLs were 
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designated as Qyld.hwwgGNS-2A.2b, Qyld.hwwgGNS-2B.1a, Qyld.hwwgGNS-4A.2b, and 

Qyld.hwwgGNS-5A.2a (Table 3.8). All of the QTLs in both maps had favorable parental 

contributions from Overley except Qyld.hwwgGNS-2B.1a. The PVE of these QTLs were 6.31%, 

7.20%, 27.56%, and 5.07%, respectively. Overall, QTLs identified using the Jagger reference 

map were stronger (PVE ≥10 % and LOD ≥ 4.5) for GNS. There were four TGW QTLs 

identified using the Jagger map (Table 3.9) none using the IWGSCv2.1 map. The QTLs were 

Qyld.hwwgTGW-2D.1a, Qyld.hwwgTGW-2D.1b, Qyld.hwwgTGW-3B.2a, and Qyld.hwwgTGW-

4B.2a, respectively (Table 3.9). The PVE of these QTLs were 17.87%, 17.09%, 23.80%, and 

23.63%, respectively. There was no overlapping associated with TGW and other traits.  

 There was a total of three FT QTLs for both reference maps. Using the IWGSCv2.1 map, 

the FT QTL was designated as Qyld.hwwgFT-2B.1a, and Overley was the unfavorable parental 

allele with a PVE of 20.34% (Table 3.8). Using the Jagger map the FT QTLs were designated as 

Qyld.hwwgFT-2B.1b, and Qyld.hwwgFT-2B.1c, respectively. Overley was the unfavorable 

parental allele (early flowering), with similar PVE of 10.79% and 10.60% (Table 3.9). For 

PMAT there were a total of two QTLs in both reference maps. These QTLs were designated as, 

Qyld.hwwgPMAT-2B.1a and Qyld.hwwgPMAT-4A.2b. The favorable parental allele for both 

QTLs were Overley and the PVE for both QTLs were 4.07% and 10.09%. Using the IWGSCv2.1 

map there were three SNS QTLs designated as Qyld.hwwgSNS-2B.1a, Qyld.hwwgSNS-4A.2a, and 

Qyld.hwwgSNS-3D.2a with Overley being the favorable parental allele for all QTLs except 

Qyld.hwwgSNS-2B.1a. The PVE of these QTLs were 12.09%, 6.31% and 5.85%, respectively 

(Table 3.8). Using the Jagger map, there were three SNS QTLs designated as Qyld.hwwgSNS-

1A.2a, Qyld.hwwgSNS-2B.1b, and Qyld.hwwgSNS-4A.2b, respectively. The PVE of these QTLs 
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were 5%,11.98%, and 3.86%, with Overley being the favorable parental allele for all QTLs listed 

except Qyld.hwwgSNS-2B.1b (Table 3.9). 

Two PHT QTLs were identified using the IWGSCv2.1 map (Table 3.8) designated as 

Qyld.hwwgPHT-4D.1a and Qyld.hwwgPHT-6A.1a with the favorable parental allele being 

Overley (shorter height). The PVE of these QTLs were 6.16% and 12.92%. Using the Jagger 

map three QTLs were identified, Qyld.hwwgPHT-4B.1a, Qyld.hwwgPHT-6A.1c, and 

Qyld.hwwgPHT-6A.2a with Overley as the favorable parental allele. The phenotypic variation 

explained by the QTLs were 6.91%, 9.65%, and 13.86%, which were generally similar to the 

PVE of the IWGSCv2.1 map (Table 3.8 and Table 3.9).  

There was also overlapping present with the QTLs listed in Table 3.8 and 3.9 for both 

reference maps. Using the IWGSCv2.1 map overlapping QTLs were Qyld.hwwgGWT-1A.2a, and 

Qyld.hwwgGDM-1A.2a, with marker intervals of S1A_567393593 – S1A_553417513 and 

S1A_567393593 – S1A_553417513, respectively (Table 3.8). Qyld.hwwgFT-2B.1a, 

Qyld.hwwgPMAT-2B.1a, and Qyld.hwwgSNS-2B.1a overlapped with each other. The maker 

intervals of these QTLs were S2B_51126334 – S2B_72963487, S2B_47322408 – 

S2B_51126334, and S2B_51126334 – S2B_72963487, respectively. Overlapping was also 

present for Qyld.hwwgGWT-4A.2a and Qyld.hwwgGNS-4A.2a (S4A_682313475 – 

S4A_671836181) (Table 3.8). Using the Jagger map, Qyld.hwwgGNS-2B.1b and Qyld.hwwgSNS-

2B.1b presented overlap at the marker intervals of S2B_48673126 – SUN_24253245 and 

SUN_24253245 – S2B_70479277, respectively (Table 3.9). Qyld.hwwgFT-2B.1c overlapped on 

the same interval as Qyld.hwwgSNS-2B.1b. Qyld.hwwgGNS-4A.2b overlapped with 

Qyld.hwwgGWT-4A.2c (S4A_633516822 – S4A_647775911). There were also map- and 

analysis-specific QTLs observed in both reference maps using MET ICIM BLUPs (Table 3.8 and 
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Table 3.9). These QTLs were present in only one reference map. In the IWGSCv2.1 map the 

QTLs were GNS (2DS), SNS (3DL), PMAT (2BS), and GDM (1AL). For the Jagger reference 

map, there were QTLs for GNS (2BS, 5AL), SNS (1AL), PMAT (4AL), and PHT (6AL).  
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Table 3.8. QTLs identified from multi-environmental QTL analysis (MET-QTL) of yield and yield components using the 

IWGSCv2.1 reference map. 

List of QTLs identified for yield and other plant developmental traits using the multi-environment trial (MET)-QTL analysis based on 

permutation LOD for best linear unbiased predictors for yield and related traits across multiple environments using the IWGSCv2.1 

reference-derived map. The LOD threshold was set by permutation tests repeated 1,000 times at  = 0.05. LOD = log odds ratio; PVE 

= percentage of variance explained.  A = additive (main) effect of genotype, Resp. = Response.  

 

QTL Resp. Chr. Marker Interval 
LOD

 

Threshold 
LOD 

PVE 

(%) 
P

1
 P

2
 A

3
 C.I.

4
 (cM) 

Qyld.hwwgGWT-

1A.2a 

 

GWT 1AL 
S1A_567393593 – 

S1A_553417513 
3.88 5.65 6.61 5.68 0.93 -0.33 mg 16.5 – 19.5 

Qyld.hwwgGDM-

1A.2 a 
 

GDM 1AL 
S1A_567393593 – 

S1A_553417513 
3.90 4.32 26.59 5.94 20.64 -0.0063 mm 16.5 – 19.5 

Qyld.hwwgGNS-

2A.2 a 
 

GNS 2AL 
S2A_646416484 – 

S2A_626218088 
5.02 9.15 4.93 4.32 0.61 

0.50  

grains spike-1 
145.5 – 148.5 

Qyld.hwwgFT-

2B.1a 

 

FT 2BS 
S2B_51126334 – 
S2B_72963487 

5.0 41.84 20.34 20.33 0.003 -1.22 days 32.5 – 38.5 

Qyld.hwwgPMAT-

2B.1a 

 

PMAT 2BS 
S2B_47322408 – 
S2B_51126334 

3.62 3.62 4.07 4.07 0.0003 -0.70 days 23.5 – 36.5 

Qyld.hwwgSNS-

2B.1a 

 

SNS 2BS 
S2B_51126334 – 
S2B_72963487 

5.11 16.21 12.09 12.06 0.03 
-0.16  

spikelet spike-1 
28.5 – 37.5 

Qyld.hwwgGDM-

2B.1 a 

 

GDM 2BS 
S2B_80117186 – 

S2B_80274906 
3.90 4.07 24.26 4.98 19.27 0.0058 mm 51.5 – 58.5 

Qyld.hwwgGNS-
2D.1 a 

 

GNS 2DS 
S2D_59007363 – 

S2D_61243683 
5.02 10.77 5.88 5.41 0.46 

-0.56  

grains spike-1 
61.5 – 65.5 

Qyld.hwwgYLD-
3B.2a 

YLD 3BL 
S3B_680171380 – 
S3B_687519082 

5.14 9.39 20.29 9.64 10.66 -46.86 kg ha-1 92.5 – 97.5 
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Qyld.hwwgSNS-

3D.2a 
 

SNS 3DL 
S3D_611534849 – 

S3D_614193584 
5.11 8.51 5.85 5.64 0.20 

0.11  

spikelet spike-1 
0 – 2.5 

Qyld.hwwgGWT-

4A.2a 

 

GWT 4AL 
S4A_682313475 – 

S4A_671836181 
3.88 13.77 16.28 1563 0.65 -0.55 mg 65.5 – 72.5 

Qyld.hwwgSNS-

4A.2a 

 

SNS 4AL 
S4A_619213122 – 
S4A_624993521 

5.11 8.43 6.31 5.34 0.97 
0.11  

spikelet spike-1 
44.5 – 52.5 

Qyld.hwwgGNS-

4A.2 a 

 

GNS 4AL 
S4A_682313475 – 
S4A_671836181 

5.02 30.95 18.31 18.2 0.10 
1.03  

grains spike-1 
65.5 – 71.5 

Qyld.hwwgPHT-

4D.1a 

 

PHT 
4DL 

 

S4D_351747244 – 

S4D_426497943 
5.18 5.73 6.16 3.79 2.37 -0.28 cm 0 – 5.5 

Qyld.hwwgPHT-
6A.1a 

 

PHT 6AS 
S6A_80483834 – 

S6A_65650958 
5.18 14.47 12.92 10.54 2.38 -0.48 cm 101.5 – 107.5 

1 PVE of Additive Effect  
2 PVE of A x E interaction 
3Additive effect of the Overley allele 

4Confidence interval (cM) 
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Table 3.9.  QTLs identified from multi-environmental QTL analysis (MET-QTL) of yield and yield components using the for 

Jagger map. 

List of QTLs identified for yield and other plant developmental traits using the multi-environment trial (MET)-QTL analysis based on 

permutation LOD for best linear unbiased predictors for yield and related traits across multiple environments using the Jagger 

reference-derived map. The LOD threshold was set by permutation tests repeated 1,000 times at  = 0.05. LOD = log odds ratio; PVE 

= percentage of variance explained. A = additive (main) effect of genotype, Resp. = Response.  

 

QTL Resp. Chr. Marker Interval 
LOD 

Threshold 
LOD 

PVE 

(%) 
P

1
 P

2
 A

3
 C.I.

4
 (cM) 

Qyld.hwwgSNS-

1A.2a 
SNS 1AL 

S1A_380959697 – 

S1A_376062465 
3.24 8.24 5.0 5.0 1.19 

0.11  

spikelet spike-1 
98.5 – 101.5 

Qyld.hwwgGWT-

1A.2b 
GWT 1AL 

S1A_566818453 – 

S1A_576782223 
3.27 6.68 9.37 8.69 0.67 -0.36 mg 210.5 – 214.5 

Qyld.hwwgGNS-
2A.2b 

GNS 2AL 
S2A_215641731 – 
S2A_659513001 

5.26 17.39 7.20 5.16 2.04 
0.54  

grains spike-1 
122.5 – 123.5 

Qyld.hwwgGNS-

2B.1a 
GNS 2BS 

S2B_48673126 – 

SUN_24253245 
5.26 15.15 6.31 5.89 0.42 

-0.58  

grains spike-1 
99.5 – 110.5 

Qyld.hwwgGDM-

2B.1b 
GDM 2BS 

S2B_70479294 – 

S2B_70476108 
3.94 6.32 33.0 7.43 25.57 0.008 mm 116.5 – 125.5 

Qyld.hwwgSNS-
2B.1b 

SNS 2BS 
SUN_24253245 – 

S2B_70479277 
3.24 15.82 11.98 11.41 0.57 

-0.16  
spikelet spike-1 

109.5 – 115.5 

Qyld.hwwgFT-

2B.1b 
FT 2BS 

S2B_44829601 – 

S2B_48673126 
5.02 19.26 10.79 10.79 0.002 -0.70 days 92.5 – 97.5 

Qyld.hwwgFT-

2B.1c 
FT 2BS 

SUN_24253245 – 

S2B_70479277 
5.02 18.63 10.60 10.60 0.002 -0.70 days 114.5 – 116.5 

Qyld.hwwgTGW-

2D.1a 
TGW 2DS 

S2D_48633474 – 

S2D_53051094 
5.15 3.69 17.87 2.16 15.71 0.22 g 134.5 – 141.5 

Qyld.hwwgTGW-

2D.1b 
TGW 2DS 

S2D_63887119 – 

S2D_102129747 
5.15 3.85 17.09 0.48 16.60 0.10 g 174.5 – 188.5 

Qyld.hwwgTGW-
3B.2a 

TGW 3BL 
S3B_401825657 – 
S3B_491054064 

5.15 3.43 23.80 5.28 18.52 0.34 g 70.5 – 78.5 
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Qyld.hwwgYLD-

3B.2c 
YLD 3BL 

S3B_682774385 – 

S3B_690120186 
3.21 9.04 15.77 7.59 8.18 -46.6 kg ha-1 114.5 – 118.5 

Qyld.hwwgGNS-

4A.2b 
GNS 4AL 

S4A_633516822 – 

S4A_647775911 
5.26 56.68 27.56 26.95 0.61 

1.2  

grains spike-1 
117.5 – 120.5 

Qyld.hwwgSNS-
4A.2b 

SNS 4AL 
S4A_619679451 – 
S4A_620336405 

3.24 8.20 3.86 3.86 2.09 
0.09  

spikelet spike-1 
91.5 – 96.5 

Qyld.hwwgGWT-

4A.2c 
GWT 4AL 

S4A_633516822 – 

S4A_647775911 
3.27 8.60 12.74 11.16 1.59 -0.41 mg 115.5 – 125.5 

Qyld.hwwgPMAT-

4A.2b 
PMAT 4AL 

S4A_564352980 – 

S4A_592328441 
4.04 6.26 10.09 10.09 0.003 1.1 days 23.5 – 33.5 

Qyld.hwwgPHT-

4B.1a 
PHT 4BS 

S4B_12718161 – 

S4B_18668627 
3.35 8.71 6.91 6.65 0.26 -0.39 cm 42.5 – 50.5 

Qyld.hwwgTGW-

4B.2a 
TGW 4BL 

S4B_601835018 – 

S4B_618081673 
5.15 4.13 23.63 2.41 21.21 0.23 g 86.5 – 101.5 

Qyld.hwwgGNS-
5A.2a 

GNS 5AL 
S5A_588428650 – 
S5A_592083734 

5.26 12.67 5.07 4.33 0.74 
0.50  

grains spike-1 
265.5 – 269.5 

Qyld.hwwgPHT-

6A.1c 
PHT 6AS 

S6A_62109330 – 

S6A_72512856 
3.35 12.83 9.65 6.42 3.23 -0.39 cm 100.5 – 103.5 

Qyld.hwwgPHT-

6A.2a 
PHT 6AL 

S6A_429204568 – 

S6A_453486127 
3.35 12.29 13.86 7.53 6.33 -0.42 cm 116.5 – 120.5 

1 PVE of Additive Effect  
2 PVE of A x E interaction 
3Additive effect of the Overley allele 

4Confidence interval (cM) 
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The A x E interactions of the major QTL(s) across locations were identified using the 

IWGSVv2.1 map and Jagger map (Table 3.10 and Table 3.11). Using the IWGSCv2.1 map the 

additive effects of the Overley alleles at the GWT QTLs (Qyld.hwwgGWT-1A.2a, 

Qyld.hwwgGWT-4A.2a) was negative, indicating lower GWT (Table 3.10). The Overley allele of 

Qyld.hwwgGWT-1A.2a was less unfavorable at AS18, relative to AS19. The Overley allele of 

Qyld.hwwgGWT-4A.2a was also less unfavorable at AS18, relative to AS19. The additive effects 

predominated over the QTL x E interaction which is evidenced by the PVE values in Table 3.8 

and Table 3.9.  

The additive effects of the Overley allele at the GDM QTL, Qyld.hwwgGDM-1A.2a and 

Qyld.hwwgGDM-2B.1 a were negligible for both parental alleles, respectively (Table 3.10). The 

Overley allele of GNS QTL (Qyld.hwwgGNS-2D.1a) was negative, indicating the less favorable 

response of lower GNS. The Overley allele of Qyld.hwwgGNS-2D.1a was less unfavorable at 

AS18 and HZ18, relative to the other locations. The Overley allele of the GNS QTL 

(Qyld.hwwgGNS-2A.2a and Qyld.hwwgGNS-4A.2a) was positive, indicating the favorable 

response of higher GNS. The Overley allele of Qyld.hwwgGNS-2A.2a was most favorable at 

HZ19, relative to the other locations. The Overley allele of Qyld.hwwgGNS-4A.2a was most 

favorable at HZ19, relative to the other locations (Table 3.10). 

 The Overley allele at the YLD QTL (Qyld.hwwgYLD-3B.2a) was negative indicating the 

less favorable response of decrease in yield (Table 3.10). The Overley allele of Qyld.hwwgYLD-

3B.2a was less unfavorable at AS18 and HZ18, relative to the other locations. The Overley allele 

of the FT QTL (Qyld.hwwgFT-2B.1a) was negative, indicating the less favorable response of 

earlier flowering time. The Overley allele of Qyld.hwwgFT-2B.1a was less unfavorable at AS18, 

HZ18, and HZ19, relative to AS19. The Overley allele of the PMAT QTL (Qyld.hwwgPMAT-
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2B.1a) was negative indicating the less favorable response of earlier maturity. The Overley allele 

of Qyld.hwwgPMAT-2B.1a was less unfavorable at AS18, relative to AS19 (Table 3.10). The 

Overley allele of the SNS QTL (Qyld.hwwgSNS-2B.1a) was negative, indicating the less 

favorable response of lower SNS. The Overley allele of Qyld.hwwgSNS-2B.1a was less 

unfavorable at AS18 and AS19, relative to the other locations. The Overley allele of the SNS 

QTL (Qyld.hwwgSNS-3D.2a and Qyld.hwwgSNS-4A.2a) was positive, indicating an increase in 

SNS. The Overland allele of Qyld.hwwgSNS-3D.2a was most favorable at AS19 and HZ19, 

relative to the other locations. The Overland allele of Qyld.hwwgSNS-4A.2a was most favorable 

at HZ18 and HZ19, relative to the other locations. The Overley allele of the PHT QTLs 

(Qyld.hwwgPHT-4D.1a and Qyld.hwwgPHT-6A.1a) was negative, indicating favorable response 

of lower PHT. The Overley allele of Qyld.hwwgPHT-4D.1a was most favorable at HZ19, relative 

to the other locations. The Overley allele of Qyld.hwwgPHT-6A.1a was most favorable at AS18 

and HZ18, relative to the other locations (Table 3.10). The QTL x E interaction effect did not 

show a predominate difference with the additive effect for the majority of the traits except for 

yield where the QTL x E interaction effect predominated additive.  
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Table 3.10. Additive and A X E effects at each of the four environments for yield and yield-related traits using the IWGSCv2.1 

map. 

The additive and A x E effects for yield and other traits across locations associated with significant QTLs (LOD ≥4.5 and PVE ≥10%) 

on the IWGSVv2.1 reference map, associated with the data presented in Table 3.8 (MET analysis). Abbreviations are E = 

Environment, C.I. =Confidence interval (cM), A x E = Additive by environment interaction. 

 

   A x E Effect 

QTL Name Unit A AS18 AS19 HZ18 HZ18 

Qyld.hwwgGWT-1A.2a mg -0.33 0.13 -0.13   

Qyld.hwwgGDM-1A.2 a mm -0.006 -0.01 0.01   

Qyld.hwwgGNS-2A.2a grains spike-1 0.50 -0.01 0.10 -0.30 0.21 

Qyld.hwwgFT-2B.1a days -1.22 0.01 -0.02 0.004 0.006 

Qyld.hwwgPMAT-2B.1a days -0.70 0.006 -0.006   

Qyld.hwwgSNS-2B.1a spikelet spike-1 -0.16 0.002 0.01 -0.003 -0.010 

Qyld.hwwgGDM-2B.1 a mm 0.006 0.01 -0.01   

Qyld.hwwgGNS-2D.1a grains spike-1 -0.56 0.03 -0.13 0.03 -0.15 

Qyld.hwwgYLD-3B.2a kg ha-1 -46.86 29.25 -17.07 59.07 -71.25 

Qyld.hwwgSNS-3D.2a spikelet spike-1 0.11 -0.04 0.01 0.001 0.01 

Qyld.hwwgGWT-4A.2a mg -0.55 0.11 -0.11   

Qyld.hwwgSNS-4A.2a spikelet spike-1 0.11 -0.03 -0.05 0.02 0.07 
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Qyld.hwwgGNS-4A.2 a grains spike-1 1.03 -0.06 -0.08 -0.12 0.02 

Qyld.hwwgPHT-4D.1a cm -0.28 0.20 -0.07 0.20 -0.33 

Qyld.hwwgPHT-6A.1a cm -0.48 -0.14 0.39 -0.14 -0.10 

 

*Additive effect of the Overley allele. 

Table 3.11 Additive and A X E effects at each of the four environments for yield and yield-related traits using the Jagger map. 

The A x E effects for yield and other traits across locations associated with significant QTLs (LOD ≥4.5 and PVE ≥10%) on the 

Jagger reference map, associated with the data presented in Table 3.9. Abbreviations are E = Environment, C.I. =Confidence interval 

(cM), A x E = Additive by environment interaction. 

 

   A x E Effect 

QTL Name Unit A AS18 AS19 HZ18 HZ19 

Qyld.hwwgSNS-1A.2a spikelet spike-1 0.11 -0.09 0.04 0.01 0.04 

Qyld.hwwgGWT-1A.2b mg -0.36 0.10 -0.10   

Qyld.hwwgGNS-2A.2b grains spike-1 0.54 
-0.05 

 
-0.53 

 
0.22 

 
0.36 

 

Qyld.hwwgGNS-2B.1a grains spike-1 -0.58 
0.20 

 

-0.15 

 

0.11 

 

-0.15 

 

Qyld.hwwgGDM-2B.1b mm 0.008 0.008 0.015   

Qyld.hwwgSNS-2B.1b spikelet spike-1 -0.16 0.02 
-0.03 

 

0.05 

 
-0.04 

Qyld.hwwgFT-2B.1b days -0.70 0.009 -0.02 0.003 0.004 

Qyld.hwwgFT-2B.1c days -0.70 0.01 -0.02 0.003 0.004 

Qyld.hwwgTGW-2D.1a grams 0.22 -0.89 0.74 0.05 0.10 
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Qyld.hwwgTGW-2D.1b grams 0.10 -0.78 0.71 -0.36 0.42 

Qyld.hwwgTGW-3B.2a grams 0.34 -0.06 -0.32 -0.65 1.03 

Qyld.hwwgYLD-3B.2c kg ha-1 -46.6 
30.2 

 
-10.8 

54.2 

 
-73.5 

Qyld.hwwgGNS-4A.2b grains spike-1 1.2 

 

-0.20 

 
 

-0.14 
0.27 

 
0.07 

Qyld.hwwgSNS-4A.2b spikelet spike-1 0.09 
0.04 

 
-0.05 

 
0.04 

 
-0.08 

 

Qyld.hwwgGWT-4A.2c mg -0.41 0.15 -0.15   

Qyld.hwwgPMAT-4A.2b days 1.1 -0.02 0.02   

Qyld.hwwgPHT-4B.1a cm -0.39 
-0.07 

 

0.11 

 

-0.07 

 
0.04 

Qyld.hwwgTGW-4B.2a grams 0.23 -0.55 0.70 0.65 -0.79 

Qyld.hwwgGNS-5A.2a grains spike-1 0.50 
-0.15 

 

-0.25 

 

0.24 

 
0.16 

Qyld.hwwgPHT-6A.1c cm -0.39 -0.27 0.24 -0.27 0.30 

Qyld.hwwgPHT-6A.2a cm -0.42 -0.07 0.11 -0.07 0.04 

 

*Additive effect of the Overley allele. 
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 Discussion 

 Phenotypic Data 

Many components define the underlying genetics of YLD. So, maximizing YLD 

improvement depends on improving the production of these components, such as GWT, SNS, 

and GNS. The desirable phenotypic expressions of these traits are influenced by genotype and G 

x E. Our study evaluated YLD and its components across two seasons at two locations in an 

Overley x Overland hard winter wheat RIL population. All traits were considered in both years 

and locations except GWT and GDM, which were only measured for samples from Ashland. Our 

phenotypic data showed that our RIL population phenotypic responses of YLD and YLD-related 

traits were intermediate among the parents. The high heritabilities of yield component traits 

suggests that a YLD improvement target should focus on the components rather than YLD alone.  

QTL Analysis: Plant Height  

We identified a PHT QTL on 6AS using the IWGSCv2.1 map (Qyld.hwwgPHT-6A.1a) 

and on 6AL using the Jagger map (Qyld.hwwgPHT-6A.2a) using the ML-BLUPs both having 

similar PVE (17%) and LOD (8). There have been reports on QTLs identified on 6AS for PHT 

(Mcintosh et al., 2013; Tian et al., 2017) associated with Rht14, Rht16, or Rht18 which have not 

yet been cloned. Further investigation will need to be done to determine which Rht gene(s) from 

the list above is closely associated with our 6AS QTL. The 6AL QTL using the Jagger map 

Qyld.hwwgPHT-6A.2a  may be associated with the Rht24 gene (Tian et al., 2017). The Rht24 is 

flanked between TaAP2 (434.8 Mb) and TaFAR (405.5 Mb) with a genetic distance of 1.85 cM 

(Tian et al., 2017). Our 6AL QTL discovered in the Jagger map, Qyld.hwwgPHT-6A.2a , overlaps 

with the Rht24  marker interval (429.0 Mb  – 453.5 Mb). In the MET analysis, additional PHT 

QTLs were identified on 4DL (Qyld.hwwgPHT-4D.1a) with the IWGSCv2.1 map, and on 4BS 
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(Qyld.hwwgPHT-4B.1a), and 6AS (Qyld.hwwgPHT-6A.1a) using the Jagger map. No QTLs have 

been reported on the 4DL for PHT, which indicates that this may be a novel QTL region. There 

have been several PHT QTLs reported on the 4BS, Rht-B1b (Peng et al., 1999), Rht-B1c (Pearce 

et al., 2011), QHt.fra-4B (Jinrong Peng et al., 1999), Pht.Sparc-4B (Bokore et al., 2022). The 

Rht-B1 gene is cloned and its position is known, and both parents are Rht1 wheats. Our 4BS 

QTLs may be closely associated with the QTLs reported, but further investigation is needed. 

Other meta-QTL analysis studies have also reported QTLs associated with PHT spanning the 

entire wheat genome (Griffiths et al., 2009; Mcintosh et al., 2013; Zanke et al., 2014; Zhang et 

al., 2010). 

QTL Analysis: Flowering Time 

Using the ML-BLUP data we identified a 5AL QTL (Qyld.hwwgFT-5A.2a) using the 

IWGSCv2.1 map (Table 3.6) and 3BL (Qyld.hwwgFT-3B.2a), 5AL (Qyld.hwwgFT-5A.2b), and 

2BS (Qyld.hwwgFT-2B.1c) QTLs using the Jagger map (Table 3.7). With MET-QTL analysis we 

identified associations on the 2BS chromosome (IWGSCv2.1: Qyld.hwwgFT-2B.1a; Jagger: 

Qyld.hwwgFT-2B.1b; Jagger: Qyld.hwwgFT-2B.1c). Using the IWGSCv2.1 map, the 5AL QTL, 

did include the Vrn-A1-E4-vern-KASP marker (~145 cM) region, but it may be related to other 

FT QTLs reported on 5A in other MQTL studies (refer to Ch. 2). We identified multiple QTLs 

on 2BS; there was no overlap between QTLs identified with the different maps for the 2BS 

chromosome. Using the IWGSCv2.1 map (Table 3.6), there was only one FT QTL designated as 

Qyld.hwwgFT-5A.2a, with a PVE of 8.34%. The QTLs identified with the Jagger map had 

adjacent markers and were fragmented with tight confidence intervals. These 2BS QTLs may be 

associated with Ppd-B1 (61.2 Mb, Jagger map)(Díaz et al., 2012; Mcintosh et al., 2013). Diaz et 

al. (2012) investigated genetic variants in commercial varieties of wheat that regulate FT by 
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altering photoperiod response, Ppd -B1 alleles, or Vrn-A1 alleles. It was determined that 

increased copy numbers of the gene alters gene expression, and FT decreases. In cases where 

there was an increase of copy number for Ppd-B1 resulted in an early flowering phenotype 

(photoperiod insensitive-varieties flower quickly in both short or long days) response. A similar 

response was observed for Vrn-A1; as there is an increase in Vrn-A1, an increase in vernalization 

requirement (longer exposure time to the cold) will increase the potency of the FT response. 

Information gathered from our QTLs will further enhance our understanding of underlying 

genetic mechanisms involved with FT. 

QTL Analysis: Physiological Maturity 

Physiological maturity is defined as the stage of grain development when grains stop 

growing and maximum GY potential is achieved. Physiological maturity is influenced by the 

same genes /allelic variants involved in FT (mentioned in the previous section). Our study 

identified PMAT QTLs using ML-BLUPs on Qyld.hwwgPMAT-2B.1b (IWGSCv2.1), 

Qyld.hwwgPMAT-2B.1a (Jagger), and Qyld.hwwgPMAT-5A.2a (Jagger). The marker interval of 

Qyld.hwwgPMAT-5A.2a was near Vrn-A1-E4-vern-KASP (S5A_668553847: 50cM and 

S5A_671845643: 54cM) in comparison to Qyld.hwwgFT-5A.2b. The remaining two QTLs are 

located on the 2BS. They may be associated with Ppd-B1; this may not be unusual as studies 

have shown that FT and PMAT responses are correlated (Kamran et al., 2014).  

Using MET-QTL analysis, we identified two PMAT QTLs Qyld.hwwgPMAT-2B.1a 

(IWGSCv2.1) and Qyld.hwwgPMAT-4A.2b (Jagger). There are no reports of PMAT QTLs on 

these chromosomes, but they may still be associated with yield-related traits. Our data suggest 

that there is a relationship between PMAT, SNS, and FT which may hold based on our 

correlations with SNS (r = 0.36) and FT (r = 0.67), which can positively influence YLD. The 
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relationship with PMAT and grain traits were negatively correlated (inversely proportional) 

indicating that late maturing varieties produced grains of lower weight and diameter (Table 3.5). 

Studies have reported that the length of PMAT can influence GWT and other dynamics through 

the regulation of sink-source pathways and underlying genetic mechanisms (Brooking, 1990; 

Parvej et al., 2020; Sala et al., 2007). Furthermore, just as FT QTLs are found across the entire 

genome, the same goes for PMAT (Chen et al., 2010; Kulwal et al., 2003;  Wang et al., 2009). 

 QTL Analysis: Grain Weight Characteristics 

Various grain morphological parameters and dynamics influence grain-filling rate from 

source-sink relations to spike development. Identifying major QTLs and functional genes is 

urgently required for molecular improvements in wheat GY. In our study, we identified the most 

QTLs for GWT-related traits. Using the IWGSCv2.1 map with the ML-BLUP data we identified 

the following QTLs on 2AL (GWT), 2BL (TGW), 4AL (TGW, GWT), 5AL (GDM), 6BL 

(GWT). In the Jagger map using the ML-BLUP data, we identified QTLs on 1AL (GWT), 2AL 

(TGW, GNS), 2BS (TGW, GNS, PMAT, SNS), 3BL (FT, YLD), 4AL (GNS, TGW, GWT), 

5AL (FT, GNS, GDM, PMAT), and 6AS (PHT). Additional QTLs identified using MET-QTL 

analysis in both maps.   

There have been reports of GWT QTLs (Mcintosh et al., 2013) being found on 4AL 

(QGwe.ipk-4A), 4AS (QGwe.ocs-4A.1), and 2DS (QGwe.ipk-2D). Other meta-QTL analysis 

studies (Goffinet et al., 2000) have reported GWT QTLs located on the 1B, 2A, 2D, 3B, 4A, 5A, 

6A, 6B,7A, and 7D (Tyagi et al., 2015; J. Zhang et al., 2018). Most of our GWT QTLs may be 

associated with similar chromosome groups mentioned in the MQTL studies. However, further 

investigation will be needed to evaluate their proximity to currently reported GWT QTLs. There 

may also be novel QTLs from our study not yet identified (e.g., Qyld.hwwgGWT-1A.2b).  
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Thousand grain weight can be a significant determinant of GY potential in wheat, 

influenced by genetic, management, and environmental factors (Avni et al., 2018; Cruppe et al., 

2021; Duan et al., 2017; Wang et al., 2012). In comparison to other YLD components, previous 

research showed that TGW might have more stable PVE and higher heritability (Cheng et al., 

2015; Duan et al., 2020; Gao et al., 2021; Krishnappa et al., 2017; Miao et al., 2022; Qu et al., 

2021; Xin et al., 2020; Xu et al., 2017; Yang et al., 2020). This was also the case for our study, 

(H2 = 0.75; rGWT:GDM =0.46; rGWT:TGW =0.71) where we presented high heritabilities and 

significant correlations (p < 0.001). Most of our YLD components showed genotype and G x E 

as the strong variance components contributing to their response (𝜎𝑔
2

TGW  = 4.5*** , 𝜎𝑔𝑒
2

TGW 

=2.1***). These results validate that TGW is mainly controlled by genetic factors that express 

QTLs under various environmental conditions. The TGW QTLs were only identified using the 

ML-BLUP data for both reference maps from our study. The most significant QTLs for both 

reference maps were located on the 2BS chromosome. A recent MQTL study (Miao et al., 2022) 

identified 45 MQTLs spanning the entire wheat genome explaining 1.8-12.9% PVE. Their 2BS 

MQTL, Qtgw.acs-2B, flanked by Xgwm257 (IWGSCv2.1 map: 51.0 Mb; Jagger map: 48.5 Mb) 

and Xgwm429 (IWGSv2.1 map:81.2 Mb; Jagger map: 78.8 Mb), is also located on the short arm. 

Further investigation will need to further validate the proximity of our QTL to these studies. This 

study also supports our other QTLs for TGW chromosomal groups.  

In ML-BLUP data, the GDM QTLs were Qyld.hwwgGDM-5A.2a (IWGSCv2.1) 

Qyld.hwwgGDM-5A.2b (Jagger). With our MET-QTL analysis data, we identified 

Qyld.hwwgGDM-1A.2a, Qyld.hwwgGDM-2B.1a (IWGSCv2.1) and Qyld.hwwgGDM-2B.1b 

(Jagger). As stated earlier, a factor that characterizes GWT is GDM, and homologous forms of 

TaGW2 may influence the magnitude of GDM, which can influence YLD. For the IWGSCv2.1 



156 

map with the ML-BLUP dataset, only the QTL on the 5AL was identified (Qyld.hwwgGDM-

5A.2a). There was also only one QTL identified for GDM, Qyld.hwwgGDM-5A.2b, using the 

Jagger map. Both GDM QTLs identified using both reference maps had a positive additive effect 

(A = 0.003). There was a strong correlation between GDM and GWT (rGDM:GWT = 0.46). In the 

second data set (MET analysis), there were more fragmented and overlapping results among 

different traits. Using the IWGSCv2.1 map GDM QTLs were on 1AL (Qyld.hwwgGDM-1A.2a) 

and 2BS (Qyld.hwwgGDM-2B.1a). Both had relatively small additive effects (-0.006 ,0.006). In 

addition, QTLs for GWT and GDM on 1AL overlapped. This QTL was found in both maps 

using MET analysis and the Jagger map using the ML-BLUP data. The 2BS QTL was not 

identified using the Jagger map.   

Yang et al. (2020) measured grain characteristics and performed QTL analysis in using a 

RIL population consisting of 266 lines. Four genetic regions (1AL, 2BS, 3AL, and 5B) affected 

TGW-like traits. The 1AL QTL associated with grain width (Qgw.caas-1AL) had a PVE of 5-

20% with a physical interval of 307.8 - 356.7 Mb. Our QTL, however, is distal (553.4 – 567.3 

Mb; with a PVE of 27%). There were QTLs also identified on 2BS. The QTL linked to grain 

width, Qgw.caas-2BS, had a PVE of 4.2 – 8.1% and a physical position of 41.4 – 44.3 Mb. The 

5AL QTL we identified using the ML-BLUP data may be a novel QTL as current studies report 

that grain-dimension-related QTLs are mainly located on 5AS (Kumari et al., 2018; Li et al., 

2022).   

 QTL Analysis: Spikelet Number per Spike and Grains per Spike 

Spikelet number per spike (sink strength) is an important trait that characterizes YLD as 

we expect that SNS and GNS will increase and YLD will increase if there sufficient 

photosynthate is available to fill the grain. We observed strong correlations between GNS and 
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SNS (rGNS:SNS = 0.65), but no correlation with YLD. For our study, it seems that SNS is not 

significantly influenced by the environment, but is affected by genotype (𝜎𝐺= 0.43***), which is 

similar to recent findings (Jaenisch et al., 2022; Slafer et al., 2022). The major QTLs in both 

maps for SNS were on 2BS, Qyld.hwwgSNS-2B.1b (Jagger map) and Qyld.hwwgSNS-2B.1a 

(IWGSCv2.1 map).  

Our study identified multiple QTLs for SNS and GNS in both datasets (ML-BLUP, MET 

analysis). In the first dataset (ML-BLUPs) using the IWGSCv2.1 map, 5 QTLS (3 SNS and 2 

GNS) are designated Qyld.hwwgSNS-2B.1a ,Qyld.hwwgSNS-7A.1a , Qyld.hwwgSNS-4A.2a, 

Qyld.hwwgGNS-2A.2a ,and Qyld.hwwgGNS-4A.2a. The only overlap observed was with TGW 

(Qyld.hwwgTGW-4A.2a ; A = -0.59 g) and GNS (Qyld.hwwgGNS-4A.2a ; OY ; A = 1.0 grains 

spike-1) which may be expected as these traits may interrelated as grain characteristics. The 

increase in TGW is linked to the Overland allele, and an increase in GNS has been linked to the 

Overley allele. The correlation between these two traits was inversely proportional (r2
GNS: TGW =  

-0.45). This relationship between increased GNS and low TGW can be due to environmental 

conditions and lack of assimilates.  

Using the Jagger map, we identified seven QTLs, three for SNS and four for GNS. Our 

correlations (r2
GNS: SNS = 0.65) show that there is a positive proportional relationship with these 

traits. There was also an overlap was on the 4AL QTLs of GWT (Qyld.hwwgGWT-4A.2c ; A =  

-0.42 mg) and GNS (Qyld.hwwgGNS-4A.2b ; A =1.28 grains spike-1 ). These QTLs have the same 

type of relationship that we discussed earlier with TGW and SNS. In MET analysis, using the 

IWGSv2.1 map we found six QTLs (3 SNS, 3 GNS) designated as Qyld.hwwgSNS-2B.1a 

,Qyld.hwwgSNS-4A.2a ,Qyld.hwwgSNS-3D.2a , Qyld.hwwgGNS-4A.2a,Qyld.hwwgGNS-2D.1a, 

and Qyld.hwwgGNS-2A.2a . There was overlap in QTLs found on the 2BS and 4AL 
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chromosomes. The 2BS overlapping QTLs were Qyld.hwwgSNS-2B.1a (A = -0.16 spikelet spike-

1) and Qyld.hwwgFT-2B.1a (A = -1.2 days). These QTLs present a directly proportional 

relationship with the traits; later FT plants have larger SNS. The 4AL overlapping QTLs were 

Qyld.hwwgGNS-4A.2a (A = 1.0 grains spike-1) and Qyld.hwwgGWT-4A.2a (A = -0.55 mg); these 

QTLs have the similar relationship described above between TGW and SNS. Using the Jagger 

map, we found seven QTLs, three for SNS and four for GNS. There were overlapping QTLs on 

2BS (Qyld.hwwgGNS-2B.1a: A = 0.58 grains spike-1, Qyld.hwwgSNS-2B.1b: A = -0.16 spikelet 

spike-1; Qyld.hwwgFT-2B.1c: A = -0.7 days) and 4AL (Qyld.hwwgGNS-4A.2b :A = 1.2 grains 

spike-1, Qyld.hwwgGWT-4A.2c :A = - 0.4 mg). 

Spikelet number per spike and GNS can significantly contribute to GY (Slafer et al., 

2020). Many environmental and genetic factors influence these traits. Reports of QTLs have 

identified and validated these traits across different genomic regions. Reported regions for SNS 

had been identified on the 7AL (Kuzay et al., 2022, 2019; Muqaddasi et al., 2019; Zhai et al., 

2016), 2DS (Ma et al., 2019), and other regions identified in MQTL studies.  Li et al. (2021) 

performed a QTL study using a DH population, ‘Kechengmai1’ x ‘Chuanmai42’. There were 27 

QTLs identified for spike architecture traits such as total spikelet number per spike (TSN), and 

fertile spikelet number per spike (FSN) identified on chromosomes 1B, 1D, 2B, 2D, 3D, 4A, 4D, 

5A, 5B, 5D, 6A, 6B, and 7D in multiple environments. The 2BS QTL, QTsn.cib-2B.1 (1.26 – 

1.86 cM), flanked by was only identified for TSN and a PVE of 4.1 %. There were two on the 

4A (QFsn.cib-4A.1: 97.3 – 98.0 cM; QFsn.cib-4A.2: 108.3 – 113.4 cM) associated with FSN, 

with their respective PVE percentages being 18.3 % and 9.7 %. The 3D QTL on the long arm, 

QFsn.cib-3D/QTsn.cib-3D (103.64 –108.09 cM), was identified across all environments tested, 

and their phenotypic variation ranged from 6 – 23 %. Our QTLs are in the general vicinity of 
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some of these QTLs (e.g., QFsn.cib-3D/QTsn.cib-3D: 549.5 Mb – 555.2 Mb; Qyld.hwwgSNS-

3D.2a: 611.5 Mb – 614.2 Mb). This still provides some supporting insight that there is evidence 

of QTLs being identified in similar regions to our study.  

In this trial (Chen et al., 2020), GNS was not used for QTL analysis, but it was a trait 

measured in this study that indicated a strong association with spike-related traits. The 3DL QTL 

presented a positive effect with TSN (5.56%***; p < 0.001), FSN (5.31%***; p < 0.001), and GNS 

(7.61%***; p < 0.001) it presented a similar trend with other spike morphology traits. 

Furthermore, correlations among GNS, TSN, and FSN were strong ( r2
TSN =0.57***,  r2

FSN 

=0.63***), and a similar trend of strong correlations among spikelet-related traits was also 

observed in another study (Chen et al., 2020) for spike-related traits (r2
TSN: FSN =0.93***). These 

findings indicate that increasing SNS produced more grains (GNS) in fertile florets and 

effectively GY.   

 Saini et al. (2022) evaluated 230 studies (1990 – 2022) discovering 2,852 strong QTLs 

out of 8,998 QTLs used for meta-QTL analysis that identified 141 MQTLs for YLD and YLD-

related traits. Of the 141 MQTLs, 58 contributed to GNS and other YLD-related traits (e.g., 

GWT). The GNS MQTLs spanned all 21 chromosomes with varying QTL stats (e.g., LOD, PVE, 

interval size). There were no direct overlaps between our GNS QTLs and the MQTLs from the 

study, MQTL4A.3 (709.9 Mb – 713.5 Mb) and Qyld.hwwgGNS-4A.2a (671.8 Mb – 682.3 Mb) 

Qyld.hwwgGNS-4A.2b (633.5 Mb – 647.8 Mb) were loosely in the general area of the MQTLs the 

other QTLs from our study were not near any MQTLs discovered in this study. Other reported 

QTLs have been QGnu.ipk-4A, QKps.u (Li et al., 2022) nl-3A.1,Qkps.unl-3A.2 (Mcintosh et al., 

2013), QGns.cau-1B.1, QGns.cau-3A.1, QGns.cau-6A.2, QGns.cau-6A.3, QGns.cau-6A.4, and 
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QGns.cau-7A.2  (Cui et al., 2014; Jia et al., 2013; Kumar et al., 2007; Zhai et al., 2018). Based 

on these findings, our QTLs discovered in GNS may be novel genomic regions. 

 QTL Analysis: Yield 

Due to its complex polygenic nature, YLD is often characterized by epistatic and 

pleotropic effects. Due to its complexity, it may be difficult to pinpoint the exact genomic 

region(s) involved in characterizing YLD. In our study, due to our small filtered robust SNP 

marker datasets in both reference maps, we identified a QTL on the 3BL on both maps. With 

ML-BLUP data, it was designated as Qyld.hwwgYLD-3B.2b (IWGSCv2.1) and Qyld.hwwgYLD-

3B.2d (Jagger). At individual locations (MET-QTL analysis), the YLD QTLs were 

Qyld.hwwgYLD-3B.2a (IWGSCv2.1) and Qyld.hwwgYLD-3B.2c(Jagger). From the low 

heritability (H2 =0.19) and estimated variance responses, we can deduce that environmental 

factors influence YLD response more than genotypic factors. This aligns with previous findings 

(Jaenisch et al., 2022). We discovered that the environmental response of our YLD QTLs on 

3BL was due to HZ19 which had very strong additive effects (HZ19: Qyld hwwgYLD-3B.2a = -

71.3 kg ha-1). Reports have indicated that YLD QTLs have been found on the 3BS around the 

centromeric and telomeric regions (Tura et al., 2020; Zhang et al., 2010). Additionally, our data 

shows that YLD is better defined by grain components than YLD alone based on their 

heritabilities, variance components, correlations, and respective significance levels. Yield trait 

components such as GWT, GN, and SN have QTLs distributed across all chromosomes at 

different frequencies (Cao et al., 2020; Saini et al., 2022b; Tura et al., 2020). Due to the lack of 

QTLs discovered on 3BL, our QTLs may be identifying novel genomic regions. 
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Conclusion 

The scope of our study was to determine what genomic regions affect GY-related traits in 

the Overley x Overland population using the IWGSCv2.1 and Jagger maps that can explain the 

variation in YLD and its components in field trials. We evaluated different YLD and YLD-

related traits and identified QTLs at various distributions for these traits across the wheat 

genome. Using both maps we identified QTLs for YLD (3BL), PHT (6AS, 4DL, 6AL, 4BS), 

GWT (6BL, 2AL, 4AL, 1AL), SNS (2BS, 7AS, 4AL, 3DL, 1AL), FT (5AL, 2BS, 3BL), number 

of GNS (2AL, 4AL, 2DS, 2BS, 5AL), TGW (2BL, 4AL), GDM (5AL, 1AL, 2BS), and PMAT 

(2BS, 4AL, 5AL). Overall, we identified more QTLs in total (ML-BLUP and MET analysis 

dataset) using the Jagger map (40 QTLs) than when using the IWGSCv2.1 map (30 QTLs). The 

IWGSCv2.1 map had more QTLs linked to GWT, SNS, PHT, and GNS, scanning both datasets. 

The Jagger map had more QTLs linked to FT, GNS, and TGW.  

Both QTL analysis methods (ML-BLUPs and MET) identified QTLs with high 

phenotypic variation (PVE > 10%) using both reference maps. Some of the strongest QTLs for 

YLD and YLD components that were present in the first data set (ML-BLUP for IWGSCv2.1) 

were Qyld.hwwgSNS-2B.1a = 10.4%, Qyld.hwwgGNS-4A.2a = 18.4%, Qyld.hwwgGWT-4A.2b = 

15%. Using the Jagger map, they were Qyld.hwwgYLD-3B.2d = 10.7%, Qyld.hwwgGNS-4A.2b = 

25.4%, Qyld.hwwgGWT-4A.2c = 11.6%. Other factors (FT and PMAT) also showed strong 

effects on YLD in the ML-BLUP dataset for both maps Qyld.hwwgPMAT-2B.1b = 11.5%, 

Qyld.hwwgPMAT-5A.2a = 16.4%, Qyld.hwwgFT-2B.1c = 38.3%. In the second MET analysis the 

some of the strong QTLs identified were Qyld.hwwgYLD-3B.2a = 20.3%, Qyld.hwwgGNS-4A.2a 

= 18.3%, and Qyld.hwwgGDM-1A.2a = 26.6%; using the Jagger map they were Qyld.hwwgGNS-

4A.2b = 27.6%, Qyld.hwwgYLD-3B.2c = 15.8%. Our results showed that the YLD and GNS 
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QTLs were mostly identified in the data from the Hays location for both maps. Other YLD 

component-related QTLs (e.g., SNS, GWT, and PHT) had varied contributions from different 

locations in both years. The future direction of this project will be to launch marker development 

which can aid breeders in developing selecting favorable alleles for crop yield improvement.     
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Appendix A - Supplemental Data Chapter 1 

 Table 3.12. Primer sequences and amplification protocols of KASP markers that were used in this study. 

A) 

Marker Name Chr Position 

(Mb) 

FAM Sequence HEX Sequence Common Sequence 

Lr37-Yr17-

Sr38_GBG-

KASP 

2AS 5,814,608 

 

GGACGGCGTTTG

CTCATGCTA 

AGGACGGCGTTTGCTCAT

GCTG 

AGCAGTATGTACACAAAA 

 

IWB29391 2BS 166,612,997 

 

GTCACAAGACCA

GGGGATTG 

GTCACAAGACCAGGGGAT

TT 

CCTGGGGCCTTGTTACACT

A 

Ppd_D1_D2 2DS 36,206,276 

 

CGAGCAGCTCCC

GACG 

GGGCGAGCAGCTCCAAC GGTCTCCAATCAAGGCGG

T 

KS0617_28704

5 

2DL 308,449,460 

 

GGAGACAATTGA

GGCCGTGT 

GGAGACAATTGAGGCCGT

GA 

GGAGCCACCCCTCAACTT

A 

KS617_288635 2DL 388,514,681 

 

CCGTCACTAAAT

TCGCGGC 

CCGTCACTAAATTCGCGG

T 

CCTGTGATCCATCCCAGC

AT 

VrnA1E4 5AL 590,394,627 

 

AGAGTTTTCCAA

AAAGATAGATCA

ATGTAAAT 

 

GAGTTTTCCAAAAAGATA

GATCAATGTAAAC 

GTTAGTAGTGATGGTCCA

ATAATGCCAAA 

2B:53467101 2BS 60,567,502 GAATGCATACTT

ATTGCGGGTTTA 

GAATGCATACTTATTGCG

GGTTTC 

ACACTGTTCGCTTTCGCAT

A 



170 

2B:57674889 2BS 65,211,983 AGAGGAATCCAA

GGTCATCCC 

AGAGGAATCCAAGGTCAT

CCA 

ATGGTGGATCTTCTAATA

GGTACG 

2B:770650575 2BL 779,821,067 

 

CAACACCACAAT

CACCTTCCC 

CAACACCACAATCACCTT

CGT 

ATGTGCTGCGGTACATAC

GT 

2D:638369560 2DL 652,727,251 

 

GCTGGACCACAA

AGAACATAGG 

GCTGGACCACAAAGAACA

TAGT 

CCTATACATCTTCAGCCAC

GC 

2D:639534738 2DL 651,572,347 

 

GGTAGTCAAGCT

TATGATCTTCCT

C 

GGTAGTCAAGCTTATGAT

CTTCCTT 

CTGACGTGGAAGGACGGG 

*Primer sequences do not include tails. 

 

B) 

Cycle PCR Conditions 

1 94ºC, 15:00 

2 94ºC, 0:20 

3 60ºC, 1:00 

4 Cycle 2, 49x 

5 59ºC, 0:30, -1ºC/cycle 

6 Step 5, 34x 

7 10ºC, 5:00 
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Table 3.13. Linkage group formation summary for IWGSCv2.1 and Jagger reference sequences. 

 

  IWGSCv2.1 Jagger  

  Procedure 
RILsA

* SNPs 
No. Linkage 

 GroupsA 
RILsB

** SNPs 
No. Linkage  

GroupsB   

  Form Linkage Groups1 162 878 22 162 1246 22   

  Split Linkage Groups2 162 878 69  162 1246 65   

  Drop Linkage Groups3 162 845 43 162 1209 36   

  Clustering of Markers 162 845 44 162 1209 35   

  Filtering Double-Crossovers 162 782 44 158 1134 38   

 Merging Linkage Groups4 162 782 36 158 1133 28  

  Restoration 162 802 36 158 1156 27   

 
1Intial linkage groups from reading the unfiltered dataset            
2Linkage groups split based on maximum recombination frequency = 0.35 and minimum LOD = 6    
3Linkage groups with less than three markers were removed            
4Markers were merged together in their respective chromosome group and first clustered at p-value =2. All markers in the genetic map 

were re-clustered at a more stringent threshold p-value = 1e-06 to split linkage groups. 

*IWGSC v2.1 reference map               

**Jagger reference map 
†Number of SNPs for each respective reference map 
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Table 3.14. Estimated variance of random effects for stripe rust infection type and severity. 

 

 Estimated variance 

Random Effect Infection type (1 to 9) Severity (%) 

Rep(Environment) 0.084ns† 13.0ns 

Genotype 0.727*** 96.1*** 

Genotype x Environment 0.729*** 72.4*** 

Residual 1.143 141.1 

  

†ns, non-significant; *** designates p-value < 0.001 for Wald test. 
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Table 3.15. Marker statistics of the linkage maps constructed from Overley x Overland RIL population using the IWGSCv2.1 

reference sequence genome.  

 

Linkage Group SNPs (#) Length (cM) Ave. Spacing (cM) Max Spacing (cM) 

Chr. 1A.1 28 143.2 5.3 25.8 

Chr. 1A.2 16 73.1 4.9 12.8 

Chr. 1B.1 45 182.4 4.1 16.6 

Chr. 1B.2 3 10.2 5.1 6.8 

Chr. 1D 26 68.6 2.7 20.3 

Chr. 2A 76 270.7 3.6 25.2 

Chr. 2B.1 17 33.7 2.1 7.1 

Chr. 2B.2 64 207.9 3.3 28.0 

Chr. 2D.1.1 4 14.6 4.9 8.5 

Chr. 2D.1.2 25 134 5.6 16.8 

Chr. 2D.2 13 52.8 4.4 24.7 

Chr. 3A.1 44 199.5 4.6 20.2 

Chr. 3A.2 13 57.7 4.8 9.4 

Chr. 3B.1 9 19.8 2.5 3.2 

Chr. 3B.2 60 266 4.5 33.5 

Chr. 3D 6 5.7 1.1 3.1 

Chr. 4A.1 2 37.6 37.6 37.6 

Chr. 4A.2 16 125.4 8.4 15.6 

Chr. 4A.3 6 21.9 4.4 10.3 

Chr. 4B.1 7 35.5 5.9 17.4 

Chr. 4B.2 17 103.4 6.5 18.5 

Chr. 4D 3 9.4 4.7 5.1 

Chr. 5A.1 45 322.4 7.3 26.9 

Chr. 5A.2 6 31.1 6.2 8.3 

Chr. 5B.1 7 41.4 6.9 11.0 

Chr. 5B.2 16 119.4 8.0 17.3 
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Chr. 5D 7 28.9 4.8 17.5 

Chr. 6A 59 282.4 4.9 22.2 

Chr. 6B 58 179.1 3.1 13.1 

Chr. 6D 3 28.4 14.2 28.4 

Chr. 7A 39 210.3 5.5 18.2 

Chr. 7B.1 28 118.9 4.4 14.3 

Chr. 7B.1.2 19 97.7 5.4 20.6 

Chr. 7D.1 7 21.2 3.5 4.7 

Chr. 7D.1.2 8 59.1 8.4 24.8 

Overall 802 3613.2 4.7 37.6 
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Table 3.16. Marker statistics of the linkage maps constructed from Overley x Overland RIL population using the Jagger 

reference sequence genome. 

Linkage Group SNPs (#) Length (cM) Avg. Spacing (cM) Max Spacing (cM) 

Chr. 1A 79 256.7 3.3 27.2 

Chr. 1. B.1 56 179.5 3.3 19.6 

Chr. 1. B.2 5 26.3 6.6 15.3 

Chr. 1D.1 38 97.2 2.6 23.1 

Chr. 1D.2 4 4.1 1.4 2.2 

Chr. 2A.1 121 249.5 2.1 19.2 

Chr. 2B 106 277.7 2.6 43.4 

Chr. 2D.1 40 221.9 5.7 23.9 

Chr. 2. D.2 14 44 3.4 24.9 

Chr. 3A 68 295.8 4.4 52 

Chr. 3B.1 88 289.7 3.3 23.5 

Chr. 3B.2 11 14.3 1.4 2.2 

Chr. 3D 9 10.6 1.3 2.9 

Chr. 4A 40 245.2 6.3 22.2 

Chr. 4B 25 156.8 6.5 20.5 

Chr. 5A 83 397 4.8 25.2 

Chr. 5B.1 13 48.8 4.1 10.9 

Chr. 5B.2 28 132 4.9 14.4 

Chr. 5D 11 39.2 3.9 16 

Chr. 6A 78 269.5 3.5 20.7 

Chr. 6B 80 168.2 2.1 10.5 

Chr. 6D 7 38.1 6.3 9.4 

Chr. 7A 60 230.1 3.9 17.3 

Chr. 7B.1 46 119.1 2.6 11 

Chr. 7B.2 30 121.7 4.2 16.3 

Chr. 7D.1 7 14.3 2.4 4.9 
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Chr. 7D.2 9 34.8 4.4 10 

Overall 1156 3981.9 3.5 52 

Table 3.17. QTLs identified for stripe rust disease responses using multi-location best linear unbiased predictors (ML-BLUP) 

for Jagger. 

 The LOD thresholds are based on permutation tests 1000x and  = 0.05 for IT = 3.59 and SEV = 3.36 using the Jagger map. 

Abbreviations are LOD = log odds ratio; PVE = percentage of variance explained; A = Additive Effect; C.I. = Confidence interval 

(cM).     

 

QTL Response Chr. Marker Interval LOD 
PVE 

 (%) 
A P.A.

1
 C.I. 

QYr.hwwgIT–2Ab IT 2AS 
S2A_20860853 – 

 S2A_6690360 
9.58 14.88 -0.32 Score OY 12.5 – 14.5 

QYr.hwwgSEV–2Ab SEV 2AS 
S2A_20860853 –  

S2A_6690360 
14.98 26.52 -4.67% OY 12.5 – 14.5 

QYr.hwwgIT–2B.1a IT 2BS 
SUN_24253245 – 

S2B_70479277 
7.04 11.04 0.28 Score OD 110.5 –116.5 

QYr.hwwgSEV–2B.1a SEV 2BS 
SUN_24253245 – 

S2B_70479277 
3.54 5.28 2.08% OD 111.5 – 116.5 

QYr.hwwgSEV–2B.2b SEV 2BL 
S2B_767134652 – 

S2B_770782296 
4.91 7.52 -2.49% OY 246.5 – 248.5 

QYr.hwwgIT–2Db IT 2DL 
S2D_665681641 – 

S2D_666306598 
10.9 18.6 0.36 Score OD 36.5 – 43 

QYr.hwwgSEV–2Db SEV 2DL 
S2D_665681641 – 

S2D_666306598 
8.49 14.68 3.49% OD 32.5 – 43 

1Favorable parental allele contributing to resistance; OY = Overley OD = Overland. 

*Additive effect of the Overley allele. 
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Figure 3.6. Linkage maps of the Jagger map using ML-BLUPs for stripe rust infection type and severity. 

Linkage maps of chromosome group 2 (2A, 2B, and 2D) using the Jagger map showing QTL peaks for A) IT and B) SEV using multi-

location BLUPs (ML-BLUP).  

 

A.) Stripe rust infection type, Jagger map 
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B.) Stripe rust severity, Jagger map 
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Table 3.18. QTLs identified using the multi-environment trial (MET)-QTL analysis across multiple environments using the 

Jagger reference map for stripe rust infection type and severity. 

List of QTLs identified using the multi-environment trial (MET)-QTL analysis based on permutation LOD: IT (6.64) & SEV (6.41) 

for best linear unbiased predictors for stripe rust infection type (IT) and severity (SEV) in each of seven trials using the Jagger 

reference-derived map. Resp. = Response of disease trait, LOD = log odds ratio; PVE = percentage of variance explained.  A = 

additive (main) effect of genotype, A × E = additive effect × environment interaction; C.I. = Confidence interval (cM).  

 

 QTL Name 
*
Resp. Chr. 

QTL Marker 

Interval 
LOD 

PVE 

(%) 
PVE

1
 PVE

2
 A

3
 P.A.

4
 C.I. 

QYr.hwwgIT–

2Ab 
IT 2AS 

S2A_20860853 – 

S2A_6690360 
35.1 15.97 7.1 8.9 

-0.22 

score 
OY 13.5 – 14.5 

QYr.hwwgSEV–

2Ab 
SEV 2AS 

S2A_20860853 – 

S2A_6690360 
19.5 5.31 2.1 3.2 -1.19% OY 12.5 – 14.5 

QYr.hwwgIT–
2B.1a 

IT 2BS 
SUN_24253245 – 

S2B_70479277 
28.5 13.65 11.1 2.6 

0.28 
score 

OD 114.5 –116.5 

QYr.hwwgSEV–

2B.2a 
SEV 2BL 

S2B_769974763 – 

S2B_764362103 
12.8 6.79 2.8 4.0 -1.37% 

OY 

 
243.5 – 246.5 

QYr.hwwgIT–

2Db 
IT 2DL 

S2D_665681641 – 

S2D_666306598 
51.5 21.54 20.8 0.8 

0.38 

score 
OD 37.5 – 41.5 

QYr.hwwgSEV–
2Db 

SEV 2DL 
S2D_665681641 – 
S2D_666306598 

36.4 19.11 16.9 2.2 3.40% OD 37.5 – 43 

QYr.hwwgSEV–

2Ac 
SEV 2AS 

S2A_3335947 – 

S2A_14558827 
30.7 26.94 10.5 16.5 -2.65% OY 2.5 – 3.5 

1PVE due to additive effect of the Overley allele 
2PVE due to A x E interaction 
3Additive effect of the Overley allele 
4Favorable parental allele contributing to resistance; OY = Overley OD = Overland. 

  

 

 

 

   

 



181 

Figure 3.7. Linkage maps of Jagger showing QTL peaks for IT and SEV across multiple environments. 

A) Stripe rust infection type 
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B) Stripe rust severity 
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Table 3.19. AX E effects for stripe rust resistance across locations using the Jagger reference map. 

The A x E effects for IT and SEV resistance across locations associated with QTLs on the Jagger reference map from MET analysis, 

from Table 1.5 and Table 3.18. C.I. =Confidence interval (cM). 

 

 

    A x E  

QTL Name Chr. Unit A CF19 CF20 HZ19 PL19 PL20 RS18 RS19 P.A.1 

QYr.hwwgIT–

2Ab 
2AS score -0.22 0.22 0.17 -0.08 -0.28 0.20 0.21 0.43 OY 

QYr.hwwgSEV–

2Ac 
2AS percent -2.65 -2.75 -0.91 2.49 2.49 -6.56 2.72 2.52 OY 

QYr.hwwgIT–

2B.1a 
2BS score 0.28 -0.08 -0.12 -0.0001 -0.10 -0.11 0.16 0.24 OD 

QYr.hwwgSEV–

2B.2a 
2BL percent -1.37 1.36 -0.61 1.10 1.10 -0.93 -3.38 1.36 OY 

QYr.hwwgIT–

2Db 
2DL score 0.38 -0.14 -0.06 -0.01 0.02 0.04 0.12 0.02 OD 

QYr.hwwgSEV–

2Db 
2DL percent 3.40 -1.12 0.57 -0.45 -0.45 2.54 0.34 -1.43 OD 

1Favorable parental allele contributing to resistance; OY = Overley OD = Overland 

*Additive effect of the Overley allele. 
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Appendix B - Supplemental Data Chapter 3 

Figure 3.8. Distributions of best linear unbiased predictors (BLUPs) for additional yield and yield components in the Overley x Overland 

RIL population were measured in Ashland (2018 and 2019) and in Hays (2019). 

Traits measured are A) PMAT, B) FT, C) TGW D) PHT. Multi-environmental trials indicate a comprehensive average across all trials. The 
parental means are colored green (Overley) and blue (Overland). 
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