57/
Designing and Implementing a Computer Conferencing Svstem
to Manage and Track Articles Through the Revision Process ,

/

by

. . Patricia Dock
'r

B. A. University of West Florida, 1979

A Master’s Report
submitted in partial fulfillment of the
requirements for the degree
Master of Science
Department of Computer S;ienée

Kansas State University
Manhattan, Kansas

1984

Approved by:

Sl A P Bt

M&jor Professor

1

Zéég — :
Jgtf . ALl202 bLl8L5hE ‘
14387 . .
QD&Z- CONTENTS
¢, 2
INECOAUE IO o sumpme s o v ame g e s ¥ 5 5 Sowin 0 5 5 5 Ealslad ¥ 5 5% 3 SIS 81§ % 50 1
Tl OVERWIOWS « ooy ¢ 5 5 sjuie s & 5 § 5 5 54508 8§ 5 5 BIWENE S 955 5 500§ 1 § L5 1
1.2 High Llevel DesCripUioN.. .. vweondsemmmnnssss sus s s 5 5s 2
1.2.1 Original Author 3
1.2.2 Owner of the Subject 3
1.2.3 Members of the Subject 3
1.2.4 Reviewers 3
1.2.5 Mail 3
1.2.6 Informed 3
| Submitted 4
. 1.2.8 Status of the Article 4
1.2.9 Accepted for Publication 4
1.2.10 Accepted for Review 4
1.2.11 Rejected 4
1.2.12 More on the Status of the Article 4
1.2.13 Comments 5
1.3 Design Assumptions.......... C s
Descripticn DE ARTHER: suwmm s d v i it s 5 4 50T 087 § 050l & 50 » a0 7
2.1 Range of Services........... e T TN 7
2.2 Getting Started......... Il YT 8
Zwid TEACKING . 1 o wovonie o3 3 vowwwr & & 5 5w TR NEEECE £ ¥ S W S § 8 "9
2.4 Types of Input.............. SR ¥ 6 b RS B 6 6 B R & @ e 10
2.5 Svstem in Use€...vevvvennn e it r e ee et e e e e 11
Justification and Comparisons..... fivms & = Rt % B 8 @ e @ % A A 22
3l JuetificafioNes ov s mivee s immdssssa@andidss e — 22
3.2 Comparisons and Contrasts.......ecuvuvennns %% 5T 5 isanmw 25
3.2.1 VMSHARE 25
3.2.2 SCOOP 26
3.2.3 TELECENTER 29
3.2.4 sccs 30
Summary and Future Enhancements........:cveenenonenensonnn 32
BIBLIOGRAPHY.......vivuivunensn § % wBiad § o % Bomndienens v a8 s v 8 eee. 34

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.

LIST OF FIGURES

System Configuration - Initial state...ecvuerunsen 12
Creating @ SUb)Bet., 5 s vwnie s § 5w o # < g % W B E B R W e 13
SubmifTiing .an ACTICLeL e o v o i v v o 00 0 wawse £ 0 o wav o o 14
System Configuration - artsubmitivuvinunss 15
Notification of Submitted Article..........ivviennn 16
Viewing a Submitted Article......... T T
Entering Comments... civeiiveovuvissssvamnsssnassnss 18
Viewing a Submitted Article continued.............. _ 19
System Configuration — art +s......c00uuu.. e B 4 20

Notification of Articles fOr REVIEW...:e.eeieeeves. 22

- ii -

1. Introduction
1.1 Overview

This paper provides an overview of the services developed to manage
and track articles for distribution to a community of users. The
collection of these services has been named ARTHER (ARTicle
HandlER). These services are simple and easy to use by the
casual computer user. Machine dependent parameters such as logins
and directories are hidden. The commands have a good human
interface rather than one easily managed by a program, Most of
the services mav be customized to the preference of the individual
user, others are customized to the preference of the owner ;of the

subject.

The papér is organized in “four. chapters. The Introduction
continues with a high level .oﬁerview of ARTHER. Several
terms are defined for the context of the paper. A high level
description of the design assumption aré presented, as well as

an explanation of the possible applicaticns for the service.

The second chapter covers the range of services and provides
guidence for first time users. Also included are the types of
input that are acceptable by ARTHER. Examples of the system in

use are presented and explained.

The third chapter contains comparisons and contrasts
between this system and several system which provide simular
services. Included in these systems are VMSHARE, TELECENTER, and

SCOQP.

2

The final chapter is a conclusion containing the problems and

suggestions for future enhancements.

Four appendixes are attached. Thev contain manual pages
for the wuser, maﬁual pages for the administrator, a copv of the
code to demonstrate an implementation for part of the project,
and finally, a cross referencing of the functions and the

variables.

A partial implementation was developed based on a subset of
the described services. The implementation, written in C language,-
and intended to run on a UNIX 2 ogperating system provides the

services described for managing the articles.

An existing framework for electronic mail is assumed as well
as a means of viewing files. The screen editor "vi" is utilized in
the implemented version but could easily be replaced by any

editor or screen viewing mechanism.
1.2 High Level Description

The purpose of ARTHER is to manage and track articles from the
time of their submission for publication through the reviewing

process until they are accepted for final publication.

1. C is a high level programming language that was developed by
Bell Telephone Labs.

2. *UNIX is a Trademark of Bell Laboratories

In the context of this paper, several terms that normally
have broad scopes will be applied to specific items. For further

discussion, several of these ' terms are defined.

1.2.1 Original Author The phrase "original author" 1s 1intended

to refer to the person whom is actually writing the article.

1.2.2 Owner of the Subject The phrase '"owner of the subject”
refers to the designated group coordinator. This is the person
whom makes the overall decisions such as whom will review the

article and whether an article is ready to be published.

1.2.3 Members of the Subject The term "members of the subject"
refer to a list created by the ARTHER ADMINISTRATOR. All wvalid

original authors and reviewers are subsets of this list.

1.2.4 Reviewers The phrase 'reviewer" refers to a designated
member of the group who has permission to review on the article
prior to the acceptance for publication. This wuser has an
opportunity to direct comments to the original author which are

readable only by the original author and the owner of the group.

1.2.5 Mail The term "information is sent" implies that electronic
mail containing this information is sent to the individual without

human intervention.

1.2.6 Informed The term "is informed"” implies that when the
service 1is wutilized, the individual will see titles for the
appropriate articles with an indication of the type of action

expected from them. This may happen at all logins, the first login

of the dav, or only on demand. The choice 1is settable bv the
individual wuser. The first two choices never exclude the ability

to perform the command on demand.

1.2.7 Submitted An article i1s submitted any time the original
author decides to inquire if the owner of the subject considers the

article acceptable for publication.

1.2.8 Status of the Article The status of the article is always
at the discretion of the owner of the subject. The. submission of
the article is the stimulus to the original author to determine the
status of the article. The STATUS can be ACCEPTED FOR PUBLICATION.

REJECTED, or ACCEPTED FOR REVIEW.

1.2.9 Accepted for Publication The status "accepted for
publication" implies that the article is considered in a final form

and is ready to be viewed by the general public.

1.2.10 Accepted for Review The status "accepted for review"
implies that the article is in a form such that a-designated list

(REVIEWERS) of experts should be asked to comment on the article.

1.2.11 Rejected The state '"rejected" implies that the article is
in the form such that the original author should make revisions and

resubmit the article at a later date.

1.2.12 More on the Status of the Article The 9original author
submits an article to the owner of the subject for review. The
owner of the subject then determines the current status of the

article. The article can be rejected, accepted for review, or

accepted for publication.

The current status of the article as well as accompanving
comments are sent (i.e. mailed) to the original author. 1In the

case of a rejection, this is the only apparent action taken.

If the article is accepted for review, the owner of the
subject must designate a list of reviewers. The article is then
available for review by this list of reviewers. Each of the

reviewers have the opportunity to read and comment on the article.

Papers which have been either rejected or accepted for review
can be re-submitted to the owner of the subject at the discretion

of the original author.:

Articles which are accepted for publication are available for
reading by either a designated list or to the general public under

a predetermined category.

1.2.13 Comments Comments consist of data which is entered via a
command which contain opinions and suggestions concerning the

article.

All comments are categorized as either public or private,. A
comment entered by a reviewer when the article is in the state of
being reviewed (i.e. has been "accepted for review"), is considered
private and are read and writable by the person entering the
comment and the original author. The owner of the subject may or
may not have access to the comments depending upon the option

specified to the ARTHER ADMINISTRATOR when requesting the creation

of the subject. Their existence 1s acknowledged only by the
tracking mechanisms which indicates whom commented on an article.
The original author of the article is responsible for removing

these comments.

Comments on articles which have been accepted for publicatioﬁ
are considered public. These comments are readable by all, but are
writable (thus removable) only by the owner of the subject. After
three months the comments are automatically removed from the

system.
1.3 Design Assumptions

“When . organizing the design assumptions, two categories were
considered, system resources ‘and user interfaces. In order to

conserve the system resources, three things were done.
1. Only single copies of files are retained.
2. Minimal spin off of processes are utilized.

3. The installation of the code is totally automated.

For the user interface four things were done.
1. All commands have help functions.
2. All the commands have the same general features.

3. Users do not need to know or have access to information which

is unnecessary to their function.

4. The user can modifv the feature to their own tastes.

2. Description of ARTHER

2.1 Range of Services

The ARTicle HandlER services fall into several broad

categories:

s User services

Customizing the services to one’s own preferences

Creating articles
- Revieﬁihg articles
— Tracking status Ef articles, or a user
— Entering comments
— Removing comments
e Administrative services for the owner of a subject
—~ Creating, changing, removing specific lists
— Designating status of the articles

— Tracking status of the subject, articles, or members

associated with a subject

e Administrative services for the ARTHER administrator

— Creating. changing, removing -the subject
— Creating, changing, removing the lists of wvalid members
2.2 Getting Started

The ARTHER administrator must designate a directory under which
all of the c¢ode and data for the sysfem will exist. One’s
directories must be made * by the administrator. This directory
must be named "src". The code should all be placed under the
syl BT directory.' The administrator must be in the ".../src"
directory when executing the "new_system" command. This command
will make all the necessary changes and then execute the
- "make' file. It will build all the necessary directories and place

the code in the ".../bin" directory.

On a continuing basis the ARTHER administrator must
create subjects. Either the ARTHER ADMINISTRATOR creates a subject
and designates an owner or a request 1s made to the ARTHER
ADMINISTRATOR for a new subject with a specified owner. For each
subject an owner must designated and a list must be generated
which contains all valid members of a group associated with the
subject. To be eligible to review a article one must be a member

of this group.

The subject owner may create general lists for use in

3. Kernigan, Pike, p. 25.

0

designating lists of reviewers for individual articles.

For 1individual wusers of the syvstem, several environment
variables must be 1initialized , when a user logs onto the
system. These variables are used for wvarious purposes such as
setiing program default options. The command PROFILER buiids a
default .ARTHER in the user’s home directory. It then allows
the user’s to select their own values for command options. Finally
it modifies the users .profile * in the HOME * directory to

initialize .ARTHER and starts up the procedure at login.

The startup procedure provides. information concerning the

status of articles which have changed since your last login.
2.3 Tracking

For tracking purposes it may be wuseful to inquire into the
current status of an article, an individual user, or a subject.
Varied information is available for each status inquiry by a
combination of options and permissions for the commands. When

inquiring about an article, any user may view:
e the current status of an article

s the reviewers list

4, Kernigan, Pike, p. 36.

5. Kernigan, Pike, p. 36.

10

e public comments

o the names of those entering public comments
Additionally the owner of the subject and the original author

may view:
e the dates of each status change
» a list of those who reviewed the article
e a list of those who submitted comments on the article

e a list by reviewers involved with the article

<

e a list of reviewers who have commented on the article.
Finally the original author may see the status and contents of ~ the

private comments for this article.

Inquiries could also be made concerning the status of an
individual user. Both the author and the owner of the subject
would be able to view a list of articles for which the user is

the original author or the reviewer.
2.4 Types of Input

This section describes the different methods for interacting with

ARTHER.

Each service is invoked by entering the name on the
command line. Following the service name , one may enter
keywords or cother information such as the name of a wuser or

article. Options and "namevalues" may be specified in any order,

although some services do assign special meaning tc the order of

the '"namevalues”.

After being invoked, the services prompt for any additional
information that 1is required. There are three types of prompts:

field, text input, and menu. Each is 1illustrated below.

At any time when utilizing either menu or field input one
may tvpe a question mark followed by a carriage return for more

information and where applicable a list of acceptable responses.

When using the text input mode. one terminates the text input
by typing a period followed by a carriage return at the beginning

of the line:.
2.5 System in Use

To help understand ARTHER, examples of the system in use are
presented. The bold print represents input by the user. After
each example, a "pictorial" example of the state of the system is
présented. The ovals represent directories and the boxes

represent files.

Assuming the system is initialized and the executable

modules are in ready, the system is used in this manner.

12

Figure 1. System Configuration - Initial state

The ARTHER administrator can "create" a subject. This is
accomplished ' by executing ‘the "artsubject" command. -Figure-Z is a
visual representation of the screen display when the "artsubject'

command is executed.

13

Figure 2. Creating a Subject
artsubject
SUBJECT: testl
OWNER: dock

A list of valid members of the subject must be created.
All valid reviewers of articles in this subject must be
members of this group.

Enter names one at a time
when finished type a period
followed by a carriage return
For help type a question mark,.
name: dock

name: smith

name: jones

name: .

Do you wish to edit the file or quit? g

Dock, Smith, and Jones would all receive mail indicating that they
should add "test!" to the ARTSUBJECTS in théir .artprofile by means
of the artprofile command. To continue to demonstrate the system
services, let’s dssume Smith now has an article to submit to the
owner of the subject. Remember Smith is a valid member of the
subject 'testl". The artsubmit command would be wused. This

command is displayed in Figure 3.

14

Figure 3. Submitting an Article

artsubmit :

SUBJECT: testl

TITLE: first file

Note: "first_file" will be used for name of the article.
File to be copied: filetestl

The system state would have been altered again. Several
directories would be "made". Figure 4 displays the current state of

the system after the command "artsubmit" was completed.

15

Figure 4. System Configuration - artsubmit

Dock is the owner of the subject "test!". In our scenario let
us assume Dock has ARTHER initialized to execute with each login.
When Dock logs in, "art +n +s" is executed. At any time this

command could be executed by hand. Figure 5 displays the output

from this command.

16

_Figure 5. Notification of Submitted Article
art +s +n ¢

"test1" subject for submission:
first_file

Since a member of the subject has submitted an article for
review, the system has informed the subject owner of the existence
of the article. At the <convenience of the subject owner the
article may be reviewed. The "art +s +a" or "art +s" or "art +s
test!" command are all means of performing this task. Figure 6 and

8 demonstrate one means of reviewing the article.

Figure 6. Viewing a Submitted Article
art +a +s

subject: test! article: first file

"vi" will be wused to review the article.
You will be unable to write the file.
To enter comments for the author to read,
simply type ".:l!artcomment" and vyou can enter
comments. REMEMBER: the author will know what
article you are commenting upon, but not where
you are in the program. To exit the article
simply type ":q".

After the user types a carriage return, the article is viewed

Vi

utilizing and .the user may enter comments wusing the
"artcomment" command. When viewing the article, if one were to

type

slartcomment

artcomment is executed. Figure 7 is an example of the execution of

this command. An example of the artcomment example follows:

Figure 7. Entering Comments

artcomment

Enter your comments a line at a time.

When you have completed your comment,

begin a line with a period (.)

followed by carriage return.
This can be any text that the user wishes to
type. It will be placed in a file called comments.

Once the reviewer is finished with the artcomment command and
has exited vi, the command begun in Figure 6 is completed. The
list éf_reviewers ‘for which the owner of the subject is prompted
must be'valid members of the subject. If an invalid réviewer is
entered, the command will inform the owner that an invalid user has

been entered and not accept the entry.

19

Figure 8. Viewing & Submitted Article continued

Do you wish to accept for publication,
accept for review , or reject 7?
publish, review, .or reject : rev

Enter names one at a time
when finished, type a period
followed by a carriage return.
For help type a guestion mark.

name: dock

name: jones

name: 7?7

Enter names one at a time
when finished, type a period
followed by a carriage return.
name: .

Do vou wish to edit the list or quit 7 gq

Do you wish to view the next file or quit?
next, quit 7 [next] n

Aﬁsuming that the prompts were answered as in the Figure 8, the new
configuration follows. Several directories have been added to the

system.

20

Figure 9. System Configuration - art +s

In our example, the status of the article in Figure 8 was
determined to be "accepted for review". Several changes are in

progress: Smith would receive mail indicating'that the article was

21

accepted for review; Next time "art +r" was executed by Jones or

Dock they would be notified that articles for review exist. This

is illustrated in Figure 10.

22

Figure 10. Notification of Articles for Review
art +r +n

"test!" subject for review:
first_file

There are countless examples of commands that could be made,
but the previous ones are sufficient to explain the different

tvpes of input.

3. Justification and Comparisons
3.1 Justification

The specification and resulting design of ARTHER emerged £from an
existing problem which the author has encountered many times in the

span of her software career.

In a classroom situation, often group projects are a way of
life. Severﬁl systematic means of organizing material can be
devised by individual groups. However it i; desirable to have an
automated service existed which would not only organize a group’s
output, but also allow the instructor to monitor the progress of
the group as well as assessing each individual’s contribution to

the project.

Take home exams could be entered on the computer and answered

on line. The instructor could grade them at own pace and return

the grades in "comments" to the pupil.

In the Administrative Situations the Sérvice could be utilized
to help track and organize papers in progress. A very appropriate
exémple would be the Master’s Projects here at Kansas State
University. A graduate advisor would own subject(s). The members
of the subject(s) would be the graduate students whom are
currently writing Master’s Projects. As the Projects progress the

Instructor would have a history of the project as well as easing

the coordination of the papers and comments with professors.

Another situation in which ARTHER might prove an aid would be
in. _attempting to reach a consensus cohcerning the content of a-
"core" course at a Unfversity. A description of changes could be
available to all of the professors for opinion. Consequently,

comments could be handled easily.

In a developmental environment, there is always iiving'
documentation (i.e. documentation which updated whenever a change
is made tc the project) associated with projects which eventually
gets lost in the shuffle. Only recently have people become aware
of how important it is to preserve the original requirements,
specifications, and high level design for the project. These
original documents all undergo man; modifications before they are
finally accepted. Thus copies of documentation are always
suspect as to whether they are the most recent copy, or if in fact

they are the true desired "original'" copy. The reason for this is

24

that often one version exists while the another is being written or

reviewed.

In general many areas where such az system such as ARTHER is
needed exist. ARTHER solves the problem of keeping track of a
svstem’s documentation by separating the different users allowed to
change and access individual documentation. The individual whom is
the author of the documentation is the only person whom can change
the document. The designated reviewers know that they are viewing
the lateSt version of the document. The reviewers also know when
ever a change has been made to the document. After the reviewers
have had the chance to review and comment on the changes, the
original author may again submit the article to the ovﬁer of the
-subiect an& the-subject OWHer-woﬁld ha%e the..option of accepfing
the article for publication. If accepted for publication, the
public would have access to the article. If not yet acceptable for
publication, the entire process begins again. But no confusion as

to which version one is viewing. It is the newest version.

Understanding some of the possible applications for ARTHER, on
can then begin to contrast ARTHER with some of the existing systems
designed to perform the same functions. Following the
specification, design and the majority of the implementation of
ARTHER, a thorough search of existing systems was perﬁormed.
Surprising in some ways and utterly expected in others, the
existing systems resemble the design of ARTHER fairly closely. The

areas where they differ seem to have direct trade offs in features.

25

When identifying systems with which to <contrast ARTHER, the
following definition for computer conferencing emerged.
Conferences are a common writing space for group deliberations.
Upon accessing a conference, users are brought up to date in
the proceedings. Membership is controlled by a moderator.
Participation 1is wusually asynchronous but may be conducted in
"real time". Conferences may be a few weeks to several years
in duration, and the size may range from 2 to more than 50
members. Some conferences may be '"public'™ or open all members
of a given system. =
ARTHER certainly meets all the criteria put forth in this
definition. It provides a common writing space for a group. The
membership is controlled on two levels., the ARTHER ADMINISThATOR
controls the creation of groups while the subject owners control
membership in the individual groups. No upper limit is placed on
‘the number of members in individual groups. Some of the articles
are "public" while others are restricted. With this definition in

mind, several existing systems were identified for comparison with

ARTHER.
3.2 Comparisons and Contrasts

3.2.1 VMSHARE VMSHARE is & computer conferencing facility
developed in 1976 for use within Share, Inc,. an IBM users” group.
It originated from the need to solve problems of continuity,

planning, and communication between meetings.

6. Kerr, p. 3.

7. Daney.

.26

VMSHARE runs under CMS components of the IBM VM/370 operating
system. It 1is written in the EXEC language (the standard command

macro language of the 370.)

— As with ARTHER existing commands were utilized whenever

possible.

— Unlike ARTHER, VMSHARE is written in an interpreted language.
The trade off is ease of change for the interpreted language

versus the speed of the compiled language.

— Unlike ARTHER, VMSHARE has restrictions on overlapping

conference members.
— As in ARTHER, files are the basic elements of the system

— The owner of the file in VMSHARE creates the access list. In
ARTHER the owner of the file (referred to as the author of
the article) submits the article to the owner of the subject
whom creates an access list (the reviewers list) or decides
that the file could be a public file (accepts for

publication.)

— Unlike ARTHER, VMSHARE is networked over a number of different
machines. But all of these machines must be IBM 370s. See

"Future Enhancements" for notes on networking.

3.2.2 Sco0P System for Computerization of Office Processes
(ScoopP) is used to manage the editorial process for papers

submitted to the Management Applications Section of Communications

27

of the ACM and for some papers submitted to the ACM Transactions on
Database Systems. It provides & single interface for all office

personnel to the specialized sysfem. °

Prior to incorporation of SCOOb. the manual system was totally
reactionary. When a stimulus occurred (say a paper was received in
the mail) some resulting action usually took place. But the absence
" of some expected stimuli did not necessarily produce the desired

action.

— Like ARTHER , SCOOP interacts with the existing electronic

mail on the system.

— Since working with individuals spread over the country and not
necessarily users who frequently log on, some sort of human
intervention, such as conventional mail, is occasionally

utilized in SCOOP.

— To submit a "newspaper article"” to SCOOP, one executes a
commands which prompt for author, the journal (corresponds to
the subject in ARTHER), and the title of the newspage}
article. To submit an article to ARTHER, one executes a
command which prompts for author, the subject, and the title

of the article.

— The article being submitted to SCOOP is the stimuli 'which

8. Zisman

28

results in a communication from the system with the journal
editors asking for names of referees. The article being sub
mitted to ARTHER is the stimuli to the subject owner to enter

a list of reviewers.

If no referee is suplied by the journal editor in a specified
amount of time, another attempt is made to communicate with
the editor. In ARTHER, every time the system is utklized, the
subject owner is reminded that the article needs to be viewed.
The owner is prompted for the list of reviewers when this

command is executed,

Potential referees in a SCOOP based system have an opportunity
to refuse to act as referees for articles. - In ARTHER this is
not an option, but no attempt is made to force the reviewing

either.

In SCOQP as in ARTHER, comments are sent to the author of the
article as well as the editor (subject owner in ARTHER). The
owner of the subject in ARTHER and the editor in SCOOP make

the decision as to whether to accept or reject the article.

SCOOP was designed for "finished articles. ARTHER was designed
to handle articles which are truly "living" documents.
Consequently much history is available through ARTHER on an
individual basis. When someone wishes to view the history of
an article in SCOOP, one must scan all the history for all of
the 1instances of ;ll the articles in the journal for all of

the information. This seems to be a limitation in the

(5]
0

implementation rather than in the design of the svstem.

3.2.3 TELECENTER Telecenter is a-tomputerized conferencing system
which exploits tools available on a UNIX based system. It was

implemented with approximately one man weeks worth of effort.

'— The design of Telecenter was meant to be a starting point for
the wusers. It can be customized and enhanced by individual
groups. It consists of a set of modifiable .functions for use

by groups in communicating through the computer.

— As in ARTHER, the reviewers can create conferences, enter new
comments, and view own status in the conference. However it
is different from ARTHER, in that the user -can- modify

comments.

— In TELECENTER, when a reviewer submits a comment, the
commenting process is accomplished through linking files in
appropriate directories. It is not cleaf if the comment 1is
identified with the person entering the comment or only with

the conference.

— In TELECENTER, the users who have not viewed the article are
linked to the article. When determ@ping the number of users
who have not reviewed the article, one may simply count the
number of links to the file and you have a number of viewers
still needing to view the article. In ARTHER, the names of the
individuals as well as the number of individuals are viewed as

the important information.

30

— TELECENTER is simular to ARTHER, when an article is
submitted.In TELECENTER, é function is called which sets up a
directory structure for the file corresponding to the article.
In ARTHER, -the artsubmit command creates a directory structure
for the file in an existing directory structure which_ was

created when the artsubject command was executed.

— Unlike ARTHER, TELECENTER makes no distinction between
viewers who review the article and do not comment, and
reviewers who comment on the file. Likewise in TELECENTER no

information concerning "dates" is kept.

— Most of the functions which are wutilized in TELECENTER are
"written in the UNIX system's standard command-interpreter
language. This results in a trade off between adaptability by
the individual wusers for their own needs versus efficiency.
In ARTHER, most of the commands are written in "C" while a
few, which are most likely to be modified by the individual

user, are written in the interpreter language.

— Like ARTHER, the only networking implemented with TELECENTER

is through the use of existing tools such as "cu".®

3.2.4 SCCS SCCS is an acronym for Source Code Control System.
SCCS was designed to control changes to source code for storage,

update, and retrieval of all versions of a module. It controls

9. Kernigan, Pike, p. 39.

31

updating privileges, identification of load modules by version and
the record keeping-of whom made which change, on which version the

changes were made, and why the change was made.:*

— Unlike ARTHER, SCCS 1is not a conferencing system. It s
designed to handle large entities which will have many

relatively small changes.

— Unlike ARTHER, it was designed for an environment in which one
wishes to keep the "old" versions available. In ARTHER, one
is attempting to rid oneself of the multiple copies of old

articles.

— SCCS does keep records internal to the file as to whom made a
change when, where, and why. This information is obtainable in
several formats. But the intent is somewhat different from the
intent of the records kept by ARTHER. The purpose of SCCS is
to have the ability to recreate all versions of the module at
any time. The intent of ARTHER is to have the latest version
which is undergoing change and to have the ability to keep
this evolving version separate from any existing version while

controlling access.

— The access Llimitation in SCCS 1is through existing UNIX
permission structure. This is limited to the owner, the

group, and "all". 1In ARTHER the limitation is more precisely

10. Rochkind.

32

defined for the individual articles.

— SCCS is different from ARTHER. in that no recored keeping is

done as to anyone viewing an article.

— In SCCS the concept of "comments" are simply '"code" comments

entered by the user whom is modifying the code.

— SCCS serves an important function but it is a completely

different purpose from ARTHER.

4, Summary and Future Enhancements

ARTHER is a service which provides a tracking and handling
mechanism- for articles. The design " is such that it is ‘general
enough to use in many different areas but specific enough to
offer many features not included in other services. It is
intended to have an appointed administrator who will perfofm
some of the basic initializations of the groups but all of the

procedures for set up are automated.

The design assumptions took into consideration "user
friendly" niceties which make the system easy to use. Only a very
basic interface to the tracking system is set wup with this
implémentation. This is an area which could be expanded to

encompass much more work.

The whole area of tracking and handling of articles is wide
open. Security is a major issue both in an educational environment

as well as in a developmental environment. This service has

33

attempted to answer these problems and make the user feel as
comfortable as possible that the articles and the comments are

accessible only to those with a need to know.

This implementation has not addressed the issue of networkihg.
Certainly any UNIX svstem which has the command "cu" -- has access
to the system. If the UNIX command "uucp” *? exists on multiple
systems it would be possible to network the system. Several issues
would need to be addressed. When would updating across systems
take place? Would one build the intelligence into the system to
decide whose information is sent to whiéh machine login? That Iis,
if one has a login on'two macﬁines, would both machines inform the

user of changes, or would only one machine have the service active.

In general, this was an extensive project, but could be added
to indefinitely. It is meant to be expanded to meet the needs of

the users.

12. Kernigan, Pike, p. 39.

BIBLIOGRAPHY

P
—
e

-
9
—a

(5]

(6]

Daney,Charles,"The VMSHARE Computer Conferencing Facility",

Computer Message System, Uhlig, R. P. (editor). North-

Holiand Publishing Company. IFIP,981.

Grubb, Ralph E., "Student Control :Exploration in CAI", IBM

Corporation,

Kernighan, B.K.,Pike, Bob,"The UNIX Programming Environment"

Printice-Hall, Inc., Englewood Cliffs, New Jersy.

Kernighan, B.K.,Ritche,D.M.,"The C Programming Language",

Printice-Hall, Inc., Englewood Cliffs, New Jersy.

Kerr, E. B., Starr, R. H.,"Computer-Mediated Communication
Systems Status and Evaluation'",Human Communication Research

Series, Academic Press, New York, New York, 1982.

Pearson, M. M. L., Kulp, J. E., "Creating an Adaptive
Computerized Conferencing System on UNIX". Computer Message
System, Uhlig, R. P. (editor). North-Holland Publishing

Company. IFIP,981.

Rahmiow, H.F., Fratini, R.C., Ghesguiere,J.R.,"PLATO",The
Instructional Design Library,Educational Technology

Publications, Englewood Cliffs, New Jersy.

Rochkind, Marc J., "The Source Code Control System" IEEE
Transactions on Software Engineering, Volume SE!1, No. 4,

December, 1975.

]
0
ek

(10]

Wasserman,Anthony I., Information System Design Methodology".

Tutorial on Software Design Techniques,Third Edition.

Zisman, M. D., "Representation Specification and Automation
of Office Procedures" Ph.D. dissertation, University of

Pennsylvania, Pennsylvania, 1977.

Appendix

User Command Pages

B

36

NAME

art

SYNOPSIS

art [+[anocge]

DESCRIPTION

] {+#[rs]] [<subjectname>] {<title>]

i

Art is the means by which one views articles and titles of

the articles which are currently being "managed" by the

ARTHER system.

option indicates one wishes to view arti-
éles considered under review. Only wvalid

reviewers can utilize this option.

option in&icates that one wishes fo view

articles which have been submitted and

for subjects which one 1is theivalid

group owner. The absence of s orr

indicates that one 1is intersected in

articles which are "published".

- prints the actual articles which are in

the appropriate environment.

prints the titles of articles which are
in the appropriate environment.
prints name of the existing subjects
prints the number of articles which are
newer than the last time the user

printed out the articles.

e: prints name of all the existing subjects
and the titles of the articles in all of
the subjects.

n: prints the titles of articles which are

newer than the last time

SEE ALSO

artsubmit artprofiler artsubjects

38

NAME

artsubject

SYNOPSIS

artsubject

DESCRIPTION
The artsubject command creates new subjects in the ARTHER
service. The user is prompted for the name of the subject

and the owner of the subject.

FILES
/ARTHERDIR/ssubjects directory is created.
/ARTHERDIR/rsubjects directory is created.

/ARTHERDIR/psubjects directory is created.

SEE ALSO

artsubmit art artprofiler

39

40

NAME

artsubmit

SYNOPSIS

artsubmit

DESCRIPTION
The artsubmit command accepts a file to be copied in to the
ARTHER service for review by the owner of the subject. The
user will be prompted for the subject, a title to be used
for the article, and the file to be copied. The file to be
copied can be a relative or a full path name. The subject
must be a valid subject created with artsubject. The user

must be a.valid member -of the subject.

SEE ALSO

artsubject art artprofiler

41

NAME

mklist

SYNOPSIS

mklist

DESCRIPTION
Mklist creates lists for use by the owner of the subject
when creating list of reviewers for articles. Only the
owner of the group or subject may create lists. The user

will be prompted for the subject and a name for the list.

SEE ALSO

artsubmit -

42

NAME

artprofiler

SYNOPSIS

artprofiler

DESCRIPTION
The artprofiler creates or changes the environment variables
for the ARTHER service. One is prompted for a choice for the
service to be run never, once a day, or every time one logs
~in. The user is also prompted for a chance to add subjects
to their list of subjects to be considered for the

environment.
FILES
/SHOME/.profile /SHOME/.artprofile

SEE ALSO

art artsubject artsubmit artprofiler

43

NAME

ml

STNOPSIS

ml <filename> <filename>

DESCRIPTION
The ml command expects the first filename to contain a list
of valid user ids on the system. The second filename should
contain a "message" which will be mailed to every member of

the list in the first filename.

SEE ALSO

mail art artsubject artsubmit artprofiler

44

NAME

arttrack

SYNOPSIS

arttrack

DESCRIPTION
The arttrack command is utilized to track the history of the
ARTHER system. The user will be prompted for information as
to which subject, reviewer, or article for s/he wishes to
view. At any time one can enter a question mark for help

concerning valid responses.

SEE ALSO

art artsubject artsubmit artprofiler

Appendix 2

Administrative Command Pages

45

46

NAME
new_system

' STNOPSIS
new_system

DESCRIPTION
The new_system command sets up the initialization necessary
to implement the ARTHER service on a system. The system
expects the user’s current directory to be in a directory
one level below the directory built especially for ARTHER.
The recommendation is that a directory named /usr/ARTHER/src
be created for this purpose. A copy of the source code
should exist in this directory. The user must have write
permission for the /usr/ARTHER directory. The command
creates four directories and then performs a UNIX "make" of
the system. It is not a problem if the user wishes to have
a directory named other than '"/usr/ARTHER", as long as the
user’s current directory is one level lower .than the
directory which is to be used as the ARTHER system
directory.

SEE ALSO
make replace overwrite

NAME
replace

SYNOPSIS
replace

DESCRIPTION

The replace command replaces all occurences of one word with
another.

SEE ALSO
overwrite arttrack

48

NAME
overwrite

SYNOPSIS §
overwrite stringl string2 overwrite stringl string2
filenames 5

DESCRIPTION
The overwrite command first replaces all occurrences of
stringl with string2 in files filenames. It then copies
standard input to output after EOF.

SEE ALSO
replace arttrack

Appendixzx

Application Code

3

49

Tue Jul 17 11:46 1284 arzt.c -1 /1

11:
12
g s
14 ;
15:
16:
17
18:
18:
20:
21:
22:
23
24
25:
26:
27:
28:
29
30:
31
32:
33:
34:
as:
36:
b g
38:
39:
40:
41:
42:

1
24
3:
a

w0 - o W,

~

#aefine USE "art [+[agocen]] [+[rs]] [subname] [titlelO

#define ILL " illegal option %s usage: %s"
#define ILLTOG " illegal option %s and %.1is
- togetherOsage: %s"

sinclude "art.h"

i/

/* struct for command and env variable parsing =/
#define SAME O

#define YES 1

#define NO O

sdefine EMPTY ‘'

char stdbuf[BUFSIZ]:
char art_dir[BUFSIZE]:
char art_subs[BUFSIZE]:
char art_cpts{BUFSIZE]:
char art_excl1[BUFSIZE];
char subnames[BUFSIZE]:

jmp_buf save_addr;

int ncount:
long time():

extern char =*strtok():

main (argc,argv)
int arge:
char *argv(]:
{
struct subjcts *subjcts[MAXBOS]:
int subjct_ct, substat. 1:
char sub[BUFSIZE]:
int print_item();
char option;
long time();:

char types,*ptypes;

Tue Jul

43:
44
45
46
a7
48:
-3-
SC:
%
52
S3:
54
55:
56:
T
58:
59:
80:
_61:
82:
63:
64
e5:
66:
67:
68
85:
70
T

72:
73:
74:
75:

76:
77:

78:
79:
80:
81:
82:

17 11:46 1984 art.c 1-2 /&3

char opt[13]:
char typ[7}:
char =strchr{). =tempt:

char *sgopt:
int runcmd;

/-
- initialization

=/

runcmd = YES:

option = EMPTY:

types = EMPTY;
ptypes=&types;

strcpy({opt, "agocenAGOCEN") ;
strcpy(typ."rsRS");

i=1;

while {(argec -- >1)

{
if(strncmptargvlil."+*,1)1=0)
{
sprintf(subnames + strlen(subnames),k "
%s®.argv(il);
}
alse
{
if ((tempt=strchr(opt.argv[i][1])) == Q)
{
if ((tempt=strchr(typ.argv(i]ll[1]))
== Q)
{
printf(ILL.argv[i] . USE):
runcmd=NC :
continue:

Tue Jui 17 11:46 1984 art.c 1-3 /83

83: if (types==EMPTY)

84: strncpy{ptypes. tempt.1);

8s. else

86: {

87: printf (ILLTOG. ptypes. tempt.

USE ¥z

88: . runcmd=N0O:

89: b

80: >

81;: else if (option==EMPTY)

82: strncpy(&option, tempt, 1)

93: else

94 : {

g9s: printf(ILLTCG. ptypes., tempt, USE):

86: runcmd=NQ ;

97: I

98 b4

99 i++;

100:)

101:) H

102 ;

103: if {(runcmd == NO) exit(1);

104 :

105: if { types==EMPTY)

106 : strncpy(ptypes."p".1):

107) /=more initialization=/

108: initialize (art_dir,art_subs,art_opts,art_excl,
ptypes.option);

109: get_subs (art_dir,art_subs.art_excl,subjcts,
&subjct_ct):

110: if { subnames(Q] == ‘ ‘ && option == EMPTY)

19173 {

bR 2 for (i=0 : i < subjct_ct ; i++)

113: {

114: if(subjcts[i]->excl == 1) continue:

115: outartcis(print_item.subjcts[i],

art_dir NEW,.ptypes);
116: subjcts{i]->stbuf.st_mtime = time
({ltong =) O);

117: }

118: update (subjcts.subjct_ct):

119: exit();

120: ¥

Tue Jul 17 11:46 1984

121
122:
129
124
125"
126
127
128:
129:
130:

181 ¢+
132:
133
134:
1351
136:

137:
138:
1389:
140 :
141:
142:
143:
144 :
145
146

147 :
148:
149:
150:
181:

152
183:
154 :

155:
156:
187:
158:

_—

art.c 1-4 /121

/= process arguments */
/* check for options. process command =/

if{ option != EMPTY)

1

1

if({subnames[0Q0] == ')

else

/* no option,
else

process{subjcts.subjct_ct.art_dir,
ne onn option,ptypes):

sdopt = strtok(subnames." ");
while(sdopt != NULL)
{
process(subjcts.subjct_ct,
art_dir,sddpt."".option,ptypes);
sdopt = strtok(0," "):

just sub and/or news items =/

= strtok(subnames,” "):

substat = given_sub(sdopt,subjcts.subjct_ct)

if(GOOD)} strcpy(sub,sdopt);

sub[0] = ' *;

sdopt = strtok(0," "):
if(GOOD &8 sdopt == NULL)

process(subjcts,subjct_ct.art_dir.
sub, """, ', ,ptypes);

while(sdopt != NULL)

{
sdopt
else
{
}

}

process(subjcts,subjct_ct,art_dir,
sub,sdopt,’ ‘,.,ptypes):
sdopt = strtok(0," ")

Tue Jul 17 11:46 1984 artfile.c 2-1

AAAM_AAAAA
© IO bWUN - O W

NN NN
VOO UE BN =

h b bWWWWWWWWW
N = O WU s WN -

w20 N B W

[N
o

w
+ 9

/u

convert arbitrary string to standard file name
*)/

4

rinciude <stdio.h>

sincluce <ctype.h>

main(argc.argv)
int argc:
char *=argv; {
nt 1,.j.K:
k = O:

for(i = 1: i < argc: 1++)

{
j =0
while(argv[il[j] !'= ')
{ -
if(isalnum({argv(il(jl])
argv(i][j] == '+ |
argvlillj] == "_- |
argvlillj] == "= |
argv[il{j] == 7.)
{
putclargv[illj
if(++k == 14)
}
j+9-;
}
ff(¢+k == 14) break;
if(i+1 == argc) break;
putc(_’.stdout):
) .

putc(’0,stdout);

4

].stdout):
exit(0);

Tue Jul 17 11:46 1984 cominfo.c 3-1 /1

1:
2: # include "art.h"
]
4: cominfoldirnm,nm}
5: char =*dirnm, *nm;
6: |
7 char =getlogin(), s[BUFSIZE]!, sys[BUFSIZE]:
8:
9:
10: strepy(nm,getiogin());
11: sprintf(s, "%s/%s".dirnm,nm) ;
12 chdir(s): .
13: sprintfﬁsys.'/usr/we/dock/aftrecord
reviewed article for publication
14: system(sys);
1954 printf(*
the article."};
16: printf(*" You will be wunable o write the
File."):) .
17: printf(® To enter comments for the author
: to read,"): o 2 :
18: printf (" simply type
can enter”);
19: printf(" comments. REMEMBER: the author will
know what “); ;
20: printf(" article you are commenting upon. but
not where"):
21: printf(" you are in the program. . To exit the
i articte®):
22: printf(" simply type
23: printf(" Type a carriage return when ready
for the file.");
24 gets(s):

25:)

Tue Jul 17 11:46 1982 commant .c 4-1 /1

-

h B

13
14
$5:
16:
17
18:
19:
20:
21:
22:
23:
24:
25:
26
i A
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

O W mW <O U b WK =

/x
artcomment.c
Assumes that one is irn the directory where
one wishes the comments toc be written in a
file named comment.
If called from artl+s then the directory]
should be artdir/comments/$SUBJECT/STITLE/SREVIEWER
for the articles which are being reviewed.
The directory should be
artdir/comments/$SUBJECT/STITLE
for files which are considered "published."
=/
#include <stdic.h>
main()
{
char s[80C];
char NEWLINE; .
FILE *fopen(), *fp:
s{ol=" -;
fp=fooen{ "comment®."a*");
printf(* Enter your comments a line at a time."):
printf(" When you nhave completed your comment.®):
printf(" begin a line with a period (.=}
printf(* followed by cariage return.®); *
printf{ * ");
for (gets(s): s[O] = '.* && s[1] != ' *;)
{
fputs(s,fp):
fputs(’0, fp);
gets(s});
}
fclose(fp):
}

Tue Jul 17 11:46 1984 celete.c -1 /1

'S

- -
a g b

..._A_.
N+ OWo N OW RN -

/* delete.c -
= removes a file named fname.
= called by delete(fname}
","

#include "art.nh®

delete(fname)
char =fname:
{
if (unlink(fname)!=SUCCESS)
printf(" unable to remove list."):

et

Tue Jul 17 11:46 1884 egit.c =1 /1

/= edits a list. giving an oportuinity to
= keep or remove each entry in the-.-list.
£ called edit(fname)

sinclude "art.h"

w oo 18 ;e WN -
"

;. edit(fname)
10: char *fname;

11: A

12: char tmpfile[BUFSIZE]:

13: char ans[10]:

14: char s[BUFSIZE]:

15: FILE =fopen()., =tmp. ~fp:

16: int getpid();

17

18:

19: sprintf(tmpfile, “tmp%d*, getpid());

20: if((tmp=fopen(tmpfile, "w"))== NULL)

21: printf("Onable to open %s*,tmpfile);

22: if((fp=fopen(fname,"r"))== NULL)

23: printf("Onable to cpen %s",fname):

24

258:

26: while(fgets(s, sizeof s.fp)!=NULL)

27 {

28: printf("9s: keep or delete [keepl]?"., s):

28: gets(ans);

30: switch(ans(0])

31: {

32: case '?’: printf (" keep:. entry

. remains in list"):

33: printf (" delete: removes
entry from 1ist");

34 printf("9s: keep or
delete [keepl]?", s):

35: gets(ans);

36:

37: case ‘k‘: fputs(s.tmp);

38: fputs("0, tmp):

39: }

40:

~

Tue Jul 17 11:46 1983 edit.c €-2 /ai

41: fclose(fpl;
42: fcioseltmp):
43: sprintf(s, "mv %s %s“.tmpfile, fname):
44 system(s):
as:

ag: }

47 :

a8:

49:

50:

BAs

Tue Jul

- .

13:
14:
P
16:
17:
18:
193
20:
21:
22:
23:
24:
25:

-
-

275
28:
29:
30:
31:
32:
33:
34:
35:
36:

37:
38:
39:
40:
41:

a O W om0 s WwN -

Al

P

sincluge

K'.

17 t1:46 1984 get_subs.c T~1 f4

get_subs
read names and last modified times of subs

arguments
allsubs ana ptrs of allocated memory
usersub where files are read 1n
allsup_ct ana numpber of subs found
usersuk_ct in each file

enough memory 15 allocated for usersub to fit all

possible subs

‘art.n"

get_subs lart_dir.art_subs.ari_excl . subjcts.subjct_ct)
char art_dir[].art_subs(].art_exc1(]:

struct subjcts *subjcéts[MAXBDS]:

int *subjct_ct: ' "

{

struct usersub usersub;
struct stat stbuf:
struct direct dirbuf:
int i,fd:

char =*malloci():

FILE =fopen()}. ~infile;:
char *env, *strtok();
char fullname[BUFSIZE]:

/* get sub names =/

if(stat(art_dir, &stbuf) == -1 ||
(stouf.st_moce & S_IFMT) !'= S_IFDIR)

{
fprintf(stderr, K "art:
ARTSUBSO.art_dir):)
exit(1): ’
}

if((fd = openfart_dir,0)) == -1)
{

Tue Jul 17 11-46 1984 gei_subs.c 7-2 ja2

42: fprintf(stderr,K "art: cannot read
subQ0, art_dir);

43: exit(1);

44: ¥

a3z :

46: /* read in file names =/

4a7: *subjct_ct = O:

48: while(read(fd, (char ~)&dirbuf,sizeof(dirbuf))i>0)

49: {

50: if(dirbuf.d_inc == Q) continue:

51: if{strcmp(dirbuf d_name,".") == 0 ||

52: strcmp(dirbuf.a_name,". . ") == 0]}

continue:

53: /= check for directory. modified times =/

S4: - sprintf(fullname, “%s/%s".art_dir,
dirpuf.d_name);

o if(stat(fullname. &stouf]} == -1) continue;

56 if((stbuf.st_moge & S_IFMT) != S_IFDIR)
continue;

57: - - /* add information to subjcts =/

sa: ' 7 subjcts[*subjct_ct] = malloc(sizeof
(struct subjcts)):

59: stat(fullname. & (subjcts|~*subjct_ct]
->stbuf));

60: if(art_subs{0] == ' ")

€1t: . subjects{*subjct_ct]l->excl = O:

62: else subjcts|=subjct_ctl->excl = 1;

63: strecpy(subjcts[*subjct_ct]->name,
dirouf.d_name);

64: subjcts[(=subjct_ctl++]->new = 1.

65: ¥

66:

67:

68: /* check for new subs =/

69: for{i = O: i < =®subjct_ct: i++)

70: {

71 if(subjcts[il->new == Q) continue:

72: subjcts(i]->stbuf.st_mtime = OL:

73: }

74:

TE: /* check for valid sups =/

76: env = strtok{art_subs,":");

7T if (env[Q] == “+’) env++; /= skip leading + =/

Tue Jul 17 11:46 1984 get_subs.c 7-3 /78

78: while(env != NULL)

78 {

80: for(i = 0: i < *subjct_ct: i++)

81: {

82 iflstremp(subjcts[i]->name.env) ==

c)

83: {

84: _ subjets{i]-»excl = O;

85: break;

BG: }

87: }

88: env = strtok(0,":"):

89: if (env[0] == "+’) env++: /* skip
leading + */

90: }

91:

92: /= check for exciuded subs =/

93: env = strtoklart_subs.":");:

94: if (env[Q] == =) env+s+; /* skip leading =~ =/

95: whilel(env != NULL) :

96: {

97: for(i = 0; i < *subjct_ct: i++)

88: {

99: if(strcmp(subjcts[i]->name.env) ==

o}

100 {

101: - subjcts[il->excl = 1;

102: ’ break;

103: }

104 : x

106: env = strtok(0,":");

106: if (env[Q] == ‘=) env+~; /= skip
leading - =/

107 : }

108

109: }

Tue Jul 17 11:46 19843 given_sub.c B-1 /1

% given_sub
1f a nonexistant sub 1S passec

[I N+ 3 T @ L T - 7% B TR
L]
]

= e} 1f NULL ts passed
® f if sub is a memper of sublist
=) and i = its 1ndex into the list
S: =/
10:
11: &
12: Finpclude "art.h"
13

14: given_sub (sub,subjcts,subjct_ct)
15: struct subicts "supjcts[MAXBDS]:
16: int subjct_ct;

17: char =sub:

18: |

19: nt i;

20: '

21 if (sub == NULL || =sub == ' ')

22: return (-1);

23: /= limear search thru sublist for sup =/

24: for{(i = 0: i < subjct_ct; i++)

25: {

26

27 ifi{strempisuojcts[i]->name,sub) == Q)
return(i);

28: }

29:

30: return (subjct_ct);

31: }

Tue Jul

10:
11:

12:

13:
14

=

15:
16:

: g i
18: .
.19
©20:
21:
22;
23:
24;
25
26:
28:
29:
30:
31:
32:
33:

W N g m bW

11:46 1984 initialize.c S=-1 /1

#define ARTDIR "/usr/we/dock™

#include

*art. h"

#finclude <stdic.h>
#Ainclude <signal.h>

inttializelart_dir,art_subs,art_opts.art_excl.types.option)
char art_dir[].art_subs(].art_opts[].art_excli[].=types.

{

option;

extern _exit(};

char =env, =getenv{):

if {signal (SIGQUIT, SIG_IGN) != SIG_IGN)
signal (SIGQUIT, _exit):

/= get environment variabies -/
strcpylart_dir ARTDIR):
strcat(art_dir, "/ ");

if((strcmp(types."p")}==SUCCESS) &&- (option==‘g’))
strcatlart_dir, "comments”);

else
{
strcatliart_dir.types):
strcat(art_dir,"subjects”):
¥
env = getenv("ARTSUBS"):
if(emv == NULL || strien(env) == 0)
{
art_subs[0] =
}

else strcpylart_subs,env);

Tue Ju!

10
11
12:
13:
14
15
16:
17
18:
19:
20:
21;
22:
23
24:
25:
26:
27
28:
29:
30:
31:
32:

33:

34:

a5:
36:
37:
38
39:
40

1
brd
3
4.
B
6
T
8
9

sinclude

17

-11

:46 1984 listcreate.c 10-1 /A

creates a list of name fname.
looks in file fcheck for validation of names
called creat(fname, fcheck |

“ard

listcreate(fname, fcheck)
char

{

=fname, =*fcheck;

FILE =fopen{), =*=fp:
char s[BUFSIZE]:
char sys[BUFSIZE]:
int answer:

1f ((fp=fopenl fname,"a"))== NULLJ_
printf(* can’'t open fname"):

printf(* Enter names one at a time"):
printf(* when finished, type a period");
printf(" followed by a carriage return.");
nrintf(" For help type a question mark."):

printf(" name: *);
gets(s);

while (answer != TRUE)
switeh (s[0])
(e
case '?7:
printf(; Enter names
one at a time");
printf(" when finished,
type a period");
printf(* followed by a
carriage return.®):
printf{" name: ");
gets(s);
break:
case ’'.’: :
if (s{1] == NULL)
answer = TRUE:

Tue Jul! 17 11:46 18984 listcreate.c 10-2 /41

41: break :

42: : default:

43: sprintf(sys.

"/usr/we/aock/valic %s %s'.s.foneck)

44 : if (system(sys) == SUCCESS)

45: {

a5 ' fputs(s.fp):

47 fputs("0, fp):

48 : ¥

491 else

50: printf("* invalid
entry®):

Bt printf(" name: ");

82 getsis):

53: »

54: fclosel(fp);

55: 1}

56:

57:

58:

Tue Jul 17 11:46 1984 mail.c 11=-1 /1

mail{letter . mailinglist)

char =letter. =mailinglist:

{

char com{256]:

sprintficom."/usr/we/dock./ mi %s %s”.mailinglist,
letter):

system{com)

8: 1}

aa b WK =

-

Tue Ju'! 17 11:46 1984 mklist.c 12-1 /1

[
WP - 0w

14:
15
16:
T

i8:
-19:
20:
21

22:

24
25
26:
27:
28:
29:

30:
31:
32:
33:

34:
35:

0 4 0O U L WwN -

sinclude “art.h"

mklist({fname,dirname, fcheck)
char *dirname:
char =frame:
char =*fcheck;
{
int answer:
char s[BUFSIZE]:
char a[BUFSIZE]:
struct stat statinfo:

/= 1f the fname does not exist. give the user a
chance to
utiiize an existing list.

= 7
‘

if((stat(fname.&statinfo)==FALSE) &8 (dirname ==
’ J})

for (answer=0; answer!=TRUE;)
{ -
orintf(* The list you have
indicated does not");
printf("exist, Do you wish to
duplicate an existing®):
printf(*"list for this suartiect 7 ")

gets(s):
.. switch (s[0])
{
case 'y’: printf(" list: "};
gets(s);
sprintf(a, "%s/%s",
dirname,s);
if(stat(a,&statinfo)
==FALSE)
break;
answer=TRUE ;
sprintf(s, "cp %s
%s®,a.fname):
system{s);
case '‘n’: answer=TRUE:

Tue Jul

36:
37:
38:
39:
40:
41:
42
43:
44
45:
45
47:
48:
49:
. 50:
51:
52:
53:
54:
55:
56:
57
58:
59: }

7

1:46 1984 mklist.c¢ 12-2 /36

case '7': break;

——

P

/= 1f we are here., we have already copied the file
if one was wanted. If fname does not exists.
create it empty and prompt for names to acd to
it

= /
/

.if(stat{fname,&statinfo)l==FALSE)

{
listcreate(fname, fcheckl);

e

/* Give user chance toc edit the file
* 7

!

printf(” Do you wish to edit the file or quit?~):
gets(s): ’ s)

if (strncmp(s,"q". t)== NULL) return;

sdit!{ fname);

Tue Jul 17

[S § e — - - — B - "
W ow - H U WUN O W o

20:
291

-~

23:
24
25:
26:
27
28:
29:

30:

31:
32:
33:
34:
35
36:
37:
38:

3e: -

=1 M U bLh WK -

minclude

11:46 1984 mklisteom.¢ 13-¢ /1

"art.nh"

#saefine ARTDIR */usr/we/dock"

main()

i
L

Nt whoami:
iNnt answer;

char
char
char
char

dirname[BUFSIZE]:
fname(BUFSIZE];
s{BUFSIZE]:
sv[BUFSIZE]:

struct stat statinfo:

/= Get the uid of the person executing command=/
whoami=geteuid{):

printf("

Lists are created on a subect basis by the owner

of the group.");
for (answer=0:answer!=TRUE:)

{

orin f(" subject: "};

s{c] =
if (gets{s) == NULL) exit(1);
switeh (s[0])
{
case '?7’':
printf{"\nter the name of the subject for
which you wish to");
printf(" create the list. You must be the
owner of the group"):
printf(" Type quit to exit.");
case NULL:
break;
defaul t:
sprintfl{dirname, "%s/comments/%s" ,ARTDIR,s):
if(stat(dirname,&statinfo}==FALSE)
{
printf(® %s is not a valid
subject”.s);
break;

Tue Jul! 17 11:46 1984 mklistcom.c 13-2 /4aC

4a0: b
41: if (statinfo.st_uid != whoami)
az: {
43: answer=TRUE :
44 b
45 else
46 printf(" You are not tne owner of
the group %s".s):
47 : }
48: }
49 :
S0 printf(" Dc you wish to create a new l1st, delete
an existing lList,"};
S1: printf(* or edit an existing l1ist?");
B printf(" create, celete. or edit? “}:
s3: getsis);
34 : switeh (s[0C])
55: {
56: case ‘d’':
_57: printf(" name of existing list: "):
s58: - gets{s]); .
§9: sprintf(sy,"rm -f %s/%s".dirname,s):
&C: system(sy):
a1
2t exit(0Q);
83: default:
64 printf(" Name of the list you wish to
create or edit? "):
65: gets(s):
66 : sprintf(fname, "%s/%s".dirname.s);
67: mkiist(fname.dirname, "/etc/passwd");
68: }

69: }

Tue Jul! 17 11:46 1984

b ek A —a b
WK = 0w

18
16:
1
18:
19:-
20:
21:
22
233

24:

25
26:
275
28:
29:

v T) B S L I TN N S A

#Finclude "art.n®

main{argc,argv)
int argc:

‘char =argv{]:

{
int answer;
char s[BUFSIZE):

mkmem.c 14-1 /1

listcreate(argv[1]. "/etc/passwd®);
for (answer=0;answer!=TRUE:)

{

quit?

—

printf{"Do you wish to edit the file or

") -

gats(s}:

switch (s[0])

{

case ‘e’':

’ edit{argv[i1]);

answer=TRUE:
break; ’

case ‘g’: exit(1);

case '?’: printf("0dit: examine the

entries one at a time");
printf("Ouit: leave the list

as it is."):

edit(argv(1]):

Tue Jul! 17 11:46 1884 newcount.c 15-1

P

- QW 0 0O U bk W -

/a

E newcount

= counts number of artcl
=/

newcount (s5,sub)}
char =s,
sub{}:

extern int ncount;
ifls) nocount++;:

/1

Tue Jul 17 11:48 1984 onintr.c

0o 20U b Wk -

F 3
#include "art.h"

onintr(}

{
fprintf{stderr “0OinterruptQl}:
longjmpl save_addr. 1);

16-1

/1

Tue Jul 17 141:46 1984 output.c 17-1 /1

output(filename,outs)
char filename[].outs[]:.
{

char t[256]:

sprintfit. "/usr/sccsbin/vi %s #s".filename.outs):

5
2

3

4:
5
8

7 system(t):
8

Tue Jul 17 11:48 1884 prini_item.c 18-t /1

1: =

2: Finclude "art.h*

3:

4.

=

6: print_item (f.suc.art_gir,ptypes)

7: char =f, sub[]. art_diri].*ptypes:

8:

9: FILE *=fd:

10: extern int interactive:

19 char s[BUFSIZE]:

12; int A, i .

13: char fname[BUFSIZE];

14 char newfname[BUFSIZE]:

15 char nm{ 10]:

16 char comdir{BUFSIZE]:

17 static int firstitem = 1t

18: int onintr();

19
20:) if (f == NULL) {
21 i return;
22 H
23: n=strlen(art_dir) - 9: /=size of string ssubjects=/
24: strncoy(comdir ., art_dir.n):
25: sprintf(fname, "%s/%s/%s".art_dir,sdb,f);
26: sprintf{newfname, "%scomments/%s/%s".comdir, sub.f);
27: start:

28: if ((fa = fopen (fname, *r*)) '= NULL)
29: {

30 register int c, ip, op;
31: struct stat sbuf:

2 B char =*ctime();

33: extern int ncount:

34:

35: ncount++ ;.

36:

37: fstat (fileno (fd), &sbuf);
38 if (firstitem) {

39: firstitem = 0;
40: putchar (‘0);

41;: }

42: if (setjmp(save_addr))

43: gota finmish:

Tue Jul 17 11:46 1984 print_item.c 18-2 /44

44: if (signal(SIGINT, SIG_IGN} != SIG_IGN)

45: signal (SIGINT, onintr);

45 s[0] =

a7, printfi" subject: %s article:
%sSC,sub. f);

48: cominfo{newfname,nm} ;

49 output(fname, &s{C]):

50: finish:

51: putchar (“0):

52: fclose (fd): =

53: if (signal (SIGINT. SIG_IGN) != SIG_IGN]

S4: signai(SIGINT., SIG_DFL):

55: prompt:

56 s[0] =

57: fprintf(stderr, "review. next, quit ? [next]
" ¥R

S8: gets(s);

59: switch (s{0Q])

60: Cq

61: case 'r’:

62: . . - - putc('0,stdout);

63: ' goto start;

64 : break;

65: case '‘n’:

66: case 'g‘: if {(strncmp(ptypes. "s", i}==
Q) submit({fname.n,sub,f,comdir,nm,newfrname);

e7: exit(1):

68 : break;

69:

70: case "?': fprintf(stderr, k"
%=-108%s0. "review","print artcle again");

T1: fprintf(stderr,"

: %-10s%s0, "next","go to next artcle");
72: . fprintf(stderr, *
%-10s%s0,"gquit", "terminate program®);

73: goto prompt;

74: break;

75:

76: case ' ’': break:

TT:

78: defauls: fprintf(stderr, "unknown

command, please try again.Q):
79: goto prompt;

Tue Jul 17 11:46 1984 print_item.c 18-3 /80

80: break ;
81: v

82: putc(0, stdout):

83: >

84:

Tue Jul 17 11:46 1984 process.c 19-1 71

1: #»

2: minclude "art.n"

3:

4: process(subjcts.subjct_ct.art_dir,sub,item,option.types]|
S: struct subjcts =sub)cts[MAXBDS];

6: 1Nt subjct_ct:

7: cnar *sub.*item,cption.*types:

8: {

8: int newsstat, substat,i.j:

10: fong time();

11: int print_item(). report()., count(), newcount():
12 int flag:

13

14 ;

15: /= check option for all subs =/

16: if{ isupper(option))

17 : {

18: flag = 2:

19: }
20: else flag = 1; "

29 ' ’ ’

22: switch (option)
23: {
24 case ‘n’: /= report titles of new artcl =/
25: case ‘N’:
26: ncount = Q:
27 substat = given_sub(sub,subjcts,subjct_ct):
28: if (GOOD) s
29: . {
30: outartcls(report,subjcts{substat],

art_dir NEW, types):
31: if(ncount == Q) fprintfi{stdout,
"There are no new aritcl on

92 }

33: else if (NOTHERE)

34: {

35: for (i=0 ; i < subjct_ct ; i++)

36: {

37: if(subjcts[i]l->excl == flag)
continue;

38: outartcis(report.subjcts[i].

art_dir NEW.types);

et

39:

Tue Jul

4a0C:
41:
42:
43:

45:
45:
47
48:
49:

30:

56:

57:
58:
59.
80:
&61:
62:

63:

g4
85:
66:
87:
&8:

68:
70:
71
T2
7 o 1
T4:
T8

T B
§2:
53
54 :

17 11:46 1984

case

case

case
case

1
Fl

else if
{

e

break;
‘o’ /* report appropriate titles of =/
/* articles regardless of currency
!l!'
Q-
ncount = C;]
substat = given_sublsub,.subjcts.subjct_ct):
if (GOOD)
¢ h
outartclis(report.subjcts[substat].
art_dir ALL, types);
if{ncdunt == Q) fprintf(staout,
“Theré are no artcl on
) .
else if (NOTHERE)
{
for (i=0 ; i < subjct_ct : i++)
{ . .
if{subjcts[i]->excl == flag)
continue:
outartclis{report,subjcts([i].
. art_dir, ALL,types);
}
}
else if (BAD)
{
fprintf(stderr, "
existing sub.0,sub):
}
break;
tet . /* report all titles of articles =/
"Bt

process.c 18-2 /4Q

(BAD)

fprintf(stderr *
existing sub.Q.suo):

Tue Jul 17 11:46 1984 process.c 18-3 /76

76: ncount = O:
77 substat = given_sub(sub.subjcts.subjct_ct):
78: - if (GOOC)
79: {
BO: outartclis{report.subjcts|[substat].
art_dir, EVERYONE. types):
81: if(ncount == Q) fprintf(stdout,
“There are no artcl! on
82: i
B3: else if (NOTHERE)
84:) {
85: for (i=0 ; i < subjct_ct : i++}
86: {
87: outartcls(report,subjcts{i].
art_dir EVERYONE, types):
B8 :)
. 89: }
0:) else if (BaAD)
S1: {
92: fprintf(stdere, "
) 2 existing sub:0Q,sub):
23: }
94
95: oreak:
96:
a7:
98: case ‘c’: /= count new artcls =/
99: case ‘C’:
100: " neount = Q;
101: substat = given_sub(sub,subjcts,subjct_ct);
102: if (GOOD)
103: {
104 : outartcis(newcount,subjcts[substat],
art_dir ,NEW, types);
105: }
106 : else if (NOTHERE)
107 {
108 : for (i=0 : i < subjct_ct : i++)
109 {
110: if{subjcts[il-»excl == flag)
continue;
14 outartclis(newcount,

subjcts[i],art_dir NEW.types);

Tue Jul

112
1132
114:
115
116

117
118:
119

120:
29
122:
123:

124:
125:
126:
127:
128:
129:

130:

131:
132:

133:
134
t135:
136:
137;:
138

139:

140:

141
142:
143:
144 :
145

17 11:46 1984

}
else if
{

—

process.c 19-4 /112

—

(BAD)

fprintflstiderr.”
existing sub.C.subl;

if{ncount > Q) fprintflistdout, "%dC, ncount)

break

case ‘a2": /= print contents of all artcls
regardiess of currency =/
case 'A’:
ncount [0}
substat = given_sub(sub.subjcts.subjct_ctl:
if (GOOD)
{
outartcls(print_item,
subjcts(substat].art_dir ALL.types):
subictsisubstat]->stouf.st_mtime =
time ({(long =) O):
update (subjcts.subjct_ct);
if(ncount == 0} fprintf(stdout,
"There are ne artcl on
}
else if (NOTHERE)
{
for (i=0 ; i < subjct_ct ; i++)
{
if(subjcts[i]-»excl == flag)
continue;
cutartcls(print_item,
supjets[i].art_dir,ALL, types);
subjcts(i]->stbuf.st_mtime
= time ((long =) 0);
} :
update (subjcts,subjct_ct):
}
else if (BAD)

{

Tue Jul 17 11:46 1984 process.¢c 18-5 /146

146 : fprintf{staderr, *
existing sub.Q,subl;
147: 3
148 :
148 : breax:
150:
154 ; case ‘g : /= report all sub names =/
152 case ‘G':
183': supstat = given_sub{sub.subjcts.subjct_ct}:-
154 : tf (GOOD)
155: fprintf(stdout,”
sub):
156: if ({ NOTHERE) && (strncmp(types.’"p".1)
' =SUCCESS))
15T i
158 : fprintfistoout, "existing subjects
in your environment:");
159 j = 0:
160: for (i=0 : i < subjci_ct : i++)
161: { .
162 :- o if(subjets(il->excl == flag)
continue:
1€3: ifF((j++)%5 == Q) printf("
w)s
164 : fprintf(stdout."%-15. 14s" .
subjcts[i]->name);
165: }
166 : putc(’Q.stdout):
167: }
168: if ((NOTHERE) && (strncmp(types."p",1)
==SUCCESS))
169: {
170: forintf(stdout,"existing subjects
) 1 %) :
1714: j=0;
172: for (i=0 ; i < subjct_ct ; i++)
173: {
174 PF((j++)%5 == Q) printf("
-
175: fprintf(stdout, "%-15.14s",
subjcts[i]->name);
176: }

177 putc(‘0O,stdout);

Tue Jul 17 11:46 1984 process.c 18-6 /178

178: H -

179: if (BAD)

180: fprintf(stdout. *
Q.sub);

181: break :

182:

183: case ’

184 substat = given_sub{sub.subjcts.subjict_ct);

185: newsstat = given_sub(item,subjcts.subjct_ct)

186: ncount = 0:

187 :

188: /= if a sub, print artcl there =/

189: . if(GDOD && newsstat == -1)

180: {

191: outartcisiprint_item,
subjcts{substat]. art_dir NEW, types}):

192: supjcts[substat]->stbuf.st_mtime =
time ((long =) 0Q):

123 " . . update. (subjcts.subjct_ct);

184 ’ ’ if(ncount == Q) printf{"There are
no new arfc1 on

195: H

186: /* if sub & title. print it =/

197 : else if (GOOD)

198: {

199: print_item (itém. sub,art_dir);

200: if{ncount == Q) printf("
not a2 artcle on

201: }

202: /* if just title, print all such titles =/

203: else

204 : {

205: for(1 = 0; 1 < subjct_ct ; i++)

206: {

207: if(subjcts([i]l->excl == flag)

continue;
208: print_item (item,
subjcts[i->name,art_dir):
209: }
210: if{ncount == 0) printf("There is no

artcte calied
211

~

Tue Jul

232
213:
214
215:

216
2875
218:
219: }

17

11:46 1984

default

process.c 19-7

break;

fprintf(stderr, K "art:
option};

exit (1):

break;

/212

1
2
d:
4
S

Tue Jul 17 11:46 1984 publish.c 20-1 ‘1
sinclude "art.nh"
f-
= main()
{
= char fname[BUFSIZE], sub{BUFSIZE].
fIBUFSIZE]. comdir{BUFSIZE].tname[BUFSIZE]:
= int n;
= strcpy(fname,
“/usr/we/dock/ssubjects/testi1/file1");
= strecpy(sub. "test1");
= strepyl(f,"filet1");
= strepy{comdir,
"/usr/we/dock/comments/testti/filei");
strcpy(tname.

12:
13:
14
5
16:
17:
iB:
19:
20:
21:
22:
23
24
25:
26:
27
28:
29:

I
32

33:
34:
35:
36:
37;

“/usr/we/dock/psubjects/testi/fFilel"):

- puclish{fname.n,sue, f,

1
= J

-.'
‘

publish{fname,n,sub, f,

char *fname, *sub, *f,
int n:

{

int getpid():

char letter[BUFSIZE];
char maitinglist[BUFSI
char message{BUFSIZE]:
char sys{BUFSIZE]:

comdir, tname, nm, newfname)
*comdir, *=tname,

2e);

char auth[10], =*getlogin():

struct stat statinfo:
FILE =fopen(), *fp;

sprintf(letter,"1tr%d", getpid()):

sprintf(message, "Ohe file %s in SUBJECT %s was

accepted 30: for publication®,
/* Place the information in file
Tetter */ o
fp = fopen(letter, "w");

fputs{message,
fclose(fp);

/n

fp):

Place info in mailing list

comdir, tname);

*nm, =*newfname:;

*/

£y

sub)

Tue Jul 17 11:46 1984 publish.c 20-2 /38

38: sprintfimailinglist, "migkd”,getpid());
3s: if(stat(fname, &statinfo)==FALSE)
40 {
41: printf{" %s 1s not a valid subject", K fname)
42 h
43: strepylauth, (getiogin(statinfo.st_uic))):
44 fp = fopen(mailinglist, "w"):
45: fputs(auth, fpi:
46: fciose(fp);
47 ;
48: /= mail the info =/
49- mail (letter.mailinglist);
5C: delete(letter);
S51: detete(maiiinglist):
52:
L ¥e o
54 b= record for posterity xf
55 : sprintf(sys,"/usr/we/dock/record
" accepted for publication
56: system(sys):
57:
58: V] move the file to new location =/
59: sprintf(message, "mv %s %s®", fname, tname);
60: system(message);
61: }

82:

Tue Jul 17 14:46 1984 readdirs.c 24-1 ‘1

1; /™=
2: * readgcirs . .
33 = reaas all directories names and modification times
a: = in the present wcorking directory
- allocates space as each entry is assigned tc the
structure
g: = sorts entries in decreasing time order
T =
8 = arguments
8y = file_ct numpber of files found
10 = files structure to fill
11y = i
12: = returns
131 = 1 if cannot open ".*®
14 x 0 otherwise
15 ; =/)
16
17: #
18: #include "art.h"
19: ' :
20: char =ignered{] = {
21 N i
22: Moou ¥y
23: NULL
245 ¥
25:

26: readdgirs (sub,file_ct,.files)
27: char =*sub: ’

28: int =file_ct:

29: struct usersub **files;

30: {

a: struct direct nf;

32: struct stat sbuf;

33: char frname[BUFSIZE]:

34: FILE =fd: '

as: int i, j:

36: char *malloc(), *reailoc():
37

38: if ((fd = fopen {(sub,"r")) == NULL) {
39: return (1);

40: }

41

42 /* Read the file names into files =/

Tue Jul 17 11:46 1984 reagairs.c 21-2 /43

43: *file_ct = O;
44: while {(fread ((char *) &nf, sizeof nf, 1. fd) == 1)
{
4s: sprintf(fname, "%s/%s" . sub,.nf.c_name}:
46: if (nf.d_ino != O && stat (fname. &spouf) >=
C
a7: 85 ((sbuf.st_mode & S_IFDIR) == S_IFDIR}) ¢
48 register char *=p;
49: p = ignored:
50: while (*p && strncmp (=p. nf.d_name. -
strien(*p)l)
5t: ++p
2: if (!'=p) {
54 if L(=file_ct)++ > 0O)
54: *files = (struct
usersub >}
55: . realloc
{(char =) =files,
56: ’] (unsigned)
57: (sizeof
- . ’ (struct usersub)
58: * (=fi1l
e_ct)));
59 else
80: *files = (struct
usersub *) malloc
61: ({tunsignedl
62: (sizeof
(struct usersub) =
63: (=file_ct)))
64: if (=files == NULL)} {
65:) fprintf (stderr,
"No storageQ):
66: exit {1);:
67: }
&8 (*+filesi[(=file_ct)-1]
.mtime = sbuf.st_mtime;
69: strncpy ((*files)[(=file_ct)
-1].name,
70: .nf.d_name, DIRSIZ);
71: }

T2:

e

Tue Jul 17 11:46 1884 reaadirs.c 21-3 /73

73: }
74 :
75: /* Sort the elements of files in decreasing time
order =/
76 for (i=1; i<{=File_ct}: i++]
77 for (1=0: j<i: j++)
78: if {((=files){j].mtime < {=files){i]
.mtime) {
79: sStruct usersub temp:
8C: temp = (=files)[i]:
81: (=files)[i] = (=files)[j];:
82: (*files)[j] = temp:
83: }
84:
85: /= Clean up =/
BG: fcliose (fdl:
7 return (01};

as: }

Tue Jul 17 11:46 1984 readfiles.c 22-1 1

1e o=

2: = readfiles

i = reads all regular file names a2nd modification times

4. = in the present working directaory

5: = allocates space as each entry 1s assigned to tne

structure

» sorts entries in decreasing time order
x arguments
= file_ct number of files founc

1 * files structure to fill

1 =

1 ¥ returns

1 = 1 if cannot open ".°

o} atherwise
=/

&

fFinclude "art.n"

- b ok ks
W oo ~1 Ok O =~ 0000
]

char-*ignore[] = {

20:

21 "core",

225 NULL

23: }

24:

25: readfiles (sub.file_ct.files)

26: char *sub:

27: int =file_ct:

28: struct usersub ==files;

28: {

3C: struct direct nf;

31 struct stat sbuf;

32: char fname([BUFSIZE];

33: FILE *fd;

34: int i, j:

3s: char =*malloc(). =realloc();:
36:

37: if ((fd = fopen (sub,"r*)) == NULL) {
38: return (1});

39: }

40:

41 /* Read the file names into files =/
42 *file_ct = OQ;

Tue Jul

43:

44 :
45:

46
47
48:
49:

50:
51:
82:
83:

54

55
56:

57:

-1-
59:

60!
61:

62

63:
64 :

65:
66:
67:

e8!

69:
70:
T1:
72:

17

11

146

readfiles.c 22-2 /43

while (fread ((char =) &nf, sizeof nf, 1. fd) == 1)

~

sprintf(fname, "%s/%s",sub.nf.d_name);

if (nf.d_ino != O && stat (fname. &sbuf) >=
o]
&& (spuf.st_mode & S_IFMT) == S_IFREG) {
register char *=p;
p = ignore:
while (*p &% strncmp (=p, nf.d_name,
DIRSIZ)}
++p;
if (!'=p) {
if ((=file_ctl++ > O)
=files = (struct
usersub *) .
realloc
{tchar =) =files.
(unsigned)
(sizeof
(struct usersub)
= (=411
e_ct))):
else
*fijes = {(struct
usersub *) malloc
({unsigned)
(sizeof
(struct usersub) =
(=file_ct)))
if (*files == NULL) {
fprintf (stderr,
"No storageQ):
exit (1);
}
(=files)[(=file_ct)-1]
.mtime = sbuf.st_mtime;
strncpy ((=files){(*file_ct)
-1] .name,
nf.d_name, DIRSIZ):

Tue dJul

73:
74

75:
76

-

I

78
79:
8C:
81:
82:
83:
84 :
B85:
86:
87:

-

17 11:46 1984 readfiles.c 22-3 /73

/* Sart the elements of files in decreasing time
‘orger =/
for (1=1: 1<{=file_ct): i++]|
for (j=0; j<i: j++)
if ((=files){i].mtime < {(*files)[i]
.mtime) {
struct usersub temp:
temp = (=files)[i];
(=files){i] = (=files)(jl:
(=Files)[j] = temp;

/* Clean up =/
fciose (fdl;
return (0);

Tue Jul 17 11:46 1984 reject.c 23-!

~1

10
S e

T2
13:
14:
15
16:
172
18:
19:
20:
g O
22:
23:
24 :
25:
26:
27:
28:
29:
30:
< B B
32
33:

34
35:
36:
< Jr i
38:
39:

1
2
3
d:
5
e

#include "art.h"

reject(fname.,n.sub.- f, comdir, nm, newfname)

char *fname, =sub, *f, =*comdir, =nm, *newfname;

int n;

{

int getpidl):

char Tetter[BUFSIZE]:

char mailinglist[BUFSIZE]:
char message[BUFSIZE]:

char dirnm[BUFSIZE];

char sys[BUFSIZE]:

char date[BUFSIZE]; .
char auth[10], =getilogin(};
struct stat statinfo;

FILE *fopen(), =fp;

sprintf(letter."1tr%d" getpid()):

sprintf{message, "The file %s in SUBJECT %s was

rejectedo,
f, sub);

/= Place the information in file ietter

fp = fopen{letter, "w");
fputs(message,. fp):
fclose(fp):

/-
% main()
= {
= char fname[BUFSIZE]., sub[BUFSIZE].
f[BUFSIZE], comdir{BUFSIZE]:
= int n;
= strepyl fname,
" /fusr/we/dock/ssubjects/testi1/filet");
= strcpy(sub, "test1"); .
= strepy(f."filet®);
* strcpyl(comdir,
"/usr/we/dock/comments/test1/filet");
> reject(fname.n,sub, f, comdir):
- }
' *

=/

Tue Jul

40:
41:
42:
43:
44 ;

45:
46:
47
48:
439:
50Q:
51:
52:
53

54:
85
56:
L
58:

59:)}

17

11:46 1984 . reject.c 23-2 /4C

if{stat{fname &statinfol==FALSE)

{
printf(" %s 1s not a valid subject”, fname)

; :

sprintfimailinglist, "m1%d” .getpid(});

strepyl(auth, (getloginistatinfo.st_uid))):

fp = fopen(mailinglist, “"a"“):

fputstauth, fp):

fclosel(fpl;

mail (letter . mailingiist):

sprintfisys,. "/usr/we/dock/record
rejectea article
system{sys);

delete(mailinglist):
delete(letter);

Tue uul 17 11:46 1984 report.c 24-1

t:

2

< O

- T report

5 > prints artcle title. s

&: =/

7: report {(s,sub.dummy,types)

8: char *s, ~*types,

9: sub(];

10: |

11: static int first = 1t;

12: extern ncount;

13:

14 if (s) {

15: if (first) {

16: first = Q;

17: switch (*types)
18: {

18: case ‘r’:printf("

. revew: " ,sub):.
20: break;
21: ' case ‘s’':printf(”
suhmission " sub):

22: break:
23: default: printf ("
24; }
25: ncount = S5;
26: }
27: if(ncount%s == Q) printf("
28: printf ("%-15.14s", s);
29: ncount++;
30: } else if (!first)
31: {
32: first = 1;
33: putchar ('0);
34: }

/1

"),

Tue Jul 17 11:46 1984 review.c 25-1 /1

1
2:
be 7
4:
5
6:
T
8:

9:
10:
11:
12:
13,
14 :
15
16:
17:
18:
18:

20:
21:
22:

24:
25:

26:

27%

28:
29:
30:
31:
32:
33:
34:

2 L
36:
37:
38:
39:
40 :
41

#include "art.h"

e

=/

review(fname, n.sub, f. comdir. tname. nm, newfname)
char *fname. *sup. =f, =comdir. =tname. =nm. =newfname:
TNt N

{

int getpidl):

char letter[BUFSIZE]:

char fcheck {BUFSIZE]:

char mailinglist[BUFSIZE];

char message[BUFSIZE];

char dirmm[BUFSIZE]:

char date{BUFSIZE]:

char s[BUFSIZE]:

char sys[BUFSIZE]:

char auth(10], =getlogint);

struct stat statinfo;

FILE =fopen(). =fp:

sprintf(letter, “1tr%d" getpid()):
sprintf(message."Ohe file %s in SUBJECT %s was

acceptecd 235 for review",

/= Place the information in file letter =2
fp = fopen(letter, “w");

fputsimessage.fpl:

fclose(fp):

/= Place info in mailing list =/
sprintf(mailinglist, "mig%d",.getpid()):
if(stat{fname,&statinfo)==FALSE)
{

printf(" %s is not a valid subject”, fname)

¥

strcpy(auth, (getlogin(statinfo.st_uid))):
fp = fopen(mailinglist, "w"):
fputs(auth,fp):

fclose(fp):

/* mail the info i

£,

sut):

Tue Jul 17 141:46 1984 review.c 25-2 /42

42: mail (letter mailinglist);
43: aeletelietter):
44 delete(mailinglist}:
45
46
47 f'= recarc for posIarity =
48: sprintf(sys, "/usr/we/‘dock/artracord
accepted for review
49: system(sys);
50: ’
51: i move the file to new location =/
el sprintf(message. "mv %s %s". fname.. tname):
83: system(message).
54
" 85: f= need a list of reviewers =7
56: sprintfis, "%scomments/%s/%s /reviewers" comdir, sun, <)
573 sprintflidirnm, "Yscomments/%s",comdir,sub):
58: sprintf(fcheck, "%s/memoers®. dirnm);
59: mklist(s,dirnm, fcheck):)
80:
61: = need to make airectories for reviewers =/
62: sprintf(message. “mkdirs %s/reviewers
%scomments/%s/%s" .newfname, comdir., sub, f):
63: system({message):
64 :
65:
66: /*first is where tc get 1ist., second is dir to
build them in =/
67:
68 : F i Place the infarmation in file letter e
69: sprintf(message. "Please add %s as a review subject",
sub);
70: fp = fopen(letter, “w"):
71: fputs(message.fp);
72: fclose(fp):
73: o mail cirections to all reviewers s
74:
75
76: /= mail the info =/
b mail (letter.s);
78:

79: }

Tue Jul 17 11:46 1984 review.c 25-3 /80

8¢C:

Tue Jul 17 11:46 1984 submit.c 26-1 /1

1z

20 F=

3: submit.c !

4-

5: receives as arguments 2 frlename |fnamel,
6: Types, and an integer n which is the index
= into the filename where one wishes to change
8: ?subject to comments.

9:
104 =/

11: sinclude "art.h"

12:

13: submit(fname.n.sub. f. comdir, nm, newfname)
14: char *fname. =sub, =f, =comdir, =nm. =newfname:
15: int n;:

16: |

17: char s[BUFSIZE]:

18- char tname{BUFSIZE]:

19: char NEWLINE:)

20 int answer;

21)
22: printf{ " Do you wish to éccept for publication,”)
23: printf(* accept for review, or reject"};

24 for (answer=0;: answer!=TRUE;)

25: {

26 : printf(* publish, review, or reject:"):
27: s{0] = '

28: if(gets(s) == NULL) exit(1);

29: switeh (s[0O])

30: {

31: case ‘r‘: if(stremp(s,"rev") == 0 ||
32: stremp(s,"revi®) == 0 ||
33: strcmp(s, “revie”) == 0 ||
34: stremp(s, "review") == Q)
a5: {

36: strcpy(tname, fname) ;
37: strncoy({&tname(n], "r", 1)
38: strcpy(s, "accepted for

review"):

Tue Jul

39:

40:
41:
42:
a3:
44 ;

45:

45

a7;
48

m a0 b
WK = O W

m w
o &

56:

§57:
58:

59:
6C:
61:
62:

63:

64

65:
66 :
67 :
68 :
65
70:

17

11:46

1984

submit.c 26-2 /3¢

review{fname. n, subc, f,
comdir, tname, nm, newfname);

answer=TRUE :

break:

i

Fi{strempl(s."re:") == 0 ||
strcmpis. "reje") == 0 ||
stremp(s, "rejec”) == O ||
strcmp(s."reject”) == Q)
{
reject{ fname n.sub, .
comdir, nm, newfname):
answer=TRUE:
creak ;
}
case ‘p’: if{strcmp(s."p") == ¢ |
: stremp(s. “pu*) == ¢ ||
stremp(s, "pub”) == 0 ||

stremp(s. "publ™) == 0 ||

stremp(s, “publi®) == 0 ||
strcmp(s. "publis”) == 0 ||

stremp(s, "publish")== Q)

{
strcpy(tname, fname) ;
strncpy(&tname[n], "p", 1)

strcpy(s, "accepted for
publishing");
publish(fname, n, sub,
f, comdir, tname. nm. newfname);
answer=TRUE ;
break:

case '7?°: fprintf(stderr,"
%=-10s%s0, "review” "accepts the article for review by a2 list of reviewers

Tue vul 17 11:46 1984 submit.c 26-3 /7H

g I - forintf(stderr,”
%=105%s0. "publish®,K "accept for publication, can be vie
72: fprintf(stderr. "
%=10s%sC. "reject” . "reject the arzicle. the author wili
73 break:
74:
F93
76 : gefault: fprintfistderr, "unknown
response, please try again.0Q):
TT1 break:
78: ¥
79: b
BO: }
81:
82:
83:
Tue Jul 17 11:46 1984 typcheck.c 27-1 /1
di
2: sinclude "art.n"
iz h
4: typcheck(artdir.subject,title, types)
5: char =artdir. =*subject, *title, *types:

10
11:
12:
13
14:
15:

16:
17
18:
18:
20:

21
22:
23:
24:
25:
26:
27:

£

1
char =gettogin(). nm[10]. s[BUFSIZE].tmpnm{BUFSIZE].
owner{10];
int n, getpwl():
sStruct stat statinfo:
strepylnm, getiogind)):
n=strien({artdir) - 9; /=s1ze of string ssubjects>/
strncpy(tmpnm, artdir, 0
switch(=types)
{

case ‘s’ : sprintfis, "4srsubjects/%s" . tmpnm.
subject}:
stat(s.&statinfo);
n=strilen{nm);:
getpwistatinfo.st_uid.&owner[0]):
returnistrncmplowner.nm.n)) ;
case ‘r’: sprintfis, "%scomments/%s/%s/%s",
tmpnm,subject, title, nm);
return{stati{s.aéstatinfol};
default: return{SUCCESS);

Tue Jul 17 11:48 1984 update.c 28-1 /1

T =

2: = update

3: = fwrites user_subs structure to file .user_sups

4y = in user’'s HOME girectory

a: =)

&: = arguments

7% sub sub[s] to upcate

8: ™ sub_ct number of subs

g9: = user_subs structure of user subs and
times

10: =/

14z

12: #

13: #include “"art.n"

14 . "

15: update {(subjcts.subjct_ct!
16: struct subjcts =subjcts[MAXBDS]:
17: int subjct_ct:

18: |

19 struct usersub usersub;

20: FILE =fopen(),

21: *outfile;

22: int ogutcount;

23: char =getenv(),

24: *homeptr,

25: home__subs([50]:

26: int i:

27

28: if ((nomeptr = getenv{"HOME")) == NULL)

29: {

30: fprintf(staderr. "cannot find HOME
variabled):

31 exit(1):

32: }

33

34

35: strepy (home_subs, homeptr)

36: strcat (home_subs,*/");

aT: strcat (home_subs,*.user_subs"};

a8

3g: if((outfile = fopen (home_subs,®w")) == NULL)

40: {

41: fprintf(stderr,“art: cannot open

.user_subsQ);

Tue Jul

42:
43;
a4
45
4G :
&7
48:

49
50:

%
52:
53
54
55:

—

17 11:46 1984

for(i =

1
a1

fclose

update.c 28-2 /432
exit(1);
0: i < subjet_ct: i++)
strcpyl{usersubd.name,subjcts{ii->name’:
usersub.mtime = subjcts{i1]->stbuf.st_miime;

if(fwrite (fchar *) &usersub,
sizeof{struct usersubl.tl,outfila) '= 1}

{ <
fprintf({stderr. “art: error writing
.user_subs0):
exit (11};
}
{outfile);

Tue Jul

w o

10:
f1:
12
13:
14:
15
16:
17
18:
19:
20:
21
22
23:
24 :
25:¢
26:
27:
28:
29:

30:
31:
32:
33:

34:
35:
36-
37:

38:

~N & WM bW RN

-

A

out

title

curre

fincliude

a¢ 1984 uutsubs.c 28-1 71

artcls
processes artcl more current than cutoff

arguments
emit artclie processing function
Typically print artcle or report
sub sub processed
cutoff currency time, all artclt more
nt than

cutoff are "emitted"

assumes we are in artclsubs directory

“art.n*®

outartcls (emit,sub,art_dir,flag, types)
int (=*e ’
struct subjcts *sub;
char *art_dir, *types:
int flag;

{

mit)():

struct usersub *artcls:
int artci_ct,i:

long cutoff:

char fullname[BUFSIZE];

/= read artcle titles and modification times

=
sprintf{fullname, "%s/%s" ,art_dir.sub->name):
if(flag == EVERYONE)

{
if (readdirs (fullname. &artc!_ct.&artclis)
== 1) return
}
else
{

if (readfiles (fullname. &artcl_ct.dartcls)
==.1) return

—

Tue Jul {7 11:46 1884 uutsubs.c 28-2 /38

39:
4Q: /= process current artcl
i
41: for (1=0 [i<artcl_ct: i++)
42: {
43: if((flag == ALL || flag == EVERYONE ||
sub->new == 1 ||
44: i artcls->mtime > sub->stouf.st_mtime) &&
45: (typcheck(art_dir,sub->name,artclis->name.
types) ==SUCCESS))
46: "
47: (*emit) (artcls->name,sub->name.art_dir,
types);
48: b
49: artcls++;
50: A
51: (=emit! {(char =) NULL):
52: fflush (stdout);
53

54: }

Tue Jul 17 11

o -3 0 M B WM

w

22:
23:
24
o
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
35
37:
38:
38:
40:
41:

;46 1984 art.n 30-1t /1

zinclude <stdioc.h>
Finclude <sys/types.h>
sinclude <sys/stat.h>
Finclude <setjmp.h>
=include <signal . h>
Fsinclude <sys/dir.h>
#include <pwd.h>
Fminclude <ctype.h>

#def ine
#def ine
~def ine
supjc
raefine
sdef ine
#def ne
sdef ine
sragefine
rdef ine
#define
#define
ydeffne
NULL

84D {substat == subjct_ct)

NOTHERE (substat == =1)

GOaoD (supstat >= ¢ && substat <

t_ct)

EVERYONE 2

ALL 1

NEW o]

EXIST o]

SUCCESS [¢]

BOARD *argv

A_BOARD - - =(argv-1)

TITLE =(argv-1))
OPTION) (=argv)[0] == ‘-’ 8&& ({=argv)[2] ==

/= The number of leading spaces on each line of output =/

rdef ine
#gefine
#def ine
mdef ine
#gef ine

/:

“f

INDENT 3
BUFSIZE 256
MAXBDS 20

TRUE 1

FALSE -1

The following items should not be printed.

extern char =ignorel]:

struct usersub

{

el

struct
{

long mtime;
char name[DIRSIZ]:

subjcts

Tue Jul 17 11:46 1884 art.h 30-2 /42

42:
43:
a4
45 ;
48
47
48:
49:
5C:
51:
82:
53:
54 :
55:

extern

extern

extern
extern

struct stat stbuf:
int excl;
int new;
char name[DIRSIZ]:

char stdouf{BUFSIZ]:

jmp_buf save_addr;

int ncount;
long time():

Tue Jul 17 t1:46 18984 artprofiler.sh 31-1 /1

o 0 g B WM -

if test ! -f $HOME,/.artprofile

then

cp /usrb/we/dock/src/artprofile.d SHOME/ . artprofiie
cat /usrb/we/cock/src/profile.d >>SHOME/ .profiie

i -

/usrb/we/dock/bin/chgsubs
Jusrb/we/dock/bin/chgtim

Tue Jul 17 11:46 1984 artrecord.sh 32-1 /1

sartrecord "string to be prrinted” file =/

DATE='date | awk ‘{print $2.%$3.%&}
echo "SDATE $1" >>82

~N OO B W -

Tue Jvul 17 11:46 1983 artsubject.sr 33-1 4

fFartsub.sh shell file
#called artsub

1

2

3

4: #DIR="pwd"’

Z: DEFDIR=/usr/we/dock
6: cd SDEFDIR/comments
7: SUBJECT=""

8

9

while
4 test -z "SSUBJECT"

10: do

t1: echo "SUBJECT: 12: read SUBJECT

134

14 if test -z °"SSUBJECT"

15 then

16: echo “Enter the name of a subject."

17 echc "Enter

18: echo "of existing subjects.”

19 SUBJECT=""

20: continue

-21: i

22

23: if test “SSUBJECT" = ?

24: ~hen

25: echo "Enter the name of a subject.”

26: echo "The following are 27: art +names +ever

28: SUBJECT=""

29: continue

30: fi

31 if test -d "SSUBJECT™

32: then

33: echo "$SUBJECT already exists as the name of a
subject."

34: echo "Enter

35: echo "of existing subjects."”

36: SUBJECT=""

3T: continue

38: fi %

38: cone

40:

41: mkdir SSUBJECT 42: ../psubjects/$SUBJECT

Tue Jul 17 11:

43:
45
46:
47 :
48 :
49:
5Q:
51:
52:
54 -
55:
56:
57
58:
59:
60:
61:
62:
63:
64 :
65:
66 :
e7:
69:
70:
71
72:
A=
74:
T
76:
TT
78:
79:

80:
Bi:
82:
83:
84:

../ssubj

FOWNER
OWNER=""
while

[=1e}

45 1984 artsubject.sh 33-2 /43

ects/SSUBJECT 44: . ./rsubjects/$SUBJECT

test -z "SOWNER®

eche “"OWNER: 53: read OWNER
if test -z “SOWNER"™
then
echo "Enter the lecgin id of the owner.*
echo “"Enter
echo “of valid login ids.*
OWNER=""
continue
fi

(if test “SOWNER" = ?

done

then)
echo "Enter the login id of the owner."
echec "The following are valid login ids 68 :
OWNER N
continue

if wvalid $OWNER
then
echo
else
echo “"SOWNER is invalid name."
echo "Enter
idsO
OWNER=""
continue
fi

chown SOWNER $DEFDIR/psubjects/$SUBJECT

val

Tue Jul 17 11:46 1984 artsubject.sh 33-3 /B85S

85:
85:
87:

88:

89:
90:
91

92:
23:
94+

chown $OWNER $DEFDIR/rsubjects/$SUBUJECT

echo " A 1ist of valid members of the supject must be
createc. "

eche * All valid reviewers of articles ir this subject must
be*®

eche " mempers of this group.”

/usr/we/dock/pin/mkmem
$DEFDIR/comments/$SUBJECT /members O

#rcad DIR

Tue Jui 17 11:46 1984 artsubmit.sh 34-1 /1

1=
2:
3:
4:
i
6:
Ti
8:
Q:

10
11:
12:
13:
14 :
15:
16:
17
18:
19:
20:
21:
22:
23:
25:
26:
27:
28:

28:
30:
< b 5
32
33:
34:
35
3%:
38:
39:
4c:
r- % el
42

ARTDIR=/usr/we/dock

7 get user long name
UNAME="uname -n°
MYNAME=" 1nformation - +me"
if test -z "SMYNAME"
then MYNAME=$ {UNAME} 'S {LOGNAME}
fi

remember current directory
DIR="pwd"

cd $ARTDIR/comments

A get sub name -and artcle title

SUBJECT=%1
while
: test -z "SSUBJECT" -a -Z "SANSWER"
do

echo "SUBJECT: 24: read SUBJECT

if test -z "$SUBJECT" -
then echo "Enter the name of a sub.*
echo "Enter
axisting subs."
continue

if test $SUBJECT = ?

then echo “Enter the name of a sub.*
echo "The following are 36:
SUBJECT=""
continue

£i

if test ! -d $SUBJECT

$ARTDIR/pin/art +e

Tue yul 17 11:46 1984 artsubmit.sh 34-2 /43

43: then echo sub

44: echo "Enter
existing subs."

45: SUBJECT=""

46 : €4 -

a7:

48: done

49

8C

S1: ca $SUBJECT
52: TITLE=%2

53:

S54: while

535:)

86 test -z "STITLE"

57:

58: do

89 echo “"TITLE: e B read TITLE

é1:

52: if test -z “STITLE"

63: then echo "Enter the title for the artcle.”

64: echo "Enter
artcles.”

65: continue

[-1- fi

T

&8 # check for 7 (help) .

68: if test "STITLE" = ?

Fie] then echo "Enter a title for the artcie.”

T1: echo "The title may contain spaces. A :
filename will be constructed from the title."

72: echo "The following titles (filenames)
already exist on 73: $ARTDIR/bin/art +o "$SUBJEC

Ta: TITLE=""*

75: continue

76: fi

]

78:

79: # create file name

80: # check for existing name

81:

Tue Jul 17 11:46 1984 artsubmit.sh 34-3 /B2

82: FILE=*artfile STITLE"®

83: OWNER=""

84

85: if test -z "SFILE"

B6: then exit

87: fi

BB:

89: if test ! "$TITLE® = “"S$FILE"
S0: then echo Note:
of artcle.
91: £i
92:
93: if test -f "SFILE"
94 then OWNER="1s -1 $FILE | ses "s/ =/:./g" | cut
-f3 "=-g:"
85: if test ! -w $FILE -o ! “SOWNER" =
"SLOGNAME "
86: then echc
you do not have permission to edit it.
87: TITLE=""
SB: £1
99 : *1
100
101 :
102 -
103: done
104 :)
105: trap "rm >/dev/null 2>/dev/null /tmp/artfile$$:exit” 1 2 15
106 :
iC7:
108: <cd SDIR
108 :
110: mkdir $ARTDIR/comments/$SUBJECT/S$FILE
t11: susr/we/dock/record "SMYNAME submitted article for
review” ""
112:
113: ORIGFILE=""
114: while
115: - test -z "SORIGFILE"
116: do
117
118: echo “File to be copied:; 119 read ORIGFILE

Tue Jul 17 11:46 1984 artsubmit.sh 34-4 /120

128

121: if test -z "SORIGFILE"

122: then aeche “Enter the name of File tc be copiea."’

123 echo “Enter

124: continue

125; Fi

126

127

128: if test SORIGFILE = ?

129: then eche "Enter the name of the file to be
copied. "

130: echo "it may be a full pathname or a

relative path name.")

131: ORIGFILE=""

132: continue

133: i

134 :

135

136: if test ! -f SORIGFILE

137: then echo The file

138: echo "Enter

139: ORIGFILE=""

140: continue

141: fi

142:

143: done

144 :

145:

14€: cp SORIGFILE $ARTDIR/ssubjects/$SUBJECT/SFILE

Tue Jul 17

W~ oW e WD

11:4

Farttrack
#arttrack
Farttrack

& 1984 arttrack.sh
or
SUBJECT ar
SUBJECT ARETICLE

cd fusrb/we/dock/comments

35-1 ft

MYNAME='who am i| awk " {print $1}° °
SUBJECT=%1
ARTICLE=82
ANG=""
VALID="" °
while
test -z "SVALID"®
ao
echo "Do vyou wish tc track articles for which you"
echo “are the author or reviewer, or a subject for"
echo "which you are the owner 2"
eche ; echo "type author, reviewer, or owner : "
read ANS
case "SANS" in
author| autho| auth| aut| aula)
VALID="0OK"
1¥ test -z "SARTICLE"
then
if test -z "§SUBJECT"
then
for i in =/=
do
if test -w $i -a -d §i
then
echo; echo " SUBJECT/TITLE™"
echo * $i"; echo
cat $i/history
s echo;echo
£i
done
‘else
for i in $SUBJECT/*=
do

if test -w $i

-a -d $i

Tue Jul 17 11:46 1984 arttrack.sh 35-2 /44
44 : then
a5; echo: echo ° ' SUBJECT/TITLE"
46 : echo " $i"; echo
47 cat $i/history
48: acho: echo
49 i
S0: done
S1: £i
52: else
53: if test -w $SSUBJECT/SARTICLE
54) then
E5: echo; echo " SUBJECT/TITLE"
56: acho " $SUBJUECT/SARTICLE": echo
57: cat SSUBJECT/SARTICLE/history
58: echo:echo
58 fi
60: fi
61:
62: -
63: owner {owne|ownlow|e)
64: VALID="OK" ' '
65: if test -z "$SUBJECT"
69 : then
B7: for i in =
68: do
69 : if test -w §i
70: then
T3 cd $i
T2: for j in =
73: do
74: if test -d $j
TS then
786: echo; echo "
SUBJECT/TITLE®
77: echo " $i/%j": echo
78: cat $j/histaory
78: i
B8O: done
,§1: cd
82: Fi
83: done
84 else .
85: if test -w SSUBJECT

Tue Jul

86:
87:
88:
85:
S0:
g1t
82:
83:
94 :
95 :
9€:
97:
98:
98
100
101:
102:
103:
104 :
105:
106:
107!
108:
109!
110:
19
112
113:

114:
115:
116:
117:
118:
119:
120:
121
122:
123:
124:
125:
126:

17 11:46 1882 arttrack.sh 3%5-3 /86

then
cd $SUBJECT
for j in =
do
if test -d §j
then
echo; echo " SUBJECT/TITLE"
echec " SSUBJECT/Sj": echo
cat $j/history
fi
done
i

Fi

reviewer |reviewe|review|revie|revi|rev]re|r)

VALID="0OK"
if test -z "SARTICLE"
then
if test -z "SSUBJECT"
then .
for i in =/=*
<o
ed §$i
for j in SMYNAME
ao
echo; echo " SUBJECT/TITLE"
echa " $i";eche
egrep "submitted|accepted|SMYNA
ME" history
echo ; echo
ed ../..
done
done
else
for i in $SUBJECT/=
do
cd $i
for j 1n SMYNAME
do
echo; echo * SUBJECT/TITLE"
echo * $i":echo

egrep “"supmitted|accepted|$MYNA
ME"™ history

Tue Juil 17 11:46 1984 arttrack.sn 3%5-4 /127

127
128
129:
130:
131:
132
133:
134
135:
136:
127z
138:

138:
140
141
142
143:
144 :
145;
146 :
147
148:
149:
150

echo : echeoc

o (R A
done
cone
£i
else
if test ! -f SSUBJECT/SARTICLE/SMYNAME
then
echo: echo " SUBJECT/TITLE™"
echo " $SUBJECT/SARTICLE" ;echo
cd SSUBJECT/SARTICLE
egrep "submitted|accepted!$MYNAME"
history
echo ; echo
ed ../._
f1

esac

if test -z "SVALID"
then
echo "$ANS is an invalid response"
1
done

Tue Jul 17 11:46 1

28:
29
30:
4
32
33:

34
35:
36:
37:
38:
3g:

W o <o B WK

cp $HOME/ _ar
cd /usrb/we/
for i in =
do
1§ grep
then
echo
eche
reac
case

ea - SHOME/.
g/ARTSUB/s/ :

w
3

esac

else -
echao
echo
echo
read
case

esac
fi
done
cp $HOME/ . tm

984 chgsubs.sh 37-1 /1

torofile SHOME/. tmpartprofile
dock/comments

$1 SHOME/ artprofile >/devirnull

"1 is listed as a subject., do yod wish to"
“keep it in the list 7 type yes or no. [ves]®
ans
“$ans* in
no|n} .
tmpartprofile << !
$i//

ves|yelyi=)

“$i is a2 valid subject which is not"

"Tisted in your subjects. Do you wish"
"to add the subject. Tvpe vyes or no. [yas]*
ans

"$ans” in

ves|ve|y)

sed -e "s/ARTSUBS=/8:%i/" SHOME/.tmpartprofile
> §HOME/foop)

cp $HOME/Foop SHOME/.tmpartprofile

noln)

*)

sed -e. "s/ARTSUBS=/&:%i/" SHOME/.tmpartprofile
> $HOME/foop s

cp SHOME/foop SHOME/ . tmpartprofile

partprafile $HOME/ .artprofile

Tue Jul 17

A_Jdi_#4+,
O ombh WN 2O W

NRNNRBNMNMNNRN
W ~d oMb WM

w K
O w

(BN T~) BV T S 46 R N

N
Q

t1:46 1984 chgtim.sn 38-1 /1

WHEN='echo $ART_START®

if
then

fi
echec
case
1)
echo

2)
echo

Q)

echo
esac
echo
echo
echo
echo
echo
echo
echo
read

test -z "SWHEN"

WHEN="1"

"The start up time for ARTHER s set to execute "
"§WHEN" in

"the first time you log on each day. Do you wish"

es"gach time you log in. Do you wish"

"only on demand. Do you wish"®

" to change the time ? the choices are:"
" (0) only on demand"”)

= (1) first log on of the day"

" (2) each time you log on®

“type O, 1, 2, for the desired change"
“type a carriage return for no change."
ans

if test ! -z "Sans*®

then

sed -e "s/ART_START=$WHEN/ART_START=8ans/"

$HOME/ .artprofile >3$HOME/foop

cp $HOME/foop SHOME/ .artprofile

i

Tue Jul 17 11:46 1984 chgtime.sn 39-1 F1

25:
26:
27:
28:
29:
30:
3t
32:

W o - H bk WK

cp $HOME/ .artprofile $HOME/. tmpartprofile
if grep $1 $HOME/.artprofile >/dev/null
then
echo "$: is listed as a subject. do you wish te*
echo "keep it in the list 7 type ves or no. [ves]"
read ans
case "%anms" in
na|ni
eag - SHOME/.tmpartprofile << !
g/ARTSUB/s/:8i// B

W
!
yes|ye|y|=)
esac
else
echo “"$1 is a valid subject which is not*
echo "listed in your subjects. Do you wish”
echo "to add the subject. Type yes or no. [yes]"’
read ans : -
case "s$ans" in
yes|vely)
sed -e "S/ARTSUBS=/&:%i/" SHOME/.tmpartprofile
> SHOME/foop
cp SHOME/foop $HOME/.tmpartprofile
no|n)
esac
i
done

cp SHOME/ . tmpartprofile $HOME/.artprofile

Tue Jul 17

t8:

11:46 1884
ANS=""
echo here
sed -n 1p’ try
while
test -z "SANS"
do
echo ™ keep or remove,
read ANS
i¥ test "$ANS" = keep
then
sed -n d
else
sed -n ‘p
i
done

manip.sh

keep? °

40~-1

/1

Tue Jul! 17 11:46 1984

@

WK o

for 1 in
de
echo $2/%»

‘cat $t°

mkdir $2/%1

done

mkdirs.sh

41-1

/

Tue Jul 17 11:46 1984 ml.sh 42-1 /1

1
2: /bin/mail ‘ecat $1* < %2
3:

Tue Jul 17 11:48 1984 new_system.sh 43-1

N - O W

-y

[+ IR NS DI | S S

SRCDIR="pwd"

ed ..

NEWARTDIR="'pwd’

cd $SRCDIR
OLDARTDIR="/usrb/we/dock"
replace SOLDARTDIR SNEWARTDIR =
cd

mkdir comments

mkdir ssubjects

mkdir psubjiects

medir rsubjects

mkdir bin

Tue Jul 17 11

W N0 U E WO -

if test
then

eise

:46 1984 rmsub .sh 44-1

-d /usr/we/dock/comments/$1

rm ?subjects/$1/* >/aev/nuil 2>&1
rmdir ?subjects/$1 >/dev/null 2>&:

rm comments/$1/=/>/* >/dev/null 2>&1
rm comments/$1/=/* >/dev/nuil 2>&1
rm comments/$1/* >/ocev/nuil 2>&1

rmdir comments/$1/=/* >/dev/null 2>&1
rmadir comments/$1/* >/dev/null 2>&1
rmdir comments/$i >/dev/muil 2>&14

echo " $1 is am invalid subject."
art +g
exit

/1

Tue Jul 17 11:46 1982 valid.sh 45-1 /1

3
2: grep "~%1" %32 | exit O
3: ex1t 1

Tue Jul 17 11:46 1984 Makefrile 46-1 /1

ARTBIN = /Jusrb/we/dock

1z

2: CC = ¢cc

3:

4:

5:

6: ARTOBJS = art.o process.o given_sub.o 7: get_subs.o outar:
onintr.o QuUtput.o S: initialize.o gelate.o ed:
mklist.o publiish.o 10 reject.c review. o typchec
listcreate.o 11: readfiles.c

12:

13: install: art artfile mklist mkmem comment

14 ; sh =-x xdock

15

16: art : S(ARTOBJS)

17: $(CC) -o art $(ARTOEUS!

18: chmod 0755 art

19: cp art ../bin/art

20:

21: artsubject : artfile.o

22: -Cp-artsubject.sh artsubject

23: chmod 0755 artsubject

24:)

25:

26: artfile.o

27 ${CC) -0 artfile.c -o artfile

28: chmod Q755 artfile

29: cp artfile ../binfartfile :

30:

31: mklist : mklist.c mklistcom.o edit.o listcreate.o

32: ${CC} -0 mkiist.o mklistcom.o 33: listcreate.o edit.o -0 mklist
34 chmad Q755 mkliist

35: cp mklist ../bin/mklist

36:

37: mkmem : art.h mkmem.c listcreate.o edit.oQ

38: ${CC} mkmem.o listcreate.o edit.o 39: -0 mkmem

40: chmod 0755 mkmem

Tue Ju!

4a1;
42:
43:
44 :
45:
46
47:
48:
49:
50:
S1:
S2:
54:
54:
55:

11

comment

clean

1pr

:46 1984 Makefile 4d8-2

cp mkmem ../bin/mkmem

comment,c
${CC} -0 comment.o -0 artcomment
chmod Q753 artcomment
cp artcomment ../bin/artcomment

-rm ~f = . o
=rm ~f artsubject

-xpr -! Makefiie art.h =.¢ *.sn | lpr

/a1

Appendix &

Application Code Cross References

50

Tue Ju!

_exit

chdir

cominfo

count

ctime

Tue Jul

delete

17 11:46 1984
coeminfo
gelete
edit
get_subs
given_sub
mitializ
listcreat
mail

main

main

main

main

main
mklist
newcount
onintr
outartcls
output
print_ite
process
publish
readdirs
readfiles
reject
repart
review
submit
typcheck
update

initializ

cominfo

#DEFN
print_ite

pProcess

print_ite

13-
13-
12-
13-
16~
28-
17-
18-

19~
20~

21-
22-
23-
24-
25-
26-
27-
28-

9«.
9-

3-.

o
18-

19~

18-

17 11:46 1884

#DEFN
publish

reject

20~
20~
23-
23~

X-REF =--

1C

w

. 4 X -~
M s O+ 0O U WOOH DO 2RO B

e

N -
(1]

25

10
13

12

48

11

32

10

51
57
S8

X-REF

FUNCTIONS 1

cominfo.c
delete.c
edit.c
get_subs.c
given_sub.c
initiali1ze.c
listcreate.c
mail.c

art.c
artfile.c
commant.c -
mklistcom.c
mikmem._c
mklist.c
newcount . c
onintr.c
uutsubs.c
output.c
print_item.c

. procass.c

publish.c
readdirs.c
readfiles ¢
reject.c
report.c
review.c
submit.c
typcheck . c
update.c

extern _exit{);
signal (SIGOUIT, _exit);

chair{s):

<<DEFN>> cominfo(dirnm,nm)
caminfo(newfname,nm);

int
, newcount();

char *ctimel);

== FUNCTIONS 2

<<DEFN>> delete(fname)
delete(letter);
delete(mailinglist):
delete(mailinglist);
deletelletter);

print_item(}. report(), count(}

/delete

edit

ex1t

fclose

review

#0EFN
main

mklist

get_subs

main

print_ite
process
readdirs
readfiies
submit
update

edit

listcreat
main
print_ite
publish

‘reagdirs

readfiles
reject

raview

25-
25~

1d-
1a-
12~

P
7=
-
1._

13-"
13-
$4-
18-
19~
21-

26-
28-
28-
8-

21-

43
44

18
25
58

37
43
103
118
32
25
62
22
67
216
66
6%
28
31
a2
51

41
42
54
35

-~
-

35

46.

ae
8s
38

28
39

deletel{letter);
delete(mailinglist):

<<DEFN>> edit({fname)
editlargvi1]):
edit(argvit]):
edit(fname);

exitil):

exit(1});

if (runcmd == NO) exiti(t};
exit{}:

if(++k == 14) exit(0):

if (gets(s] == NULL) exit(1);
exiti{Q);

case 'g’: exit{t):
exit(1):

exit (1),

exi1t (1),

exit (1);

if(getsis) == NULL) exit(1);
exit(1):

exit(11;

exit (1);

fcloseifp);
fclosettmp);
fclosei fp):
fclose{fp):
fclose (fd);
fclose(fp):
fclose{fp):
fclose (fd}:
fclose (fd}:
fclose(fp):
fclose(fpl:
fclose(fp):
fclose(fp):

Tue Jul 17 11:4€ 1984

update
fflush outartcls
fgets edit
fileno print_ite
fopen edit
get_subs
istcreat
main

print_ite

publish -’

readdirs
readfiles

reject

review

update

fprintf get_subs

enintr

Tue Jul 17 11:46 18984

print_ite

25~
28-

20- -

20-
20~
21~

22-

18-

18-

18-

72
54

S2

26

37

15
20

22
27
12
17
20
22
28

26

33
44
38

a7
36
48
18
26
37
70
20
k-]
36

42

57

70

71

X-REF -- FUNCTIONS 3 /fciose

fclose(fp):
fclose (outfile):

ffiush {stdout);
whilel(fgetsls, sizeof s,.fpl!=NULL)
fstat (filenc (fd), &souf)

FILE =fopen(), =tmp, =fp:
if({tmp=fopen(tmpfile, "*w"))== NULL)

if({fp=fopen(fname,“r*))== NULL)

FILE =fopen(), =infile:

FILE =fopeni), =fp:

1f ({ fp=fopen(fname, "a"})== NULL]

FILE =fopen{(), =fp:

fp=fopen("comment”,“a"}:

if ({fd = fopen (fname, "r")) !'=
NULL) :

FILE *fopen(), *fp:

fp = fopen(letter,)

fp = fopen(mailinglist, *“w"):

if ((fd = fopen (sub,"r")) == NULL)
{

if ({(fd = fopen (sub,*r"}) == NULL)

{
FILE =faopen()., =fp:
fp = fopen(letter. "w");
fp = fopen(mailinglist, "a"):
FILE =fopen(), =*fp;
fp = fopen(letter, "w"):
fp = fopen(mailinglist, “w");
fp = fopen{(letter., "w");
FILE *fopen(),
if((outfile = fopen {home_subs,K "w"))
== NULL)

fprintf{stderr, "art:
name for ARTDIRO,art_dir):

fprintf{stderr,"art: cannot read

fprintf(staerr, "QinterruptC);

X-REF -- FUNCTIONS 4 /fprintf

fprintf(stderr "review. next, quit
7 {next] "};

case '7?': forintf(stcerr,
%=108%s0, "review”, "print artcle

fprintf{stderr " ¥.=-10s%s0.

"next’."gec to next artcie®};
18- 72 fprintfistoerr." %-10s%sC,
"guit","terminate program"}:

t8- 78 default: fprintf(stderr,
"unknown command. please try
process 18- 31 if{ncount == 0) fprintf(stdout.

"There are no naw artc! on

19- 43 fprintf{stogerr. "
existing sub.C.sub):

ig- 56 if{ncount == Q) fprintfi{stdout.
“There are no artcl on

19- 68 fprintf(stderr. " .
existing sub.0,sub);

18- 81 if{ngount == Q) fprintf(stdout.
“There are no artcl on

18- 92 fprintflstderr. "
existing sub.C.sub);

1¢- 116 fprintf(stderr,"
existing sub.0,.sub);

18- 119 if(ncount > G) fprintfi{stdout,
"%a0.ncount) ;

19- 132 if(ncount == Q) fprintf(stdout.
"There are no artcl on

19- 146 fprintf(stoerr,*
existing sub.Q.sub);

19~ 155 fprintf(stdout,"
sub);

18- 158 fprintf(stdout,"existing subjects
in your environment:®);:

19- 164 fprintf(stdout,"%-15.14s", subjcts{i]
->name) ;. -

18- 170 fprintf{stdout,'existing subjects
Ha .

18- 175 fprintf(staout,"%-15.14s" subjcts[i]
~>name) ;

18- 180 fprintf(stdout,"
Q.sub):

18- 215 fprintf(stderr, "art:
option0,option);

Tue uul 17 t1:4€ 1984 X=-REF =-- FUNCTIONS 5 /fprintf

reagdirs 21~ 65 fprintf (stderr, “No storageQ):
readfiles 22- 64 fprintf (stderr, “Nc storageQ):

subomit 26- 70 case "7’ forintfistderr. "
%-10s%s0O. "review", "accepts the
26- 71 fprintflistcerr." %= 10s%s0.

"publish", “accept for publigation,
26- 72 fprintf{staerr. " %-10s%s0.
"rejeact”."reject the article, the author

26- 76 default: fprintf(stderr,
"unknown response, please try again.0J:
update 28- 30 fprintfl(stderr,"cannot find HOME

variableQ);

2B- 41 fprintfl(stderr, "art: cannot open
.user_subs)):

28~ SO fprintflistderr."art: error writing
.user_subsd);

fputs edit 6- 37 case 'k’': fputs(s,tmp):
€- 38 fputs("0O,.tmp).
listcreat 10- 46 fputs(s.fp):
10- 47 fputs("Q,fp);

main 4- 31 fputs(s.fp);:
4- 32 fpurs('C.*p);:
publish 20- 324 fputs{(message.fp);
20- 45 fputs{auth.fp):
reject 23- 37 fputs{message,fp);
23- 48 fputslauth.fp);
review 25- 27 fputsimessage.fp);

25- 38 fputs(auth.fp);
25- 71 fputs(message,fp):

fread readdirs 21~ 44 while (fread ((char *) &nf, sizeof
nf, 1. fd) == 1) {

readfiles 22- 43 while (fread ((char *) &nf, sizeof
nf, 1, fd} == 1) {

fstat print_ite 18- 37 fstat (fileno (fd), &sbuf):

fwrite update 28- 48 if(fwrite ((char =) &usersub.
sizeof(struct usersub),1,outfile) = 1)

get_subs #DEFN 7= 17 <<DEFN>> get_subs (art_dir,art_subs,
art_excl,subjcts,subjct_ct)

Tue Jul 17 11:46 1984 X-REF -- FUNCTIONS 6 /get_subs
main t- 109 get_subs (art_dir,art_subs.,art_excl,.
subjcts.&subjct_ct);
getenv initializ 8- 11 char =env,*getenv():

g- 26 env = getenv("ARTSUES"):

geteurd

getiogin

getpid

upgate

main

cominfo

publish

reject

review

Typcheck

edit

putblisn .

reject

review

28-
28-

23~
23~

© 28~

25~

27~

20-
20-
20~

23-
23-
23-

25-
25-
25-

23
28

~3

10
24
43

28
47

17
36

~1

10

16
19

19
28
38

21
32
46

21
3i

char =getenv(}.
if { (nomeptr = getenv("HOME")) ==
NULL 1}

whoami=geteuid(}:

char =getlogin(). s[BUFSIZE],
sys[BUFSIZE]:

strepy(nm. getlogind H)

char auth{10]. =getioginf):

strepyl(auth, (getlogin{statinfo.st_u
1d) 1) '

char auth[10], =getlogint}:

strecpylauth, [getlogin{statinfo.st_u
id)1}):

char autn[10]. =getlogin():

strepylauth, (getloginistatinfo.st_u
id})):

char =getlogin(), nm{10], s[BUFSIZE]
. tmpnm[BUFSIZE]. owner{[10]:

strepy(nm,getliogin());

int getpid():
sprintfltmpfile, "tmphkd®. getpid());

int getpidl):

sprintf{letter.“1trid* , getpid()};

sprintfimailinglist, "migka" . getpidl)
)

int getpid{):

sprintf{letter,“}tr%d“.ggtpid(J):

sprintf(mailinglist,"mi%d" . getpid())

int getpid():

sprintf{letter, *1tr%d" getpid()):

sprintfimailinglist, "migkd" . getpid()
)

Tue Jul 17 11:48 1984

getpw typcheck
gets caminfo
edit

listcreat

main

mklist
print_ite
submit

given_sub #DEFN
main

crogcess

Tue Jul 17 11:46 1984

initializ #DEFN

main

27-
27-

4=
13-
13-
13~
13-
14-
12-
12-
12~
18-
26-

18-

18-

19-

9=

24
29
35
26
36

[s]
-

29
33
25
83
58
-1
15
24
28
S8
58
28

146

27

52

77

101

126

153

184

185

7

X=-REF == FUNCTIONS

x=-REF =-- FUNCTIONS 7 Jgetpw

int n. getpwl):
getpw(statinfo.st_uid, &owner[0]}:

getsis):

getsians);

getsi{ans);

getsis);

getsis);

gets(s):

for (gets(s); s{O] = . && s{1]
HE R |

gets(s):

if {gets(s) == NULL) exiti{1i);

gets(s):

gets(s):

getsis):

getsis):

gets(s}:

gets{s}:

gets(s);

gets(s}):

if(gets(s) == NULL) exit(1);

<<DEFN>> given_sub (sub,subjcts,
subjct_ct)

substat = given_sub(sdopt.subjcts,
subjct_ctj:

substat = given_sub(sub,subjcts,
subjct_ct):

substat = given_sub(sub,.subjcts,
subjct_ct):

substat = given_sub(sub.subjcts.
subjct_ct):

substat = given_sub(sub.subjcts,
subjct_ct);

substat = given_sub(sub.subjcts,
subjct_ct);

substat = given_sub(sub,subjcts.
subjct_ct):

substat = given_sub(sub,subjcts,
subjct_ct};

newsstat = given_sub{item.subjcts,
subjct_ct):

<<DEFN>> initializelart_gir,
art_subs,art_opts.art_excl,

t- 108 initialize (art_dir,art_subs,

art_opts,art_excl.ptypes.option):

8 /initializ

isalnum

isupper

listcreat

longjmp

mail

main

malloc

mklist

newcount

main
process

FDEFN
main

mklist
onintr
#DEFN
publiisnh

reject
review

#DEFN

get_subs
readdirs
readfiies
#DEFN
main
review

#DEFN
process

189~

10-
14-

18-

tt=
20~
23-
28-
25-

i-
2-
4-
13-
14-

21-
22-

12-

25-

15~
19-

26
S8

36
35

87

se

i

if(isatnum(argvii1{;]) ||
if! isupperioption) }

<<DEFN>> listcreata(fname, fcheck !
iistereatelargv{1]. “/setc/passwa”):

listcreate{ fname.fcheck):
longjmp(save_aaar. 1);

<<DEFN>> mail{letter.maiiingtist)
mail (letter mailinglist):

mail (letter . mailinglist});

mail (letter.mailinglaist};

mail (ietter.s):

<<DEFN>> main {(argc.,argv)
<<DEFN>> main(argc.argv!

<<DEFN>> maini)

<<DEFMN>> main(}

<<DEFN>> main(argc.argv)

char *malloc():
subjcts[=subjct_ct] = maliocl
sizeof (struct subjcts)):
char =*malloct). =realloc(}:
char *malloct), =realloc(}:

<<DEFN>> mklist{fname,dirname,
feheck)) i
mklist(fname,dirname. "/etc/passwd")

mklist(s,dirnm, fcheck):

S <<DEFN>> newcount (s,.sub)

int print_item{)., report(}, count()
. newcount(};

Tue Jul 17 11:46 1984 X=-REF == FUNCTIONS ¢ /newcount

19- 104 outartcls(newcount.subjcts[substat].
art_air . NEW, types);

19- 111 outartcls({newcount,.subicts[i].
art_dir.NEw, types):

onintr SDEFN 18- . 5 <<DEFN>> onintri)
print_ite 18- 18 int onintr{):
18- 45 signal(SIGINT, onintr};

open get_subs 7- 4C if((fd = openlart_dir,0)) == -1}
outartcls #DEFN 28- 18 <<DEFN>> outartcls (emit,sub,
art_dir.flag.types)
main 1= 115 outartcisiprint_item.subjcts[i],
art_dir NEW.ptypes); -
process 19- 30 outartclisireport,subjcts{substart],

art_dir, NEW.types):

18- 38 outartclis{report.subjcts[il.art_dir,
NEW, types):

18- - .55 outartclslreport,subjcts[substat],
art_dir, ALL,types); '

19- &3 outartcis(report,subjcts{i],art_dir,
ALL,types};:

19- B0 outartcis(report.subjcts[substat].
art_dir, EVERYONE, types):

19- 87 outartcis(report.subjcts{i].art_air,
EVERYONE.types):

19- 104 outartclisi(newcount.subjcts[substatl],
art_dir MNEW,. types):

18- 111 outartclis{mnewcount,subjcts[i],

- art_dir . NEW, types);

18- 128 outartcls(print_item, subjcts[substa
t].art_dir,ALL, types);

19- 139 outartcis{print_item,subjcts[i],
art_dir,ALL,.types);

19- 121 outartcls(print_item.subjcts[substa
t].art_dir NEW, types);

output #DEFN 17- 1 <<DEFN>> output{filename,outs)
print_tite 18- 49 output(fname.&s[0]):

print_ite #DEFN 18- 6 <<DEFN>> print_item (f,sub,art_dir,
ptypes)
Tue Jul 17 11:46 1984 X=REF -= FUNCTIONS 10 /print_ite
main 1- 38 int print_item(};

1- 115 outartclis{print_item,subjcts[il],
art_dir,NEW.ptypes):
process 18- 11 int print_item{), report(}, count()’
. newcount{};

19- 129 outartcis{print_item,subjctsisubsta
t].art_dir ALL.types}):

19- 139 outartcis{print_item,subjcts(i].
art_dir, ALL, Types);

18- 121 outartclisiprint_item.subjcis{substa
t]l.art_dir.NEW.types};

18- 199 print_item (1tem, sub.art_dir}:
19- 208 prini_item (item. subjcts[i]l->name,
art_dir):
printf cominfQ i S printf(*

toc review the article.");
3- 16 printf(" You will be wnable
to write the file."):
3- 17 printf(° Te enter comments
for the author to read."):
3= 18 printfi{" simply type

- 19 printf(” comments. REMEMBER:
the author will know what “):
3- 20 printf{" article you are
commenting upon, but not where"};
3- 21 printf(" you are in the
program, To exit the article"}:
3= 22 printf{" simply type
3= 23 printf(" Type a carriage
return when ready for the file."):

gelete S5- 14 printfi"” unablie to remove 1ist."):
edit 6- 21 printf("Onabie to open %s",
x4 8 tmpfile):

6- 23 printf("Onable to open %s",fnamel:

6~ 2B printf("95s: keep or delete
[keen]?", s);

8- 32 case '7?’: printf (" keep:.
entry remains in list"):

8- 33 printf (" delete: removes eniry
from list");

Tue Jul 17 11:46 1984 X=REF =-- FUNCTIONS 11 /printf

8- 34 printf{"96s: keep or delete
[keep]?", s):
listcreat 10- 18 printf(" can‘t open fname"):

_10- 20 printf(" Enter names one at a
time”);

10~ 21 printf(" when finisheg., itype a
period®);

10- 22 printf(" followed Dy a carriage
return. " }:

10- 23 printf(" For help type a question
mark.®];

10- 25 printf(" name: ")

10- 32 printf(" Enter names one at a
time");

10- 33 printf("” when finished. type a
pericd” };

10- 34 printf(* followed by a carriage
return.”):

10- 35 printf(" name: °):

10- 80 printf(" invalid entry”):

10- 51 printf(" name: ");

main 1= 79 printf{ILL.argv[i] ., USE);
1- 87 printf(ILLTOG, ptypes. tempt., USE);

1= 85 printf{ILLTOG. ptypes, tempt, USE):

4- 24 printf{ " Enter your comments a
11ne at a time.");
4~ 25 printf{ " When you have completed
your comment,");
4- 26 printf(" begin a line with a
period (.31*);
4= 27 printf(" followed by cariage
return.");
4- 28 printf(= ");:
13- 19 printf(® Lists are created on a
subect basis by the owner of the group.
13- 22 printf(® subject: *):
13- 29 printf{"\nter the name of the
subject for which you wish to");
13- 30 printf(" create the list. You
must be the owner of the group");
13- 31 prantf(" Type quit to exit."):

Tue Jul 17 11:46 1984 X=REF =-- FUNCTIONS 12 /printf

13- 38 printf("* %s is not a valiad
subject".s);

13- 46 printf(" You are not the owner of
the group %s".s)h;

13- 50 printf(” Do you wish to create a

mklist

print_ite

process

publish

13-

14-

14~

14-

12-

12-

12-

12-

18-

19-

19-

18-

51
52

57

14
23
24
21
22
23
27
55
47
163
174
184
200
210

41

new list. delete ar existing list,

printf(* or edit an existing
1ist?");

printf(® create, delete, or edit?
")

printf(* name of existing fist: *}

printf(® Name of the list you
wish to create or edit? "|):

{ printf{"Do you wish to
edit the file or guit? "):
case '?': printf(*"0dit: examine

the entries one at a time");
printf{“Quit: leave the list as

it is."):
printf{" The Tist you have

indicated does not"):
printf("exist, Do you wish to

duplicate an existing"};
printf(*iist for this suartject ? ")

case 'y°: printf{” Tist: “}:

printfl" Do you wish to edit the
file or quit?");
orintf{" subject: %s
article: %sO.sub,f);
tF{{j*++)%5 == 0) printf(" S &

iF({j*+)%5 == Q) printf(" ")

if{ncount == Q) printf(“There are
no new artcl on

ifi{ncount == Q) printf("
not a artcle on

if{ncount == Q) printf("There is no
artcle called

printfl* %s 15 not a valid
subject”.fname);

Tue Jul 17
reject

repors

review

submit

process #DEFN

main

publish #DEFN

submit

putc main

print_ite

process

Tue Jul 17

putchar print_ite
report

reac get_subs

11:46 18984

11:46 1884

23~

24-

24-

24-

24~
258-

26~

28~

26-

18-
18-
24-

7=

42

21

23

27

28
34

130

13¢

151

154

15

64

38
41
62
82
166
177

40
51
33

48

X=REF ==

X=-REF

FUNCTIONS 13 /print¥

printf{" %s is not a valig
subject" . fname):

case ‘r:printf("
revew: " subl:

case ‘s‘:printf("
submission: " subj:

gefault: printf (*

if{ncount%s == Q) printf(" eh 1

printf ("%-15.14s". &5):

printf{(" %s is not a valid
subject”,fname};

printf{ " Do yvou wish to accept
for publication.”);
printf(* accept for review. cr

reject"1:
printf{ " publish,
reject:");

review, or

<<DEFN>> process(subjcts.subjct_ct,
art_dir,sub, item,option, types)
process(subjcts,subjct_ct.art_dir,
"e."v . option,ptypes);
process(subjcts.subjct_ct.art_dir,
sdopt,"",option,ptypes);
process(subjcts.subjct_ct,art_d:r,

sub."",* ‘,/ptypes}:
process(subjcts,subjct_ct,art_dir,
sub,sdopt,’ ‘.ptypes):;

<<DEFN>> publish(fname,n,sub,
comdir, tname, nm, newfname)

publisn(fname, n, sub, f, comdir,
tname, nm, newfname):

f,

putc{argv[i][jl.stdout);
pute(’_’.stdout);
putc(’Q,stdout);
putc(’'0,stdout):
putc{'O.stdout):
putc(0.stdout);
putc(‘0. stdout);

FUNCTIONS 14 /putchar
(’'0):
(’0);
(*0):

putchar
putchar
putchar

while(read(fd.(char *=)&dirbuf,

reagdirs

readfiles

realloc

reject

report

#DEFN

outartcls

#DEFN

outartcls

readdirs

readfiles

#OEFN

submit

ADEFN

process

29-

22-

21-
21-
22-
22-
23-

26~

24-

26

323

37

36
55
35
54
t7

48

30

38

55

83

80

87

sizeof(dirbuf))>0)

<<DEFN>> readdirs (sub.file_cxt.

files)
if (readdirs {fulilname, &artcli_ct.
&artcls) == 1) return

<<DEFN>> readfiles (sub.file_ct.

files)
if (readfiles {(fullipame, &artcli_ct,
&artcls) == 1) return

char =*malloc(), *realloc();
realloc ((char =)} =files,
char =mallocl), =realloc();
realloc ((char -} =FTiles,

<<DEFN>> reject{fname,n,sub, T.
comdir, nm, newfname)

reject{ fname.n,sub, f, comdir, nm,
newfname) :

<<DEFN>> report (s.sub.dummy.types)

int print_item(}. report(). count()
newcount():
outartclis(report,supjcts[sunstat],
art_dir NEW.types);
outartcis(report.subjcts(i].art_dir,
NEW, types);
outartclis(report,subjcts(substat],
art_dir,ALL, types); o
outartcis(report,subjcts[i]l,art_dir,
ALL . types);
outartcis(report,subjcts[substat].
art_dir EVERYONE . types):
outartclisireport,subjcts[i].art_dir.
EVERYONE , types);

Tue Jul

review

setjmp

signal

sprintf

Tue Jul

17 11:4& 1884
#DEFN

submit

print_ite

initializ

print_ite

cominfo

edit

get_subs
1iétcreat
mail

main

mkiist
outartcls

output

17 11:46 1984

print_ite

publish

25~

26~

18-

18-
18-

10-

11=

13-
13-
13-
12-
12-
29-

17-

18-

18-

20~

-4

39

45
3

54

11
13

18

43

54

43

71
s
s9
66
28

a3
3¢

25

26

28

X=-REF == FUNCTIONS 13 /review

<<DEFN>> review(fname.n,sub. f,
comdir, tname, nm. newfname)

review(fname, n, sub. f, comdir,
tname,. nm, newfrname):

if (setjmp(save_addr))

if (signal {SIGRUIT, SIG_IGN! !=
SIG_IGN)

signal (SIGQUIT, _exit};

if (signalSIGINT., SIG_IGN) !=
SIG_IGN)

signal (SIGINT, onintr):

if (signal (SIGINT, SIG_IGN) !=
SIG_IGN)

signal (SIGINT, SIG_DFL):

sprintf(s,*%s/%s" . diram,nm)};
sprintf(sys, "/usr/we/dock/ar

trecord : .
sprintf(tmpfile, "tmp%d", getpid()):

sprintf(s,"mv %s %s*,tmpfile, fname}
sprintf(fullname, "%s/%s" ,art_dir,
dirbuf.d_name)
sprintf(svs, "/usr/we/dock/v
alid %s ¥%s".s.fgheck);
sprintf(com, "/usr/we/dock/ml
%s %s".mailinglist, letter); .
sprintf(subnames + strlen(subnames),
* %s",argv(i]);
sprintf(dirname, "%s/comments/%s",
ARTDIR.s):
sprintf(sy,"rm -f %s/%s" . dirname,s):

sprintf{fname, "%s/%s" . dirname, s};:

sprintfla, "%s/%s".dirname.s):

sprintf(s."cp %s %s*.a.fname};

sprintf(fullname, "%s/%s" ,art_dir,
sub->name) ;

sprintf(t,*/usr/sccsbin/vi %s %s".
filename,outs});

X~REF == FUNCTIONS 16 /sprintf

sprintf(fname, "%s/%s/%s" . art_dir,
sub,f);

sprintf{newfname, "4scomments/%s/%s",
comdir,sub,f);

sprintf(letter,"1tr%ad",getpid()):

readdirs

readfiles

reject

review

20-

21=

22-

23~

23~

23-

25-

25-

25-

25-

25-

25- -

25-

28

55

58

48

44

32
33

4¢

S3

21

22

48

52

56

57

58

€2

69

sprintf{message. "Ohe file %s in
SUBJECT %s was accepted
5

sprintflsys. "/usr/we/dock/re
cord

sprintf(message, "mv %s %s". fname,
tname)

sprintf(fname, "%s/%s".sub.nf.d_name!

sprintf(fname, "%s/%s".sub,nf.c_name)
. :

sprintf(letter,"1tr%d" ,getpidl }}:
sprintf(message. "The file ¥%s in
SUBJECT %s was rejected(,
sprintf(mailinglist, "ml%d" ,getpid()}
sprintf(sys.,"/usr/we/dock/re
cord
sprintf(letter, "1tr%d", getpid(}};
sprintfimessage. "Ohe file %s in
SUBJECT %s was accepted
)
sprintf(sys,“/usr/we/dock/ar
trecord
sprintf(message. *mv %s %s". fname.
trnamel:
sprintfis. "“scomments/%s ' “s/revieve
rs* . comdir,sub,f);
sprintf(dirnm. "Yscomments/%s",
comdir,sub);
sprintf(fcheck, "¥%s/members”. dirnm):

sprintf(message, *mkdirs %s/reviewe
rs Y%scomments/%s/%s”",.newfname, comdi~,
sprintf(message, "Please add %s as a
review subject®.sub);

supy,

20~

25-

£y

38 sprintfi

31

sprintf(

Tue Jul 17 11:46 1984

typcheck

star get_subs

main
mklist

publisn
readdirs

readfiles

reject
review
typcheck

strcat initializ

update

strchr main

strcomp get_subs

Tue Jul 17 11:48 18984

given_sub

initializ

27-

2=

7=
¥

13-
12-

12~
12-

21-

22-

23~

25-
27~
27-

7-

2=

Q-

15

20

33

55

S8

36
17

30
46
35
46

45
42
32
16
21
17
20
23
24
36
37

46
75

77

51

52

82

99

27

X=-REF ~-=- FUNCTIONS 17 /sprintf

case ’'s': sprintf(s,
"%srsubjects/%s", tmpnm.subject);

case ‘r’: sprintf(s,
“lescomments/%s/%s/%s " . tmpnm

if{stat{art_dir, &stouf) == -1 ||
if{stat{fullname. &stouf) == -1)
continue:

stat(fullname, & (subjcts{*subjct_
ct]->stouf)):
if(stat(dirname. &statinfo)==FALSE}
if((stat(fname. &statinfe)==FALSE)
&& (dirname ==-' '1})
if(statl(a,&statinfo)==FALSE)
if(stat{fname.&statinfo)==FALSE)
if(stat{fname.&statinfo)==FALSE)
if (nf.d_ino != O && stat (fname,
&sbuf) >= 0
if (nf.d_ina != O && stat (fname,
&sbuf) »>= O :
if(stat(fname,&statinfo)==FALSE)
if(stat(fname.&statinfo)==FALSE)
stat(s,&statinfo):
return(stat(s,&statinfo));

strcatlart_dir,"/"):
strcat(art_dir, "comments”):
strcat(art_dir.types):
strcat(art_gir,“subjects");
strcat (home_subs."/"):

strcat (home_subs," . user_subs"):

char *strchr(), =tempt;

if ((tempt=strchr{opt.argv[ill1]))
== ()

if ((tempt=strchr{typ,argv[il(1]))
== Q)

if(strcmp(dirbuf.o_name.".") == O
[

stremp(dirbuf.d_name,"..") == 0)
continue;

if(stremp(subjctslil->name.env) ==
0}

X-REF =-- FUNCTIONS 18 /strcmp

if(stremp(supjcts[il->name.env) ==
Q)

if(stremp(subjcts[i]->name,sub) ==
0) return(i);

19 if((strcmp(types, "p”)==SUCCESS) &&

strepy

submit

cominfo
get_subs

initializ

main

publ ish
reject
revieaw

submit

26-

26-
26-
26-
26~
26~
26-
26~
26-

1=

23-

25-

26-
26-
26-

31

32
33
34
43
44
45
46
52

s3
S5
56
57
58
59

10

16
31
38
45
&0
61
147
43

47

36

36

38
61

ioption=='e") }
case ’'r’: ifistremp(s. "rev®)

== ||
strecmpls, "revi™)
strcmp(s, "revie")
strcmpls. “review")
if(strcmpl(s, "rej*")
stremp(s. "reje”)
strcmp(s, "rejec") =
strcmpl(s, "reject”} =) .
case ‘p: ifistremp(s."p")

== O It
stremp(s, "pu”)
strcmpis. "pub™)
stremp(s, "publ ™)
strcmpl(s, *publi®) =
strempl(s, "publis*) =
strempl(s, "publish” b==

]
"

"
1l
0000000

P
H

}

"
u

W

"
"

]
"
000000

[
[
I
L
H
)

strcpy(nm,getliogint)}:

strepylsubjcts{=subjct_ct}->name.
dirbuf.d_name):

strepy(art_dir ARTDIR):

else strcpylart_subs,.envl:

else strcpylart_opts.env):

else strcpy{art_excl.envl; -

strcpyl{opt. "agocenAGOCEN"}

strepy(typ. “rsRS"):

if(GOOD) strcpylsub.sdopt}):

strepy(auth, (getlogin(statinfo.st_u
id))): o

strcpy(auth, (getlogin(statinfo.st_u
id))}:)

strcpy(auth, (getiogin(statinfo.st_u
id)1);

strcpy(tname, fname):

strcpy(s, "accepted for review"):

strcpy(tname, fname)

Tue Jul 17 11:46 1984

-

typcheck
update

strien initiatiz

main

print_ite

readdirs

-typeheck

strncmg main
mklist

print_ite

process

readdirs

readfiles

typcheck

strncpy main

print_ite
readdirs

Tue Jul 17 11:46 1884

readfiles

submit

typcheck

26~

27~
28~
28~

21~

27-
27~

$-
12-

19-
21-
22-
27-
1=
1-.
1=

18-
21-

22~
26-

27-

83
1C
35
48
27
34

41

71

S0
B
1T

69
57

66
156

168

49
19

&84
Q2
106
24
€g

68

37
&2
12

X=-REF -- FUNCTIONS 19 /strcpy

strcpy(s, "accepted for publishing"};

strepy{nm,getioginf));
strepy (home_subs . homeptr):
strepylusersub.name, subjcts]i]

->nameg) ;
iflenv == NULL || strien{env) == 0}
if{env == NULL || strlentenv} == Q)
if(env == NULL || strien(env]) == Q)

sprintf(subnames + strlen(subnames},
* %s®.,argviill;

n=strleniart_dir) - 8: /=size of
string ssubjects*/

while (*p && strncmp (=p., nf.d_name,
strien{=p)))}

n=strleniartdir) - 9; /=size of
string ssubjects*/

n=strien(nm}:

if{strncmp(argv(i]."+",1)1=0)

if (strncmpis."g”., 1)== NULL)
return;

case ‘q‘: if (strncmp(ptypes.
"s*.t)== 0) submit({fname.n . sub, f,

if ((NOTHERE) && (strncmp(types.
"p", 1) 1=SUCCESS))

if ((NOTHERE) && (strncmp(tvypes.
“p",1)==SUCCESS))

while {*p && strncmp (*p, nf.d_name,
strien(=*p}})

while (*p 8& strncmp (*p, nf.d_name,
DIRSIZ))

return{strncmp(owner .nm.,nj};

strncpy(ptypes, tempt. t);

stencpy(&option, tempt, 1),

strnecpy(ptypes, "p" . 1):

strnepylcomdir ,art_dir,.n);

strnepy ((*files)}[{(*file_ct)-1]
.namea,

X=-REF =-- FUNCTIONS 20 /strncpy

strncpy ((*files)[(=file_ct}-1]
.name,
strncpy({&tname{nl.*r".1);
strncpy(&tname[n]."p".1);
strncpy(tmpnm . artdir,n):

strtok get_subs 7- 28 char =env, =strtokl};
7- 76 env = strtok(art_subs,*:"):
7- B8 env = strtoklQ,":");:
7- 93 env = strtokl{art_subs.":");
7- 105 env = strtok(0.":"):

main 1- 133 sdopt = strtok{subnames." *):

t= 137 sdopt = striok(Q.," "}:
i~ 145 sdopt = strtoklsubnames.," "):
1= 148 sdopt = strtok(Q." ");
1= 155 sdopt = strtok(Q," "):

submit #DEFN 26- 13 <<DEFN>> submit{fname.n,sub. f,
comdir, nm, newfname)
print_ite 18- 66 case 'Q‘: if (strncmpl(ptypes.

"s".1)== 0) submit{fname.n,sup,?,

system cominfo 3- 14 system(sys}:
edit 6- 43 system(s):
Tistcreat 10- 44 if (system(sys) == SUCCESS)
mail 11= 7 systeml{com);
main 13- 60 system(sy);
mklist 12- 34 system(s):
output 17- 7 system{(t):
publish 20- 56 system(sys):

20- 60 system(message);

reject 23~ 54 system(sys):
review 25- 48 system(sys):

25- 53 system{messagel:
25- 63 system(message):

time main 1= 40 long time():
1= 116 subjcts{i]l->stbuf.st_mtime = time
f{long = 0):
process 18- 10 long time():
18- 130 supbjcts[substatl->stbuf.st_mtime =
time ((long =) O):
19- 140 subjcts[i]->stbuf.st_mtime = time
{{long =) 0):

Tue duJ 17 11:46 1884 X-REF =-- FUNCTIONS 21 /time

18- 192 subjcts[substat]->stbuf.st_mtime =
time {((long =) Q):

typcheck #DEFN 27~ 4 <<DEFN>> typchecklartdir,subject.
title.types)
outartcls 28- 45 (typchecklari_dir,sub->name,
artcls->name, types)==5UCCESS!))

unlink delete 5= 13 if (unlink(fname)!=SUCCESS)

update #DEFN 28- 15 <<DEFN>> update (subjcts.subjct_ct)
main i- 118 update (subjcts.subjct_ct);
process 19- 131 update (subjcts,subjct_ct):

19~ 142 update [(subjcts,subjct_ct):
18- 193 upacate {(subjcts.subjct_ct):

Tue Jul 17 11:46 1984 X-REF —-- VARIABLES 1 Jart_dir
,art_dir #GLOBAL {- 15 char art_dir[éuFSIZE];
get_subs 7- 17 get_subs (art_dir,art_subs,art_excl,

subjcts,subjct_ct)
7- 18 char art_dir{].art_subs[].art_exci(]

initializ

main

outartéls

P
o

7-
7-

29-

29-
29-

29-

16
17
20
23
24
108
109
115
130
136
151
154

18

2
30

45

ifistattart_dir . &stouf) == -1 ||
fprintf(stderr, K "ar<t:

name for ARTSUBSO.art_dir);
iF((fd = openlart_dir.0)}) == -1}
fprintfi{stderr, "art: cannot read

sprintf(fullname, “%s/%s".art_air,
dirouf.g_name):
initialize(art_gir.art_subs.
art_opts.art_excl, types.option)
char art_gir{].art_subs{]l.art_opts{]
.art_excl[],*types,option:
strcpylart_dir ARTDIR):
strcatlart_dir,"/"};
strcatlart_dir, “comments*®):
strcatiart_dir.typesi;
strcat{art_gir,"subjects®);
initialize [art_dér.art_subs.
art_opts.art_excl,ptypes.option):
get_subs (art_dir.art_subs.art_excl,
subjcts.&sunjct_ct):
outartcls(print_item, subjcts[i],
art_dir NEW,ptypes);
processi{subjcts,subjct_ct.art_dir,
an "t option,ptypes);
process(subjcts,subjct_ct.art_dir,
sgopt,"".option,.ptypes);
process{subjcts,subjct_ct.art_dir,

sup,"".’ ‘,ptypes):
process{supjcts,subjct_ct.art_dir,
sub,sdopt,’ ’.ptypes);

outartcls (emit,sub,art_dir . flag,
types)

char *art_dir, *types;

sprintf(fullname, "%s/%s“.art_dir,
sub->name) ;

(typcheck(art_dir,sub->name.
artcls->name, types)==SUCCESS]))

Tue Jul 17 11:46 1984 X-REF -- VARIABLES 2 Jart_dir

29- 47 (=emit)} (artcls->name, sub->name,
art_dir.types):
print_ite "18- 6 print_item (f, sub.art_gir,ptypes)
18- char =f, sub([}. art_dirl].=ptypes;
18- 23 n=strlen(art_dir} -~ 9: /=size of
string ssubjects=/
18- 24 strncpylcomdir.,art_dir, n}:
18- 25 sprintf(fname, "%s/%s/%s".art_dir,’
sub.f);
process 19- 4 process(subjcts.subjct_ct.art_dir,
sub, item.option, types)
19- 30 outartcls(report,subjcts(substat].
art_dir ,NEW, types}):
19~ 38 outartclsireport,subjcts[i].art_dir.
NEW,. types);
18- 55 gutartclsireport.subjcts(substat!,
art_dir, ALL,.types);
19- 83 outartclis(report,subjcts(il.art_gir.
ALL, typés);
18- BO outartcls(report,subjcts[substat].
- art_dir,EVERYONE, types):
18- 87 outartcis(report.subjcts{i].art_gir,
EVERYONE, types}:
19- 104 outartcls(newcount,subjcts[substat].
art_dir.NEW.types): '
18- 111 outartclis(newcount.subjcts{i].
art_dir.NEW.types):
19- 129 outartclis(print_item,subjcts[substa
t],art_dir ALL,.types):
19- 139 outartclis(print_item,subjcts[i],
art_dir,ALL,types);:
18- 191 outartcls(print_item,subjcts(substa
-t].art_dir ,NEW, types):
19~ 199 print_item (item, sub,art_dir);
19~ 208 print_item (item. subjcts[i]->name.

-4

art_dir):
art_excl #GLOBAL 1= 18 char art_excl[BUFSIZE]:
get_subs 7- 17 get_subs (art_dir,art_subs.,art_excl.

subjcts,subjct_ct)
7- 18 char art_dir[],art_subs[].art_exci[]
initializ 9- 7 initialize(art_dir,art_subs,
art_opts,art_excl, types,option)

Tue Jul 17 11:46 1984 X-REF -- VARIABLES 3 /art_exc)

g- 8 char art_dir[].art_subs(].art_opts(]
.art_excl[].*types.option:
9- 43 art_excl[0] = * :
8- 45 else strcpy(art_excl.env):
main 1- 108 initialize (art_dir, art_subs,

art_op*ts

art_suos

ignore

ignored

#GLOBAL
initial 1z

main

#GLOBAL
get_subs

inttializ

main

#GLOBAL
readfiles

#GLOBAL

1_

o=
-

-

1=

22-
30~

21

108

38
108

16

17

18

28

108

109

20
32
48

20

art_opts.art_exc!.ptypes.option):
get_subs (ari_dir,art_subs.art_exci.
subjcts. &subjet_ct): '

char art_opts[BUFSIZE]:

initializelar:_dir.art_subs.
art-opts.art_exc1.types.option)

char art_dir[].art_sues[].art_opts{]
.art_excl[].=types.option;

art_opts{Q0] = * .

else sirgpylart_opis.env):

initiaiize (art_dir,art_subs,
art_opts.art_excl.ptypes,optian);

char art_subs[BUFSIZE]:

geT_subs (art_dir.art_subs.art_excl,
subjcts,subjct_ct!

char art_dir{].art_subs{!.art_exci[]

iflart_subs[0] == ' ')

env = strtok(art_subs,":"};

env = strtok(art_subs.":"};

initialize(art_air.art_subs.
art_opts.art_excl.types.option)

char art_dir[],art_subs[].art_opts(]
.art_excl[].*types.option:

art_subs[0O] = -

else strecpylart_subs.env);

inttialize {art_dir,art_subs,
art_opts.,art_excl.ptypes,option]);

get_subs (art_gir.art_subs,art_excl.
subjcts.&subjct_ct):

char *ignoref[] = {
extern char =ignerel];

p = ignore:

char *ignored[] = {

Tue Ju!

interact

ncount

17 11:46 1884
readdirs

i print_ite
~#GLOBAL
newcount
print_ite

process

report

save_addr #GLOBAL

Tue Jul

stabuf

subnames

onintr
print_ite

17 11:46 1984

#GLOBAL

#GLOBAL
main

21-

18-

1-
30-
15=
45=
18-
18-
19~
19-

19-
19-

18-

19-

18-
19-

18-
18-

24-

1=
3C-
16-
18-

1—

i-
i-

49
iC

25
54

10
a3
35
26
31

51
56

76
81

100
118

125
132

186
184

20C
210
12
25
27

29

22
S1

42

14
49

19
71

X-REF -- VARIABLES 4 /ignored
p = ignored,;
extern int interactive:

int ncount:

extern int ncount:

extern int ncount:

if(s) ncount++;

extern int ncount:

ncount++;

ncount = O

1f{ncount == Q) fprintf(stdout,
"There are no new artcl on

ncount = 0O;

iflncount == 0) fprintflstdout,
“There are no artc!l on

ncount = 0

ifincount == Q) fprintf(stdout.
"There are no artcl on

ncount = 0; "

if(ncount > Q) fprintf(stdout,
“%d0, ncount) ;

ncount = 0,

ifincount == 0) fprintf(stdout.
"There are no artcl on

ncount = O;

if(ncount ==) printf("There are
no new artcl on

if(mcount == Q) printf("
not a artcle on

if(ncount == Q) printf(“There is no
artcle called

extern ncount;

ncount = 5;

iflncount%s == Q) printf(") =4

neount++:
jmp_buf save_aaddr:
extern jmp_buf save_addr;

longjmp(save_adar, 1);
if (setjmp(save_addr))

X-REF =-- VARIABLES 5 /stdbuf

char stdouf[BUFSIZ]: .
extern char stdouf[BUFSIZ];

char subnames{BUFSIZE]:
sprintf{subnames + strien(subnames],

1-
i=
1=

110

129
133
145

* %s".argv[i]):
if {(subnames[0O] == ' ' && option
== EMPTY}
if(subnames(Q] == * 7}
sdopt = strtok(subnames.” ");
sdopt = strtok(subnames.,” ")

Tue Jul

ALL
ARTDIR
A_BOARD
BAD
ARTDIR
BOARD
BUFSIZE
EMPTY
EVERYONE
- EXIST
FALSE
GOaD
ILL
ILLTOG
INDENT
MAXEBDS
NEW

NO
NOTHERE
OPTION
SAME
SUCCESS
TITLE
TRUE
USE

YES
subjcts
usersub

1984

art.
initialize.
art.
art.
mklistcom.cC
art.
art.
art.
art.
art.
art.
art.
art.
art.
art.
art.
art.
art.
art.
art.
art,
art.
art.
art.
art.
art.
art.
art.

T 0T

JJO0OO0JFITTOTIONOITITTOOFTTTITIONTS

X-REF

30-

14

1
15
1C

18
24
12
13
16
27
12

3

4
23
25
15
11
11
21

Qe
17
20
26

2
10
40
34

-- DEFINITIONS 1 JALL
#define ALL 1
#define ARTDIR "/usro/we/dock
#gefine A_BOARD *(argv
#gefine BAD (subst

2 #define ARTDIR "/usrb/we/dock
~def ine BOARD *argv
r~define BUFSIZE 256
sgefine EMPTY
sgefine EVERYONE 2
#gefine EXIST o]
#aefine FALSE -1
sdef ine GOOD {subst
sgefine ILL * illegal opti
sgefine ILLTCG ° itlegal o
zdefine INDENT 3
~defime MAXBDS 20
sgefine NEW o}
rgefine NO O
#gef ine NOTHERE {subst
#define OPTION (*argv
#define SAME O '
#define SUCCESS (o]
#define TITLE =(argv

#define TRUE 1

#define USE "art [+[agecen]] [

fdefine YES 1
struct subjcts
struct usersub

Designing and Implementing a Computer Conferencing System
to Manage and Track Articles Through the Revision Process

by

Patricia Dock

B. A. University of West Florida, 1979

An Abstract of A Master's Report
submitted in partial_fulfillment of the
requirements for the degree
Master of Science
Department of Computer Science

Kansas State University
Manhattan, Kansas

1984

Designing and Implementing a
Computer Conferencing System
to Manage and Track Articles
Through the Revision Process

by Patricia A. Dock

An Abstract of a Master”s Report

This paper presents ARTHER (ARTicle HandlER), a
conferencing system, designed to provide a mechanism for
tracking articles through the various stages of revision.
The system was implemented on a UNIX based svstem. The
design, implementation, and possible enhancements are
discussed. A sample session using ARTHER is contained in
the report. Appendices contain a copy of the code as well
as the manual pages for the implementation.

The services provided by ARTHER are simple and easy to use
by a community of users. It is intended to interface with
and compliment the -existing services on a UNIX based
system. Articles are smallest element in the system. They
are grouped in subjects. The owner of the subject
controls the articles from the time of submission to the
system through the time that they are deemed acceptable for
publication by the owner :of the subject. During this
process, the owner of the subject has the opportunity to
name a list of "experts" to act as reviewers for the
article. These reviewers have an opportunity to comment on
the article. Access to the article and reviewers’s
comments are controlled.

