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Abstract 

Salmonella and Escherichia coli O157 are important causes of foodborne illness in 

humans and have been associated with the consumption of undercooked, contaminated beef.  

Individual feedlot cattle may shed these organisms in their feces and subsequently contaminate 

cattle hides and carcasses at harvest.  Preharvest and harvest interventions may significantly 

decrease the risk of beef contamination and subsequent risk of human illness.  Previous research 

suggests that preharvest interventions for Salmonella or E. coli O157 may compliment harvest 

interventions and reduce the risk of carcass contamination. In my research, I used diverse study 

designs to develop a better understanding of the epidemiology of Salmonella and E. coli O157 

and evaluate the impact of specific preharvest interventions in commercial feedlot cattle.  A 

randomized controlled trial indicated that a commercially available vaccine did not affect the 

fecal prevalence of Salmonella, or health and performance of cohorts of feedlot cattle.  However, 

the fecal prevalence of Salmonella varied by cohort, suggesting cattle source as a risk factor.  In 

a repeated cross-sectional study, the fecal prevalence of Salmonella in cattle at feedlot arrival 

was not associated with the prevalence immediately prior to harvest, yet specific Salmonella 

subtypes, as defined by pulsed-field gel electrophoresis (PFGE), persisted throughout the feeding 

period.  Another of my studies defined and compared PFGE subtypes of E. coli O157 isolated 

from cattle feces and carcass samples at harvest to determine relationships between fecal 

shedding and carcass contamination.  Truckload appeared to be an important factor, and feces 

from cattle shedding both high- and low-concentrations of E. coli O157 posed a risk for carcass 

contamination.  A stochastic Monte-Carlo modeling framework was later used to assess the 

impact of seasonal fecal prevalence and combinations of preharvest interventions on the risk of 

carcass contamination with E. coli O157.  Results indicated that it may be important to 

incorporate multiple preharvest interventions, especially during periods of high fecal prevalence 

of E. coli O157.  Overall, the research described in this dissertation demonstrates that multiple 

risk factors and interventions at the cohort level must be considered in order to mitigate the risks 

associated with Salmonella and E. coli O157 in beef production systems. 
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Preface 
Salmonella and Escherichia coli O157 are significant threats to public health.  Several 

epidemiologic aspects of Salmonella and E. coli O157 in beef cattle production systems are 

unclear, and some preharvest interventions for these bacteria have not been evaluated in 

commercial feedlot settings.  We purposefully used diverse study designs to develop a better 

understanding of the epidemiology of Salmonella and E. coli O157, evaluate preharvest 

interventions, and provide a unique and relatively broad research experience.  The studies 

described in this dissertation provided training in veterinary epidemiology, food microbiology, 

and risk analysis.  One study was a randomized controlled trial of a potential preharvest 

intervention for Salmonella.  Two of the four studies enhanced previously collected data and 

employed pulsed-field gel electrophoresis (PFGE) to determine the genetic relatedness of 

specific strains of E. coli O157 and Salmonella across time or sample type.  One study used 

parameters derived from a systematic search of scientific literature to build a Monte-Carlo model 

to predict risk of cattle carcass contamination with E. coli O157 at harvest.  These diverse 

scientific approaches ensured a comprehensive training experience while providing valuable 

epidemiologic information regarding E. coli O157 and Salmonella in beef cattle production 

systems. 

My first study, a randomized controlled trial, was an ideal study design for investigating 

the effects of a commercially available Salmonella vaccine in commercial feedlot cattle.  My 

second study was a repeated cross-sectional study that investigated associations among fecal 

prevalence of Salmonella in cattle at feedlot arrival and immediately prior to harvest.  The 

persistence of specific Salmonella subtypes within cohorts during the feeding period, as well as 

cattle heath and performance, were also evaluated.  My third study was a cross-sectional study 

that determined the genetic relatedness of E. coli O157 isolates from cattle feces and carcass 

samples at harvest to determine relationships between fecal shedding and carcass contamination 

within truckload.  My final study used a stochastic Monte-Carlo modeling framework to assess 

the impact of seasonal fecal prevalence and combinations of preharvest interventions on the risk 

of cattle carcass contamination with E. coli O157.  Overall, the research described in this 

dissertation demonstrates the complex interrelationships among cattle management factors 

(including cattle source and transport groups), targeted interventions and microbial persistence 

 xii



 xiii

that must be considered in order to mitigate the risks associated with Salmonella and E. coli 

O157 in beef production systems.    

 



 

CHAPTER 1 - Review of the Epidemiology of Salmonella and 

Escherichia coli O157 in Beef Production Systems from Feedlot to 

Harvest 

 

C. C. Dodd, D. G. Renter 

 

 

 Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, 

Kansas State University, Manhattan, Kansas  

 

Introduction 
Salmonella enterica spp. enterica  (hereafter Salmonella) and Escherichia coli O157:H7 

(hereafter E. coli O157) are important causes of foodborne illness in humans and have been 

associated with the consumption of undercooked, contaminated beef (Riley et al., 1983; Wells et 

al., 1983; Rodrigue et al., 1995; Dechet et al., 2006; McLaughlin et al., 2006).  Salmonella and 

E. coli O157 have been found in several food production environments (Michino et al., 1999; 

Maki, 2009), including at various stages within beef production systems (Rodrigue et al., 1995; 

Barkocy-Gallagher et al., 2003).  Individual feedlot cattle may shed these organisms in feces and 

subsequently contaminate hides and carcasses within a cohort of cattle at harvest (Beach et al., 

2002; Woerner et al., 2006).  Preharvest and harvest interventions for either organism may 

significantly decrease the risk of beef contamination and subsequent risk of foodborne illness in 

people (Losinger et al., 1997; House et al., 1998; Berry et al., 2010).  Generally, if preharvest 

interventions for Salmonella and/or E. coli O157 are effective, pathogen-load thresholds of 

harvest interventions may not be exceeded and the risk of carcass contamination may be reduced 

(Brichta-Harhay et al., 2008; Arthur et al., 2010).  Single and multiple preharvest interventions 

may compliment harvest interventions and reduce foodborne illness risks associated with 

Salmonella and E. coli O157 in beef production systems.   
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There is a growing body of scientific literature regarding the epidemiology of Salmonella 

or E. coli O157, and several observational studies have investigated these organisms within the 

context of commercial feedlot cattle environments (Van Donkersgoed et al., 1999; Barham et al., 

2002; Kalchayanand et al., 2009).  There are several similarities in the epidemiologic approach 

of mitigating Salmonella and E. coli O157 in beef cattle production systems, yet there remain 

several differences in available interventions, proportional attribution of respective foodborne 

illness to beef products, regulatory surveillance, and available data to guide future research 

and/or develop effective control strategies.  This review of scientific literature on Salmonella and 

E. coli O157 in beef cattle production systems is primarily limited to observational studies and 

randomized controlled trials (RCTs) that were conducted within commercial feedlot and harvest 

settings.  Although multiple serotypes of Salmonella will be discussed, other non-O157 serotypes 

of Shiga toxin-producing E. coli are only briefly mentioned.  Preharvest interventions for both 

organisms are discussed, yet harvest and post-harvest interventions are not emphasized.  

Pertinent pathogenesis is discussed, while virulence factors, microbial physiology, and detection 

methods are not addressed.  This overview of the ecology and epidemiology of Salmonella and 

E. coli O157 in beef cattle production systems exposes critical information gaps and sets the 

stage for the studies described in subsequent chapters. 

E. coli O157 in Human Foodborne Illness 
Esherichia coli O157 was recognized as a cause of human foodborne illness in 1982, 

when two outbreaks of hemorrhagic colitis were associated with the consumption of 

undercooked, contaminated ground beef (Riley et al., 1983; Wells et al., 1983).  Trends in data 

regarding the frequency of E. coli O157 foodborne illness since this time reveal that E. coli O157 

remains a serious public health risk because of both the severity and frequency of cases; these 

trends may have been impacted by changes in surveillance (e.g., sensitivity of detection 

methods).   Over ten years ago, E. coli O157 was reported to cause approximately 73,480 human 

illnesses each year in the US, including 2,168 hospitalizations and 61 deaths (Mead et al., 1999).  

From 1982 to 2002, 47% of 183 E. coli O157 foodborne illness outbreaks, which represented 

44% of 5,269 E. coli O157 foodborne illness cases, were associated with the consumption of 

beef products (Rangel et al., 2005).  Most of these beef-related E. coli O157 outbreaks (87.2%) 

and cases (75.8%) were associated with ground beef.  In 2006, there were 27 recognized 
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outbreaks of foodborne illness due to E. coli O157, which was similar to the annual number 

(mean = 24) of outbreaks from 2001 – 2005 (CDC, 2009).   In 2009, there was approximately 

one (mean = 0.99) human case of E. coli O157 from any source per 100,000 people annually in 

the US (CDC, 2010).  Incidence was highest in children less than four years of age 

(3.84/100,000).  The incidence of E. coli O157 foodborne illness decreased 41% (95% CI 27 – 

52%) from 1998 to 2009 (CDC, 2010).  Although the frequency of foodborne illness due to all 

sources of E. coli O157 appears to have decreased, the severity of these infections justifies the 

classification of E. coli O157 as a relatively high public health risk. 

Although the frequency of E. coli O157 infections is lower than some other foodborne 

illnesses (e.g., Campylobacter, Salmonella, and Shigella), complications from E. coli O157 can 

be severe (CDC, 2010).  As reviewed by Griffin et al. (1991), hemolytic uremic syndrome 

(HUS), thrombotic thrombocytopenic purpura (TTP), and hemorrhagic colitis (HC) are 

complications of E. coli O157 infections in humans (Griffin et al., 1991).  Approximately 90% 

of E. coli O157 infections may result in HC (Slutsker et al., 1998), while the more serious HUS 

occurs in approximately 7% of E. coli O157 infections, usually about five to ten days after the 

onset of symptoms (Coia, 1998).  Hemolytic uremic syndrome, which is a leading cause of acute 

renal failure in children, causes death in approximately 5% of HUS patients (Coia, 1998).  

Surveillance data indicate that there is a higher risk of complications attributed to E. coli O157 

infection in young (less than five years of age), elderly, and immunocompromised individuals 

(Griffin et al., 1991).  In 2009, there were 1.4 cases of HUS from any cause per 100,000 US 

children less than five years of age (CDC, 2010).  The proportion of E. coli O157 cases that were 

hospitalized was highest (59.4%) among people who were 50 years of age or older (CDC, 2010).  

The case fatality risk in the overall US population was reported by Coia (1998) to be 

approximately 0.03, and preliminary FoodNet data for 10 US states in 2009 revealed that the 

case fatality risk in persons aged 50 years or greater (0.015) was higher than other age groups 

(Coia, 1998; CDC, 2010).  In 2003, the estimated health-associated cost of E. coli O157 in the 

US was $405 million (Frenzen et al., 2005).  Escherichia coli O157 remains a frequent and 

severe cause of human foodborne illness. 

Salmonella in Human Foodborne Illness 
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When reviewed by Mead et al. over ten years ago, there were an estimated 1.3 million 

foodborne illnesses and over 500 deaths attributed to Salmonella in the US each year (Mead et 

al., 1999).  Salmonella were the cause of over 30% of all bacterial food-related deaths in the 

United States (Mead et al., 1999).  In 2007, there were approximately 14.92 cases of 

salmonellosis per 100,000 people (CDC, 2008).  In 2009, there were an average of 15.19 

reported human cases of salmonellosis per 100,000 people, which was approximately 10 times 

the annual incidence of E. coli O157 (0.99 cases per 100,000 people) (CDC, 2010).  Annual 

incidence of salmonellosis was highest (72.93/100,000) in children less than four years of age 

(CDC, 2010).  Attribution data are limited and the relative proportion of salmonellosis cases 

attributed to beef products versus other products is not clear (Batz et al., 2005; Pires et al., 2009).  

In Denmark during 2000-2001, only 0.9% of human salmonellosis cases were confirmed to be 

associated with the consumption of beef products, while 37.6% were attributed to egg 

consumption (Hald et al., 2007).  Guo et al. (2007) used an attribution calculation model based 

upon this same work by Hald et al. (2007) and estimated 19% of human salmonellosis cases 

from 1998-2003 in the US could be attributed to ground beef products, while 41% could not be 

attributed to any of the meat or egg categories in their model (Guo et al., 2007).  Generally, 

human salmonellosis remains one the most common bacterial foodborne illnesses and the 

consumption of contaminated beef remains an important contributor. 

The clinical signs of foodborne illness due to Salmonella range from moderate to severe.  

Although most cases entail a self-limiting enterocolitis, some infected individuals need to be 

hospitalized, and further complications can occur, such as aseptic reactive arthritis and Reiter’s 

syndrome (D'Aoust et al., 2007).  Antimicrobial resistance also is an important concern in 

managing Salmonella infections.  Multidrug-resistant Salmonella infections have been associated 

with increased frequency of sepsis and hospitalization (Lee et al., 1994; Varma et al., 2005).  

Multidrug-resistant Salmonella also have been found in cattle feces (Kunze et al., 2008; Alam et 

al., 2009) and beef products (White et al., 2001); multidrug-resistant Salmonella also have been 

associated with beef-related outbreaks (Zansky et al., 2002; Dechet et al., 2006; CDC, 2006a). 

Based on hospitalization and fatality risks of 0.20 and 0.006, respectively, and extrapolating for 

unreported cases of human salmonellosis, Voetsch et al. estimated that Salmonella caused 14,860 

hospitalizations and 415 deaths annually during 1996 – 1999 in the US (Voetsch et al., 2004).  

The proportion of Salmonella cases that were hospitalized was higher (45.2%) among people 
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who were older than 50 years of age (CDC, 2010).  The case fatality risk in the overall US 

population was approximately 0.006 during 1996-1999 (Kennedy et al., 2004), and preliminary 

FoodNet data for 10 US states in 2009 revealed that the case fatality risk in persons aged 50 

years or greater (0.0121) was higher than other age groups (CDC, 2010).  The incidence of 

Salmonella foodborne illness decreased 10% (95% CI 3-16%) from 1998 to 2009 (CDC, 2010).   

These data suggest that Salmonella foodborne illnesses create considerable burden because of 

their frequency and severity. 

Ecology and Epidemiology of E. coli O157 
The body of scientific literature regarding the microbiology, ecology and epidemiology 

of E. coli O157 was limited following the first E. coli O157 foodborne outbreak in 1982; 

however, pathogenic and nonpathogenic E. coli bacteria have been studied for decades.  Many E. 

coli bacteria are considered non-pathogenic, commensal bacteria in the human gastrointestinal 

tract.  Escherichia coli are commonly serologically differentiated by three surface antigens:  

somatic (O), flagellar (H), and capsular (K)  (Meng et al., 2007).  Diarrheagenic E. coli are 

categorized into several pathotypes, including enteropathogenic, enterotoxigenic, enteroinvasive, 

diffuse-adhering, enteroaggregative, and enterohemorrhagic E. coli (Meng et al., 2007).  

Escherichia coli O157 is classified as enterohemorrhagic E. coli and is often described by the 

ability to produce Shiga toxin; hence, E. coli O157 is one of several Shiga toxin-producing E. 

coli (STEC) serotypes.  Shiga toxin is largely responsible for the virulence of E. coli O157 and 

several pathogenic serotypes of STEC (e.g., Esherichia coli serotypes O26, O45, O103, O111, 

O12, and O145) (Brooks et al., 2005).  Many non-O157 Shiga toxin-producing E. coli foodborne 

pathogens have been linked to beef and associated with human foodborne illness (Bettelheim, 

2007; Dambrosio et al., 2007; Cobbold et al., 2008; Ethelberg et al., 2009).  The scientific 

literature now includes several studies of the epidemiology of non-E. coli O157 STECs  

(Bettelheim, 2007; Renter et al., 2007; Hedican et al., 2009); future interventions and regulatory 

actions also may target these E. coli serotypes.  

Escherichia coli O157 has been found in several food production systems.  Produce-

associated outbreaks were first recognized in 1991 (Rangel et al., 2005).  Foodborne illness 

outbreaks have been associated with several vegetable products, including alfalfa sprouts (Breuer 

et al., 2001), spinach (CDC, 2006b), lettuces (Hilborn et al., 1999), apple cider and juice (Besser 

 5



et al., 1993), and coleslaw (Rangel et al., 2005).  Other outbreaks have been associated with 

water sources, including lake water (Bruce et al., 2003) and drinking water (Swerdlow et al., 

1992; Licence et al., 2001).  Cattle-associated products have been linked to several E. coli O157 

outbreaks, including from unpasteurized milk (Keene et al., 1997; Bhat et al., 2007), cheese and 

butter from unpasteurized milk (Rangel et al., 2005), and dry fermented salami (Tilden et al., 

1996).  In particular, several outbreaks have been linked to ground beef (Bell et al., 1994; 

Slutsker et al., 1998; Rangel et al., 2005).  Although the public health risk for E. coli O157 may 

include several food production systems, the pathway within beef production systems is of 

primary importance in this review. 

The epidemiology of E. coli O157 in cattle is relatively unique; cattle appear to become 

colonized, particularly in the terminal rectum, yet do not exhibit clinical signs (Low et al., 2005; 

Sheng et al., 2006).  Individual asymptomatic cattle shed E. coli O157 in their feces for different 

periods of time and at different concentrations.  One study showed that 63% of individual cattle 

shed for less than one month  (Besser et al., 1997).  More recent studies have indicated there may 

be a relationship between the duration and concentration of fecal shedding, and that there may be 

differences in the level of colonization in the animals’ terminal rectum (Low et al., 2005; 

Cobbold et al., 2007; Chase-Topping et al., 2008).  Furthermore, fecal shedding trends at the 

cohort level may be seasonal, with higher fecal shedding prevalence peaks occurring in the 

warmer seasons (Barkocy-Gallagher et al., 2003; Renter et al., 2008; Stephens et al., 2009).  

Fecal shedding of E. coli O157 has been positively associated with contamination of cattle hides 

and carcasses at harvest (Fox et al., 2008; Jacob et al., 2010), and cattle shedding higher 

concentrations of E. coli O157 in the feces likely pose a higher risk of hide and carcass 

contamination (Omisakin et al., 2003; Arthur et al., 2009).  Hence, studies of the effects of 

preharvest control strategies may need to investigate both prevalence of shedding cattle as well 

as the prevalence of cattle shedding E. coli O157 at higher concentrations. 

Super-shedders or high-shedders have been defined as cattle shedding at least 104 CFU E. 

coli O157/g feces (Chase-Topping et al., 2008).  Some researchers propose that mitigation 

efforts should target high-shedding cattle since they may contribute the most to hide and carcass 

contamination risk (Matthews et al., 2006; Cobbold et al., 2007; Fox et al., 2008; Stephens et al., 

2009).  A particular animal may remain a high-shedder for an unknown period, yet the presence 

or proportion of high-shedders within a cohort may be important in minimizing the risk of 
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carcass contamination at harvest (Matthews et al., 2006).  Regardless, high prevalence of E. coli 

O157 in feces within a cattle cohort and the presence of individual cattle shedding at high 

concentrations are likely both important contributors to the risk of hide and carcass 

contamination at slaughter.  Further studies to clarify the relationship between fecal prevalence 

and fecal concentration of E. coli O157 at the cohort-level will help guide future control efforts.  

The best mitigation strategy(s) for the beef industry is not clear; the industry could primarily 

attempt to decrease preharvest fecal prevalence of a cohort, or identify and manage high-

shedders prior to harvest, or both.  Epidemiologic studies properly designed to trace the 

transmission of E. coli O157 from cattle feces to hides to carcasses within a cohort may guide 

mitigation efforts.   

The transport-to-harvest and lairage phases of beef production systems also are important 

in the transmission of E. coli O157 within cohorts of cattle.  Some studies have shown an 

apparent decrease in fecal and hide prevalence from feedlot to harvest (Dewell et al., 2008; 

Fegan et al., 2009), while some have shown an increase (Childs et al., 2006; Woerner et al., 

2006).  Arthur et al. (2007) reported an 87% increase in positive hides from pre-transport to hide 

removal at harvest.  Interestingly, only 29% of E. coli O157 hide isolates obtained at harvest 

matched, as defined by pulsed-field gel electrophoresis (PFGE), isolates obtained before 

transport in this study (Arthur et al., 2007).  This finding suggests that transport and lairage 

environments may provide additional sources of E. coli O157 that contribute to hide 

contamination at harvest.  Regardless of pathogen source, effective interventions for E. coli 

O157 may exist for the transport and lairage phases, yet more data are needed to understand 

these effects. 

Hides are the most likely proximate source of carcass contamination with E. coli O157 

(Loneragan et al., 2005).  Hide interventions (e.g., hide washing, hide removal procedures) 

appear to mitigate some of the hide to carcass transfer (Elder et al., 2000), yet the relationship of 

hide concentration and hide prevalence in this transfer is unclear.  The hide prevalence to carcass 

prevalence ratio derived from studies of commercial harvested feedlot cattle in the US has 

ranged from 0.5 to 0.84 (Woerner et al., 2006; Fegan et al., 2009), yet these estimates are based 

upon overall mean prevalence.  Jacob et al. (2010) found a cohort (truck-load) level hide to 

carcass prevalence ratio of 0.26 (range 0 – 1.25) (Jacob et al., 2010).  Another study calculated a 

hide to carcass transfer of E. coli O157 based upon changes in microbial concentration, but these 
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data were derived from measuring aerobic plate counts from cull-cow samples at harvest 

(Brichta-Harhay et al., 2008).  More individual animal- and cohort-level data are needed to 

accurately describe the relationship among fecal prevalence, fecal concentration, hide 

prevalence, hide concentration, carcass prevalence, and carcass concentration of E. coli O157.   

Ecology, and Epidemiology of Salmonella 
Although a causative agent was unknown in the early 19th century, French doctors 

observed cases of gastrointestinal disease in humans caused by a bacillus; this condition later 

became known as typhoid fever (D'Aoust et al., 2007).  In 1885, Salmon and Smith isolated 

Salmonella enterica serotype Choleraesuis from swine with hog cholera (Le Minor, 1981).  

Today, there are over 2,500 recognized serotypes of Salmonella (Popoff et al., 2004), and some 

are considered to be host adapted (Uzzau et al., 2000).  For example, Salmonella serotype Typhi 

is a putative human-adapted species and not transmitted by animals, while other Salmonella 

enterica serotypes are often transmitted by animals.  Salmonella serotype Dublin is the only 

serotype considered  to be host adapted to cattle (Uzzau et al., 2000), yet many other Salmonella 

serotypes have been isolated from cattle (Fedorka-Cray et al., 1998; Dargatz et al., 2003; 

Callaway et al., 2008).   

There are over 1,504 serotypes within Salmonella enterica subsp. enterica, but relatively 

few are commonly isolated from animals and humans (D'Aoust et al., 2007).  As reviewed by 

Callaway et al. (2008), the most frequent Salmonella serotypes isolated from ground beef, 

according to the US Department of Agriculture (USDA) Food Safety and Inspection Service 

(FSIS), were Montevideo, Anatum, Muenster, Newport, and Mbandaka (Callaway et al., 2008).  

According to the 2006 Salmonella Annual Summary of the Centers for Disease Control and 

Prevention (CDC), the most common Salmonella serotypes isolated from both healthy and 

clinically ill cattle (in order of descending frequency) were Newport, Orion var. 15+ 34+, 

Dublin, Montevideo, Typhimurium, Agona, and Anatum (CDC, 2008).  In 2006, Salmonella 

serotypes Typhimurium and Newport were, respectively, the first and third most frequent 

Salmonella serotypes isolated from human cases (CDC, 2008).  These data only represent 

isolates that were obtained from human samples submitted to state public health laboratories or 

animal (both healthy and clinically ill) samples submitted to the USDA Animal and Plant Health 

Inspection Services (APHIS) National Veterinary Services Laboratories (NVSL).   Salmonella 
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serotypes that are common in both cattle and human infections are likely important to public 

health, although the reasons for commonality are unknown.  

Salmonella are ubiquitous and have been found in several food production systems 

including vegetables, poultry, and beef.  Produce-associated outbreaks include alfalfa sprouts 

(Van Beneden et al., 1999), tomatoes (Cummings et al., 2001), cantaloupe (Mohle-Boetani et al., 

1999), unpasteurized orange juice (Cook et al., 1998), mangos (Sivapalasingam et al., 2003), 

peanut butter (CDC, 2008), spinach (CDC, 2006b), lettuce (Horby et al., 2003) and peppers 

(CDC, 2008).  Salmonella serotype Enteritidis has primarily been associated with poultry meat 

and eggs (Louis, 1988; Mishu et al., 1994) and is one of the most common serotypes in poultry 

(Antunes et al., 2003), but also has been found in raw almonds, mixed salad, peanut sauce, and 

orange juice (D'Aoust et al., 2007).  Salmonella have been found in cattle feces (Barkocy-

Gallagher et al., 2003; Rodriguez et al., 2006; Kunze et al., 2008; Cummings et al., 2009) and 

several outbreaks of salmonellosis in people have been linked to the consumption of beef 

products (CDC, 1995a; CDC, 1995b; Dechet et al., 2006; McLaughlin et al., 2006; CDC, 2006a).  

The ubiquitous nature of Salmonella and large variety of associated foods make it difficult to 

assess the probability of human illness from the consumption of beef products; however, recent 

beef-related outbreaks justify the examination of interventions in beef production systems. 

The contamination pathway of Salmonella in beef production systems is similar to that of 

E. coli O157.  Infected cattle shed Salmonella in their feces, which can subsequently contaminate 

hides and carcasses within a cattle cohort (Beach et al., 2002; Sorensen et al., 2002; Fegan et al., 

2005; Brichta-Harhay et al., 2008).  Little is known about fecal shedding dynamics of 

Salmonella in commercial feedlot cattle; counts of Salmonella in grass-fed and feedlot cattle 

feces taken at harvest in Australia ranged from <3 MPN g-1 to 3 x 103 MPN g-1 (Fegan et al., 

2004).  The fecal prevalence in feedlot cattle may be higher in warmer months (Barkocy-

Gallagher et al., 2003), and the fecal prevalence of Salmonella may be lower in feedlot cattle that 

have been on feed longer (Galland et al., 2000).  However, national data from the National 

Animal Health Monitoring System (NAHMS) Cattle on Feed Evaluation (COFE) revealed that 

5.5% of 4,977 fecal samples from 100 feedlots were positive for Salmonella, and the fecal 

prevalence in feedlot cattle that had been on feed longer (7.4%) was significantly higher than the 

prevalence in cattle that had been on feed for a shorter time (3.5%)  (Fedorka-Cray et al., 1998).  

More studies are needed to determine the distribution of Salmonella prevalence and 
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concentration in feedlot cattle feces, the persistence of Salmonella within cohorts of cattle, 

transport and lairage dynamics, and associations with hide and carcass contamination. 

Comparative Epidemiology of Salmonella and E. coli O157 
There are several notable differences and similarities in the epidemiology of Salmonella 

and E. coli O157.  The human foodborne illness risk of these two bacteria may be difficult to 

compare, especially risk that can be attributed to beef products.  The 2009 annual incidence of 

reported Salmonella infections in people in the US was approximately 15/100,000 people, 

compared to E. coli O157 infections, which was approximately 1/100,000 people (CDC, 2010).  

However, characterization of the risk should also convey the aforementioned severity of the 

disease and proportion of cases attributable to beef products.  Although E. coli O157 infections 

are less frequent overall, the relatively higher attribution to beef-associated products and 

complications such as HUS have justified considerable focus on risk mitigation efforts for E. coli 

O157 in the beef industry.  Escherichia coli O157 has been more frequently associated with beef 

recalls than Salmonella (FSIS, 2010).  However, antimicrobial resistance in Salmonella can add 

to the severity of human cases of salmonellosis (Lee et al., 1994).  Assessing the comparative 

risk of E. coli O157 and Salmonella, particularly in beef products, is difficult; both are critical 

threats to public health. 

Antimicrobial resistance in human E. coli O157 infections has been documented, but it 

has not been a large concern (Schroeder et al., 2002).  The use of antibiotics in humans infected 

with E. coli O157 is often not recommended, since bacteriocidal antibiotics may lyse the cell 

walls and increase the release of Shiga toxins.  In a prospective cohort study of children infected 

with E. coli O157, children who were treated with antibiotics were approximately 17 times more 

likely (RR = 17.3, CI = 2.2 – 137) to acquire HUS than those who did not, although a majority of 

study patients (87.3%) did not receive antibiotic therapy (Wong et al., 2000).  

 Contrary to management of E. coli O157 infections, antimicrobial therapy and 

antimicrobial resistance are important for the management of human salmonellosis.  As reviewed 

by Alcaine et al. (2007), foodborne illness cases and outbreaks due to multidrug-resistant 

Salmonella are a growing concern (Alcaine et al., 2007).  Salmonella serotypes such as Newport 

and Typhimurium, common in both cattle and human Salmonella infections, have expressed 

multidrug resistance (Zhao et al., 2003; Dechet et al., 2006).  Several serotypes of Salmonella 
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that have been isolated from cattle have exhibited antimicrobial resistance; particularly to 

tetracycline, sulfamethoxazole and other common antibiotics (Dargatz et al., 2002; Dargatz et 

al., 2003).  Davis et al. (2007) found that Salmonella Dublin isolates from beef cattle had less 

resistance to ampicillin, ceftazidime, kanamycin, neomycin, streptomycin, and tetracycline than 

isolates from dairy cattle; they suggested their finding may have been due to a higher use of 

antibiotics in dairy production systems (Davis et al., 2007).  Although antimicrobial resistance 

may be a lesser concern with E. coli O157, antimicrobial resistance appears to be a driving force 

in public health concerns with Salmonella in beef products. 

While E. coli O157 bacteria are generally considered non-pathogenic in cattle (Cray et 

al., 1995; Dean-Nystrom et al., 1997), several Salmonella serotypes are considered pathogens 

and capable of causing gastroenteritis, abortion, and other clinical manifestations in cattle (Gay 

et al., 1993; House et al., 1998; Alam et al., 2009; Cummings et al., 2009).  Particular 

Salmonella serogroups or serotypes may be associated with increased pathogenicity in cattle 

(e.g., serogroup B), but more data are needed to understand these relationships (Alam et al., 

2009).  Salmonellosis may contribute to poor health and performance in dairy cattle systems 

(Cummings et al., 2009; Cummings et al., 2010), although few data exist to support this 

association in commercial feedlot cattle (Alam et al., 2009).  Salmonella are also likely 

contributors to morbidity and mortality in feedlot cattle (House et al., 1998; Alam et al., 2009, 

Losinger et al., 1997).  The health and performance impact of Salmonella in cattle may provide a 

direct economic incentive for the industry to expend intervention resources, while the preharvest 

control of E. coli O157 may not garner the direct financial incentives to producers unless beef 

processors reward the use of preharvest interventions. 

The comparative persistence of Salmonella and E. coli O157 within the cattle feedlot 

environment is difficult to assess because of the ubiquitous nature and multiple sources of both 

bacteria in cattle production systems.  Salmonella were able to survive over 150 days in 

experimentally inoculated cattle feces (Sinton et al., 2007), and Franz et al. (2005) determined 

that Salmonella Typhimurium could survive over 133 days in cattle feces (Franz et al., 2005).  E. 

coli O157 can also survive in experimentally inoculated feces for up to 70 days (Wang et al., 

1996) and in manure slurry for up to 21 months (Kudva et al., 1998).  Water troughs and cattle 

feed also are likely sources of Salmonella and E. coli O157 within the feedlot environment 

(Hancock et al., 1998; LeJeune et al., 2001; Van Donkersgoed et al., 2001; Davis et al., 2003; 
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Dodd et al., 2003; Sargeant et al., 2003).  Wildlife and flies also may be important vectors for E. 

coli O157 and Salmonella, especially as mechanisms for persistence, in cattle production 

environments (Hancock et al., 1998; Kobayashi et al., 1999; Olsen et al., 2000; Kirk et al., 2002; 

Renter et al., 2006).   Since feedlot cattle can defecate approximately 15 kg of feces per day 

(Barker et al., 2002) and shed concentrations over 103 or 104 CFU E. coli O157 or Salmonella/g 

feces (Fegan et al., 2004; Fegan et al., 2005; Arthur et al., 2009), non-cattle pathogen sources  

are likely to contribute relatively less to feedlot environment contamination.   More data are 

needed to better understand the persistence of E. coli O157 and Salmonella within cohorts of 

feedlot cattle. 

Some cross-sectional studies have shown a negative association between the fecal 

prevalence of Salmonella and E. coli O157 within cohorts of cattle.  Smith et al. (2005) noticed 

this apparent inverse relationship when manila rope devices were used to assess the presence of 

Salmonella and E. coli O157 within feedlot cattle cohorts (Smith et al., 2005; Smith et al., 2005).   

Cohorts of cattle were less likely (OR = 0.58, CI 0.41 – 0.83) to be positive for E. coli O157 

when they were positive for Salmonella.  This negative association should not imply a specific 

cause; the effect could be attributed to a microbiological interaction between the two organisms 

within individual animals, microbial competition in samples during the enrichment phase of the 

isolation protocol, or different risk factors for these organisms at the cohort level.  A randomized 

controlled trial designed to determine the effects of feeding distiller’s grains and dry-rolled corn 

on the pen-floor fecal prevalence of E. coli O157 and Salmonella in feedlot cattle did not reveal 

any association between the prevalence of these organisms (Jacob et al., 2009), but low pathogen 

prevalence and small sample size may have provided low statistical power to detect such an 

association had it existed.  Future studies that measure the fecal prevalence and concentration of 

both organisms at individual- and cohort-levels are needed to investigate potential associations 

between Salmonella and E. coli O157 in beef production systems. 

Preharvest and Harvest Interventions for E. coli O157 and Salmonella 
Several preharvest interventions may have similar effects on the fecal shedding of 

Salmonella and E. coli O157 in feedlot cattle.  Since both genera are facultative anaerobic gram-

negative bacteria of the family Enterobacteriaceae, effective non-specific preharvest control 

strategies that target both organisms may be plausible.  Improvements in cattle pen hygiene, 
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including water troughs and feed bunks, and biosecurity measures could impact the prevalence of 

both Salmonella and E. coli O157; yet data showing significant effects of environmental 

measures in cattle feedlots are limited (Smith et al., 1997).  Furthermore, cattle feedlots have 

limited, realistic capabilities for preventing the introduction of pathogens and controlling 

exposure to pathogens (Brandt et al., 2008).  Some have argued that preharvest interventions 

could be negated by cross contamination that occurs during transport and lairage (Koohmaraie et 

al., 2007), yet some studies have reported a lower prevalence of E. coli O157 on cattle hides 

(Fegan et al., 2009) and feces (Dewell et al., 2008) at harvest compared to pre-transport to 

harvest.  Some dietary preharvest interventions that target facultative anaerobic bacteria, such as 

feeding sodium chlorate, may be effective in controlling both Salmonella and E. coli O157 in 

cattle (Anderson et al., 2000), but further studies are needed to assess these effects.  Preharvest 

interventions that are effective in mitigating the risks of both E. coli O157 and Salmonella may 

help further prevent foodborne illnesses associated with consumption of contaminated beef 

products.   

Current dietary interventions for E. coli O157 in cattle have been reviewed (Jacob et al., 

2009; Berry et al., 2010), but relatively less is known regarding dietary interactions or 

interventions for Salmonella in cattle (Losinger et al., 1997).  The colonization of cattle with E. 

coli O157 may be affected by diet-related conditions (e.g., volatile fatty acid concentration and 

pH) within the gastrointestinal tract (Depenbusch et al., 2008).  Potential dietary interventions 

for E. coli O157 in cattle include modifications in grain type (Buchko et al., 2000; Jacob et al., 

2009) and concentrate:forage ratios (Tkalcic et al., 2000), feeding seaweed products (e.g., 

Ascophyllum nodosum)  (Braden et al., 2004), and phenolic compounds (Jacob et al., 2009).  

However, feeding 2% Ascophyllum nodosum did not appear to lower the fecal prevalence of 

Salmonella in feedlot cattle (Braden et al., 2004).  More studies are needed to develop a better 

understanding of the impact of dietary interactions and interventions on E. coli O157 and 

Salmonella in beef cattle production systems. 

The effect of direct-fed microbials (DFMs) in reducing the preharvest fecal prevalence of 

E. coli O157 in cattle has been reviewed (Callaway et al., 2004), but few data on the effect of 

DFMs on Salmonella exist in the scientific literature.  Direct-fed microbials are cattle feed 

additives that contain viable microorganisms, commonly Lactobacillus spp. bacteria, and are 

considered to potentially improve animal performance and reduce fecal shedding of E. coli O157 
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in feedlot cattle (Brashears et al., 2003).  Reported efficacy estimates from studies in commercial 

feedlot settings range from 21% to 74% reduction in fecal shedding of E. coli O157 (Brashears et 

al., 2003; Elam et al., 2003; Younts-Dahl et al., 2004; Woerner et al., 2006; Peterson et al., 

2007; Stephens et al., 2007; Tabe et al., 2008; Arthur et al., 2010; Cernicchiaro et al., 2010).  

Recent studies have not shown an effect of DFMs on the fecal shedding of Salmonella in cattle 

(Stephens et al., 2007; Tabe et al., 2008).  Existing data on the effects of DFMs in the preharvest 

control of E. coli O157 in feedlot cattle support the use of these products, but further evaluations 

of DFMs in a variety of commercial feedlot settings may be needed. 

 Bacteriophages are bacteriocidal viruses and obligate parasites of their host bacteria.  

Natural bacteriophages that target E. coli O157 have been found in feedlot cattle feces, manure, 

and water troughs (Callaway et al., 2006; Niu et al., 2009).  Applying bacteriophage to the 

rectoanal junction as well as in drinking water has been shown to reduce E. coli O157 shedding 

in cattle (Sheng et al., 2006).  Oral administration of bacteriophage may be more effective and 

practical than rectal administration (Rozema et al., 2009).  Since there may be differences in the 

lytic ability of specific bacteriophages, combinations (cocktails) may be effective preharvest 

control strategies for E. coli O157 in cattle but further research is needed (Niu et al., 2009).  The 

potential for bacteriophage as a preharvest intervention for Salmonella in feedlot cattle remains 

unclear, but bacteriophages have shown effectiveness in reducing Salmonella colonization in 

broiler chickens (Atterbury et al., 2007).  If further studies provide evidence of significant 

efficacy of these bacteriocidal products, bacteriophages may become commercially available. 

As reviewed by others, sodium chlorate has been investigated as a preharvest intervention 

for E. coli O157 in feedlot cattle (Loneragan et al., 2005; LeJeune et al., 2007), and also has 

potential effects in controlling Salmonella (Anderson et al., 2000).  Enterobacteriaceae are 

facultative anaerobes that use oxygen for aerobic respiration, but undergo fermentation during 

anaerobic conditions.  However, the respiratory nitrate reductase of E. coli O157 and Salmonella 

can allow respiration and covert chlorate to cytotoxic chlorite ions inside the bacteria.  Since 

many other anaerobes do not have nitrate reductase, sodium chlorate is considered a selectively 

bactericidal product that can target E. coli O157 and Salmonella without affecting these other 

anaerobes.  In a small in vivo experiment, chlorate treatment reduced E. coli O157 in cattle 

without altering total anaerobic bacteria counts in feces (Callaway et al., 2002).  An in vitro 

study using bovine rumen fluid suggested that chlorate was bactericidal to E. coli O157 and 
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Salmonella Typhimurium DT104 but not other anaerobic bacteria (Anderson et al., 2000).  

Although an acidified solution of sodium chlorate is approved for use in poultry processing 

(CFR, 2010), it is not yet commercially available as a cattle feed additive.  The commercial 

availability of feed-grade sodium chlorate as a preharvest intervention in feedlot cattle may 

depend on the results of future studies. 

The use of antibiotics in the preharvest control of E. coli O157 and Salmonella remains 

controversial.  Although salmonellosis in individual cattle may be treated with antibiotics, 

concerns over antimicrobial-resistant Salmonella bacteria preclude the prophylactic use of 

antibiotics to control the prevalence of Salmonella in asymptomatic cattle (House et al., 1998).  

Neomycin sulfate can decrease the fecal shedding of E. coli O157 in cattle (Elder et al., 2002; 

Woerner et al., 2006); however, neomycin sulfate is an aminoglycoside antibiotic that is closely 

related to several antibiotics frequently used in human medicine.  Hence, it is approved to treat 

bacterial gastrointestinal infections in cattle, but not to control E. coli O157.  Because of the risk 

of contributing to antimicrobial resistance in livestock and human foodborne pathogens, 

antimicrobials for preharvest control of Salmonella and E. coli O157 is not likely a viable 

consideration. 

Vaccines are commercially available for the control of E. coli O157 and Salmonella in 

cattle.  There are two types of vaccines for E. coli O157 in cattle; one vaccine technology targets 

the siderophore receptor and porin protein (SRP®) and another targets the type III secreted 

protein mechanisms of E. coli O157 bacteria.  The E. coli O157 SRP® vaccine stimulates cattle 

to produce antibodies against the siderophore receptors and porin proteins of E. coli O157 

bacteria, which are needed to transport iron into E. coli O157 cells.  Without an active iron 

transport mechanism, these cells die from lack of iron because iron is required for normal 

bacterial cell metabolism.  The vaccine has been shown to reduce fecal prevalence and 

concentration of E. coli O157 in inoculated calves (Thornton et al., 2009), but has not been 

evaluated extensively in commercial feedlot settings (Fox et al., 2009; Thomson et al., 2009).  

The Type III secreted protein vaccine works on the principle that Type III secreted proteins are 

required for E. coli O157 colonization of the terminal rectum in cattle.  In previous studies, 

vaccinated cattle were less likely to shed E. coli O157 in the feces and less likely to be colonized 

in the terminal rectum (Peterson et al., 2007; Moxley et al., 2009; Smith et al., 2009; Smith et 

al., 2009).  The SRP® technology also has been used to produce a vaccine for Salmonella 
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Newport in cattle.  This Salmonella Newport SRP® vaccine may generate cross protection from 

other Salmonella serotypes and one study showed a decrease in the fecal prevalence of 

Salmonella in cull dairy cows (Loneragan et al., 2009).  Two other studies demonstrated no 

significant effect of the Salmonella Newport SRP® vaccine on fecal shedding of Salmonella in 

dairy cattle (Heider et al., 2008; Hermesch et al., 2008).  However, one of these studies did 

demonstrate higher milk production and lower somatic cell counts during the first 30 days of 

lactation in cattle administered the Salmonella Newport SRP® vaccine than in cattle not 

administered the vaccine (Hermesch et al., 2008). The reported efficacy of E. coli O157 vaccines 

also has varied, ranging from no significant effect (Van Donkersgoed et al., 2005) to studies with 

significant effects and vaccine efficacy up to 85% (Potter et al., 2004; Peterson et al., 2007; 

Moxley et al., 2009; Smith et al., 2009; Thomson et al., 2009).  Further investigations evaluating 

the effects of the Salmonella Newport SRP® and E. coli O157 vaccines are needed to determine 

the impact of these vaccines in the preharvest control of Salmonella and E. coli O157 in beef 

production systems.    

Several harvest-level interventions for Salmonella and E. coli O157 appear to be effective 

in reducing the risk of beef contamination.  Although seldom considered a contamination 

intervention, the Humane Slaughter Act of 1958 mandates slaughter methodology that is further 

detailed in the Code of Federal Regulations (2005).  Food Safety and Inspection Service 

inspectors prevent non-ambulatory or sick animals from entering the harvest process, and cattle 

in lairage and movement corridors are kept calm and ensured safe footing.  These steps help 

minimize hide contamination and safeguard cattle welfare.  Several good manufacturing 

processes (GMPs) are endorsed by regulatory agencies and the beef processing industry that 

provide specific guidance in preventing the contamination of beef products throughout the 

harvest process.  As reviewed by Fung et al. (2008), established guidelines for proper stunning, 

exsanguination, hide removal, bung tying, evisceration, and carcass handling/storage are critical 

points in preventing carcass contamination (Fung et al., 2008).  Harvest interventions to prevent 

or mitigate contamination of cattle carcasses include hide washing, knife trimming, vacuuming, 

steam pasteurization, carcass rinsing, and spray chilling (Nutsch et al., 1997; Phebus et al., 1997; 

Huffman, 2002; Fung et al., 2008).  Although harvest interventions are not the focus of this 

literature review, these methods and technologies are critical in reducing the risk of carcass 

contamination.  
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Substantial research has focused on cattle hide washing and carcass rinsing as harvest 

interventions for microbial pathogens.  Most hide wash systems involve cabinets that deliver a 

high volume of high-pressure water for a specified amount of time as the hide-on carcass moves 

through the processing line (Bosilevac et al., 2005; Arthur et al., 2007).  Studies in commercial 

harvest facilities have reported a significant hide wash effect on reducing E. coli O157 on hides; 

reported hide wash efficacy has ranged from 39 to 62% reduction in the prevalence of E. coli 

O157 on cattle hides (Bosilevac et al., 2004; Bosilevac et al., 2005; Arthur et al., 2007).  Carcass 

rinsing generally involves spraying carcasses with hot water, organic acids or quaternary 

ammonium compounds (e.g., cetylpyridinium chloride, lactic acid).  Although carcass rinse 

studies often use different rinses and methods, reported carcass rinse efficacies range from 35% 

to 98% in reducing the prevalence of E. coli O157 (Elder et al., 2000; Arthur et al., 2004; 

Bosilevac et al., 2006).  Escherichia coli O157 appears to be a common model for hide wash or 

carcass rinse intervention studies.  Few studies have examined the effects of harvest 

interventions on Salmonella prevalence on hides and carcasses, but these interventions are likely 

to have similar effects on these gram negative organisms.  An in vitro hide wash study showed 

that aerobic plate counts and Enterobacteriaceae counts were reduced by 2.1 and 3.4 log 

CFU/100 cm2, respectively, following a simulated hide wash using sodium hydroxide and a 

proprietary surfactant (Bosilevac et al., 2005).  Bosilevac et al. (2004) demonstrated a 1.1 log 

CFU/100 cm2 reduction in Enterobacteriaceae counts on carcasses following hide wash using 1% 

cetylpyidinium chloride in a commercial beef processing plant (Bosilevac et al., 2004).  Future 

studies need to quantify effects of multiple intervention hurdles upon the risk of carcass 

contamination, measured by both prevalence and concentration, given various cattle hide 

pathogen loads of Salmonella and E. coli O157 before harvest.  Improvements in cattle hide 

washing and carcass rinsing may significantly reduce the risk of contamination of beef products. 

The feasibility of single or multiple preharvest interventions for E. coli O157 and 

Salmonella may depend on their ability to reduce the colonization of cattle so that the effective 

thresholds of harvest interventions are not exceeded.  Little is known about the impact of 

preharvest interventions on risk of contamination of carcasses in conjunction with harvest 

interventions.  Factorial study designs to assess preharvest intervention combinations may not be 

parsimonious approaches to elucidate multiple-hurdle preharvest control strategies.  

Mathematical simulation modeling may be another method to assess the impacts of multiple 
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interventions within a complex system and may clarify assumptions about empirical data 

(Hethcote, 2009).   Simulation models of preharvest and harvest interventions for E. coli O157 in 

beef production systems have been published (Wood et al., 2007; Signorini et al., 2009; 

Signorini et al., 2010).  Ayscue et al. (2009) examined the population dynamics of E. coli O157 

within feedlot cattle pens based upon modeled E. coli O157 habitats in cattle, water, feed, and 

the remaining feedlot pen environment (Ayscue et al., 2009).  Another study used economic 

simulation modeling to assess risk of E. coli O157 foodborne illness in humans and associated 

costs following vaccination of feedlot cattle for E. coli O157 (Withee et al., 2009).  A recent 

study in Argentina utilized Monte-Carlo risk analysis techniques to assess the risk of human 

illness from STEC based on postharvest interventions (Signorini et al., 2009).  Models of these 

complex biological systems can provide important information, yet their usefulness can be 

limited by model framework and input parameter selection.  Regardless, mathematical models 

may be a feasible way to investigate complex relationships in the epidemiology of Salmonella 

and E. coli O157 in beef production systems. 

Regulatory Agency Efforts to Mitigate Risk of E. coli O157 and Salmonella 

within Beef Production Systems  
Federal regulation of the beef industry promotes reduction in contamination risk in retail 

beef products.  Regulation merely oversees industry practices to mitigate this risk; regulatory 

agencies are not exclusively responsible for risk outcomes (Taylor et al., 2001).  Inherently, 

regulatory agencies don’t assume responsibility; rather, they allocate responsibility to the 

industry (Dodd et al., 2009).  Regulatory agencies invoke industry action by sampling and 

testing products, providing guidance of approved processing practices, and allowing financial 

and marketing consequences through public reporting of foodborne pathogen testing (Withee et 

al., 2008).  In response, often preemptively, beef processors conduct their own foodborne 

pathogen testing and implement multiple processing-level interventions. 

 Although the USDA FSIS does not have the authority to demand product recalls when a 

product has been contaminated with a foodborne pathogen such as Salmonella or E. coli O157, 

FSIS has achieved industry action by requesting voluntary product recalls as a means to protect 

public health (FSIS, 2006).  Typically, beef processors incur high costs during a recall; consumer 

risk awareness is heightened and demand for beef products often declines (Marsh et al., 2004).  
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Hence, meat recalls not only provide incentive to improve manufacturing processes and prevent 

contamination of beef, but they also provide a reasonable method to protect consumers from high 

contamination risk.  The proper communication of this risk is paramount to creating realistic 

expectations of regulatory agencies by consumers, retailers, and other stakeholders (Dodd et al., 

2009).    

Ground beef processing inherently increases the risk of contamination by increasing the 

surface area of the product available to contamination.  Escherichia coli O157 was declared an 

adulterant in ground beef in 1994, allowing beef processors and retailers to be held legally liable 

for the sale of beef products contaminated with E. coli O157.  Although Salmonella has not been 

declared an adulterant in beef, FSIS still establishes performance standards and tests for the 

pathogen in randomly selected beef products.  Regardless of adulterant declaration status, the 

presence of either organism in beef products can constitute immediate action, including discard 

or recall of potentially contaminated products.  The Food Safety and Inspection Service has 

conducted a formal risk assessment for E. coli O157 but not for Salmonella in ground beef 

(FSIS, 2001).  The risk assessment justifies the need for regulatory oversight and reviews the 

scientific literature to characterize the risk of E. coli O157 in ground beef.  Formal risk 

assessments also may be needed for Salmonella and non-O157 STEC in ground beef in order to 

guide regulatory policies concerning these risks.  

Conclusion 
This review of the scientific literature regarding the epidemiology of Salmonella and 

Escherichia coli O157 in the preharvest phase of beef cattle production exposes critical 

knowledge gaps in intervention efficacy and the resulting relationship among fecal, hide, and 

carcass prevalence and concentration of these pathogens.  In order to identify and validate 

preharvest and harvest interventions that may significantly decrease the risk of beef 

contamination and subsequent risk of human illness, future research needs to determine the 

important contributors to these risks.  Understanding the transfer of E. coli O157 and Salmonella 

from cattle feces to hides to carcasses likely depends on knowledge of both pathogen prevalence 

and concentration at each step in the contamination pathway.  Previous research suggests that 

preharvest interventions for Salmonella or E. coli O157 may compliment harvest interventions 

and reduce the risk of carcass contamination, yet data are limited on the impact of preharvest 
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interventions on the prevalence and concentration of these organisms throughout the 

contamination pathway.  Several prehavest interventions have not been sufficiently evaluated in 

commercial feedlot settings with different geographical, animal source, hygiene, and seasonal 

variables.  Furthermore, combinations of preharvest interventions used as multiple hurdles in the 

contamination pathway have not been evaluated.  Data regarding the transmission and 

persistence of E. coli O157 and Salmonella within cohorts of cattle are sparse.  Further cohort-

level studies are needed to develop a better understanding of the epidemiology of Salmonella and 

E. coli O157 and evaluate the impact of specific preharvest interventions in commercial feedlot 

cattle.  Since observational studies and randomized controlled trials studies of multiple variables 

are often not feasible, stochastic Monte-Carlo modeling also may be needed to assess the impact 

of combinations of preharvest interventions on the risk of cattle carcass contamination.  This 

epidemiologic research may facilitate significant improvements in the preharvest control of E. 

coli O157 and Salmonella in beef production systems and ultimately reduce the risk of human 

foodborne illness. 
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Abstract 
Objective—To evaluate the effects of a Salmonella Newport siderophore receptor and 

porin protein (SRP) vaccine on cattle health and performance and on the prevalence of fecal 

shedding of Salmonella bacteria in commercial feedlot cattle. 

Animals—1,591 beef cattle. 

Procedures—Cattle were randomly allocated within a replicate (n = 10 replicates [20 

total pens]), administered 2 mL of a Salmonella Newport SRP vaccine (n = 795 cattle) or a 

placebo (796), and revaccinated approximately 21 days after the first administration. Health and 

performance data were recorded by trained feedlot personnel who were blinded to treatment. 

Fresh fecal samples (n = 25) were collected from pen floors on days 0, 60, 120, and within 24 

hours of harvest and were subjected to selective Salmonella spp culture and serotyping by 

laboratory personnel who were blinded to treatment. Pen-level mixed models were used to 

analyze data. 

Results—Significant differences in fecal prevalence of Salmonella bacteria or any health 

and performance variables were not detected between vaccinated and control cattle. Salmonella 

bacteria were recovered from all 10 replicates, and cumulative prevalence estimates ranged from 
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1.5% to 22%. Overall prevalence of fecal shedding of Salmonella bacteria was 10.2% and 10.9% 

in vaccinated and control cattle, respectively. Overall morbidity was 34.8% for both vaccinated 

and control cattle. Overall mortality risks were 1.9% and 1.1% for vaccinated and control cattle, 

respectively. 

Conclusions and Clinical Relevance—In this setting, administration of the Salmonella 

Newport SRP vaccine in feedlot cattle had no effect on fecal prevalence of Salmonella bacteria 

or cattle health and performance.  

Abbreviations 
ADG  Average daily gain 

CI  Confidence interval 

CG  Cost of gain 

F:G ratio Feed-to-gain ratio 

SRP   Siderophore receptor and porin protein 

Introduction 
             Salmonella bacteria are ubiquitous in several food production systems and environments 

(Rodriguez et al., 2006).  Certain Salmonella serotypes are a significant cause of foodborne 

illness in humans and cause over 30% of foodborne deaths associated with bacterial infection in 

the United States (Mead et al., 1999).  Salmonella bacteria are acquired by the fecal-oral route of 

transmission, and a few major human outbreaks have been associated with consumption of 

Salmonella-contaminated beef (CDC, 1995a; CDC, 1995b; CDC, 2003; CDC, 2006a).  

Salmonella bacteria can be found on cattle hides and in the feces of cattle (Barham et al., 2002; 

Beach et al., 2002; Fegan et al., 2005), which may lead to the contamination of beef products 

during the harvest process. 

Infection with Salmonella bacteria can cause clinical or subclinical illness in cattle that 

may increase production costs.  A paucity of evidence exists for the clinical or subclinical effects 

of Salmonella infections in feedlot production systems (Wray et al., 2000; Smith, 2002; Alam et 

al., 2009).  Infected animals may be asymptomatic, yet still shed Salmonella bacteria in their 

feces; therefore, asymptomatic cattle may serve as a reservoir for transmission to uninfected 

cattle (or other mammals) (Smith, 2002).  Preharvest intervention programs that would reduce 
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the prevalence of Salmonella bacteria in the feedlot environment may enhance the safety of beef 

and, in addition, may improve the health and performance of cattle (Smith et al., 1997).  While 

production management factors may affect the prevalence of Salmonella bacteria in the feces of 

cattle (Losinger et al., 1997; Smith et al., 1997), it is critical that new strategies are developed to 

effectively minimize the risks associated with this genus of bacteria (Callaway et al., 2008).  A 

novel vaccine technologya that uses siderophore receptors and porin proteins of Salmonella 

bacteria was recently described (Stevens et al., 2005) and has the potential to control the 

prevalence of Salmonella bacteria in several animal species. 

This novel vaccine technology makes use of an iron transport mechanism of gram-

negative bacteria, which is unique to certain bacterial species but is potentially conserved among 

Salmonella serotypes (Payne et al., 1978; Neilands, 1995).  The method of action of the vaccine 

is to induce the production of antibodies against siderophore receptors and porin proteins that are 

located on the outer membrane of certain gram negative bacteria.  Once anti-siderophore receptor 

and anti-porin protein antibodies bind to the corresponding outer membrane proteins, bacteria 

will be unable to transport iron across the cell membrane.  Because iron is critically important for 

cell homeostasis, bacteria will die as a result of a lack of iron caused by the inhibition of iron 

transport mechanisms (Kingsley et al., 1995). 

A commercially available vaccinea that has the SRP technology incorporated into its 

formulation (Salmonella Newport SRP vaccine) is approved for use in cattle for the control of 

fecal shedding and disease associated with Salmonella enterica subsp. enterica serovar Newport.  

Previous authors (Heider et al., 2008; Hermesch et al., 2008) have discussed anecdotal reports 

suggesting the use of this vaccine is effective for the control of clinical salmonellosis in dairy 

cattle.  One study (Loneragan et al., 2009) has indicated that the prevalence of Salmonella 

bacteria in the feces of cull dairy cows that were administered the Salmonella Newport SRP 

vaccine (7.6%) was significantly lower than that of the prevalence in cull dairy cows that were 

not administered the vaccine (39.2%).  However, another study (Heider et al., 2008) 

demonstrated no significant effect of the administration of the Salmonella Newport SRP vaccine 

on subclinical shedding of Salmonella bacteria in the feces of dairy cattle.  Another study 

(Hermesch et al., 2008) in dairy cattle did not demonstrate a significant effect of the 

administration of the Salmonella Newport SRP vaccine on fecal shedding, but did demonstrate a 

production-enhancing effect in cattle administered this vaccine; milk production was 3% higher 
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and somatic cell counts were 30% lower during the first 30 days of lactation in cattle 

administered the vaccine than in cattle not administered the vaccine.  In addition, SRP 

technology has been used to reduce the shedding of Escherichia coli O157:H7 in the feces of 

cattle (Thornton et al., 2009). 

To the authors’ knowledge, studies investigating the effects of the administration of the 

Salmonella Newport SRP vaccine in beef cattle housed in feedlot production environments do 

not exist. The purpose of the randomized and blinded trial reported here was to evaluate the 

effects of the Salmonella Newport SRP vaccinea on cattle health and performance and prevalence 

of shedding of Salmonella bacteria in the feces of vaccinated feedlot cattle.  

Materials and Methods 

Cattle 

An approximately 30,000-head capacity commercial feedlot in south central Kansas was 

selected for the location of the study. A sufficient number of cattle (n = 1,591) to fill 20 pens was 

purchased for inclusion in the study.  Feeder calves that had mean weight of 227 to 250 kg were 

procured through typical industry means used by the participating feedlot and arrived in 16 

truckloads to the feedlot between October 16, 2008 and October 25, 2008.  Cattle originated 

from livestock markets and ranches located in Kansas, Oklahoma, South Dakota, and Texas.  All 

cattle were managed according to the feedlot’s standard health, feeding, and management 

protocols that were developed and applied at the discretion of trained feedlot personnel and the 

consulting veterinarian and nutritionist.  Cattle were fed a ration from a series of 4 step-up diets, 

which were primarily comprised of alfalfa hay, distillers grains, and steam-flaked corn, from the 

time of entry (receiving) to harvest (finishing); the 4 sequential step-up diets had roughage-

concentrate proportions of 46%-54%, 31%-69%, 12%-88%, and 6%-94%, respectively. 

Individual animal weights were measured and recorded on days 0 and 21.  Pen weights were 

collected at feedlot arrival and preharvest (within 24 hours of transport to the slaughter facility).  

This study was approved by the Institutional Animal Care and Use Committee at Kansas State 

University.   
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Sample size determination 

Sample size estimates were based on the ability to determine a difference in fecal 

shedding prevalence of Salmonella bacteria at the time of preharvest sample collection.  On the 

basis of our preliminary data and other reports (Dargatz et al., 2003; Kunze et al., 2008; Alam et 

al., 2009), we estimated the mean apparent prevalence of Salmonella bacteria at the time of 

summer preharvest sample collection to be 40% (range, 0%–80%) for cattle not vaccinated with 

the Salmonella Newport SRP vaccine.  We wanted to detect a reduction in apparent prevalence 

of Salmonella bacteria such that mean prevalence in pens of cattle vaccinated with the 

Salmonella Newport SRP vaccine was 25%.  Sample size estimates were generated by use of 

simulation and linear mixed models.b  We simulated pen prevalence data as appropriate for the 

study design, varied the number of pens and samples collected per pen, and analyzed these data 

by use of mixed models; P values for each simulation-analysis were used to generate a graphical 

output displaying the power to detect hypothesized differences and the sample size where the 

total number of samples and the number of pens for each treatment were displayed.  We 

estimated that 20 pens and 25 samples per pen (at the time of preharvest sampling) would be 

sufficient to detect a difference, as described, with a type I error rate ≤ 0.05 and a type II error 

rate < 0.20. 

Study design 

On arrival to the feedlot, cattle were allocated to pairs (replicates) of study pens.  Cattle 

within each arrival lot were systematically allocated by groups of 3 animals into 2 holding pens 

until each holding pen held the appropriate number of cattle to fill the corresponding study pens.  

Then, pen weights were obtained and cattle were moved to permanent study pens.  The 

allocation process continued until 20 total pens (10 pens/treatment) were filled.  Replicates of 

study pens were adjacently located and the characteristics (eg, open-air and dirt-floor) of all pens 

were typical for the industry standard.  For allocation to treatment groups, 1 pen from each 

replicate was randomly selected by coin toss to be administered the Salmonella Newport SRP 

vaccinea (vaccinated pen) and the other pen was selected by default to be administered a placeboc 

(control pen). 

Cattle were processed by individual pen within 48 hours after arrival to the feedlot. On 

the initial processing day (day 0), all cattle were administered a dose of a modified-live 
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respiratory virus vaccine,d Mannheimia haemolytica toxoid,e ivermectin,f tilmicosin phosphate,g 

and 2 mL of the Salmonella Newport SRP vaccinea or placeboc (SC in the right neck), according 

to manufacturers’ recommendations.  On day 21, cattle in the vaccinated pens or control pens 

were administered a second dose of the Salmonella Newport SRP vaccinea or the placebo,c 

respectively; in addition, cattle were administered the first of 2 hormone implantsh and a second 

modified-live respiratory virus vaccine.i In order to blind feedlot processing personnel to the 

assignment of cattle to treatment group, labels of the Salmonella Newport SRP vaccine and 

placebo vials were covered and coded as vaccine A and vaccine B, respectively.  Furthermore, 

these products had the same fluid color and consistency and were both contained in 100-mL 

vials.  In addition, personnel that administered the treatment were not the same personnel that 

were responsible for assessing cattle health and performance during the study; personnel 

responsible for assessing cattle health and performance also were blinded to treatment group.  At 

approximately 80 days prior to harvest, cattle were administered a third modified-live respiratory 

virus vaccine,j an external parasiticide,k and a second hormone implant.h  

Fecal sample collection 

Freshly voided fecal samples (n = 25/ pen) were collected from the pen floor on days 0, 

60, 120, and preharvest.  Each sample was collected by hand by use of a clean rectal sleeve, and 

appropriate precautions were observed to avoid samples potentially being contaminated by other 

feces or pen floor material.  After each sample was collected, the rectal sleeve was inverted and 

tied, labeled, and placed in a refrigerated (4oC) cooler until processing at a laboratory.l  

Laboratory personnel were blinded to treatment groups during the entire study period. 

Bacterial isolation and serotyping 

A previously reported (Barkocy-Gallagher et al., 2002) standard isolation protocol was 

used to detect Salmonella bacteria in fecal samples.  Ten grams of feces was enriched in 90 mL 

of tryptic soy brothm in 532-mL stand-up sample bags.n  The stand-up sample bags then were 

incubated at 25oC for 2 hours, 42oC for 6 hours, and at 4oC overnight.  Samples were agitated 

and 10 mL of fecal slurry from each sample bag was added to a culture solution that contained 

90 mL of tetrathionate brothm and 1.8 mL of iodine.o  The culture solution then was incubated for 

24 hours at 37oC. After incubation, 1 mL of the culture solution was subjected to 

immunomagnetic separation with anti-Salmonella magnetic beads.p  The immunomagnetic 
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separation product was adjusted to a final volume of 100 µl with PBS,q transferred into 10 mL of 

Rappaport-Vassiliadis  broth,l and incubated at 42oC for 16 to 18 hours.  The Rappaport-

Vassiliadis cultures were vortexed and 50 µl of each culture was spread plated onto Hektoen 

Enteric agar platesm and then incubated at 37oC for 24 hours.  Three colonies that had 

morphology consistent with Salmonella spp were streaked onto blood agarr and incubated for 24 

hours at 37oC.  At least 1 isolate from each sample was tested for the Salmonella polyvalent O 

antigen, as well as serogroups B, C1, C2, D1, D2, and E, by slide agglutination.m  Isolates, which 

were presumed to be Salmonella spp  based on colony morphology observed on Hektoen Enteric 

agar and agglutination with polyvalent O antisera, were stored at –80oC on cryoprotection beadss.  

One isolate from each sample was sent to a reference laboratoryt for serotyping. 

Statistical analysis 

All pen-level cattle health and performance data were collected via the feedlot’s 

operational database.  Study data were recorded and descriptive analyses were performed by use 

of a commercially available spreadsheet program.u  Exact 95% binomial CIs were calculated for 

proportions by use of a function included in the spreadsheet programu that returns the inverse of 

the cumulative β probability density function for a specified β distribution.  All multivariable 

analyses of fecal shedding and cattle health and performance data were performed by use of a 

commercial software programv via general and generalized linear mixed models as appropriate 

for normal and binomial distributions (Dohoo et al., 2003).  Logistic regression models were 

used to assess dichotomous outcomes (eg, morbidity, mortality, and fecal shedding of 

Salmonella bacteria) among vaccinated and control pens, while including pen within replicate as 

a random effect.  A categorical variable representing sampling times (days 0, 60, 120, and 

preharvest) was used when assessing repeated pen-measures of fecal prevalence at all 4 sampling 

periods to allow the investigation of potential time-dependent effects of the vaccine.  A first-

order autoregressive correlation structure was used, which is a standard approach for repeated 

measures over equal time periods that allows for power decay of correlations (Dohoo et al., 

2003).  General linear mixed models were used to compare cumulative data for pen-level 

continuous outcomes (eg, ADG, F:G ratio, and treatment costs) among vaccinated and control 

pens, while controlling for the lack of independence within a replicate by use of a random 

intercept model.  A value of P < 0.05 was used to indicate significance in all analyses.  Fit of a 
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model was assessed by evaluating plots of residuals, and for logistic models, the ratio of the 

deviance of the model to the degrees of freedom of the model was also assessed. 

Results 
Mean weight of cattle on arrival was 256 kg (n = 1,591).  Cattle were allocated to the 

vaccinated (n = 795) and control (796) groups with 10 pens for each treatment group.  Data for 

health and performance of vaccinated and control cattle were summarized (Table 2.1).  There 

was no significant (P = 0.80) difference in mean weight on arrival between treatment groups 

within replicates.  The number of cattle per study pen ranged from 61 to 105 (mean, 79.5; 

median, 68) and 61 to 105 (mean, 79.6; median, 67) for the vaccinated and control pens, 

respectively.  Mean number of days on feed for the vaccinated and control pens were 228.8 

(median, 229) and 228.9 (median, 229) days, respectively, and did not differ statistically. 

Dates of the 4 fecal sampling periods for pairs of pens were October 17 and 24, 2008 

(day 0), December 12, 2008 (day 60), February 13 and 20, 2009 (day 120), and May 28 and June 

18, 2009 (preharvest).  The single sampling date for day 60 was to accommodate closure of the 

participating laboratory for a holiday.  The within-pen fecal prevalence of Salmonella bacteria 

following randomization after arrival (day 0; Figure 2.1) ranged from 0% (0/25) to 48% (12/25) 

and differed significantly (P < 0.01) among replicates, but did not differ significantly (P = 0.73) 

between control and vaccinated pens.  Overall prevalence of fecal shedding of Salmonella 

bacteria across all sampling times and treatment groups was 10.6% (211/2,000).  Of the 211 

Salmonella isolates characterized, most were from serogroups E (n = 166), C1 (20), and C2 (9; 

Table 2.2).  Predominant serotypes recovered were Anatum (n = 133), Lexington var 15+ (22), 

Lille (11), Newport (8), and Senftenberg (6). 

Salmonella bacteria were recovered from all 10 replicates of pens for both treatment 

groups, and cumulative prevalence estimates across all sampling times ranged from 1.5% to 

22%.  Unadjusted cumulative prevalence of fecal shedding was 10.2% (95% binomial CI; 8.3% 

to12.1%) and 10.9% (95% binomial CI; 9.0% to 12.1%) for vaccinated and control pens, 

respectively.  Crude prevalence estimates for each sequential sampling time across all pens were 

10.0% (95% binomial CI; 7.5% to 13.0%), 2.4% (95% binomial CI; 1.3% to 4.2%), 29.4% (95% 

binomial CI; 25.4% to 33.6%), and 0.4% (95% binomial CI; 0.1% to 1.4%).  Multivariable 

analysis indicated significant (P < 0.01) differences in the prevalence of Salmonella bacteria 
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among sampling times.  However, there was no significance (P = 0.89) difference between 

treatment groups and no significant (P = 0.12) treatment by sampling time interaction.  These 

effects, or lack thereof, were evident in the display of the raw data for the fecal prevalence of 

Salmonella bacteria (Figure 2.1). 

Unadjusted summary data of common feedlot cattle health and performance indices were 

summarized (Table 2.1).  Furthermore, model-adjusted estimates for cumulative incidence risks 

of adverse health outcomes for all vaccinated and control cattle were calculated (Figure 2.2).  On 

the basis of multivariable models accounting for replicates, outcomes did not differ significantly 

between vaccinated and control pens (Table 2.1).  Overall morbidity in study cattle was 34.8% 

and ranged from 15.9% to 58.7% within pens; however, there was no significant difference 

among pens (within replicates) in different treatment groups.  Illness in the study population was 

primarily caused by respiratory tract disease and lameness; furthermore, there were no suspected 

or confirmed cases of salmonellosis.  Overall, only 2.1% of the vaccinated cattle and 1.9% of the 

control cattle were treated for illness on > 1 occasion.  No significant difference was detected 

among pens in different treatment groups for the number of cattle requiring treatment on > 1 

occasion.  Overall mean treatment (medication) costs in vaccinated and control cattle were $5.91 

and $5.85 per head, respectively, and no significant difference in mean treatment costs were 

detected between pens in different treatment groups.  During the study, 13 cattle were culled 

because of illness, and no significant difference in culling was detected among pens in different 

treatment groups.  Overall mortality in the study population was 1.5% and ranged from 0% to 

4.9% within pens.  Overall mortality in pens of vaccinated and control cattle did not differ 

significantly.  

Significant differences for any of the standard measures of feedlot performance were not 

detected among pens of vaccinated and control cattle (Table 2.1).  On the basis of analysis of 

pens within replicate, ADG for pens of vaccinated and control cattle did not differ significantly.  

When adjustments were made for losses related to dead and culled cattle, ADG still did not differ 

significantly among pens between treatment groups.  The F:G ratio, which is calculated as the 

amount of feed (kg) delivered to the amount of weight gain (kg), and the adjusted F:G ratio for 

vaccinated and control cattle did not differ significantly.  Overall CG and adjusted CG also did 

not differ significantly between treatment groups.  On further multivariable analysis of pen-level 
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data, mean hot carcass weight, carcass yield, and carcass price adjustment for pens of vaccinated 

and control cattle did not differ significantly. 

Discussion 
Our study of feeder cattle in a commercial feedlot production system revealed no 

significant differences between cohorts of vaccinated and control cattle in the prevalence of fecal 

shedding of Salmonella bacteria or cattle health and performance variables.  These findings may 

have been caused by several factors.  First, there may have been a lack of efficacy of the 

Salmonella Newport SRP vaccine in cattle located in this type of a production setting.  Second, 

there may have been an insufficient number of Salmonella bacteria in this environment which 

may have reduced the ability to detect differences between the treatment groups.  Last, the use of 

the Salmonella Newport SRP vaccine in a subset of the population (10 pens) may have reduced 

the overall exposure of cattle to Salmonella bacteria in the portion of the feedlot where the pens 

included in this study were located; thus, all cattle in these study pens may not have been 

exposed to a sufficient number of Salmonella bacteria to demonstrate vaccine efficacy.  

The last explanation, which also may be formally characterized as herd immunity, was 

suggested by investigators of another study (Hermesch et al., 2008) as a plausible explanation for 

low prevalence of Salmonella bacteria in vaccinated and control cattle in a dairy production 

system (Hermesch et al., 2008).  A significant herd immunity effect on the fecal shedding of E. 

coli O157 in feedlot cattle also has been described (Peterson et al., 2007).  In that study, 

unvaccinated feedlot cattle were 59% less likely to have detectable levels of E. coli O157 in their 

feces when housed with cattle that were vaccinated for E. coli O157 (Peterson et al., 2007); 

although this study of E. coli O157 was not a pen-level investigation of the shedding of 

Salmonella bacteria, it suggests that herd immunity may be an important factor when evaluating 

the effect of a vaccine on fecal bacteria in feedlot production systems.  Therefore, it may now be 

evident that an evaluation of vaccinated and control cattle located in adjacent pens within a 

single segment of a feedlot is not an ideal study design for assessing the efficacy of vaccines for 

E. coli O157 or Salmonella bacteria. 

The results of a recent observational study (Loneragan et al., 2009) indicated that the 

administration of the Salmonella Newport SRP vaccine may reduce the shedding of Salmonella 

bacteria in the feces of cull dairy cows.  However, results of the study reported here 
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demonstrated similar levels of shedding of Salmonella bacteria in vaccinated and control cattle 

and was consistent with the results of 2 randomized controlled trials (Heider et al., 2008; 

Hermesch et al., 2008) conducted in dairy cattle.  Investigators of 1 of these trials (Hermesch et 

al., 2008) administered the Salmonella Newport SRP vaccine to 75 cows within a 1,200-cow 

dairy herd and did not detect significant differences in fecal shedding of Salmonella bacteria 

between treatment groups; yet, they detected significantly higher milk production and lower 

cumulative somatic cell counts in vaccinated cows.  Investigators of the other trial (Heider et al., 

2008) administered the Salmonella Newport SRP vaccine to 25% of the mature dairy cows 

within two herds that had a history of salmonellosis and did not detect significant differences in 

fecal shedding of Salmonella bacteria between vaccinated and control cattle; health and 

performance variables were not assessed (Heider et al., 2008).  In both trials (Heider et al., 2008; 

Hermesch et al., 2008), an inability to detect a difference in fecal shedding may have been 

affected by herd immunity or the relatively small proportion of cattle vaccinated within herds 

and variability of shedding of Salmonella bacteria in the feces that contributed to a small 

effective sample size for the potential to detect differences.  However, results of these trials 

(Heider et al., 2008; Hermesch et al., 2008) also may indicate a lack of efficacy of the 

Salmonella Newport SRP vaccine for the reduction of fecal shedding of the diverse Salmonella 

serotypes found in bovine production systems.  In the study reported here, Salmonella Anatum 

was predominantly detected while other serotypes, which included Salmonella Newport for 

which the Salmonella Newport SRP vaccine has labeled indications, were detected infrequently 

or rarely.  The distribution and diversity of serotypes that we detected in the present study are 

similar to the findings of other studies (Callaway et al., 2008; Kunze et al., 2008; Alam et al., 

2009; Cummings et al., 2009) of the shedding of Salmonella bacteria in the feces of cattle; 

however, this diversity in Salmonella bacteria may have affected our ability to detect significant 

vaccine effects. 

Fecal prevalence of Salmonella bacteria in the present study was much lower than we 

expected for feedlot cattle in this region, particularly at the time of the preharvest sampling 

(prevalence of < 1%).  Our previous study (Alam et al., 2009) and those of other investigators 

(Dargatz et al., 2003; Loneragan et al., 2005; Kunze et al., 2008) have demonstrated much 

higher fecal prevalence of Salmonella bacteria in feedlot cattle, and thus, our sample size 

calculations were based on an expected prevalence of 40% in non-vaccinated cattle.  The lower 
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prevalence of Salmonella bacteria observed in the present study combined with the extreme 

variability in prevalence among replicates and within replicates over time would have adversely 

affected our ability to detect significant vaccine effects.  However, the 120-day prevalence 

(29.4%) in the study reported here was not low and all but 1 replicate had Salmonella-positive 

fecal samples, which indicates that cattle were broadly exposed to Salmonella bacteria at some 

level during the study period.  Within-pen prevalence of Salmonella bacteria at the time of that 

sampling (day 120) ranged between 0% (0/25) and 80% (20/25), but prevalence estimates among 

pens within replicates were similar.  Given the paired-pen allocation of cattle on arrival, data 

suggest that shedding of Salmonella bacteria is largely affected by cattle source or factors 

associated with arrival at the feedlot, even after the cattle have been in the feedlot for several 

months (Figure 2.1). 

As it was for many other field studies of Salmonella spp. (Barham et al., 2002; Beach et 

al., 2002; Dargatz et al., 2003; Alam et al., 2009), including those studies that evaluated the 

efficacy of the Salmonella Newport SRP vaccine (Heider et al., 2008; Hermesch et al., 2008; 

Loneragan et al., 2009), evaluating the prevalence of fecal shedding of Salmonella bacteria was a 

primary aim of the study reported here.  Although concentrations of Salmonella organisms 

within positive fecal samples and prevalence (and concentration) of Salmonella bacteria on the 

hides of cattle may be important indicators of preharvest food safety (Brichta-Harhay et al., 

2008), we did not measure these indicators in the study reported here.  There may have been a 

significant difference in the concentration of Salmonella bacteria in positive fecal samples even 

though there were no significant differences in prevalence between vaccinated and control pens.  

Determination of the presence or concentration of Salmonella bacteria on cattle hides post-

transport to the slaughter facility also may have revealed differences between cohorts of cattle as 

evidence suggests hide prevalence increases during transport (Barham et al., 2002; Reicks et al., 

2007).  Surprisingly, only 0.4% (2/500) of samples were positive across all pens immediately 

prior to harvest, arguably the most important potential food safety indicator that we measured.  

Given those prevalence results, it is extremely unlikely that determining the concentration of 

Salmonella bacteria within these positive fecal samples (n = 2) would have provided additional 

useful information for the evaluation of vaccine efficacy.  This extremely low prevalence, 

following the much higher 120-day prevalence, again may be perceived as the potential effect of 

herd immunity and reduced overall exposure in the study environment or simply may be because 
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of time-dependent effects that were not measured.  Preharvest samples were collected in the 

present study during the summer months, which is presumably the time of year when the 

shedding of Salmonella bacteria is most common in feedlots (Dargatz et al., 2003). 

Health and performance indicators for cattle included in the present study were typical 

for this type of cattle and production system.  All performance measures were very similar 

among pens in different treatment groups, suggesting that there were no significant vaccine 

effects.  We failed to demonstrate any evidence that the Salmonella Newport SRP vaccine 

affected health and performance variables despite the fact that we analyzed multiple outcome 

variables.  To prevent further multiplicity in the analysis, we assessed potential carcass effects by 

use of a pen-level mean carcass price adjustment, which is an economic index representing 

carcass premiums and discounts associated with USDA quality grade, yield grade, and several 

other carcass variables assessed post-harvest. If the Salmonella Newport SRP vaccine was 

considered an effective preharvest food safety intervention, it would be important to demonstrate 

no adverse effects on cattle health and performance.  In addition, preharvest interventions that 

would enhance the safety of beef by reducing the prevalence of Salmonella bacteria in the 

feedlot environment could theoretically improve cattle health and performance (Smith, 2002). 

In general, adverse health outcomes were not rare in this study population; thus, potential 

health effects of the vaccine could have been demonstrated had they existed.  However, there 

were no reported clinical effects consistent with salmonellosis in the cattle of the present study.  

As described previously (Alam et al., 2009), the lack of health and performance effects could be 

because of an insufficient challenge dose of Salmonella bacteria or diversity among Salmonella 

serotypes.  Subclinical shedding of Salmonella bacteria previously has been associated with 

some adverse health outcomes in feedlot cattle, such as lot-level measures of hospital pen 

mortality and retreatment risks, as well as individual animal case fatality risk for cattle with 

bovine respiratory tract disease (Alam et al., 2009).  However, the effect on case fatality risk was 

only demonstrated for cattle shedding serogroup B Salmonella spp and was not associated with 

overall shedding of Salmonella bacteria.  In addition, that study (Alam et al., 2009) failed to 

show associations between shedding of Salmonella bacteria and several other common health 

variables measured in feedlots; the authors suggested that some Salmonella serotypes might be 

considered commensal bacteria in feedlot cattle.  
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To our knowledge, this is the first study to evaluate the effects of the Salmonella Newport 

SRP vaccine in cattle maintained in a commercial feedlot production setting.  Although we did 

not detect any effects of vaccination with the Salmonella Newport SRP vaccine on the fecal 

prevalence of Salmonella bacteria or cattle health and performance, we recognize that further 

investigation of this vaccine in different cattle production settings could provide evidence of 

vaccine efficacy.  We also recognize that long-term herd vaccination strategies may need to be 

considered in order to affect subclinical fecal shedding in cattle.  This maybe why a recent 

observational study (Loneragan et al., 2009) demonstrated a lower fecal prevalence of 

Salmonella bacteria in cull cows from dairies that had been administered the Salmonella 

Newport SRP vaccine, compared with cull cows in dairies that did not administer the vaccine, 

yet 2 previous experimental trials (Heider et al., 2008; Hermesch et al., 2008) that allocated 

individual dairy cows to receive this same vaccine detected no effect of vaccine administration 

on fecal shedding of Salmonella bacteria.  We also recognize that the lower than expected 

prevalence of Salmonella bacteria in feces combined with the extreme variability in prevalence 

among replicates and within replicates over time may have adversely affected the ability to 

detect significant vaccine effects in the study reported here.  Furthermore, the present study was 

conducted in only 1 commercial feedlot, and prevalence and serotypes of Salmonella bacteria 

vary among feedlots and regions (Dargatz et al., 2003).  Because the control of Salmonella 

bacteria in commercial feedlot production systems may enhance food safety and potentially 

cattle health and performance, further studies are necessary to validate control methods. 
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 Table 2.1 Unadjusted summary data of health and performance outcomes for vaccinated and control cattle.* 

 Variable Vaccinated pens*(n=10) Control pens* (n=10) P value† 
Cattle (No.) ‡ 795 796 — 
Entry weight (kg)§ 255.6 ± 11.08 256.5 ± 11.90 0.80 
Cattle morbidity║¶ 277 (34.8) 277 (34.8) 0.99 
Cattle retreated║¶ 17(2.1) 15(1.9) 0.72 
Cattle culled for health reasons║¶ 9 (1.1) 4 (0.5) 0.23 
Cattle mortality║¶ 15 (1.9) 9 (1.1) 0.22 
Case fatality risk (%)# 5.4 3.3 0.16 
Treatment cost/head ($) 5.91 ± 3.78 5.85 ± 2.46 0.93 
ADG (kg) 1.38 ± 0.12 1.40 ± 0.12 0.13 
F:G ratio 5.58 ± 0.16 5.57 ± 0.18 0.74 
CG ($) 1.56 ± 0.03 1.58 ± 0.05 0.56 
Adjusted ADG (kg)§** 1.41 ± 0.12 1.42 ± 0.15 0.88 
Adjusted F:G ratio§** 5.46 ± 0.19 5.47 ± 0.27 0.71 
Adjusted CG ($)§** 1.54 ± 0.04 1.54 ± 0.07 0.89 
Hot carcass weight (kg) 375.6 ± 12.42 378.3 ± 14.78 0.38 
Carcass yield (%) 64.7 ± 0.53 64.9 ± 0.39 0.12 
Carcass price adjustment ($/45.5 kg of carcass weight)†† 0.95 ± 0.62 1.05 ± 1.07 0.70 

 

*Cattle in the vaccinated and control pens were administered the Salmonella Newport SRP vaccinea or placeboc, respectively, 

according to manufacturer’s recommendations.  

†Within a row, P values demonstrate the lack of significant (P < 0.05) vaccine effects on each outcome and were determined by use of 

multivariable logistical and linear models, which accounted for the paired pen (replicate) study design.  

‡Cattle were systematically allocated by groups of 3 animals into 2 pens until 20 pens (10 /treatment) were filled.  

§Values are reported as mean ± SD.  

║Value is reported as the No. (%). 
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¶Cattle morbidity, retreatment, culling and mortality values are for all causes and for reasons primarily associated with respiratory 

disease and lameness; furthermore, there were no suspected or confirmed cases of salmonellosis.  

#Value is based on all causes of morbidity and subsequent death.  

**Value is adjusted for dead and culled cattle.  

††Carcass price is an economic index representing carcass premiums and discounts associated with USDA quality grade, yield grade, 

and several other carcass variables assessed post-harvest. Values of premiums and discounts are based on carcass characteristics at the 

time of harvest.  

— = Not determined. 
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Table 2.2 Summary of Salmonella serotypes isolated from fecal samples of vaccinated and control cattle.* 

  No. of isolates 
Serotype† Serogroup Vaccinated pens Control pens Total‡ 
Anatum§ E 67 66 133 (63.0%) 
Lexington var 15+ E 11 11 22 (10.4%) 
Lille C1 3 8 11 (5.2%) 
Newport C2 4 4 8 (3.8%) 
Senftenberg E 1 5 6 (2.8%) 
3,15:z10:– — 5 0 5 (2.4%) 
6,7:–:1,5 E 1 3 4 (1.9%) 
Tennessee C1 4 0 4 (1.9%) 
Enteritidis D1 0 3 3 (1.4%) 
Others and non-typeable — 6 9 15 (7.1%) 
Total — 102 109 211 (100%) 

 

†Only 1 isolate from each sample was sent to a laboratoryt for serotyping of the Salmonella isolates.  

‡Within a row, values are reported as total No. (proportion of the column total [%]).  

§Serotype designation includes all variants (n = 2) of Anatum 15+. See Table 2.1 for remainder of key. 
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Figure 2.1 Fecal prevalence of Salmonella bacteria in each vaccinated (n = 10, gray bars) and control pen (10, black bars) 

within a replicate on days 0, 60 and 120 and preharvest. Cattle in the vaccinated and control pens were administered 2 mL of 

the Salmonella Newport SRP vaccine or placebo, respectively, according to manufacturer’s recommendations. Error bars 

represent the exact 95% CIs for proportions. Multivariable logistic regression analysis of these data, which was used to 

account for the paired-pen (replicate) study design, indicated significant differences in prevalence of Salmonella bacteria 

among sampling times, but no significant difference between treatment groups or time by treatment interaction. 
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Figure 2.2 Cumulative incidence risks of adverse health outcomes (morbidity, treatment, culling, and mortality) for all 

vaccinated (n = 10, gray bars) and control pens of cattle (10, black bars). Cattle in the vaccinated and control pens were 

administered 2 mL of the Salmonella Newport SRP vaccine or placebo, respectively, according to manufacturer’s 

recommendations. Risks and corresponding 95% CIs are model-adjusted estimates calculated via logistic regression models 

that accounted for the paired-pen study design; outcomes did not differ significantly between treatment groups. 
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Abstract 
Our objective was to determine factors associated with fecal prevalence of Salmonella at 

feedlot entry and within 24 hrs of harvest (preharvest), and to assess potential persistence of 

Salmonella strains within cattle populations.  This repeated cross-sectional study followed 5,559 

beef cattle within 30 feedlot cohorts.  Samples (n = 30) of fresh feces were collected from the 

pen floor of each cohort at feedlot entry and preharvest.  Samples were subjected to a selective 

Salmonella isolation protocol and serotypes were determined for Salmonella isolates.  Genetic 

similarity of a subset of isolates was determined using pulsed-field gel electrophoresis (PFGE).  

Cattle health and performance data were recorded electronically by feedlot personnel.  Cohort-

level generalized linear mixed models were used to assess bivariable associations.  Fecal 

prevalence of Salmonella within a cohort at feedlot entry (mean = 64.7%) was not associated 

with preharvest prevalence (mean = 72.6%).  Prevalence at feedlot entry was negatively 

associated with mean entry weight (P = 0.02).  Preharvest prevalence was positively associated 

with the number of days in the feedlot (P = 0.02), cumulative morbidity (P = 0.01), and 

cumulative mortality (P = 0.03).  We recovered Salmonella isolates with identical PFGE profiles 

both at feedlot entry and preharvest from 14 cohorts of cattle.  Fecal prevalence of Salmonella 

immediately prior to harvest may be higher in subsets of the feedlot population, but does not 

appear to be affected by prevalence at feedlot entry.  However, PFGE subtypes of Salmonella 

appear to persist within and among feedlot cohorts throughout the feeding period.  
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Introduction 
Salmonella spp. cause gastrointestinal illness in both livestock and humans (Mead et al., 

1999; Callaway et al., 2008).  These ubiquitous bacteria can be found in several food production 

environments, including beef production systems (Barkocy-Gallagher et al., 2003; Rodriguez et 

al., 2006; Cummings et al., 2009).  Several recent U.S. outbreaks of human salmonellosis have 

been associated with eating contaminated beef (CDC, 1995a; CDC, 1995b; CDC, 2003; Dechet et 

al., 2006; McLaughlin et al., 2006).  Beef may become contaminated during the harvest process 

from Salmonella present in cattle feces or on hides (Beach et al., 2002). 

Pre- and post-harvest interventions may be important in reducing Salmonella 

contamination of beef products, as well as potentially improving cattle health and performance 

(Losinger et al., 1997; House et al., 1998; Fegan et al., 2005; Brichta-Harhay et al., 2008; Alam 

et al., 2009).  Contamination of cattle hides may occur during transport and lairage (Barham et 

al., 2002; Beach et al., 2002; Dewell et al., 2008), and Salmonella strains can be found at various 

stages of transport to harvest (Arthur et al., 2008).  The source, transmission, and persistence of 

Salmonella within cohorts of beef cattle are not well understood (Fedorka-Cray et al., 1998; 

Davis et al., 2003).   

Several risk factors may be associated with the fecal prevalence of Salmonella and 

Salmonella-associated morbidity or mortality in cattle (Losinger et al., 1997; House et al., 1998; 

Alam et al., 2009).  Preharvest interventions that mitigate Salmonella risks may improve cattle 

health and performance, reduce the presence and concentrations of Salmonella in cattle feces and 

on hides, and subsequently reduce contamination of beef.  Assessments of longitudinal data on 

the frequency and persistence of Salmonella strains within cohorts of feedlot cattle may enable 

the identification of effective preharvest interventions.  The objectives of this study were to 

identify factors associated with the prevalence of Salmonella at feedlot entry and immediately 

prior to harvest, and to determine if specific Salmonella strains present in feces of newly arrived 

cattle persist until cattle are shipped for harvest. 

Materials and Methods 

Cattle allocation, management, and sampling 

A commercial feedlot in Texas with a capacity of approximately 70,000 animals 
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participated in the study.  Feeder calves were procured through normal industry channels of the 

participating feedlot.  A convenience sample of 30 cohorts of incoming cattle was enrolled in the 

study.  Cohorts were defined as groups of cattle that arrived to and were shipped from the feedlot 

together.  Cattle within a cohort were not comingled with cattle from other cohorts.  Cattle were 

managed according to the feedlot’s standard health, feeding and management protocols that were 

developed and applied at the discretion of feedlot personnel and their consulting staff.  Upon 

arrival to the feedlot, cohorts of cattle were identified as “low” or “high” risk for bovine 

respiratory disease (BRD) in accordance with standard operating procedures of the feedlot.  

Cattle in cohorts designated as “high risk” all received tulathromycin for metaphylaxis according 

to label directions (Pfizer Animal Health, New York, New York).  Cohort-level health and 

performance data that were collected by feedlot personnel were retrieved through the feedlot’s 

operational database.  Cattle were fed a series of diets of increasing concentrate level from 

receiving to finishing; diets and individual components were similar among study cohorts. 

Sample size estimates were based on detecting a 10% difference in mean Salmonella 

fecal prevalence among cattle cohorts with different health or performance parameters, assuming 

a base-line cohort-level prevalence of 50% and type I and type II error rates of 0.05 and 0.20, 

respectively.  For each cohort, samples (n = 30) of individual fresh fecal pats were collected from 

the pen floor (while avoiding contact with soil or other feces on the pen floor) within 24 hrs after 

feedlot arrival (entry) and again within 24 hrs prior to transport to harvest (preharvest).  Each 

sample was collected with a new plastic sleeve; then the sleeve was tied, labeled, and packed in a 

cooler with frozen ice packs.  Coolers were shipped via overnight courier to the Preharvest Food 

Safety Laboratory, College of Veterinary Medicine, Kansas State University.  

Isolation protocol 

A standard protocol, modified from previously described methods, was used to isolate 

Salmonella in fecal samples (Barkocy-Gallagher et al., 2002).  For each sample, 10 g of feces 

was mixed with 90 ml tryptic soy broth (Becton Dickinson, Sparks, Maryland) for enrichment 

and incubated at 25°C for 2 hrs, 42°C for 6 hrs, then overnight at 4°C.  Ten ml of the resulting 

fecal enrichment culture was added to 90 ml tetrathionate broth (Becton Dickinson) with 1.8 ml 

iodine (1%, Fisher Scientific, Fairlawn, New Jersey) and incubated for 18 hrs at 37°C.  One ml 

was then subjected to immunomagnetic separation (IMS) with anti-Salmonella magnetic beads 
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(Dynal Inc., New Hyde Park, New York).  One hundred µl of phosphate buffered saline (Sigma-

Aldrich, St. Louis, Missouri) was added to the final IMS product and the resulting cell 

concentrate was transferred into 10 ml of Rappaport-Vassiliadis (RV) broth (Becton Dickinson) 

for 16-18 hrs of incubation at 42°C.  Cultures were then vortexed; 50 µl was spread plated onto 

Hektoen Enteric (HE) agar (Becton Dickinson) and incubated at 37°C for 24 hrs.  Up to three 

suspect colonies with morphology consistent with Salmonella spp. were streaked onto blood agar 

(Remel, Lenexa, Kansas) and incubated for 24 hrs at 37°C.  Isolates from blood agar plates were 

subjected to slide agglutination (Becton Dickinson) for the Salmonella polyvalent O antigen and 

Salmonella serogroups B, C1, C2, D1, D2, and E.  One isolate from each sample, confirmed as 

Salmonella based on hydrogen sulfide production on HE agar and agglutination with polyvalent 

O antisera, was stored at -80°C on cryo-protection beads (Hardy Diagnostics, Santa Maria, 

California), and later serotyped at the National Veterinary Services Laboratories (Ames, Iowa).   

Pulsed-field gel electrophoresis protocol 

Isolates that had matching serotypes within a cohort at both sampling times were 

differentiated by pulsed-field gel electrophoresis (PFGE) separation of Xba1-digested genomic 

DNA in accordance with the PulseNet Protocol (Ribot et al., 2006).  Briefly, stored isolates were 

transferred onto blood agar and incubated at 37°C for 18 hrs.  Colonies were added to cell 

suspension buffer (100 mM Tris:100 mM EDTA, pH8.0) at room temperature and concentration 

was adjusted to an optical density of 1.3 to 1.4 at 610 nm.  Suspensions were incorporated into 

gel plugs by mixing with TE buffer (10 mM Tris:1 mM EDTA, pH 8.0) consisting of 1% 

SeaKem Gold® agarose, 1% SDS (BioWhittaker Molecular Applications, Rockland, Maine), and 

Proteinase K (Fisher Scientific, Fair Lawn, New Jersey).  Cast gel plugs were then subjected to 

cell lysis buffer (50 mM Tris:50 mM EDTA, pH 8.0 + 1% Sarcosyl) containing Proteinase K.  

Following washing in reagent grade, type-1 water and TE buffer, extracted DNA samples 

underwent restriction digestion with the Xba1 enzyme (Promega Corporation, Madison, 

Wisconsin).  Along with a Salmonella Braenderup H9812 standard, each sample was loaded into 

wells.  Restricted plug slices were subjected to electrophoresis, stained with an ethidium bromide 

solution, and viewed under UV light.  Gel imaging software (Quantity One®, Bio Rad, Hercules, 

CA and BioNumerics®, Applied Maths, Austin, TX) was used to digitize, normalize, and assign 

bands for each isolate image.  Band-sharing similarity coefficients were generated from the DNA 
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fragments in the 20- to 1150-kb range.  Dendrograms were constructed to provide a visual 

representation of the relationship among Salmonella isolates.  Isolates were grouped based on 

banding pattern similarities where types and subtypes were defined as isolates having PFGE 

patterns of > 95% or 100% Dice similarity (no band differences), respectively.  

Data analysis 

Data were recorded and descriptive analyses were performed using Microsoft Excel® 

2007 (Microsoft, Redmond, Washington).  Prevalence of Salmonella was estimated as the 

proportion of positive samples within a cohort at a specific sampling time.  Persistence of 

Salmonella subtypes was defined as the detection of at least one identical PFGE subtype at both 

sampling times within a cohort.  Exact binomial confidence intervals (95% CI) for proportions 

were calculated using the beta inverse function of Excel®, and are reported in parentheses in the 

text.  The Spearman rank correlation test was used to compare within-cohort prevalence 

estimates of Salmonella between the different sampling times.  Cattle health and performance 

data were evaluated for potential associations with 1) the prevalence of Salmonella at feedlot 

entry, 2) prevalence immediately prior to harvest, and 3) persistence of ≥1 Salmonella subtype 

within a cohort.  Logistic regression models in STATA Version 10 (StataCorp, LP, College 

Station, Texas) were used to assess bivariable associations with Salmonella prevalence and 

persistence.  Within-pen prevalence of Salmonella was modeled with sample-level generalized 

linear mixed models including a random effect for cohort; an exchangeable covariance structure 

was used to adjust for within-cohort correlations among cohort-level prevalence outcomes.  

Persistence of at least one Salmonella strain within a cohort was modeled using cohort-level 

generalized linear models.  For all analyses, cohort-level independent variables were mean entry 

weight, BRD risk category, gender, month of enrollment, days on feed, mean daily weight gain, 

and cumulative crude morbidity and mortality.  We also evaluated cohort prevalence estimates as 

independent variables in the analysis of factors associated with persistence.  Continuous 

independent variables did not meet assumptions of linearity and were categorized by graphing 

the data, determining meaningful cut points, and using hierarchical selection and combination of 

ordinal categories (Walter et al., 1987).  Independent variables that were highly correlated with 

other independent variable(s) were assessed separately.  Statistical significance was determined 

using a p-value of 0.05 for all analyses.    
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Results 
Cattle (n = 5,559) enrolled in the study originated from livestock markets and ranches in 

the Midwest and High Plains U.S.  Within cohort mean entry body weights ranged from 209.1 to 

364.5 kg and the mean cohort size was 185 (standard deviation (SD): 91.7).  There were 23 

cohorts classified as low-risk for BRD and seven cohorts classified as high-risk for BRD.  Ten 

cohorts were heifers, 18 cohorts were steers, and two cohorts contained both sexes.  The number 

of days a cohort was in the feedlot ranged from 148 to 285 days (mean: 192; SD: 31.6) and the 

mean daily weight gain was 1.31 kg (SD: 0.15).  The mean cumulative incidence of crude 

morbidity and crude mortality across all cohorts was 13.7% (SD: 0.18) and 3.1%, (SD: 0.05), 

respectively.  Only crude (not cause-specific) morbidity and mortality were analyzed; no 

diagnoses of salmonellosis were made by the participating feedlot’s personnel.   

Sampling occurred during the weeks of October 8, October 29, November 5, November 

12, December 3, December 10 (all 2006), and January 14, 2007 for arrival sampling.  Weeks for 

preharvest fecal sampling were February 25, March 11, April 1, April 29, May 6, June 3, June 

10, June 24, and August 5, 2007; one cohort was not re-sampled at preharvest.  Continuous 

independent variables that were categorized included morbidity (≤ 10%, > 10%), mortality (≤ 

1.0%, > 1.0%), days on feed (≤ 200, > 200), mean daily weight gain (≤ 1.36 kg, > 1.36 kg), and 

mean entry weight (≤ 273 kg, > 273 kg).  Evaluations of associations were conducted using 

multiple bivariable models (rather than multivariable models) due to strong correlations among 

the independent variables. 

Mean fecal prevalence of Salmonella at feedlot arrival across all cohorts was 64.7% (SD: 

7.9) and ranged from 16.7 to 100% (Figure 3.1).  Respiratory disease risk category (p = 0.93), 

gender (p = 0.10), month of enrollment (p = 0.25), morbidity (p = 0.55), and mortality (p = 0.26) 

were not associated with Salmonella prevalence at entry.  Cohort mean entry weight was 

negatively associated with the prevalence of Salmonella (p = 0.02); the mean prevalence 

estimates of Salmonella in cohorts with low and high mean entry weights were 82.7% (range 

76.6 to 88.8%) and 61.1% (range 57.6 to 64.6%), respectively.   

Mean preharvest fecal prevalence of Salmonella was 72.6% (SD: 8.3).  Across cohorts, 

the prevalence of Salmonella preharvest ranged from 0 to 100% (Figure 3.1).  Prevalence was 

higher (p = 0.04) in cattle categorized as high risk for BRD (mean = 83.9%) than in low-risk 

cattle (mean = 69.7%).  Preharvest prevalence was higher (p = 0.02) in cohorts of cattle that were 
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in the feedlot longer than 200 days (mean = 79.5%) than in cohorts that were fed up to 200 days 

(mean = 60.1%).  Morbidity (p = 0.01) and mortality (p = 0.03) were positively associated with 

preharvest Salmonella prevalence; prevalence estimates for high and low morbidity cohorts were 

90.6% and 60.0%, respectively, and for high and low mortality cohorts they were 85.5% and 

54.4%, respectively.  Daily weight gain was not associated with preharvest Salmonella 

prevalence.  The cohort prevalence of Salmonella at feedlot entry was not correlated with the 

prevalence immediately prior to harvest (n = 29, p = 0.64, Spearman’s rho = -0.09). 

Of the Salmonella isolates characterized (Table 3.1), most were serogroup E (567), C1 

(398), or C3 (123).  Predominant serotypes recovered were Anatum (347), Montevideo (261), 

Orion (206), Kentucky (123), Mbandaka (110), and Newport (38) (Table 3.1).  Salmonella 

isolates of the same serotype were found at both feedlot arrival and preharvest within 23 of 29 

cohorts sampled.  In all, there were 518 Salmonella isolates that had matching serotypes within a 

cohort at both sampling times; thus, 518 were further characterized by PFGE.  There were a total 

of 26 distinguishable PFGE types and 49 subtypes.  Approximately half (48.3%) of these isolates 

belong to one of two subtypes.  Eleven of 26 (42.3%) types and 10 of 49 (20.4%) subtypes were 

represented by at least ten isolates; whereas 14 types (53.8%) and 21 subtypes (42.9%) were 

detected only once.  The number of Salmonella isolates by PFGE subtype and date of sampling 

for each cohort where Salmonella was recovered within a cohort at feedlot arrival and preharvest 

are shown in Tables 3.2 (serogroup C isolates) and 3.3 (serogroup E isolates).   

Eligible cohorts (n = 23) had similar types (21, 91.3%) and subtypes (14, 60.9%) of 

Salmonella recovered both at feedlot entry and preharvest.  Among the 518 isolates that were of 

the same serotype within a cohort, 261 (50.4%) were of PFGE subtypes recovered at both 

sampling times.  Proportions of isolates with matching subtypes for each Salmonella serotype are 

shown in Table 3.4.  Some PFGE subtypes, for examples subtype a of serotype Anatum (Table 

3.3) and subtype ff of serotype Montevideo (Table 3.2), persisted within several cattle cohorts (9 

and 6, respectively).  Specific subtypes persisted up to 285 days, which was the longest feeding 

period in the study.  The probability of a cohort having at least one Salmonella subtype that 

persisted through the feeding period was not associated with mean entry weight (p = 0.39), 

respiratory disease risk category (p = 0.78), gender (p = 0.67), month of enrollment (p = 0.47), 

days on feed (p = 0.88), morbidity (p = 0.32), mortality (p = 0.64), or differences in Salmonella 

prevalence among sampling times (p = 0.28).  For cohorts in which a PFGE subtype of 
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Salmonella was found to persist, the probability of detecting the subtype at preharvest sampling 

was not associated with respiratory disease risk category (p = 0.69), gender (p = 0.86), month of 

enrollment (p = 0.69), days on feed (p = 0.83), morbidity (p = 0.27), mortality (p = 0.86), or 

change in cohort prevalence of Salmonella (p = 0.46).  

Discussion 
Our study indicates that the prevalence of Salmonella in cohorts of cattle at arrival at the 

feedlot may not be associated with the prevalence of Salmonella immediately prior to harvest.  

However, specific subtypes of Salmonella appear to persist within cohorts throughout the 

feeding period (148 to 285 days in our study).  Our study was based in only one feedlot, which 

had a high overall prevalence of Salmonella within the study population.  Our data indicate that 

cohorts of cattle entering the feedlot at lighter mean body weights, fed for a longer period of 

time, and having higher cumulative incidence of morbidity and mortality may be more likely to 

shed Salmonella in their feces.  However, a more in-depth assessment of these correlated cohort-

level risk factors is necessary, since a multivariable analysis separating the effects of these 

individual factors was not appropriate for our data.  
The fecal prevalence of Salmonella that we observed was relatively high compared to 

other studies that have determined the Salmonella prevalence in feedlot cattle (Fedorka-Cray et 

al., 1998; Dargatz et al., 2003; Loneragan et al., 2005; Kunze et al., 2008).  Although some of 

these differences may be attributed to variation in diagnostic protocols, a relatively high fecal 

prevalence of Salmonella also may be expected for this geographical region (Kunze et al., 2008; 

Alam et al., 2009).  As seen in Figure 3.1, there was considerable variability in prevalence 

estimates across cohorts at each sampling time in this study.  We have observed this variability 

in the fecal prevalence of Salmonella in feedlot cattle populations in previous studies (Alam et 

al., 2009; Dodd et al., 2010).    

There have been few published longitudinal studies of Salmonella prevalence within 

cohorts of commercial feedlot cattle.  One study reported a decrease in fecal shedding of 

Salmonella in 120 commercial feedlot steers from feedlot arrival (40%) to harvest (0%) (Galland 

et al., 2000); however, a direct comparison with our results cannot be made as there were several 

demographic differences between the study populations, and their study used different culture 

methods to estimate prevalence.  Another longitudinal study followed shedding of Salmonella in 

77 



144 research feedlot steers in North Dakota; prevalence increased from 0.7 to 64.0% during the 

feeding period (Khaitsa et al., 2007).  In a longitudinal study of five commercial feedlots that 

used manila-hemp rope sampling devices to monitor Salmonella, researchers demonstrated 

differences in the proportion of Salmonella-positive pens by week within season and feedlot 

(Smith et al., 2005).  However, the probability of detecting Salmonella during the week of 

harvest was not significantly different than for other weeks during the feeding period (Smith et 

al., 2005).  Previous longitudinal data from a vaccine field trial at a commercial Kansas feedlot 

revealed that fecal shedding of Salmonella throughout the feeding period was highly variable by 

time and among cohorts in both vaccine and control groups, with a decrease in prevalence 

immediately prior to summer harvest (Dodd et al., 2010).  In contrast, a study of 100 US feedlots 

showed a higher prevalence of Salmonella in cohorts of commercial feedlot cattle that were close 

to harvest (7.4%) than cohorts of cattle that had recently entered feedlots (3.5%) (Fedorka-Cray 

et al., 1998).  In our current study, the within-cohort fecal prevalence of Salmonella immediately 

prior to harvest was highly variable and was not correlated with the prevalence at feedlot entry.  

This finding may reflect the transient nature or seasonality of fecal shedding of Salmonella in 

feedlot cattle that could be due to environmental conditions; however, unexplained variability in 

shedding remains (Barkocy-Gallagher et al., 2003; Smith et al., 2005; Rhoades et al., 2009).   

Of the potential risk factors evaluated in our study, only mean entry weight was 

associated with the Salmonella prevalence at feedlot arrival.  We had a limited number of cohorts 

and categorized several continuous variables due to the lack of linear relationship with response 

variables, which may have decreased the power to detect effects of these factors.  Mean entry 

weight was not associated with the preharvest prevalence of Salmonella; however, cohorts of 

lighter weight cattle usually incur a longer feeding period and have higher cumulative incidence 

of crude morbidity and mortality (Kelly et al., 1986).  Higher days on feed, morbidity, and 

mortality have been associated with a higher risk for fecal shedding of Salmonella in feedlot 

cattle (Losinger et al., 1997; Fedorka-Cray et al., 1998; Smith, 2002).  In our study, preharvest 

prevalence was positively associated with high BRD risk, longer days on feed, high morbidity, 

and high mortality.  Thus, risk factors we found to be associated with Salmonella prevalence 

estimates at feedlot arrival and preharvest are likely related, since we are describing similar cattle 

populations at different sampling times.  Several of the variables in our data were highly 

correlated with each other (data not shown); hence, it was not possible to evaluate their 
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individual effects in a multivariable model.  Therefore, interpretation of these unconditional 

associations should be made with caution.  These associations indicate that an early predictor of 

preharvest Salmonella prevalence may be the perceived risk for respiratory disease; however, 

this assessment of risk is fairly subjective. The BRD risk category that is assigned to a cohort of 

calves at feedlot entry may be a proxy for several factors including transport distance, cattle 

source, and animal size/age (Sanderson et al., 2008), and also would be inherently related to 

antimicrobial use.  Days on feed, morbidity, and mortality are more objective predictors of the 

cohort prevalence of Salmonella than BRD risk category.  Therefore, further assessments of 

these effects are needed to better understand the ecology of Salmonella in commercial feedlots.   

 Our finding of few predominant Salmonella serotypes is consistent with other feedlot 

studies (Fedorka-Cray et al., 1998; Dargatz et al., 2003; Kunze et al., 2008).  The five most 

frequent serotypes that we recovered are different than the most common serotypes isolated from 

clinically ill humans (Callaway et al., 2008; CDC, 2010).  Two serotypes, Anatum and 

Montevideo, represented 50.1% of Salmonella isolates recovered in our study.  Loneragan et al 

reported that 48% of their Salmonella isolates were serotype Anatum  (Loneragan et al., 2005), 

and another cross-sectional study of cattle in abattoirs found 32.5% of fecal Salmonella isolates 

were Anatum (Kunze et al., 2008).  In a prospective cohort study to assess factors associated 

with fecal shedding of Salmonella, serotype Orion represented 46.5% of isolates and Anatum 

represented 19.8% of isolates (Alam et al., 2009).  Reasons for observing predominant 

Salmonella serotypes within a population of cattle are unknown, but may be due to the 

preferential ability of specific serotypes or strains to replicate inside or outside the host under the 

given conditions.  Table 3.1 data indicate that the frequency of some serotypes may have 

increased throughout the feeding period (e.g., Anatum or Kentucky) while others may have 

decreased (e.g., Orion or Newport).  Shifts in the relative proportion of Salmonella strains within 

a population requires further study as they may have important public health or animal health 

implications if the serotypes or strains differ in infectivity or virulence. 

Salmonella can disseminate within and among cattle cohorts via fecal-oral transmission 

and will survive and persist outside hosts in agricultural environments.  We found that serotypes 

and specific PFGE subtypes of Salmonella appear to persist within a cohort throughout the 

feeding period, and also can be found among multiple cohorts within the feedlot (Tables 3.2-3.3).  

Although our study was not designed to directly assess dissemination of Salmonella strains, most 
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PFGE subtypes that persisted were found more frequently immediately prior to harvest than they 

were found at feedlot arrival.  As seen in Table 3.4, there was less diversity among the PFGE-

characterized isolates that were recovered preharvest than those recovered at feedlot entry.     

Studies of Salmonella subtype persistence among feedlot cattle cohorts have not been 

reported previously, although propagation of Salmonella has been studied in multiple livestock 

environments.  Salmonella survived over 150 days in experimentally inoculated cattle fecal pats, 

and under some conditions had an initial 1.5 order of magnitude increase following pasture 

deposition (Sinton et al., 2007).  Salmonella Typhimurium survived over 133 days in cattle feces 

(Franz et al., 2005), and a distinct PFGE type of Salmonella Typhimurium was found over a 

two-year period in swine feces and soil fertilized with swine manure (Baloda et al., 2001).  On a 

depopulated free-range poultry farm, Salmonella Enteritidis Phage Type 4 was recovered from 

litter and dried feces for up to 26 months (Davies et al., 2003).  Wildlife and flies also may be 

important vectors for Salmonella, as well as mechanisms for persistence, in livestock 

environments (Olsen et al., 2000; Kirk et al., 2002; Renter et al., 2006).  Several mechanisms for 

Salmonella transmission within a cohort may have existed within our study population. 

 Even though the cohort-level fecal prevalence of Salmonella at feedlot entry was not 

associated with the preharvest prevalence, it is interesting that some subtypes persisted within 

cohorts.  The lack of a significant correlation among prevalence estimates may be due to the 

temporal variability in fecal shedding of Salmonella within a cohort.  Feedlot pen environments 

were not sampled before the study commenced, so we cannot determine whether the Salmonella 

strains were also present in the feedlot environment.  Hence, further studies that include 

environmental sampling are needed to determine how long Salmonella strains persist within 

commercial feedlots across feeding periods. Pulsed-field gel electrophoresis provides reasonable 

molecular differentiation of Salmonella and has been used extensively to determine genetic 

similarity among isolates (Fakhr et al., 2005; Ribot et al., 2006; Soyer et al., 2010).  Because of 

the discriminatory ability of PFGE analysis, identical subtypes found both at feedlot entry and 

immediately prior to harvest in the study cohorts were assumed to be isolates that persisted 

during the feeding period.  Since sampling was limited and only one isolate per positive fecal 

sample was characterized, it is probable that our study underestimated the amount of strain 

persistence.  Knowing that specific subtypes of Salmonella persist within a feedlot cohort, even 

when the cohort fecal prevalence may fluctuate, is important in understanding the ecology of 
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Salmonella in commercial feedlot environments.  Although fecal shedding within a cohort may 

be transient, it appears that some of the Salmonella serotypes or PFGE subtypes persist.  A study 

of Salmonella isolates from dairy cattle with salmonellosis indicated that some strains persist 

over time, and some PFGE types can be found in multiple farms (Fakhr et al., 2005).  Further 

studies are needed to determine whether Salmonella strains that persist in feedlot cattle during 

the feeding period are more likely to be present in higher concentrations in feces at harvest and 

lead to subsequent beef contamination.   

Our repeated cross-sectional study provides further insight on fecal shedding of 

Salmonella by feedlot cattle; however, additional longitudinal data are needed to provide a better 

understanding of the ecology of Salmonella in commercial feedlots.  The cohort-level risk factors 

that we found to be associated with Salmonella prevalence at arrival and preharvest need further 

evaluation, but our data provide preliminary evidence that specific subsets of the feedlot cattle 

population may have a higher risk for shedding Salmonella.  Preharvest interventions for beef 

cattle need to affect the prevalence of Salmonella at harvest to potentially improve beef safety, 

but the persistence of specific subtypes of Salmonella throughout the feeding period may 

indicate that a more comprehensive approach to controlling Salmonella is needed.  Future 

longitudinal studies involving multiple cattle sources, animal cohorts and feedlots are needed to 

evaluate the prevalence and persistence of Salmonella strains during the feeding period.   
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Figure 3.1 Fecal prevalence of Salmonella at feedlot entry (arrival) and immediately prior 

to harvest (preharvest) for each cattle cohort (n=30) in the order that they were enrolled in 

the study.  Error bars represent 95% exact confidence intervals for proportions.  The 

cohort prevalence of Salmonella at feedlot entry was not correlated with the prevalence 

immediately prior to harvest (n = 29, p = 0.64, Spearman’s rho = -0.09). 
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 Table 3.1 Salmonella serotypes isolated from cattle fecal samples at feedlot arrival and 

prior to harvest (preharvest).  Only one isolate was characterized from each positive fecal 

sample. 

Number of isolates (cattle cohorts)
Serotype Serogroup At arrival Preharvest Total
Anatum1 E 105 (20) 242 (26) 347
Montevideo C1 104 (23) 157 (19) 261
Orion2 E 175 (24) 31 (3) 206
Kentucky C3 41 (15) 82 (14) 123
Mbandaka  C1 42 (17) 68 (10) 110
Newport C2 37 (4) 1 (1) 38
Lille C1 0 21 (2) 21
Muenchen C2 16 (6) 0 16
Uganda3 E 7 (2) 0 7
Cerro K 2 (2) 4 (2) 6
Muenster4 E1 4 (3) 1 (1) 5
Meleagridis E 3 (1) 0 3
Oranienburg C1 3 (2) 0 3
Senftenberg E 1 (1) 2 (2) 3
Norwich C1 1 (1) 1 (1) 2
Reading B 2 (1) 0 2
Agona B 1 (1) 0 1
Bredeney B 1 (1) 0 1
Cubana G2 1 (1) 0 1
Give E 1 (1) 0 1
Schwarzengrund B 0 1 (1) 1
Thomson C1 1 (1) 0 1
Nontypeable 34 (16) 21 (9) 55
Total:   582 632 1214

                                                 
1 Also includes Anatum var 15+ (n = 9) and Anatum var 15+34+ (n = 32) 
2 Includes Orion v15+ (n = 18) and Orion v15+34+ (n = 188) 
3 Also includes Uganda var 15+ (n = 1) 
4 Also includes Muenster var 15+34+ (n = 1) 



Table 3.2 Counts of serogroup C Salmonella isolates by serotype, pulsed-field gel electrophoresis (PFGE) subtype1, and 

sampling time for each cattle cohort that had the same serotype recovered at both feedlot arrival and prior to harvest 

(preharvest)2  
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1 Subtypes represent unique PFGE banding patterns following Xba1 digestion. 
2 Data collected immediately prior to harvest are shaded in gray. 
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      Count of serogroup C Salmonella serotypes and PFGE subtypes  

Kentucky   Montevideo Newport 

Cohort ID Date   q r s t u v w   ff gg hh ii jj kk ll mm nn oo pp qq rr ss   tt 

1 10/11/06 - - - - - - - - - - - - - 4 4 - - - - - - - 
3/12/07   - - - - - - -   1 - - - - - - - - - - - - -   - 

2 10/11/06 - - - - - - - 3 1 1 - - - - - - 3 1 - - - - 
4/2/07   - - - - - - -   21 - - - - - - - - - - - - -   - 

4 10/11/06 - - - - - - - - - - - - - - - - - - - - - - 
3/12/07   - - - - - - -   - - - - - - - - - - - - - -   1 

5 10/11/06 - - - 1 - - - 1 - - - - 7 - - - - - - - - 14 
2/28/07   - 2 - - - - -   3 - - - - - - - - - - - - -   1 

6 10/31/06 - - - - - - - - - - - 2 2 - 2 - - - - - - - 
5/7/07   - - - - - - -   1 - - 2 - - - - - - - - - -   - 

7 11/7/06 - - - - 1 - - - - - - - - - - - - - - - - - 
5/7/07   - - - - 1 - -   - - - - - - - - - - - - - -   - 

9 11/14/06 - - - - - 1 - - - - - - - - 2 - - - - - - - 
4/30/07   - - 7 3 - - -   4 - - - - - - - - - - - - -   - 

10 11/14/06 - - 1 1 - - - 4 - - - - - - - - - - - - - - 
4/2/07   - - - - 1 - -   3 - - - - - - - - - - - - -   - 

12 11/14/06 - - 1 - 1 - - 1 - - - - - - - - - - - - - - 
6/11/07   - - - - 3 - -   1 - - - 1 - - - - - - - - -   - 

13 12/11/06 - - - - 1 - 4 1 - - - - - - 1 - - - - - - - 
8/7/07   1 - - - 6 - -   13 - - - - - - - - - - - - -   - 

14 12/11/06 - - 1 - - - - - - - - - - - 1 - - - - - - - 
6/5/07   - - - - 1 - -   14 - - 1 - - - - - - - - - -   - 

17 12/11/06 - - - - - - - - - - - - - - - - - - - 4 - - 
5/7/07   - - - - - - -   1 - - 3 - - - - - - - - - -   - 

18 1/17/07 - 1 - - 1 - - - - - - - - - - - - - - - - - 
6/5/07   - - - - 9 - -   - - - - - - - - - - - - - -   - 

19 1/17/07 - - - - - - - - - - - - 3 - - 1 - - 6 - - - 
6/11/07   - - - - - - -   14 - - - - - - - - - - - - 1   - 

23 1/17/07 - - - - - - - 1 - - - - 2 - - - - - - - - - 
6/5/07   - - - - - - -   16 - 1 - - - - - - - - - - -   - 
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Table 3.3 Counts of serogroup E Salmonella isolates by serotype, pulsed-field gel electrophoresis (PFGE) subtype1, and 

sampling time for each cattle cohort that had the same serotype recovered at both feedlot arrival and prior to harvest 

(preharvest)2  

 

[Next Page] 

 

 

 
1 Subtypes represent unique PFGE banding patterns following Xba1 digestion. 
2 Data collected immediately prior to harvest are shaded in gray. 



    Count of serogroup E Salmonella serotypes and PFGE subtypes  
Anatum   Mbandaka   Orion var 15+ 34+ 

Cohort ID Date a b c d e f g h i j k l m n o p   x y z aa bb cc dd ee   uu vv ww 

1 10/11/06 - 1 - - - 1 - - - 3 - - 5 1 - - - - - - - - 3 - - - - 
3/12/07 2 - - - - - 7 - - - - - - - - -   - - - 3 - - - -   - - - 

2 10/11/06 1 - 4 - - - - - - - - - 1 - 1 - - - - - - - - - - - - 
4/2/07 - - - - - 3 - - - - - - - - - -   - - - - - - - -   - - - 

3 10/11/06 2 - - 1 - - - - - - 4 - 5 - - - - - - - - - - - - - - 
3/12/07 - - - - - - 1 - - - - - - - - -   - - - - - - - -   - - - 

4 10/11/06 - - - - - - - - - - - - - - - 1 - - - - 1 - 2 - - - - 
3/12/07 9 - - - - - - - - - - - - - - -   - - - - - - 3 -   - - - 

5 10/11/06 1 - - - - - - - - - - - - - - - - - - - - - - - - - - 
2/28/07 6 - - - - - - - 4 - - - - - - -   - - - - - - - -   - - - 

6 10/31/06 1 - - - - - - - - - - - - 3 - - - - - - - - - - - - - 
5/7/07 27 - - - - - - - - - - - - - - -   - - - - - - - -   - - - 

8 11/7/06 - - - - - - - - - - - - - - - - - - 3 - - - - 1 - - - 
4/2/07 - - - - - - - - - - - - - - - -   - - 1 - - - - -   - - - 

10 11/14/06 3 - - - - - - - - - 1 - - 1 - - - 1 - - - - - - - - - 
4/2/07 25 - - - - - - - - - - - - - - -   - - - 1 - - - -   - - - 

11 11/14/06 1 - - - - - - - - - - - - - - - - - - 1 - - - - - - - 
6/25/07 10 - - - - - - - - - - - - - - -   - - - 13 - - - -   - - - 

12 11/14/06 1 - - - 2 - 1 - - - 1 - - - - - 1 - - - - - - - - - - 
6/11/07 10 - - - - - - 2 3 - - - - - - -   - - - 2 - - - -   - - - 

13 12/11/06 - - - - - - - - - - 12 2 - - - - - - - - - - - - - - - 
8/7/07 2 - - - - - - - - - - - - - - -   1 - - - - - - -   - - - 

15 12/11/06 - - - - - - - - - - - - - - - - - - - - - - - - - - 1 
5/7/07 - - - - - - - - - - - - - - - -   - - - - - - - -   3 3 - 

16 12/11/06 - - - - - - - - - - - - - - - - - - - - - - 2 - - - - 
4/30/07 - - - - - - - - - - - - - - - -   - - - 1 - - - -   - - - 

20 1/17/07 5 - - - - - - - - - - - - - - - - - - - - - - - - - - 
6/5/07 20 - - - - - - - - - - - - - - -   - - - - - - - -   - - - 

21 1/17/07 5 - - - - - - - - - - - - - - - - - - - - - - - - - - 
6/11/07 3 - - - - - - - 1 - - - - - - -   - - - - - - - -   - - - 

22 1/17/07 1 - - - - - - - - - - 2 - - - - - - - - - 3 - - - - - 
6/25/07 3 - - - - - - - - - - - - - - -   - - - 19 - - - -   - - - 

23 1/17/07 4 - - - - - - - - - - - 1 - - - - - - - - - - - - - - 
6/5/07 8 - - - - - - - - - - - - - - -   - - - - - - - -   - - - 
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Table 3.3 Summary of pulsed-field gel electrophoresis (PFGE) results for Salmonella 

serotypes present within cattle cohorts at both feedlot entry and prior to harvest 

(preharvest).  Only one isolate was characterized from each positive fecal sample. 

    
Number of isolates 

teri E charac zed by PFG   

Number of isolates with 
matching PFGE 

sub 1types    
Percent of isolates with 

m  PFG  atching E subtypes
Serotype   Entry Preharvest  Entry Preharvest Entry Preharvest
Anatum 79 144 22 111 27.8% 77.1%
Montevideo 58 101 11 56 19.0% 

33.3%
55.4%

Mbandaka 18 45 6 17  
26.7% 

37.8%
Kentucky 15 36 4 19 52.8%
Newport  14 1 14 1 100.0% 100.0%
Orion v15+34+ 1 6 0 0 0.0% 0.0%
Total:    185 333   57 204   30.8% 61.3%

 

 

                                                 
1 Isolates with a PFGE profile identical to another isolate that was recovered at a different sampling time within the 
same cohort. 
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Abstract  
 Our objective was to define and compare pulsed-field gel electrophoresis (PFGE) 

profiles of E. coli O157 isolates from cattle feces and carcass samples to evaluate relationships 

between beef carcass contamination and fecal shedding of E. coli O157 at harvest.  We used 

PFGE separation of Xba1-digested DNA to characterize E. coli O157 isolates (n=174) from pre-

evisceration carcasses (n=39) and feces (n=135) that were recovered from 37 E. coli O157-

positive truckloads sampled at a commercial abattoir.  Semi-quantitative fecal culture techniques 

differentiated high-shedding, low-shedding and negative cattle.  Among all isolates, there were 

17 PFGE types (95% homology) and 37 subtypes (100% homology).  Specific subtypes were 

detected on multiple occasions and from different sample types within loads, among loads, and 

among days.  Seventeen subtypes were recovered from carcasses; most were also recovered from 

feces of high-shedding cattle (13 subtypes) and low-shedding cattle (14 subtypes).  Within 

truckload, the percentages of carcass isolates that were identical to high-shedder or low-shedder 

fecal isolates, as determined by PFGE, were 69.2% and 46.0%, respectively.  Whereas among 

different truckloads within the same study day, the percentages of carcass isolates that were the 

same subtype as high-shedder or low-shedder fecal isolates were 35.3% and 58.8%, respectively.  

Our results suggest that cattle feces from both low- and high-shedders pose a potential risk for E. 

coli O157 contamination of carcasses.  Truckload may be an important factor in the potential 

transmission of E. coli O157, but isolates from carcasses also may be similar to those from feces 

of cattle on different truckloads and harvest days. 
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Introduction 
Escherichia coli O157 is a significant cause of foodborne illness in the United States.  

From 1982 to 2002, there were 350 reported outbreaks of E. coli O157 including 8,598 human 

illnesses, 1,493 hospitalizations, and 40 deaths (Rangel et al., 2005).  Although there are more 

cases of foodborne illness due to other pathogens each year, E. coli O157 outbreaks and related 

product recalls have generated substantial consumer risk awareness, impacting consumer 

demand for beef (Marsh et al., 2004; CDC, 2008).  Properly cooking beef will kill the 

organisms, yet pre- and post-harvest interventions are still needed to lower E. coli O157 risk 

since cross-contamination and under-cooking still occur (Caprioli et al., 2006; Verbeke et al., 

2007). 

A primary pathway of E. coli O157 contamination of beef involves colonized cattle that 

shed organisms in feces, which subsequently contaminate hides (Loneragan et al., 2005; Baker 

et al., 2007).  Most carcass contamination is believed to occur during the hide-removal and 

evisceration process (Barkocy-Gallagher et al., 2003); E. coli O157 in cattle feces or on hides is 

associated with detectable levels of E. coli O157 on carcasses (Elder et al., 2000; McEvoy et al., 

2003; Woerner et al., 2006).  Some cattle with E. coli O157 shed greater levels, more than 103 or 

104 colony forming units (CFU) per g of feces, than other cattle within a given population 

(Omisakin et al., 2003).  High-shedders may pose a higher risk of carcass or hide contamination 

than cattle shedding lower concentrations, and may lead to situations where thresholds for 

effective intervention strategies are exceeded (Matthews et al., 2006; Chase-Topping et al., 

2008; Fox et al., 2008).   

Assessing relatedness among E. coli O157 isolates recovered from points throughout beef 

production systems helps to better define the ecology and epidemiology of this pathogen during 

pre-harvest and harvest processes.  Previously, Fox et al. (2008) described associations at harvest 

between fecal shedding (both low- and high-shedding levels) and pre-evisceration carcass 

contamination within truckloads of finished cattle.  Inference was limited by factors inherent to 

the study design; however, genetic analysis of the recovered isolates could further define the 

potential transmission routes for carcass contamination.  Our objective was to define and 

compare, within and among cattle cohorts, the PFGE profiles of E. coli O157 previously isolated 

from fecal and carcass samples to further define relationships between beef carcass 

contamination and fecal shedding of E. coli O157 at harvest. 
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Materials and Methods 

Source of isolates 

As previously described (Fox et al., 2008), fecal and carcass samples were obtained from 

1,503 cattle that arrived in 50 truckloads to a commercial abattoir in the Midwest U.S. during a 

5-week period.  Data on cattle origin were not available.  Up to 32 cattle per truckload were 

sampled.  Pre-evisceration carcass sponge samples, collected post-hide removal, were matched 

within animal to post-evisceration fecal samples collected from intact rectums. Gloves were 

changed between samples and measures were taken to prevent cross-contamination among 

samples (Fox et al., 2008).  All samples were transported in coolers with ice packs to the Kansas 

State University, College of Veterinary Medicine, Preharvest Food Safety Laboratory and stored 

under refrigeration (4°C) for processing within 48 h of collection. 

Isolation of E. coli O157 

Isolation and identification of E. coli O157 from carcass and fecal samples were 

previously described (Fox et al., 2008).  Briefly, carcass sponge samples were enriched in 2% 

brilliant green bile broth (Difco, Becton Dickinson, Sparks, MD)  and fecal samples were 

enriched in GN broth (BD, Franklin Lakes, NJ) containing cefixime (Sigma-Aldrich; 50 ng/ml), 

cefsulodin (Sigma-Aldrich; 10 µg/ml), and vancomycin (Sigma-Aldrich; 8 µg/ml; GNccv).  To 

detect high-shedding cattle (Sanderson et al., 2007), a pre-enrichment fecal suspension was 

directly streaked onto sorbitol MacConkey agar (BD) containing cefixime (50 ng/ml) and 

potassium tellurite (2.5 µg/ml; CT-SMAC).  Enriched samples were subjected to 

immunomagnetic separation (IMS) and plated onto CT-SMAC.  Following 16 to 18 h incubation 

at 37°C, up to six non-sorbitol-fermenting colonies were transferred onto blood agar (Remel, 

Lenexa, KS) and incubated overnight at 37°C.  Colonies were tested for indole production and 

latex agglutination of the O157 antigen (Oxoid Limited, Basingstoke, Hampshire, England); 

positives were tested by polymerase chain reaction (PCR) for eae, stx1, stx2 and hylA genes 

(Fagan et al., 1999).  Isolates were considered E. coli O157 if they had eae and hylA genes and 

at least one stx gene.  Fecal samples were also classified based on the relative concentration of E. 

coli O157: cattle with fecal samples positive only on the IMS procedure were classified as low-

shedder, while those with feces positive by the direct plate technique were classified as high-
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shedder (Fox et al., 2007; Sanderson et al., 2007; Fox et al., 2008).  Isolates were stored on 

protect beads at -80°C for future characterization.   

Pulsed-field gel electrophoresis 

Isolates were analyzed by PFGE separation of Xba1-digested genomic DNA in 

accordance with the PulseNet U.S.A. Standardized Laboratory Protocol (Ribot et al., 2006).  

Stored isolates were transferred onto blood agar and incubated at 37°C for 18 hours.  Colonies 

were added to cell suspension buffer at room temperature and concentration was adjusted to an 

optical density of 1.3 to 1.4 at 610 nm.  Cell suspensions were incorporated into gel plugs 

consisting of 1% SeaKem Gold® agarose, 1% SDS (BioWhittaker Molecular Applications, 

Rockland, Maine), and Proteinase K (Fisher Scientific, Fair Lawn, New Jersey).  Cast gel plugs 

were then subjected to cell lysis in TE buffer (50mM Tris:50 mM EDTA, pH 8.0 + 1% 

Sarcosyl).  Following washing in reagent grade, type 1 water, extracted DNA samples underwent 

restriction digestion with the Xba1 enzyme (Promega Corporation, Madison, Wisconsin).  Along 

with Salmonella ser. Braenderup H9812 standards, each sample was cast into agarose plugs and 

loaded into wells.  Restricted plug slices were subjected to electrophoresis, stained with an 

ethidium bromide solution, and viewed under UV light.  Gel imaging software (Quantity One®, 

Bio Rad, Hercules, CA and BioNumerics®, Applied Maths, Austin, TX) was used to digitize, 

normalize, and assign bands for each isolate image.  Band-sharing similarity coefficients were 

generated from the DNA fragments in the 10- to 550-kb range.  Dendograms were constructed to 

provide a visual representation of the relationship among E. coli O157 isolates.  Isolates were 

grouped based on banding pattern similarities where types and subtypes were defined as isolates 

having PFGE patterns of >95% or 100% Dice similarity, respectively (Sargeant et al., 2006). 

Data analysis 

Truckload, animal, sample type, and all laboratory results were recorded and managed in 

spreadsheet format (Microsoft® Office Excel 2007, Microsoft, Redmond, WA).  The PFGE 

results for the isolates were assessed in conjunction with epidemiologic data on the source of the 

isolates, including sample type, truckload, and day.  Descriptive analyses of the frequency 

distribution of types and subtypes within each sample type, truckload, and sampling day were 

evaluated, and exact 95% binomial confidence intervals (CI) were calculated for proportions 

using the BETAINV function of Microsoft® Office Excel.  Exact CI are reported in parentheses 
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for frequency measures.  Comparisons of the 95% CI were used to assess the potential for 

proportions to differ (P ≤ 0.05) while recognizing the strengths and weaknesses of this approach 

(Schenker et al., 2001).  In addition, we assessed and described the presence or absence of 

genetically similar E. coli O157 isolates longitudinally, including whether strains were 

persistently recovered from carcasses sampled on different days within the studied abattoir.   

Results 

Prevalence and sources of isolates 

Escherichia coli O157 was isolated from fecal or carcass samples from 157 of 1,503 

(10.4%) cattle originating from 37 of 50 (73.5%) truckloads (Fox et al., 2008).  Of the 174 

recovered E. coli O157 isolates, 135 (77.6%) were from fecal samples and 39 (22.4%) were from 

carcass samples.  Thirty-nine of 1,503 carcass samples (2.6%) representing 15 truckloads and 

127 of 1,495 fecal samples (8.5%) representing 37 truckloads were positive.  There were 55 

fecal-positive cattle that were positive on direct plating (high-shedders) and 80 cattle that were 

only positive based on enrichment/IMS of fecal samples (low-shedders) (Table 4.1).  Of 39 

carcass-positive cattle, nine also had positive fecal samples (five high-shedders and four low-

shedders).   There were 120 fecal-positive cattle that were carcass-negative.  The percentages of 

truckloads that had a least one high-shedder or low-shedder were 52.0% (37.4 to 66.3%) and 

62% (47.1 to 75.3%), respectively (Fox et al., 2008).   All isolates had the stx2 gene and 90 

(51.7%) isolates had the stx1 gene. 

Pulsed-field gel electrophoresis 

Among 174 isolates, there were a total of 17 distinguishable PFGE types (95% Dice 

similarity) and 37 subtypes (100% Dice similarity; no band differences).  Among all isolates, two 

PFGE types were detected at least 30 times and four subtypes were detected at least 10 times 

(Table 4.2).  Two of 17 types (11.8%), and 12 of 37 subtypes (32.4%) were represented only 

once.  Fifty percent of all isolates were one of five subtypes, and 48.9% of all isolates were one 

of three types.    

Overall, there were 17 E. coli O157 subtypes recovered from carcasses and 36 subtypes 

recovered from fecal samples.  Twenty-four of the fecal isolate subtypes were recovered from 

high-shedding cattle, and 28 were recovered from low-shedding cattle (Table 4.1).  Sixteen 
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subtypes were found in the feces of both high-shedding and low-shedding cattle.  Thirty high-

shedder (54.6%; 40.6 to 68.0%) and 37 low-shedder (46.3%; 35.0 to 57.8%) fecal isolates had 

identical PFGE subtypes as carcass isolates on the same load (Table 4.1). 

Eleven of 37 (29.7%; 15.9 to 47.0%) subtypes were recovered from fecal or carcass 

samples from multiple truckloads within the same day (Table 4.2).  Ten out of 37 (27.1%; 13.8 

to 44.1%) subtypes were found on multiple truckloads on different days (Table 4.2), while four 

out of 17 (25.5%; 6.8 to 49.9%) subtypes from carcasses were found on carcasses from multiple 

loads on different days (Table 4.1).  Only three (8.1%; 1.7 to 21.9%) subtypes from any sample 

type were found on multiple loads on consecutive days. 

Thirteen of the 37 total subtypes (35.1%; 20.2 to 52.5%) were recovered from both 

carcasses and high-shedding cattle feces, whereas 14 (37.8%; 22.5 to 55.2%) were recovered 

from both carcass and low-shedding cattle feces.  Eleven subtypes (29.7%) were recovered from 

all three sample types.  All but one of the subtypes recovered from a carcass were also found in a 

fecal sample, and the subtype not found in feces was recovered from only one carcass.  

Several E. coli O157 subtypes were recovered from multiple carcass or fecal samples 

within truckloads (Tables 4.1 and 4.2).  Eight of 37 subtypes (21.6%; 9.8 to 38.2%) were found 

on more than one carcass within a load, and 18 (48.7%; 31.9 to 65.6%) were found in more than 

one fecal sample within truckload.  One subtype was detected 10 times within a truckload and 

another was detected 15 times within a truckload (Table 4.2).  There was a mean of 1.9 (range: 

1-6) subtypes per positive truckload.  Eleven subtypes (29.7%) were recovered from both carcass 

and fecal samples within a truckload (Table 4.3).  The percentages of subtypes from carcasses 

that also were detected from a high-shedder, low-shedder, or any feces from within the same 

truckload were 70.6% (44.0 to 89.7%), 47.12% (23.0 to 72.2%), and 70.6% (44.0 to 89.7%), 

respectively.  Within truckload, the percentages of carcass isolates that were identical to high-

shedder, low-shedder, or any fecal isolate, as determined by PFGE, were 69.2% (52.4 to 83.0%), 

46.0% (30.1 to 62.8%), and 69.2% (52.4 to 83.0%), respectively (Figure 4.1).  Nine of 15 

truckloads with a positive carcass had carcass subtypes that matched at least one high-shedder 

fecal isolate, 11 of 15 carcass-positive truckloads had a carcass subtype that matched a low-

shedder subtype, while eight out of 15 carcass-positive truckloads had a carcass subtype that 

matched both low- and high-shedder subtypes in the same truckload (Table 4.3).   
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Four of 17 carcass subtypes (23.5%; 6.8 to 49.9%) were detected on carcasses from 

multiple truckloads, and three of these were on the same day.  There were 11 fecal subtypes 

recovered from multiple fecal samples from different truckloads.  Seven fecal subtypes were 

recovered from high-shedders from different truckloads, and four were found on truckloads 

harvested on the same day.  Ten fecal subtypes were detected in feces from low-shedders from 

different truckloads with six of these on the same day.  The percentages of carcass subtypes that 

also were detected from a high-shedder, low-shedder, or any feces among different truckloads 

within the same day were 35.3% (14.2 to 61.7%), 58.8% (32.9 to 81.6%), and 58.8% (32.9 to 

81.6%), respectively.  Among different truckloads within the same day, the percentages of 

carcass isolates that were identical to high-shedder, low-shedder, or any fecal isolate, as 

determined by PFGE, were 20.5% (9.3 to 36.5%), 48.7% (32.4 to 65.2%), and 51.3% (34.8 to 

67.6%), respectively (Figure 4.1). 

Discussion 

We found that most of the E. coli O157 isolates recovered from pre-evisceration 

carcasses were the same PFGE subtype as isolates recovered from post-evisceration fecal 

samples from cattle within the same truckload.  The percentages of carcass isolates that had 

identical PFGE patterns to that of fecal isolates from high- (69.2%) and low- (46.0%) shedding 

cattle within a truckload were fairly similar.  However, comparing those numbers to 

corresponding percentages (35.3% and 58.8% respectively) among different truckloads within 

the same day revealed that the importance of high- versus low-shedding cattle may depend on 

whether the consideration of E. coli O157 dynamics is being made within or between truckloads 

(Figure 4.1).  The transport cohort appears to be an important factor in the transmission of E. coli 

O157 at harvest, yet 32% of the subtypes were recovered from multiple truckloads and sampling  

days.  Approximately half of the fecal isolates from high-shedders and low-shedders were the 

same PFGE subtype as carcass isolates on the same truckload.  Although some have suggested 

that detecting high-shedders may be more efficient than detecting low-shedders and prioritizing 

the detection and mitigation of high-shedders within cattle cohorts might reduce risk of carcass 

contamination (Matthews et al., 2006; Fox et al., 2007; Sanderson et al., 2007; Chase-Topping et 

al., 2008), our findings suggest that pre-harvest intervention strategies need to mitigate the 

effects of both high- and low-shedding cattle within and among transport cohorts.  
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Defining associations between fecal shedding and carcass contamination may enhance 

the development of monitoring and/or intervention strategies to reduce E. coli O157 

contamination of beef products.  Molecular subtyping by pulsed-field gel electrophoresis (PFGE) 

has been used to study the genetic relatedness of E. coli O157 strains in foodborne disease 

outbreaks as well as in epidemiologic research (Faith et al., 1996; Swaminathan et al., 2001; 

Rangel et al., 2005).  Although PFGE protocols with different restriction enzyme combinations 

have been employed, the comparison of banding patterns produced by the same restriction 

enzyme(s) appears to provide useful estimates of relatedness among E. coli O157 isolates (Davis 

et al., 2003).  In this study, the total number of PFGE subtypes among isolates from carcasses 

and feces reflect the recognized genetic diversity of E. coli O157 within a population at an 

abattoir.  The results of our PFGE analysis are consistent with observed frequencies among live 

cattle and beef carcasses (Rice, 1999; Barkocy-Gallagher et al., 2001; Renter et al., 2003).  

These data may not completely reflect genetic relationships among isolates, yet within the 

context of accompanying epidemiologic data, they allow us to infer reasonable estimates of 

relatedness (Davis et al., 2003; Singer et al., 2004).  We chose a standard PFGE method using 

one restriction enzyme, which limited our visualization of restriction fragment patterns to 

approximately 20 bands (Singer et al., 2004).  These classification limitations may have affected 

our ability to differentiate some E. coli O157 isolates that we considered indistinguishable based 

on PFGE.  

Some E. coli O157 PFGE subtypes were represented much more frequently than others, 

which is similar to other Xba1-PFGE comparison studies in cattle and beef carcasses (Rice, 

1999; Barkocy-Gallagher et al., 2001; Renter et al., 2003).  In this study, only one isolate from 

each sample underwent PFGE analysis, so the existence of other subtypes within a positive 

sample was unknown.  Other studies have shown considerable heterogeneity of subtypes among 

individual samples (Faith et al., 1996; Renter et al., 2003), so it is possible that our study 

underestimated the existence of related E. coli O157 isolates among cattle, as well as the 

diversity of isolates within this population.  Despite this limitation of the study, the genetic 

relatedness of detected isolates support associations of E. coli O157 among cattle and the 

potential transmission of specific subtypes from feces to carcass.  

Our E. coli O157 isolates came from a study that used two culture methods to 

differentiate relatively low- versus high-shedding levels of E. coli O157 in fecal-positive cattle 
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(Fox et al., 2008).  They found that the presence of a high-shedder within a truckload of cattle 

was the strongest predictor of carcass contamination.  High E. coli O157 concentrations in cattle 

feces usually can be detected with the relatively rapid, less expensive, direct-plating technique, 

which has an estimated diagnostic sensitivity and specificity of 82.6% and 92.3%, respectively, 

for a breakpoint of 5 × 104 CFU/g feces (Sanderson et al., 2007).  Concentrations as low as 102 

CFU/g can be detected with approximately 90% sensitivity by culture methods incorporating 

IMS (Fox et al., 2007).  A previous study demonstrated that a majority of cattle with low-level E. 

coli O157 carriage were fecal-positive only by using an IMS protocol and suggested a breakpoint 

fecal concentration of E. coli O157 of 103 CFU/g for differentiating high-shedders (Low et al., 

2005).  Although some previous studies have used experimentally inoculated cattle instead of 

naturally colonized cattle to estimate concentrations and test parameters, any misclassification in 

our study likely would have been non-differential with regards to classifying fecal-positive cattle 

into two groups based on relative concentration of fecal shedding.  Although we did not make a 

direct attempt to enumerate E. coli O157 organisms within positive samples in this study, this 

classification scheme was still useful in examining associations while considering the 

heterogeneity of E. coli O157 fecal shedding in cattle populations.   

High-shedders can contribute to the hide contamination of cohorts during transport to 

harvest and may be directly associated with carcass contamination (Bach et al., 2004; Fox et al., 

2008).  Overall prevalence of fecal shedding within cattle populations is also associated with 

hide and carcass contamination (Elder et al., 2000), yet overall fecal prevalence may be affected 

by the presence or frequency of high-shedders (Cobbold et al., 2007).  Therefore, both fecal 

shedding concentration and overall prevalence of E. coli O157 within a pen or truckload may 

contribute to hide and eventual carcass contamination.  In this study, one in three cattle testing 

positive for E. coli O157, and one in 27 (3.7%) of the cattle sampled, were identified as high-

shedders (Fox et al., 2008).  Another study, which enumerated fecal isolates in harvested cattle, 

determined that only one in 11 (9.0%) cattle testing positive for E. coli O157 at harvest were 

high-shedders, but estimated that over 96% of the shed organisms originated from these high-

shedders (Omisakin et al., 2003).  Some suggest that testing methods which primarily detect 

high-shedders, such as direct plating, may be a valid and feasible approach to strategically 

monitoring the risk of E. coli O157 contamination at harvest (Fox et al., 2007; Sanderson et al., 

2007).   
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Pre-evisceration carcass swab samples and post-evisceration fecal samples were chosen 

in order to examine potential pre- and post-harvest associations of E. coli O157.  Associations 

among subtypes from fecal and carcass samples may indicate that E. coli O157 isolates were 

transmitted among cattle, particularly since only 20.5% of carcass positive cattle were also 

positive in their feces.  Approximately the same number of E. coli O157 subtypes from high-

shedder and low-shedder cattle feces were also recovered from carcasses.  This suggests that the 

risk of subsequent carcass contamination may be similar for both high- and low-shedding cattle; 

however, our data suggest the cohort effect may modify this relationship.  Only one subtype 

from a carcass was not found in any fecal sample, which suggests a majority of E. coli O157 on 

carcasses at harvest may be detected in feces.  However, previous literature suggests that E. coli 

O157 isolates detected on beef carcasses also can be detected on cattle hides (Barkocy-Gallagher 

et al., 2001; Tutenel et al., 2003). 

Within the truckload, several subtypes were found on more than one carcass, in more 

than one fecal sample, or in both carcass and fecal samples.  Some subtypes appeared to cluster 

among loads and on consecutive sampling days (Table 4.2).  Although these data do not reveal 

extensive temporal associations, they support the hypothesis of transmission of E. coli O157 in 

feces between cattle at the feedlot or during transportation, lairage, or harvest (Akiba et al., 

2000; Minihan et al., 2003).  Data from pre-transport, post-transport, and lairage fecal and hide 

samples could have revealed further insight into the movement of E. coli O157 isolates among 

finished cattle within our study population.   

The frequency of high-shedder subtypes matching carcass subtypes within truckload was 

not higher than the frequency of low-shedder subtypes matching carcass subtypes.  Similarities 

among proportions may have been due to low statistical power in this study as there were only 

17 subtypes isolated from carcasses.  However, our determination of genetic relatedness suggests 

that more than half of E. coli O157 subtypes (58.8%) from carcasses were also present in cattle 

feces within the same load.  The plausibility that the number of high-shedding cattle may pose a 

greater risk of carcass contamination than the overall number of cattle shedding E. coli O157 has 

been suggested in other studies (Omisakin et al., 2003; Fegan et al., 2004; Matthews et al., 

2006).  Fox et al studied the same cattle population as we did, and found that high-shedder cattle, 

low-shedder cattle, and combined fecal prevalence were all significantly associated with carcass-
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positive cattle within a truckload.  However, the odds of carcass contamination were highest 

when a high-shedder was present within the truckload (Fox et al., 2008).   

Percentages of carcass isolates that matched high-shedder or low-shedder fecal isolates 

were similar both within truckloads and among truckloads within the same day (Figure 4.1).  

However, comparing the distributional trends of these data, within versus among truckloads, may 

indicate that high-shedders could play a more important role in transmission of E. coli O157 

within truckloads than among truckloads.  These data suggest that the truckload remains an 

important transmission factor in the ecology of E. coli O157 immediately prior to harvest, and 

perhaps the relative contribution of high versus low shedding cattle on carcass contamination 

risk depends on whether the assessment is made within or among truckloads. 

Several identical subtypes were recovered from fecal samples taken from different 

truckloads, and several carcass subtypes also were detected from fecal samples among loads 

within the same day.  This apparent transmission or persistence of E. coli O157 isolates among 

cattle in different truckloads, or their environments may be related to the pen or feedlot origin of 

cattle, the comingling of cattle during lairage, or dispersion of individual E. coli O157 isolates 

during the harvest process.   

We described the relatedness of E. coli O157 isolates from feces and pre-evisceration 

carcasses within and among truckloads of finished beef cattle at harvest.  We demonstrated that 

specific PFGE subtypes may be detected on multiple occasions and from different sample types 

within loads, among loads, and among days.  Our results support previously suggested 

associations between overall E. coli O157 prevalence, fecal shedding and carcass contamination 

within truckload.  Hence, this study provides additional evidence that pre-evisceration carcass 

contamination might be decreased by mitigating the effect of high- and low-shedders within a 

truckload.  However, our results also suggest that the frequency distribution of carcass isolates 

that have identical PFGE patterns to that of fecal isolates from high- and low-shedding cattle 

within a truckload may differ from the corresponding distribution among different truckloads on 

the same day.  Further investigations are needed to assess the relative importance of mitigating 

high-shedders, low-shedders, or any fecal shedder within and among transport cohorts in order to 

decrease the risk of carcass contamination. 
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Figure 4.1 Percentages of Escherichia coli O157 carcass isolates that were the same PFGE 

banding pattern (following Xba1 digestion) as fecal isolates recovered from high- or low-

shedding cattle within the same truckload or different truckloads on the same sampling 

day. 
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Table 4.1 Counts of Escherichia coli O157 isolates1 and corresponding pulsed-field gel 

electrophoresis (PFGE) subtypes2 by truckload, sampling date, and sample type. 

 

 
 Number of isolates (PFGE subtypes) Number of fecal isolates with a carcass-

matching PFGE subtype 
Truck 
Load 

Sampling 
Date Carcass Fecal High-shedder 3 Fecal Low-shedder 4  High-shedder Low-shedder 

A1 
5/14/07 

0 0 0  - - 
A2 0 0 0  - - 
A3 3(1) 2(1) 5(2)  2 4 
B1 

5/15/07 

0 1(1) 1(1)  - - 
B2 0 0 0  - - 
B3 0 0 1(1)  - - 
B4 1(1) 1(1) 3(1)  0 0 
B5 0 0 3(2)  - - 
B6 0 1(1) 3(1)  - - 
B7 0 0 1(1)  - - 
C1 

5/21/07 

0 1(1) 0  - - 
C2 1(1) 1(1) 0  1 - 
C3 0 0 1(1)  - - 
C4 0 0 0  - - 
C5 1(1) 3(3) 3(2)  1 2 
C6 0 0 1(1)  - - 
D1 5/22/07 0 0 0  - - 
D2 0 1(1) 0  - - 
E1 

6/4/07 
1(1) 6(2) 14(5)  4 10 

E2 6(4) 4(4) 3(2)  3 3 
E3 3(2) 7(2) 1(1)  6 0 
F1 

6/6/07 

0 5(1) 1(1)  - - 
F2 0 1(1) 4(2)  - - 
F3 0 0 1(1)  - - 
F4 0 0 0  - - 
F5 0 1(1) 2(2)  - - 
G1 

6/11/07 

1(1) 1(1) 1(1)  1 0 
G2 2(2) 1(1) 0  1 - 
G3 0 0 0  - - 
G4 0 0 1(1)  - - 
G5 2(2) 2(1) 5(2)  2 3 
G6 0 1(1) 1(1)  - - 
G7 0 3(2) 1(1)  - - 
H1 

6/13/07 

0 1(1) 0  - - 
H2 0 0 1(1)  - - 
H3 0 0 1(1)  - - 
H4 0 0 0  - - 
H5 3(3) 2(1) 5(2)  2 5 
H6 8(2) 3(1) 3(2)  3 2 
I1 

6/18/07 
4(1) 2(2) 1(1)  1 0 

I2 0 0 2(2)  - - 
I3 2(1) 2(1) 5(1)  2 5 
J1 

6/19/07 
1(1) 1(1) 3(1)  1 3 

J2 0 0 0  - - 
J3 0 0 2(2)  - - 
K1 

6/20/07 

0 0 0  - - 
K2 0 0 0  - - 
K3 0 0 0  - - 
K4 0 1(1) 0  - - 

Total 39(17) 55(24) 80(28)  30 37 

1 There was only one isolate characterized per sample. 
2 Subtypes represent unique PFGE banding patterns following Xba1 digestion 

3 Cattle with a fecal sample that was culture positive by a direct plate technique were classified as high-shedders. 
4 Cattle with a fecal sample that was culture positive only on an IMS procedure were classified as low-shedders. 

 



 

Table 4.2 Counts of Escherichia coli O157 isolates by pulsed-field gel electrophoresis (PFGE) subtype and date of sampling for 

each truckload where E. coli O157 was recovered from carcass or fecal samples. 

 PFGE Subtypes from all sample types 

Load Date a b c d e f g h i j k l m n o p q r s t u v w x y z aa bb cc dd ee ff gg hh ii jj kk 

 A3 5/14/07 - 9 - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - 
B1 

5/15/07 

- - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - 
B3 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - 
B4 - - - - - - - - - - - 4 - - - - - - - - - - - - 1 - - - - - - - - - - -   - 
B5 - - - - - - - - - - - - - - - - 2 1 - - - - - - - - - - - - - - - - - - - 
B6 - 4 - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
B7 - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 
C1 

5/21/07 

- - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 
C2 - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - -  C3 - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 
C5 - 2 - - - - - - - - - - - - - - - - - - 1 - 4 - - - - - - - - - - - - - - 
C6 - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 
D2 5/22/07 - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
E1 

6/4/07 
-  1 - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 15 - - 1 2 - 

E2 - - - - - - - - 1 - 2 - - - - - - - - - - - - - - - - - - - - - - 3 4 3 - 
E3 - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - 1 1 - 1 - - 
F1 

6/6/07 

- - - 6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
F2 - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 
F3 - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
F5 - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - 
G1 

6/11/07 

- - - - - - 2 - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - 
G2 - - - - - - - - - - - - 2 - - - - - - 1 - - - - - - - - - - - - - - - - - 
G4 - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
G5 - - 1 - - - - - - - - - - - - - - - 6 - - 1 1 - - - - - - - - - - - - - - 
G6 - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - 
G7 2 - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - 
H1 

6/13/07 

- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - 
H2 - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
H3 - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - 
H5 - 5 - - 1 - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - 
H6 - 3 - - - - - - - - - - - - - - - - - - - - 10 1 - - - - - - - - - - - - - 
I1 

6/18/07 
- - - - - - - - - - - - - - - - - - - - - - 1 - - 5 - - - - - - 1 - - - - 

I2 1 - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 
I3 - - - - - - - - - 9 - - - - - - - - - - - - - - - - - - - - - - - - - - - 
J1 6/19/07 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - 
J3 - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - 
K4 6/20/07 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 
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Table 4.3 Distribution of Escherichia coli O157pulsed-field gel electrophoresis (PFGE) subtypes1 recovered by carcass 

sampled, as well as negative (-) pre-evisceration carcasses within cattle truckload by order of slaughter.   

 

Carcass order within load 

Truck 
Load 

Sample 
Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

A3 5/14/07 - - - babc - - - - - - - - - - - - - babc - - - - - - - - - - babc - - - 
B4 5/15/07 - - - - - - - - - - y - - - - - - - - - - - - - - . . . . . . . 
C2 5/21/07 - - - - - - - - - - - - - - - - - - - - - - - - - - ma - - - - - 
C5 - - - - - - - - - - - - - - - - - - - - - - - wab - - - - - - - - 
E1 

6/4/07 
- - - - - - - - - - - - - - - - - - - - - - ffab - - - - - - - - - 

E2 - - - - - - - - - - - - - - - - - - - iiab - - kc kc jjab - hhac - hhac - - - 
E3 - - - - - - - - - - - - ff aaac aaac - - - - - - - - - - - - - - - - . 
G1 

6/11/07 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - ga - - - 

G2 - - - - - t - - - - ma - - - - - - - - - - - - - - - - - - - - - 
G5 - - - - - - - - - sab - - - - - - - - - v - - - - - - - - - - - - 
H5 6/13/07 - - - - - - - - - - - - - - - - - - - - - wb e - - - - - - bab - - 
H6 - bc - - - - - wabc - - wabc - - - - - wabc bc - wabc - wabc bc - - - - - - - - - 
I1 6/18/07 - - - - - - - - - - - zac - - - - - - zac - zac - - - zac - - - - - - . 
I3 - - - - - - - - - - - - - - jabc - - - - jabc - - - - - - - - - - - - 
J1 6/19/07 - - - - - - - - - - - - - - - - ffab - - - - - - - - - - - - - - - 

 
 
 
 
 
 
 
 
 
 
1 Subtypes represent unique PFGE banding patterns following Xba1 digestion (designations correspond to those of Table 4.2). Superscripts (a-c) indicate where 
carcass isolates were the same subtype as other isolates recovered within the load. 
a This subtype was also present in a fecal isolate from a high-shedder within the same load.  
b This subtype was also present in a fecal isolate from a low-shedder within the same load. 
c This subtype was also present in a carcass isolate within the same load.   
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Abstract 
Field studies evaluating the effects of multiple concurrent preharvest interventions for 

Escherichia coli O157 are not often feasible; however, modeling techniques may provide useful 

information on these effects, while also identifying crucial information gaps that can guide future 

research.  We constructed a risk assessment model with data obtained from a systematic review 

of scientific literature.  Parameter distributions were incorporated into a stochastic Monte-Carlo 

modeling framework to examine the impacts of different combinations of preharvest and harvest 

interventions for E. coli O157 on the risk of beef carcass contamination.  We estimated the risk 

of E. coli O157 carcass contamination conditional on preharvest fecal prevalence estimates, 

inclusion of feed additive(s) in diet, vaccination for E. coli O157, transport and lairage effects, 

hide intervention(s), and carcass intervention(s).  Prevalence parameters for E. coli O157 were 

assumed to encompass potential effects of concentration; therefore, concentration effects were 

not specifically evaluated. Sensitivity analyses revealed that fecal prevalence, fecal to hide 

transfer, hide to carcass transfer, and carcass intervention efficacy significantly impacted the risk 

of carcass contamination (correlation coefficients = 0.37, 0.56, 0.58, and -0.29, respectively).  

Results indicated that combinations of preharvest interventions may be particularly important for 
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supplementing harvest interventions during periods of higher variability in fecal shedding 

prevalence (i.e., summer).  Further assessments of the relationships among fecal prevalence and 

concentration, hide contamination and subsequent carcass contamination are needed to further 

define risks and intervention impacts for E. coli O157 contamination of beef. 

Introduction 
Escherichia coli O157 has been found in several food production systems and remains an 

important cause of human illness (Rangel et al., 2005).  Preharvest fecal shedding of E. coli 

O157 in cattle and subsequent hide and carcass contamination within groups of cattle may 

increase the risk of human foodborne illness following consumption of undercooked beef 

products (Woerner et al., 2006).  As previously reviewed, several preharvest interventions for E. 

coli O157 in cattle have been proposed that may decrease carcass contamination and reduce the 

risk of human foodborne illness (Loneragan et al., 2005; Woerner et al., 2006); however, little is 

known about the overall impacts of multiple concurrent interventions upon the risk for carcass 

contamination at harvest.  The feasibility and parsimony of preharvest control strategies for E. 

coli O157, comprised of single or multiple interventions, may depend on their ability to reduce 

the colonization of cattle so that the effective thresholds of harvest interventions are not 

exceeded.  The impact of preharvest interventions on risk of contamination of carcasses in 

conjunction with existing harvest interventions is not well understood.   

Individual cattle shed E. coli O157 in feces intermittently (Besser et al., 1997).  Likewise, 

the fecal prevalence of E. coli O157 immediately prior to harvest (preharvest) within cohorts of 

cattle also has been shown to vary significantly (Hancock et al., 1997; Barkocy-Gallagher et al., 

2003; Arthur et al., 2009).  Prevalence peaks within a cohort may be seasonal and occur more 

often in the summer, as evidenced by cross-sectional studies that sampled cattle feces 

immediately prior to or during the harvest process at different seasons (Barkocy-Gallagher et al., 

2003; Renter et al., 2008).  Some studies have used manila ropes to sample cohorts of feedlot 

cattle and also have found increased prevalence of E. coli O157 during summer months (Smith et 

al., 2005; Stephens et al., 2009).  Conversely, some cross-sectional studies in feedlot cattle have 
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not indicated a seasonal tendency in fecal prevalence immediately prior to harvest (Khaitsa et al., 

2006; Arthur et al., 2009; Stephens et al., 2009).  Regardless of when the prevalence of E. coli 

O157 is relatively high within cohort of cattle, prevalence peaks may increase the importance of 

interventions during the cattle feeding period and at harvest.  However, these complex 

relationships are often difficult to investigate within a single observational study or randomized 

controlled trial.   

A systematic review by Sargeant et al. (2007) indicated that several preharvest 

interventions available during the feeding period may reduce fecal shedding of E. coli O157 in 

feedlot cattle.  Control strategies include vaccination for E. coli O157 or dietary modifications, 

such as direct-fed microbials (DFM), sodium chlorate, bacteriophages, antibiotics, and other feed 

additives (Sargeant et al., 2007).  Little is known about the impact of combinations of these 

interventions on the eventual risk of contamination of cattle carcasses at harvest (Sargeant et al., 

2007; Cernicchiaro et al., 2010).  Study designs that allow assessment of multiple concurrent 

preharvest interventions may not be feasible, and thus may not be reasonable approaches to 

elucidate multiple-hurdle control strategies.   

  Mathematical simulation models allow researchers to assess the impacts of multiple 

interventions within a complex system and can be used to estimate the effect and value of 

multiple interventions for E. coli O157.  An epidemiologic modeling approach can be justified 

by its relative feasibility over multivariable randomized controlled trials or observational studies, 

and can clarify assumptions about empirical data (Hethcote, 2009).  Our objective was to 

demonstrate the range of potential effects within the framework of preharvest and harvest 

interventions, conditional upon expected variations in fecal shedding of E. coli O157 in feedlot 

cattle and subsequent pathogen transfer at harvest.  To meet this objective, we utilized available 

data from the scientific literature and constructed a Monte-Carlo model to stochastically simulate 

relationships among fecal and hide prevalence of E. coli O157 in commercial feedlot cattle, 

combinations of interventions, and associated risks of carcass contamination. 
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Materials and Methods 

Model parameter development  

We conducted a systematic search of the scientific literature to identify preharvest- and 

harvest-level data regarding the epidemiology and ecology of E. coli O157 in commercial feedlot 

cattle.  PubMed and Agricola databases were searched to locate published abstracts from 1990 to 

2010.  The overall search term was (O157 OR O157:H7 OR E. coli O157 OR E. coli O157:H7 

OR Escherichia coli O157) AND (cattle OR calf OR calves OR steer) AND (feedlot OR 

feedyard OR truckload) AND (feces OR hide OR carcass OR transport OR lairage OR harvest 

OR slaughter OR wash OR DFM OR probiotic OR season OR vaccine); 126 potential 

manuscripts were identified using these search criteria.  Modified search terms targeting cattle 

hide and carcass interventions were employed to retrieve 39 additional potential manuscripts.  

Abstracts were screened for study type, design, and general content before selection for full 

manuscript review.  Manuscripts were then critically reviewed according to established standards 

to assess the internal and external validity, potential bias, and relevancy of the data (Dohoo et al., 

2009; Sargeant et al., 2009; O'Connor et al., 2010).   

We constructed a conceptual risk model (Figure 5.1) to represent groups of factors that 

influence risk of carcass contamination.  Model foci were selected based upon current and 

potential use of interventions within the beef industry.  Commercially available interventions 

were grouped into categories in accordance with the conceptual risk model.  Preharvest 

interventions included vaccines and direct-fed microbials.  To derive parameter estimates for the 

model, appropriate data were compiled to build parameter distributions.  Parameter estimates 

derived from multiple studies were assigned weights according to within study variance.  If 

variance estimates were unknown, the number of studied cohorts (groups of cattle in feedlot pens 

or truckloads) was used as a weight for the estimate (Dohoo et al., 2009).  Because our intent 

was to model the North American feedlot system, study populations outside of the North 

American feedlot cattle industry were excluded.  Additional exclusions were fecal prevalence 

data of unknown season, or data derived from less sensitive detection methods (e.g., direct 
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plating instead of an immunomagnetic separation protocol), and intervention efficacy data 

derived from artificial challenge/inoculation studies or non-commercial feedlot cattle settings.  

Fecal prevalence data from harvest (e.g., samples from the terminal rectum during the slaughter 

process) also were excluded because the model framework required fecal prevalence estimates 

that were measured prior to transport and lairage effects.  

Model development   

Parameters were incorporated into a stochastic Monte-Carlo modeling framework using 

@Risk for Excel (v. 5.5; Palisade, Corp; Ithaca, NY) to examine the impact of combinations of 

feedlot and harvest interventions for E. coli O157 on risk of carcass contamination.  Model 

parameter definitions, distributions, and primary references are shown in Table 5.1.  Within each 

iteration, stochastic model parameters, including baseline pre-intervention fecal prevalence of E. 

coli O157 within a cohort of feedlot cattle, were randomly chosen from their respective 

parameter distributions. In this manuscript, we have defined feedlot or feeding as the period in 

which cattle are raised in a feedlot (approximately 4 – 7 month period), preharvest as the time 

immediately prior to harvest (day of harvest, when cattle leave the feedlot and are transported to 

a slaughter facility), and harvest as the slaughter process.     

Efficacy of feedlot interventions for E. coli O157 were modeled as proportional 

reductions in baseline fecal prevalence.  Combined feedlot interventions (vaccine and DFM) 

were modeled as successive proportional reductions in fecal prevalence.  A combined transport 

and lairage effect was modeled as a proportional change in fecal prevalence of E. coli O157 

(after effects of any feedlot interventions were incorporated).  Fecal to hide transfer of E. coli 

O157 was then modeled as a stochastic ratio of the subsequent fecal prevalence to hide 

prevalence within a cohort; post-transport and lairage fecal prevalence was multiplied by the 

cohort-level fecal to hide prevalence transfer ratio to obtain the prevalence of contaminated 

hides.  This risk of hide contamination as a preliminary model output was truncated from 0 to 1.0 

for all scenarios.  A proportional reduction in the prevalence of E. coli O157 on hides within a 

cohort was applied by using a randomly selected hide intervention efficacy parameter from the 
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respective distribution.  The hide prevalence, post-hide intervention, was multiplied by the 

cohort-level hide to carcass prevalence transfer ratio in order to obtain the prevalence of 

contaminated carcasses.  Carcass intervention efficacy was then applied to the prevalence of pre-

intervention carcasses contaminated with E. coli O157 as a proportional decrease in the 

prevalence of carcasses contaminated with E. coli O157. 

Model simulation 

We used 50,000 iterations for each model scenario simulation in order to ensure 

consistent model convergence for the mean of each outcome (95% CI +/- 3%).  A fixed 

simulation seed (seed = 1) was used to ensure reproducibility in model outcomes.  Scenarios 

included multivariable combinations of baseline seasonal prevalence, vaccine intervention, feed 

additive intervention, transport/lairage effect, fecal to hide transfer, hide intervention efficacy, 

hide to carcass transfer, and carcass intervention efficacy.  Combinations of feedlot 

interventions, including no feedlot intervention (NFI), vaccination only (VAC), feed additive 

only (FA), and both vaccination and feed additive (VAC-FA), were modeled as separate 

scenarios.  Stochastic parameters for hide and carcass intervention efficacy were included in all 

scenarios.   

Sensitivity analysis and validation 

Sensitivity analyses were performed to evaluate the effect of parameters on the risk of 

carcass contamination by examining tornado graphs, Spearman rank correlation coefficients, and 

by fixing input parameters at the 5th, 50th and 95th percentile and comparing risk of carcass 

contamination (Vose, 2008).  A simulation table for the impact of combinations of the 5th, 50th, 

and 95th percentiles of baseline fecal prevalence, feedlot intervention, and hide intervention upon 

the prevalence of E. coli O157 on post-interventions carcasses was constructed. 

 Model outputs for fecal, hide, and carcass prevalence data were compared to data from 

studies that were not used to build model parameters.  Model diagnostics were performed to 

detect abnormal intermediate model output (e.g., prevalence above 100%).  Although a full 

model validation was not possible, outputs at various stages of the model were evaluated for 
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consistency with other empirical data from manuscripts not used to build model parameters 

(Barkocy-Gallagher et al., 2003; Brichta-Harhay et al., 2008; Arthur et al., 2009).   

Results 

Impact of baseline fecal prevalence and feedlot interventions 

 The distributions for risk of carcass contamination with E. coli O157 for model scenarios 

using combinations of seasonal fecal prevalence and feedlot interventions, including no feedlot 

intervention (NFI), vaccination only (VAC), feed additive only (FA), and both vaccination and 

feed additive (VAC-FA) are shown in Figure 5.2.  For each feedlot intervention scenario, the 

median risk of carcass contamination was approximately two times higher with summer fecal 

prevalence than winter fecal prevalence, as shown in Table 5.2.  In summer and winter scenarios, 

feedlot interventions reduced the median risk of carcass contamination by approximately three 

times.  The mean risk of post-intervention carcass contamination was below 1.0% for all 

scenarios except summer fecal prevalence with no feedlot intervention. 

Sensitivity analysis 

Sensitivity analysis revealed that hide to carcass transfer, fecal to hide transfer, baseline 

fecal prevalence, and carcass intervention efficacy highly impacted the risk of carcass 

contamination in each model scenario.  Spearman rank correlation coefficients for model input 

parameters with the risk of carcass contamination are shown in Figure 5.3 for the summer VAC-

FA model scenario; this tornado graph is representative of the other model scenarios for 

combinations of seasonal fecal prevalence and feedlot interventions, as shown in Table 5.3.   

The median percentages of carcasses contaminated with E. coli O157 for 48 model 

scenarios that used the 5th, 50th and 95th percentiles one by one as deterministic values for each of 

the input parameters in separate simulations while other parameters were allowed to vary are 

shown in Table 5.4.  The median percentage of contaminated carcasses was highest within any 

seasonal fecal prevalence and within any feedlot intervention scenario when hide to carcass or 

fecal to hide transfer ratios were set deterministically at their 95th percentile.  Likewise, the 
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median percentage of carcasses contaminated with E. coli O157 was lowest within any seasonal 

fecal prevalence and within any feedlot intervention scenario when hide to carcass or fecal to 

hide transfer ratios were set deterministically at their 5th percentile.  In this sensitivity analysis, 

the percentage of contaminated carcasses was highest when no feedlot interventions were 

employed during the summer season and the hide to carcass prevalence transfer was 

deterministically set at the 95th percentile.   

The change in the percentage of contaminated carcasses in model simulations comparing 

the 5th and 95th percentile deterministic settings for input parameters is shown in Table 5.5.   For 

all parameters, the absolute value of differences increased in the order of VAC-FA to FA to 

VAC to NFI scenarios.  The largest change in carcass contamination risk occurred when hide to 

carcass transfer was changed from its 5th to the 95th percentile, which also suggests the model is 

sensitive to this parameter (Table 5.5).  The next largest change in carcass contamination risk 

occurred when fecal to hide transfer was changed from its 5th to 95th percentile.  In this analysis, 

the FA scenarios mitigated more carcass contamination than the VAC scenarios, and VAC-FA 

scenarios mitigated more carcass contamination risk than the VAC and FA scenarios (Table 5.5).  

Model performance assessment 

 Convergence of model output was obtained in each simulation.  The NFI, VAC, FA, and 

VAC-FA model scenario outputs for risk of carcass contamination were consistent with relevant 

data derived from three observational studies (Barkocy-Gallagher et al., 2003; Brichta-Harhay et 

al., 2008; Arthur et al., 2009) that were not used to build input parameters for our models; these 

data are summarized in Table 5.6.  The model output prediction intervals were consistent with 

empirical estimates of mean prevalence of summer and winter hide and pre-intervention carcass 

contamination from Brichta-Harhay et al. (Brichta-Harhay et al., 2008).  Model outputs also 

were consistent with E. coli O157 prevalence on hides at harvest, pre-intervention carcasses, and 

post-intervention carcasses at three fed-beef harvest facilities (Barkocy-Gallagher et al., 2003).  

Model outputs were consistent with data from Arthur et al. (Arthur et al., 2009); when we 

restricted the summer fecal prevalence of E. coli O157 in our model to greater than 20%, hide 
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prevalence was at least 80% approximately 50.6% of the time. When we restricted the summer 

fecal prevalence of E. coli O157 in our model to less than 20%, 86.4% of the time, hide 

prevalence was less than 80%.  As shown in Table 5.6, model output prediction intervals for hide 

prevalence were consistent with the observations of Arthur et al.    

Discussion 
We used a Monte-Carlo model to estimate the risk of carcass contamination in a cohort of 

feedlot cattle conditional on baseline preharvest fecal prevalence of E. coli O157, feed additive 

inclusion in diet, vaccination for E. coli O157, transport and lairage effects, hide intervention, 

and carcass intervention.  Feedlot interventions to control fecal and hide prevalence of E. coli 

O157 may be important for supplementing harvest interventions during periods of higher 

variability in fecal shedding prevalence.  In our model, fecal to hide transfer, hide to carcass 

transfer, fecal prevalence, and carcass intervention efficacy were the most influential input 

parameters on the risk of carcass contamination at harvest.  Because of the relative importance, 

yet sparse amount of data defining fecal to hide and hide to carcass transfer parameters, further 

targeted field studies are warranted to better define these relationships.   

  Models can aid the analysis and assessment of factors in complex infectious disease 

systems and are now a component of public health decision making policies in several countries 

(Hethcote, 2009).  Models may be useful to investigate potential areas of mitigation and provide 

a representation of the effects of feedlot interventions on contamination of cattle carcasses with 

E. coli O157, especially when observational studies and randomized clinical trials are not 

feasible.  Our model estimated the risk of carcass contamination with E. coli O157 with 

combinations of interventions and highlighted the need for more data to better define the 

relationships between fecal and hide prevalence and hide and carcass prevalence.  In addition, 

our model emphasized the need for multiple concurrent interventions during periods of high 

variability in fecal prevalence.    

  Preharvest and harvest models of E. coli O157 interventions in beef production systems 

have been published previously (Wood et al., 2007; Signorini et al., 2009; Signorini et al., 2010).  
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One study used a spatial simulation model to assess the potential impact of herd size, water 

trough and pen hygiene, and vaccination on the fecal prevalence of E. coli O157 in cattle within 

an intensively-managed grazing cattle system (Wood et al., 2007).  A metapopulation model 

examined the population dynamics of E. coli O157 within feedlot cattle pens based upon E. coli 

O157 habitats in cattle, water, feed, and the remaining feedlot pen environment (Ayscue et al., 

2009).  Another recent study used mathematical modeling to assess the risk of E. coli O157 

foodborne illness in humans following feedlot vaccination of cattle for E. coli O157. This study 

included an economic analysis and determined break-even costs in accordance with variation in 

vaccine efficacy (Withee et al., 2009).  A recent study in Argentina utilized Monte-Carlo risk 

analysis techniques to assess the risk of human illness from verocytotoxigenic E. coli based on 

postharvest interventions (Signorini et al., 2009).  Although models of these complex biological 

systems can provide important information, their usefulness can be limited by model framework 

and assumptions.  

Our model suggests that peaks in preharvest fecal prevalence of E. coli O157 may 

substantially increase the risk of carcass contamination at harvest within a feedlot cattle cohort, 

even when hide and carcass interventions are employed.  Data from the scientific literature 

reveal that fecal prevalence of E. coli O157 within a cohort of commercial feedlot cattle may 

range from 0 to over 93% (Sargeant et al., 2003; Khaitsa et al., 2006), and this preharvest 

prevalence has been associated with risk of carcass contamination within the cohort (Elder et al., 

2000; Woerner et al., 2006).  Previous simulation data also have indicated that feedlot 

interventions which reduce the preharvest fecal prevalence of E. coli O157 may have significant 

impact on the risk of carcass contamination at harvest (Jordan et al., 1999).  Our model output 

was consistent with this concept; individual and combined feedlot interventions appeared to 

reduce the risk of carcass contamination given any fecal prevalence of E. coli O157, but were 

relatively more important in cohorts with higher levels of fecal prevalence.  Cohorts with high 

fecal prevalence were at increased risk for carcass contamination and this high prevalence was 

more likely to occur in summer.    

As shown in the sensitivity analysis, extreme values of the fecal to hide and hide to 
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carcass transfer parameters were very influential in this model.  Seasonal fecal prevalence and 

carcass intervention efficacy were also influential.  This suggests that the distributions of these 

parameters should be closely scrutinized and, if possible, more clearly defined in future studies 

to guide optimal intervention efforts.  Cohort-level data demonstrating the relationships of fecal, 

hide, and carcass prevalence in commercial feedlot cattle were available from only one study 

(Jacob et al., 2010).  Therefore, these transfer parameter distributions have considerable 

uncertainty along with their inherent variability.  Although other studies reported some of these 

relationships as study means, we did not construct transfer ratio parameter distributions from 

overall mean prevalence estimates (e.g., overall mean hide prevalence to overall mean carcass 

prevalence) if we could not determine the relationship of fecal to hide to carcass prevalence at 

the cohort level (Woerner et al., 2006; Brichta-Harhay et al., 2008; Fegan et al., 2009).  Since 

fecal prevalence parameters were constructed with more data from several studies, the fecal 

prevalence distribution primarily represents variability rather than uncertainty.  More data are 

needed to decrease the uncertainty in fecal to hide and hide to carcass parameter distributions. 

 Although the comparison of model output with empirical data was not a formal 

validation, this comparison did allow assessment of model simulation performance.  Three data 

sets were used for comparison to the model output because they did not meet inclusion criteria 

for the model parameters and hence, were not used to build the model.  Some studies offered 

comparative values for hide or carcass contamination even if the fecal prevalence was not 

measured in the study.   Empirical data from individual studies on the cohort-level relationship of 

fecal, hide, and carcass prevalence (within a single study) were not available to formally validate 

the model.  Examination of data from future observational studies may allow a more 

comprehensive validation of this model.  Regardless, our model is consistent with available data 

estimating hide and carcass contamination.  In the Arthur et al. (2009) longitudinal study of 

feedlot cattle, observed hide prevalence of E. coli O157 was greater than 80% whenever fecal 

prevalence was greater than 20% within a cohort during the feeding period.  We were able to 

produce results consistent with these observations when fecal prevalence in our model was 

limited to greater than 20%.  Further, when fecal prevalence in our model was limited to less 
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than 20%, hide prevalence ≥ 80% was a rare occurrence. 

We chose to model combined feedlot interventions as successive reductions in baseline 

fecal prevalence of E. coli O157, but this may have been an oversimplification of the impact of 

combined interventions.  This assumption that two interventions have an additive effect may 

overestimate their true combined impact, or it could underestimate the impact if the interventions 

have a synergistic relationship in lowering prevalence or concentration of E. coli O157 and 

subsequently transmission from calf to calf.  Because data were not consistently available, we 

did not model fecal concentration of E. coli O157.  However, feedlot interventions may impact 

the concentration of E. coli O157 in feces shed by individual cattle, and/or impact fecal 

prevalence of E. coli O157 within a cohort (Thornton et al., 2009).  In addition to fecal 

prevalence, higher concentrations of E. coli O157 shed in feces may be an important contributor 

to hide and carcass contamination.  In a review of the impact of cattle shedding high levels of E. 

coli O157 in feces (>104 CFU/g feces) upon carcass contamination, Arthur et al. (2010) 

hypothesized that interventions at harvest may have critical thresholds for the bacterial loads of 

individual cattle within a cohort.  The cumulative capacity of hide and carcass interventions may 

become overwhelmed if the pathogen concentrations on a hide or carcass exceed these thresholds 

(Arthur et al., 2010).  The relationship between fecal prevalence and fecal concentration of E. 

coli O157 in feedlot cattle may be complex and creates challenges in determining the impact of 

combinations of preharvest and harvest interventions.  Observational studies and randomized 

controlled trials employing multiple interventions may be needed in order to better understand 

the impact of combinations of feedlot- and harvest-level interventions for E. coli O157 on 

prevalence and concentration in feces and on hides and carcasses. 

    The cohort-level fecal prevalence of E. coli O157 was chosen as the initial measurement 

in our conceptual model to investigate the risk of eventual carcass contamination.  Since the fecal 

prevalence of E. coli O157 in feedlot cattle immediately prior to harvest may be higher in the 

summer than in the winter season, we selected preharvest fecal prevalence data from studies that 

provided estimates specific to the summer or winter season.  Because we excluded prevalence 

estimates derived from data from feedlot cattle at harvest, we found fewer preharvest data for 



 

126 

 

winter than summer season.  We also chose to exclude data from studies that used less sensitive 

detection methods such as direct plating or culture without immunomagnetic separation, other 

forms of preharvest sampling methods (e.g. manila ropes), or sample pooling.  Although we 

acknowledge the importance and practicality of various detection methods, we could not reliably 

convert data from alternative detection methods to the standard prevalence data reported in a 

majority of studies.     

Fecal shedding of E. coli O157 in cattle is both transient and heterogeneous; individual 

cattle are likely to shed E. coli O157 for variable times and at different concentrations in feces 

(Hancock et al., 1997; Sanderson et al., 1999; Sargeant et al., 2000; Omisakin et al., 2003).  

Limited data address the relationship between fecal prevalence, fecal concentration, hide 

prevalence and carcass contamination risk (Omisakin et al., 2003; Fox et al., 2008; Arthur et al., 

2009; Jacob et al., 2010).  Some researchers have suggested that control methods for E. coli 

O157 in cattle should target cattle that are shedding higher concentrations in feces.  Omisakin et 

al. estimated the prevalence and concentration of E. coli O157 in cattle feces at harvest and 

asserted that four out of 44 positive animals were responsible for 96% of the total E. coli O157 

organisms produced (Omisakin et al., 2003).   A published modeling study suggested that 

approximately 20% of cattle shedding E. coli O157 were responsible for 80% of the transmission 

within cattle herds in Scotland (Matthews et al., 2006).  These studies highlight the importance 

of determining the fecal concentration of E. coli O157 in cattle, but little is known about the 

longitudinal relationships between herd or pen prevalence and individual fecal concentrations.  A 

recent study was used to demonstrate the association between fecal concentrations of E. coli 

O157 and hide contamination.  Cohort-level fecal prevalence estimates over 20% were positively 

associated with hide prevalence estimates of over 80%; however no samples were collected at 

slaughter (Arthur et al., 2009).  This longitudinal study indicated that both fecal prevalence and 

fecal concentration were important factors in predicting hide contamination with E. coli O157, 

yet the relative importance and interrelationship of fecal prevalence and concentration is unclear.  

Previous studies have shown that the proportion of high-shedding animals is positively correlated 

with the overall number of animals shedding within a cohort (Cobbold et al., 2007; Fox et al., 
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2008; Jacob et al., 2010).  Yet, fecal concentration of E. coli O157 may be a critical component 

of models, particularly if the proportion of high-shedding animals is not consistently and 

positively correlated with the overall number of animals shedding within a cohort.  Also, if 

preharvest intervention efficacy varies according to fecal prevalence and/or concentration, our 

model may not have fully captured these intervention effects.  For this model we assumed that 

data from the scientific literature that depicted relationships between fecal and hide prevalence or 

fecal and carcass prevalence inherently accounted for the presence of high-shedding animals.  

Future models that account for fecal concentration may provide more accurate assessments of 

carcass contamination risk. 

   Although we used model scenarios based on either a summer (higher) or winter (lower) 

preharvest fecal prevalence, our analysis of data from studies measuring preharvest fecal 

prevalence provided surprising similar means for fecal prevalence between these seasons.  Mean 

cohort-level summer preharvest fecal prevalence was 12.1% while winter prevalence was 10.8%; 

however, distributions for these parameters allowed a much wider range of values for summer 

(up to 93% cohort-level prevalence) than for winter (up to 21%).  These differences in the 

distribution for the baseline fecal prevalence parameter resulted in notable differences in the 

eventual risk of carcass contamination. Since the means for fecal prevalence were similar 

between seasons, our model may suggest that prevalence variability, rather than the mean 

prevalence, may be a more important driver of carcass contamination risk.  In addition, 

preharvest interventions may be most important during peaks in E. coli O157 prevalence, 

regardless of season.  Currently, season may be the best indicator of high fecal prevalence risk in 

cohorts of feedlot cattle; methods to indentify high prevalence pens for additional interventions 

might be useful.   

    The two categories of feedlot interventions for E. coli O157 in this model were 

commercially available vaccines and feed additives.  Current data support that these 

interventions may significantly impact the fecal shedding of E. coli O157 in commercial feedlot 

cattle.  Several feed additive studies investigated the use of direct-fed microbials (Brashears et 

al., 2003; Elam et al., 2003; Younts-Dahl et al., 2004; Younts-Dahl et al., 2005; Stephens et al., 
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2007; Stephens et al., 2010).  Direct-fed microbials are cattle feed additives that contain viable 

microorganisms, commonly Lactobacillus spp. strains, and have been considered to improve 

animal growth and reduce fecal shedding of E. coli O157 in commercial feedlot cattle (Brashears 

et al., 2003; Elam et al., 2003; Younts-Dahl et al., 2004; Younts-Dahl et al., 2005; Stephens et 

al., 2007; Stephens et al., 2010).  Although other potential feed additives exist, such as 

bacteriophage and sodium chlorate, our inclusion criteria for research data was restricted to 

randomized controlled trials of commercially available interventions; this restricted our feed 

additive parameter distribution to studies involving DFMs. 

     Included studies for E. coli O157 vaccination of cattle were on vaccine technologies that 

targeted either the type III secreted proteins or siderophore receptor and porin protein 

mechanisms of E. coli O157 bacteria.  The type III secreted proteins vaccine works on the 

principle that these secreted proteins are required for cattle colonization of the terminal rectum 

with E. coli O157.  Vaccinated cattle are less likely to shed E. coli O157 in the feces and less 

likely to be colonized in the terminal rectum (Peterson et al., 2007; Moxley et al., 2009; Smith et 

al., 2009; Smith et al., 2009).  The E. coli O157 SRP vaccine targets the siderophore receptor 

and porin proteins of the bacteria.  This vaccine tends to reduce fecal prevalence and 

concentration of E. coli O157 in inoculated calves (Thornton et al., 2009), but has not been 

evaluated extensively in commercial feedlot settings (Fox et al., 2009; Thomson et al., 2009).  

Although other feedlot-level interventions exist, vaccination and feed additive intervention 

categories in our model framework provided a multi-intervention yet parsimonious approach in 

modeling the impact of feedlot interventions on the eventual risk of carcass contamination with 

E. coli O157.  In our model, these interventions could conceptually represent any feedlot-level 

intervention affecting fecal prevalence of E. coli O157.  

Fecal to hide transfer of E. coli O157 was modeled as a ratio of fecal prevalence to hide 

prevalence within a cohort following an adjustment of fecal prevalence by a transport and lairage 

effect, because we had relatively more cohort-level data to describe the ratio of fecal to hide 

prevalence at this time (Jacob et al., 2010).  As discussed by Jordan et al. (1999), a model of the 

transfer of E .coli O157 from cattle feces to hides should include cattle hygiene measurements 
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(e.g., tag scores) and pathogen concentration (Jordon et al., 1999), for which we had insufficient 

data. 

  Although some enumeration data exist to describe the concentration of E. coli O157 

organisms on contaminated cattle hides and carcasses, the relationships between hide and carcass 

prevalence and hide and carcass concentration is unknown at the cohort level (Brichta-Harhay et 

al., 2008; Kalchayanand et al., 2009); the lack of data prevented us from constructing reliable 

distributions for these parameters.  This limitation may have also decreased the accuracy of our 

hide and carcass intervention parameters, since many studies assessing hide and carcass 

intervention efficacy report reductions in pathogen concentration rather than reductions in the 

prevalence of contamination on hides or carcasses.  Because of sparse data, we also assumed that 

the hide to carcass transfer parameter in our model encompassed the effects of non-hide 

contamination sources at this processing step.  Furthermore, substantial data on the efficacy of 

hide and carcass interventions may not be reported in the scientific literature, but instead may be 

generated and retained within operators in the beef processing industry.  With more empirical 

data, future models may more reliably account for hide and carcass pathogen loads in estimating 

the risk of carcass contamination as well as subsequent product contamination and human 

disease risk. 

 Since fecal to hide transfer, carcass intervention efficacy, and hide to carcass transfer 

parameters exerted significant influence on the risk of carcass contamination with E. coli O157 

in our model, further defining of the distribution of these parameters is warranted.  Future studies 

of these factors may reduce uncertainty and indentify controllable variability, which may lead to 

improved interventions at these contamination pathway steps.  Fecal to hide and hide to carcass 

transfer may be impacted by cattle hygiene, pathogen load, and processing plant methods 

(Brichta-Harhay et al., 2008); yet few data are available to define these effects.  For the transfer 

parameters, we used pen-level data from Jacob et al. (2010) as it was important to know the 

range of individual cohort-level transfer rather than an overall mean transfer across cohorts.  Our 

model suggests that relatively small changes in these parameters may have substantial impact on 

the eventual risk of carcass contamination with E. coli O157. 
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Our stochastic model estimated the impact of specific combinations of preharvest and 

harvest interventions on the risk of contamination of cattle carcasses with E. coli O157.  

Combinations of preharvest interventions may be particularly valuable for food safety during 

periods of high fecal prevalence.  The sensitivity of our model to specific input parameters 

suggests potential prime opportunities for intervention development and data needs that could be 

addressed in future clinical trials or observational studies.  Further, longitudinal observational 

studies investigating the relationships among fecal prevalence and concentration, hide 

contamination and concentration, and subsequent carcass contamination at the cohort level are 

needed to further define modifiable determinants of risk of E. coli O157 contamination in beef 

originating from feedlot cattle.   
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Figure 5.1 Conceptual model for the pathway of Escherichia coli O157 contamination in 

cohorts of feedlot cattle from feedlot to harvest.   
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Figure 5.2 Box plot depicting the median risk of cattle carcass contamination with 

Escherichia coli O157 for model scenarios using combinations of summer (S) and winter 

(W) fecal prevalence and feedlot interventions, including no feedlot intervention (NFI), 

vaccination only (VAC), feed additive only (FA), and both vaccination and feed additive 

(VAC-FA).  
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Figure 5.3 Sensitivity analysis showing Spearman rank correlation coefficients between 

model input parameters and the risk of cattle carcass contamination with Escherichia coli 

O157 for model simulations using summer (S) fecal prevalence and both vaccination and 

feed additive (VAC-FA). 

 

 
 

 



 

Table 5.1 Input parameters, distributions, and references for modeling the risk of carcass contamination with Escherichia coli 

O157 in cohorts of commercial feedlot cattle. 
                      

Parameter Minimum 
Most 

Likely Maximum Unit Distribution Reference 
Summer fecal prevalence 0.07 0.12 0.93 % Pert Arthur et al., 2007; Callaway et al., 2006; Cobbold et al., 

2007; Dewell et al., 2005; Dewell et al., 2008; Loneragan et 
al., 2005; Niu et al.,; Renter et al., 2008; Sanderson et al., 
2006; Sargeant et al., 2003; Smith et al., 2001; Stephens et al., 
2009  

Winter fecal prevalence 0.05 0.11 0.21 % Pert Khaitsa et al., 2006; Renter et al., 2008; Stephens et al., 2009  

Vaccine efficacy  0.08 0.29 0.85 % Pert Moxley et al., 2009; Peterson et al., 2007; Potter et al., 2004, 
Smith et al., 2009 ; Thomson et al., 2009; Woerner et al., 
2006; Van Donkersgoed et al., 2005  

Feed additive efficacy 0.21 0.45 0.74 % Pert Arthur et al., 2010; Brashears et al., 2003; Cernicchiaro et al., 
2010; Elam et al.,  2003; Peterson et al., 2007; Stephens et al., 
2007a&b; Tabe et al., 2008; Woerner et al., 2006; Younts-
Dahl et al., 2004; Younts-Dahl et al., 2005  

Transport and lairage effect -0.12 0.23 0.42 % Pert Childs et al., 2006; Dewell et al., 2008; Fegan et al., 2009; 
Woerner et al., 2006  

Fecal to hide prevalence transfer 0.00 3.00 15.50 Ratio Exponentiala Jacob et al., 2010  

Hide intervention efficacy 0.39 0.57 0.62 % Pert Arthur et al., 2007; Bosilevac et al., 2004, Bosilevac et al., 2005

Hide to carcass prevalence transfer 0.00 0.26 1.25 Ratio Exponentiala Jacob et al., 2010  

Carcass intervention efficacy 0.35 0.86 0.98 % Pert Arthur et al., 2004; Bosilevac et al., 2006; Elder et al., 2000  

a The most likely value was used for the β parameter in exponential distributions; these distributions were truncated at minimum and maximum values.
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Table 5.2 Model outpu for the 2.5th, 50th, and 97.5th percentile probability of carcass 

contamination with Escherichia coli O157 for combinations of summer (S) and winter (W) 

fecal prevalence and no feedlot intervention (NFI), vaccine (VAC), feed additive (FA), and 

vaccination and feed additive (VAC-FA) models. 

Scenario 2.5% 50% 97.50% 
S, VAC-FA 0.00001 0.00165 0.04053 
S, VAC 0.00002 0.00299 0.05713 
S, FA 0.00002 0.00256 0.05209 
S, NFI 0.00004 0.00440 0.06828 
W, VAC-FA 0.00001 0.00091 0.01938 
W, VAC 0.00002 0.00171 0.03446 
W, FA 0.00001 0.00143 0.02917 
W, NFI 0.00003 0.00268 0.04809 
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Table 5.3 Spearman rank correlation coefficients between model parameters and the risk 

of carcass contamination with Escherichia coli O157 for combinations of summer and 

winter fecal prevalence and no feedlot intervention (NFI), vaccine (VAC), feed additive 

(FA), and vaccination and feed additive (VAC-FA) models. 

    Spearman rank correlation coefficient 
Summer Winter 

Model parameter NFI VAC FA VAC-FA   NFI VAC FA VAC-FA 
Fecal prevalence 0.33 0.36 0.37 0.37 0.22 0.22 0.22 0.22 
Feed additive efficacy n/a n/a -0.09 -0.09 n/a n/a -0.10 -0.10 
Vaccine efficacy n/a -0.09 n/a -0.11 n/a -0.11 n/a -0.11 
Transport and lairage effect 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 
Fecal to hide transfer 0.50 0.53 0.55 0.56 0.60 0.61 0.61 0.61 
Hide intervention efficacy -0.05 -0.05 -0.05 -0.04 -0.05 -0.05 -0.05 -0.05 
Hide to carcass transfer 0.63 0.60 0.59 0.58 0.62 0.61 0.61 0.61 
Carcass intervention efficacy   -0.33 -0.31 -0.31 -0.29   -0.33 -0.32 -0.32 -0.32 
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Table 5.4 Sensitivity analysis showing the impact of 5th, 50th, and 95th percentile 

deterministic settings for input parameters on the percentage of carcasses within a cohort 

contaminated with Escherichia coli O157 for no feedlot intervention (NFI), vaccine (VAC), 

feed additive (FA), and vaccination and feed additive (VAC-FA) models 

Input parameter 

Parameter 
distribution 
percentile 

Deterministic 
value 

  Median percentage of contaminated carcasses 

Season NFI   VAC   FA   VAC-FA 

Summer fecal 
prevalence 

5th 0.035 summer 0.10 0.06 0.05 0.03 
50th 0.210 summer 0.53 0.36 0.31 0.19 
95th 0.529 summer 0.90 0.72 0.65 0.46 

Winter fecal 
prevalence 

5th 0.041 winter 0.11 0.07 0.06 0.04 
50th 0.107 winter 0.29 0.19 0.16 0.10 
95th 0.172 winter 0.45 0.30 0.25 0.16 

Vaccine efficacy 

5th 0.147 summer N/A 0.39 N/A 0.22 
winter N/A 0.23 N/A 0.12 

50th 0.338 summer N/A 0.31 N/A 0.17 
winter N/A 0.18 N/A 0.09 

95th 0.601 summer N/A 0.19 N/A 0.10 
winter N/A 0.11 N/A 0.06 

Feed additive 
efficacy 

5th 0.297 summer N/A N/A 0.33 0.21 
winter N/A N/A 0.19 0.12 

50th 0.456 summer N/A N/A 0.26 0.17 
winter N/A N/A 0.15 0.09 

95th 0.626 summer N/A N/A 0.18 0.12 
winter N/A N/A 0.10 0.06 

Transport /lairage 
fecal prevalence 
increase 

5th 0.032 summer 0.39 0.26 0.22 0.14 
winter 0.23 0.14 0.12 0.08 

50th 0.211 summer 0.44 0.30 0.26 0.17 
winter 0.27 0.17 0.14 0.09 

95th 0.356 summer 0.48 0.33 0.29 0.19 
winter 0.30 0.19 0.16 0.10 

Fecal to hide 
prevalence transfer 

5th 0.150 summer 0.04 0.03 0.02 0.01 
winter 0.02 0.01 0.01 0.01 

50th 2.062 summer 0.58 0.38 0.32 0.20 
winter 0.32 0.20 0.17 0.11 

95th 8.680 summer 1.18 1.04 0.97 0.75 
winter 1.13 0.83 0.71 0.45 

Hide intervention 
efficacy 

5th 0.472 summer 0.51 0.35 0.30 0.19 
winter 0.31 0.20 0.17 0.10 

50th 0.552 summer 0.43 0.30 0.25 0.16 
winter 0.26 0.17 0.14 0.09 

95th 0.606 summer 0.38 0.26 0.22 0.14 
winter 0.23 0.15 0.12 0.08 

Hide to carcass 
prevalence transfer 

5th 0.013 summer 0.04 0.03 0.02 0.01 
winter 0.02 0.01 0.01 0.01 

50th 0.178 summer 0.56 0.37 0.31 0.20 
winter 0.32 0.20 0.17 0.11 

95th 0.741 summer 2.32 1.55 1.30 0.83 
winter 1.34 0.85 0.72 0.45 

Carcass intervention 
efficacy 

5th 0.594 summer 1.05 0.71 0.61 0.39 
winter 0.64 0.40 0.34 0.21 

50th 0.811 summer 0.49 0.33 0.28 0.18 
winter 0.30 0.19 0.16 0.10 

95th 0.945 summer 0.14 0.10 0.08 0.05 
winter 0.09 0.05 0.05 0.03 
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 Table 5.5 Change in the percentage of carcasses contaminated with Escherichia coli O157 

in model simulations using the 5th and 95th percentile settings for input parameters for no 

feedlot intervention (NFI), vaccine (VAC), feed additive (FA), and vaccination and feed 

additive (VAC-FA) models. 

 

Input Distribution Season NFI   VAC   FA   VAC-FA 
Summer fecal prevalence Summer 0.81 0.66 0.60 0.43 
Winter fecal prevalence Winter 0.34 0.22 0.19 0.12 
Vaccine efficacy Summer N/A -0.19 N/A -0.12 

Winter N/A -0.28 N/A -0.06 
Feed additive efficacy Summer N/A N/A -0.15 -0.10 

Winter N/A N/A -0.09 -0.06 
Transport /lairage fecal prevalence increase Summer 0.09 0.07 0.06 0.04 

Winter 0.07 0.04 0.04 0.02 
Fecal to hide prevalence transfer Summer 1.14 1.01 0.95 0.73 

Winter 1.11 0.81 0.70 0.45 
Hide intervention efficacy Summer -0.13 -0.09 -0.08 -0.05 

Winter -0.08 -0.05 -0.04 -0.03 
Hide to carcass prevalence transfer Summer 2.28 1.52 1.28 0.81 

Winter 1.32 0.83 0.71 0.44 
Carcass intervention efficacy Summer -0.91 -0.62 -0.53 -0.34 
  Winter -0.55   -0.35   -0.29   -0.18 

 

 

 

 

 



 

Table 5.6 Empirical data from previous studies that were used to assess model simulation accuracy and outputs from the 

model of carcass contamination with Escherichia coli O157 that we reported herein. 
       

      Prevalence (95% Prediction Interval) 

Study 
Sample 

size Season   Hide   
Pre-intervention 

carcass   
Post-intervention 

carcass   

Brichta-Harhay et al., 2008  180 summer   55.7%    18.3%   N/A   
winter   50.4%   19.5%   N/A   

Barkocy-Gallagher et al., 
2003  300 

summer   73.5%   40.8%   1.0%   
winter   29.4%   1.2%   0.0%   

Arthur et al., 2009  319a 
summer 37.2% N/A N/A 
winter 63.4% N/A N/A 

Model output (NFI) N/A 
summer 51.1% (0.9-100.0%) 5.8% (0.0-29.4%) 1.2% (0.0-6.9%) 
winter   34.0% (0.8-100.0%)   3.8% (0.0-21.4%)   0.8% (0.0-4.9%)   

a Although 319 animals were in the study, results were analyzed at the cohort level (n = 10) 
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CHAPTER 6 - Conclusions 

Several conclusions on the epidemiology of Salmonella and Escherichia coli O157 in the 

preharvest phase of beef cattle production can be reached based on the review of scientific 

literature and the subsequent research described within this dissertation.  Previous research has 

focused more on the epidemiology of E. coli O157 than on Salmonella in beef cattle production 

systems, yet both pose a serious risk to cattle carcass contamination and the eventual risk of 

foodborne illness in humans.  Insufficient information is available to effectively identify and 

validate several preharvest and harvest interventions in varied commercial beef production 

systems.  Understanding the transfer of E. coli O157 and Salmonella from cattle feces to hides to 

carcasses likely depends on both pathogen prevalence and concentration at each step in the 

contamination pathway.  Previous research suggests that preharvest interventions for Salmonella 

or E. coli O157 are important in reducing the risk of carcass contamination at harvest, yet data 

are limited on the impact of preharvest interventions on the prevalence and concentration of 

these organisms in feces, hides and carcasses.  Furthermore, data regarding the transmission and 

persistence of E. coli O157 and Salmonella within and among cohorts of cattle are sparse.  

Review of the literature indicates that cohort-level studies are needed to develop a better 

understanding of the epidemiology of Salmonella and E. coli O157 and evaluate the impact of 

combinations of preharvest interventions in commercial feedlot cattle.   

We used diverse study designs to further evaluate the epidemiology of Salmonella and E. 

coli O157 in beef cattle production systems.  Our first study was a randomized controlled trial 

that indicated a commercially available vaccine (Salmonella Newport SRP®) did not 

significantly affect health and performance of feedlot cattle, nor did it appear to affect the fecal 

prevalence of Salmonella in vaccinated cattle.  In this study, the low fecal prevalence of 

Salmonella combined with the longitudinal variability in fecal prevalence among replicates may 

have inhibited our ability to detect a significant vaccine effect.  However, the study did provide 

further useful information.  Fecal prevalence of Salmonella varied by arrival cohort throughout 

the study period (> 200 days in the feedlot), suggesting that cattle source may be an important 

risk factor for fecal shedding of Salmonella.  This was the first peer-reviewed study to evaluate 

the effects of the Salmonella Newport SRP® vaccine in cattle within a commercial feedlot 

production setting; further trials of this vaccine administration in different feeder cattle 
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production settings may allow further assessment of this vaccine.  Future study designs may need 

to include long-term herd vaccination strategies and/or regional vaccine coverage of several 

adjacent cohorts within a feedlot and within feedlot replicates.  Because the control of 

Salmonella in commercial feedlot production systems may enhance food safety, and potentially 

improve cattle health and performance, further studies are necessary to validate preharvest 

interventions such as the Salmonella Newport SRP® vaccine. 

Several risk factors may be associated with the fecal prevalence of Salmonella in feedlot 

cattle, such as the source of cattle as mentioned above.  We used a repeated cross-sectional study 

to identify factors associated with the fecal prevalence of Salmonella in cattle at feedlot entry 

and immediately prior to harvest.  We also determined if specific Salmonella strains (as 

differentiated by pulsed-field gel electrophoresis (PFGE)), which were isolated from feces of 

newly arrived cattle in the feedlot, were similar to strains isolated from those same cattle prior to 

being shipped for harvest.  Surprisingly, the fecal prevalence of Salmonella within cohorts of 

cattle at feedlot arrival was not associated with the prevalence immediately prior to harvest.  

However, we found that specific serotypes, and also specific (PFGE) subtypes of Salmonella, 

appear to persist within a cohort throughout the feeding period, and can also be found among 

multiple cohorts within a feedlot.  Furthermore, we observed that cohorts of cattle entering the 

feedlot at lighter mean body weights, fed for a longer period of time, and having higher 

cumulative incidence of morbidity and mortality may be more likely to shed Salmonella in their 

feces.  However, we could not conduct a multivariable analysis of our data (and thus evaluate the 

individual effects of the aforementioned risk factors), since the sample size was limited and these 

cohort-level variables were correlated with each other.  A more in-depth assessment of these risk 

factors may be necessary.  Our data provided preliminary evidence that specific subsets of the 

feedlot cattle population may have a higher risk for shedding Salmonella.  Factors like mean 

entry weight may be useful predictors of risk for shedding Salmonella in feces, but may not 

provide a direct method to mitigate this risk.  Preharvest interventions for beef cattle need to 

affect the prevalence of Salmonella at the time of harvest to potentially improve beef safety, but 

the persistence of specific PFGE subtypes of Salmonella within and among cohorts throughout 

the feeding period may indicate that an approach to controlling Salmonella that impacts upstream 

factors in the production system is needed.   
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In another study, we defined and compared PFGE subtypes of E. coli O157 isolates from 

cattle feces and carcass samples at harvest to determine relationships between fecal shedding and 

carcass contamination.  Truckload appeared to be an important factor, and feces from cattle 

shedding both high- and low-concentrations of E. coli O157 posed a risk for carcass 

contamination.  We did not know the original feedlot cohort sources to make feedlot-level 

inferences.  Interestingly, we found that most of the E. coli O157 isolates recovered from pre-

evisceration carcasses were the same PFGE subtype as the isolates recovered from post-

evisceration fecal samples from cattle within the same truckload.   Generally, our findings 

suggested that pre-harvest intervention strategies for E. coli O157 need to mitigate the effects of 

both high- and low-shedding cattle, but the risk of carcass contamination is highly impacted by 

transmission of E. coli O157 within transport and harvest cohorts.   

Mathematical simulation modeling is one method to assess the impacts of multiple 

interventions within a complex system; more specifically to this case, models can be used to 

estimate the effect and value of preharvest and harvest interventions for foodborne pathogens in 

beef production systems.  We used a Monte-Carlo model to estimate the risk of carcass 

contamination in cohorts of cattle conditional on seasonal preharvest fecal prevalence of E. coli 

O157, vaccination for E. coli O157, feed additive inclusion in diet, transport and lairage effects, 

hide intervention(s), and carcass intervention(s).  In our model, fecal to hide transfer, hide to 

carcass transfer, fecal prevalence, and carcass intervention efficacy were the most influential 

input parameters on the risk of carcass contamination at harvest.  Parameters that were less 

influential included vaccine efficacy, feed additive efficacy, transport and lairage effect, and hide 

intervention efficacy.  Because of the relative importance, yet sparse amount of data defining 

transfer parameters, further targeted field studies are warranted to better define these 

relationships. Our model suggested that relatively small changes in the influential parameters 

may have substantial impact on the eventual risk of carcass contamination with E. coli O157.  

Hence, reductions in fecal prevalence or improvements in carcass interventions may reap 

significant benefits in lowering the risk of carcass contamination.  Our study also suggested that 

combining multiple preharvest interventions may be most important for public health during 

periods of high fecal prevalence.  The sensitivity of our model to specific input parameters 

suggested an emphasis for future clinical trials, observational studies, and intervention 

development.  Further longitudinal observational studies investigating the relationship of fecal 
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prevalence and concentration with hide contamination and subsequent carcass contamination at 

the cohort level are needed to further define risk of E. coli O157 contamination in beef 

originating from feedlot cattle.   

Overall, the research described in this dissertation demonstrates the complex 

interrelationships among cattle management factors (including cattle source and transport 

groups), targeted interventions and microbial persistence that must be considered in order to 

mitigate the risks associated with Salmonella and E. coli O157 in beef production systems.  To 

lower the risk of foodborne illness, we need to continue to develop a better understanding of the 

relationships among prevalence and concentration of E. coli O157 and Salmonella at each step in 

the contamination pathway within the beef production system.  Concurrent evaluation of 

multiple preharvest and harvest interventions along this contamination pathway are often 

difficult and expensive to conduct, yet necessary to understand the complex relationships within 

a biological system and validate information gleaned from mathematical models.  Future 

researchers need to strategically assess the impact of interventions for Salmonella and E. coli 

O157 at the cohort level in a variety of commercial cattle environments.  Research described 

herein has furthered knowledge of the complex epidemiology of bacterial foodborne pathogens 

in beef production systems and demonstrated that comprehensive approaches will be necessary 

to improve public health and lower the incidence of foodborne illness attributed to Salmonella 

and E. coli O157 in beef products. 
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