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Abstract 

Fusarium head blight (FHB) is a devastating fungal disease in wheat, reducing not only 

grain yield but also quality. The pathogen produces the mycotoxin deoxynivalenol (DON) that 

induces severe toxicological problems in human and animals. Using host resistance has been the 

most efficient way to control the disease. To identify quantitative trait loci (QTLs) for FHB 

resistance in Chinese landrace Haiyanzhong (HYZ), a recombinant inbred lines (RILs) 

population derived from a cross between HYZ and Wheaton was developed. The RILs were 

evaluated for percentage of symptomatic spikelets (PSS) in three greenhouse experiments, and 

genotyped using simple sequence repeats (SSRs) and single nucleotide polymorphism (SNPs) 

developed from genotyping-by-sequencing (GBS). Eight QTLs were identified for type II (PSS) 

resistance on chromosomes 5A, 6B, 7D, 2B (2), 3B, 4B, and 4D, with 5A as the major QTL. Ten 

SNPs closely linked to 5A, 6B, and 2B QTLs were successfully converted to Kompetitave allelic 

specific PCR (KASP) assays.  

To identify common QTLs across different populations, we constructed high-density 

GBS-SNP maps in an additional four RIL populations derived from the Chinese landraces, 

Wangshuibai (WSB), Baishanyuehuang (BSYH), Huangfangzhu (HFZ), and Huangchandou 

(HCD) and conducted meta-analysis of the QTLs for FHB resistance using a consensus map 

developed from the five populations. We identified six MQTLs on chromosomes 3BS (2), 3A, 

3D, 2D, and 4D and 23 tightly linked GBS-SNPs to the MQTLs. These GBS-SNPs were 

successfully converted to KASPs. The KASPs linked to MQTLs can be used for pyramiding 

these QTL in breeding programs.  

To quickly reduce FHB damage in U.S. hard winter wheat (HWW), we transferred Fhb1, 

a major QTL with stable effects on FHB resistance, from Ning7840 into three adapted HWW 



  

cultivars Overland, Jagger, and Overley, by marker-assisted backcross (MAB), and assessed the 

effect of Fhb1 on FHB resistance in these different backgrounds. The results showed that Fhb1 

can significantly lower FHB severity, Fusarium-damaged kernel (FDK), and DON accumulation 

in the all the three HWW backgrounds. Some of the selected lines showed high levels of FHB 

resistance, but agronomically similar traits as recurrent parents, can be used as resistant parents 

to improve HWW FHB resistance. 
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SNPs closely linked to 5A, 6B, and 2B QTLs were successfully converted to Kompetitave allelic 

specific PCR (KASP) assays.  

To identify common QTLs across different populations, we constructed high-density 

GBS-SNP maps in an additional four RIL populations derived from the Chinese landraces, 

Wangshuibai (WSB), Baishanyuehuang (BSYH), Huangfangzhu (HFZ), and Huangchandou 

(HCD) and conducted meta-analysis of the QTLs for FHB resistance using a consensus map 

developed from the five populations. We identified six MQTLs on chromosomes 3BS (2), 3A, 

3D, 2D, and 4D and 23 tightly linked GBS-SNPs to the MQTLs. These GBS-SNPs were 

successfully converted to KASPs. The KASPs linked to MQTLs can be used for pyramiding 

these QTL in breeding programs.  

To quickly reduce FHB damage in U.S. hard winter wheat (HWW), we transferred Fhb1, 

a major QTL with stable effects on FHB resistance, from Ning7840 into three adapted HWW 



  

cultivars Overland, Jagger, and Overley, by marker-assisted backcross (MAB), and assessed the 

effect of Fhb1 on FHB resistance in these different backgrounds. The results showed that Fhb1 

can significantly lower FHB severity, Fusarium-damaged kernel (FDK), and DON accumulation 

in the all the three HWW backgrounds. Some of the selected lines showed high levels of FHB 

resistance, but agronomically similar traits as recurrent parents, can be used as resistant parents 

to improve HWW FHB resistance. 
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Chapter 1 - Literature Review 

 Wheat Crop 

 Origin and agronomic importance of wheat 

 The first cultivation of wheat can be traced back to southwest Asia about 10,500 

years ago (Shewry 2009). The two most important commercial wheat types are durum 

wheat (Triticum durum L. 2n = 4x = 28) and bread wheat (Triticum aestivum L. 2n = 6x = 

42). Bread wheat is an allohexaploid species with three genomes, A, B, and D. Each of 

the three genomes has seven chromosomes, which makes the total chromosome number 

of 42 (2n = 6x = 42).  The three genomes in hexaploid wheat derived from three ancestral 

diploid progenitors (Martínez-Pérez et al. 1999). The A genome was clearly from the A 

genome of Triticum urartu (einkorn wheat) (Shewry 2009), while the D genome is 

clearly derived from Aegilops tauschii. There is not too much divergence between the D 

genomes present in the hexaploid and diploid species (Petersen et al. 2006). However, the 

origin of B genome in hexaploid wheat is not clearly defined, and it was probably derived 

from the S genome in the Sitopsis section of Aegilops, with Ae. speltoides being the 

closest species (Ceoloni and Feldman 1987). Hybridization between A and B genomes 

created the species Triticum turgidum about 580-820 thousand years ago. Hexaploid 

wheat arose from the hybridization between a domesticated form of tetraploid, wild 

emmer wheat (Triticum turgidum spp. dicoccoides) and the wild wheat species Aegilops 

tauschii about 7,000~12,000 years ago (Salse et al. 2008; Marcussen et al. 2014; Petersen 

et al. 2006). Wheat species are disomic in inheritance, because the chromosome pairing is 

genome specific. The specific chromosome pairing is controlled by paring suppressor 

genes ph1, ph2 with other minor genes (Ceoloi et al. 1986; Martínez-Pérez et al. 1999). 
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This character allows hybridization fertility within and between species, providing the 

opportunity to achieve higher diversity (Wulff and Moscou 2014). 

Wheat plays an important role in the world‟s food supply. It is grown in more 

than 70 countries and is the most widely grown crop worldwide (Dixon 2007). The 

production of wheat is the third most-produced cereal after maize and rice. In 2013, the 

worldwide wheat production was 713 million tons, and the U.S. production.during the 

same year was 58 million tons (FAOSTAT 2015.Verified August 2015 in 

http://faostat3.fao.org/browse/Q/*/E). Bread wheat is adapted to a wide range of 

temperate environments, due to its sufficient genetic diversity (Ceoloni and Feldman 

1987). The optimum wheat growing temperature is about 25
o
C, ranging from 3

o
C to 32

o
C 

(Briggle 1980). Wheat is also adapted to a broad range of moisture conditions, with 

precipitation ranging from 250 to 1750 mm (Leonard and Martin 1963). Its high 

productivity across diverse environments has permitted wheat to be the widely grown 

crops in the world (Shewry 2009). Wheat grain is a staple food used to make bread and a 

wide range of baked products including cakes, biscuits, pasta, noodles and so on (Shewry 

2009). 

 Wheat growing regions and market classes in the United States 

The two most important commercial wheat types are common wheat (Triticum 

aestivum L. 2n = 6x = 42), and durum wheat (Triticum durum L. 2n = 4x = 28). Based on 

its growth habits, wheat can be divided into three classes: winter wheat, facultative wheat, 

and spring wheat (Baenziger et al. 2009). Winter wheat is primarily sown in the fall, 

requiring vernalization to flower, and tolerant of freezing temperatures. Facultative wheat 

needs a shorter length of vernalization, can acting as either spring or winter wheat, 

http://faostat3.fao.org/browse/Q/*/E
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depending on the time of sowing. Spring wheat, mainly sown in spring and summer 

months, does not require vernalization to flower, and cannot withstand even a moderate 

period of freezing temperatures (Baenziger et al. 2009).  

Wheat grown in the U.S. can be divided into six classes based on grain color and 

hardness, and their planting seasons. They are 1) hard red winter (HRW), 2) hard red 

spring (HRS), 3), soft red winter (SRW), 4) durum, 5) hard white, and 6) soft white 

wheat. The hard wheat, with the highest level of gluten among all wheat classes, is 

mainly used for making bread and rolls, while the soft wheat is mainly used for making 

flat bread, cakes, and muffins (Baenziger et al. 2009). Hard red winter (HRW) wheat is 

an extremely versatile class with excellent milling and baking characteristics for hard 

backed food, such as pan bread. HRW accounts for more than 40% of the U.S. wheat 

production, and is grown primarily in the Great Plains (Kansas, Oklahoma, Nebraska, 

Texas, Colorado, South Dakota and Montana); Hard red spring (HRS) wheat has the 

highest protein content, and accounts for about 20% of production primarily grown in 

Northern Plains (North Dakota, Montana, Minnesota, and South Dakota); Soft red winter 

(SRW) wheat is high yielding wheat with low protein and weak gluten content, which is 

excellent for cookies, crackers, and pie crust. SRW accounts for 15-20% of total 

production, and grown primarily in these states along the Mississippi River and the 

eastern state (Ohio, Missouri, Indiana, Illinois, and Pennsylvania); Soft white wheat with 

light-colored grain and low protein content accounts for 10-15% of total production, and 

is grown  in Washington, Oregon, Idaho, Michigan, and New York states; Hard white 

wheat is the newest market wheat class in U.S, can be used in making pan bread, and 

especially noodles. The hard white wheat are mainly grown in Kansas and Colorado; 
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Durum wheat has very hard grain texture and high protein content (especially gluten 

protein) that is good for making pasta, and accounts for 3-5% of total production, 

primarily in North Dakota, Montana, and South Dakota, 

(http://www.ers.usda.gov/topics/crops/wheat/background.aspx#classes (Rohrich 2014)). 

 Factors affect wheat production yield 

Wheat growing area, production and yield levels in the U.S. have remained stable 

during the past decades. In 2014, wheat acreages planted in Kansas were about 9,600,000 

and harvested about 8,000,000 with a total production of 246.4 million bushels (6.7 

million tons) and a yield of 28 bushels (762 kg) per acre (USDA 2014). The harvested 

acreages were lower than the previous years, mainly because of the extremely low 

temperature and precipitation. Environmental stresses such as drought, salinity, heat, and 

cold are common in the wheat growing regions that may cause a great reduction in wheat 

production and yield. According to “Kansas Wheat History”, Kansas wheat suffered from 

extreme weather (low rainfall during germination, freezing temperature in mid-February, 

extremely dry in April) in 1989, which led to the lowest production of 213 million 

bushels (~5.8 million tons) since 1963 (USDA 2014). Other abiotic stresses such as 

aluminum toxicity and lengthy, wet harvesting seasons that cause sprouting in the wheat 

head also cause a great reduction in yield and yield. Diseases can also cause major crop 

losses. According to the Kansas Cooperative Plant Disease Survey, the cumulative wheat 

disease losses estimated for the 2013 wheat crop were 6.2% or 21.7 million bushels 

(~0.59 million tons) (Appel et al. 2013).  Wheat diseases are mainly caused by fungi and 

viruses, with a few by bacteria. In Kansas, the important diseases to wheat production 

were Septoria leaf disease, wheat streak mosaic, tan spot, barley yellow dwarf, leaf rust, 

http://www.ers.usda.gov/topics/crops/wheat/background.aspx#classes
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Fusarium head blight (FHB), powdery mildew and bunt (Appel et al. 2013; Petersen et al. 

2006).  

 Fusarium head blight in wheat 

 Impact of Fusarium head blight  

Fusarium head blight (FHB), also called scab, is mainly caused by Fusarium 

graminearum Schw. It occurs mostly in cereal crops, such as wheat, barley (Bai and 

Shanner, 2004). FHB can cause reductions not only in grain yield but also in grain quality, 

especially when warm and humid weather from anthesis to early kernel filling stages (Bai 

and Shaner 1994). Kernels infected by FHB are mostly partially filled and are weighted 

much ligher than normal seeds (Bai et al. 2001). Thus, the infected kernels are very easy 

to be blown out during threshing, which can cause a severe reduction in grain yield. The 

Fusarium-damaged kernels (FDK) are also contaminated with mycotoxins, especially 

deoxynivalenol (DON), which is not suitable for human and animal consumption (De 

Wolf et al. 2003). For animal consumption, DON concentration of 1 ppm can cause a 

significant feed-intake reduction and weight losses, and 10 ppm can cause vomiting and 

feed refusal (Shephard 2008; Vincelli and Parker 2008). For human being, the allowable 

DON levels in wheat varied from 0.5 ppm to 2 ppm depending on different countries (Bai 

and Shanner, 2004). Exceeding the regulated minimum limit would cause the wheat 

grains rejection or value discount at grain intake point (Cowger et al. 2009). FHB has 

great impacts on grain value in feeding, processing, marketing, and exporting (McMullen 

et al. 1997). 

FHB was firstly described in 1884 in England and was considered a major threat 

to wheat during the early 20th century (Goswami and Kistler 2004). Until now, the 
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epidemics of FHB have been reported from different regions worldwide including Asia, 

Europe, North America and South America (Bai and Shaner 1994; Goswami and Kistler 

2004).  In China, FHB has caused wheat yield losses more than 1 million tons (~35.7 

million bushels) on more than 7 million hectares of the field in the 1990s (Bai and Shaner 

2004). In the U.S., severe epidemics of FHB in Indiana and Ohio were recorded by J.C. 

Arthur in 1891 (Arthur 1891). In recent years, epidemics of the disease have occurred in 

many wheat-producing states such as North Dakota, Minnesota, South Dakota, Ohio, 

Indiana, Michigan, Missouri, Kansas, and Arkansas (De Wolf et al. 2003; McMullen et al. 

1997). The disease has induced yield and quality losses to farmers in at least 18 states. 

Johnson et al. (1998) estimated that the direct losses in wheat and barley caused by FHB 

totaled about $1.3 billion during the period from 1991 to 1997 in the U.S.,  and the 

commulative economic losses during the peirod were about three times of the amount 

(Wegulo, 2012). In 1993, FHB struck the U.S., especially Minnesota, North Dakota, and 

South Dakota. The averaged wheat yields dropped 45% from an average of  49 

bu/harvested acre in 1992 to 26.4 bu/acre in 1993 (McMullen et al. 1997). From 1993 to 

2001 in the northern and central Great Plains, the direct economic losses attributable to 

FHB in wheat and barley were $2.5 billion with $1.07 billion from 1998 to 2001 (Nganje 

et al. 2004). In 2007 and 2008, serious FHB outbreaks occurred in parts of Nebraska and 

Kansas. In Kansas, FHB losses were estimated at 17.6, 15.8, and 8.75% for the northeast, 

east-central, and southeast districts, respectively, with the statewide losses estimated at 

7.1 million bushels valued at $57 million in 2008 (McMullen et al. 2012).  
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 Causal agents, infection pathways, and symptoms of FHB    

F. graminearum is a homothallic fungus and is the most predominant FHB causal 

species in most of cereal growing area of the world (Bai and Shaner 1994; Xu and 

Nicholson 2009). At least 17 different Fusarium species including F. culmorum, F. 

graminearum, Microdochium nivale, M. majus, F. avenaceum, and F. poae have been 

associated with FHB in wheat or other small grains (Parry et al. 1995; Trail 2009; Xu and 

Nicholson 2009). F. graminearum has different isolates that may differ in pathogenicity 

(Bai and Shaner 1994). But, these isolates are not race-specific (Bai and Shaner 1994). 

Wheat cultivars resistant to F. graminearum are also strain or isolate non-specific. 

Therefore, FHB inoculation with a mixture of F. graminearum isolates is regularly used, 

that can be considered as a more efficient way compared to the inoculation with single 

isolates and were repeatable in different years and locations (Bai 1996; Zhou et al. 2002; 

ŠÍP et al. 2011).  

At early anthesis stage, anther may be the first floral part to be infected (Ribichich 

et al. 2000b). After 6-12 h, conidia begin to germinate and then germ tubes produce 

hyphae that can grow and extend to the interior surface of florets and form dense 

mycelium networks (Xu and Nicholson 2009).  The disease may then spread from anther 

to palea, lemma, and rachis (Schmale III and Bergstrom 2003 Updated 2010). The 

pathogen may also directly enter the host tissue through stomata, and then hyphae also 

grow through the interior surface of the lemma, glume, and palea (Xu and Nicholson 

2009). The infection levels of F. graminearum have no significant differences throughout 

the whole floral parts (Argyris et al. 2005). Once the conidia reach rachilla and rachis, the 

disease may spread upward and downward the spike through vascula bundles and cortical 
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parenchyma tissues (Goswami and Kistler 2004; Xu and Nicholson 2009). The 

senescence premature spikes and shriveled seeds were produced due to that mycelium 

clog the vascular bundle tissue in the rachis and rachilla, and thus block the supply of 

water and nutrition (Xu and Nicholson 2009). Another reason might be that the pathogen 

secretes cell wall degradation enzyme that can degrade the host cells (Xu and Nicholson 

2009). Overall, the pathogen hyphae may spread horizontally by invading anthers or 

bracts of adjacent florets within the infected spikelets, and then move to the neighbor 

spikelets through the rachis and rachilla; or spread vertically through vascular bundles 

and parenchyma to spikelets above or below the infected spikelets (Ribichich et al. 

2000b). Besides, the pathogen can also produce mycotoxin, especially deoxynivalenol 

(DON) within 36 h after initial infection. Similar to the disease symptom, DON spreads 

upward and downward to neighbor spikelet through xylem vessels and phloem sieve 

tubes (Kang and Buchenauer 2002). Thus, DON contamination within a spike is 

unavoidable, especially when given favorable weather condition and enough time (Xu 

and Nicholson 2009). Secondary infection from spike to neighbor spike may also happen, 

however, it is very rare (Wise and Woloshuk 2010). 

FHB symptoms are confined to wheat spikes. The most obvious symptoms are 

brown or dark brown necrotic lesions formed on the surface of glumes (Goswami and 

Kistler 2004), and bleaching of some of the spikelets, while the healthy spikelets are still 

green. The infected kernels that appear shriveled, discolored and light weighted are 

commonly called “tombstone” (Wise and Woloshuk 2010). FHB symptoms are different 

between resistant and susceptible germplasms. In highly resistant plants, dark brown 

discoloration limit to an inoculated or infected spikelets, sometimes, only a dark brown 
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spot showed on the lemma of the infected spikelet (Bai and Shaner 1994). In moderately 

resistant and moderately susceptible plants, the symptoms may also spread to neighboring 

spikelets about two weeks after initial infection, and many other spikelets in the spike 

remain uninfected. However, in highly susceptible plants, the whole spike can be blighted 

as bleach discoloration or dark brown on the spikelets, rachis and rachilla in 7-10 d after 

initial infection (Ribichich et al. 2000b). Therefore, susceptible plants show much higher 

disease severity than resistant plants. 

Life cycle of F. graminearum 

F. graminearum belongs to ascomycete with both sexual and asexual stages (Bai 

and Shaner 1994). The asexual stage of the fungus produces spores called macroconidia; 

while the sexual stage (Gibberella zeae) produces ascospores. Sexual stage is a critical 

part of the life cycle (Trail 2009). F. graminearum overwinters as binucleate hyphae on 

the infested residue of cereal crops such as corn, wheat and barley (Xu and Nicholson 

2009). In spring, perithecia arise from the binucleate hyphae, and then forcibly discharge 

ascospores into the air to initiate initial infection when plants are ready. The ascospores 

travel through turbulent wind currents for long distances. Natural infection occurs when 

ascospores land on spikelets during flowering, germinate and enter through the anthers or 

other tissues such as glume, lemma, and palea (Trail 2009; Xu and Nicholson 2009). 

Asexual spores (conidia) may also be produced on the surface of infected crop residues 

during wet weather, and infect plant by rain-splash or the wind in short distances (Parry 

et al. 1995; Trail 2009). Host plants that get infected will later produce diseased kernels 

that are shriveled and wilted. Kernels that are colonized by the F. graminearum during 
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late kernel filling stage may not appear to be affected, but may still be contaminated with 

mycotoxin (Moretti et al. 2014; Schmale III and Bergstrom 2010). 

 FHB resistance mechanisms and assessment of disease resistance 

FHB resistance in wheat can be classified into two types: morphological and 

physiological (Gilsinger et al. 2005). Morphological features include plant height, awn, 

the width of flower opening, and so on. Generally speaking, awned plants with a short 

peduncle and a compact spike have faster disease spread than plants that are awnless with 

a long peduncle, and a lax spike (Rudd et al. 2001); short genotypes with a long grain 

filling period have higher chances to get infected than tall genotypes with rapid grain 

filling (Rudd et al. 2001); plants with wider opening florets are more susceptible to FHB 

(Ban 2003). However, morphological characteristics are considered to be passive 

resistance to FHB, which is of minor significance compared with physiological resistance. 

The physiological mechanism involves biochemical pathways that produce chemicals 

barriers to prohibit pathogens growth after initial infection.  

Mesterhazy (1995) proposed five types of FHB resistance: resistance to initial 

penetration of the pathogen (Type I) (Schroeder and Christensen 1963), resistance to 

spread within a spike (Type II) (Schroeder and Christensen 1963), kernel size and 

number retention (Type III), tolerance (Type IV), and decomposition or non-

accumulation of mycotoxins (Type V) (Miller et al. 1985). Among them, type I, II and V 

are the three major types that are commonly accepted (Bai and Shaner 1994), thus type V 

is also reported as type III by (Miller et al. 1985). In wheat, FHB type II resistance is the 

most stable and easy to evaluate, thus is mostly studied and extensively used (Bai and 

Shaner 2004). Type I resistance has been reported in wheat, however, is not as common 
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as in barley, while type III resistance is commonly used in both wheat and barley. Type II 

can be evaluated by injecting inocula into central spikelet and rating the disease spread 

within a spike. Percentage of symptomatic spikelets within a spike is usually used to 

measure type II resistance (Bai et al. 1999). Plants with low PSS (<5%) are highly 

resistant, while plants with high PSS (>80%) are considered as highly susceptible. Plants 

with ratings in between can also be categorized into moderately resistant and moderately 

susceptible (Bai et al. 1999). Accurate assessment of type I resistance is more difficult 

than type II resistance, because type I measurement can be affected by many factors. It is 

usually measured by spraying inoculation, and a number of inocula that applied to a spike 

is difficult to be quantified. Also, the disease assessment can be confounded by the type 

II resistance (Rudd et al. 2001). Besides, assessment of all the other types of resistances 

relies on careful threshing. Type III resistance (kernel size and number retention) is 

measured by the percentage of Fusarium-damaged kernels (FDK) (Rudd et al. 2001). 

Type IV resistance is evaluated by measuring grain yield in FHB-infected plots compared 

with the plots with no disease. Type V resistance measures DON concentration in 

harvested grains. This resistance is important to grain end-use quality (Rudd et al. 2001).  

The biochemical pathways that involve in physiological resistance are associated 

with FHB type II resistance. Although the disease spreading within a spikelet is non-

selective, the biochemical responses to the infection varied between resistant and 

susceptible wheat germplasm (Ribichich et al. 2000a). Many studies proposed the 

biochemical mechanisms of FHB resistance, however, the mechanisms remain to be 

equivocal. One hypothesis is that resistant wheat plants may either produce physical 

barrier (such as thickened cell wall) to delay the mycilium rapid growth or accumulate 
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phenolic compounds and triticens that are toxic to the pathogen, thus, can prevent the 

spike from a sudden desiccation upon initial infection (Ribichich et al. 2000a).  Another 

hypothesis is that F. graminearum may induce defense responsive genes during early 

infection in wheat spikes. The genes translated defense-related proteins PR-1, PR-2 (β-

1,3-glucanase), PR-3 (chitinase), PR-4, and PR-5 (thaumatin-like protein) can be detected 

as early as 6 to 12 h after inoculation, and can reach the peak after 36 to 48 h (Pritsch et 

al. 2000). Among the five proteins, a study found that expression of PR-4 and PR-5 was 

much earlier and greater in resistant wheat plants than in susceptible plants (Bai and 

Shaner 2004; Pritsch et al. 2000). However, another study showed that PR proteins might 

have nothing to do with FHB resistance, instead, Jasmonate (JA) and Ethylene (ET) 

mediated defense responses regulate wheat resistance to FHB based on the observation of 

more JA or ET biosynthesis after inoculation and JA or ET biosynthesis increased in 

resistant plants after initial infection (Ding et al. 2011; Li and Yen 2008). In JA pathway, 

two substances, lipoxygenase (LOX2) and chalcone synthase, are up-regulated in 

resistant wheat plants rather than in susceptible plants. While in ET pathway, ET can lead 

plant organs senescence, cell wall to dissolve and finally cell death (Li and Yen, 2008). 

Besides, many other biochemical compounds including choline, betaine, and amino acids 

glutamine, glutamate alanine, trans-aconitate, and sucrose are also associated with fungal 

hyphae growths, thus, affect FHB infection (Browne and Brindle 2007). However, other 

studies cannot find the significant associations. Therefore, the biochemical mechanisms 

of FHB resistance are still a debatable topic. 
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 Mycotoxins and their relationships to FHB infection 

Fusarium species are widely distributed plant pathogens that produce a great 

diversity of toxic secondary metabolites such as trichothecenes that are detrimental to 

human and animal health. Trichothecenes have been identified as an important class of 

the mycotoxins (Schollenberger et al. 2007). Nowadays, more than 170 trichothecenes 

have been isolated. They have been divided into A-, B-, C-, D-type trichothecenes 

according to their characteristic functional groups (Schollenberger et al. 2007). B-type 

trichothecenes include the mycotoxins fusarenon-X, nivalenol, and deoxynivalenol (DON) 

(Bennett and Klich 2003). The trichothecenes are an extremely potent inhibitor of 

eukaryotic protein synthesis, thus are harmful to both animals and plants. DON is one of 

the most common mycotoxins that found in grains, and delays seed germination and the 

subsequent development of plants (Ji et al. 2015). When agricultural animals ingest DON 

in high doses, they may experience nausea and vomit; while ingested at low doses, 

animals may exhibit food refusal and weight loss. Therefore, DON is also called 

„vomitoxin‟ (Bennett and Klich 2003). DON produced by F. graminearum is the most 

prevalent and commonly found trichothecene in small grain and can cause significant 

economic and health consequences although it‟s less toxic than many other major 

trichothecenes (Bennett and Klich 2003; Foroud and Eudes 2009). DON causes tissue 

necrosis, and is the only trichothecene that has been considered as a virulence factor 

(Desjardins et al. 1996; Trail 2009).  

DON accumulation may be involved in FHB infection (Bai et al. 2001; 

Hernandez Nopsa et al. 2012; Lemmens et al. 2004; Ma et al. 2006a; Paul et al. 2006; 

Wegulo 2012). Hernandez Nopsa et al. (2012) found significant correlation coefficients, 
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ranging from 0.57 to 0.77, between FHB severity and DON concentration in two winter 

wheat cultivars in all three years experiments. Paul et al. (2006) used meta-analysis to 

analyze 163 studies, and found the mean correlation coefficient between FHB severity 

and concentration was 0.53. Thus, FHB severity is a major factor influencing DON 

accumulation in wheat. Meanwhile, the significant correlations between FHB symptom 

ratings and DON content indicate the percentage of scabbed spikelets and Fusarium-

damaged kernels (FDK) can be used to predict DON contents in harvested wheat grains 

(Bai et al. 2001). However, some studies showed the associations between FHB severity 

and DON content in harvested grains are not consistent. A field study conducted in China 

showed that DON content in infected grain didn‟t consistently correlate with FHB 

incidence (Ji et al. 2015). Many factors may affect FHB infection and DON content, 

including timing and methods of inoculation, environmental conditions, and DON 

measurement. DON content was greatest when a plant was inoculated at early to mid 

anthesis, but lowest when inoculated during ear emergence and after anthesis (Lacey et al. 

1999). Lemmens et al. (2004) found that environmental conditions had important impacts 

on both FHB symptoms and DON levels, and indicated that the high correlation between 

FHB and DON was only obtained under moderate disease pressure, not at high disease 

pressure with only susceptible and moderately susceptible cultivars tested in one 

experiment (Bai et al. 2001; Lemmens et al. 2004). Another factor affecting FHB and 

DON correlation is the way DON content is measured. Disease kernels are often blown 

out by the air flow in the combine thresher, which will lead to under-estimation of DON 

in susceptible cultivars (Bai and Shaner 2004; Mesterhazy et al. 1999). 
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DON produced by F. graminearum during FHB infection has been proposed as a 

virulence factor. Disruption of the gene encoding a trichothecene synthase (Tri5) in F. 

graminearum reduced FHB severity, and restoration of the synthase gene resulted in the 

increased FHB severity and DON accumulation (Bai and Shaner 2004; Desjardins et al. 

1996). However, trichothecenes may not be a virulence factor for FHB initial infection in 

wheat floret (Jansen et al. 2005). When green fluorescence protein (GFP) labeled wild 

type, and trichothecenes knocked out mutant of F. graminearum strain was used to 

inoculate wheat plants, Fusarium hyphae of both enter the cytosol of the epicarp cells in 

wheat, leading to a cell death in plants in both cases (Jansen et al. 2005).  

 Control methods 

To reduce the risk of the FHB epidemics, we shall reduce the number of available 

inocula, prevent the dispersal of inocula, minimize susceptible wheat available, thus 

prevent FHB epidemics when inocula present (Parry et al. 1995). To achieve these goals, 

many control methods have been applied, including the use of the cultural practice, the 

application of fungicide or biological antagonists, and growing resistant cultivars (Bai 

and Shaner 2004; Parry et al. 1995). Control of FHB by crop rotation was proposed 

firstly by Bolley (1913). High FHB incidence was observed in the plot where wheat was 

continuously grown after maize (Koehler et al. 1924; Latta et al. 1891) because the maize 

debris is a good medium for pathogen production (Parry et al. 1995). Thus, avoiding 

maize-wheat rotation can reduce the incidence of FHB. In addition, tillage systems used 

have a great impact on FHB incidence. No-tillage or minimum tillage approaches would 

leave most of crop residues on the soil surface that take long time to decompose and 

increase the chances of FHB outbreaks (Dill-Macky and Jones 2000). However, 
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conventional deep tillage systems enable crop residued incorporated into the soil that 

make the crop residues easier to decompose, thus, reduce the chance of FHB outbreaks 

(McMullen et al. 1997). Besides, sowing date is another element that indirectly affects 

FHB infection. Growing early maturity cultivars and early sowing are also good practices 

for wheat to escape from favorable conditions for heavy FHB infection (Champeil et al. 

2004).  

Among the FHB control methods, the fungicide application is still a major 

method of commercial wheat production. Proper use of fungicides is critical to reducing 

both FHB severity and DON concentration, especially in FHB moderately resistant plants 

(Wegulo et al. 2011). Some effective chemicals have been reported, such as 

tebuconazole, prochloraz and Guazatine, however, none of them are consistently 

effective (Parry et al. 1995). Difficulties in the determination of an optimal time to apply 

fungicide, high cost, lacking fungicide with the specific active ingredient, the length of 

protection, accumulation of toxins, and environmental conditions are all problems 

involved with fungicide application (Bai and Shaner 2004; Homdork et al. 2000; Parry et 

al. 1995). Disease forecasting together with newly developed fungicides and application 

methods can improve fungicide application effectiveness (Mesterhazy 2002; Wegulo et 

al. 2011). Compared with the fungicide application, inhibition of FHB through biological 

control agents is environmentally friendly. For example, inoculating Sporobolomyces 

spp. at anthesis stage or Cladosporium spp. before anthesis would both significantly 

reduce disease severity and DON accumulation (Parry et al. 1995; Riungur et al. 2007). 

However, the most effective and efficient approach to control FHB and reduce FHB 

severity in wheat could be growing resistant cultivars. A combined approach of cultural 
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practices, fungicide application, and resistance sources can function together to control 

FHB. 

 FHB resistance sources 

Among the different control methods, use of cultivars resistance is the most 

effective and economical approach for disease reduction (Bai and Shaner 2004). Since 

FHB were firstly described in the U.S. in late 19
th

 century (Arthur 1891), many efforts 

have been made to find resistant sources. Although cultivars with various levels of 

resistance have been reported worldwide, wheat germplasm with a high level of FHB 

resistance is very rare (Bai and Shaner 2004). To date, no source of complete immunity 

has been identified (He et al. 2013). Resistant wheat sources with a high level of FHB 

resistance are mostly found from China and Japan (Yu et al. 2008a). In China, with the 

cooperation of multiple institutes in China, about 34,571 wheat lines were screened in 

1980‟s, and only 1,765 (5.1%) showed resistant or moderately resistant reactions to FHB 

(He et al. 2013). Chinese wheat cultivar Sumai3 and its derivatives, especially „Ning7840‟ 

were reported to carry the major QTL Fhb1, and show a high level of FHB resistance 

(Bai 1996). The resistance was quite stable across different environments, thus has been 

extensively used in the world‟s breeding programs (Rudd et al. 2001; Bai 1996). Other 

Chinese landraces such as Wangshuibai, Baishanyuehuang, Huangcandou, Huangfangzhu, 

and Haiyanzhong also show high levels of FHB high resistance   (Jia et al. 2006; Lin et al. 

2006; Yu et al. 2008b). In Japan, wheat cultivars such as Shinchunaga, Nobeokabouzu, 

and Nyu Bai are also highly resistant to FHB (Bai and Shaner 2004; Ban 2001). However, 

the use of either Chinese or Japanese landraces or in conventional breeding is not 

successful because of the linkage drag to their unfavorable agronomic traits. In addition 
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to FHB resistance sources from Asia, germplasm with FHB resistance are also reported in 

South America, North America, and Europe, such as Frontana and Encruzilhada from 

Brazil (Ban 2001; Mesterhazy 1995; Singh and Ginkel 1997); soft red winter wheat Ernie, 

Freedom and Roane from the U.S. (Jin et al. 2013; Rudd et al. 2001); and winter wheat 

Arina, Renan, and Fundulea 201R from Europe (Gervais et al. 2003; Somers et al. 2004; 

Steiner et al. 2004; Paillard et al. 2004) . These cultivars may carry different QTLs for 

FHB resistance from those in Asian sources (Jin et al. 2013). 

Moderately resistant cultivars from local regions are also good sources of 

breeding parents (Waldron et al. 1999) because they have good adaptation to the region. 

Pyramiding FHB resistance QTLs from Asian sources to U.S. locally adapted cultivars 

with moderate resistance can enhance the level of FHB resistance. Also, a cross from 

moderately resistant and moderately susceptible parents may develop some highly 

resistant progenies, which is due to transgressive segregation. QTLs of some moderately 

resistant cultivars have been mapped, such as Chokwang (Yang et al. 2005a), Frontana 

(Mardi et al. 2006a) and Chinese Spring (Grausgruber et al. 1999). Many U.S. wheat 

sources have been reported to show moderate resistance to FHB, but do not carry Fhb1.In 

soft winter wheat (SWW) cultivars, „Truman‟, „Massy‟, „Roane‟ show moderate 

resistance (Liu et al. 2013; Sneller et al. 2012). In hard spring wheat (HSW) growing 

region, more than 54% of the wheat acreages were grown with moderately resistant 

wheat cultivars (Anderson et al. 2012a). Several HSW cultivars with Fhb1 were released, 

such as „Sabin‟ from Minnesota, „Alsen‟ and „Glenn‟ from North Dakota (Anderson et al. 

2012a; Anderson et al. 2012b; ElDoliefy et al. 2015). For hard winter wheat (HWW) 

cultivars in the Great Plains, only a few cultivars have moderate resistance, such as 
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„Everest‟, „Overland‟, „Lyman‟, „Heyne‟, and „Hondo‟ (Jin et al. 2013, Bockus et al. 

2009; Zhang et al. 2012a), and none of them carry Fhb1. 

In addition to cultivars and landraces, alien chromosome introgression is used to 

breed resistant cultivars. FHB resistance has been identified in tetraploid wheat species, 

such as wild emmer wheat (T. turgidum ssp. dicoccoides), and other alien species 

including Aegilops tauschii, Ae. ventricosa, Ae. speltoides, Thinopyrum ponticum, Th. 

elongatum, Th. intermedium, Dasypyrum villosa, Secale cereale, Leymous racemosus, 

oats (Avena sativa), and Elymus tsukushiensis (Cai et al. 2008; Oliver et al. 2005; 

Cainong et al. 2015; Qi et al. 2008). To transfer resistant genes from alien sources to 

adapted common wheat, resistant alien species need to be crossed with wheat to produce 

amphiploids. Then, amphiploids are backcrossed with common wheat to generate 

addition, substitution, translocation, or recombinant lines. Sometimes, Ph1 and Ph2 genes 

are used to regulate homologous chromosome pairing (Wulff and Moscou 2014). 

However, the main problems of the effective use of introgressed resistance genes are the 

genetically linked deleterious traits (linkage drag), and fast breakdown when single genes 

introduced (Cai et al. 2005; Wulff and Moscou 2014). These problems associated with 

sexually imcompatibility and linkage drags can be solved by transgenes in a single 

cassette (Wulff and Moscou 2014). Transgenic wheat exhibit improved level of FHB 

resistance has been reported in multiple studies. One example would be Arabidopsis 

thaliana NPR1-expression wheat induce defense response gene PR1 when challenged by 

fungus (Makandar et al 2006); Another example is a barley UDP-glucosyltransferase 

expressed wheat show significantly higher type II resistance than non-transformed 

controls (Li et al. 2015); The third example is a β-1.3-glucanase transgenic wheat line 
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enhanced FHB type II, type III and type IV resistance (Mackintosh et al. 2007). However, 

none of the transgenic wheat has been used as a source of resistance in breeding so far. . 

 Genetics of FHB resistance 

FHB resistance is a quantitative trait that usually controlled by a few major QTLs 

and multiple minor QTLs, and also affected by environmental effect (Bai et al. 2000; 

Parry et al. 1995). Genetic variation of FHB resistance mainly consists of three 

components: Additive effect, dominant effect, and epistasis effect, among which additive 

effect accounts for the largest part of genetic variation (Bai et al. 2000). Some studies 

showed the FHB resistance is controlled by many minor QTLs (Chen 1983; Liao and Yu 

1985) while other studies showed the disease resistance was controlled by a few major 

QTLs together with several minor QTLs (Bai et al. 1990). In most of the studies, only 

1~3 QTLs control FHB resistance (Bai et al. 2000), however, a few studies show several 

minor QTLs together responsible for the disease (Cai et al. 2015, Chapter2). The additive 

effect of FHB resistance enables the pyramiding of several QTLs from different 

resistance source to achieve a better level of FHB resistance. One example is that 

progenies are possible to have superior FHB resistance than the parental lines they 

derived from, mainly due to transgressive segregation (Bai et al. 2000; Yang et al. 2005a).   

 History and current status of genetic markers 

The genetic marker, acting as landmarks for genes or QTLs, is the most popular 

tool for tagging the genes or QTLs of interest in modern plant breeding. They can be 

divided into two major categories: classical markers and DNA-based markers (Jiang 

2013). Classical markers include morphological, cytological and biochemical markers. 

Morphological markers are earliest markers that applied in breeding programs (Stadler 
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1929). The visible traits such as leaf shape, pigment differences, vernalization habit and 

plant height were used as indirect selection criteria. However, morphological markers 

were very limited, thus, cannot be extensively used in breeding (Worland et al. 1987). 

Cytological markers, shown by chromosome karyotypes and bands, are not only very 

limited in number, but also difficult to be used in genetic mapping and plant breeding due 

to highly technical demand (Jiang 2013). Protein isozymes have been used in the 1970s, 

this marker replaced morphological marker for a very short time but has not been widely 

used in breeding. In the 1980s, DNA markers became popular because the marker was 

abundant compared to the previous markers. DNA markers can be classified into three 

categories: 1) hybridization-based; 2) PCR-based; 3) sequence-based markers. After the 

1970s, genetic markers based on DNA-DNA hybridization was developed, this type of 

markers include restriction fragment length polymorphism (RFLP) (Bostein et al. 1980), 

fluorescent in situ hybridization (FISH), and microarray. In the 1990s, PCR-based marker 

became popular because it needs a small amount of DNA, avoids radioisotopes, and 

generates a high level of polymorphisms. Many types of PCR-based markers were widely 

used for QTL mapping studies, such as RAPD (random amplified polymorphic DNA) 

(Williams J.G.K. 1990), AFLP (amplified fragment length polymorphism) (Vos et al. 

1995), and SSR (simple sequence repeats) (Akkaya et al. 1992). SSR marker is also 

called microsatellite marker, which is 2-6 bp tandem repeats, highly abundant, 

polymorphic, and widely throughout the whole genome. SSR marker has relatively high 

throughput and reproducibility, thus has been used in QTL mapping and marker-assisted 

selection for a long time (Akkaya et al. 1992). The sequence-based markers including 

nucleotide polymorphism (SNP) (Jordan and Humphries 1994), sequence tag sites (STSs) 
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and expressed sequence tags (ESTs) (Gupta et al. 1999) were also developed in the 1990s. 

Among them, STS marker is a unique DNA fragment that designed from known 

sequences (Gupta et al. 1999). SNP is the newest type of markers that detect individual 

nucleotide polymorphism, have an unlimited number and are ready for high throughput 

genotyping, thus can be broadly used in genetic research and breeding programs. Before 

next-generation sequencing (NGS) technology, researchers used Sanger‟s method to 

resequence unigene or used in silico SNP discovery method to mine  EST database 

(Mammadov, Aggarwal, et al., 2012, Wright, Bi, et al., 2005). But this method is 

expensive and unable to discover SNPs in intergenic spaces. With the emergence of 

NGS, transcriptome resequencing allows faster and less expensive SNP discovery 

technologies and can reduce genome complexity (Morozova and Marra 2008).  The 

NimbleGen sequence capture technology (Roche Applied Science, IN), including exon 

sequence capture and NimbleGen microarray by NGS for target resequencing, can 

discover gene-based SNPs in plants in a higher throughput and coverage (Springer et al. 

2009). However, those technologies focus on coding regions only (Mammadov et al. 

2012). For genome-wide SNPs discovery, Complexity reduction of polymorphic 

sequences (CRoPS) (Keygene N.V., Wageningen, The Netherlands) (Orsouw et al. 2007) 

and restriction site associated DNA (RAD) (Floragenics, Eugene, OR, USA) (Baird et al. 

2008) were successfully applied in crop research. These methods together with new 

computational technology can be used to filter out duplicated SNPs. Most recently, 

genotyping by sequencing (GBS) technique was developed, and enable discovery of a 

large number of SNPs in maize, sorghum, and wheat (Mammadov et al. 2012). GBS is 

developed as a simple but robust approach by genome complexity reduction and 
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multiplexing samples (Poland et al. 2012). Similar to RAD, GBS targets the genomic 

sequences flanked by restriction sites to produce a reduced representation of a genome, 

but GBS library construction is greatly simplified compared to that of RAD. The high 

throughput GBS approach is becoming a powerful tool for SNP discovery and genomic-

assisted breeding in species that lack reference genomes (Poland et al. 2012). To convert 

the GBS-based SNPs into high-throughput or breeder-friendly markers for marker-

assisted breeding, the assays need to be redesigned. Several genotyping platforms are 

available: Illumina‟s BeadArray technology-based GoldenGate (GG) (Fan et al. 2003) 

and Infinium assays (Mammadov et al. 2012) for high-throughput marker analysis, and 

Life Technologies‟ TaqMan assay (Livak et al. 1995) and KBiosciences‟ competitive 

allele specific PCR (KASPar) for breeder-friendly single SNP analysis. More recently, 

high-density SNP genotyping arrays with about 90,000 gene-associated SNPs were 

developed as a powerful tool to characterize genetic variations in allopolyploid wheat 

(Wang et al. 2014). 

 Genetic maps and QTL for FHB resistance 

The molecular markers that discussed in the previous paragraph have been used to 

construct genetic linkage maps to locate QTLs for FHB resistance (Anderson et al. 2001; 

Bai et al. 2003; Bai et al. 1999; Ban 2000; Buerstmayr et al. 2002; Burt et al. 2015; 

Cuthbert et al. 2006; Guo et al. 2015; Liu et al. 2007; Liu and Anderson 2003; Ma et al. 

2006a; Mardi et al. 2006a; Poland et al. 2012; Somers et al. 2003; Steiner et al. 2004; Sun 

et al. 2003; Waldron et al. 1999; Yu et al. 2008b; Zhang et al. 2004). Linkage maps are 

constructed based on recombination frequency (RF) among markers in a mapping 

population to determine relative positions of these markers. Marker positions and 
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intervals may be different between different populations. Thus, a consensus map that 

combining map information from different populations is a good tool to determine 

marker and QTL positions for further study. The first SSR map in wheat was constructed 

in the 1990s‟ with 279 SSR markers (Roder et al. 1998). In 2004, a wheat consensus map 

with 1,235 SSR markers was constructed using four different populations (Somers et al. 

2004). This consensus map is a useful reference for future works on mapping QTL for 

traits of interest, as well as map-based cloning of QTLs for different traits (Somers et al. 

2004) (http://wheat.pw.usda.gov). Recently, a new wheat SNP consensus map was 

constructed using high density 90,000 SNP arrays. A total of 46,977 SNPs were 

genetically mapped in a combination of eight double haploid populations (Wang et al. 

2014). This map provides a valuable source for not only genetic diversity studies but also 

a high-resolution dissection of complex traits in wheat. Most recently, a haplotype map of 

allohexaploid wheat has been published (Jordan et al. 2015), which will be a useful 

genetic resource for SNP mapping projects. 

QTL mapping method was firstly proposed in 1923 by Sax and later elaborated in 

1961 by Thoday. In the 1990s‟, QTL mapping method has been used to dissect 

quantitative traits, and map QTLs that are underlining traits of interest in genetic maps 

and identify the QTL effects and interactions (Kearsey 1998). A quantitative trait is 

usually controlled by a few major QTLs and several minor QTLs. Each of the QTL may 

segregate under Mendelian law and also affected by environments. QTL mapping model 

fits phenotypic variation into the predicted genetic models to estimate QTL numbers, 

genotyping by environment interactions and heritability. Mapping population is the start 

point of QTL mapping. For mapping QTL for FHB resistance, the parents for a mapping 

http://wheat.pw.usda.gov/
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population could either show significant contrast (Collards et al. 2005; Liu 1998), or no 

big contrasting for FHB resistance as long as the constructed population has significant 

phenotypic variations (Mardi et al. 2006). Population sizes of 70 to 250 lines were 

reported in preliminary QTL mapping (Mohan et al. 1997), however, large populations 

are required for high-resolution QTL mapping (Collards et al. 2005). Different types of 

mapping populations has been reported in QTL mapping studies, such as F2, backcross 

(BC) (Buerstmayr et al. 1999), recombinant inbred lines (RILs) (Waldron et al. 1999; Yu 

et al. 2008b), double haploid (DH) (Chen et al. 2006; Jia et al. 2006; Yang et al. 2005b) 

and chromosome recombinant inbred lines (CRILs) (Garvin et al. 2009; Jayatilake et al. 

2011; Ma et al. 2006a). RIL population have been the most studied type of mapping FHB 

resistance because the phenotyping conducted on RIL can be repeated in different years 

and locations (Collard et al. 2005). 

Several different approaches for QTL mapping have been reported, including 

single marker analysis (SMA), simple interval mapping (SIM), composite interval 

mapping (CIM), and multiple interval mapping (MIM) (Tanksley 1993). SMA is the 

easiest method for QTL detection with individual markers. The statistical method such as 

t-test, analysis of variance (ANOVA) and linear regression can be used to identify the 

marker-trait associations (Collards et al. 2005; Young 1996). However, SMA can detect 

QTL only when a marker closely linked to the QTL is found. SIM uses linkage maps to 

calculate the association between the phenotypic scores and linked markers to identify 

QTLs intervals (Manly and Olson 1999). Thus, SIM is more powerful than SMA. 

However, when two QTLs located in close marker intervals, SIM cannot separate them 

(Manly and Olson 1999). CIM can detect a closely linked QTL by considering some 
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background markers as a window size, and control background noise by using the 

background markers as cofactors (Manly and Olson 1999; Zeng 1994). However, MIM 

method can detect epistasis between QTLs by considering multiple marker intervals 

simultaneously, thus is powerful in detecting QTL interactions (Wang et al. 2006). To 

determine the significance of QTLs, the logarithmic of odds (LOD) (Lander and 

Kruglyak 1995) and the likelihood ratio statistics (LRS) (Haley and Knott 1992) are 

commonly used. The significant threshold of LOD or LRS is calculated by 1000 

permutations with 95% CI (Churchill and Doerge 1994). If the peak of a QTL exceeds 

the threshold, the QTL can be claimed as significant. An empirical threshold of LOD at 

3.0 is usually used for claiming significant QTL (Collard et al. 2005). Empirically, major 

QTLs can usually explain a large percentage of phenotypic variations (R
2
>10%), and are 

more stable across different environments and locations, especially those for disease 

resistance (Collard et al. 2005; Li et al. 2011), while minor QTLs accounts for only a 

relatively small percentage of phenotypic variation (R
2 

< 10%) (Collard et al. 2005; Li et 

al. 2011).  Many factors may affect the detection power of QTL mapping, such as 

population size, marker density, the accuracy of phenotypic and genotypic data, and 

environmental effects (Darvasi et al. 1993). A large population size, high-density genetic 

map, accurate and reproducible phenotyping are preferrable for QTL mapping (Collards 

et al. 2005; Cuthbert et al. 2006; Kolb et al. 2001). The same QTL may express different 

levels of effects on different environments, especially minor QTLs. Thus, QTL mapping 

experiments should be conducted with replications under multiple years and 

environments (Collard et al. 2005; Haley and Knott 1992; Kolb et al. 2001). 
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QTLs for the four types (type I, II, III, and FDK) of resistance have been mapped 

in more than 50 wheat cultivars on all 21 wheat chromosomes (Table 1.1) (Buerstmayr et 

al. 2009; Liu et al. 2009). Among them, the QTLs on chromosome 1B, 2B, 2D, 3A, 3B, 

3D, 4B, 4D, 5A, 6B, 6D, and 7A have been mapped in at least two populations according 

to the previous reports (Buerstmayr et al. 2009; Liu et al. 2009). Seven of the mapped 

QTLs were formally designated with a gene name. They were (1) Fhb1 on the short arm 

of chromosome 3B from Sumai3 (Cuthbert et al. 2006). This QTL shows the largest 

effect on FHB type II and III resistance (Bai and Shaner 2004; Waldron et al. 1999), and 

validated by several studies (Anderson et al. 2001; Yu et al. 2008b; Zhou et al. 2002). (2) 

Fhb2 on chromosome 6B from Sumai3 (Anderson et al. 2001; Cuthbert et al. 2007); (3) 

Fhb3 on chromosome 7AS derived from an alien species Leymus racemosus (Qi et al. 

2008); Fhb4 on chromosome 4B from Wangshuibai (Xue et al. 2010); Fhb5 on 

chromosome 5A also derived from Wangshuibai (Xue et al. 2011), Fhb6 on chromosome 

1A derived from 1E
ts
#1S of Elymus tsukushiensis (Cainong et al. 2015);  and Fhb7 on 7D 

derived from Thinopyrum ponticum (Guo et al. 2015). However, Fhb1, originally derived 

from Sumai3, is the only one that has been reported to be stable in more than 30 studies. 

This QTL has also been reported in wheat germplasm that are not related to Sumai3, such 

as Chinese landraces Wangshuibai (Lin et al. 2006; Zhou et al. 2004), Huangcandou (Cai 

and Bai 2014), Huangfangzhu (Li et al. 2012), Baishanyuehuang (Zhang et al. 2012b), 

and Japanese wheat landrace Nyu Bai (Cuthbert et al. 2006; Somers et al. 2003). Due to 

its large and stable effects on FHB type II and type III resistance across different genetic 

backgrounds (Anderson et al. 2001; Bai et al. 1999; Bourdoncle and Ohm 2003; 

Buerstmayr et al. 2003; Chen et al. 2006; Cuthbert et al. 2006; Jayatilake et al. 2011; 
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Jiang et al. 2007a; Jiang et al. 2007b; Lemmens et al. 2005; Shen et al. 2003; Somers et 

al. 2003; Yang et al. 2005a; Yang et al. 2005b; Yu et al. 2008b), Fhb1 has been 

extensively utilized in wheat breeding programs. Besides, Fhb2 was also a major QTL 

that explained a wide range of phenotypic variations in FHB resistance (especially type II) 

from 4.4% to 23% (Anderson et al. 2001; Bonin and Kolb 2009; Cuthbert et al. 2007; 

Häberle et al. 2009; Li et al. 2011; Li et al. 2012; Semagn et al. 2007; Shen et al. 2003; 

Yang et al. 2005b; Zhang et al. 2010). Fhb3 was transferred from L. racemosus to wheat 

chromosome 7A and are different from these QTLs mapped in Wangshuibai (Zhou et al. 

2004), and CS-Sumai3-7ADSL (Jayatilake et al. 2011). Fhb4 was identified in 

Wangshuibai with type I resistance (Jia et al. 2006; Lin et al. 2004), and in Ernie (Liu et 

al. 2007), Chokwang (Yang et al. 2005), and Wuhan1 (Somers et al. 2003) for type II 

resistance, explained 4.7% (Yang et al. 2005) to 17.5% (Lin et al. 2006) of phenotypic 

variation. Fhb5 is mainly conferring FHB type I resistance was identified in Wangshuibai 

with type II and III resistance and explained from 4% (Li et al. 2011) to 30% 

(Buerstmayr et al. 2012; Buerstmayr et al. 2011) of the phenotypic variations. The QTL 

on 2DS was mapped close to Xgwm261 for type I, II, and III resistance (Cai and Bai 

2014; Handa et al. 2008; Somers et al. 2003). The 2D QTL is also linked to the same 

marker linked to a reduced height locus Rht8, however, the genetic relationship between 

Rht8 and FHB resistance at this region remains to be investigated. The QTL for FHB type 

II resistance was also mapped on chromosome 7D in a Chinese landrace Haiyanzhong (Li 

et al. 2011) and explained a large percentage of disease symptom spread variation, thus, 

can be an interesting source for QTL validation. 
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 Progress in breeding for FHB resistance 

Breeding for improved FHB resistant cultivars requires moving high levels of 

FHB resistance to locally adapted backgrounds (Bai et al. 2000). Because the additive 

effect is a major component of FHB resistance, developing lines by pyramiding FHB 

resistance QTLs from diverse gene pools, such as Chinese landraces, to local cultivars 

can achieve a better level of resistance (Rudd et al. 2001). Major QTLs with stable effects 

on FHB resistance are preferable in gene pyramiding, thus transferring Fhb1 into locally 

adapted moderately susceptible or resistant cultivars may significantly improve FHB 

resistance in commercial wheat cultivars (Kolb et al. 2011). However, most FHB highly 

resistant sources are Chinese or Japanese landraces, such as Wangshuibai, and Ning7840, 

that have many unadapted agronomic traits (Bai et al. 2000). To avoid or reduce linkage 

drag of these poorly adapted agronomic traits, we could use marker-assisted selection 

(MAS) to transfer the resistant QTLs into adapted backgrounds (Bai et al. 2000). 

Many elite wheat lines and cultivars were reported to show moderate resistance 

these years due to the efforts made on improving FHB resistance. Some of these lines 

may carry QTLs from Asian resistant sources, such as Fhb1, others may contain native 

resistance QTLs only. In the U.S., several soft winter wheat (SWW) cultivars with FHB 

resistance have been released including „Truman‟, „Massy‟, „Ernie‟, and „Freedom‟ etc., 

however, they do not carry Fhb1 (Liu et al. 2013; Rudd et al. 2001; Sneller et al. 2012). 

Some commercial soft wheat cultivars harbor Fhb1 have been released, such as Pioneer 

Brands 25R18, 25R42, and 25R51, most of which are developed by marker-assisted 

backcross (Brown-Guedira et al. 2008). In the U.S. spring wheat growing regions, more 

than 54% of the total acreage was grown with moderate FHB-resistant cultivars (Strunk 



30 

 

2012). Some U.S. hard spring wheat (HSW) cultivars also have FHB resistance, 

including „Bacup‟ and „Sabin‟ developed in Minnesota, and „Alsen‟, „Steele‟, „ND2710‟ 

and „Glenn‟ developed by North Dakota State University (Mergoum et al. 2007). „Among 

them „Sabin‟, „Alsen‟, and „Glenn‟ were reported to have Fhb1 (Anderson et al. 2012a; 

Anderson et al. 2012b; ElDoliefy et al. 2015), thus can either be directly used in 

commercial production or as resistant parents in breeding programs. Besides, a few U.S. 

hard winter wheat (HWW) cultivars have been reported to have moderate FHB resistance 

including „Everest‟, „Overland‟, „Lyman‟, „Heyne‟ and „Hondo‟, and none of them carry 

Fhb1 (Bockus et al. 2009; Zhang et al. 2012a). To improve FHB resistance in these wheat 

cultivars, they can serve as recurrent parents to transfer QTLs from Asian sources. 

Combining QTLs from the Asian sources would not only improve resistance level but 

also broaden the genetic diversity (Bai et al. 2003).  Besides, transgressive segregation 

has been successfully used in creating FHB resistant cultivars (Young 1996; Bai et al. 

2000). Examples are some wheat cultivars developed from southern China including 

Sumai 3, Zhen7495, Xiangmai 2, Jingzhou 1 and Jingzhou 47 (Bechtel et al., 1985; Bai et 

al., 2000). Thus, elite resistant lines selected from transgressive segregation may have a 

higher level of FHB resistance than their breeding parents. 

 Prospective in future FHB resistance research 

Functional markers are preferred for marker-assisted selection for FHB resistance. 

However, the functional markers are still not available because none of FHB resistance 

genes has been cloned to date (He et al. 2013). Flanking markers are available for some 

FHB resistance QTLs, but they may not be diagnostic for these QTLs in different 

populations. The Fhb1 linked marker Xumn10 is a tightly linked marker to Fhb1, and 
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easy to use in marker-assisted selection, thus, have been widely used in breeding. 

However, false positive has frequently been observed for Xumn10 in soft winter wheat 

breeding program, thus, functional markers are desired for improving FHB resistance in 

breeding programs.  

Use of wheat resistance to FHB is the most effective and sustainable method of 

defeating FHB. To date, Asian sources of FHB resistance have been widely used, and the 

other sources of resistance are still limited. The introduction of resistance from alien 

species has become quite popular in recent years (Bai and Shaner 2004). Sources with 

higher levels of resistance to FHB than Sumai3 were reported in hybrids Triticum 

aestivum-Leymus racemosus, T. aestivum-Roegneria komoji, and T. aestivum-R. ciliaris 

(Chen et al. 1993). More QTL mapping papers published recently have focused on the 

QTLs from alien species (Buerstmayr et al. 2013; Buerstmayr et al. 2012; Buerstmayr et 

al. 2011; Zhang et al. 2014). However, successful use of the QTL from alien species has 

not been reported. Besides, the local FHB resistance sources have usually been 

overlooked until recently (Cativelli et al. 2013; Chu et al. 2011; Jin et al. 2013; Liu et al. 

2012; Liu et al. 2013; Zhang et al. 2012a). Pyramiding resistance QTL from different 

sources could yield durable and highly resistant genotypes.  
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Table 1.1 Summary of reported FHB resistance QTLs from different studies 

Type of 

FHB 

resistance 

Chromosome Population name Population 

type 

References 

Type II 

resistance 

3BS, 6BS 

(Sumai3) 

2AL, 4B 

(Stoa) 

Sumai3 (R)/Stoa (MS) RIL (Waldron et al. 

1999) 

Type II 

resistance 

3BS Ning7840(R)/Clark (S)  RIL (Bai et al. 1999) 

Type II 

resistance 

3AL,6AS, 

3BS 

ND2603(R)/Butte86(MS) RIL (Anderson et al. 

2001) 

Type II 

resistance 

2AL, 3BS, 

4BS, 6BS 

Sumai3(R)/Stoa(MS) RIL (Anderson et al. 

2001) 

Type II 

resistance 

2AS, 2BL and 

3BS 

Ning7840(R)/Clark(S) RIL (Zhou et al. 2002) 

Type II 

resistance 

5A, 1B and 

3BS 

CM-82036(R)/Remus(S) DH (Buerstmayr et al. 

2002) 

Type II 

resistance 

3BS Ning7840(R)/Wheaton(S) F2:3 (Zhou et al. 2003) 

Type II 

resistance 

3BS Ning7840(R)/IL89-7978(S) F3:4 (Zhou et al. 2003) 

Type II 

resistance 

3BS, 5A CM-82036(R)/Remus(S) DH (Buerstmayr et al. 

2003) 

Type II 

resistance 

1B, 3A, 3D, 

5A 

F201R(R)/cv. Patterson 

(MS) 

RIL (Shen et al. 2003) 

Type II 

resistance 

3A, 3BS, 3BL 

and 5B 

Huapei57-2(R)/Patterson 

(MS) 

RIL (Bourdoncle and 

Ohm 2003) 

Type II 

resistance 

2DL, 3BSc 

and 4B 

Wuhan-1(R)/Maringa(MS) DH (Somers et al. 

2003) 

Type II 

resistance 

1B and 3BS Wangshuibai(R)/Alondra(S) RIL (Zhang et al. 2004) 

Type II 

resistance 

7AL, 3BSd, 

1BL and 

3BSc 

Wangshuibai(R)/Wheaton(S

) 

RIL (Zhou et al. 2004) 

Type II 

resistance 

3BS, 6BS, 

2DS and 7BL 

DH181(R)/AC Foremost(S) DH (Yang et al. 

2005b) 

Type II 3BS, 4BL and Chokwang(R)/Clark(S) RIL (Yang et al. 2005a) 
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resistance 5DL 

Type II 

resistance 

6AL, 1B, 

2BL, and 7BS 

Dream(R)/Lynx(S) RIL (Schmolke et al. 

2005) 

Type II 

resistance 

3BS, 4BL and 

5DL 

Chokwang(R)/Clark(S) RIL (Yang et al. 2005a) 

Type II 

resistance 

7A, 3B, 5B, 

and 2D 

Wangshuibai(R)/Alondra(S) DH (Jia et al. 2006) 

Type II 

resistance 

5AS and 3BS W14(R)/Poin2684(S) DH (Chen et al. 2006) 

Type II 

resistance 

6A, 3B, 2D, 

and 4D 

Chinese spring sumai3 

disomic substitution line 

(R)/Annong 8455(S) 

RIL (Ma et al. 2006a) 

Type II 

resistance 

3B, 2A Wangshuibai (R)/Annong 

8455 

RIL (Ma et al. 2006b) 

Type II 

resistance 

3BS Sumai3*5(R)/Thatcher(S) 

and HC374(R)/3*98B69-

L47(S) 

RIL (Cuthbert et al. 

2006) 

Type II 

resistance 

3AL, 7AS and 

1BL 

Frontana (MR)/Seri82(S) F3:5 (Mardi et al. 

2006b) 

Type II 

resistance 

1AS, 3BS, 

7BS, 2BL, 

1BC 

CJ9306(R)/Veery(S) RIL (Jiang et al. 2007b) 

Type II 

resistance 

3BSc, 5A, 6B BW278(R)/AC Foremost(S) RIL (Cuthbert et al. 

2007) 

Type II 

resistance 

1AL, 7AL 

1BL and 6BS 

Arina (MR)/NK93604(MR) DH (Semagn et al. 

2007) 

Type II 

resistance 

5A, 2B, 3B, 

and 4BL 

Ernie(MR)/MO 94-317(S) RIL (Liu et al. 2007) 

Type II 

resistance 

1A, 5AS, 7AL 

3BS, 3DL and 

5DL 

Wangshuibai(R)/Wheaton(S

) 

RIL (Yu et al. 2008b) 

Type II 

resistance 

1A and 2BL G16-92(R)/Hussar(S) RIL (Schmolke et al. 

2008) 

Type II 

resistance  

2DS Sumai3(R)/Gamenya(S) DH (Handa et al. 2008) 

Type II 

resistance 

2B, 3B, 4B, 

and 6B 

IL94-1653/Patton RIL (Bonin and Kolb 

2009) 

Type II 7BS /5BL, G93010 (R)/Pelikan RIL (Häberle et al. 
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resistance 6BS and  2009) 

Type II 

resistance 

7A, 1B, 3B, 

6B and 2D 

Wangshuibai(R)/Sy95-7(S) F2:3 (Zhang et al. 2010) 

Type II 

resistance 

2A, 5A, 2B, 

5B 

T. macha(R)/Furore(S) RIL (Buerstmayr et al. 

2011) 

Type II 

resistance 

7AC and 3BS CS-Sumai 3-7ADSL CRIL (Jayatilake et al. 

2011) 

Type II 

resistance 

1AS, 5AS, 

6BS(2) and 

7DL 

Haiyanzhong (R)/Wheaton RIL (Li et al. 2011) 

Type II 

resistance 

5AS, 5AL PI 277012 (R)/Grandin DH (Chu et al. 2011) 

Type II 

resistance 

3A, 6A, and  

4D 

Frontana (R)/Chris Reciprocal 

backcross 

monosomic 

(RBCM) 

(Yabwalo et al. 

2011) 

Type II 

resistance 

1AS, 5AS, 

7AL, 1B and 

3BS 

Huangfangzhu(R)/Wheaton RIL (Li et al. 2012) 

Type II 

resistance 

3AS, 4AL and 

4DL 

Heyne(R)/ Trego RIL (Zhang et al. 

2012a) 

Type II 3BSd, 3BSc, 

3A, 5A 

Baishanyuehuang 

(R)/Jagger 

RIL (Zhang et al. 

2012b) 

Type II 

resistance 

3B, 5A, 5B, 

7A, 7B 

BGRC3487/2*DT735 

(Moderate R) 

BCRIL (Ruan et al. 2012) 

Type II 

resistance 

3B, 5A, 3A RCATL33(R)/RC Strategy RIL (Tamburic-Ilincic 

and Miedaner 

2012) 

Type II 

resistance 

1BL, 2A, 

2DL, 5B, 6A, 

and 7A 

VA00W-38 (Moderate 

R)/26R46 

RIL (Liu et al. 2012) 

Type II 

resistance 

1A, 2B, 2D, 

3B, 6A, 7A, 

and 7B  

 

Jamestown/LA97113UC-

124  

 

RIL (Wright et al. 

2012) 

Type II 

resistance 

1B, 2B, 3A, 

and 6A  

Pioneer25R47/Jamestown  RIL (Wright et al. 

2012) 

Type II 

resistance 

3A, 6B Mt. Gerizim #36 

(R)/Helidur 

BC (Buerstmayr et al. 

2013) 
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Type II 

resistance 

1DS, 3BL Becker/Massey  RIL (Liu et al. 2013) 

Type II 

resistance 

2DS, 4BS, 

4DS, 5AL, 

3BL, 4BS 

Ernie/MO 94-317 RIL (Liu et al. 2013) 

Type II 7DS, 3BS, 

5DL 

Catbird/Milan DH (Cativelli et al. 

2013) 

Type II 

resistance 

3BSc, 3BSd, 

3AS, 2D, and 

6D 

Huangcandou(R)/Jagger RIL (Cai and Bai 2014) 

Type II 

resistance 

2A (Ben) 

3A, 5A from 

PI41025 

Ben(Durum)/PI41025 RIL (Zhang et al. 2014) 

Type II 

resistance 

2B, 2D, 3B, 

5B, 6B, 7A, 

7D 

Glenn/MN00216-4 (GM) RIL (ElDoliefy 2015) 

Type II 

resistance 

3BL, 5AL, 

4BL 

Parshall/Reeder RIL (ElDoliefy 2015) 

Type II 

resistance 

1A, 2A, 6A NC-Neuse (Moderately 

resistant)/AGS 

RIL (Petersen et al. 

2015) 

Type I 

resistance 

3B, 5A, 1B CM-82036(R)/Remus(S) DH (Buerstmayr et al. 

2002) 

Type I 

resistance 

3A and 5A Frontana(MR) and 

Remus(S) 

DH (Steiner et al. 

2004) 

Type I 

resistance 

3AS, 5AS, 

3BS, 3BSc, 

6BS, 2DS and 

4DL 

DH181(R)/AC Foremost(S) DH (Yang et al. 

2005b) 

Type I 

resistance 

5A, 4B, and 

5B 

Wangshuibai 

(R)/Nanda2419 

RIL (Lin et al. 2006) 

Type I 

resistance 

3AS, 5AS, 

3BS, 4B, and 

5DL 

Wangshuibai(R)/Wheaton(S

) 

RIL (Yu et al. 2008b) 

Type I 

resistance 

1B, 2B, 3A, 

6A, 6B, 7A 

and 7D 

RL4137 (R)/Timgalen(MR) RIL (Srinrvasachary et 

al. 2008) 

Type I 

resistance  

3BS, 6BL, 

2DS 

Sumai3 (R)/Y1193-6 RIL (Basnet et al. 

2011) 

Type I 3A, 6A, and  Frontana (R)/Chris Reciprocal (Yabwalo et al. 
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4D backcross 

monosomic 

(RBCM) 

2011) 

Type I 

resistance 

4B, 6A, 6B T. dicoccum-161 (R)/ DS-

131621 (durum wheat) 

 

BC1F4 (Buerstmayr et al. 

2012) 

Type I 

resistance 

3B, 4B, 6B T. dicoccum-161 (R)/ 

Floradur (durum wheat) 

 

BC1F4 (Buerstmayr et al. 

2012) 

Type I 

resistance 

4B, 7B T. dicoccum-161 (R)/ 

Helidur (durum wheat) 

 

BC1F4 (Buerstmayr et al. 

2012) 

Type I 

resistance 

2A, 3B, 5B, 

7A 

 

BGRC3487/2*DT735 

(Moderate R) 

BCRIL (Ruan et al. 2012) 

Type I 

resistance 

3A, 4A, 6B, 

2B, 4B, 5A, 

7B 

Frontana (R)/Remus DH (Szabó-Hevér et 

al. 2012) 

Type I 

resistance 

1A, 2B, 2D, 

3B, 6A, 7A, 

and 7B 

Jamestown/LA97113UC-

124  

 

RIL (Wright et al. 

2012) 

Type I 

resistance 

1B, 2B, 3A, 

and 6A 

Pioneer25R47/Jamestown RIL (Wright et al. 

2012) 

Type I 

resistance 

2D and 4BS Becker/Massey RIL (Liu et al. 2013) 

Type I 

resistance 

4BS, 4DS, 

5AL 

Ernie/MO 94-317 RIL (Liu et al. 2013) 

Type I 

resistance 

1A, 1B, 2D, 

3B, 4A, 5A, 

5B, 6A, 7B 

GKMini Mano /́Frontana 

 

DH (Ágnes et al. 2014) 

Type I 

resistance 

1AS, 3B, 6A, 

7A  

Glenn/MN00216-4 RIL (ElDoliefy 2015) 

Type I 

resistance 

1AS, 4BL Parshall/Reeder RIL (ElDoliefy 2015) 

Type I 

resistance 

1A, 5B, 6A NC-Neuse (Moderately 

resistant)/AGS 

RIL (Petersen et al. 

2015) 

Type III 

resistance  

5AS, 2DS Wuhan-1(R)/Maringa (MS) DH (Somers et al. 

2003) 
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Type III 

resistance 

3BS, 5A CM-82036(R)/and Remus DH (Lemmens et al. 

2005) 

Type III 

resistance 

5AS and 3BS W14(R)/Poin2684(S) DH (Chen et al. 2006) 

Type III 

resistance 

2DL, 1AS, 

3BS, 5AS  

CJ9306(R)/Veery(S) RIL (Jiang et al. 2007a) 

Type III 

resistance 

1AL and 2AS Arina (MR)/ NK93604(MR) DH (Semagn et al. 

2007) 

Type III 

resistance 

1A, 5AS, 

7AL, 1BL, 

3BS and 5DL 

Wangshuibai(R)/Wheaton(S

) 

RIL (Yu et al. 2008b) 

type III 

resistance 

7AC and 3BS CS-Sumai 3-7ADSL CRIL (Jayatilake et al. 

2011) 

Type III 

resistance 

5AS, 5AL PI 277012 (R)/Grandin DH (Chu et al. 2011) 

Type III 

resistance 

3B, 5A, 3A RCATL33(R)/RC Strategy RIL (Tamburic-Ilincic 

and Miedaner 

2012) 

Type III 

resistance 

1BL, 2A, 

2DL, 5B, 6A, 

and 7A 

VA00W-38 (Moderate 

R)/26R46 

RIL (Liu et al. 2012) 

Type III 

resistance 

1A, 2B, 2D, 

3B, 6A, 7A, 

and 7B  

Jamestown/LA97113UC-

124  

 

RIL (Wright et al. 

2012) 

Type III 

resistance 

1B, 2B, 3A, 

and 6A  

Pioneer25R47/Jamestown  RIL (Wright et al. 

2012) 

Type III 

resistance 

4DL Becker/Massey RIL (Liu et al. 2013) 

Type III 

resistance 

1B, 2D, 3A, 

3B, 4B, 5A, 

5B, 6B, 7A, 

7D 

GKMini Mano /́Frontana 

 

DH (Ágnes et al. 2014) 

Type III 

resistance 

5B Glenn/MN00216-4 (GM) RIL (ElDoliefy 2015) 

Type III 

resistance 

1A, 1B, 1D, 

2A, 4A, 5B 

NC-Neuse (Moderately 

resistant)/AGS 

RIL (Petersen et al. 

2015) 

FDK 

resistance 

5AS and 3BS W14(R)/Poin2684(S) DH (Chen et al. 2006) 
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FDK 

resistance 

2B, 4B, and 

6B 

IL94-1653/Patton RIL (Bonin and Kolb 

2009) 

FDK 

resistance 

5AS, 5AL PI 277012 (R)/Grandin DH (Chu et al. 2011) 

FDK 

resistance 

3A, 6A, and  

4D 

Frontana (R)/Chris Reciprocal 

backcross 

monosomic 

(RBCM) 

(Yabwalo et al. 

2011) 

FDK 

resistance 

3B, 5A, 3A RCATL33(R)/RC Strategy RIL (Tamburic-Ilincic 

and Miedaner 

2012) 

FDK 

resistance 

1BL, 2A, 

2DL, 5B, 6A, 

and 7A 

VA00W-38 (Moderate 

R)/26R46 

RIL (Liu et al. 2012) 

FDK 

resistance 

3D, 2B, 4B, 

5A, 7B 

Frontana (R)/Remus DH (Szabó-Hevér et 

al. 2012) 

FDK 

resistance 

4BS Becker/Massey RIL (Liu et al. 2013) 

FDK 

resistance 

4BS, 4DS, 

3BL, 4BS 

Ernie/MO 94-317 RIL (Liu et al. 2013) 

FDK 

resistance 

1B, 2D, 3A, 

3B, 4B, 5A, 

5B, 6B, 7A, 

7D 

GKMini Mano /́Frontana 

 

DH (Ágnes et al. 2014) 

FDK 

resistance 

1B, 2B, 3D, 

5B, 7B, 7D 

Glenn/MN00216-4 (GM) 

 

RIL (ElDoliefy 2015) 

FDK 

resistance 

1A, 1B, 1D, 

4A,  

NC-Neuse (Moderately 

resistant)/AGS 

RIL (Petersen et al. 

2015) 
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Chapter 2 - Mapping QTLs for Fusarium head blight 

resistance in Chinese wheat landrace Haiyanzhong 

   Abstract 

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is a 

devastative disease in wheat (Triticum aestivum L.). FHB epidemics reduce not only 

grain yield, but also grain quality. Use of host resistance is one of the most effective 

strategies to minimize the disease damage. Haiyanzhong (HYZ) is a Chinese wheat 

landrace that shows a high level of resistance to FHB type II resistance. To map the 

quantitative trait loci (QTLs) in HYZ and identify markers tightly linked to the QTLs for 

FHB resistance, we genotyped 186 recombinant inbred lines (RILs) derived from a cross 

between HYZ and Wheaton, a susceptible cultivar, using simple sequence repeats (SSRs) 

and single-nucleotide polymorphisms (SNPs) derived from genotyping-by-sequencing 

(GBS). The population was also phenotyped for the percentage of symptomatic spikelets 

(PSSs) per spike in three greenhouse experiments using single floret inoculation. Eight 

QTLs were identified for type II resistance with six from HYZ. The absence of Fhb1 in 

HYZ suggests that an additive effect of multiple minor QTLs can also provide a high 

level of resistance in wheat. A major QTL for FHB resistance was mapped on 

chromosome 5AS with a 1.88-cM interval flanked by SNP GBS3127 and SSR Xbarc316. 

The other seven minor QTLs were mapped on the chromosomes 6B, 7D, 2B (2), 3B, 4B, 

and 4D. Critical SNPs linked to the QTLs on chromosomes 5A, 6B, and 2B were 

converted into KBioscience competitive allelic-specific PCR (KASP) assays that could 

be used for marker-assisted selection (MAS) to pyramid these QTLs in wheat.  
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 Introduction 

Fusarium head blight (FHB) is mainly caused by Fusarium graminearum 

Schwabe [telomorph, Gibberella zeae (Schw.) Petch], and is one of the most destructive 

diseases of wheat (Triticum aestivum), especially in humid and semi-humid wheat-

growing regions of the world (Bai and Shaner 2004; Goswami and Kistler 2004). It 

causes significant yield losses and grain quality reduction. Infected grain is also 

contaminated with mycotoxins, especially deoxynivalenol (DON), which is a major 

health concern for humans and animals (Cetin and Bullerman 2005). Although progress 

has been made in managing FHB during the last decade, FHB and DON continue to 

cause significant economic losses in many regions in the U.S. and many other countries 

(McMullen et al. 2012). No single strategy is completely effective in mitigating FHB 

damage. However, growing FHB-resistant cultivars coupling with appropriate cultural 

practices can minimize FHB damage.  

FHB resistance in wheat is a quantitative trait controlled by multiple quantitative 

trait loci (QTLs) and affected by environmental factors (Bai and Shaner 1994; 

Buerstmayr et al. 1999).  To date, more than 50 QTLs have been reported on all 21 

chromosomes to be associated with FHB resistance (Buerstmayr et al. 2009). Several 

QTLs have repeatedly been mapped on chromosomes 3BS, 5AS, 6BS, 3A, 4B, 2D, 1B, 

7A and 5B etc (Liu et al. 2009), and seven have been formally designated with a gene 

name including Fhb1 on chromosome 3BS derived from Sumai3 (Cuthbert et al. 2006), 

Fhb2 on 6BS derived from Sumai3 (Anderson et al. 2001; Cuthbert et al. 2007), Fhb3 on 

7AS derived from Leymus racemosus (Qi et al. 2008), Fhb4 derived from 4B of 

Wangshuibai (Xue et al. 2010), Fhb5 derived from 5A of Wangshuibai (Xue et al. 2011), 
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Fhb6 on 1A derived from Elymus tsukushiensis (Cainong et al. 2015), and Fhb7 on 7DS 

derived from Thinopyrum ponticum (Guo et al. 2015). However, most of the QTLs were 

mapped using low-density maps. A high-density map is critical to the identification of 

tightly linked markers to these QTLs. Genotyping-by-sequencing (GBS) is a simple, but 

effective, approach for spontaneous discovering and mapping of SNP markers in diverse 

species (Poland et al. 2012), and is a useful marker system for fine mapping of QTLs for 

FHB resistance.  

FHB resistance genes used in current wheat breeding programs can be traced back 

to very few sources with most of them derived from Sumai3 (Bai and Shaner 2004). 

Limited resistant sources used in breeding may pose vulnerability to resistance 

breakdown and severe disease epidemics. Exploring new sources of resistance will 

facilitate pyramiding of different QTLs to increase the resistance level and diversity of 

resistant sources. Several Chinese landraces showed a high level of FHB resistance (Yu 

et al. 2008a). One of them is Haiyanzhong (HYZ) that shows a similar level of FHB 

resistance as Sumai3 (Li et al. 2011). Using 136 recombinant inbred lines (RILs) derived 

from a cross between HYZ and Wheaton, a susceptible cultivar, Li et al. (2011) did not 

find Fhb1, the most common QTL for FHB resistance in Chinese sources, instead, they 

identified a major QTL on 7DL that explained 15.9-22.6% of the phenotypic variance in 

both greenhouse and field experiments and four other QTLs with minor effects. Thus, 

HYZ might be a different source of resistance from Sumai3.  

The objectives of the present study were to (1) validate the previous mapped QTL 

on 7D in HYZ using a new and larger population; (2) identify new QTLs by using a high-

density SNP map; (3) develop tightly linked markers to the QTLs and convert them to 
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breeder friendly Kompetitive allele specific PCR (KASP) assays for marker-assisted 

selection (MAS). 

 Materials and methods 

 Plant materials and FHB evaluation 

A population of 186 F7-derived RILs was developed from a cross between HYZ 

and the U.S. FHB-susceptible hard red spring wheat variety Wheaton by single-seed 

descent. The RILs were evaluated for FHB resistance in the greenhouses on spring and 

fall 2012 and spring 2013 at Kansas State University in Manhattan, Kansas. Seeds of the 

RILs and two parents were planted in plastic trays filled with Metro-mix 360 soil mix 

(Hummert International, Topeka, KS). After 50 d of vernalization at 6
o
C in a cold room, 

about 12 seedlings per line were separated into two replications and transplanted into 4” x 

4” Dura pots filled with Metro-mix 360 soil mix. The pots were arranged on greenhouse 

benches in a randomized complete block design (RCBD) with two replications (pots) per 

line.  The greenhouse was maintained at 17 ± 2
o
C at night and 22 ± 5

o
C during the day 

with 12 h supplemental daylight. 

A Kansas strain of F. graminearum (GZ3639) was used as inocula, and a conidial 

spore suspension was prepared following Bai et al. (1999). At early anthesis, wheat 

spikes were inoculated by injecting 10 µl of the conidial spore suspension (~1000 

spores/spike) into a floret of a central spikelet in a spike using a syringe (Hamilton, Reno, 

NV). Five spikes per pot were inoculated and maintained in a moist chamber at 100% 

relative humidity and 20 to 22
o
C for 48 h to initiate fungal infection. Then the plants 

were returned to the greenhouse benches for further FHB development. FHB symptom 

spread within a spike (type II resistance) was evaluated by counting the symptomatic 
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spikelets and total spikelets in an inoculated spike 15 d after inoculation. Percentage of 

symptomatic spikelets (PSS) from each RIL in each experiment and mean PSS across all 

three experiments were calculated and used for QTL analysis. 

 DNA extraction and analysis of simple sequence repeats  

Leaf tissue was collected at the three-leaf stage in 96-deepwell plates, dried in a 

freeze dryer (ThermoSavant, Holbrook, NY) for 48 h, and ground using a Mixer Mill 

(MM 400, Retsch, Germany). Genomic DNA was isolated using a modified 

cetyltrimethyl ammonium bromide protocol (Maguire et al. 1994). 

A core set of 384 simple sequence repeat (SSR) primer pairs were used to screen 

the two parents, HYZ, and Wheaton. This core primer set was originally selected from 

2000 primer pairs (http://wheat.pw.usda.gov) based on the result of previous studies 

conducted at the USDA Central Small Grain Genotyping Laboratory in Manhattan, KS. 

The markers are distributed on all the 21 wheat chromosomes (Somers et al. 2004). 

Primers that amplified at least one polymorphic band between the parents were used to 

screen the 186 RILs. Polymerase chain reaction (PCR) amplification was done in an MJ 

Research PTC-200 Thermal Cycler (Bio-Rad, Hercules, CA). For SSR detection, an M13 

tail (5‟-ACGACGTTGTAAAACGAC) was added to 5‟-end of all forward primers. A 10-

μl PCR master mix contained 1X ASB buffer, 2.5 mM of MgCl2, 200 μM of dNTP, 100 

nM of fluorescent dye-labeled M13 primer, 100 nM of M13 tailed forward primer, 200 

nM of a reverse primer, 0.6 U of Taq polymerase, and 40 ng of template genomic DNA. 

PCR amplification was done using a touchdown program. The PCR mixture was 

incubated initially at 95
o
C for 5 min, followed by five cycles of 96

o
C for 1 min, annealing 

at 68
o
C for 3 min with a decrease of 2

o
C in each subsequent cycle, and extension at 72

o
C 

http://wheat.pw.usda.gov/
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for 1 min. For another five cycles, annealing temperature started from 58
o
C for 2 min 

with a decrease of 2
o
C in each subsequent cycle, and then PCR went through an 

additional 25 cycles of 96
o
C for 1 min, 50

o
C for 1 min, and 72

o
C for 1 min, ending with a 

final extension at 72
o
C for 5 min. Amplified PCR products from four PCRs labeled with 

different fluorescent dyes (FAM, VIC, NED, and PET) were pooled and analyzed in an 

ABI PRISM 3730 DNA Analyzer (Applied Biosystems, Foster City, CA). Data were 

scored using GeneMarker v1.75 (SoftGenetics LLC, State Collage, PA). 

 GBS library construction and SNP genotyping 

A GBS library was generated from 186 RILs and three replicates of both parents 

using a previously described protocol (Poland et al. 2012). In brief, DNA concentration 

was quantified using the Quant-iT
TM

 PicoGreen® dsDNA Assay (Life Technologies Inc., 

Grand Island, NY) and normalized to 20ng/µl. Each DNA sample was digested with HF-

PstI (High-Fidelity) and MspI (New England BioLabs Inc., Ipswich, MA), ligated with 

one of 192 barcoded adaptors and the Y common adaptor using T4 ligase (New England 

BioLabs Inc.). Ligated samples with different barcodes were pooled into a single tube, 

cleaned up using a QIAquick PCR Purification Kit (Qiagen Inc., Valencia, CA), and then 

amplified by PCR with 5μl Taq 5X Master Mix (New England BioLabs Inc.) and 10uM 

Ion primers. The PCR mixture was incubated initially at 95
o
C for 30 sec, followed by 16 

cycles of 95
o
C for 30 sec, 62

 o
C for 20 sec, and 68

 o
C for 1min, and then PCR end with a 

final extension at 72
o
C for 5 min. The PCR products were cleaned up again using the 

QIAquick PCR Purification Kit, size-selected for a range of 250-300 bp in an E-gel 

system (Life Technologies Inc.), and sequenced in an Ion Proton system (Life 

Technologies Inc.). GBS data analysis was performed using UNEAK, and independent 
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reference pipeline of TASSEL (Lu et al. 2013; Poland et al. 2012). For those reads with 

less than 64 bp, a poly-A tail was added to the reads to ensure all reads were 64 bp.  

The accuracy of GBS-SNP calls was validated using Kbioscience allele-specific PCR 

(KASP) assays (LGC Biosearch Technologies, Petaluma, CA). The KASP assays were 

designed from the corresponding GBS sequences harboring the SNPs that were mapped 

to the QTL regions. KASP assays consisted of three KASP primers: two allele-specific 

forward primers and one common reverse primer. The KASP master mix for each 

reaction comprised of 3 µl of 2x KASP reaction mix, 0.0825 µl of KASP primer mix 

(100 µM) and 3 µl of DNA (~40 ng). Samples were incubated at 94
o
C for 15 min, 

followed by 10 cycles of 94
o
C for 20 s and annealing at 65

o
C for 1 min with a decrease of 

0.8
o
C in each subsequent cycle. Then the PCR went through an additional 40 cycles of 

94
o
C for 20 sec and 57

o
C for 1 min. After PCR, plates were read in an Applied 

Biosystems 7900HT Fast Real-Time PCR System (Life Technologies Inc.,). The number 

of mismatches between GBS-SNP and KASP-SNP data was counted and compared. If 

any mismatch between KASP markers and corresponding GBS-SNPs, the KASP markers 

were remapped with other GBS-SNPs to validate the map locations.  

 Genetic map construction and QTL analysis 

A linkage map with both SSR and GBS-SNP markers was constructed using 

Kosambi mapping function (Kosambi 1944) and „regression‟ mapping algorithm in 

JoinMap version 4.0 (Van Ooijen 2006). QTLs for PSS were determined using 

Composite Interval Mapping (CIM) in WINQTL Cartographer version 2.5 with Model 6 

(Wang et al. 2005). The permutation test was performed 1000 times to determine the 

LOD threshold for claiming significant QTLs at P < 0.05 (Churchill and Doerge 1994).  
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 Results 

 FHB variation among RILs and between parents 

The resistant parent HYZ showed a high level of FHB resistance in all three 

greenhouse experiments, with an average PSS of 11.20%, ranging from 7.62 to 14.81%, 

whereas Wheaton, the susceptible parent, had a mean PSS of 97.75%, ranging from 95.5 

to 100% (Figure 2.1). The mean PSSs of RILs across all the three experiments ranged 

from 7.61% to 100%. PSS frequencies showed continuous distribution skewed toward 

HYZ in spring and fall 2012, but toward Wheaton in spring 2013 (Figure 2.1). Mean PSS 

over all RILs was 46.16%, ranging from 39.91% (spring 2012) to 55.32% (spring 2013), 

indicating the highest disease pressure in spring 2013 and the lowest in spring 2012. 

Transgressive segregation was not evident in spring 2012, but obvious in fall 2012 and 

spring 2013, suggesting there might be QTL contributed by the susceptible parent. The 

positive correlations were highly significant among the three greenhouse experiments, 

ranging from 0.58 to 0.64 (P < 0.001). Significant variation in genotypes, environments, 

and genotypes by environments was observed in the three experiments (Table 2.1). The 

broad sense heritability was very high (H = 0.81).  

 Construction of a linkage map 

The GBS- SNPs were analyzed for 172 RILs after removing 14 RILs that had 

excessive missing data. After four Ion Proton runs of 192 samples, 21740 GBS-SNPs 

were called with 80% missing data. Among them, 6232 had 20% or less missing data and 

were used for mapping. For SSR, a core set of 384 SSR markers were screened between 

parents, and 132 were polymorphic, thus used to screen all the RILs. Of the 6364 markers 

(6232 SNPs and 132 SSRs) analyzed in the mapping population, 4624 (72.7%) were 
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mapped to 48 linkage groups with at least three markers in each group. The map covered 

all 21 chromosomes at a genetic distance of 4044.34 cM with an average marker density 

of 0.87 cM per marker.  Among the three genomes of wheat, the B genome has the most 

markers (49.2%), followed by the A genome (40.8%) and the D genome (10.0%).  

Marker density was the greatest in a linkage group corresponding to chromosome 3A, 

with an average density of 0.50 cM per marker, while the least on a linkage group 

corresponding to chromosome 3D, with an average interval of 5.84 cM between markers. 

 QTLs for FHB resistance 

CIM mapping detected eight significant QTLs for FHB resistance on 5AS, 6BS, 

7DL, 2B (two QTLs), 4D, 3B and 4B (Figure 2.2 and 2.3). The QTL on chromosome 5A 

showed a major effect. The QTLs on 5AS, 6BS and 7DL were previously mapped in Li et 

al. (2011), whereas the other five were newly mapped QTLs in the current study. The 5A 

QTL showed a significant major effect in all three experiments and explained 

6.10~15.98% of the phenotypic variation (Table 2.2, Figure 2.2). This QTL was 

delineated to a 1.88 cM interval between SNPs GBS3127 and Xbarc316. GBS3127 

showed the largest effect on FHB type II resistance in all the three experiments among all 

markers tested, and two genotypic groups carrying the contrasting alleles at the QTL had 

a significant difference in the mean PSS (Table 2.4). Other SNPs that closely linked to 

the QTL including GBS1852 and GBS5669 on the one side of QTL, and GBS2573 and 

GBS1691 on the other side of the QTL all showed significant effects on Type II 

resistance.  

The QTL on 6BS, flanked by SNPs GBS4963 and GBS3704, was significant with 

spring 2012 and 2013 data, and mean PSS data. This QTL explained 6.91~11.11% of the 



66 

 

phenotypic variation (Table 2.2, Figure 2.3). Six SNPs were mapped to a 2.39 cM 

interval, with GBS4305 and GBS 4116 showing the largest effect on FHB resistance. 

The QTL on 7DL was flanked by Xcfd46 and Xwmc702, with Xcfd46 showing the 

largest effect on FHB resistance. The QTL was significant in spring 2012 and 2013, and 

the mean PSS, which explained 5.59~7.53% of the phenotypic variation (Table 2.2, 

Figure 2.3).  

Two QTLs for FHB resistance were mapped on the short arm of chromosome 2B. 

The susceptible parent “Wheaton” contributed positive alleles for both QTLs. The 2B_1 

QTL was significant in spring 2013 only, and flanked by SNPs GBS1340 and GBS0835, 

explained 5.80% of the phenotypic variation (Table 2.2, Figure 2.3), whereas 2B-2 QTL 

was 40 cM away from 2B-1 QTL that was delimited to a 3.3 cM interval and flanked by 

SNPs GBS5561 and GBS0848. This QTL was significant in fall 2012 and mean PSS, and 

explained 5.10~7.77% of the phenotypic variation (Table 2.2, Figure 2.3).  

One QTL on the short arm of chromosome 4D was mapped between SNPs 

GBS3233 and GBS4883, and significant in fall 2012 only. This QTL explained 14.54% of 

the phenotypic variation (Table 2.2, Figure 2.3). One QTL on the long arm of 

chromosome 3B that flanked by SNPs GBS1778 and GBS3048 was significant in the fall 

2012 experiment, and explained 8.21% of the phenotypic variation (Table 2.2, Figure 

2.3). Another QTL on the long arm of chromosome 4B was flanked by SNPs GBS2348 

and GBS3434, which was significant in spring 2012 only and explained 5.61% of the 

phenotypic variation (Table 2.2, Figure 2.3). 

Seven GBS-SNPs were mapped in the 5A QTL region, nine in the 6B QTL 

region, five in the 2B-1 QTL region, seven in the 2B-2 QTL region, four in the 3BL QTL 
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region, two in the 4BL QTL region, and three in 4DS QTL regions. Twenty markers were 

mapped in the Fhb1 region between markers Xumn10 and Xgwm493 (~12 cM), however, 

no significant QTL was identified in this region. To verify the accuracy of GBS-SNP 

data, and fill the missing data from the GBS-SNPs in the QTL regions, 21 KASP assays 

were designed according to the corresponding GBS sequences harboring the SNPs that 

were mapped in the QTL regions on 5AS, 6BS, or 2B_2. Fourteen KASPs assays 

amplified very well and were polymorphic between parents and among the RILs (Figure 

2.4 A). Ten of them were remapped to the three corresponding significant QTL regions 

(four each on 6B and 5A, and two on 2B-2) (Table 2.3), and had identical allele calls with 

the corresponding GBS-SNPs across the RILs. The other four KASP markers were 

mapped outside the QTL regions with five mismatches in GBS5920 and GBS2732, six 

mismatches in GBS2577, and more than ten mismatches in GBS3018, thus, these markers 

were not pursued further.  

The ten KASPs (Table 2.3) that were remapped to the three significant QTL 

regions (6B, 5A, and 2B_2) were then validated in an association mapping (AM) 

population of 96 U.S. elite wheat lines and cultivars as well as four Chinese FHB 

resistant landraces, Huangcandou, Baishanyuehuang, Huangfangzhu and Wangshuibai, as 

controls. All of the ten KASPs amplified well in the AM population. Two KASPs on 6B 

QTL (GBS4963, and GBS4116) (Figure 2.4 (5, 7)) and one KASP on 5A QTL 

(GBS2573) (Figure 2.4 (3)) separated into almost equal clusters. Another three KASPs on 

5A QTL (GBS3127, GBS5669, and GBS1852) (Figure 2.4 (1, 2, 4)) and another two on 

6B QTL (GBS0158 and GBS4305) (Figure 2.4 (6)) showed unequal cluster with more 

lines in „Wheaton‟ allele cluster. Among them, SNPs GBS3127 on 5A (Figure 2.4 (1)) 
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and GBS4305 and GBS0158 on 6B had all of „Wheaton‟ alleles in the AM population, 

except one or two with heterozygous genotypes. Two KASPs for 2B-2 QTL (GBS5855, 

and GBS1713) (Figure 2.4 (8, 9)) showed unequal clusters with more lines in „HYZ‟ 

allele cluster. All of the ten KASPs can be useful for MAS in U.S. winter wheat if the 

markers are polymorphic in breeding parents. However, the ones with extremely unequal 

clusters (GBS3127, GBS4305, and GBS0158) may be effective to be used as diagnostic 

markers.  

 Effects of QTLs on FHB type II resistance 

To investigate the effect of individual QTLs on FHB resistance, RILs were 

grouped according to their allele combinations at three QTLs (5A, 6B, and 7D), and their 

allele substitution effects were compared among the groups. The three QTLs were 

selected because they were significant in at least two experiments and the mean PSS over 

the three experiments. Eight possible allelic combinations at the three QTLs are 

designated AABBDD, AABBdd, AAbbDD, aaBBDD, AAbbdd, aaBBdd, aabbDD and 

aabbdd, where AA, BB, and DD represent „HYZ‟ alleles at QTLs on 5A, 6B, and 7D, 

respectively (Figure 2.5). The average PSSs for the eight genotypic groups of RILs 

ranged from 28.7% to 63.4%. The closet KASP markers to each of the three QTLs were 

GBS3127 on 5A, GBS4305 on 6B and Xcfd46 on 7D, thus the three markers were used to 

represent the three QTLs to estimate the allelic effects of the three QTLs. The mean PSSs 

for the genotypic groups that had only one of the three resistance QTLs were 44.9% for 

5A, 46.3% for 6B, and 55.1% for 7D (Figure 2.5), whereas the PSS for the group of RILs 

with none of the three resistance alleles (“null” group) was 63.4%, suggesting all the 

three QTLs reduced the FHB severity. The QTL on 5A showed the largest effect on FHB 
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resistance, and FHB severity of the 5A-containing group was significantly lower than that 

of “null” group (P < 0.05) (Figure 2.5). Meanwhile, the mean PSS of the RIL groups with 

5A QTL plus an additional QTL (6B or 7D) were always lower than the mean PSS of the 

RIL group with 5A QTL only, but the difference was not significant. 

 Discussion  

 Fhb1 is absent in HYZ  

Many Chinese wheat cultivars and landraces show a high level of FHB type II 

resistance (Cai and Bai 2014; Li et al. 2011; Li et al. 2012; Yu et al. 2008a; Yu et al. 

2008b; Zhang et al. 2012), and most of them, especially landraces, carry Fhb1 on the 

short arm of chromosome 3B. HYZ showed similar levels of resistance as WSB, HCD, 

BSYW and HFZ (Cai and Bai 2014; Jia et al. 2006; Li et al. 2012; Yu et al. 2008a; Yu et 

al. 2008b; Zhang et al. 2012), but it does not carry the Fhb1 as in other landraces (Li et 

al. 2011). However, in a population of 136 RILs derived from the cross HYZ x 

„Wheaton‟, Li et al. (2011) found a QTL near Xwmc121 on the 7DL that showed a major 

effect on FHB resistance. In the current study, we developed a new population of 186 

RILs using the same parents and constructed a high-density GBS-SNP map to validate 

the QTL mapping results by Li et al. (2011). The results of the current study confirmed 

that Fhb1 is absent in HYZ although both diagnostic and flanking markers for Fhb1 are 

polymorphic, suggesting that a high level of resistance in HYZ is not conditioned by 

Fhb1 as in other Chinese landraces and is due to additive effects of multiple QTLs with 

minor effects. 
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 QTLs for type II FHB resistance in HYZ 

Among the eight QTLs identified in the current study, the QTL on 5AS explained 

the largest phenotypic variation (6.10~15.98%) across different experiments. To date, 

more than 14 QTLs for FHB resistance have been reported in 5A and explained 4.5~32% 

of the phenotypic variation across different experiments (Buerstmayr et al. 2002; Chu et 

al. 2011; Li et al. 2011; Lin et al. 2006; Steiner et al. 2004; Xue et al. 2011; Yang et al. 

2005b; Yu et al. 2008b; Zhang et al. 2012). Some of them were associated with type I 

resistance, such as in „DH181‟ (Yang et al. 2005b), „W14‟ (Chen et al. 2006), „CM-

82036‟ (Buerstmayr et al. 2003) and „Wangshuibai‟ (Lin et al. 2006; Yu et al. 2008b), 

whereas others with type II resistance, such as in „Wangshuibai‟ (Yu et al. 2008b), „CM-

82036‟ (Buerstmayr et al. 2002), „Frontana‟ (Steiner et al. 2004), „F201R‟ (Shen et al. 

2003), „CM-82036‟ (Buerstmayr et al. 2003), „Renan‟ (Gervais et al. 2003), „Ernie‟ (Liu 

et al. 2007), „Baishanyuehuang‟ (Zhang et al. 2012). Two studies reported the 5A QTLs 

for type III resistance (low DON content) in „NyuBai‟ (Somers et al. 2003) and 

„Wangshuibai‟ (Yu et al. 2008b). More recently, two major QTLs were reported on the 

both arms of chromosome 5A of a wheat accession „PI 277012‟ (Chu et al. 2011). The 

QTL on 5AS explained up to 20%, 14%, and 16% and the one on 5AL explained 32%, 

12% and 10% of the phenotypic variation for type II, III and type IV (FDK) resistance, 

respectively (Chu et al. 2011). Because different studies reported QTLs in different 

chromosome locations for different types of resistance, several QTLs may condition 

different types of FHB resistance on the chromosome 5A.  Meta-analysis found at least 

three QTL clusters (Liu et al. 2009) with two on the chromosome 5AL as mapped in a 

French cultivar „Renan‟ (Gervais et al. 2003) and one with a major effect on type I, II, III, 
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IV resistance mapped near the centromere of 5AS from various sources including 

Wangshuibai, W14, and Frontana (Chen et al. 2006; Steiner et al. 2004; Yu et al. 2008b). 

Six SSRs (Xbarc56, Xbarc117, Xgwm415, Xgwm304, Xwmc705, Xbarc180) in one 

haplotype located in this major cluster were reported to be responsible for this 5AS QTL. 

Recently, this 5AS QTL was fine mapped to a 0.3 cM region flanked by Xgwm304 and 

Xgwm415 (Xue et al. 2011). In Li et al. (2011), a minor QTL was mapped on 

chromosome 5A flanked by SSR markers Xbarc141 and Xgwm129, which belonged to 

the major QTL cluster on 5AS (Liu et al. 2009), but the QTL effect is quite small that 

explained only 3.9% and 7.4% of phenotypic variation in the greenhouse and the field 

experiments. In the current study, the QTL on 5A was mapped into a 1.88 cM interval 

between SNP GBS3127 and SSR marker Xbarc316, which was 5.91 cM away from the 

5A QTL mapped by Li et al. (2011), thus suggesting they are the same QTL. The slightly 

larger effect of the QTL detected in this study compared to that reported by Li et al. 

(2011) might be due to the presence of markers close to the QTL in this study.  

The QTL on 6BS in the current study was assigned to the interval between 

GBS4963 and GBS3704, which explained 8.26~11.11% of the phenotypic variation in 

two of the three experiments and the mean PSS. This QTL was mapped very closely 

(about 2 cM) to Xgwm88 and Xwmc397, the markers linked to Fhb2, thus may be the 

same QTL as Fhb2 (Cuthbert et al. 2007). Fhb2 has been reported with varied effects 

ranging from 4.4~24.0% on type II resistance (Cuthbert et al. 2007; Li et al. 2011; Yang 

et al. 2005b) in different cultivars including „Nanda2419‟ (Lin et al. 2004), „Sumai3‟ 

(Waldron et al. 1999), „Wangshuibai‟ (Lin et al. 2004), „Arina‟ (Semagn et al. 2007), and 

„DH181‟ (Yang et al. 2005b). This QTL was mapped on HYZ previously in a 6.0 cM 



72 

 

interval (Li et al. 2011). In the current study, it was also mapped in the same location but 

with a smaller marker interval of 2.39 cM. Apparently, the GBS-SNPs applied in this 

study increased the marker density in the QTL region.  

The QTL on the 7DL in the current population coincides with the major QTL 

reported by Li et al. (2011), but explained much smaller phenotypic variation 

(5.59~7.53%) than in previous report (Li et al. 2011). Two QTLs have been mapped to 

7D showed minor effects for type III resistance in Arina/Riband (Draeger et al. 2007) and 

type IV resistance in Nanda2419/Wangshuibai (Li et al. 2007). These two QTLs are most 

likely the same QTL mapped in HYZ, because 7D QTL in HYZ shared a commonly 

linked marker Xcfd46 with Wangshuibai and clustered in the same meta-QTL with 

„Arina‟ (Liu et al. 2009). The discrepancy in QTL effect between the current study and Li 

et al. (2011) might be partially due to the differences in population size, marker density in 

the maps used for QTL mapping and environment conditions. The QTL effect can be 

overestimated in a small population, thus, the increase of population size may reduce the 

number of false-positive QTLs and improve the estimation accuracy of QTL effects.   

Two minor QTLs were mapped on the short arm of chromosome 2B with 2B-2 

explained 5.10 and 7.77% of the phenotypic variation in fall 2012 experiment and mean 

PSS, respectively, and 2B-1 explained 5.80% of the phenotypic variation in spring 2013 

experiment. Several QTLs on 2B have been previously reported in different populations 

with one QTL close to Xgwm120 mapped on 2BL in Ning7840 (Zhou et al. 2002) and 

„Ernie‟ (Liu et al. 2007) for type II resistance, and a QTL close to Xgwm210 on 2BS in 

„Renan‟ for type II resistance (Gervais et al. 2003) and in „Patterson‟ x „Goldfield‟ 

population for type I resistance (Gilsinger et al. 2005). Both Xgwm120 and Xgwm210 
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were mapped in the current study with Xgwm120 on the long arm and Xgwm210 on the 

short arm of chromosome 2B, but they were far from the QTLs 2B-1 and 2B-2. 

Therefore, the both QTLs 2B-1 and 2B-2 were novel QTLs for type II resistance. 

Interestingly, they are all from the susceptible parent „Wheaton‟, suggesting that some 

highly susceptible cultivars may also harbor minor QTLs for resistance. 

The 4D QTL was significant in fall 2012 only, explained 14.54% of the 

phenotypic variation. A few QTLs have been reported on chromosome 4D in DH181 for 

FHB type I and IV resistance (Yang et al. 2005b), in Chinese Spring x SM3-7ADS for 

FHB type II resistance (Ma et al. 2006), in „Arina‟ for type II resistance (Draeger et al. 

2007), and in „Spark‟ for type II resistance (Srinivasachary et al. 2008). However, their 

allelic relationship between this QTL and previously reported ones remains to be 

determined because common markers are not available among these QTLs. 

The QTL on 3BL was flanked by SNPs GBS1778 and GBS3048, with Xbarc164 

as the closest marker. This QTL was significant in fall 2012 only, and explained 8.52% of 

the phenotypic variation. Many studies mapped Fhb1, a QTL for type II resistance (Cai 

and Bai 2014; Cuthbert et al. 2006; Li et al. 2012; Yang et al. 2005b; Yu et al. 2008b; 

Zhang et al. 2012) and QTL near centromere region of chromosome arm 3BS (Cai and 

Bai 2014; Yu et al. 2008b; Zhang et al. 2012). Only one QTL from Huapei 57-2 has been 

mapped on 3BL with Xgwm247 as the closest marker (Bourdoncle and Ohm 2003). 

However, Xbarc164 was far away (about 100 cM) from Xgwm247 according to 3B 

reference physical map (http://wheat.pw.usda.gov/GG3/ ), therefore, the 3BL QTL 

mapped in this study is most likely a new QTL. 

http://wheat.pw.usda.gov/GG3/
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The QTL near Xgwm6 on 4B was flanked by SNPs GBS2348 and GBS3434, 

explained 5.61% of the phenotypic variation in the spring 2012 experiment. A formally 

named QTL Fhb4 on chromosome 4B was previously mapped in „Ernie‟ (Liu et al. 

2007), „Chokwang‟ (Yang et al. 2005a), „Wangshuibai‟ (Jia et al. 2006; Lin et al. 2004), 

and „Wuhan1‟ (Somers et al. 2003), and explained 4.7~17.5% of the phenotypic 

variation. This QTL likely coincides with the Fhb4, because Xgwm6 is closely linked to 

Fhb4-linked marker Xgwm149 and they were all mapped on 4BL5-0.86–1.00 bin (Xue et 

al. 2010). 

 Conversion of GBS-SNPs into KASP assays 

GBS facilitates quick identification of SNPs for QTL mapping and many other 

applications at a low cost by multiplexing samples using barcodes (Li et al. 2015; Lin et 

al. 2015; Poland et al. 2012; Talukder et al. 2014). However, GBS also generates a large 

number of missing data across a mapping population due to the limited sequence depth 

(Poland et al. 2012; Sonah et al. 2013; Spindel et al. 2013). One way to solve this 

problem is to impute the data based on available reference genome sequences to predict 

missing data (Spindel et al. 2013). However, the wheat reference genome sequences are 

not complete, and imputed data may not be accurate for QTL mapping. Another way is to 

increase the number of runs for each library to reduce the number of missing data. In the 

current study, four Ion Proton runs of this population significantly increased numbers of 

SNPs when compared with a single run. We totally got 21740 GBS-SNPs with 80% 

missing data and 6232 GBS-SNPs with <20% missing data from the four runs. For a 

small set of GBS-SNPs that were mapped in the QTL regions, missing data were filled by 

KASP data that not only eliminated missing data, but also verified the accuracy of GBS-
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SNP data by comparing the GBS-SNPs with KASP data in the segregating population. 

Among the 21 KASP assays designed, 14 were amplified well, and seven did not because 

SNP positions are too close to one end of the sequence reads that cause difficulties in 

primer design. Ten of the 14 amplified KASPs were remapped to the same positions 

corresponding to GBS-SNPs mapped, while the other four were not mapped to the 

expected positions due to either GBS sequencing errors or SNP calling errors. The ten 

KASPs were then validated in an association mapping (AM) population with 96 U.S. 

elite lines and cultivars. The seven KASP assays separated into two unequal clusters of 

HYZ and Wheaton alleles. Five KASP assays (GBS3127, GBS5669 and GBS1852 for 5A, 

GBS0158 and GBS4305 for 6B) amplified „Wheaton‟ alleles in most of U.S. elite wheat 

lines, with only a few or none of the lines amplifying HYZ alleles in the AM population, 

indicating most of the elite lines/varieties may not have these two QTLs yet and thus, 

these KASPs can be effectively used to transfer them. KASPs GBS1713 and GBS5855 on 

2B amplified more lines on the cluster of HYZ alleles than the „Wheaton‟ alleles. 

Because 2B QTL-2 was contributed by susceptible parent „Wheaton‟, the HYZ alleles on 

these two markers were prevalent in the AM population, therefore, these markers are 

good markers for transferring the QTL into U.S. winter wheat. However, lines amplified 

with three KASPs (GBS4963, GBS2573, and GBS4116) were separated almost equally 

into two clusters, indicating that the HYZ alleles in half of the U.S winter wheat 

accessions studied, and these KASP markers can still be useful for MAS in U.S. winter 

wheat if the breeding parents are polymorphic, however, they may not be effective to be 

used for diagnostic purpose.  
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 Conclusion 

Using a high-density GBS-SNP map developed from 186 RILs of „HYZ‟ x 

„Wheaton‟, we identified eight QTLs, without Fhb1, in HYZ controlling FHB type II 

resistance, suggesting an additive effect of multiple QTLs can provide a high level of 

resistance in wheat. Among them, five QTLs on the chromosomes 2B (2), 3B, 4B, and 

4D are different from these mapped in Li et al. (2011) using the population developed 

from the same parents. The QTL on 4B was the same as the previously mapped Fhb4.  

The two QTLs on chromosome 2BS and the one on 3BL are novel QTLs that were not 

mapped before. The allelic relation between QTL on chromosome 4D and previously 

reported QTL in this chromosome cannot be determined due to lack of common markers. 

Ten GBS-SNPs linked to the QTLs on 5A, 6B and 2B-2 were successfully converted to 

KASP assays and validated using 96 U.S. elite winter wheat lines, they can be used in 

MAS to pyramid these QTLs in breeding. 
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Table 2.1 Analysis of variance (ANOVA) of percentage of symptomatic spikelets 

(PSSs) data for the RILs based on three greenhouse experiments 

Source DF Type  III 

SS 

Mean 

Square 

F Value Pr>F 

Experiment 2 4.33 2.17 100.34 <0.0001 

Genotype 185 40.22 0.22 10.08 <0.0001 

Replication(experiment) 3 0.046 0.15 0.72 0.5420 

Genotype*experiment 364 15.37 0.0422 1.96 <0.0001 

Error 506 10.92 0.022   

Total 1060 72.48    
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Table 2.2 Flanking markers, Logarithm of odds (LOD), coefficients of determination (R2) of the significant QTL regions 

detected by inclusive composite interval mapping based on spring 2012, fall 2012, and spring 2013 greenhouse FHB type II 

resistance data. 

Locus Resistance allele from Flanking markers Spring 2012 Fall 2012 Spring 2013 Combined mean 

   LOD R
2
% LOD R

2
% LOD R

2
% LOD R

2
% 

5AS HYZ GBS3127~Xbarc316 3.31 6.10 4.85 10.26 5.82 12.15 6.63 15.98 

6BS HYZ GBS4963~GBS3704 3.97 8.26 - - 5.80 11.11 3.57 6.91 

7DL HYZ Xcfd46~Xwmc702 3.47 6.32 - - 3.59 7.53 2.86 5.59 

2B-1 Wheaton GBS1340~GBS0835 - - - - 3.28 5.80 - - 

2B-2 Wheaton GBS5561~GBS0848 - - 2.81 5.10 - - 3.67 7.77 

4D HYZ GBS3223~GBS4883 - - 6.06 14.54 - - - - 

3B HYZ GBS1778~GBS3048 - - 3.83 8.21 - - - - 

4B HYZ GBS2348~GBS3434 3.03 5.61 - - - - - - 

Note: „-‟ represents not significant. 
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Table 2.3 List of KASP assays developed from GBS sequences 

Primer 

name 

Posit

ion 

Primer sequence (5’-3’) 

GBS3127

_H 

5A GAAGGTGACCAAGTTCATGCTTACCCGCATTCCAGTCTCTt 

GBS3127

_W 

5A GAAGGTCGGAGTCAACGGATTTACCCGCATTCCAGTCTCTc 

GBS3127

_R 

5A TCCCTAGCTGCGACCTTTCC 

GBS5669

_H 

5A GAAGGTGACCAAGTTCATGCTCAGTGCCAATCTGTTCGCAa 

GBS5669

_W 

5A GAAGGTCGGAGTCAACGGATTCAGTGCCAATCTGTTCGCA

g 

GBS5669

_R 

5A GGTGTGATCGCACGGGACTC 

GBS2573

_H 

5A GAAGGTGACCAAGTTCATGCTCAGCGAGCAGGCACAGTA

AAAc 

GBS2573

_W 

5A GAAGGTCGGAGTCAACGGATTCAGCGAGCAGGCACAGTA

AAAt 

GBS2573

_R 

5A TGGCTAGAAACGCTCGCAGA 

GBS1852

_H 

5A GAAGGTGACCAAGTTCATGCTCAGCAGTTTCACCAACATT

AATCATACt 

GBS1852

_W 

5A GAAGGTCGGAGTCAACGGATTCAGCAGTTTCACCAACATT

AATCATACa 

GBS1852

_R 

5A TGGTCTTTGATGTAGTGTTCGACATTT 
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GBS0158

_H 

6B GAAGGTGACCAAGTTCATGCTGCCTCAGCCCCCCTTGAt 

GBS0158

_W 

6B GAAGGTCGGAGTCAACGGATTGCCTCAGCCCCCCTTGAc 

GBS0158

_R 

6B CGTGGGTTTGGGGATCTAGG 

GBS4963

_H 

6B GAAGGTGACCAAGTTCATGCTGAATCCTATTTGACACTGC

AGGTGTt 

GBS4963

_W 

6B GAAGGTCGGAGTCAACGGATTGAATCCTATTTGACACTGC

AGGTGTc 

GBS4963

_R 

6B GACAGCGCCCGTTAGCAAAA 

GBS4305

_H 

6B GAAGGTGACCAAGTTCATGCTCCCGTTAGCAAAATGCCCT

ATAAt 

GBS4305

_W 

6B GAAGGTCGGAGTCAACGGATTCCCGTTAGCAAAATGCCCT

ATAAc 

GBS4305

_R 

6B ACGTTTAAGGCGCCGAACAT 

GBS4116

_H 

6B GAAGGTGACCAAGTTCATGCTGCCGATTGACAGCGCg 

GBS4116

_W 

6B GAAGGTCGGAGTCAACGGATTGCCGATTGACAGCGCt 

GBS4116

_R 

6B TAGTGACATGGCCCGCGTAG 

GBS5855

_H 

2B-2 GAAGGTGACCAAGTTCATGCTGCCCCTAAATGTGAAGAAC

TGGTCg 
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GBS5855

_W 

2B-2 GAAGGTCGGAGTCAACGGATTGCCCCTAAATGTGAAGAAC

TGGTCa 

GBS5855

_R 

2B-2 AAAACGGCCGCTCTCTCTCC 

GBS1713

_H 

2B-2 GAAGGTGACCAAGTTCATGCTGTTGGGGCTATCAAATTTT

TCg 

GBS1713

_W 

2B-2 GAAGGTCGGAGTCAACGGATTGTTGGGGCTATCAAATTTT

TCa 

GBS1713

_R 

2B-2 GACGGGGTTGGAATGAA 

Note: H forward primer with „HYZ‟ allele, W forward primer with „Wheaton‟ allele, R 

reverse primer 
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Table 2.4 Difference between FHB resistance (R) and susceptible (S) alleles at QTL 

on chromosome 5A as reflected by the closely linked markers, and coefficients of 

determination of the allele estimated from HYZ/Wheaton RILs on three greenhouse 

experiments. 

Locus genotype Spring 2012 Fall 2012 Spring 2013 Mean PSS 

GBS3127 

 

HYZ 34.31 37.18 48.33 39.99 

Wheaton 47.18 51.81 63.96 54.23 

Diff. 12.87* 14.63* 15.63* 14.24* 

R
2
 0.0867 0.0844 0.1090 0.1242 

Xbarc316 

 

HYZ 34.23 35.73 46.31 38.73 

Wheaton 44.45 49.68 62.65 52.22 

Diff. 10.22* 13.95* 16.35* 13.49* 

R
2
 0.0559 0.0794 0.1143 0.1120 

Note: * means the significant difference between PSSs of group „HYZ‟ and „Wheaton‟. 
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Figure 2.1 Frequency distribution of mean percentage of symptomatic spikelets in a 

spike (PSS) for the recombinant inbred line (RIL) population derived from 

‘Haiyanzhong’ (HYZ) x ‘Wheaton’ evaluated in spring 2012, fall 2012 and spring 

2013 greenhouse experiments. 
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Figure 2.2 Maps of QTLs on 5A for FHB type II resistance constructed from the 

RIL population derived from the cross ‘HYZ’ x ‘Wheaton’ based on three 

greenhouse experiments 
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Figure 2.3 Maps of QTLs on 2B, 3B, 4B, 4D, 6B, and 7D for FHB type II resistance 

constructed from the RIL population derived from the cross ‘HYZ’ x ‘Wheaton’ 
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Figure 2.4 KASP assay profiles of SNP. (1) KASP GBS3127 on 5A, (2) KASP 

GBS5669 on 5A, (3) KASP GBS2573 on 5A, (4) KASP GBS1852 on 5A, (5) KASP 

GBS4963 on 6B, (6) KASP GBS4305 on 6B, (7) KASP GBS4116 on 6B, (8) KASP 

GBS5855 on 2B, (9) KASP GBS1713 on 2B. Blue dots represent HYZ alleles, green dot 

represents U.S. wheat cultivar alleles, red dots refer to heterozygotes, and the black 

crosses or dots are ddH2O. 

(1) KASP GBS3127 on 5A 

 

(2) KASP GBS5669 on 5A 
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(3) KASP GBS2573 on 5A 

 

(4) KASP GBS1852 on 5A 
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(5) KASP GBS4963 on 6B 

 

(6) KASP GBS4305 on 6B 
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(7) KASP GBS4116 on 6B 

 

(8) KASP GBS5855 on 2B 
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(9) KASP GBS1713 on 2B 
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Figure 2.5 Effects of different combinations of three QTLs on 5A, 6B and 7D for 

percentage of symptomatic spikelets in a spike (PSS) analyzed in the RIL 

population. HYZ alleles were assigned as AA (5A), BB (6B) and DD (7D) and 

‘Wheaton’ alleles aa (5A), bb (6B) and dd (7D). The solid bars stand for mean PSS 

of each group, and the length of each line refers to standard errors. 
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Chapter 3 - Meta-analysis of FHB resistance QTL in Chinese 

wheat landraces using GBS-SNPs  

 Abstract 

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is a 

devastating disease in wheat (Triticum aestivum L.). FHB epidemics reduce both grain 

yield and quality. Many quantitative trait loci (QTLs) for FHB resistance have been 

reported from several sources, especially Chinese sources. Fhb1, a QTL from a Chinese 

cultivar Sumai 3, has been well characterized in many studies, however, other QTLs from 

Chinese sources are poorly characterized. In previous studies, QTLs for FHB resistance 

have been identified from five populations developed from five Chinese landraces, 

Haiyanzhong (HYZ), Wangshuibai (WSB), Baishanyuehuang (BSYH), Huangfangzhu 

(HFZ) and Huangcandou (HCD), using low-density maps constructed with simple 

sequence repeats (SSR). In the current study, we constructed high-density maps using 

genotyping-by-sequencing (GBS) and mapped 31 QTLs on 16 chromosomes in the five 

populations. Meta-analysis of the QTLs for FHB resistance using a consensus map 

developed from the five populations  identified six meta-QTLs with two QTLs on the 

chromosome arm 3BS (3BSd and 3BSc), and one each on chromosomes 3A, 3D, 2D, and 

4D. Closely linked markers were identified for all the QTLs. Twenty-three GBS-SNPs 

that tightly linked to the six meta-QTLs were successfully converted to breeder friendly 

Kompetitive allele specific PCR (KASP) assays. Those KASP markers tightly linked to 

QTLs mapped in multiple populations should be useful for marker-assisted selection of 

these QTLs in breeding programs. 
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 Introduction 

A substantial number of QTL studies on FHB resistance has been conducted 

during the past decades. Meta-analysis of QTLs based on statistical methods has been 

used to estimate the confidence intervals (CIs) of QTLs for soybean cyst nematode 

resistance (Guo et al. 2006), for maize flowering time (Chardon et al. 2004), for cotton 

fiber and other quality traits (Rong et al. 2007), for wheat earliness trait (Hanocq et al. 

2007), and for rice blast resistance (Ballini et al. 2008). It is also used to summarize 

QTLs for FHB resistance in wheat (Löffler et al. 2009; Liu et al. 2009). Löffler et al. 

(2009) identified 19 meta-QTLs (MQTLs) with varying confidence intervals from 30 

populations across 12 chromosomes, while Liu et al. (2009) summarized 45 studies and 

identified 19 repeatable QTLs. However, all of the meta-analyses were conducted based 

on previously reported low-density maps, and a high-density consensus map is critical to 

the identification of new QTLs and tightly linked markers to these QTLs. Genotyping-by-

sequencing (GBS) is a simple, but effective, approach to spontaneous discovering and 

mapping of single nucleotide polymorphism (SNP) markers in diverse species (Poland et 

al. 2012), and thus is a useful marker platform for fine mapping of QTLs for FHB 

resistance. Meta-analysis using a new high-density consensus map from different 

populations will provide more precise positions for MQTLs, and better markers for 

marker-assisted selection (MAS) of these QTLs in breeding programs. 

FHB resistance sources have been reported from many different regions in the 

world, including the U.S.A., Asia, Europe, and South America (Bai and Shaner 2004). 

Chinese sources, especially Chinese landraces, show the best resistance (Bai and Shaner 

2004; Yu et al. 2008a). QTLs for FHB resistance have been mapped in some of these 
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landraces including Haiyanzhong (HYZ) (Li et al. 2011), Huangcandou (HCD) (Cai and 

Bai 2014), Baishanyuehuang (BSYH) (Zhang et al. 2012), Huangfangzhu (HFZ) (Li et al. 

2012), and Wangshuibai (WSB) (Yu et al. 2008b). 

The objectives of this study were to (1) remap QTLs for FHB resistance using 

newly developed GBS-SNP maps from the populations generated between the five 

Chinese resistant landraces (HYZ, HCD, BSYH, HFZ, and WSB) and one of two 

susceptible U.S. wheat cultivars (Jagger and Wheaton), (2) construct a consensus map 

using the genetic maps from the five populations, (3) conduct QTL meta-analysis to 

narrow down the confidence intervals (CIs) of the MQTLs, (4) identify closely linked 

GBS-SNPs to the MQTLs and convert them to Kompetitive allele specific PCR (KASP) 

assays for MAS in wheat breeding programs. 

 Materials and methods 

 Plant materials and FHB evaluation 

The five mapping populations were recombinant inbred lines (RILs) developed by 

crossing five Chinese landraces (HYZ, HCD, BSYH, HFZ, and WSB) to one of FHB 

susceptible U.S. wheat cultivars, Jagger or Wheaton (Table 3. 2). FHB type II resistance 

(resistance to FHB spread within a spike) of the populations was evaluated using point 

inoculation in the greenhouses at Kansas State University (Manhattan, KS) as previously 

described (Cai and Bai 2014; Cai et al. 2015 Chapter 2; Li et al. 2011; Li et al. 2012; Yu 

et al. 2008b; Zhang et al. 2012).  

 Genotyping-by-sequencing library construction and SNP analysis 

Genomic DNA was isolated using a modified cetyltrimethyl ammonium bromide 

protocol (Maguire et al. 1994).  Different numbers of SSR markers were screened for 
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polymorphisms in each population (Cai and Bai 2014; Cai et al. 2015 Chapter 2; Liu et 

al. 2012; Yu et al. 2008b; Zhang et al. 2012) (Table 3. 2). GBS libraries were generated 

for all the five RIL populations as described in Chapter 2 (Poland et al. 2012). GBS data 

were analyzed using UNEAK, a reference-independent pipeline of TASSEL (Lu et al. 

2013; Poland et al. 2012). Poly-As were added to these read sequences that were shorter 

than 64 bp to ensure all reads had 64 bp.  

The accuracy of GBS-SNP genotypes was validated using KASP assays that were 

designed based on their corresponding GBS read sequences harboring the SNPs that were 

mapped to QTL regions. KASP assay master mix used for each reaction and PCR cycles 

were described in Chapter 2. The genotypes of GBS-SNP and KASP-SNP data were 

compared, and the mismatches were counted.  

 Genetic maps and consensus map construction 

Linkage maps with both SSRs and GBS-SNPs were constructed using Kosambi 

mapping function (Kosambi 1944) and „regression‟ mapping algorithm in JoinMap 

version4.0 (Van Ooijen 2006). QTLs for low PSS were determined using Inclusive 

Composite Interval Mapping (ICIM) in QTL IciMapping V4.0 (Wang et al. 2011). 

Linkage groups with QTLs mapped in two or more populations were then used to 

construct a consensus map. For map integration, the „regression‟ mapping algorithm was 

used. In general, a statistical approach „weighted least square‟ was used to merge multiple 

individual genetic maps into a single consensus map by investigating heterogeneity of 

recombination rates between different studies (Van Ooijen 2006). The consensus map 

and comparative linkage maps with common markers from different studies were 

depicted using MapChart (Voorrips 2002).  
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 QTL projection and meta-analysis of QTLs 

QTLs from different populations were projected onto a consensus map by 

referring the initial QTL positions, confidence intervals (CIs), and r
2
 values from the 

individual maps using QTLProj command in MetaQTL V1.0 (Veyrieras et al. 2007). The 

Gaussian mixture model was used to fit the distribution of the „projected QTLs‟ on a 

chromosome, and cluster them to determine how many QTLs under the distribution of the 

observed QTLs using QTLClust command.  The predicted MQTL positions and 

confidence intervals were extracted using QTLClustInfo command in Meta-QTL V1.0 

(Veyrieras et al. 2007). The final consensus FHB-resistance QTL map with 95% CIs was 

drawn using MapChart software (Voorrips 2002). 

 Results 

 Molecular markers and linkage maps 

For each of the five populations, the GBS library was analyzed in two Ion Proton 

runs. A total of 17,277 GBS-SNPs were called with less than 50% missing data, and 3429 

GBS-SNPs had less than 20% missing data across all the five populations. Only the GBS-

SNPs with less than 20% missing data were used in the meta-analysis. However, not all 

of the 3429 GBS-SNPs were polymorphic in all the five populations. An average of 1977 

GBS-SNPs was combined with the original SSR markers to make a linkage map for each 

population, with 1950 SNPs in BSYH/Jagger, 1959 SNPs in HCD/Jagger, 1945 SNPs in 

HYZ/Wheaton population, 2060 SNPs in HFZ/Wheaton population, and 1972 SNPs in 

WSB/Wheaton population (Table 3.1). The number of markers mapped in each 

population varied from 1604 (81.3%) in WSB/Wheaton to 1776 (86.2%) in 

HFZ/Wheaton (Table 3.1). The marker density was the highest in HFZ/Wheaton 
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population (1.14 marker/cM), and the lowest in HCD/Jagger population (0.67 

markers/cM) (Table 3.1). Among the five populations, HYZ/Wheaton population had the 

most markers in A genome, but all the other four populations had the most markers in B 

genome. On average, the B genome (45.4%) had the most markers, followed by the A 

genome (39.0%) and the D genome (15.5%) (Table 3.2).  

 QTLs for FHB resistance in individual populations 

A total of 31 QTLs were mapped on 16 chromosomes (1A, 2B, 2D, 3A, 3B, 3D, 

4A, 4B, 4D, 5A, 5D, 6A, 6B, 6D, 7A, and 7D) in the five mapping populations (Table 

3.2). QTLs on 3BSd and 3A were mapped in four populations with the 3BSd QTL 

mapped in the populations of BSYH/Wheaton, HCD/Jagger, HFZ/Wheaton and 

WSB/Wheaton, and the 3A QTL mapped in the populations of BSYH/Wheaton, 

HCD/Jagger, HYZ/Wheaton and HFZ/Wheaton (Figure 3.1, 3.2). QTLs on chromosomes 

3BSc, 3D, 2D, 4D, 1A and 4B were each mapped in two populations, with 3BSc QTLs 

mapped in the populations of BSYH/Jagger and HFZ/Wheaton and 3D QTLs in the 

populations of HFZ/Wheaton and WSB/Wheaton, 2D QTLs in the populations of 

HCD/Jagger and HYZ/Wheaton; 4D QTLs in the populations of BSYH/Wheaton and 

HYZ/Wheaton, and 1A QTLs in the populations of HCD/Jagger and HFZ/Wheaton, and 

4B QTLs in the populations of HYZ/Wheaton and HFZ/Wheaton (Figure 3.1, 3.2). These 

eight chromosomes had QTLs mapped in at least two populations, and thus were used for 

meta-QTL analysis. The other 11 QTLs were mapped in only one of the five populations 

and were not used for further meta-analysis. 
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 Consensus map and MQTLs for FHB resistance 

To conduct a meta-analysis of QTLs, a consensus map was constructed for the 

chromosomes 1A, 3A, 3BS, 3D, 2D, 4D, and 4B using the marker data from the relevant 

populations. The genetic distances of the seven consensus linkage groups ranged from 

31.98 cM in 4D to 184.90 cM in 3A (Figure 3.1, 3.2). The marker density of the 

consensus linkage groups was the highest (1.85 markers/cM) in 3BS and the lowest (0.48 

markers/cM) in 2D. Meta-analysis of FHB resistance QTLs resulted in six MQTLs from 

the 16 QTLs mapped in the five populations (Figure 3.1, 3.2), four remaining individual 

QTLs on chromosomes 1A and 4B were not clustered into MQTLs. The CIs of MQTLs 

ranged from 0.33 cM in the QTL 3BSc to 3.50 cM in the QTL 2D with an average of 

1.90 cM (Table 3.4). QTL clustering often resulted in a reduction in CI of MQTLs 

compared to the mean individual initial CIs, and the reduction varied from 3.34 cM in 

QTL 3BSc to 8.88 cM in QTL 3A (Table 3.4).  

On chromosome 3B, six individual QTLs were projected onto the consensus 

linkage group. The six initial QTLs were clustered in two MQTLs. The MQTL clustered 

on the distal end of 3BS (3BSd) was located at 21.60 cM and had a narrow CI of 3.25 cM 

(Table 3.4). All initial QTLs were distributed around the MQTL‟s position with the QTL 

position varied from 19.55 cM (HFZ) to 21.64 cM in (HCD), and the CIs varied between 

4.43 cM (WSB) and 10.43 cM (HCD) (Table 3.4). Only slightly narrower CI of MQTL 

(3.25 cM) was observed compared to the narrowest individual initial CI (4.43 cM). Seven 

markers consisting of two SSRs/STSs (Xbarc133 and Xumn10) and five GBS-SNPs 

(GBS1663, GBS1100, GBS0800, GBS2377, and GBS1989) were mapped within the CI of 

MQTL on 3BSd (Figure 3.2). The other MQTL clustered near the centromere region of 
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3BS was positioned at 80.41 cM, and had the narrowest CI (0.33 cM) among the MQTL 

investigated (Table 3.4). The two initial QTLs were located at 79.38 and 81.71 cM with 

CIs of 4.74 and 2.59 cM, respectively (Table 3.4). Five GBS-SNPs were mapped within 

the 3BSc MQTL region (GBS2385, GBS0672, GBS0725, GBS2882, and GBS2285) 

(Figure 3.2). 

On chromosome 3A, four QTLs were clustered to one MQTL, positioned at 

113.77 cM with a CI of 1.36 cM (Table 3.4). The initial four QTLs varied around this 3A 

MQTL in a range of 9 cM. Three of the four initial QTLs were distributed around the 

MQTL‟s position. The QTL from WSB was located 6.1 cM away from the 3A MQTL 

region, but was aggregated to the 3A MQTL because it has a relatively broad CI (11.76 

cM). Seven markers including five SSR markers (Xgwm2, Xwmc651, Xwmc527, 

Xgwm674, Xbarc306) and only two GBS-SNPs (GBS2002 and GBS0782) were mapped 

within the MQTL region, thus, the other five GBS-SNPs (GBS2373, GBS3080, GBS2600, 

GBS0940, and GBS0340) close to the MQTL 3A region (< 2 cM away) were also used to 

convert KASP assays (Figure 3.2). 

On chromosome 3DL, two QTLs were clustered to one 3D MQTL, positioned at 

31.17 cM with the narrow CI of 1.57 cM (Table 3.4). The initial QTLs of 3D MQTL, 

from WSB and HFZ, were also located at 31.17 cM with CIs of 7.57 cM and 6.47 cM, 

respectively (Table 3.4, Figure 3.2). One SSR marker (Xgwm114) and three GBS-SNPs 

(GBS1480, GBS2389, and GBS1203) were located within the MQTL region.  

On chromosome 2D, two QTLs were clustered to one MQTL, positioned at 49.80 

cM with the CI of 3.50 cM (Table 3.4). The initial QTLs of from HYZ and HCD, were 

located at 45.96 and 51.14 cM with CIs of 14.46 and 8.51 cM, respectively (Table 3.4, 
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Figure 3.2). The two initial QTLs were located ~5 cM away from each other, but both 

could be aggregated to the 2D MQTL because of the broad CI in HYZ (14.46 cM). Five 

GBS-SNPs (GBS2554, GBS0096, GBS0097, GBS1487, and GBS1572) were located 

within the MQTL region (Figure 3.2).  

On chromosome 4D, two QTLs were clustered to one MQTL, positioned at 16.94 

cM with the CI of 1.41 cM (Table 3.4). The initial QTLs of the 4D MQTL were from 

HYZ and BSYH, and located at 11.26 cM and 18.02 cM with CIs of 5.06 and 11.64 cM 

(Figure 3.2, Table 3.4). The two initial QTLs were ~6 cM away from each other, but a 

large CI (11.64 cM) of the QTL from BSYH aggregated the both QTLs to the 4D MQTL. 

Markers located within the 4D MQTL regions were four SSR markers (Xcfd23, 

Xbarc288, Xwmc52, Xbarc98) (Figure 3.2). GBS-SNPs were not mapped in the 4D 

MQTL region.  

  Conversion and validation of KASP assays 

Five GBS-SNPs were mapped in the 3BSd MQTL region, six to the 3BSc MQTL 

region, seven within or close to the 3A MQTL region, seven in or close to the 3D MQTL 

region, five in the 2D MQTL regions, and three close to the 4D MQTL region. To verify 

the accuracy of GBS-SNP data, and fill the missing data of the GBS-SNPs in the QTL 

regions, 27 KASP assays were designed according to the corresponding GBS read 

sequences harboring the SNPs that were mapped in the MQTL regions on 3BSd, 3BSc, 

3A, 3D, 4D, 2D. Twenty three KASP assays amplified successfully and were 

polymorphic in at least one of the five populations (Table 3.5). Twenty-two of them were 

remapped to the six corresponding significant MQTL regions (five on 3BSd, six each on 

3BSc and 3A, one on 2D, three on 3D, two on 4D), and had identical allele calls with the 
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corresponding GBS-SNPs across the RILs. Only one KASP marker was mapped outside 

the QTL region with two mismatches in GBS2882. 

Eleven of the 23 KASP assays (three on 3BSd, one each on 2D and 4D, and two 

each on 3BSc, 3A, 3DL) were then validated in an association mapping (AM) population 

with 96 U.S. elite breeding lines or cultivars. Eight KASPs (GBS1989 (Figure 3.3 c), 

GBS2882 (Figure 3.3 d), GBS2285 (Figure 3.3 e), GBS1487 (Figure 3.3 h), GBS2373 

(Figure 3.3 f), GBS2600 (Figure 3.3 g), GBS0781(Figure 3.3 j), and GBS2377(Figure 3.3 

b)), showed unequal clusters with more lines in „Wheaton‟ or „Jagger‟ allele cluster. 

However, three KASPs (GBS1100 (Figure 3.3 a), GBS2710 (Figure 3.3 i), and GBS3012 

(Figure 3.3 k) showed unequal clusters with fewer lines in „Wheaton‟ or „Jagger‟ allele 

cluster. Two of the KASP SNPs, GBS2373 (Figure 3.3 f) on 3A and GBS0781 (Figure 3.3 

j) on 3DL, had most lines in either „Wheaton‟ or „Jagger‟ cluster in the AM population, 

with only five lines in the Chinese landrace‟s allele cluster. 

 Discussion 

 QTLs mapped in the newly constructed GBS-SNP maps   

ICIM mapping detected significant QTLs for FHB resistance in each of the five 

populations. Previous QTL mapping studies using low-density SSR maps identified 27 

QTLs for FHB type II resistance on 14 chromosomes in the five populations using 

Chinese landraces as resistant parents (1AS, 1BS, 2D, 3A, 3B, 3DL, 4B, 4D, 5AS, 5DL, 

6BS, 6D, 7AL, and 7D) (Table 3.3). After adding GBS-SNPs into the new maps, most 

QTLs with relatively large and stable effects were remapped, but some minor ones 

disappeared including QTLs on chromosome1AS, 1BS, 5AS, and 7AL. However, several 

new QTLs were identified including those on chromosomes 1A, 2B, 2D, 3A, 3D, 4B, 4D, 
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6A, and 7A (Table 3.3). This is because newly developed GBS-SNPs maps in the current 

study added >1000 new SNP markers in each population and provided much better 

chromosome coverage than the old maps that had only ~200 markers mapped in each 

population.  

 MQTLs for FHB resistance in the five Chinese landraces 

 Meta-analysis of QTLs is used to integrate multiple QTLs from different studies 

to investigate the congruence of these QTLs between those studies (Veyrieras et al. 

2007). In the current study, we remapped QTLs using newly constructed GBS-SNP maps, 

projected the QTLs to the consensus map, and clustered the projected QTLs to determine 

the number of the QTLs underlining the distribution of the mapped QTLs from the five 

populations. A total of six MQTLs were identified on the chromosomes 3BSd, 3BSc, 3A, 

3D, 2D, and 4D using meta-analysis in this study. These MQTLs showed narrower CIs 

and improved accuracy of map locations than for originally mapped QTLs. For example, 

the 3BSd MQTL centered by STS marker Xumn10 had a 95% CI of 3.25 cM, whereas the 

original CIs for the QTLs mapped in the four populations were at least 4.43 cM in WSB. 

The 3BSc MQTL was located near the centromere region of 3BS, centered by GBS-SNP 

GBS2882 and flanked by GBS2385 and GBS2285. The CI for 3BSc MQTL was 0.33 cM, 

but the CIs were 4.74 cM in BSYH and 2.59 cM in WSB.  

However, the QTLs on chromosome 4B from HFZ and HYZ and the QTLs on 1A 

from HCD and HFZ could not be clustered together because the initial QTLs did not have 

common markers between different populations. The 4B QTL from HYZ corresponding 

to Fhb4 which was centered on Xgwm6 and flanked by GBS2746 and GBS1303; while 

the 4B QTL from HFZ, centered on GBS2125, was about 25 cM from Xgwm6 and 41 cM 
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from GBS2746 according to both the HYZ 4B linkage maps and the 4B consensus 

linkage group maps. Thus, they were not the same QTL and cannot be mapped together. 

The 1A QTL from HCD was centered by GBS2817, and flanked by GBS1035 and 

GBS1427; while the 1A QTL from HFZ was centered by GBS1402 and GBS1707. The 

two QTLs were about 40 cM away from each other in the 1A consensus map, thus, they 

were different QTLs, and cannot be clustered together as a single MQTL.  

Among these MQTLs, 3BSd MQTL was centered by Xumn10, a diagnostic 

marker for Fhb1 (Liu et al. 2008), in HCD and BSYH populations, GBS SNP GBS1663 

in HFZ population, and GBS0800 in WSB population. The three markers were mapped to 

a 2.47 cM interval. After meta-analysis, the 3BSd MQTL was still centered at Xumn10, 

and thus this MQTL corresponds to Fhb1 (Cuthbert et al. 2006). The position of this 

MQTL coincided with these in original mapping studies because two GBS SNPs, 

GBS0800 and GBS1663, are within the CI of Fhb1. However, the CI of Fhb1 was 

shortened after meta-analysis, thus, the MQTL location is more accurate than that from 

individual populations. Fhb1 from Sumai3 and its derivatives shows a large and stable 

effect on FHB type II resistance (Anderson et al. 2001; Bai et al. 1999; Waldron et al. 

1999). Liu et al. (2008) fine mapped Fhb1 to a 261 kb region harboring Xumn10. In the 

current study, Fhb1 mapped in four of the five Chinese wheat landraces (Cai and Bai 

2014; Li et al. 2012; Yu et al. 2008b; Zhang et al. 2012), but with varied effects on FHB 

type II resistance, ranging from 15.0% in BSYH to 30.3% in WSB. The large variation of 

the QTL effects may be due to the differences in FHB phenotyping, genetic backgrounds 

of populations, population sizes for map construction, and FHB inoculation methods 

used.  
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The second MQTL on 3BS identified in this study is 3BSc MQTL. This QTL was 

also reported in several other studies including Chinese and Japanese landraces  (Somers 

et al. 2003; Yang et al. 2005; Yu et al. 2008b; Zhou et al. 2004), and US wheat  (Liu et al. 

2007; Perugini 2007). Although this MQTL shows much smaller effect than Fhb1, it may 

exist in both Chinese and US wheat, thus is an important QTL for improving FHB 

resistance in these countries. Liu et al. (2009) located this QTL to an interval between 

Xgwm566 and Xbarc344 using meta-analysis, which agrees with the current study. 

However, the current study identified a more tightly linked marker to this MQTL, GBS 

SNP GBS2882 and narrowed the interval to < 1cM between GBS2385 and GBS2285. The 

new interval for the MQTL is much smaller than the original ones (4.74 cM for BSYH 

and 2.59 cM for WSB). Sequence search in GenBank of National Center for 

Biotechnology Information (NCBI) using the SNPs (GBS2385, GBS0672, GBS0725, 

GBS2882, and GBS2285) in the MQTL region confirmed that all the SNPs are from 

wheat 3B chromosome. The MQTL can be physically located in an interval of 

50,581,775 bp from 329,891,303 bp to 380,473,078 bp near the centromere. Among the 

five GBS SNPs in the MQTL region, GBS2285 and GBS2882 showed the best correlation 

with PSS (r=0.26~0.42, P<0.05), thus are good markers for marker-assisted selection of 

this QTL. 

The MQTL on 3A is present in BSYH, HFZ, HYZ, and HCD. The original QTLs 

were mapped to a 9 cM interval from 110.78 to 119.85 cM in the consensus map. The 

MQTL was mapped to an interval of 1.36 cM, flanked by SSR markers Xgwm2.1 and 

Xbarc306. Two GBS SNPs GBS2002, GBS0782, and five SSR markers Xgwm2.1, 

Xwmc651, Xwmc527, Xgwm674, and Xbarc306 were mapped within the CI of 3A 
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MQTL. Two GBS SNPs GBS2002 and GBS0782 within the MQTL region showed a 

significant correlation of 0.28 and 0.27, but were lower than that of SSR marker 

Xgwm674 (r=0.22~0.39). We then tried GBS SNPs GBS2373, GSB3080, GBS2600, and 

GBS0340 that were only 0.2~ 2.0 cM away from the MQTL region, and found out they 

all had slightly lower correlations ranged from 0.21 to 0.35 (P < 0.05). None of the other 

markers outside of the MQTL regions showed a significant marker-trait association. 

Thus, the MQTL 3A region was accurate, but the CI calculated may be too short when 

the initial QTL regions vary a few cM away from each other. The QTL was also mapped 

in different sources besides Chinese landraces including in Huapei 57-2 (Bourdoncle and 

Ohm 2003), F201R (Shen et al. 2003b), and Frontana (Mardi et al. 2006; Steiner et al. 

2004). Frontana is a cultivar from Latin America (Buerstmayr et al. 2009; Mardi et al. 

2006; Steiner et al. 2004). Since this MQTL is not only present in Chinese landraces, but 

also in America germplasm, it should be a good candidate for QTL pyramiding.  

The 3DL MQTL was from WSB and HFZ. The two original QTLs were projected 

to the same region at 31.17 cM with CIs of 6.47 and 7.57, respectively. The CI of the 

MQTL was narrowed down to 1.57 cM, centered at GBS2389, and flanked by Xgwm114-

1 and GBS1203. QTLs on 3D have been reported in Patterson (Shen et al. 2003b), Cansas 

(Klahr et al. 2006), and a Swiss susceptible winter wheat Forno (Paillard et al. 2004). 

However, the QTLs in Patterson and Cansas were mapped to the short arm of 3D, thus, 

they are different from the QTL identified in this study. The one mapped in Forno didn‟t 

have common markers with the current study. Therefore, the 3DL MQTL may be a 

unique QTL from Chinese landraces. Using meta-analysis and GBS-SNP maps, more 

tightly linked markers for the MQTL were identified, thus, they can be useful for MAS. 
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The 2D MQTL was from Jagger and Wheaton, centered at GBS0097, and flanked 

by GBS2554 and GBS1572. This MQTL is near Rht8, a semi-dwarfing gene (Handa et al. 

2008) and has been mapped in Alondra (Shen et al. 2003a), Wuhan 1 (Somers et al. 

2003), Gamenya (Handa et al. 2008), WSB (Jia et al. 2005), and Jagger (Cai and Bai 

2014) according to the common SSR markers Xwmc25, Xgwm261, and Xgwm296. Handa 

et al. (2008) identified a multidrug resistance-associated protein (MRP) gene as a 

candidate gene for the QTL. This MQTL is mainly contributed by susceptible or 

moderately susceptible parents from different countries, suggesting it may be a common 

QTL for FHB resistance in many commercial varieties. Further screening of locally 

adapted cultivars may identify more adapted parents as a donor of the QTL or as adapted 

parents for pyramiding of other QTLs in breeding programs. In the current study, we 

identified more closely linked markers, GBS0096, GBS0097 and GBS1487, than 

Xgwm261 on this chromosome. However, only GBS1487 was successfully converted to 

KASP assay, because GBS0096 and GBS0097 have more than one SNP near the SNP 

positions. GBS1487 can be used to select for the QTL if it is polymorphic in breeding 

populations. 

The 4D MQTL was from HYZ and BSYH and originally mapped between 11.26 

and 18.02 cM interval in the consensus map. On chromosome 4D, two QTLs have been 

reported with one near Rht-D1, a semi-dwarfing gene on 4DS and the other on the 4DL. 

This 4DS QTL was mapped in Arina (Draeger et al. 2007) and Spark (Srinivasachary et 

al. 2008), whereas the 4DL QTL has been reported in DH181 (Yang et al. 2005) and a 

„Chinese Spring‟ „Sumai 3‟chromosome 7A disomic substitution line (CS-SM3-7ADS) 

(Ma et al. 2006). The MQTL in the current study was the same as the one mapped on the 
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4DL because of the common marker Xwmc457 was mapped 0.46 cM away from the 

MQTL. Four SSR markers Xbarc288, Xwmc52, Xcfd23, and Xbarc98 were mapped 

within the MQTL region. No new SNPs were mapped within the MQTL region, and SSR 

marker Xwmc52 was the best markers for MAS. Thus, KASP assays were designed using 

GBS SNPs GBS1498, GBS3012, and GBS1836 that were a few cM away from the MQTL 

region. The derived KASP markers showed slightly lower but significant associations 

with FHB resistance (r=0.21~0.30, P < 0.05). 

 Unique QTLs in five populations 

MQTLs showed QTLs that can be mapped in at least two of the five populations. 

However, many QTLs can only be mapped in a single population including QTLs on 

chromosomes1A, 2B, 3BL, 4B, 5AS, 5DL, 6A, 6BS, 6D, 7A and 7DL. Some of them 

including QTLs on 5AS, 6BS, 4B, 1A, and 7A were repeatedly mapped in previously 

studies (Buerstmayr et al. 2009; Liu et al. 2009). Others, however, were unique QTLs on 

chromosomes 3BL, 6A, and 6D, mapped in this study only.  The QTL on 6BS mapped in 

HYZ/Wheaton population coincided with the previously mapped Fhb2, because of the 

common markers Xgwm88 and Xwmc397 (Cai et al. 2015 Chapter 2; Cuthbert et al. 

2007). The 4B QTL, also mapped in HYZ only, was the same QTL as Fhb4 (Cai et al. 

2015 Chapter 2; Xue et al. 2010). The 5A QTL mapped as a major QTL in HYZ, was 

also the same QTL as Fhb5 (Cai et al. 2015 Chapter 2; Xue et al. 2011).  

Interestingly, the 5A QTLs were significant in four of the five populations when 

the SSR maps were used (Li et al. 2011; Li et al. 2012; Yu et al. 2008b; Zhang et al. 

2012). However, it was only significant in HYZ when GBS-SNP maps were used for the 

QTL mapping. Further analysis found that in BSYH/Jagger population, the 5A QTL was 
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significant in only one of the three experiments with LOD score of 2.3, and explained 

only 4.5% of phenotypic variation (Zhang et al. 2012). In WSB/Wheaton population, the 

5A QTL was significant in two of four experiments, with LOD of 1.8 and 2.6, and 

explained 3.5-5.5% of phenotypic variation (Yu et al. 2008b).  In HFZ/Wheaton 

population, the 5A QTL was detected through single marker analysis (SMA) only (Li et 

al. 2012). The 5A QTL was a confirmed QTL for FHB type I resistance that had a large 

effect and was stable in both greenhouse and the field experiments (Buerstmayr et al. 

2003; Chen et al. 2006; Lin et al. 2006; Yang et al. 2005; Yu et al. 2008b). However, it 

showed a much smaller and unstable effect for FHB type II resistance (Buerstmayr et al. 

2009). Thus, the 5A QTL was not significant in meta-analysis due to its inconsistency 

among different environments. 

 Conversion of GBS-SNPs to KASP assays 

The GBS SNPs are powerful for simultaneous SNP discovery and genotyping at a 

relatively low cost per sample (Poland et al. 2012; Sonah et al. 2013). However, GBS 

usually generates SNPs with a large number of missing data. This GBS generated 17277 

GBS SNPs with less than 50% missing data in the five populations, but only 3429 GBS 

SNPs have less than 20% missing data. The high percentage of missing data was 

probably because of the limitation in sequence depth (Poland et al. 2012; Sonah et al. 

2013; Spindel et al. 2013). One way to solve the problem is data imputation to predict 

missing data based on available reference genome sequences (Poland et al. 2012; Spindel 

et al. 2013). However, the wheat reference genome sequences are not complete so far, so 

that the imputed data may not be accurate enough for QTL mapping. To increase the 

number of Ion Proton runs for each library can reduce missing data, but the sequencing 
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cost will increase significantly. In the current study, two Ion Proton runs of each 

population significantly increased the number of SNPs called compared with a single run. 

To verify the accuracy of GBS-SNPs and eliminate the missing data, GBS-SNPs that 

were mapped in or close to the MQTL regions were converted to KASP assays.  Among 

the 27 KASP assays designed, twenty three amplified very well, and four didn‟t amplify 

because SNP positions are too close to one end of the sequence reads, or more than one 

SNP is close to the SNP position. Twenty two of the twenty three KASP assays amplified 

can be remapped to the same positions corresponding to GBS-SNPs mapped, and only 

one cannot because of SNP calling errors. Twelve KASP assays were then selected from 

the 23 KASPs to validate in an AM population with 96 U.S. elite lines and cultivars. Nine 

KASPs (GBS1100, GBS1989, GBS2882, GBS2285, GBS1487, GBS2373, GBS2600, 

GBS2710, GBS0781, and GBS3012) showed unequal clusters, thus these markers can be 

good markers for transferring QTLs. Whereas, GBS2377 and GBS1836 showed almost 

equal clusters indicating that half of the U.S. winter accessions might have the resistant 

allele, but the KASP assays could be useful for MAS in U.S. winter wheat if the breeding 

parents were polymorphic. 

  



116 

 

 References 

Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Sevilla BM, Fetch JM, 

Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight 

resistance QTLs in two wheat populations. Theor Appl Genet 102:1164-1168 

Bai G, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism 

markers linked to a major Quantitative Trait Locus controlling scab resistance in 

wheat. Phytopathology 89:343-348 

Bai G, Shaner G (2004) Management and resistance in wheat and barley to fusarium head 

blight. Annual review of phytopathology 42:135-161 

Ballini E, Morel J-B, Droc G, Price A, Courtois B, Notteghem J-L, Tharreau D (2008) A 

Genome-Wide Meta-Analysis of Rice Blast Resistance Genes and Quantitative 

Trait Loci Provides New Insights into Partial and Complete Resistance. MPMI 

21:859-868 

Bourdoncle W, Ohm HW (2003) Quantitative trait loci for resistance to Fusarium head 

blight in recombinant inbred wheat lines from the cross Huapei 57-2 / Patterson. 

Euphytica:131-136 

Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection 

for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1-26 

Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, 

Schneider B, Lemmens M (2003) Molecular mapping of QTLs for Fusarium head 

blight resistance in spring wheat. II. Resistance to fungal penetration and spread. 

Theor Appl Genet 107:503-508 

Cai J, Bai G (2014) Quantitative trait loci for Fusarium head blight resistance in 

Huangcandou × „Jagger‟ wheat population. Crop Science 54:2520 

Cai J, Wang S, Li T, Bai G (2015 Chapter 2 ) Mapping QTLs for Fusarium head blight 

resistance in Chinese wheat landrace Haiyanzhong  

Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, 

Charcosset A (2004) Genetic architecture of flowering time in maize as inferred 

from quantitative trait loci meta-analysis and synteny conservation with the rice 

genome. Genetics 168:2169-2185 

Chen J, Griffey CA, Maroof MAS, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, 

Pridgen TH, Dong Y, Zeng Z (2006) Validation of two major quantitative trait 

loci for fusarium head blight resistance in Chinese wheat line W14. Plant 

Breeding 125:99-101 



117 

 

Cuthbert PA, Somers DJ, Brule-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a 

gene controlling Fusarium head blight field resistance in bread wheat (Triticum 

aestivum L.). Theor Appl Genet 114:429-437 

Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A (2006) Fine mapping 

Fhb1, a major gene controlling fusarium head blight resistance in bread wheat 

(Triticum aestivum L.). Theor Appl Genet 112:1465-1472 

Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier 

J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) 

Identification of QTLs for resistance to Fusarium head blight, DON accumulation 

and associated traits in the winter wheat variety Arina. Theor Appl Genet 

115:617-625 

Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR (2006) QTLs Associated 

with Resistance to Soybean Cyst Nematode in Soybean: Meta-Analysis of QTL 

Locations. Crop Science 46:595 

Handa H, Namiki N, Xu D, Ban T (2008) Dissecting of the FHB resistance QTL on the 

short arm of wheat chromosome 2D using a comparative genomic approach: from 

QTL to candidate gene. Molecular Breeding 22:71-84 

Hanocq E, Laperche A, Jaminon O, Laine AL, Le Gouis J (2007) Most significant 

genome regions involved in the control of earliness traits in bread wheat, as 

revealed by QTL meta-analysis. Theor Appl Genet 114:569-584 

Jia GF, Chen PD, Qin GJ (2005) Comparison of Resistance to FHB in Two DH 

Populations from Wangshuibai/Alondra's and Sumai 3/Alondra's. Zuo wu xue bao 

31:1179-1185 

Klahr A, Zimmermann G, Wenzel G, Mohler V (2006) Effects of environment, disease 

progress, plant height and heading date on the detection of QTLs for resistance to 

Fusarium head blight in an European winter wheat cross. Euphytica 154:17-28 

Kosambi D (1944) The estimation of map distances from recombination values. Ann 

Eugen 12:172-175 

Löffler M, Schön C-C, Miedaner T (2009) Revealing the genetic architecture of FHB 

resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. 

Molecular Breeding 23:473-488 

Li T, Bai G, Wu S, Gu S (2011) Quantitative trait loci for resistance to fusarium head 

blight in a Chinese wheat landrace Haiyanzhong. Theor Appl Genet 122:1497-

1502 

Li T, Bai G, Wu S, Gu S (2012) Quantitative trait loci for resistance to Fusarium head 

blight in the Chinese wheat landrace Huangfangzhu. Euphytica 185:93-102 



118 

 

Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao 

Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to 

Fusarium head blight in the Nanda2419 x Wangshuibai population. II: type I 

resistance. Theor Appl Genet 112:528-535 

Liu S, Abate ZA, Lu H, Musket T, Davis GL, McKendry AL (2007) QTL associated with 

Fusarium head blight resistance in the soft red winter wheat Ernie. Theor Appl 

Genet 115:417-427 

Liu S, Christopher MD, Griffey CA, Hall MD, Gundrum PG, Brooks WS (2012) 

Molecular Characterization of Resistance to Fusarium Head Blight in U.S. Soft 

Red Winter Wheat Breeding Line VA00W-38. Crop Science 52:2283 

Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-Analysis of QTL Associated 

with Fusarium Head Blight Resistance in Wheat. Crop Science 49:1955 

Liu S, Pumphrey M, Gill B, Trick H, Zhang J, Dolezel J, Chalhoub B, Anderson J (2008) 

Toward positional cloning of FHB1, a major QTL for Fusarium head blight 

resistance in wheat. Cereal Res Commun 36:195–202 

Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE 

(2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from 

a network-based SNP discovery protocol. PLoS genetics 9:e1003215 

Ma HX, Bai GH, Zhang X, Lu WZ (2006) Main effects, epistasis, and environmental 

interactions of quantitative trait Loci for fusarium head blight resistance in a 

recombinant inbred population. Phytopathology 96:534-541 

Maguire T, Collins G, Sedgley M (1994) A modiWed CTAB DNA extraction procedure 

for plants belonging to the family proteaceae. Plant Mol Biol Report 12:106-109 

Mardi M, Pazouki L, Delavar H, Kazemi MB, Ghareyazie B, Steiner B, Nolz R, 

Lemmens M, Buerstmayr H (2006) QTL analysis of resistance to Fusarium head 

blight in wheat using a Frontana-derived population. Plant Breeding 125:313-317 

Miller J.D., Young J.C. and Sampson D.R. (1985). Deoxynivalenol and Fusarium head 

blight resistance in spring cereals. J Phytopathol, 113: 359–367. 

Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr 

G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter 

wheat (Triticum aestivum L.). Theor Appl Genet 109:323-332 

Perugini LD (2007) Genetic Characterization of Wheat Germplasm with Resistance to 

Fusarium Head Blight (FHB) and Powdery Mildew. PhD dissertation of North 

Carolina State University 



119 

 

Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of High-Density 

Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by- 

Sequencing Approach. PloS one 7:e32253 

Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, 

Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) 

Meta-analysis of polyploid cotton QTL shows unequal contributions of 

subgenomes to a complex network of genes and gene clusters implicated in lint 

fiber development. Genetics 176:2577-2588 

Shen X, Zhou M, Lu W, Ohm H (2003a) Detection of Fusarium head blight resistance 

QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 

106:1041-1047 

Shen XR, Ittu M, Ohm HW (2003b) Quantitative trait loci conditioning resistance to 

Fusarium head blight in wheat line F201R. Crop Science 43:850-857 

Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling 

Fusarium head blight resistance and deoxynivalenol accumulation in spring 

wheat. Genome / National Research Council Canada = Genome / Conseil national 

de recherches Canada 46:555-564 

Sonah H, Bastien M, Iquira E, Tardivel A, Legare G, Boyle B, Normandeau E, Laroche J, 

Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing 

(GBS) approach offering increased versatility and efficiency of SNP discovery 

and genotyping. PloS one 8:e54603 

Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, 

McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing 

(GBS) to add high-density SNP markers and new value to traditional bi-parental 

mapping and breeding populations. Theor Appl Genet 126:2699-2716 

Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape 

J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the 

Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145-1153 

Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) 

Molecular mapping of resistance to Fusarium head blight in the spring wheat 

cultivar Frontana. Theor Appl Genet 109:215-224 

Van Ooijen J (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in 

experimental populations. Kyazma BV, Wageningen 

Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new 

computational methods for the meta-analysis of QTL mapping experiments. BMC 

Bioinformatics 8:49 



120 

 

Voorrips RE (2002) MapChart: Software for the Graphical Presentation of Linkage Maps 

and QTLs. The Journal of Heredity 93:1 

Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP 

mapping of QTL for fusarium head blight resistance in wheat. Crop Science 

39:805-811 

Wang J, Li H, Zhang L, Li C, Meng L (2011) Users‟ Manual of QTL IciMapping v3.1. 

Quantitative Genetics Group Institute of Crop Science Chinese Academy of 

Agricultural Sciences (CAAS), Beijing, 100081,China and Crop Research 

Informatics Lab International Maize and Wheat Improvement Center (CIMMYT), 

Apdo Postal 6-641, 06600 Mexico, DF, Mexico  

Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z 

(2010) Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium 

infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:147-156 

Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z 

(2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium 

infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:1055-

1063 

Yang Z, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL 

associated with resistance to Fusarium head blight in a doubled-haploid spring 

wheat population. Genome / National Research Council Canada = Genome / 

Conseil national de recherches Canada 48:187-196 

Yu J, Bai G, Cai S, Dong Y, Ban T (2008a) New Fusarium Head Blight-Resistant 

Sources from Asian Wheat Germplasm. Crop Science 48:1090 

Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL (2008b) Quantitative trait loci for 

Fusarium head blight resistance in a recombinant inbred population of 

Wangshuibai/Wheaton. Phytopathology 98:87-94 

Zhang X, Pan H, Bai G (2012) Quantitative trait loci responsible for Fusarium head 

blight resistance in Chinese landrace Baishanyuehuang. Theor Appl Genet 

125:495-502 

Zhou W, Kolb FL, Yu J, Bai GH, Boze LK, Domier LL (2004) Molecular 

characterization of Fusarium head blight resistance in Wangshuibai with simple 

sequence repeat and amplified fragment length polymorphism markers. Genome / 

National Research Council Canada = Genome / Conseil national de recherches 

Canada 47:1137-1143 

 

  



121 

 

Table 3.1 Numbers of the original SSR or STS markers, newly added GBS-SNPs, 

markers mapped, and marker density in five populations derived from five Chinese 

landraces and the consensus map. 

Population Number of 

SSR/STS 

markers  

Number of 

GBS-SNPs 

called 

(<20% 

missing) 

Number 

of 

markers 

mapped 

Genetic 

map 

length 

(cM) 

Marker 

density 

(marker/cM) 

BSYH/Jagger 91 1950 1662 2308.33 0.72 

HCD/Jagger 182 1959 1613 2407.46 0.67 

HYZ/Wheaton 118 1945 1713 2519.12 0.68 

HFZ/Wheaton 98 2060 1776 1557.89 1.14 

WSB/Wheaton 260 1972 1604 2269.21 0.71 

Note: „BSYH‟ is short for „Baishanyuehuang‟; „HCD‟ is short for „Huangcandou‟; „HYZ‟ 

is short for „Haiyanzhong‟; „HFZ‟ is short for „Huangfangzhu‟; „WSB‟ is short for 

„Wangshuibai‟. 
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Table 3.2 Number of markers distributed in three genomes. 

Population Genome A Genome B Genome D Total 

BSYH/Jagger 574 663 425 1662 

HCD/Jagger 615 768 230 1613 

HYZ/Wheaton 736 692 285 1713 

HFZ/Wheaton 790 821 165 1776 

WSB/Wheaton 548 865 191 1604 

Average 652.6 761.8 259.2 - 

Note: „BSYH‟ is short for „Baishanyuehuang‟; „HCD‟ is short for „Huangcandou‟; „HYZ‟ 

is short for „Haiyanzhong‟; „HFZ‟ is short for „Huangfangzhu‟; „WSB‟ is short for 

„Wangshuibai‟. 
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Table 3.3 Previously published QTLs and newly mapped QTLs for FHB type II 

resistance in five mapping populations. 

Population Number of 

RILs 

Previously 

mapped QTLs 

References QTL mapped 

in current 

study 

BSYH/Jagger 188 F6 3A, 5AS, 3BS 

(2)  

(Zhang et al., 

2012) 

3A, 3BS (2), 

4D*  

HCD/Jagger 190 F6 3A, 3BS (2), 

2D, 6D 

(Cai et al., 

2014) 

1A*, 3A, 3BS, 

2D, 6D 

HYZ/Wheaton 186 F7 5A, 3BL, 4B, 

6BS, 4D, 7DL 

(Cai et al. 

unpublished) 

 5AS, 2B (2)*, 

3BL, 4B, 6BS, 

2D*, 4D, 7DL, 

3A* 

HFZ/Wheaton 102 F6 1AS, 5AS, 

7AL, 1BS, 3BS  

(Li et al., 2011)  

 

1AS, 3A*, 

7AL, 3BS, , 

4B*, 3DL*, 

4A* 

WSB/Wheaton 124 F6 1AS, 5AS, 

7AL, 3BS (2), 

3DL, 5DL  

(Yu et al., 

2008) 

3BS (2), 3DL, 

6A*, 5DL  

Note: „BSYH‟ is short for „Baishanyuehuang‟; „HCD‟ is short for „Huangcandou‟; „HYZ‟ 

is short for „Haiyanzhong‟; „HFZ‟ is short for „Huangfangzhu‟; „WSB‟ is short for 

„Wangshuibai‟. 
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Table 3.4 Original and meta QTL positions, Confidence Intervals (CIs) of the QTL 

clusters constructed by MetaQTL V 1.0. 

QTL cluster  Original 

QTL 

position  

Original 

QTL CIs 

(95%)  

Meta QTL 

position  

Meta QTL 

CIs (95%)  

Reduction 

of CIs 

2D  45.96~51.14  8.51~14.46  49.80  3.50  7.98 

3A  110.78~119.

85  

6.66~13.60  113.77  1.36  8.88 

3BSd  19.55~22.19  4.43~10.43  21.60  3.25  4.33 

3BSc  79.38~80.71  2.59~4.74  80.41  0.33  3.34 

3DL  31.17~31,17  6.47~7.57  31.17  1.57  5.45 

4D  11.26~18.02  5.06~11.64  16.94  1.41  7.21 
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Table 3.5 List of 23 KASP assays developed from GBS sequences. 

Primer 

name 

Positi

on 

Primer sequence (5‟-3‟) Polymorp

ic in 

GBS1663_

F 

3BSd GAAGGTGACCAAGTTCATGCTGGAACAAAAC

TGCAAAGTGGTGTc 

 HFZ/W 

WSB/W 

HYZ/W 

 

GBS1663_

H 

3BSd GAAGGTCGGAGTCAACGGATTGGAACAAAA

CTGCAAAGTGGTGTt 

 

GBS1663_

R 

3BSd GGACCCTTGCTGATTCATTTCG 

 

GBS1100_

F 

3BSd GAAGGTGACCAAGTTCATGCTTGGTTCCTAC

ACACTGTTGCATTTa 

 
HFZ/W 

WSB/W 

HYZ/W 

GBS1100_

H 

3BSd GAAGGTCGGAGTCAACGGATTTGGTTCCTAC

ACACTGTTGCATTTg 

 

GBS1100_

R 

3BSd GCATTCACCTGTGTCCAGAGAGA 

 

GBS0800_

F 

3BSd GAAGGTGACCAAGTTCATGCTTGACCTCGGA

CACTGCAGCa 

HFZ/W 

WSB/W 

HYZ/W 

GBS0800_

H 

3BSd GAAGGTCGGAGTCAACGGATTTGACCTCGGA

CACTGCAGCg 

GBS0800_

R 

3BSd GTGACGGCAATCGAGCACAC 

GBS2377_

F 

3BSd GAAGGTGACCAAGTTCATGCTGGCGCAACGT

GATCACAc 

HCD/J 

 

GBS2377_

H 

3BSd GAAGGTCGGAGTCAACGGATTGGCGCAACGT

GATCACAt 

GBS2377_

R 

3BSd TGTGAATCTCCATGCCTCCTT 

GBS1989_

F 

3BSd GAAGGTGACCAAGTTCATGCTGATCGCCACC

GTCCTTCCa 

BSYH/J 

HYZ/J 
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GBS1989_

H 

3BSd GAAGGTCGGAGTCAACGGATTGATCGCCACC

GTCCTTCCg 

HFZ/W 

WSB/W 

 GBS1989_

R 

3BSd CGTGAACGGGCCTGATTGAA 

GBS2385_

F 

3BSc GAAGGTGACCAAGTTCATGCTAGGCGCCCAT

CACGCAc 

BSYH/J 

HCD/J 

GBS2385_

H 

3BSc GAAGGTCGGAGTCAACGGATTAGGCGCCCAT

CACGCAt 

GBS2385_

R 

3BSc CGCGTCTCTTCAAGCTCGTC 

GBS0672_

F 

3BSc GAAGGTGACCAAGTTCATGCTTGCAGATTAA

ACCTGTGCa 
BSYH/J 

HCD/J 

HYZ/W 

WSB/W 

HFZ/W 

 

GBS0672_

H 

3BSc GAAGGTCGGAGTCAACGGATTTGCAGATTAA

ACCTGTGCc 

GBS0672_

R 

3BSc  TCTACAGCTGACGCATGGAG 

GBS0725_

F 

3BSc GAAGGTGACCAAGTTCATGCTTGCAGCAAAT

CAACTGCTTTc BSYH/J 

HCD/J 

HYZ/W 

WSB/W 

HFZ/W 

GBS0725_

H 

3BSc GAAGGTCGGAGTCAACGGATTTGCAGCAAAT

CAACTGCTTTg 

GBS0725_

R 

3BSc TGCTCCTCTGTTTCTGATCTCC 

GBS2882_

F 

3BSc GAAGGTGACCAAGTTCATGCTGTTTGGTTTGT

ATCTCAGTGGTa BSYH/J 

HCD/J 

HYZ/W 

WSB/W 

HFZ/W 

GBS2882_

H 

3BSc GAAGGTCGGAGTCAACGGATTGTTTGGTTTG

TATCTCAGTGGTg 

GBS2882_

R 

3BSc CAGATCTGGTGAAATAGCAGTC 

GBS2285_

F 

3BSc GAAGGTGACCAAGTTCATGCTCCCGCGTTGC

GGGTCTc 

BSYH/J 

HCD/J 
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GBS2285_

H 

3BSc GAAGGTCGGAGTCAACGGATTCCCGCGTTGC

GGGTCTt 

HYZ/W

WSB/W 

HFZ/W GBS2285_

R 

3BSc CCAGGCTCTCGTTTTCCTCGT 

GBS2312_

F 

3BSc GAAGGTGACCAAGTTCATGCTGCTGTTGCTG

CTCCTTGAACc 
HYZ/W 

HFZ/W 

WSB/W 

 

GBS2312_

H 

3BSc GAAGGTCGGAGTCAACGGATTGCTGTTGCTG

CTCCTTGAACt 

GBS2312_

R 

3BSc CATAGGTCCGCCCTTTGTCT 

GBS1487_

F 

2D GAAGGTGACCAAGTTCATGCTGCAGCGCCCC

TATATATTTGc 

HFZ/W 

HCD/J 

GBS1487_

H 

2D GAAGGTCGGAGTCAACGGATTGCAGCGCCCC

TATATATTTGt 

GBS1487_

R 

2D TTGCAGTCAAGGGAGTGAGTG 

GBS2373_

F 

3A GAAGGTGACCAAGTTCATGCTGCAGGCGAGG

GAAGAACa BSYH/J 

HCD/J 

HYZ/W 

WSB/W 

HFZ/W  

GBS2373_

H 

3A GAAGGTCGGAGTCAACGGATTGCAGGCGAG

GGAAGAACg 

GBS2373_

R 

3A AGCCACTTCTCCATCGATCC 

GBS3080_

F 

3A GAAGGTGACCAAGTTCATGCTGCTCAAAAAA

GACAATGAGCAGTGAt BSYH/J 

HCD/J 

HYZ/W 

WSB/W 

HFZ/W 

GBS3080_

H 

3A GAAGGTCGGAGTCAACGGATTGCTCAAAAAA

GACAATGAGCAGTGAc 

GBS3080_

R 

3A CACTGTCACCCCTCTCCCTGA 

GBS0340_

F 

3A GAAGGTGACCAAGTTCATGCTCTGGCGAATA

TGTTCTGCTCc 

HYZ/W 

HFZ/W 
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GBS0340_

H 

3A GAAGGTCGGAGTCAACGGATTCTGGCGAATA

TGTTCTGCTCg 

WSB/W 

 

GBS0340_

R 

3A TGTCCGGACGCTGTCAGTCT 

GBS2600_

F 

3A GAAGGTGACCAAGTTCATGCTGCTTGACCAT

ACTCCCGCa BSYH/J 

HCD/J 

HYZ/W 

WSB/W 

HFZ/W  

GBS2600_

H 

3A GAAGGTCGGAGTCAACGGATTGCTTGACCAT

ACTCCCGCt 

GBS2600_

R 

3A TTGGCGAGCATCTGCTGGTA 

GBS2002_

F 

3A GAAGGTGACCAAGTTCATGCTGTGGCCTGCA

GCTTGCAc 

HYZ/W 

WSB/W 

HFZ/W 

GBS2002_

H 

3A GAAGGTCGGAGTCAACGGATTGTGGCCTGCA

GCTTGCAt 

GBS2002_

R 

3A CATGGGAGGCACCAGAACAA 

GBS3320_

F 

3A GAAGGTGACCAAGTTCATGCTGGGGTGACCT

CGGGGa 

HYZ/W 

WSB/W 

HFZ/W 

GBS3320_

H 

3A GAAGGTCGGAGTCAACGGATTGGGGTGACCT

CGGGGg 

GBS3320_

R 

3A AAGGGTGGGCAGCAAAAC 

GBS2710_

F 

3DL GAAGGTGACCAAGTTCATGCTAGGTGCAGGG

CCGTGGc 

HYZ/W 

HFZ/W 

WSB/W 

GBS2710_

H 

3DL GAAGGTCGGAGTCAACGGATTAGGTGCAGG

GCCGTGGt 

GBS2710_

R 

3DL ACCTGGACGCGGAGGCTAC 

GBS1529_

F 

3DL GAAGGTGACCAAGTTCATGCTTGCAGCGCTA

AATAGGATTTg 

BSYH/J 

HCD/J 
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GBS1529_

H 

3DL GAAGGTCGGAGTCAACGGATTTGCAGCGCTA

AATAGGATTTt 

HYZ/W 

HFZ/W 

WSB/W 

 

GBS1529_

R 

3DL TGTGATTACGTGCGTGGAGTC 

GBS0781_

F 

3DL GAAGGTGACCAAGTTCATGCTGTGCCTCATA

GCACTTAGCAGc 
BSYH/J 

HCD/J 

HYZ/W 

HFZ/W 

WSB/W 

 

GBS0781_

H 

3DL GAAGGTCGGAGTCAACGGATTGTGCCTCATA

GCACTTAGCAGt 

GBS0781_

R 

3DL TCCCATCCACTCTGTTCACAT 

GBS1498_

F 

4D GAAGGTGACCAAGTTCATGCTCTAGTCCTGC

AGCGCCGTc 

BSYH/J 
GBS1498_

H 

4D GAAGGTCGGAGTCAACGGATTCTAGTCCTGC

AGCGCCGTt 

GBS1498_

R 

4D GGTTGCAGACGTCCTCGTGA 

GBS3012_

F 

4D GAAGGTGACCAAGTTCATGCTTGCAGTCGTC

CATCTTCa 

HCD/J 

BSYH/J 

GBS3012_

H 

4D GAAGGTCGGAGTCAACGGATTTGCAGTCGTC

CATCTTCg 

GBS3012_

R 

4D GACTTCCAAACAATCAGACACG 

Note: 1. For KASPs GBS2285, GBS2600, GBS3012: H forward primer with 

alleles from Chinese landraces, F forward primer with alleles from Wheaton or Jagger; 

All the other KASPs: F forward primer with alleles from Chinese landraces, H forward 

primer with alleles from Wheaton or Jagger, R reverse primer.  

2. BSYH/J represents Baishanyuehuang/Jagger; HCD/J represents 

Huangcandou/Jagger; HYZ/W denotes Haiyanzhong/Wheaton; HFZ/W denotes 

Huangfangzhu/Wheaton; WSB/W represents Wangshuibai/Wheaton. 
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Figure 3.1 Consensus map constructed from 3BS, 3A, 2D, 3D, and 4D linkage maps 

derived from the five mapping populations 
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Note: „BSYH‟ is short for „Baishanyuehuang‟; „HCD‟ is short for „Huangcandou‟; „HYZ‟ 

is short for „Haiyanzhong‟; „HFZ‟ is short for „Huangfangzhu‟; „WSB‟ is short for 

„Wangshuibai‟. 
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Figure 3.2 Meta- map of QTLs associated with FHB type II resistance mapped to 

chromosomes 3BS (2), 3A, 2D, 3D and 4D of the consensus map (95% confidence 

intervals) developed from five populations with Chinese wheat landraces as the 

sources of FHB resistance 

 

Note: „BSYH‟ is short for „Baishanyuehuang‟; „HCD‟ is short for „Huangcandou‟; „HYZ‟ 

is short for „Haiyanzhong‟; „HFZ‟ is short for „Huangfangzhu‟; „WSB‟ is short for 

„Wangshuibai‟. 
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Figure 3.3 KASP assay profiles of SNP.(a) KASP GBS1100 on 3BSd, (b) KASP 

GBS2377 on 3BSd, (c) KASP GBS1989 on 3BSd, (d) KASP GBS2882 on 3BSc, (e) 

KASP GBS2285 on 3BSc, (f) KASP GBS2373 on 3A, (g) KASP GBS2600 on 3A, (h) 

KASP GBS1487 on 2D, (i) KASP GBS2710 on 3DL, (j) KASP GBS0781on 3DL, (k) 

KASP GBS3012 on 4D in RIL populations and AM population. Blue dots represent 

Chinese landraces alleles, green dot represents U.S. wheat cultivar alleles, red dots refer 

to heterozygotes, and the black crosses or dots are ddH2O.  

(a) KASP GBS1100 on 3BSd in HFZ/Wheaton and AM population 

 

(b) KASP GBS2377 on 3BSd in HFZ/Wheaton and AM population 
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(c) KASP GBS1989 on 3BSd in BSYH/Jagger and AM population 

 

 

 

(d) KASP GBS2882 on 3BSc in BSYH/Jagger and AM population 
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(e) KASP GBS2285 on 3BSc in WSB/Wheaton and AM population (Chinese landrace 

allele on „Allele Y‟, Wheaton or Jagger allele on „Allele X‟) 

 

 

(f) KASP GBS2373 on 3A in HYZ/Wheaton and AM population 
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(g) KASP GBS2600 on 3A in HYZ/Wheaton and AM population (Chinese landrace allele 

on „Allele Y‟, Wheaton or Jagger allele on „Allele X‟) 

 

 

(h) KASP GBS1487 on 2D in HCD/Jagger and AM population 
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(i) KASP GBS2710 on 3DL in WSB/Wheaton and AM population 

 

 

(j) KASP GBS0781on 3DL in WSB/Wheaton and AM population 
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(k) KASP GBS3012 on 4D in BSYH/Jagger and AM population (Chinese landrace allele 

on „Allele Y‟, Wheaton or Jagger allele on „Allele X‟) 

 

 

 

Note: „BSYH‟ is short for „Baishanyuehuang‟; „HCD‟ is short for „Huangcandou‟; „HYZ‟ 

is short for „Haiyanzhong‟; „HFZ‟ is short for „Huangfangzhu‟; „WSB‟ is short for 

„Wangshuibai‟. 
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Chapter 4 - Effects of Fhb1 on FHB Resistance in Hard Winter 

Wheats 

 Abstract 

Fhb1, a quantitative trait locus (QTL) on 3BS from Sumai3 and its derivative 

Ning7840, has shown the largest effect on FHB resistance. In this study, we transferred 

Fhb1 from Ning7840 into three adapted hard winter wheat (HWW) cultivars, Overland, 

Jagger, and Overley, by marker-assisted backcross (MAB), and assessed the effect of 

Fhb1 on FHB resistance in these U.S. HWW backgrounds. High correlations were found 

between the percentage of symptomatic spikelet (PSS) and Fusarium-damaged kernel 

(FDK), PSS and deoxynivalenol (DON), and FDK and DON in the field experiments, 

suggesting visual scoring of PSS is useful to estimate FHB resistance. The Fhb1 carrying 

lines selected from each population showed significantly lower mean PSS, FDK, and 

DON accumulation than the recurrent parents in both field and greenhouse experiments, 

although the levels of reduction varied among the populations from different recurrent 

parents and the environments these populations were tested in. Haplotype analysis using 

GBS-SNPs indicated the presence and the sizes of the Fhb1 segment, and enabled us to 

check the proportion of recurrent parent genome recovery. A total of thirty two lines were 

selected from the three Fhb1-populations showed the relatively high level of FHB 

resistance and recurrent parents-like agronomic traits, thus can be used as resistant 

parents in U.S. HWW breeding programs. 



141 

 

 Introduction 

  Fhb1 is a major QTL originally mapped on the short arm of chromosome 3B of a 

Chinese variety Sumai3 and shows a major effect on FHB resistance (Anderson et al. 

2001; Cuthbert et al. 2006; Waldron et al. 1999). Chinese wheat line Ning7840 is a 

derivative of Sumai3 and Fhb1 in Ning7840 explained up to 60% of the phenotypic 

variation for FHB resistance (Bai et al. 1999; Bai 1996; Cuthbert et al. 2006). However, 

both Sumai3 and Ning7840 carry many unadapted agronomic traits, thus, Fhb1 has not 

been integrated into US hard winter wheat (HWW) after a decade of breeding effort.  

In the U.S., FHB epidemics originally occurred mainly in hard spring wheat and soft 

winter wheat (SWW) regions, thus breeding for wheat resistance to FHB started earlier 

than HWW. Several SWW cultivars with FHB resistance have been released for 

production including „Truman‟, „Massy‟, „Roane‟, „Ernie‟, and „Freedom‟ etc. (Liu et al. 

2013; Rudd et al. 2001; Sneller et al. 2012). These cultivars do not carry Fhb1 (Liu et al. 

2005), but several minor genes for FHB resistance with most of them from native 

sources. Several hard spring wheat with Fhb1 have been released for production 

including Sabin from Minnesota and Alsen from North Dakota (Anderson et al. 2012a; 

Anderson et al. 2012b). Spring wheat cultivar „Glenn‟ was also reported to have Fhb1, 

however, it cannot be detected using the closely linked marker Xumn10 (ElDoliefy et al. 

2015). In the U.S., most HWW cultivars used in production in the Great Plains are highly 

susceptible. Only a few HWW cultivars have been reported to have some levels of FHB 

resistance including „Everest‟, „Overland‟, „Lyman‟ „Heyne‟ and „Hondo‟ (Bockus et al. 

2009; Zhang et al. 2012a), but none of them carry Fhb1. Since Fhb1has a large effect, 

pyramiding Fhb1 with native resistance genes from the U.S. locally adapted cultivars 
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may enhance the level of FHB resistance, and enrich the genetic diversity of FHB 

resistance in U.S. wheat cultivars. The current study used marker-assisted backcross 

(MAB) to transfer Fhb1 into locally adapted U.S. HWW backgrounds without bringing in 

undesired agronomic traits from the Asian sources to develop locally adapted HWW 

germplasms with FHB resistance and to determine the Fhb1 performance in different 

backgrounds. 

 Materials and methods 

 Plant materials 

Ning7840 is a highly FHB resistant Chinese wheat line derived from Sumai3, (Bai 

et al. 1999), and used as the Fhb1 donor for backcrosses; Chokwang is a moderately FHB 

resistant wheat cultivar from Korea (Yang et al. 2005), and used as a donor for QTLs on 

5D and 4B (Yang et al. 2005). Three locally adapted U.S. HWW cultivars Overland from 

Nebraska, Overley, and Jagger from Kansas were used as recurrent parents. Among the 

three recurrent parents, Overland is moderately resistant to moderately susceptible, 

Jagger is moderately susceptible, and Overley is highly susceptible to FHB.  

The backcross procedure is depicted in Figure 4.1. In brief, Ning7840 and 

Chokwang were crossed to Jagger, respectively, to obtain Ning7840/JaggerF1 and 

Chokwang/JaggerF1. The F1 plants from the two crosses were then crossed to each other 

to generate (Ning7840/JaggerF1 x Chokwang/JaggerF1)F1. The derived F1 plants were 

genotyped with three markers (Xumn10, SNP8, and Xgwm533) linked to Fhb1 to select 

Fhb1 heterozygous plants for backcrosses or selfing. Selected F1 plants were backcrossed 

to Overland, Overley, and Jagger, respectively, for two or three times to develop BC2F1 

or BC3F1.  At least 20 heterozygous plants were identified in each cross for backcrossing. 
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The selected Fhb1 heterozygous BC2F1 and BC3F1 were selfed and homozygous BC2F2 

or BC3F2 were selected with markers (Xumn10, SNP8, and Xgwm533) and advanced 

(Figure 4. 1).  The selected homozygous BC2F2 or BC3F2 lines and later generations were 

used to evaluate the percentage of symptomatic spikelets (PSS) in the greenhouse 

experiments in spring and fall 2011. Based on the greenhouse PSS, lines with good 

resistance were further selected and evaluated for PSS in spring and fall 2012 greenhouse 

experiments, and for PSS, fusarium damaged kernel (FDK), and Deoxynivalenol (DON) 

in 2013 and 2014 field experiments.  

 Evaluation of FHB resistance 

FHB inoculation and evaluation for type II resistance (PSS) in the greenhouse 

were described in Chapter 2. Field experiments were conducted in the Rocky Ford FHB 

Nursery in Kansas State University (Manhattan, KS). About 40 seeds per line were 

planted in a 1.3 m long plot. Each experiment used a randomized complete block design 

(RCBD) with two replications. The FHB nursery was inoculated using spawn inoculation 

by scattering Fusarium graminearum-infected corn (Zea mays L.) kernels on the soil 

surface twice at booting and heading stages. The FHB nursery was misted by sprinklers 

for 3 min /h from 2100 to 0600 h daily from flowering to early dough stage. PSS was 

estimated based on the overall performance of a plot at 19~21 d after heading dates, and 

was rechecked one more time after 3 d. 

  Plants from each plot were harvested by hand, threshed using a plant thresher 

(Almaco, Nevada, IA) and then cleaned by hand to keep as many tombstones as possible. 

FDK was visually evaluated using all kernels harvested from each plot based on checks 

with 5, 25, 50, 75, and 100% FDK.  
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Infected seed samples were hand cleaned to remove all trash and 5 grams 

randomly sampled grain were weighed for DON determination using gas 

chromatography-mass spectrometry (GC-MS) (Mirocha et al. 1998) at the University of 

Minnesota, St. Paul. DON concentration was measured in part per million (ppm).  

 Genotyping-by-sequencing 

A genotyping-by-sequencing (GBS) library was constructed for the selected 128 

Fhb1 lines (49 Overland-Fhb1 lines; 59 Jagger-Fhb1 lines; 20 Overley-Fhb1 lines) and 

parents with three replications each (Ning7840, Chokwang, Overland, Overley, and 

Jagger). The GBS library construction and data analysis were described in Chapter 2. The 

data were imputed using „W7984‟ and „Chinese spring reference sequences (IWGSC) 

2014; Chapman et al. 2015). The imputed data were then blasted using „Popseq‟ and 

„W7984‟ wheat genome references for a „gbs_loc‟ (http://129.130.90.211/wpdb/gbsloc) 

(Chapman et al. 2015). The SNPs were then arranged according to the positions in 

„W7984‟ SNP map. The population genotypes were organized as „A‟ for the donor parent 

genotype and „B‟ for the recurrent parent genotypes. 

 Results 

 Selected FHB resistant lines 

After genotyping with Xumn10, SNP8 and Xgwm533, a total of 834 BC2F2 or 

BC3F2 plants with homozygous Fhb1 marker alleles (207 Overland-Fhb1 plants, 252 

Jagger-Fhb1 plants, and 375 Overley-Fhb1 plants) were selected from 1000 plants of the 

each population. The selected lines were evaluated for FHB in the spring and fall 2011 

greenhouse. Based on the data, 150 Overland-Fhb1 lines, 131 Jagger-Fhb1 lines, and 35 

Overley-Fhb1 lines that showed at least moderate resistance (PSS<60%) were selected 

http://129.130.90.211/wpdb/gbsloc
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for further greenhouse and field FHB evaluations. A total of 128 lines (49 Overland-

Fhb1, 59 Jagger-Fhb1 and 20 Overley-Fhb1 lines) were selected for GBS analysis based 

on the 2013 field PSS and FDK data. For Overland-Fhb1 lines, 28 were BC2 lines, and 21 

were BC3 lines (Figure 4.1 a). For Overley-Fhb1 lines, 5 were BC2, and 15 were BC3 

lines (Figure 4.1 b). All Jagger-Fhb1 lines were BC3 lines (Figure 4.1 c). 

 PSS of Fhb1 lines in the greenhouse and field experiments 

In the greenhouse experiments, Fhb1 lines had lower mean PSS than their 

recurrent parents, and the PSS reduction ranged from 8.63 to 77.43% (Table 4.1). The 

mean PSS varied among the three Fhb1 populations. Overland- Fhb1 lines had the lowest 

mean PSS of 20.54%, and ranged from 7.14 to 65.93% (Table 4.1, Figure 4.2). Overley-

Fhb1 lines had the highest mean PSS of 46.31%, ranged from 27.04 to 73.08% (Table 

4.1, Figure 4.2). And Jagger-Fhb1 lines were in between with a mean PSS of 40.39%, 

ranged from 21.03 to 58.61% (Table 4.1, Figure 4.2). The recurrent parent Overland 

(40.35%) had the lowest mean PSS and Overley (95.08%) had the highest (Table 4.1). 

However, the mean PSS reduction was significant (P < 0.01) in Jagger and Overley Fhb1 

populations, but not significant in Overland Fhb1 lines (Table 4.1). 

In the field experiments, the PSS of the recurrent parents was the lowest in Jagger 

(51.67%), and the highest in Overley (80.05%) (Table 4.1, Figure 4.2). The mean PSS for 

the progenies was lower than those in the greenhouse experiments with the lowest 

(19.44%) in Jagger-Fhb1 lines, and the highest in Overland-Fhb1 lines (33.08%) (Table 

4.1, Figure 4.2).  A slightly different trend of PSS was observed between two years with 

the highest PSS for Overley-Fhb1 (33.13%) in 2013 experiment and for Overland-Fhb1 

lines (38.96%) among three populations in 2014 field experiment (Table 4.1). The 
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reduction of PSS was significant (P < 0.01) for all the three Fhb1-populations compared 

to their recurrent parents (Table 4.1). 

 FDK and DON concentrations in Fhb1-carrying lines 

In the field experiments, FDK and DON concentrations were also evaluated in the 

2013 and 2014 experiments. All of the Fhb1-populations had significantly lower FDK 

than their recurrent parents (Table 4.2). Similar to PSS data, the mean FDK was the 

lowest in Jagger-Fhb1 lines (11.94%), and the highest in Overland-Fhb1 lines (20.61%) 

(Table 4.2). The recurrent parent Jagger had the lowest mean FDK (31.34%), and 

Overley had the highest FDK (67.50%) (Table 4.2). The DON concentrations were 

different among recurrent parents with the lowest mean DON concentration (9.51 ppm) in 

Jagger and the highest (20.13 ppm) in Overley (Table 4.2). The mean DON 

concentrations were similar among three populations with 6.61 ppm for Jagger-Fhb1 

lines, 7.65 ppm for Overley-Fhb1 and 9.23 ppm for Overland-Fhb1 lines and they were 

all lower than their recurrent parents (Table 4.2). Both FDK and DON concentrations in 

2014 were much higher than those in the 2013 experiment.  

The three Fhb1-carrying populations had lower PSS, FDK and DON 

accumulation than their recurrent parents, with the greatest reduction in Overley-Fhb1 

population (Table 4.1, Table 4.2). Therefore, transferring Fhb1 into U.S. HWW can 

significantly reduce FHB severity in U.S HWW cultivars. 

 Relationship between PSS, FDK and DON in the field experiments 

In the field experiment, the correlation coefficients were the highest between field 

PSS and FDK (r = 0.82, P < 0.01) (Figure 4.2 a), the second between field PSS and DON 

concentration (r = 0.68, P < 0.01) (Figure 4.2 b), and lowest between FDK and DON 
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concentration (r = 0.60, P < 0.01) (Figure 4.2 c), suggesting that the Fhb1-lines with low 

PSS usually have a low FDK and DON concentration in field.  

 Haplotype analysis 

The GBS analysis of 128 Fhb1 lines (49 Overland-Fhb1, 59 Jagger-Fhb1, and 20 

Overley-Fhb1 lines) obtained 18,376 GBS-SNPs with 80% missing data. Among them, 

1,253 had 20% or less missing data. After imputation, the GBS-SNPs with 20% missing 

increased to 15,677 GBS-SNPs. These GBS-SNPs were used for mapping using 

„Popseq‟, and 14,113 GBS-SNPs were mapped to specific chromosome locations for 

haplotype analysis.  

For each Fhb1-line, Ning7840 or Chokwang‟s alleles were designated as 

genotype „A‟ and recurrent parent allele as „B‟ to show parental allele distribution in the 

wheat genome. Haplotype analysis revealed a large block of 15 GBS-SNPs in Overland, 

23 in Jagger and 26 in Overley from the donor on the short arm of 3B chromosome that 

cover genetic distances of 12.9 cM in Overland-Fhb1, 13.67 cM in each of Jagger and 

Overley-Fhb1 populations (Figure 4. 4). GBS-SNPs within the SNP blocks were then 

blasted in National Center for Biotechnology Information (NCBI, 

http://www.ncbi.nlm.nih.gov/). The physical distance of the SNP blocks on 3BSd was 

12,417,272 bp in Jagger-Fhb1 lines, 12,526,290 bp in Overley-Fhb1 lines, and 9,900,850 

bp in Overland-Fhb1 lines. In the Overland-Fhb1 population, 42 of the 49 lines have all 

„A‟genotype within the Fhb1 block, line 4 has all „B‟ genotype, and lines 18, 28, 29, 39, 

41 and 47 have four to thirteen SNPs with „A‟ genotype in the Fhb1 block (Figure 4. 4 a).  

For Jagger-Fhb1 population, 54 of the 59 lines have all „A‟ genotypes within the Fhb1 

block, line 40, 48 have five SNPs with „A‟genotype each, and line 5, 18, and 50 have 10, 

http://www.ncbi.nlm.nih.gov/


148 

 

13, and 14 SNPs with „A‟ genotype, respectively (Figure 4. 4 b). For the Overley-Fhb1 

population, 16 out of 20 lines have all „A‟ genotypes within the Fhb1 block, line 11 and 

20 have 25 SNPs with „A‟ genotype, and line 3 and 16 have 10 SNPs with „A‟ genotype 

(Figure 4. 4 c). We then ran two Fhb1 diagnostic markers (cg8 and Xumn10) to figure out 

if all the lines from the three populations have Fhb1 or not. The genotyping results 

showed that all of the lines of Jagger and Overley populations have Fhb1. However, 

Lines #4 and #18 of the Overland population showed no Fhb1 fragment in haplotype 

analysis was also genotyped as „b‟ using the Fhb1 diagnostic markers (Appendix A table 

1). 

For Overland and Overley-Fhb1 populations, we developed both BC2 and BC3 

progenies and haplotyping analysis indicated that BC2 progenies usually have better FHB 

resistance, but lower genome recovery than BC3 progenies. In Overland-Fhb1 lines, the 

BC2 lines have lower mean greenhouse and field PSS, and mean DON accumulation, 

however, slightly higher mean FDK than BC3 lines (Table 4.3). The proportions of 

Overland genome recovery ranged from 85.59 to 98.56%, with an averaged genome 

recovery of 93.42% in BC2 plants, and 95.46% in BC3 plants (Table 4.3). For Overley-

Fhb1 progenies, the BC2 lines showed significantly lower mean field PSS, FDK, and 

DON concentration, and slightly lower greenhouse PSS than BC3 plants (Table 4.3). The 

proportion of genome recovery ranged from 64.37 to 97.71% with an averaged genome   

87.23% in BC2 and 94.87% in BC3 lines (Table 4.3). Therefore, BC2 plants showed better 

FHB resistance for both Fhb1 populations, but less recurrent parent‟s genome recovery 

than the BC3 plants.  
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Fhb1-lines with outstanding FHB resistance, as well as the reasonable proportion 

of recurrent parent genome recovery were selected from each of the Overland, Overley, 

and Jagger-Fhb1 populations. The twenty five percent of lines with top FHB resistance 

and recurrent parent genome recovery were selected from each Fhb1-population 

(Appendix A). Twelve out of the forty nine Overland-Fhb1 lines (GH PSS < 17%, field 

PSS < 23%, FDK < = 20%, and DON concentration < 11 ppm) (Appendix A Table 1), 

fifteen of the fifty nine Jagger-Fhb1 lines (GH PSS < 40%, field PSS < = 20%, FDK < 

18%, and DON  concentration < 10 ppm) (Appendix A Table 2), and five of the twenty 

Overley-Fhb1 lines (GH PSS < 46%, field PSS < 30%, field FDK < 17%, and DON 

concentration < 10 ppm) (Appendix A Table 3) were selected from the three Fhb1-

populations. The selected lines were listed in Appendix A labeled with asterisks. 

 Discussion 

 FHB resistance of Fhb1 in different genetic backgrounds 

          FHB epidemics in U.S. HWW in the Great Plains have become more severe and 

frequent in the recent years, and transferring Fhb1 from Sumai3 and its derivatives can be 

an effective way to quickly improve the resistance in U.S HWW (McMullen et al. 2012; 

Rudd et al. 2001). In the current study, we transferred Fhb1 into three U.S. HWW using 

marker-assisted backcrossing, and the selected Fhb1 lines showed significantly lower 

PSS, FDK, and DON than their recurrent parents (Table 4.1, 4.2), indicating that Fhb1 

can significantly improve FHB resistance and reduce DON in HWW genetic 

backgrounds.  

Among the three recurrent parents, Overland is moderately resistant to moderately 

susceptible and Jagger is moderately susceptible, thus, they may carry some indigenous 
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minor QTLs for FHB resistance, while Overley is highly susceptible and may not have 

any FHB resistance QTL. Mean PSS were different among the three Fhb1-populations. In 

the greenhouse experiments, Overland-Fhb1 lines had the lowest mean PSS (20.54%), 

and Overley-Fhb1 lines had the highest (46.31%), which agreed with the ranks of the 

recurrent parents. However, Jagger-Fhb1 lines performed better than Overland-Fhb1 

lines in both field experiments. The discrepancy between greenhouse and field 

experiments was probably due to earlier heading date of Jagger -Fhb1 than Overland-

Fhb1 that escaped from a long period of warm and wet FHB inductive conditions in the 

Manhattan field experiments.  

Effects of Fhb1 on the reduction of PSS are similar among the three populations 

in the greenhouse experiments, but different in the field experiments. The Overland-Fhb1 

lines had a lower reduction in the three types of resistance than other two populations. 

This is probably due to later flowering time of Overland population than other two 

populations that increased FHB severity in the field.  

 Correlation among PSS, FDK, and DON 

Fhb1 was previously identified as a major QTL for FHB resistance, especially, 

type II resistance as measured by PSS (Anderson et al. 2001; Bai et al. 1999; Buerstmayr 

et al. 2003; Cai and Bai 2014; Cuthbert et al. 2006; Jia et al. 2006; Shen et al. 2003; 

Waldron et al. 1999; Yu et al. 2008; Zhang et al. 2012b). Significant high correlations 

were found between PSS and FDK (r = 0.82, P < 0.01) (Figure 4. 2 a), PSS and DON 

accumulation (r = 0.68, P < 0.01) (Figure 4. 2 b), FDK and DON accumulation (r = 0.59, 

P < 0.01) (Figure 4. 2 c) in the field. These agree with several previous reports (Bai et al. 

2001; Lemmens et al. 2004; Paul et al. 2005; Wegulo et al. 2011). However, opposite 
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results were also reported between visual FHB rating and DON accumulation (Liu et al. 

1997; Wisniewska et al. 2004). This discrepancy might be due to the way of threshing or 

cleaning seeds. The light weigh tombstones can be easily blown away if special care was 

not taken during threshing, which can underestimate both FDK and DON accumulation. 

Also, field PSS rating was to visually estimate FHB severity for each plot on the 20
th

 day 

after the heading, rather than counting scabbed spikelets in each spike as in greenhouse 

experiments, thus, the personal experience might significantly affect PSS ratings in the 

field. Nevertheless, if the seeds are carefully threshed and cleaned, an experienced 

scientist could get consistent FHB scores that result in high correlations among PSS, 

FDK, and DON concentration.  

 Haplotype analysis 

By using haplotype analysis Fhb1 region is clearly identified as a block of GBS-

SNPs in all the three Fhb1- derived populations. The block with Fhb1 transferred from 

the donor consist of 15 SNPs spanning 12.9 cM in Overland-Fhb1 population, 23 SNPs 

covering 13.67 cM in Jagger-Fhb1 population, and 26 SNPs covering 13.67 cM in 

Overley-Fhb1 population. The donor fragment size was not too long compared to most 

Fhb1 QTLs reported previously (Cai and Bai 2014; Yu et al. 2008; Zhang et al. 2012b). 

The physical lengths of the transferred fragments were 9.9 Mb in Overland-Fhb1 lines, 

12.5 Mb in Overley-Fhb1 lines, and 12.4 Mb in Jagger-Fhb1 lines, ranged from 304,411 

bp to 12,721,683 bp on 3B chromosome. Analysis of the Fhb1-populations showed that 

lines 4 and 18 of Overland-Fhb1 lines showed higher field PSS, FDK, and GH PSS than 

the averaged value of lines with all „A‟ genotype in the Fhb1 SNP block (Figure 4.4 a). 

Fhb1 diagnostic markers (Xumn10 and cg8) screening over the three populations showed 
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that Fhb1 was absent in lines 4 and 18 of the Overland population. The line 4 showed no 

Fhb1 fragment in haplotype analysis actually had no Fhb1, while the line 18 showed the 

donor fragment, however, was negative with diagnostic markers Xumn10 and cg8, thus, 

can be excluded from further selection. The other lines with single “B” alleles were seen 

in Fhb1 fragments of all the three populations, this occurs probably because the lines are 

actually heterozygous on Fhb1. Besides, the Fhb1 region, donor alleles were randomly 

present throughout the genome, indicating that MAB without background selection might 

bring in some unwanted donor fragments into the genome of Fhb1-carrying populations. 

However, GBS for background screening can be helpful to identify lines with fewer and 

shorter donor fragments that may be associated with unadapted traits. Besides, some 

other common SNP haplotype blocks from donor genotypes were identified across all the 

three Fhb1-populations. Because the selected lines in this study have been through 

several cycles of FHB resistance evaluation, those blocks may carry some other QTLs for 

FHB resistance from the donor by chance. SNP haplotypes blocks on 4B of Overland, 

Overley, and Jagger-Fhb1 populations and on 5D of Overland and Overley-Fhb1 

population may have been transferred from Chokwang. Therefore, haplotype analysis 

using GBS-SNPs on the three Fhb1-populations help us to determine the presence and the 

sizes of the target fragments transferred from the donor genome, and enable us to check 

how much recurrent parents‟ genomes were recovered after two or three rounds of 

backcrossing.  

For Overland and Overley, we found that BC2 plants had better FHB resistance 

for both Fhb1-populations, but less recurrent parent genome recovery than BC3 plants. 

The BC2 plants had a larger proportion of donor genome than BC3 plants, thus, may have 
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a bigger chance to carry resistant alleles from donor plants. The averaged genome 

recovery in Overley-Fhb1 lines were 87.23% in BC2, and 94.87 in BC3 plants, which 

agreed with the theoretical proportions of 87.5% in BC2, and 93.75% in BC3. However, 

Overland-Fhb1 lines showed much higher genome recovery than expected (93.42% in 

BC2 plants, and 95.46% in BC3 plants). This is probably because we used Jagger to cross 

with Ning7840 and Chokwang in the initial steps, so that some „B‟ genotypes may be 

contributed by Jagger rather than Overland. Therefore, one more cycle of backcrossing 

significantly improved the genome recovery, thus enable us to select Fhb1-lines with 

good FHB resistance as well as better recurrent parent genome recovery.  

A total of 32 Fhb1-lines (12 of Overland, 15 of Jagger, and 5of Overley-Fhb1 

populations) were selected from the three populations. Lines selected were the top 25% 

of FHB resistance from each population, however, with different criteria of selection on 

PSS, FDK, and DON accumulation. For example, the selection criteria in greenhouse 

PSS was high in Overley (< 46%) and Jagger-Fhb1 (< 40%) population, however, 

relatively low in Overland-Fhb1 lines (< 17%). This is because most of the Overley and 

Jagger-Fhb1 lines showed a moderate level of resistance in the greenhouse, however, half 

of Overland-Fhb1 lines show PSS less than 20%. Therefore, we cannot set one selection 

criteria for all three populations. The selected Fhb1-lines showed relatively good FHB 

resistance in both greenhouse and field experiments, with large proportions of recurrent 

parent genome recovery. The selected Fhb1-lines with recurrent parents-like agronomic 

traits can be used as resistant parents in U.S. HWW breeding programs. 
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Table 4.1 Comparison of PSS of selected lines from Overland-Fhb1, Jagger-Fhb1 and Overley-Fhb1 populations with their 

corresponding recurrent parents. 

 

Spring 2011 

GH % 

Fall 2011 

GH % 

Spring 2012 

GH % 

Fall 2012 

GH % 

Mean 

GH % 

GH PSS 

Range % 

2013 

field % 

2014 

field % 

Mean 

field % 

Overland-Fhb1 

lines (49) 
24.67 19.22 19.93 18.34 20.54 7.14~65.93 27.19 38.96 33.08 

Overland 27.00 34.19 66.22 34.00 40.35  51.00 66.67 58.84 

PSS reduction due 

to Fhb1 (%) 
8.63 43.78 69.90** 46.06 49.10  46.69** 41.56** 43.78** 

Jagger-Fhb1 lines 

(59) 
20.20 49.62 45.05 44.15 40.39 21.03~58.61 16.86 22.01 19.44 

Jagger 89.51 77.42 82.72 85.00 83.66  55.00 48.33 51.67 

PSS reduction due 

to Fhb1(%) 
77.43** 35.91 45.54* 48.06* 51.14**  69.35** 54.46** 62.38** 

Overley-Fhb1 

lines (20) 
26.89 49.67 46.76 64.67 46.31 27.04~73.08 33.13 24.75 28.94 

Overley 87.63 100.00 97.14 95.54 95.08  81.00 80.00 80.50 

PSS reduction due 

to Fhb1(%) 
69.31* 50.33 51.86* 32.30 49.14** 

 
59.10** 69.06** 64.05** 

Note: * indicates statistically significant with P < 0.05, ** indicates statistically significant with P < 0.01. 
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Table 4.2 Comparison of field FDK and DON of selected lines from Overland-Fhb1, Jagger-Fhb1 and Overley-Fhb1 

populations with their corresponding recurrent parents. 

 
2013 FDK % 2014 FDK % Mean FDK % 

2013  

DON (ppm) 

2014 DON 

(ppm) 

Mean DON (ppm) 

Overland-Fhb1 lines (49) 8.85 32.37 20.61 4.02 14.44 9.23 

Overland 25.00 56.67 40.84 4.46 20.60 12.53 

FHB reduction due to Fhb1(%) 64.60* 42.88* 49.53** 9.87 29.90 26.34 

Jagger-Fhb1 lines (59) 7.37 16.21 11.94 2.44 10.48 6.61 

Jagger 26.00 36.67 31.34 3.91 15.10 9.51 

FHB reduction due to Fhb1(%) 71.65** 56.75* 62.92* 37.60 30.60 30.49 

Overley-Fhb1 lines (20) 16.23 18.18 17.21 4.36 10.94 7.65 

Overley 65.00 70.00 67.50 12.65 27.60 20.13 

FHB reduction due to Fhb1(%) 75.03** 74.03** 74.50** 65.53* 60.36* 62.00** 

 

Note: * indicates statistically significant with P < 0.05, ** indicates statistically significant with P < 0.01 

 

  



159 

 

Table 4.3 Comparison of the mean greenhouse PSS, field PSS, FDK and DON of BC2 and BC3 lines from Overland-Fhb1 and 

Overley-Fhb1 populations. 

  Genome 

background 

recovered % 

Mean GH PSS 

% 

Mean field PSS 

% 

Mean field 

FDK % 

Mean field 

DON % 

Overland-Fhb1 

lines 

BC2 93.42 18.06 32.55 21.29 9.15 

BC3 95.46 21.94 34.10 20.48 9.68 

Diff. 2.04* 3.87 1.55 -0.81 0.53 

Overley-Fhb1 

lines 

BC2 87.23 46.01 26.19 14.93 6.47 

BC3 94.87 52.27 37.29 23.13 11.01 

Diff. 7.64 6.26 11.10* 8.20* 4.54** 

 

Note: * indicates statistically significant with P < 0.05, ** indicates statistically significant with P < 0.01 
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Figure 4.1 Processes of backcrossing to (a) Overland, (b) Overley, and (c) Jagger 
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(b) Overley  
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(c) Jagger 
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Figure 4.2 Distrubution of mean percentage of symptomatic spikelets for (a) 

Overland, (b) Overley, and (c) Jagger-Fhb1 lines in greehouse and field experiments. 
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(b) 
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(c) 
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Figure 4.3 Correlations between field PSS, FDK, and DON concentration. 

(a) Correlation of mean field PSS and FDK 

 

(b) Correlation of mean field PSS and DON 
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(c) Correlation of mean field FDK and DON 
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Figure 4.4 SNP haplotype blocks with donor genotypes in (a) Overland, (b) Jagger and (c) Overley-Fhb1 populations. ‘A’ in 

red represents the donor genotypes, ‘B’ in blue represents the recurent parents’ genotypes, and ‘H’ in purple represens 

heterozygotes. The columns showed GBS-SNPs ordered in genetic distance of wheat genome, and the lines were Fhb1-lines in 

each population. 

 (a) SNP haplotype block in Overland-Fhb1 population 

 

 

 

 

SNPs GBS7200 GBS9892 GBS9893 GBS9001 GBS5721 GBS4968 GBS10806 GBS14326 GBS1211 GBS1210 GBS1823 GBS7486 Xumn10 cg8 GBS13485 GBS13486 GBS13487 GBS14832 GBS5140 GBS5141 GBS14001 GBS13198 GBS15083 GBS5633 GBS957

 cM 1.1370 1.1370 1.1370 6.8430 6.8430 7.4115 7.9800 7.9800 7.9800 7.9800 11.3940 13.6680 15.943 15.943 15.943 17.08 17.08 18.217 18.217 GH PSS% Field PSS% Field FDK% Field DONppm

Chinese spring (bp) 892922 909880 909880 7801088 7579126 9574094 12284882 194729814 194729814 10793772 14230803 17319302 16881671 16881671 17628028 18031327 18043966 19945225 21020177

Line#/ctg0954 (bp) 2467047 2462377 923629 923629 923629 1055916 966499 966499 752852 350333 337689

1 A A A A A A A A A A A A A A H H B B B B B B B B B 31 15 6 3

2 A A A A A A A A A A A A A A B B B B B B B B B B B 17 32 19 6

3 A A A A A A A A A A A A A A A A A B B B B B B B B 24 28 22 6

4 B B B B B B B B B B B B B B B B B B B B B B B B B 57 41 34 6

5 A A A A A A A A A A A A A A B B B B B B B B B B B 10 30 19 6

6 A A A A A A A A A A A A A A A A A B B B B B B B B 22 22 17 4

7 A A A A A A A A A A A A A A B B B B B B B B B B B 15 39 20 10

8 A A A A A A A A A A A A A A B B B B B B B B B B B 14 33 25 9

9 A A A A A A A A A A A A A A B B B B B B B B B B B 13 29 22 7

10 A A A A A A A A A A A A A A B B B B B B B B B B B 20 30 23 9

11 A A A A A A A A A A A A A A B B B B B B B B B B B 9 38 23 11

12 A A A A A A A A A A A A A A B B B B B B B B B B B 12 38 28 11

13 A A A A A A A A A A A A A A B B B B B B B B B B B 10 43 30 16

14 A A A A A A A A A A A A A A B B B B B B B B B B B 23 29 21 7

15 A A A A A A A A A A A A A A B B B B B B B B B B B 11 25 13 5

16 A A A A A A A A A A A A A A B B B B B B B B B B B 12 28 18 9

17 A A A A A A A A A A A A A A A A A B B B B B B B B 11 38 26 15

18 A B B A A A B A A A A B B B B B B B B B B B B B B 66 41 21 6

19 A A A A A A A A A A A A A A A A A B B B B B B B B 12 29 18 10

20 A A A A A A A A A A A A A A B B B B B B B B B B B 26 27 16 10

21 A A A A A A A A A A A A A A B B B B B B B B B B B 13 44 29 11

22 A A A A A A A A A A A A A A B B B B B B B B B B B 12 33 20 9

23 A A A A A A A A A A A A A A A A A B B B B B B B B 14 28 20 11

24 A A A A A A A A A A A A A A B B B B B B B B B B B 20 32 20 13

25 A A A A A A A A A A A A A A B B B B B B B B B B B 19 43 22 13

26 A A A A A A A A A A A A A A B B B B B B B B B B B 28 35 25 12

27 A A A A A A A A A A A A A A B B B B B B B B B B B 16 38 22 10

28 B B B A A A B A A A A B A A B B B A A A A A A A A 7 18 8 7

29 A H H A A A B A A A A H A A A A A H B B B B H H B 60 34 18 7

30 A A A A A A A A A A A A A A A A A B B B B B B B B 24 35 21 10

31 A A A A A A A A A A A A A A B B B B B B B B B B B 15 38 19 7

32 A A A A A A A A A A A A A A B B B B B B B B B B B 23 38 23 12

33 A A A A A A A A A A A A A A B B B B B B B B B B B 27 34 23 7

34 A A A A A A A A A A A A A A B B B B B B B B B B B 24 30 17 9

35 A A A A A A A A A A A A A A B B B B B B B B B B B 27 23 8 5

36 A A A A A A A A A A A A A A B B B B B B B B B B B 13 21 19 10

37 A A A A A A A A A A A A A A B B B B B B B B B B B 23 32 24 9

38 A A A A A A A A A A A A A A B B B B B B B B B B B 21 35 21 13

39 B B B A A A A A A A A A A A B B B B B B B B B B B 25 35 21 7

40 A A A A A A A A A A A A A A B B B B B B B B B B B 22 33 19 7

41 A H H A A A A A A A A A A A B B B B B B B B B B B 25 25 19 11

42 A A A A A A A A A A A A A A B B B B B B B B B B B 29 36 22 14

43 A A A A A A A A A A A A A A B B B B B B B B B B B 25 43 23 7

44 A A A A A A A A A A A A A A B B B B B B B B B B B 24 48 33 12

45 A A A A A A A A A A A A A A B B B B B B B B B B B 9 27 16 7

46 A A A A A A A A A A A A A A B B B B B B B B B B B 11 43 23 11

47 B B B B A B B B B B B B A A B B B B B B B B B B B 24 33 18 11

48 A A A A A A A A A A A A A A A A A B B B B B B B B 23 42 23 10

49 A A A A A A A A A A A A A A B B B B B B B B B B B 26 33 19 15
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(b) SNP haplotype block in Jagger-Fhb1 population 

 

 

 

 

 

 

SNPs GBS1789 GBS11567 GBS14150 GBS14149 GBS14151 GBS9892 GBS9893 GBS12995 GBS12994 GBS6332 GBS4969 GBS79 GBS10806 GBS537 GBS1209 GBS8864 GBS7486 GBS11955 Xumn10 cg8 GBS2913 GBS5140 GBS5141 GBS13485 GBS13486 GBS13487 GBS14832 GBS14001 GBS13198 GBS15083 GBS957

 cM 0 0 0 0 0 1.137 1.137 6.843 6.843 6.843 7.4115 7.4115 7.98 7.98 7.98 7.98 13.668 14.8055 15.943 15.943 15.943 17.08 17.08 18.217 GHPSS% FieldPSS% FieldFDK% FieldDONppm

Chinese spring (bp) 304411 909880 909880 4429847 4429847 7676610 7579126 7730840 9574094 12721683 1.95E+08 10793772 7.22E+08 14230803 16584717 16881671 16881671 17319302 17628028 18031327 18043966 21020177

Line#/ctg0954 (bp) 2924870 2467047 2462377 923629 923629 923629 1617626 966499 966499 1055916 752852 350333 337689

1 A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 32 21 10 9

2 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 30 25 12 5

3 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 43 12 11 6

4 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 37 16 9 4

5 B A H H H B B B B H H B H A A A B A A A B B B B A A A B A B B 30 9 5 3

6 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 37 13 7 4

7 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 48 25 20 11

8 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 51 20 12 5

9 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 32 13 6 4

10 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 49 22 17 10

11 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 33 12 4 3

12 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 40 25 18 11

13 A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 45 20 9 5

14 A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 51 14 11 10

15 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 31 19 13 7

16 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 40 23 11 8

17 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 38 12 5 6

18 A B H H H A A H H A A A A H A H A A A A B B B A H H B H B B B 48 25 9 6

19 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 39 20 15 10

20 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 48 32 23 8

21 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 52 22 9 5

22 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 37 28 15 9

23 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 48 25 13 9

24 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 41 19 10 5

25 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 48 13 6 3

26 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 56 30 22 12

27 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 34 25 13 5

28 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 59 23 7 7

29 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 48 33 19 9

30 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 40 19 10 4

31 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 43 25 12 5

32 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 40 16 8 5

33 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 31 11 6 5

34 A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 41 20 11 6

35 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 32 13 7 3

36 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 44 23 18 14

37 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 44 28 14 8

38 A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 21 18 12 6

39 A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 34 13 10 4

40 B B B B B B B B B B B B B B B B B A A A A A A B B B B B B B B 42 18 16 6

41 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 34 14 4 4

42 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 45 12 12 6

43 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 38 13 17 10

44 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 41 18 10 6

45 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 41 20 16 8

46 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 54 16 11 5

47 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 34 23 14 6

48 B B B B B B B B B B B B B B B B B A A A B B B B B B B B B B B 42 30 45 20

49 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 40 23 16 5

50 B B B B B B B B B A A A A A A A A A A A B B B B B B B B B B B 31 13 8 7

51 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 32 20 14 3

52 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 31 22 15 6

53 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 49 15 8 3

54 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 34 26 12 8

55 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 28 15 9 3

56 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 38 23 9 5

57 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 44 15 13 11

58 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 47 16 6 4

59 A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 44 15 4 3
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(c) SNP haplotype block in Overley-Fhb1 population 

 

 

 

 

 

 

 

 

 

 

 

  

SNPs GBS5330 GBS11567 GBS1789 GBS14150 GBS14149 GBS14151 GBS9892 GBS9893 GBS12995 GBS12994 GBS9420 GBS6332 GBS7551 GBS4969 GBS79 GBS10806 GBS8864 GBS14326 GBS1171 GBS1776 GBS537 GBS8024 GBS1209 GBS7486 Xumn10 cg8 GBS12786 GBS2913 GBS14832 GBS5140 GBS5141 GBS13485 GBS13486 GBS13487 GBS14001

 cM 0.00 0.00 0.00 0.00 0.00 0.00 1.14 1.14 6.84 6.84 6.84 6.84 6.84 7.41 7.41 7.98 7.98 7.98 7.98 7.98 7.98 7.98 7.98 13.67 14.81 15.94 15.94 15.94 GHPSS% FieldPSS% FieldFDK% FieldDONppm

Chinese spring (bp) 304406 304411 909880 909880 4429847 4429847 4507608 7676610 7644840 7579126 7730840 9574094 12284882 12631965 12631965 12721683 12830696 194729814 10793772 16584717 17319302 17410893 17410893 14230803 17628028

Line#/ctg0954 (bp) 2467047 2462377 1546866 1617626 1055916 966499 966499 923629 923629 923629 752852

1 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 37.22 21.25 8.67 4.20

2 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 53.73 30.00 12.00 4.88

3 B B B B B B B B B B H B B B A H A A A A A A B A A A B B B B B A A A B 56.10 25.42 14.08 4.95

4 A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 40.73 26.67 10.17 4.08

5 A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 38.99 27.92 13.33 7.53

6 A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 48.82 20.42 16.67 5.58

7 A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 43.27 20.00 11.67 6.58

8 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 47.06 33.33 15.42 5.98

9 A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 45.67 14.58 5.92 4.18

10 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 50.42 24.17 23.33 10.05

11 A A A A A A A A A A A A A A A A A A A H A A A A A A A B B B B B B B B 58.45 35.83 23.33 7.70

12 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 36.86 20.83 11.67 6.65

13 A A A A A A A A A A A A A A A A A A A A A A A A A A H B B B B B B B B 44.59 36.67 24.08 7.03

14 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 49.72 26.67 17.08 8.23

15 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 38.46 29.17 16.67 9.48

16 B B B B B B B B B B B B B B B B A A A A A A A A A A B B B B B A A A B 47.56 30.42 15.83 9.83

17 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 45.45 50.00 34.58 12.80

18 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 73.08 31.25 23.75 7.23

19 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B 42.99 37.50 18.33 14.18

20 A A A A A A A A A A A H A A A A A A A A A A A A A A A B B B B B B B B 27.04 36.67 27.50 11.93
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Appendix A- Lists of Percentage of genome recovery, 

greenhouse and field mean PSS, field FDK and DON 

concentration in Overland, Overley, and Jagger-Fhb1 

populations 

Table 0.1. Overland-Fhb1 lines 

Line # Percentage 

of genome 

recovery 

(%) 

GH_mean 

PSS (%) 

Field_mean 

PSS (%) 

Field 

FDK 

(%) 

Field 

DON 

(ppm) 

Cg8 

genotype 

Xumn10 

genotype 

1 95.28 30.88 24.69 5.75 2.98 a a 

2* 98.20 16.86 21.94 19.17 5.60 a a 

3 94.51 24.37 25.56 21.67 6.48 a a 

4 94.22 56.88 50.46 33.75 6.40 b b 

5* 95.25 9.60 16.26 18.50 5.93 a a 

6 91.99 22.07 21.94 16.58 4.40 a a 

7 92.26 15.22 23.06 19.92 9.63 a a 

8* 93.84 13.72 20.26 25.00 9.40 a a 

9* 95.80 12.94 18.21 22.00 7.33 a a 

10 88.84 19.86 23.10 22.92 9.03 a a 

11 94.97 8.78 18.35 22.83 10.68 a a 

12 97.37 12.01 20.65 27.58 11.28 a a 

13 94.63 9.51 22.71 29.58 15.80 a a 

14 98.13 23.21 25.59 20.75 6.95 a a 
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15* 89.69 10.88 15.72 12.50 4.53 a a 

16* 87.61 12.04 18.39 18.33 8.50 a a 

17 91.19 11.31 20.18 25.83 14.63 a a 

18 - 65.93 53.38 20.83 6.38 b b 

19* 95.75 11.72 17.40 17.92 10.00 a a 

20 93.78 25.61 26.10 15.67 10.13 a a 

21 96.11 13.09 23.31 29.17 10.88 a a 

22* 85.59 11.77 18.82 20.00 9.43 a a 

23* 85.89 14.13 18.86 19.58 10.65 a a 

24 90.69 19.56 23.73 19.58 12.60 a a 

25 97.94 18.98 27.10 22.08 13.33 a a 

26 96.59 28.25 30.64 24.92 11.73 a a 

27 92.89 16.44 23.74 22.08 9.70 a a 

28 - 7.14 14.05 7.83 7.10 a a 

29 - 60.46 49.94 17.92 7.38 a a 

30 96.17 23.53 27.36 20.83 9.75 a a 

31* 96.50 14.88 22.56 18.83 7.05 a a 

32 98.22 22.68 27.76 22.92 11.70 a a 

33 96.85 27.38 29.65 22.92 7.48 a a 

34 95.16 24.18 25.98 17.08 9.28 a a 

35 90.61 27.43 25.79 8.33 5.20 a a 

36* 88.08 13.06 15.79 18.75 9.90 a a 

37 93.41 22.98 26.01 24.17 8.78 a a 
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38 96.07 21.31 25.87 20.83 12.83 a a 

39 97.66 24.50 27.86 20.83 6.93 a a 

40 96.23 22.13 25.73 19.17 7.38 a a 

41 92.57 24.71 24.83 18.75 10.58 a a 

42 98.56 29.27 31.46 21.67 13.73 a a 

43 97.49 24.89 31.04 22.92 7.05 a a 

44 94.38 23.73 31.93 33.33 12.05 a a 

45* 96.53 8.81 14.76 16.08 7.45 a a 

46 97.71 10.80 21.64 22.50 11.30 a a 

47 97.71 23.52 26.52 17.92 10.53 a a 

48 95.41 23.34 29.45 22.50 9.93 a a 

49 93.76 25.57 27.88 19.17 14.65 a a 

Overland 100 40.35 58.84 40.84 12.53 b b 
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Table 0.2. Jagger-Fhb1 lines 

Line # Percentage 

of genome 

recovery 

(%) 

GH_mean 

PSS (%) 

Field_mean 

PSS (%) 

Field 

FDK 

(%) 

Field 

DON 

(ppm) 

Cg8 

genotype 

Xumn10 

genotype 

1 95.83 32.19 20.83 10.00 9.40 a a 

2 88.12 30.32 24.58 11.67 5.45 a a 

3 93.73 43.23 12.08 11.17 5.55 a a 

4* 94.38 37.17 15.83 8.67 4.03 a a 

5* 92.00 30.17 9.17 4.67 3.40 a a 

6* 95.02 36.73 12.92 6.71 4.30 a a 

7 91.83 47.88 25.42 19.58 10.55 a a 

8 89.39 50.62 20.00 11.92 5.35 a a 

9* 91.32 31.81 12.92 5.67 3.60 a a 

10 93.86 48.92 21.67 16.67 10.00 a a 

11 87.33 33.31 12.08 4.33 3.15 a a 

12 93.34 40.32 25.42 17.50 10.78 a a 

13 92.28 44.60 20.00 9.08 4.50 a a 

14 93.97 50.85 14.17 11.25 9.65 a a 

15* 93.88 30.98 19.17 12.92 7.28 a a 

16 91.85 40.01 22.50 10.92 7.85 a a 

17* 91.03 38.03 12.08 4.83 6.40 a a 

18 85.43 47.67 24.58 9.17 6.06 a a 

19 93.28 38.70 20.00 15.42 10.13 a a 
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20 92.72 47.70 31.67 23.33 8.30 a a 

21 92.44 52.39 22.08 8.58 5.30 a a 

22 92.60 36.50 28.33 15.00 8.68 a a 

23 93.33 48.36 24.58 12.50 9.35 a a 

24 95.70 41.08 18.75 10.00 4.78 a a 

25 93.03 48.21 13.33 6.08 3.20 a a 

26 88.01 55.79 29.58 21.67 11.70 a a 

27 95.20 34.32 25.00 12.50 5.43 a a 

28 90.43 58.61 22.92 6.67 6.68 a a 

29 91.64 48.11 32.50 18.83 8.85 a a 

30 92.82 40.10 18.75 10.00 4.40 a a 

31 87.64 42.72 25.42 11.92 4.98 a a 

32* 94.95 39.85 16.25 7.92 5.43 a a 

33* 87.32 30.81 11.25 6.17 4.78 a a 

34 92.90 41.07 19.58 11.42 5.99 a a 

35* 96.05 31.88 12.92 7.08 3.23 a a 

36 81.78 44.25 22.50 18.25 13.95 a a 

37 96.68 44.24 27.50 14.17 7.93 a a 

38* 94.98 21.03 17.92 12.08 6.38 a a 

39* 93.18 34.07 12.92 9.50 4.13 a a 

40 89.30 42.37 17.92 16.25 5.53 a a 

41* 93.48 34.26 14.17 4.17 3.85 a a 

42 98.11 44.51 11.67 11.50 5.78 a a 
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43* 89.42 37.65 13.33 17.08 9.55 a a 

44 88.92 41.16 18.33 9.83 5.93 a a 

45 93.86 40.52 20.00 16.25 7.93 a a 

46 88.53 54.46 15.83 11.17 5.23 a a 

47 90.75 34.36 22.92 14.17 5.60 a a 

48 89.27 42.25 30.00 45.00 19.65 a a 

49 90.15 40.03 22.50 15.92 5.40 a a 

50 87.79 30.51 13.33 7.50 7.05 a a 

51* 93.14 31.54 20.00 14.42 3.20 a a 

52 89.80 30.60 22.08 15.00 5.98 a a 

53 94.55 49.06 14.58 7.92 3.30 a a 

54 95.30 33.56 26.25 11.67 8.40 a a 

55* 95.82 27.70 15.42 8.67 3.38 a a 

56 88.25 38.48 22.50 9.08 5.30 a a 

57 89.02 43.73 15.42 12.92 10.68 a a 

58 85.20 47.43 16.25 5.67 3.91 a a 

59 94.16 44.44 15.00 4.17 3.35 a a 

Jagger 100 83.66 51.67 31.34 9.51 b b 
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Table 0.3. Overley-Fhb1 lines 

Line # Percentage 

of genome 

recovery 

(%) 

GH_mean 

PSS (%) 

Field_mean 

PSS (%) 

Field 

FDK 

(%) 

Field 

DON 

(ppm) 

Cg8 

genotype 

Xumn10 

genotype 

1* 86.85 37.22 21.25 8.67 4.20 a a 

2 90.07 53.73 30.00 12.00 4.88 a a 

3 97.71 56.10 25.42 14.08 4.95 a a 

4 68.44 40.73 26.67 10.17 4.08 a a 

5 66.90 38.99 27.92 13.33 7.53 a a 

6 64.37 48.82 20.42 16.67 5.58 a a 

7* 90.58 43.27 20.00 11.67 6.58 a a 

8 94.92 47.06 33.33 15.42 5.98 a a 

9* 89.89 45.67 14.58 5.92 4.18 a a 

10 86.51 50.42 24.17 23.33 10.05 a a 

11 93.41 58.45 35.83 23.33 7.70 a a 

12* 94.40 36.86 20.83 11.67 6.65 a a 

13 95.51 44.59 36.67 24.08 7.03 a a 

14 92.83 49.72 26.67 17.08 8.23 a a 

15* 96.10 38.46 29.17 16.67 9.48 a a 

16 96.78 47.56 30.42 15.83 9.83 a a 

17 95.14 45.45 50.00 34.58 12.80 a a 

18 94.84 73.08 31.25 23.75 7.23 a a 

19 92.70 42.99 37.50 18.33 14.18 a a 
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20 - 27.04 36.67 27.50 11.93 a a 

Overley 100 95.08 80.50 67.50 20.13 b b 

Note: Lines selected were labeled with astericks (*). „a‟ represents genotype of Ning7840, and „b‟ 

represents genotype of Overland, Overley, and Jagger. 

 

 

 


