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Abstract

Background: Flow visualization techniques such as uPIV and droplet imaging determine the measurement volume
by the focal plane. Thus, an understanding of how the focal plane moves in reference to the camera is necessary
when planar interfaces are present between the camera and the focal plane.

Methods: Using geometric optics, a focus model for a camera imaging through multiple parallel interfaces with
different refractive indices is derived. This model is based on the thin lens camera model and gives the location of the
focal plane, the depth of field, and the change in the location of the focal plane for a change of camera position. The
theoretical model is validated by both simulation and experimental results.

Results: Significant results are that while the magnification of a camera for an in-focus object does not vary for
changes in the camera position, the position of the focal plane does. The change of the focal plane location depends
only on the refractive indices of the media surrounding the camera and the focal plane regardless of the number or
type of other media in between.

Conclusion: The derived model provides a simple, accurate relationship between the focal plane location and the
number and location of planar interfaces, thus avoiding potentially incorrect results for measurement plane depth.
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Background
Particle image velocimetry (PIV) is one of the most
prominent measurement techniques for full-field flow
quantification. Of particular recent interest, with the rise
of micro-electromechanical systems (MEMS) technology
and microfluidics, is the field of μPIV—measuring veloc-
ity fields of small channel flows at high magnification (see
[1] for a review). Various challenges arise when apply-
ing this technique to small scales, including diffraction
effects, errors due to Brownian motion and spurious
reflections, and the necessity of setting the measurement
volume using the depth of field instead of light sheet
thickness. The latter of these challenges shifts the respon-
sibility of accurately locating the measurement volume
to the imaging rather than light sheet optics. Thus, the
measurement volume location and thickness are deter-
mined by the parameters of the camera and lens combi-
nation such as numerical aperture (NA), focal length, and
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magnification. The thickness of the measurement volume
for volume-illuminated μPIV has been thoroughly stud-
ied. Meinhart et al. [2] derived the depth of measurement
volume accounting for diffraction, geometric optics, and
particle size. Olsen and Adrian [3] derived the depth of
correlation for the measurement volume—the thickness
outside of which a particle does not make a significant
contribution to the cross-correlation of the interrogation
regions. On the other hand, very little has been said about
the location of the focal plane. Both of these considera-
tions become more complicated when multiple interfaces
are situated between the camera and the focal plane
(e.g. the camera views through a window into a medium
other than air), which is a common situation in μPIV
applications.
For the macro-scale PIV case, various models have been

proposed to correct the distortions from such changes
of optical media. Wieneke proposed a self-calibration
scheme where the location of the laser light sheet was
inferred without a calibration target using the dispar-
ity map from de-warped images from two stereoscopic
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cameras [4]. He showed that the Tsai pin hole camera
model [5] could accurately model the distortion induced
by the planar interface, although the parameters of the
model no longer took on physical values. For his proposed
self-calibration scheme when the camera system was ini-
tially calibrated in air and then self-calibrated in water,
he proposed the three interface model of Maas [6] and
was able to accurately self-calibrate as long as the distance
andmisalignment between the window and the light sheet
could otherwise be accurately inferred. He also verified
that using Tsai’s model along with Maas’ three interface
model allowed the Tsai intrinsic parameters to assume
physically realistic values.
For applications other than PIV, such as underwater

photography and photogrammetry, several models and
calibration techniques have been proposed to explicitly
correct for the distortion due to a change of refractive
media. Kwon proposed a modification of the direct linear
transform (DLT) model using Snell’s law to explicitly cor-
rect for this [7, 8]. Simulations using this model showed
a significantly smaller error than the DLT model. How-
ever, his calibration method required the prior knowledge
of the location and orientation of the planar interface.
Treibitz et al. show that a camera viewing a scene through
multiple refractive geometry is not a single viewpoint sys-
tem [9]. They proposed a camera calibration method for
estimating the focal length of the camera and the distance
from the camera center to the interface based on mini-
mizing the length in the world space of a known straight
object. Agrawal et al. further extended this area, show-
ing the system is essentially an axial camera [10]. They
proposed a calibrationmethod based on 2D-3D point cor-
respondences where the 3D calibration points have an
unknown pose. The calibration scheme allows them to
estimate the orientation of the camera with respect to
the interfaces, the thicknesses of the interfaces, and the
indices of refraction.
However, none of these models address the effect of

multiple refractive geometry on the location of the focal
plane or the depth of the measurement volume. While
effects of refractive geometry are perhaps understood by
the community (e.g. Meinhart et al. [2] mention adjusting
the movement of a microscope by the ratio of the refrac-
tive indices), the authors are not aware of an organized
exposition of these effects and their practical implica-
tions anywhere in the literature. Thus, there is warrant for
revisiting this topic to provide better clarity for further
research in the area of μPIV and other experimental flow
visualization methods.
Therefore, this paper presents the relationship between

the location of the focal plane and the orientation of the
camera with respect to m parallel planar index of refrac-
tion changes using a first order geometric model. This
relationship is demonstrated without complicated optical

theory to make the results usable to experimentalists from
domains other than optics. The model is an extension
of the thin lens, paraxial model and is derived for the
case where the optical axis is perpendicular to the planar
interfaces.

Methods
Model development
A thin lens is described by two idealizations. First, all rays
traced through the lens are assumed to be close enough to
the optical axis so that the trigonometric functions of the
angle between the ray and the axis can be approximated
accurately with a first order Taylor series expansion. Sec-
ond, the thickness of the lens is small enough that the two
principle planes of the lens are assumed to be superim-
posed. Thus, a ray intersecting the center of the lens at
the optical axis will continue in the same direction with-
out deviation. These two assumptions ensure that all rays
from object points will intersect at a single image point,
and thus the thin lensmodel can exactly describe a pinhole
camera model. However, the additional parameter—the
distance of the image plane from the camera center, allows
information about focus to be inferred. For many imag-
ing scenarios, the thin lens assumptions are justified the
distance of the object to the camera is large compared to
the size of the aperture. Additionally, most modern optical
systems are designed to minimize the aberrations caused
by the limitations in this model.
In this paper, the thin lens model will be extended to

include the effect of multiple parallel interfaces between
the camera and the focal plane. The analytical expres-
sions regarding the focal plane location will be derived
using the paraxial assumption for the rays passing
through the planar interfaces as well as through the
thin lens.
Figure 1 shows a ray leaving an object, passing through

the parallel interfaces, and being focused by the thin lens
to potentially form an image on the image plane. Under
the paraxial assumption, an arbitrary ray passing through
a thin lens may be considered to continue directly to the
principle plane and be bent according to the relation [11]

θ ′ = θ + yφ, (1)

where θ and θ ′ are the small angle between the ray and the
normal to the principle plane for the entering and leaving
ray respectively (a ray with a positive slope has a posi-
tive angle), y is the height above the optical axis where the
ray intersects the principle plane, and φ is the power of
the refracting system, which is the reciprocal of the focal
length of the lens or 1/f .
Starting from the object point, a general expression will

be derived for the distance between the optical axis and
the image point as a function of z as shown in Fig. 1. From
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Fig. 1 Ray tracing diagram for focal plane model withm changes in index of refraction

Fig. 1, the height where the ray hits the principle plane of
the lens is

y0 = h0 −
m∑

i=0
�ziθi, (2)

where the small angle approximation tan(θi) ≈ θi has
been used. The negative sign comes from the sign conven-
tion assumed for the slope of the ray: the angle that the ray
makes with the interface is positive if the slope of the ray
is positive with respect to the camera coordinate system.
For positive ray slopes with respect to the coordinate sys-
tem, the intersection point of the ray with a surface closer
to the origin will be lower.
Snell’s Law can be used to write θi in terms of θm and the

refractive indices. By applying Snell’s Law, in first order,
recursively at each interface, the ith angle is given as

θi = nm
ni

θm. (3)

Thus, the angle of the ray where it hits the principle
plane of the lens is

θ0 = nm
n0

θm. (4)

and the height of this point is given by

y0 = hO −
m∑

i=0
�zi

nm
ni

θm. (5)

The ray is then bent by the lens according to Eq. (1) so
that the new angle is

θI = nm
n0

θm +
(
hO −

m∑

i=0
�zi

nm
ni

θm

)
1
f
. (6)

Because of the paraxial assumption, this angle is the
same as the slope of the ray forming the image. Thus the

image height can be expressed as a linear equation in z
where θI is the slope and y0 is the intercept,

hI(z, θm) =
[
nm
n0

θm +
(
hO −

m∑

i=0
�zi

nm
ni

θm

)
1
f

]
z + hO

−
m∑

i=0
�zi

nm
ni

θm.

(7)

For clarity, �m is defined as

�m �
m∑

i=0
�zi

n0
ni

, (8)

which when substituted yields

hI(z, θm) =
[
nm
n0

θm +
(
hO − nm

n0
�mθm

)
1
f

]
z + hO

− nm
n0

�mθm.

(9)

Any ray leaving the object will create a ray in the image
space with a height given by this equation. Any two rays
leaving the object will intersect to form an image point.
By solving for the image point using two arbitrary rays,
it can be shown that all rays leaving the object point and
captured by the lens will intersect to form a single image
point. The rays will be distinguished by the angles leaving
the object point θm and θ ′

m. The system is

hI =
[
nm
n0

θm +
(
hO − nm

n0
�mθm

)
1
f

]
z + hO − nm

n0
�mθm

(10)

hI =
[
nm
n0

θ ′
m +

(
hO − nm

n0
�mθ ′

m

)
1
f

]
z + hO − nm

n0
�mθ ′

m.

(11)
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Solving for z and hI yields

z = �mf
f − �m

(12)

and

hI = hOf
f − �m

. (13)

Note that neither of these expressions depend on the
value of θ or θ ′. Thus, all rays leaving an object and
captured by the lens intersect at a single image point.
Let dI be the distance of the image plane from the prin-

ciple point (e.g. z). From Eq. (12), �m can be expressed as

�m = dIf
dI − f

. (14)

Using the definition of �m, the distance from the final
interface to the object plane is

�zm = nm
n0

[
dIf

dI − f
−

m−1∑

i=0
�zi

n0
ni

]
. (15)

This result is almost the same as a thin lens by itself, and
it simplifies to this as the indices of refraction converge.
The difference is that the distance from the camera to the
object is modified by the ratios of refractive indices of the
different segments.
Using this expression, the movement of the focal plane

location with changes in camera location can be demon-
strated. For image measurement techniques, it is critical
to be able to evaluate this relationship in order to record
data from the proper slice of a flow. First consider from
Eq. (15) that the location of the focal plane with respect to
themth interface is a function of �z0. Thus an incremen-
tal change in �z0 will lead to a differential change in �zm.
Expressly,

δ�zm = �zm(�z0 − δ�z0) − �zm(�z0) (16)

A negative differential change indicated in Eq. (16) cor-
responds to the camera moving towards the interfaces.
Using Eq. (15), δ�zm is equivalent simply to

δ�zm = nm
n0

δ�z0 (17)

Simulations
In the above derivations, the paraxial assumption was
made for the rays passing through the refractive planes.
This is only a reasonable assumption for object points
close to the optical axis at a sufficient distance from the
lens. Thus, it is important to validate this assumption by
simulating the full physics of the rays for typical opti-
cal systems to see how the full solution differs from the
approximation. Without the paraxial assumption at the

parallel interfaces, the expression for the image height can
be shown to be, using the same nomenclature as in Fig. 1,

hI(z) =

⎡

⎢⎢⎣
nm
n0 sin(θm)

√
1 −

(
nm
n0

)2
sin2(θm)

+ y0
f

⎤

⎥⎥⎦ z + y0, (18)

where y0 is the height of the ray where it intersects the
principle plane of the lens and is given by

y0 = hO −
m∑

i=0

�zi sin(θm)nmni√
1 −

(
nm
ni

)2
sin(θm)2

, (19)

and where θm is the angle between the ray leaving the
object point and the optical axis. In general, there is no
image point that is common to all rays leaving the object
under this model.
Because of this, focus information must be inferred by

finding the location of the image plane that results in the
least blur of the image. This location was computed using
the envelope of the curve (caustic) formed by Eq. (18) for
all rays captured by the camera. The intersection points of
this envelope with the rays passing through the aperture
limits on the top and bottom of the lens gave the likely
locations of the smallest bundle of rays. For the simula-
tion, these intersection points were solved for numerically
and all possible combinations were computed to find the
image location for the smallest bundle.
This was performed for two representative cases with

equipment currently used in the authors’ lab. The first
case was a μPIV situation with a long-distance micro-
scope (TSI, Inc PowerView Plus 4 MP with K2/SC Infinity
lens with CF-4 objective). Here there were two planar
interfaces and the focal length was 55 mm. The indices
of refraction from the camera to the focal plane were 1.0,
1.58, and 1.33, simulating air, glass, and water respectively.
The camera center was 64 mm from the first interface, the
glass thickness was 1mm, and systemwas initially focused
at a location 2 mm from the last surface. The camera was
moved 150 μm towards the interfaces. Table 1 gives the
results of the simulation. The object height is given as a
fraction of the field of view (FOV) of the camera with 0.5
representing the maximum distance from the optical axis.
The second simulation case was that of a macro-scale

droplet imaging situation. The camera and optics were
set to match a machine vision camera with a standard
100 mm lens. The focal length was 100 mm, and the aper-
ture spans f/2.8 to f/32. There were three interfaces with
fourmediums having refractive indices of 1.0, 1.518, 1.474,
and 1.02. The distances between the interfaces were 304.8,
15.75, 33.02 mm, and the focal plane was at 33.34 mm
beyond the final interface. The camera was moved 10 mm
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Table 1 Simulation results for μPIV case

NA hO/FOV �zm Full �zm Paraxial δ�zm Full δ�zm Paraxial

0.05 0 2.000 1.9991 0.1996 0.1995

0.10 0 2.000 1.9964 0.1997 0.1995

0.20 0 2.000 1.9859 0.2004 0.1995

0.05 0.25 2.000 1.9986 0.1996 0.1995

0.10 0.25 2.000 1.9954 0.1998 0.1995

0.20 0.25 2.000 1.9839 0.2005 0.1995

0.05 0.50 2.000 1.9977 0.1996 0.1995

0.10 0.50 2.000 1.9942 0.1999 0.1995

0.20 0.50 2.000 1.9818 0.2005 0.1995

towards the interfaces. Table 2 gives the results of the
simulation.
In both of these simulations, the accuracy of the first

order model decreases as the object height and aperture
increases. However, even at the largest aperture and object
height, the relative error between the full model and the
paraxial model is less than 1% indicating that the first-
order model can be accurately be used for these imaging
situations. However, as indicated by the simulations, the
error induced by this approximation increases with FOV
and aperture. Imaging setups with FOV or aperture much
larger than those used in the above simulations could
result in significant errors.

Experimental validation
The model was validated by performing experiments on
a long distance μPIV setup. Figure 2 gives a schematic
for the experimental facility. The camera was mounted
over a square polycarbonate duct with a copper bot-
tom. A 25 μm [0.001in] resolution stage was used to
move the camera with respect to the camera interface.
Water was circulated in the duct. Light was supplied by
means of an LED lamp. The camera used for the experi-

Table 2 Simulation results for droplet imaging case

f -stop hO/
∑

�zi �zm Full �zm Paraxial δ�zm Full δ�zm Paraxial

f/32 0 33.3375 33.3374 10.1972 10.1972

f/11 0 33.3375 33.3374 10.1972 10.1972

f/2.8 0 33.3375 33.3374 10.1972 10.1972

f/32 0.25 33.3375 33.3136 10.1972 10.1977

f/11 0.25 33.3375 33.3136 10.1972 10.1977

f/2.8 0.25 33.3375 33.3136 10.1972 10.1977

f/32 0.50 33.3375 33.2252 10.1972 10.1994

f/11 0.50 33.3375 33.2252 10.1972 10.1994

f/2.8 0.50 33.3375 33.2252 10.1972 10.1994

15.24mmWater

Air

Camera

Polycarbonate

LED
Light

4.76mm

Stage

Fig. 2 Schematic of experimental setup

ments was a machine vision camera (TSI PowerView Plus
4 MP) with a long distance microscope (K2/SC Infinity
with CF-4).
The procedure of the experiment was as follows:

1. The camera was focused on the outside of the
polycarbonate duct using the focus adjustment on
the K2 lens.

2. A focused image of the top of the polycarbonate was
captured.

3. Using the traverse, the camera was moved towards
the duct until the bottom surface of the
polycarbonate wall was in focus. The displacement
required was recorded, and an image was captured.

4. The camera was then lowered until the bottom of the
duct was in-focus. The displacement required was
recorded and an image was captured.

Figure 3 shows the focused images of the top, bottom
of top wall, and bottom of duct locations. The measured
displacements of the camera required to achieve these
sharp images in comparison to the model are shown in
Table 3. The indices of refraction for air, polycarbon-
ate, and water were assumed to be n = 1.0, n = 1.6,
and n = 1.33.
As shown in the table, the model predicts the exper-

imental values within ± 2%, giving good confidence in
the model. Notice that neglecting to use any model at all
would result in a 28% error in the focal plane location.
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a b c
Fig. 3 Images taken during experiments. a Top of duct (outside), b Top of duct (inside), c Bottom of duct

Results and discussion
From this focus model, the location of the focal plane,
implications about the magnification of the system, and
how these factors change with movement of the camera
or for different orientations of the planar interfaces can be
inferred.

Location of focal plane
From Eqs. (14) and (17), several important conclusions
can be derived. First, movement of the camera will
not produce equal movement of the focal plane unless
nm
n0 = 1. Secondly, the amplification of the motion of
the camera does not depend on the location of the focal
plane. Thus, Eq. (17) holds regardless of the location of
the camera with respect to the interface. Also from these
equations, the only factor that affects this relationship is
the refractive indices of the media surrounding the lens
and the focal plane. Thus, the number or type of media
changes in between the camera and the focal plane have
no effect on the relationship between camera and focal
plane movement.
A more complete understanding of this result can be

seen by realizing that the right hand side of Eq. (14) only
depends on the type and adjustment of the lens. Thus,
if the focus adjustment of the lens remains fixed, �m is
constant, despite the number of interfaces, the indices of
refraction, or the relative location of the camera to the
interfaces changing. If the optical system has been focused
on a known location to determine the left hand side of
Eq. (14), any of the parameters of the left hand side can

Table 3 Experimental results

Level Geometric Model-predicted Actual camera Diff (%)
location camera motion motion (mm)
(mm) (mm)

Top of duct 0 — — —

Bottom
of top wall

4.76 2.98 2.94 -1.2%

Bottom
of duct

20.00 14.44 14.20 -1.7%

be solved for after a change in the location or type of the
interfaces.

Magnification of image
From the results in Eq. (13) immediately follows that the
magnification of the system is

M � hI
hO

= f
f − �m

. (20)

Themagnification written in terms of the distance to the
image, dI � −z from Eq. (12) is

M = f − dI
f

. (21)

Note that here the magnification is defined to be negative
if the image is inverted.
Equation (21) is identical to the magnification of a sin-

gle thin lens [11]. However, Eq. (20) is different. This leads
to the important conclusion that, from the perspective of
the camera, the magnification of the image is not changed
by the insertion of the refractive interfaces. However, the
location where the camera is in focus and where the mag-
nification holds, does change. For example, consider a
camera that is focused on an object in air. If a window is
placed between the object and the camera and the space
surrounding the object filled with water, the location of
the center of the focal plane would no longer be at the
object. However, if the object was moved to the new loca-
tion of the focal plane, the magnification would be the
same as before the window was put in place. If instead
the camera was re-focused on the current location of the
object after the insertion of the window, the magnification
would change according to how the re-focusing changes
dI in Eq. (21).
Further implications of this result are that as long as the

camera is not re-focused, movement of the camera with
respect to the interfaces will not change themagnification,
though, depending on the depth of field, the camera will
not still be focused at the same location.
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Conclusions
In this paper, a first order, geometrical optics focus model
for a camera looking through multiple planar interfaces
was presented. The model demonstrates the following
relationships between the object focal plane and the ori-
entation of the camera to the planar interfaces:

1. For fixed focus, the magnification of the camera is
not changed by the addition or removal of planar
interfaces between the camera and the object;
however, the location of the focal plane where that
magnification holds, does change.

2. Motion of the camera towards or away from the
refractive interfaces results in a movement of the
focal plane of the camera that is magnified by the ratio
of the refractive indices of the media surrounding the
object and the camera regardless of the number or
type of media between the object and the camera.

3. For a fixed lens focus, the optical path length
between the camera center and the focal plane is
fixed regardless of changes in number of interfaces,
index of refraction, or relative location of the camera
to the interfaces.

The paraxial assumption of the model has been vali-
dated for typical imaging cases through simulation, and
the main consequences of the model have been validated
experimentally.
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DLT: Direct linear transform; FOV: Field of view; MEMS: Micro-electromechanical
machines; NA: Numerical aperture; PIV: Particle image velocimetry
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