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Abstract

Advancements in technology have resulted in the emergence of numerous FinTech inno-

vations. However, a global understanding of such innovations is limited, due to a lack of

an underlying taxonomy and benchmark datasets in the FinTech domain. To address this

limitation, we develop a FinTech taxonomy and manually annotate a set of FinTech patent

abstracts according to the taxonomy. We use the annotated dataset to train deep learning

models. Experimental results show that the deep learning models can accurately identify

FinTech innovations. Specifically, we focus on patent document classification, and explores

the predictive capabilities of three document sections alone and in combination. Our results

indicate that the title and abstract in combination are most efficient in detecting FinTech

innovations.
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Chapter 1

Introduction

Patent documents represent a vast resource for research, litigation, and other uses, and yet

searching through millions of documents can be time-consuming or prohibitively expensive.

This is particularly true if one wishes to search for categories that are non-standard in patent

offices. For instance, currently FinTech patents, which combine financial and technology

domains, are not categorized as such by patent offices. This means trying to gain insight

into FinTech innovation patterns is difficult. To address this, our research uses deep-learning

models to attempt novel classification of patent documents into subcategories of FinTech

using a taxonomy in accordance to FinTech literature.

The financial and technology sectors have been interwoven in the last 150 years [4], ever

since the communication infrastructure underpinning financial transactions has been built.

Post-2008, the year marking the all-time low trust in financial institutions, advancements

in technology and data science have resulted in the emergence of numerous FinTech start-

ups and placed start-ups, as well as highly trusted technology sector incumbents in a good

position to challenge the traditional financial sector in the provision of financial services

[5, 6].

According to KPMG 1, in 2019, global investments in FinTech start-ups attracted $135.7B

with 2,693 deals, most notably in FinTech sub-sectors such as payment technologies and in-

1https://assets.kpmg/content/dam/kpmg/xx/pdf/2020/02/pulse-of-fintech-h2-2019.pdf

1

https://assets.kpmg/content/dam/kpmg/xx/pdf/2020/02/pulse-of-fintech-h2-2019.pdf


vestment and lending platforms. FinTech innovations do not occur only in start-ups. On the

contrary, financial sector incumbents are responding in numerous ways to the technological

disruption overtaking the sector. Moreover, technology companies, which have been histori-

cally close to consumers, are also emerging as providers of financial services. In the US, in

2016 alone, JP Morgan has spent more than $9.5 billion in revamping its IT infrastructure,

out of which $600 million was spent on developing FinTech solutions, either in-house or

through partnerships2.

Despite significant investments in FinTech solutions, the literature to date has been

limited in explaining what FinTech innovations are, where and why they emerge, and what

is their impact on society and on the financial performance of companies that invest in them

[2], in part due to a lack of a widely-accepted FinTech innovations taxonomy and datasets

categorized according to such taxonomy. To fill in this gap, we aim to study the global

landscape of FinTech innovations starting from a global patent dataset of over 100 million

patent applications published between 2000 and 2017. Towards this goal, we first create a

FinTech innovation taxonomy corroborated from an extensive literature search on working

papers and published academic articles, reports and materials related to FinTech. We use

a list of financial terms to pre-filter financial related patents. We then build a substantial

corpus of manually labelled FinTech patents, and use it to train and evaluate different types

of deep learning classifiers, with focus on BERT models [1].

The rest of the thesis is organized as follows: We discuss related work in Chapter 2. The

FinTech dataset is described in Chapter 3, while the models we studied are introduced in

Chapter 4. We describe our experimental setup in Chapter 5 and we discuss the results of

the experiments in Chapter 6. Finally, we conclude the thesis and present ideas for future

work in Chapter 7.

2https://www.jpmorganchase.com/content/dam/jpmc/jpmorgan-chase-and-co/

investor-relations/documents/2016-annualreport.pdf

2

https://www.jpmorganchase.com/content/dam/jpmc/jpmorgan-chase-and-co/investor-relations/documents/2016-annualreport.pdf
https://www.jpmorganchase.com/content/dam/jpmc/jpmorgan-chase-and-co/investor-relations/documents/2016-annualreport.pdf


Chapter 2

Related works

Over the past decade, academic research in FinTech has grown in tandem with the

exponential rise of new FinTech start-ups around the world [7]. Several journals have hosted

special topics dedicated to FinTech Innovations, including the Review of Financial Studies

[8] and the Journal of Management Information Systems [9]. However, very few studies

have been able to provide a systematic overview of FinTech innovations, partly due to a

lack of an internationally recognised taxonomy, and partly due to a lack of datasets that

would enable large-scale analysis using machine learning and deep learning approaches. Such

taxonomies and datasets are available for general innovations and have been used successfully

to automatically classify patents and gain insights into general innovations trends in the last

decade [10, 11, 12, 13, 14, 15, 16, 17, 18].

In the FinTech area, one of the first studies to use machine learning to identify FinTech

innovations, and the implications on the financial performance of companies who invest

in such innovations, was performed by Chen et al. [2]. The authors employed text-based

machine learning approaches to classify and analyze innovations according to their key un-

derlying technologies. Chen et al. [2] used a dataset of US patents covering years 2003-2017,

pre-filtered using 487 financial terms. A subset of 1,800 patents was manually annotated

according to 9 categories. These categories include 7 FinTech categories (specifically, Cyber-

security, Mobile Transactions, Data Analytics, Blockchain, Peer-to-peer, Robo-adviser and

3



Internet of Things), a category for financial patents that are not FinTech, and a category

for non-financial patents. The manually annotated dataset was used to train and evaluate

several machine learning classifiers. Empirical results showed that an ensemble classifier,

consisting of linear support vector machines (SVM), Gaussian SVM, and neural network

models trained on patent text, performed the best, with an accuracy of 82.6% and an F1

score of 76.3%.

In another recent study, Xu et al. [3] trained random forest (RF) classifiers (which can be

seen as ensembles of decision trees) to identify FinTech patents. The original dataset used

in their study was extracted from the Lens database, and covered years 2014-2018. A set of

478 financial terms was used to filter financial innovations. A subset of 1,800 patents was

manually annotated according to 9 categories, including 7 FinTech categories (Encryption &

Security, Mobile Payments, Big Data Analytics, Blockchain, Online Lending, Expert Advisor,

and Internet of Things), and the 2 additional categories from [2]. The labeled subset was

used to train and evaluate RF classifiers. Empirical results showed that the best performing

classifier achieved an average accuracy of 71.67%.

Dataset Characteristics Chen et al. [2] Xu et al. [3] Our dataset
(1) Source of patents BDSS Lens Orbis/Patsat
(2) Years covered 2003-2017 2014-2018 2000-2017
(3) Legal jurisdiction of patents US US US + Europe
(4) IPC classes used G&H G&H G&H
(5) Initial number of patents based on criteria (1)-(4) above 200151 1181162 6.8M
(6) Financial terms for filtering financial patents 487 478 516
(7) Number of patents after filtering with financial terms (6) 67948 37156 38228
(8) Number of FinTech categories considered 7 7 5
(9) Number of manually annotated patents used for training 1800 1800 1938+450
(10) Total number of FinTech patents identified out of (7) 6511 3602 25580

Table 2.1: Characteristics of two existing FinTech datasets used by Chen et al. [2] and Xu
et al. [3] by contrast with our dataset.

While the datasets used by Chen et al. [2] and Xu et al. [3] do not include exactly

the same categories, they are based on similar raw data (i.e., patent applications filed by

inventors, in patent offices such as USPTO or EPO). The characteristics of the two datasets

are summarized in Table 2.1, and some of them are discussed below:

• Both datasets consist of filtered patents with legal jurisdiction in the US, and belong

to the G&H classes from the International Patent Classification (IPC) hierarchy.

4



• Both [2] and [3] used similar “lists of financial terms” consisting of 487 and 478 terms,

respectively, to filter patents potentially related to financial services.

• Both studies identified 7 FinTech categories, and 2 additional categories to capture not

FinTech, and non-financial patents, respectively. Chen et al. [2] identified the seven

FinTech categories based on insights from a general reading of FinTech reports and

articles. Xu et al. [3] selected their seven FinTech categories based on a Financial

Stability Board (FSB) report from 2017.

• Both studies manually labeled small subsets of patents (specifically, 1,800 patents)

according to the 9 categories considered. Chen et al. [2] labeled 200 patents in each

of the 9 categories considered, while Xu et al. [3] selected a random sample of 1800

patents and labeled them according to the 9 categories.

• Both studies used only the abstract section of a patent.

The prior works on FinTech innovation classification [2, 3] have employed traditional ma-

chine learning approaches, and have found that ensemble-type approaches show promising

results. However, in the light of the growing success that deep learning approaches have seen

in recent years, several works [14, 16, 15, 17, 18] have used such approaches to automatically

classify general patents according to standard categories in the International Patent Classi-

fication (IPC) or the Cooperative Patent Classification (CPC) taxonomies, and to improve

the overall financial technology solutions.

For example, [13, 15] used recurrent neural networks, specifically, long short-term neu-

ral networks (LSTM) [19], together with word2vec embeddings [20], to classify patents into

IPC categories, while [21] used gated recurrent unit (GRU) networks, together with fast-

Text embeddings [22] for the same task. Similarly, [17, 14] used word embeddings, including

Word2vec [20] and GloVe [23], together with convolutional neural networks (CNN) for text

classification [24]. Hu et al. [16] build a hierarchical feature model that combined CNN

and bidirectional LSTM (bi-LSTM) networks to capture both local lexical-level features and

global sequential dependencies. The authors showed that the combined model achieved bet-

5



ter performance than the independent CNN and LSTM/Bi-LSTM models on mechanical

patent documents. Finally, Lee and Hsiang [18] obtained state-of-the-art results with BERT

models [1] on the task of classifying patent documents according to the IPC or CPC tax-

onomies. Specifically, [18] used large datasets of patent documents to fine-tune a pre-trained

BERT-base model on the general patent classification task.

Beyond simply improving performance on the task of automatic patent classification, it

is also of interest to analyze innovation trends, as cutting-edge technologies are permanently

pioneered by scientists across the world. For example, trends within the technology domain,

or within the financial services sector, can be foreseen by analyzing patent applications and

patent grants. Chae and Gim [25] proposed a model based on the existing patent classifi-

cation schemes, IPC and CPC, to extract accurate innovation trends, as well as common

invention patterns. Sofean et al. [26] emphasized the need to predict proper relationships

and trends among technological areas of inventions, and proposed to use natural language

processing techniques to achieve this task. In the FinTech area, Chen et al. [2] used the

results of their best ensemble classifier on a large set of financial patents to identify temporal

trends with respect to the category of the innovation technology or with respect to its au-

thor. Furthermore, they used the results to estimate the value of a category by considering

stock price responses, and showed that the Internet of Things, Robo-advising, and Blockchain

categories generate the most significant financial gains to companies that invest in them.

To advance the research on identifying FinTech innovation started by Chen et al. [2]

and Xu et al. [3], in this work, we first refine the list of financial terms provided by Chen

et al. [2], and use them to identify patents, with jurisdiction in both the US and Europe,

potentially related to financial services. Furthermore, we propose a new, improved FinTech

taxonomy consisting of 5 categories (specifically, Insurance, Payments, Investments, Fraud,

and Data Analytics), and manually label 2,530 according to these categories. In addition,

we label 1,500 Non-FinTech patents. Given the success of the deep learning approaches on

general patent classification tasks, and in particular, the state-of-the-art results produced

by BERT models, we focus on classifying FinTech patents using BERT-type models and

compare the top 10 models. Chen et al. [2] and Xu et al. [3], used only the abstract section

6



of a patent in their FinTech patent classification tasks. In addition to the Abstract section

we are using also the Title and the Claims sections of a given patent. The goal is to compare

the performance of these three sections and to observe what part of a patent section gives

the highest results in the classification task.

7



Chapter 3

FinTech dataset

In this section, we describe the process we followed to create our FinTech dataset and

taxonomy, as well as the annotation of the subset used for training the deep learning models.

Figure 3.1: WordCloud of the 50 most frequent financial terms in the set of 38,228 patent
documents used in our analysis. The size of a term is proportional with the number of patents
in which the term appears.

8



3.1 FinTech dataset construction

We retrieve all the patents filed between 2000 and 2017 from the matched Orbis-PATSTAT

database, which contains bibliographical entries for over 100 million patent documents filed

around the world, as well as details about their corporate ownership. From these, we select

the patents developed/owned by corporate entities, and further filter only those with IPC

codes pertaining to the fields G and H, which cover innovations related to digital computing,

including many FinTech categories [2]. This filtering process results in 6.8 million patents.

Starting with a dictionary of 487 financial terms from the Campbell R. Harvey’s Hyper-

textual Finance Glossary and the online Oxford Dictionary of Finance and Banking [2], we

develop an enhanced set of 516 financial terms, and use these terms to select patents that

contain at least one keyword from the set. The number of patents that contain at least one

of the 516 financial terms is 38,228. The distribution of the 50 most frequent financial terms

in our dataset is illustrated in Figure. 3.1, where the size of each term is proportional to the

number of patent documents in which that term appears. We use this resulting dataset of

38,228 potential FinTech patents in our analysis as outlined below. Characteristics of our

dataset are summarized in the last column of Table 2.1, by contrast with the characteristics

of the prior datasets [2, 3]. It is worth noting that our initial dataset is the largest among

the three, as it covers both US and European patents.

3.2 FinTech innovation taxonomy

There is a wide range of financial products and services that fall under the FinTech

umbrella. Currently, there is no comprehensive, well-accepted taxonomy to analyse the

sector. Hence, we build a FinTech taxonomy by corroborating taxonomies which emerged

from our research of numerous articles, reports and market maps from both academia and

industry [33, 34, 35, 36, 37, 38, 2, 39]. Our taxonomy aims to capture innovations that

pursue the integration of more sophisticated IT tools and data science solutions in financial

products. It contains five FinTech categories, specifically, Data Analytics, Fraud, Insurance,

9



Investments and Payments. Applications corresponding to these categories, together with

an example of a patent filling abstract in each category are shown in Table 3.1. Our FinTech

taxonomy is aligned with that of [2]. However, in some respect, our taxonomy is more

general as we include a broader range of FinTech innovations, but in other respects, we

exclude some applications which are not necessarily specific to the financial sector, included

[2] (e.g., Blockchain and Internet-of-Things).

3.3 FinTech dataset annotation

To be able to train machine learning and deep learning models for FinTech patent iden-

tification, we manually annotated/labeled a subset of our patent dataset. Specifically, we

manually labeled the following number of patents: 440 patents for Fraud, 402 patents Insur-

ance, 484 patents for Investments, 426 patents for Payments, and 186 patents in the Data

Analytics category (the number of manually labeled patents in this category is smaller as

these patents were more difficult to identify during the manual analysis). Furthermore, we

manually labeled a subset of 450 Non-FinTech patents. Thus, together our manually labeled

dataset contains 1.938 FinTech patents and 450 Non-FinTech patents, for a total of 2,388

manually labeled patents. To train and evaluate our models, the dataset was split into train-

ing and test subsets, where the training subset contains 80% of the labeled data and the test

dataset contains 20% of the data.

10



Fintech category Applications Examples of patent filing abstracts

Data Analytics

Software,
data infrastructure
and analytics
for financial services

“[. . . ] computer programs product are provided
for automated generic and parallel aggregation of
characteristics and key figures of unsorted mass
data being of specific economic interest,
particularly associated with financial institutions,
and with financial affairs in banking practice.”[27]

Fraud

Fraud detection,
security infrastructure,
identity verification
& compliance

“This invention provides a system and method for
reducing the fraud related to remittance
transactions initiated at web portals. [..] For
example, a funding agency computer that enables a
remittance transaction can request that a
mobile platform computer verify a customer with
a mobile personal identifier. The mobile platform
computer can request the mobile personal
identifier from a customer via the customer’s
mobile handset device.”[28]

Insurance
Life insurance,
general & (re)insurance
software analytics

“An automated assignment system may operate
with a computer to automatically assign insurable
events to one or more organizational entities
associated with an insurance organization. The
automated assignment system may categorize the
insurable event.”[29]

Investments

Portfolio management,
lending and
investing platforms
and portfolio analytics

“A visual interactive multi-criteria decision-making
method and computer-based apparatus for
portfolio management. The method/apparatus
supports partitioning of a portfolio of physical or
other assets into two mutually exclusive
categories, such as assets recommended for sale
and assets recommended for retention.”[30]

Payments
Mobile payments

“A mobile payment platform and service provides
a fast, easy way to make payments by users of
mobile devices. The platform also interfaces with
non-mobile channels and devices such as e-mail,
instant messenger, and Web. In an implementation,
funds are accessed from an account holder’s mobile
device such as a mobile phone or a personal digital
assistant to make or receive payments.”[31]

Digital wallets

“A system and a method are provided for
generating a digital receipt for purchases made
utilizing a digital wallet or with other payment
procedures. The digital receipt is stored in the
cloud in a digital receipts repository for later
retrieval. The digital receipt can be standardized
to facilitate data processing of the data
contained in data fields of the digital receipt.”[32]

Table 3.1: Proposed FinTech Taxonomy (which includes five categories). Applications cor-
responding to each categories are also shown, together with an example of a patent filing
abstract in each category.
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Chapter 4

BERT-based models

In this section, we describe the deep learning models that we use in our analysis of

FinTech patents.

4.1 BERT model

We use BERT, which stands for Bidirectional Encoder Representations from Transformers

[1], as the core approach for the task of classifying FinTech patent documents, given that

BERT models have produced state-of-the-art results for many text classification tasks [40],

including classification of general patent documents [18]. BERT is a language model that

uses a deep bidirectional transformer encoder architecture [41] to encode sentences and their

tokens into dense vector representations. A generic model is pre-trained on a large corpus of

un-annotated text (e.g., Wikipedia) using two self-supervised learning tasks: masked word

prediction (a.k.a., masked language modeling, or MLM) and next sentence prediction (NSP).

BERT takes as input a sequence of word tokens, where the first token is a special token

denoted by [CLS] (the output representation of the [CLS] token can be seen as a semantic

representation for the whole input sequence). A BERT input sequence consists of one or

two sentences. For an input sequence consisting of two sentences, the two sentences are

separated by another special token, denoted by [SEP]. Embeddings of the input tokens are
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provided to a multi-layer bidirectional transformer encoder, which transforms the original

input embeddings into contextual output embeddings using the masked word prediction

and/or next sentence prediction tasks. Figure 4.1 shows the architecture of a generic BERT

model, which takes two sentences as input.

Figure 4.1: BERT architecture used for pre-training (figure adapted from [1]).

A generic BERT model, pre-trained on a large corpus, can be further pre-trained and/or

fine-tuned for specific NLP tasks [1]. Particularly, a BERT model for the FinTech patent

classification task can be initialized with the parameters of a generic pre-trained BERT

model, further pre-trained using FinTech patent data, and subsequently fine-tuned for patent

classification. In the pre-training phase, the input to the model consists of tokens in two

sentences (from patent text), preceded by the token [CLS] and separated by the token [SEP],

and the output consists of vector representations of the input tokens. In the fine-tuning

phase, the BERT architecture is similar to the architecture of a generic BERT model, except

for the inclusion of a classification component (e.g., a fully connected layer, followed by

a softmax classification layer). The classification component is linked to the first output

embedding, C, corresponding to the first input token [CLS], and provides a representation

of the whole input sequence. The input to the classification BERT model consists of tokens
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in a patent text (also preceded by [CLS]), and the output is the category of the input patent.

4.2 BERT variants

The success of the initial BERT-based models has resulted in an unparalleled suite of

variants that can be used with the pre-training/fine-tuning framework proposed in [1]. We

used six variants in our analysis, specifically, RoBERTa [42], ALBERT [43], XLNet [44],

BART [45], Longformer [46] and DeBERTa [47]. RoBERTa (Robustly Optimized BERT

Approach) [42] uses a larger dataset and an improved procedure to pre-train the BERT ar-

chitecture. Among others, the next sentence prediction is removed and the masking applied

to the training data is changed dynamically. ALBERT (A Lite BERT) [43] is focused on

decreasing BERT’s size (i.e., the number of parameters that need to be learned), while not

hurting its performance. It achieves a reduction in the number of parameters by factorizing

the embedding parameterization and sharing parameters across all layers. To improve the

training, it replaces the next sentence prediction task with a sentence order prediction task

that better captures the inter-sentence cohesion. XLNet [44] is a large bidirectional trans-

former, whose authors argue against the masked language modeling task and introduce an

autoregressive permutation language modeling task for training (specifically, prediction of

the next token in a sequence using some random order of the sequence). This improvement

in the training procedure enables XLNet to capture better bidirectional dependencies among

tokens in a sequence. BART[45] is a sequence-to-sequence pre-trained model which unifies

concepts from BERT and GPT-2 [48] architectures. More specifically is using a bidirectional

encoder but also a left-to-right decoder. BART is pre-trained on tasks where as input is given

a text. On this text a noising function is applied randomly. The goal of Bart is to apply the

denosing auto-encoder mechanism to reconstruct the original text. The authors are men-

tioning that on some language modeling tasks the performance of Bart matches RoBERTa.

However BART achieves state-of-the-art on other NLP tasks as question answering, summa-

rizing or abstractive dialogue. Longformer [46] includes an improved attention mechanism

pattern which makes this model very suitable for language modeling tasks of very long doc-
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uments. If the majority of BERT-like models supports sequences length up to 512 tokens,

Longformer can handle up to 4,096 tokens. A key feature in Longformer architecture is

that the time and memory complexity will scale linearly with the sequence length, while the

standard BERT-like models self-attention mechanism grow quadratically with the sequence

length. DeBERTa [47] is one of the newest pre-trained models, which improves BERT and

RoBERTa performance by using two new approaches: a disentangled attention mechanism

and an enhanced mask decoder.

Pre-trained model Architecture name Details of the pre-trained model

BERT
Oct 2018

bert-base-uncased
12-layer, 768-hidden, 12-heads, 110M parameters.

Trained on lower-cased English text.

bert-large-uncased
24-layer, 1024-hidden, 16-heads, 336M parameters.

Trained on lower-cased English text.

bert-base-cased
12-layer, 768-hidden, 12-heads, 109M parameters.

Trained on cased English text.

bert-large-cased
24-layer, 1024-hidden, 16-heads, 335M parameters.

Trained on cased English text.

bert-large-uncased
whole-word-masking

24-layer, 1024-hidden, 16-heads, 335M parameters.
Trained on lower-cased English text

using Whole-Word-Masking

bert-large-cased
whole-word-masking

24-layer, 1024-hidden, 16-heads, 335M parameters.
Trained on cased English text
using Whole-Word-Masking

XLNet
Jun 2019

xlnet-base-cased
12-layer, 768-hidden, 12-heads, 110M parameters.

XLNet English model

xlnet-large-cased
24-layer, 1024-hidden, 16-heads, 340M parameters.

XLNet Large English model

RoBERTa
Jul 2019

roberta-base
12-layer, 768-hidden, 12-heads, 125M parameters

RoBERTa using the BERT-base architecture

roberta-large
24-layer, 1024-hidden, 16-heads, 355M parameters

RoBERTa using the BERT-large architecture
ALBERT
Sep 2019

albert-base-v1
12 repeating layers, 128 embedding, 768-hidden,

12-heads, 11M parameters
Bart

Oct 2019
bart-base 12-layer, 768-hidden, 16-heads, 139M parameters

Longformer
Apr 2020

longformer-base
12-layer, 768-hidden, 12-heads, ∼149M parameters

Starting from RoBERTa-base checkpoint,
trained on documents of max length 4,096

DeBERTa
Jun 2020

deberta-base
12-layer, 768-hidden, 12-heads, ∼125M parameters

DeBERTa using the BERT-base architecture

Table 4.1: BERT-like pre-trained models used in this thesis
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Chapter 5

Experimental setup

We investigate different BERT like models, for FinTech patent classification. The goal is

to understand how the results vary with the BERT models used and what model performs

the best on three patent sections: title, abstract and claims and combinations of this sections.

In what follows, we provide details about the implementation and hyper-parameters used

for the models that we experiment with.

5.1 Implementation details

Using the Transformers library by HuggingFace [49], we experiment with 14 pre-trained

BERT models and variants, by fine-tuning the models using labeled data for our specific

FinTech classification task. The models we experiment with include BERT, RoBERTa,

XLNet, ALBERT, BART, Longoformer and DeBERTa. We use different architectures for

each of these models (e.g., for BERT we used architectures such as: bert-base-uncased, bert-

base-cased, bert-large-uncased, etc.). We train each model for 2 epochs, using the AdamW

optimizer with a learning rate of 2e−5. We use default values for other hyper-parameters.
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5.2 Evaluation metrics

To evaluate the performance of the various models that we train, we use several standard

metrics, including the overall accuracy, precision, recall and F1 scores. We also report the

precision, recall, and F1 scores for each of our categories to determine what categories might

be easier or harder to identify.
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Chapter 6

Results and discussion

In this chapter, we present the results of the deep learning models’ ability to correctly

classify FinTech patents into different categories (Insurance, Payments, Investment, Fraud,

Data Anayltics, Non-FinTech). We fine-tune the BERT-based models on our labeled training

dataset, and estimate their performance on the test dataset of patent documents.

Our patent documents are sectioned into segments of title, abstract, and claim, and our

models use these discrete segments to classify the documents. Classification was performed

using one section of a patent document, as well as using a concatenation of the segments.

The results of our classifiers predictions for examining a segment of a patent document

will be presented in three steps:

• First, we report the F1-scores performance for the 10 pre-trained best-performing mod-

els.

• We will then provide numeric result for the top 5 pre-trained models performance in

terms of precision (Pr), recall (Re) and F1-score (F1), for both overall performance as

well as for each category of the FinTech taxonomy.

• Finally, we show the confusion matrix that corresponds to the best model per each

section of a patent.
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6.1 Model prediction performance on the title section

of patent document

This section reports on how well classifiers would predict FinTech patents based solely

on title. In our dataset, the longest title has 36 tokens and the smallest title has only 2

tokens (e.g., Fraud detection or Payment system). Given the reduced number of tokens, the

models have more challenges in learning from a limited span of tokens, which in some cases

are not very informative (e.g., a title named Data excavator or Hypothetical-portfolio-return

determination).

6.2 Analysis of the 10 best performing models by F1-

score on the title section

A comparison of the 10 best-performing models for the title section is shown in Figure 6.1.

The F1-scores range from 78% (for deberta-base) to 82.1% (for roberta-large), showing that

the BERT-like models are generally decent for classifying the patent-titles of our FinTech

classification problem.

The best performing model, roberta-large, has 24-layers, 1024-hidden units, 16-heads and

3550M parameters, and is pre-trained on 160GB of English text.

The next two models (having similar scores to each other 80.8% and 80%) are bert-large-

uncased-whole-word-masking, bart-base. Is important to mention that from the top 4 models,

only the bart-base is a cased models, while the others models are uncased.
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Figure 6.1: Comparison of the 10 best-performing BERT-like models in terms of F1-Score
for the Title section. The roberta-large model has the best performance overall.

6.3 Numeric results for the top 5 performing models

on the title section

Table 6.1 shows a greater articulation of results by showing precision (Pr), recall (Re)

and F1-score (F1) for each FinTech category for the top five performing models. In terms

of individual categories, the results show that the title segment had best performance for

Investment category, with an F1-score of 92.32%, while Data Analytics category has the worst

performance using title, with a F1-score of 56.00%. To some extent, the results may reflect the

imbalance from our dataset distribution, with, for instance, Data Analytics underrepresented

in our sample. While the Investment category has the most patents/titles 484, Data Analytics

is the category represented only by 186 patents/titles.
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Category Metric
roberta
large

bert large uncased
whole word masking

bart
base

roberta
base

longformer
base

Insurance
Pr 0.932 0.882 0.912 0.914 0.805
Re 0.84 0.827 0.765 0.79 0.864
F1 0.883 0.854 0.832 0.848 0.833

Payments
Pr 0.774 0.755 0.867 0.747 0.847
Re 0.847 0.906 0.765 0.835 0.718
F1 0.809 0.824 0.812 0.789 0.777

Investment
Pr 0.918 0.869 0.879 0.804 0.935
Re 0.928* 0.887 0.897 0.928* 0.887
F1 0.923 0.878 0.888 0.861 0.91

Fraud
Pr 0.868 0.807 0.643 0.768 0.679
Re 0.67 0.761 0.818* 0.716 0.818*
F1 0.756 0.784 0.72 0.741 0.742

Data Analytics
Pr 0.553 0.654 0.613 0.613 0.765
Re 0.568 0.459 0.514 0.514 0.351
F1 0.56 0.54 0.559* 0.559* 0.481

Non-FinTech
Pr 0.769 0.804 0.828 0.83 0.75
Re 0.922 0.822 0.856 0.811 0.867
F1 0.838 0.813 0.842 0.82 0.804

Average
Pr 0.829 0.811 0.809 0.796 0.802
Re 0.822 0.812 0.799 0.795 0.795
F1 0.821 0.808 0.8 0.793 0.789
Acc 0.822 0.812 0.799 0.795 0.795

Table 6.1: Performance results on the test data only for the Title section. The best results
for the top 5 deep learning models, are highlighted in boldface. With boldface and * are
marked those situations when different models had same results (per category and metric)

6.4 Confusion matrix for the best model on the title

section

Figure 6.2 shows the confusion matrix corresponding to the “robert-large,” the best model

for the title section. The diagonal entries show the percentage of correctly classified instances

in each category, while the non-diagonal entries show how the misclassified instances for a

particular category are distributed among the other categories.

As can be seen, the Investment, Non-Fintech, Payments and Insurance have a high per-

centage of instances correctly classified (93%, 92%, 85% and 84%). For Data Analytics,

57% of instances are classified correctly, while 43% are misclassified as: Non-Fintech (22%),

Payments (8%) , Insurance and Fraud with (5%) and Investment (3%).
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Figure 6.2: Normalized confusion matrix corresponding to the best model for the Title

section is roberta-large . The diagonal entries show the percentage of correctly classi-
fied instances in each category. Non-diagonal entries on a row show how the misclassified
instances of a category are distributed among the other categories.
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6.5 Model prediction performance on the abstract sec-

tion of patent document

Compared to title and claims, the abstract section of a patent represents a brief non-

technical description of the FinTech invention. The abstract examples present in our dataset

have between 19 and 540 tokens with an average of 150 tokens. As expected, the abstract is

longer than the title, and this fact will have a correlation in the performance results of the

pre-trained models. Given that the abstract section gives a longer text sequence an input

to the pre-trained models compared to title section, we observed, as hypothesized, that the

pre-trained models improved in performance over title.

6.6 Analysis of the best 10 performing models by F1-

score on the abstract section

A comparison of the 10 best-performing models for the abstract section is shown in Figure

6.3. F1-scores ranges from 95.93% (for deberta-base), to 96.90% (for bert-large uncased-whole-

word-masking) showing a substantial increase from the F1-scores of the title section, where

the range was between 78% and 82%.

As expected the abstract section gives a better contextual information of the FinTech

invention than title, therefore the pre-trained models have a better prediction results.

The top 10 best pre-trained models are presented in Figure 6.3, where bert-large-uncased-

whole-word-masking has the highest F1-score: 96.90%. Following closely is the bert-large-

cased and bert-base-cased with 96.70% and 96.60% respectively.

While bert-large-uncased-whole-word-masking and bert-large-cased share the same archi-

tecture, specifically, 24-layers,1024-hidden units, 16-heads, and 335M parameters, bert-base-

cased has only 12-layers, 768-hidden units, 12-heads and 109M parameters. Hence a more

complex architecture is not substantially increasing the F1-score.

A key distinction between these three models is the masking method used. More specifi-
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cally, bert-large-uncased-whole-word-masking model, as the name suggests, is masking whole

words, which helps in performance gain while bert-large-cased as well as bert-base-cased is

masking random word pieces.

Figure 6.3: Comparison of the 10 best-performing BERT-like models in terms of F1-Score
for the Abstract section. The bert-large-uncased-whole-word-masking model has the
best performance overall.

6.7 Numeric results for the top 5 performing models

of the abstract section

In Table 6.2, we show the results for each category separately, and also the average

over the 6 categories captured by our labeled data (including 5 FinTech categories and 1

Non-FinTech category), and the accuracy of the models. We can observe that all 5 models

have similar results, with bert large uncased whole word masking having the best average

scores of 96.90% for precision(Pr), recall(Re), F1-score(F1) and accuracy(Acc). In terms of

individual categories, the results show that the Fraud category has the best performance,

with an F1-score of 98.90%, while the Data Analytics category has the worst performance,
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with an F1-score of 87.70%.

In contrast with the results from the title section, we notice the most substantial im-

provement is for Data Analytics, from 56% to 87.70% F1-score. This is a strong evidence

that the abstract section is an improvement on title in detecting FinTech innovations.

Category Metric
bert large uncased

whole word masking
bert large

cased
bert base

cased
bart
base

roberta
large

Insurance
Pr 0.976 0.988 0.976 0.953 0.964
Re 1* 0.988 1* 1* 1*
F1 0.988* 0.988* 0.988* 0.976 0.982

Payments
Pr 0.943 0.932 0.953 0.943 0.965
Re 0.976* 0.965 0.965 0.976* 0.965
F1 0.96 0.948 0.959 0.96 0.965*

Investment
Pr 0.979 0.969 0.969 0.96 0.978
Re 0.959 0.979* 0.969 0.979* 0.928
F1 0.969 0.974* 0.969 0.969 0.952

Fraud
Pr 0.978* 0.978* 0.978* 0.978* 0.978*
Re 1* 1* 1* 1* 1*
F1 0.989* 0.989* 0.989* 0.989* 0.989*

Data Analytics
Pr 0.889 0.892 0.912 0.938 0.868
Re 0.865 0.892 0.838 0.811 0.892*
F1 0.877 0.892 0.873 0.87 0.88

Non-FinTech
Pr 1* 1* 0.977 1* 0.966
Re 0.956* 0.933 0.956* 0.933 0.956*
F1 0.977 0.966 0.966 0.966 0.961

Average
Pr 0.969 0.967 0.966 0.965 0.963
Re 0.969 0.967 0.967 0.964 0.962
F1 0.969 0.967 0.966 0.964 0.962
Acc 0.969 0.967 0.967 0.964 0.962

Table 6.2: Performance results on the test data only for the Abstract section. The best
results for the top 5 deep learning models, are highlighted in boldface. With boldface and * are
marked those situations when different models had same results (per category and metric).
The best model for the Abstract section is bert-large-uncased-whole-word-masking.
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6.8 Confusion matrix for the best model on the ab-

stract section

Figure 6.4 shows the confusion matrix corresponding to the bert large uncased whole word

masking the best model for the abstract section. The diagonal entries show the percentage of

correctly classified instances in each category, while the non-diagonal entries show how the

misclassified instances for a particular category are distributed among the other categories.

As can be seen, the Insurance, Payments, Investment , Fraud and Non-Fintech have a high

percentages above 96.00%. For Data Analytics, 86% of instances are classified correctly,

while 14% are misclassified.

Figure 6.4: Normalized confusion matrix corresponding to the best model for the Abstract

section : bert-large uncased. The diagonal entries show the percentage of correctly clas-
sified instances in each category. Non-diagonal entries on a row show how the misclassified
instances of a category are distributed among the other categories.
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6.9 Model prediction performance on the claims sec-

tion of patent document

The claims section of a patent is usually substantially longer than the abstract section,

with an minimum token content of 40, average 1,500, with a maximum of 11,000. Claims

might be considered the heart of a patent, from a legal point of view, and employ specialized

language.

6.10 Analysis of the best 10 performing models by F1-

score on the claims section

F1-scores ranges from 89.96% (for “xlnet-base-cased”), to 91.62% (for “bert-large-cased-

whole-word-masking”) showing a substantial increase from the F1-scores of the title section,

where the range was between 78% and 82%, but a slightly decrease from the F1-scores of

the abstract section, where the range was 95.93% to 96.90%.

The top 10 best pre-trained models are presented in Figure 6.5, where “bert-large-cased-

whole-word-masking“ has the highest F1-score: 91.62%. Following closely is the “bert-large-

cased“ and “bart-base“ with 91.42% and 91.17% respectively.

While “bert-large-cased-whole-word-masking“ and ‘bert-large-cased“ share the same ar-

chitecture, specifically, 24-layers,1024-hidden units, 16-heads, and 335M parameters, ‘bart-

base“ has only 12-layers, 768-hidden units, 16-heads and 139M parameters. Hence, the top

three share the same number of heads, but different numbers of layers and parameters.
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Figure 6.5: Comparison of the 10 best-performing BERT-like models in terms of F1-Score
for the Claims section. The bert-large-cased-whole-word-masking model has the best
performance overall.

6.11 Numeric results for the top 5 performing models

of the claims section

In Table 6.3, we show the results for each category separately, and also the average

over the 6 categories captured by our labeled data (including 5 FinTech categories and 1

Non-FinTech category), and the accuracy of the models.

We can observe that all 5 models have similar results, with “bert large cased whole word

masking” having the best average scores of 91.60% for recall (Re), F1-score(F1), accuracy

(Acc) and 91.80% for precision (Pr).

In terms of individual categories, the results show that the Insurance has an overall F1-

score higher than rest of the FinTech categories, while the Data Analytics category has the

worst performance, with an average F1-score of 80%.

In contrast with the results from the title, we notice the most improvement is for Data

Analytics, from 56% to 80% F1-score. However, claims is not as effective for Data Analytics

as the abstract. Overall Data Analytics, which remains relatively low over all three individual

sections.
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Category Metric
bert large cased

whole word masking
bert large

cased
bart
base

longformer
base

bert large uncased
whole word masking

Insurance
Pr 0.962 1 0.94 0.952 0.963
Re 0.951 0.938 0.975 0.988 0.975
F1 0.957 0.968 0.958 0.97 0.969

Payments
Pr 0.835 0.844 0.859 0.844 0.856
Re 0.953* 0.953* 0.929 0.953* 0.906
F1 0.89 0.895* 0.893 0.895* 0.88

Investment
Pr 0.939 0.921 0.968 0.957 0.938
Re 0.948 0.959 0.928 0.928 0.938
F1 0.944 0.939 0.947 0.942 0.938

Fraud
Pr 0.892 0.893 0.832 0.857 0.882
Re 0.841 0.852 0.898 0.886 0.852
F1 0.865 0.872* 0.863 0.872* 0.867

Data Analytics
Pr 0.909 0.853 0.929 0.92 0.931
Re 0.811 0.784 0.703 0.622 0.73
F1 0.857 0.817 0.8 0.742 0.818

Non-FinTech
Pr 0.966* 0.954 0.965 0.966* 0.895
Re 0.933 0.922 0.922 0.944* 0.944*
F1 0.949 0.938 0.943 0.955 0.919

Average
Pr 0.918* 0.916 0.915 0.917 0.909
Re 0.916 0.914 0.912 0.914 0.908
F1 0.916 0.914 0.912 0.912 0.907
Acc 0.916 0.914 0.912 0.914 0.908

Table 6.3: Performance results on the test data only for the Claims section. The perfor-
mance is reported in terms of precision (Pr), recall (Re) and F1-score (F1), for each category
and overall. Furthermore, the overall accuracy (Acc) is also shown at the end. The best re-
sults for the top 5 deep learning models, are highlighted in boldface. With boldface and * are
marked those situations when different models had same results (per category and metric).
The best model for the Claims section is bert-large-cased-whole-word masking.
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6.12 Confusion matrix for the best model on the claims

section

Figure 6.6 shows the confusion matrix corresponding to the bert large cased whole word

masking the best model for the claims section. The diagonal entries show the percentage of

correctly classified instances in each category, while the non-diagonal entries show how the

misclassified instances for a particular category are distributed among the other categories.As

can be seen, the Insurance, Payments, Investment , Fraud have predictions percentages

of 95.00%. For Data Analytics, 81% of instances are classified correctly, while 19% are

misclassified as: 5% Payments, Investment and Fraud and 3% as Non-FinTech.

Figure 6.6: Normalized confusion matrix corresponding to the best model for the Claims

section : bert-large cased-whole-word-masking. The diagonal entries show the percent-
age of correctly classified instances in each category. Non-diagonal entries on a row show
how the misclassified instances of a category are distributed among the other categories.
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6.13 Model prediction performance on using combined

patent sections

In this section, we report the results of combinations of patent document sections in

order to see which combinations yield the best performance. Specifically, we took the best

performing model for each combination of title+abstract, abstract+claims, title+claims, and

title+abstract+claims, and compared them for performance.

Table 6.4 shows that the best performing combination was title+abstract, with abtract+claims

performing very closely. Worst performing was title+claims, which mirrors our individual

section results, where title and claims were individually the worst performers. Overall, it

was the abstract section combinations that provided the strongest synergy.

Section tile+abstract abstract+claims title+abstract+claims title+claims
Category Metric xlnet-base-cased xlnet-base-cased longformer-base longformer-base

Insurance
Pr 0.964 0.976* 0.976* 0.963
Re 1* 1* 0.988 0.975
F1 0.982 0.988* 0.982 0.969

Payments
Pr 0.954* 0.943 0.943 0.845
Re 0.976* 0.976* 0.976* 0.965
F1 0.965* 0.96 0.96 0.901

Investment
Pr 0.979* 0.979* 0.959 0.948
Re 0.969* 0.969* 0.969* 0.938
F1 0.974* 0.974* 0.964 0.943

Fraud
Pr 0.978* 0.978* 0.978* 0.918
Re 1* 0.989 1* 0.886
F1 0.989* 0.983 0.989* 0.902

Data Analytics
Pr 0.969* 0.941 0.889 0.903
Re 0.838 0.865* 0.865* 0.757
F1 0.899 0.901* 0.877 0.824

Non-FinTech
Pr 0.989* 0.989* 1 0.966
Re 0.978 0.967 0.933 0.933
F1 0.983 0.978 0.966 0.949

Average
Pr 0.973 0.971 0.965 0.927
Re 0.973 0.971 0.964 0.925
F1 0.972 0.97 0.964 0.924
Acc 0.973 0.971 0.964 0.925

Table 6.4: Results from best performing models on the test data for different patent document
section combinations. The performance is reported in terms of precision (Pr), recall (Re)
and F1-score (F1), for each category and overall. Furthermore, the overall accuracy (Acc) is
also shown at the end. The best results for the top 4 deep learning models, are highlighted in
boldface. With boldface and * are marked those situations when different models had same
results (per category and metric).
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6.14 Confusion matrix for the best performing combi-

nation/model

Figure 6.7 shows the confusion matrix corresponding to the xlnet-base-cased the best

model for the combination title+abstract section. The diagonal entries show the percentage

of correctly classified instances in each category, while the non-diagonal entries show how the

misclassified instances for a particular category are distributed among the other categories.

As can be seen, the Insurance and Fraud have perfect predictions, with a percentages of

100%. For Data Analytics, 84% of instances are classified correctly, while 16% are misclas-

sified as: 3% Insurance, Investment and Non-Fintech and 8% as Payments.

Figure 6.7: Normalized confusion matrix corresponding to the best performing combination
and model : title+abstract / xlnet-base-cased. The diagonal entries show the percent-
age of correctly classified instances in each category. Non-diagonal entries on a row show
how the misclassified instances of a category are distributed among the other categories.
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6.15 Overall best models performance

As seen in Table 6.5 we present our overall best models for each individual patent section

but also for the combined patent section.

We observe that the title section itself, has relatively poor perfromance compared with

the abstract or claims section. However, when we concatenate title + abstract sections

the pre-trained model xlnet base cased achives the highest overall performance in terms of

F1-score, specifically 97.20% and an accuracy of 97.30%.

Section(s) tile + abstract abstract claims title

Category Metric
xlnet base

cased
bert large uncased

whole word masking
bert base
uncased

roberta
large

Insurance
Pr 0.964 0.976 0.951 0.932
Re 0.954 1 0.951 0.84
F1 0.979 0.988 0.951 0.883

Payments
Pr 0.978 0.943 0.857 0.774
Re 0.969 0.976 0.918 0.847
F1 0.989 0.96 0.886 0.809

Investment
Pr 0.973 0.979 0.891 0.918
Re 1 0.959 0.928 0.928
F1 0.976 0.969 0.909 0.923

Fraud
Pr 0.969 0.978 0.862 0.868
Re 1* 1* 0.852 0.67
F1 0.838 0.989* 0.857 0.756

Data Analytics
Pr 0.978 0.889 0.818 0.553
Re 0.973 0.865 0.73 0.568
F1 0.982 0.877 0.771 0.56

Non-FinTech
Pr 0.965 1 0.976 0.769
Re 0.974 0.956 0.922 0.922
F1 0.989 0.977 0.949 0.838

Average
Pr 0.899 0.969 0.9 0.829
Re 0.983 0.969 0.9 0.822
F1 0.972 0.969 0.899 0.821
Acc 0.973 0.969 0.9 0.822

Table 6.5: Comparison between the best models for each individual patent section and the
best model for the combined sections. The performance is reported in terms of precision
(Pr), recall (Re) and F1-score (F1), for each category and overall. Furthermore, the overall
accuracy (Acc) is also shown at the end. With boldface and * are marked those situations
when different models had same results (per category and metric).
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Chapter 7

Conclusions and future work

We develop a FinTech taxonomy, and label a dataset according to this taxonomy to

enable studies of FinTech innovations. We train BERT-based models to identify FinTech

patents, and use them to shortlist a set of 25,580 FinTech patents in one of the following

categories: Data Analytics, Fraud, Insurance, Investments and Payments.

We conclude that complementary information across title, abstract, and claims section

leads to better category prediction. To our knowledge, our research could be the most

accurate description of FinTech innovation to date, and has wider overall implications for

FinTech patent classification and wider research in innovation and trends.

As part of future work, we plan to further improve performance by using domain adap-

tation and transfer learning approaches, which can benefit from general patent data, in

addition to FinTech data.

Finally, we believe that our taxonomy and dataset will help to substantially reduce the

search costs for FinTech innovations, while also helping the financial sector and technology

incumbents to understand the latest developments in FinTech.
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