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1. INTRODUCTION

One of the most important areas of study in engineering and physics

is that branch of statistical mechanics known as transport theory. A

wide variety of physical phenomena involve particle transport processes.

The radiant energy transfer in a stellar atmosphere, the number of

particles emerging from a radiation shield, and the power distribution

in a nuclear reactor are all governed by the distribution of particles

which interact stochastically with the atoms of the host medium. The

determination of such distributions is the central problem of transport

theory.

The solution of this problem becomes much more difficult when the

scattering processes involved are anisotropic. Anisotropic scattering

is encountered in a wide range of transport phenomena such as Compton

4
scattering of gamma photons, light transmission through clouds and

hazes, * multigroup neutron transport with fine-energy-group

7 8
structures, and elastic electron-nuclear scattering.

Scattering anisotropy can result from several factors. Consider,

for example, the elastic scattering of neutrons. When viewed in the

center-of-mass coordinate system, such scattering is isotropic for

low-energy neutrons. At neutron energies above *\>0.1 MeV, scattering

generally becomes anisotropic, with the scattering cross section usually

9
being forward peaked.

Scattering anisotropy Is also induced by the transition from the

center-of-mass coordinate system to the laboratory coordinate system,

which is the frame of reference most often used in transport

calculations. Scattering which is isotropic in the center-of-mass



system becomes forward peaked in the lab system. While this effect is

not significant for heavy nuclei (in which case there is little

difference between the two systems) , it is very important for light

nuclei.

Use of the multigroup approximation of the energy variable in the

transport equation introduces group-to-group scattering (or transfer)

cross sections which are often nonzero over only a limited range of

scattering angles. This limited angular support is a direct consequence

of the constraints for energy and momentum conservation. Such

anisotropy becomes more severe as finer multigroup structures are used.

The traditional method of treating anisotropic scattering in

transport calculations has been to expand the angular dependence of the

scattering cross section in a finite series of Legendre polynomials.

Such an expansion is mathematically convenient to use because the

2
Legendre polynomials obey an "addition theorem which allows

significant analytical simplification of the scattering source term in

the transport equation. This method is accurate if a sufficiently high

order expansion is used. However, a highly anisotropic cross section

often requires a very high order expansion to represent the

cross section accurately. Use of a prematurely truncated Legendre

expansion often introduces spurious oscillations in the approximated

cross section. These oscillations in turn can produce unrealistic

fluctuations in the calculated angular fluxes, and may, in fact, even

lead to estimates of negative angular fluxes.

The failure of the Legendre expansion method to produce physically

realistic angular fluxes occurs only in problems which are characterized



by highly anisotropic angular fluxes as well as by highly anisotropic

scattering. Although the degree of anisotropy in the angular flux is

seldom known a priori, problems with anisotropic sources and vacuum

boundary conditions as well as anisotropic scattering can be expected to

yield anisotropic flux distributions, especially near the sources and

23
boundaries

.

To avoid the problem of negative fluxes, many alternative methods

of cross section approximation have been proposed. One of the simplest

remedies, which is known as the transport approximation, is to replace

an anisotropic scattering cross section that is highly peaked in the

forward direction by an isotropic component and a forward-scattered

component. The forward-scattered component is most simply represented

by a delta function. Although this transport approximation can provide

good accuracy for problems which are characterized by only a small

12
degree of anisotropy, it often gives poor results for highly

11,12
anisotropic problems.

13
Razani proposed a modified transport approximation in which

singly-scattered particles are accounted for exactly and the effect of

higher-order scattering is treated by the transport approximation. He

found that, for radiation transport through homogeneous slabs, the error

in the transport approximation was considerably reduced by using this

12
modified transport approximation. Lathrop examined an extended

transport approximation, obtained by adjusting the coefficients of a P

(i.e. , first order Legendre) approximation. He applied this method to

several neutron transport problems and found it to be more accurate than



the delta-function transport approximation, but not as accurate as

14
higher order standard Legendre expansions. Bell et at. examined the

extended transport approximation for higher order Legendre expansions

and concluded that it was an effective method for neutron transport

problems.

Attia and Harms used a partial-range Legendre polynomial

expansion of the scattering cross section. While this representation

yields more accurate cross section fits than a standard full-range

expansion, it does not lend itself readily to use in discrete-ordinates

transport codes. Pearlstein proposed an expansion of the scattering

cross section in terms containing quadratic Bessel functions. He found

that such an expansion accurately modeled scattering cross sections for

a variety of elements with fewer terms than a standard Legendre

expansion required. However, the use of quadratic Bessel functions is

mathematically inconvenient, and it has not been established whether

such an expansion would be feasible in discrete-ordinates calculations.

Carter and Forest utilized a step function representation of the

scattering cross section in Monte Carlo transport calculations.

18
Takeuchi assumed a step function approximation of the scattering cross

section with respect to the lethargy mesh, and a step function

approximation of the angular flux with respect to both the angular mesh

and the lethargy mesh. These approximations were utilized in the PALLAS

computer code, which numerically solves the integral form of the

transport equation.

A more direct approach to avoid the use of Legendre polynomial

cross section expansions is to use a transfer matrix whose elements are



the exact cross sections for transfer from one discrete direction to

19
another. While this possibility had been considered in the 1960's, it

was not fully developed at that time due to the associated requirement

20
of large computer memories. Odom, who finally implemented this

technique in plane-geometry, discrete-ordinates neutron transport

calculations, referred to it as the "exact kernel" method. He found

that the exact kernel method provides accurate angular fluxes even for

highly anisotropic problems.

21
Mikols reduced the computational effort of calculating exact

kernel cross sections by assuming a triangular representation of

group-to-group neutron transfer cross sections. He also developed the

"order of angular coverage" concept for determination of the minimum

order of numerical quadrature required for accurate transport

calculations.

22
flyman applied the exact kernel technique to discrete-ordinates

gamma photon transport problems. He showed that the exact kernel

technique yields far more accurate results for such problems than does

the standard Legendre expansion. He also developed a semi-analytical

technique for rapid evaluation of exact kernel cross sections.

23
Hong applied the exact kernel method to neutron inelastic

scattering. He developed an exact kernel, discrete-ordinates transport

code which is applicable to plane, spherical, cylindrical, and two-angle

plane geometries . He also introduced a method to evaluate the

scattering source term using piecewise polynomial approximations for the

angular flux and the transfer cross section.



While the exact kernel technique offers greater accuracy than the

Legendre expansion method, it has the disadvantage of being incompatible

with standard discrete-ordinates transport codes. Because these

standard codes almost always are based on Legendre polynomial

expansions, they would require modification in the scattering source

term calculation in order to utilize exact kernel cross sections.

Beranek and Conn suggested a method by which a discrete transfer cross

section expansion can be utilized in standard discrete-ordinates

transport codes. This method involves the generation of pseudo-Legendre

expansion coefficients which will reproduce the exact kernel cross

sections for scatter between any discrete directions of the quadrature

set used. However, the number of expansion coefficients required to

reproduce all the exact kernel cross sections increases rapidly with the

quadrature order, rendering this method impractical for highly

anisotropic problems.

In this work, the method suggested by Hong for the semi-analytical

evaluation of the scattering source term is developed more fully and is

applied to several transport problems. This new method is more accurate

for highly anisotropic problems than is the conventional Legendre

expansion method. In addition, the new method eliminates the problem of

angular coverage encountered in exact kernel transport calculations.

In Chapter 2 a general development of the multigroup, discrete-

ordinates transport equations is presented. Evaluation of the

scattering source terra is discussed for both the Legendre expansion

method and the exact kernel method. In Chapter 3, the approximated

scattering kernel method is developed. This semi-analytical evaluation



of the scattering source term utilizes piecewise polynomial expansions

of the transfer cross section and the angular flux. Use of these

polynomial expansions allows the integration of the scattering source

term to be performed analytically, thereby obviating the need for

numerical quadrature.

In Chapter 4, the approximated scattering kernel method is applied

to several slab albedo problems. The results are compared to those

obtained using the exact kernel and Legendre expansion methods.

Finally, the conclusions reached from these problems, as well as

suggestions for further study, are presented in Chapter 5.



2. SOLUTION OF THE TRANSPORT EQUATION BY THE DISCRETE-ORDINATES METHOD

2.1 The Transport Equation

The transport of neutral particles (e.g., neutrons and photons)

through a host medium is described by the linearized Boltzmann equation.

This equation, which neglects particle-particle interactions, is a

linearized form of the equation derived by Boltzmann more than a century

ago in his study of the kinetic theory of gases. The derivation of the

linearized Boltzmann equation (hereafter referred to as "the transport

equation") can be found in many texts (see, for example, Refs. 1 and 2)

and will not be repeated here.

In this work, we are concerned only with steady-state transport

through a homogeneous, non-multiplying slab for cases in which the

particle flux density possesses azimuthal symmetry. Thus we seek

solutions of the steady-state, one-dimensional transport equation, which

can be written as

II -g-; *(x,E,U,t) + a(E)*(x,E,u,i|i) = Q(x,E,u,t|i)

1 2tt

dE' du' dili' a (I , +E,8*'JS) *(x,E' ,u' , + ' ) , (2.1)

>-l h

where

u = the cosine of the polar angle between a particle's velocity
vector and the positive x-axis (see Fig. 2.1),

x = the distance travelled into the slab,

E = the particle's energy,

i> = the azimuthal angle between the z-axis and the projection of

the particle's velocity vector onto the slab face,



Scatter
Part id

Fig. 2.1. The coordinate system for particle transport in a slab.
The slab dimensions in the Y and Z directions are assumed
to be infinite.
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$ = the angular flux density,

a = the total macroscopic cross section,

Q = extraneous (flux-independent) sources,

a = the macroscopic scattering cross section,

and

Q = a unit vector in the direction of particle travel.

The medium is assumed to be isotropic so that a is rotationally

invariant (i.e., a depends on w = ft
?
"fi, not on Q 1 and U individually).

In terms of the incident particle direction H 1
(v'»<|i

f
) and final

particle direction R(u»$)i the cosine of the scattering angle is given

by
2

u = S f «£ = uy f + (l-p
2 )*2 (l-vi'

2)^ cos* (2.2)

where $ is the difference in the azimuthal angles of the vectors ft' and

S (i.e., <f>
= i|»

f
-ijj).

For azimuthally symmetric problems, one often solves for the

azimuthally integrated flux density. Integration of Eq. (2.1) over the

azimuthal angle i^ yields the transport equation for the azimuthally

integrated flux density, viz.:

U 3^ *(x,E,u) + a(E)*(x,E,u) = Q(x,E,p)

(1 (-2TT

dE' dy' diji O
s
(E'*E,ui) *(x,E*,u'), (2.3)

where

f
2it

Kx.E.u) = d<l> *(x,E,y,i|i) (2.4)
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and

Q(x,E,u) =
I

d* Q(x,E,u,i|0 . (2.5)

Due to the dependence of oj on cos<J> = cos(iJj '-<|0 , the azimuthal integral

over all f on the right hand side of Eq. (2.3) can equivalently be

replaced by an integral over all i/i
T or $. Because we are concerned only

with the change in azimuthal angle upon scattering, we will find it most

convenient to work with the variable <j> , and thus Eq. (2.3) is rewritten

u t— *(x»E,u) + ff(E)*(x,E,y) = Q(x,E,u)

C
00 r 1 j- 2lT

+ dE' dp* d$ a (E'+E.w) *(x,E',u') • (2.6)

0-10
Even in this simplified form, the transport equation is much too

complex to solve analytically for realistic geometries. Thus it is

common practice to introduce further approximations such as discretizing

the energy, angular, and/or spatial variables. By using such

approximations, one is left with sets of algebraic equations rather than

an integrodifferential equation. The resulting algebraic equations lend

themselves readily to numerical solution techniques.

2.2 Energy Approximations for the Transport Equation

2.2.1 The Multigroup Transport Equations

The energy dependence of Eq. (2.6) is commonly approximated by

employing the multigroup method. This formulation is accomplished by
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discretizing the energy variable into G contiguous energy groups, as

shown schematically below:

Group g

I

1 1 v—

H

1
1 \—l

1
1

E
G

E
G-1

E
G-2

E
g+ 1

E
g

E
g-1

E
2

E
l

E

ENERGY

The standard multigroup convention, which will be followed in this work,

is to index the energy groups such that the group index g increases with

decreasing energy. The energy level E lies within group g if

E < E < E
g - g-1

To derive the multigroup equations, we first define the group

angular flux density and group extraneous source as

* (x,u) = dE 4>(x,E,u) (2.7)

E
g

and

f

E
g-l

Q (x,u) = dE Q(x,E,u) . (2.8)

E
g

Upon integrating Eq. (2.6) over energy group g and replacing the

integration over energy in the scattering source term by a sum of

integrals over all the energy groups, we obtain the following multigroup

equations:
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u •£-; « (x,u) + * (x,u) Q (x,y)

G
+

I S , (x,u) , g = 1 G (2.9)

g'=l 8 g

where the group total cross section is defined by

Vi
dE o(E) *(x,E,u)

E

a E —§—

;

, (2.10)
8 -Vl

dE *(x,E,u)

E
8

the scattering source is defined by

1 2ir

S . (x,u) E du' I d* a . (u>) * '(x,u') , (2.11)
g ""-g

J I g *% g
-1

and the group-to-group scattering cross section is defined by

E„ i A

,

g-1
dE

E

g'-l
dE' a (E'+E.oi) *(x,E',u)

E

a ^ (a>) i —S
1 . (2.12)

1

dE' 4(x,E*,u)
' g'-l

E
g

The evaluation of the group cross sections through the use of Eqs.

(2.10) and (2.12) presupposes knowledge of the angular flux density,

which is not known until the transport equation itself is solved. This

problem is usually circumvented by assuming that the energy dependence

of the flux is separable from the spatial and angular dependence, i.e.,
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*(x,E,u) W(E) f(x,p). With this assumption, Eq. (2.10) can be

rewritten as

where

1 8-1
dE 0(E) W(E)

>E
g

—
g A

g

A 5
g

rVl
dE W(E) .

>E
g

(2.12)

(2.13)

In a similar manner, Eq. (2.12) can be rewritten as

1
r g-1 ( g'-l

.(u) = j^t dE dE' W(E') o-

g
(E'+E,w) . (2.14)

g +g
E E

,

g g

For very fine energy meshes, the weight function W(E) is often

assumed to be constant over each energy group. For broader energy

meshes, a variety of approximations have been used. For example, in

neutron transport in fission reactors, one often uses a fission spectrum

for W(E) in the MeV range, a 1/E spectrum in the epithermal range, and a

25
Maxwellian spectrum in the thermal energy region.

2.2.2 The One-Speed Transport Equation

In many particle transport problems, the particles are assumed to

be characterized by a single energy. This assumption is a

simplification of the multigroup equations in that only one energy group

need be utilized. The resulting equation is known as the "one-speed" or

"one-group" transport equation. It is also referred to as the "constant

cross-section approximation", since if the cross sections are postulated
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to be independent of energy, the one-speed equation results. Although

this treatment may seem rather crude, it actually has a great deal of

practical application, * and is the basis of most analytical studies

of the transport equation.

The one-speed transport equation can be derived quite simply from

the multigroup equations. Let us first write the multigroup equations

in the following form (cf. Eqs. (2.9) and (2.11)):

M -r- * (x,u) + a 4 (x,u) = Q (x,y)
»x s s s s

G »
2*

g

I [
du *

I d* a , M * .(x.u*) , g - 1,..., G. (2.15)
i = i j J 8 8 g

Since we are considering only one energy group, we can drop the group

subscripts and delete the summation over the incident energy groups in

the scattering source term to obtain the one-speed transport equation,

viz. :

a f

1
l
2v

n|-«(x,u) + CTt(x.u) Q(x,u) + du' d$ <J
a
U) 4>(x,y'). (2.16)

-1

It is often convenient to recast the transport equation into

dimensionless form. To do so we express distances in terms of the

collision mean-free-path length, also referred to as the "optical

thickness". We define this dimensionless distance as

(2.17)



so that

\h

\-=o\-. (2.181
3x 3z

Eq. (2.16) can now be rewritten as

uer y-*(s,w) CF*(*,U) - OQ(l.u) I dw' d* a
s
(u) *(z,u'), (2.19)

where

*(z,u) = *(x(z),u) (2.20)

and

Q(x(z) ,u)
(2.21)Q(z.y) =

Equation (2.19) can be simplified by expressing the differential

scattering cross section a (to) as the product of the total scattering

cross section a and a scattering distribution function f (<i>) , viz.:
s " s

(J (a) S f (id) , (2.22)
s s s

where f„(n)) is normalized to unity, i.e.,

dQ f (tt) > 1 . (2.23)
s

4ir

Substitution of Eq. (2.22) into Eq. (2.19) yields

3 f
1

f

2,t

uo |- *(z,n) + o*(z,u) = oQ(z,u) + a
g

du ' d* f (u) »(z,u') (2.24)

-1

or, in dimensionless form,
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f
1

f
2lT

u T~ «(z,u) + 4(z,u) Q(z,u) + c du' d<t> f
s

(o)) 4(z,u') , (2.25)

-1

where c, the "mean number of secondary particles emitted per collision,"

is given by

c = — . (2.26)

2.3 The Discrete-Ordinates Equations

2.3.1 Angular Discretization

The angular dependence on the transport equation is commonly

approximated by the discrete-ordinates method. In this method, the

angular variable u is discretized into a set of N discrete directions

{u.} at which the angular flux is to be evaluated. The scattering

source term is evaluated by numerical quadrature where the \i . values are

the quadrature ordinates. The set of corresponding quadrature weights

is denoted by {w.}. With this approximation, Eq. (2.9) can be rewritten

"i k *g (x ' p
i
) +a

g VX*V = Q
g
(x>M

i
)

G

+ J S , (x,u.) , i = 1,..., N; g = I,..., G (2.27)

where

V^'V E
J,

w
j

d
* V*g (B) V^'V • (2>28)

N f 2TT

I
J-l
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Equations (2.27) and (2.28) represent one form of the discrete-ordinates

transport equations

.

The evaluation of the group-to-group scattering source S
f (x,u.)

of Eq. (2.28) is dependent upon the method used to express the

group-to-group scattering cross section. Two of these methods, the

Legendre polynomial expansion method and the exact kernel method, will

be examined in sections 2.4 and 2.5. A new method of evaluating the

scattering source, which is the subject of this work, will be examined

in Chapters 3 and 4. This alternative method is based on direct

evaluation of Eq. (2.11) by analytical integration.

The accuracy which can be obtained in solving the discrete-

ordinates equations when Eq. (2.28) is used to evaluate the scattering

2
source term is largely dependent on the quadrature set used. In

general, one would like to use a set which is large enough to describe

adequately the angular detail in the fluxes, yet small enough that

excessive computational effort is not required. The choice of such

an optimum set is typically problem dependent, especially when

anisotropic scattering is involved. Failure to choose an appropriate

quadrature set can lead to serious errors in the calculation of the

angular fluxes.

Unfortunately, there is no standard procedure for choosing a priori

an adequate set. The choice is usually made on the basis of experience

or trial and error. However, as a general rule, the following criteria

should be met:

(1) Projection Invariance. For one-dimensional slab geometry with

azimuthal symmetry, the discrete directions {u.} should be symmetric
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about u = 0. However, if one knows that the angular flux is peaked near

a certain direction u, , it may be advantageous to tailor a nonsymmetric

quadrature set with several discrete directions clustered near u..

(2) Positivity of the scalar flux. The scalar flux

r
1 N

• (x) = du * (x,u) =
I

w * (x,u.)
g J 6 j_i 1 S x

-1 X l

should be always positive. Choosing the w > will ensure positivity

of the scalar flux (provided the angular flux values are positive)

.

(3) Accurate Evaluation of Angular Integrals. The scalar flux and

scattering source should be evaluated accurately with a minimum of

quadrature ordinates and weights.

Two commonly used quadrature sets for one-dimensional geometries

are the Gaussian quadrature set and the Lobatto quadrature set. Values

of the ordinates and weights of these quadrature sets for various values

of N can be found in Ref. 29. Because the angular flux is discontinuous

2
at a plane interface at u 0, odd order quadrature sets are not used

in plane geometry transport calculations (since they contain a

quadrature ordinate at y = 0) . In order to avoid this possible

discontinuity, one can split up the angular integration range into two

parts, -1 < u < and < u < 1, and perform Gaussian quadrature

separately over each sub-range. This approach is known as the double P

(or DP„) method. In plane-geometry transport problems, the DP method

has often been found to give numerical results which are superior to

2
those obtained from a standard full-range expansion.
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2.3.2 Spatial Discretization

For some simple cases (e.g., a one-group problem with isotropic

scattering and no extraneous sources) , the discrete-ordinates equations

(2.27) can be solved analytically. This approach was used by Wick and

Chandrasekhar in the original development of the discrete-ordinates

25
method. However, for most realistic transport problems, Eqs. (2.27)

are too difficult to solve analytically and hence must be solved

numerically.

One method of effecting a numerical solution of Eqs. (2.27) is to

form a set of finite-difference equations by discretizing the spatial

variable x into a set of spatial nodes {x, }. Let the left boundary be

denoted by x
1

and the right boundary by x^
+ ,

(see Fig. 2.2). The

spatial derivative of the flux is then approximated by a finite

difference scheme, viz.:

|-» K+u V s s
a

8 (2 - 29)
3x g k+4, i A^

where

and

*k+h
'

2

\+h " *k+l *k
•

We thus obtain the finite difference form of the multigroup

discrete-ordinates equations as

(2.30)

(2.31)



a^ ^Vv^i' - *g (x
k'

u
±
)] + °

g Vvv^i'
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VWl' '
k ., K; i - 1, N; g = 1,..., G (2.32)

where the group total source q is defined by

G

VWi* '= VwV + JmlWwV (2.33)

Fig. 2.2. Spatial discretization of a one-dimensional slab.

2.3.3 Solution of the Spatially Discretized Discrete-Ordinates
Equations

Before the set of equations represented by Eq. (2.32) can be

solved, it is necessary to reduce the number of unknowns by assuming a

relation between the cell-edged fluxes and cell-centered fluxes. The

most commonly used method is the diamond difference scheme which uses
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i^WiM.J (2.34)

Substitution of Eq. (2.34) into Eq. (2.32) yields

t (a^.Wj), k- X K; i-1 N; g = 1,..., G (2.35)

which represents K x N x G equations in K x N x G unknowns, * (x, ,U.).

(The incident flux densities at the outer surfaces of the slab, x. and

x_ . , are assumed known from the boundary conditions.)

Equation (2.35) can be solved for * (x, ,»".) in terms of

yvv as

ywv
i

_
gA+i

s

lv.

k+'-i

i -4-S4
2U

±

(2.36)

or for * (x, ,U.) in terms of * (x, ,,11.) as
8 K 1 g K+l 1

i » tVi
2U,

,
(xk'V

•g^i-V- -rf y=wV
g k+' 5

2u.

(2.37)

These two results permit the evaluation of the angular flux densities at

all the spatial nodes by starting at one of the slab surfaces (where the

incident flux is known) and sweeping inward through the spatial mesh
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along the direction of particle travel. Equation (2.36) must be used

for u. > and Eq. (2.37) for u < 0. This procedure minimizes the

accumulation of roundoff errors.

The number of spatial nodes and the number of discrete ordinates

are not independent of each other. From examination of Eqs. (2.36) and

(2.37), it is seen that to ensure the positivity of the left-hand side

of each equation, the following condition must be met:

S k+%
2
*i

< 1 (2.38)

Thus, the maximum cell width A, , is constrained by the smallest cosine

of the polar angle (i.e., the value of u. closest to zero). As more

discrete directions are used, the minimum |u.
|
becomes smaller, and

hence the number of spatial nodes required for positivity of the

computed fluxes increases.

The solution of the discrete ordinates equations is complicated by

the fact that the source term q (x,
x »u.) is dependent on the unknown

flux $ (x. , ,u ) (except for a purely absorbing medium, in which case
g k+*5 i

a , (ui) is zero) . The usual method of solving the discrete ordinates
g ''•g

equations is thus to employ an iterative scheme in which the source term

is approximated more accurately with each iteration. The procedure is

as follows:

(1) Estimate the initial source term q (x. . ,u ) at each spatial

cell midpoint using any reasonable source distribution.

(2) Solve for the angular flux densities using Eqs. (2.36) and

(2.37) as appropriate.
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(3) Calculate the cell-centered fluxes using Eq. (2.34).

(4) Reconstruct the source terms using Eqs. (2.33) and (2.28).

(5) Repeat steps (2) - (4) until the computed flux densities

converge.

The rate of convergence of this iterative process depends on both

the nature of the scattering involved and the thickness of the slab.

For the extreme case of no scattering (a =0) the method converges in a

single iteration. As the amount of scattering increases, so in general

will the number of iterations required for convergence. For optically

thick slabs with values of the scattering ratio c close to unity,

i i
30

convergence is extremely slow.

Because of the need to reduce computational time (and hence cost)

in discrete ordinates calculations, various methods have been developed

to accelerate the convergence of the iterative routine. Some of the

more common methods are reviewed in Ref. 31. The method used in this

work is a simple overrelaxation (SOR) scheme which is implemented as

follows

.

Consider the calculation of the scattering source terms

S
, (x. .i u.) for iteration v + 1. These values, denoted by

S , ft ..u.), can be expressed as a vector functional of the

20
previous iterate scattering source values, i.e.

s^ g Wi' =
'(te'Vwv}] • (2 - 39)
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20
It has been found chat convergence may be accelerated by calculating a

modified source term, viz.

:

- ^{ww^} (2 - 4o)

where [I] is the identity matrix and [6 ] is a diagonal matrix defined

by

[6
V

] = d
v
[I]. (2.41)

The quantity d is a scalar between and 1 which may vary with the

iteration number.

Ryman obtained good acceleration results by setting d initially

to some small value (=0.1) and multiplying it by a constant (sl.l) with

each iteration until an upper limit (s0.2) was reached. This procedure

was found to provide good results in this work as well.

Having developed the multigroup discrete-ordinates equations and

described the method by which they are solved, we now turn our attention

to the evaluation of the scattering source term.

2.4 Evaluation of the Scattering Source Term by the Legendre Expansion
Method

The accuracy which can be obtained in the solution of the discrete

ordinates equations is dependent on, among other factors, the accuracy

obtained in the evaluation of the scattering source term. In Section

2.3.1 it was mentioned that the evaluation of the scattering source term

is dependent upon the method used to express the group-to-group
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scattering cross section. In the next two sections, we will examine two

of these methods.

The most widely used method is to represent the angular dependence

of the scattering cross section by a truncated Legendre polynomial

expansion, i.e.

,

'••«« " £ (tt) °*.g'*8 V»> < 2-^

where the expansion coefficients are given by

1

"n.g'+g
= 2*

I
duWu) V" (2,43)

-1

and P. is the Legendre polynomial of order %.

25
Application of the addition theorem for Legendre polynomials to

Eq. (2.42) yields

' J W\ °*. 8 '*8 (
P
<
(1° P

*
(W,)

g -"g
£

2 i Tiiyf p>)p> ,)cos(m* ) }' (2 - 44)

m=l '

where the P. are associated Legendre polynomials of the first kind.

Upon insertion of Eq. (2.44) into Eq. (2.28), the terms containing

cos(m<f>) vanish upon integration over 0. The result is

WX'V -T ,l x

w
jJ

(2£+" "*.•*« '^W V (s"V- (2 - 45>
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Equation. (2.45) can also be expressed in terms of the angular flux

moments as

where the moments of the flux are given by

,(x) = 2lt
f
du » ,(x,u) P.(u). (2.47)

Jt.S

-1

While Eqs. (2.45) and (2.46) provide convenient methods for the

evaluation of the scattering source term, they suffer from a serious

drawback. A low order expansion of two to nine terms (typically used in

reactor physics calculations) may fail to model the scattering cross

section adequately . This is particularly true when highly anisotropic

scattering is involved. Such anisotropic scattering is common in

neutron transport problems involving elastic scattering from light

elements and with very fine energy group structures. As an example,

consider the hydrogen multigroup scattering cross section of Fig. 2.3.

The eighth-order Legendre expansion is seen to exhibit oscillatory

behavior, with the cross section expansion actually having negative

values over portions of the w range. The use of such an expansion can

20
lead to the calculation of oscillatory and even negative flux values.

While the use of higher order expansions could mitigate this problem,

the extra computational effort involved often makes such an approach

unfeasible.

In spite of this drawback, the Legendre expansion method is widely

used and, in most situations, provides satisfactory results. For many
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situations in which the scattering cross sections would appear to

require a very accurate angular description, low-order Legendre

expansions are often justified if the angular flux is not highly

anisotropic or if only angularly integrated quantities (e.g., scalar

fluxes) are of interest. Only for those problems in which both the

angular flux and the scattering cross sections are highly anisotropic is

it necessary to resort to a more accurate method, such as the exact

kernel technique.

2.5 Evaluation of the Scattering Source Term by the Exact Kernel Method

For problems in which the Legendre expansion method produces

inaccurate or nonphysical fluxes, more accurate results can be obtained

by using a non-expansion method. This method, referred to by Odom as

the "exact kernel" method, involves the use of a transfer matrix

composed of scattering cross sections for every u to u . transfer. Use

of the exact kernel method guarantees positivity of the computed fluxes

(provided Eq. (2.38) is satisfied) and has been shown to provide

20 21,23 22
accurate results for both neutron and gamma photon transport

problems.

The exact kernel form of the scattering source term is simply

where a , (u.-*u.) is the exact kernel cross section for transfer from
g *S J i-

polar direction u to polar direction u . . Comparison of Eqs. (2.28) and

(2.48) shows that the exact kernel cross section is defined as
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tj.
(M.-y.) = d* a

, (a)(y,,U.,<fO) , (2.49)
*g J i

J g *g 1 J

where u(|i,u',$) is given by Eq. (2.7). Due to the dependence of

a
, (u>) on cos((i, which is symmetric about tt in the interval [0, 2it] ,

Eq. (2.49) can also be written as

a . (u.-nO =2 d* a , (ui). (2.50)
g '*g j i J g *g

Several techniques have been developed to facilitate the evaluation

of Eq. (2.50). These techniques include restriction of the azimuthal

integration range and the use of low-order piecewise polynomial

approximations for a
,

(id) . The method used to evaluate exact kernel

cross sections for the transport calculations performed in this work is

presented in Sec. 3.2.1. For more information on the evaluation and use

of exact kernel cross sections, the interested reader is referred to

Refs. 22 and 23.

Although the exact kernel method does provide more accurate results

in problems with a high degree of anisotropy than does the Legendre

expansion method, it does have drawbacks. The most obvious of these is

the problem of cross section storage. In the Legendre expansion method,

the only cross section terms required are the L + 1 expansion

coefficients for an L'th order cross section expansion. In the exact

kernel method, however, it is necessary to store an N x N matrix of

cross section values (N being the number of discrete ordinates) . For

transport problems involving a large number of discrete ordinates and/or

many energy groups, it is easy to see that the number of exact kernel
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cross sections required becomes very large. While this storage

requirement is a disadvantage of the exact kernel method, it has become

less of a problem as larger computers and fast access peripheral storage

devices have been developed.

Another problem associated with the exact kernel method is that of

angular redistribution of scattered particles. This problem can best be

illustrated by considering a highly anisotropic scattering cross section

which is nonzero only over a small portion of the scattering range

a) e [-1,1] (cf. Fig. 2.3). For such a cross section, many of the exact

kernel cross sections a(u.*u,) will be identically zero. Whether or not

a particular exact kernel cross section is nonzero depends upon the

spacing between adjacent u, values of a discrete-ordinates quadrature

set. If the spacing between these values is too large, particles

traveling in direction u. will never scatter into other directions.

This inability of particles to redistribute angularly remains even after

multiple scatters

.

In order to ensure that angular redistribution can occur, it is

necessary to have at least one nonzero value of cr(u -*-u ) for some i 4 j.

27
For this condition to be met, Mikols has shown that there must exist

at least one polar quadrature ordinate 8 = cos u. such that

S , < 6 < B . (2.51)
min — i — max

The values of 6 , and 6 are dependent upon the nonzero range of the
min max

scattering cross section, as well as upon the initial particle direction

6. 3 cos u.. In particular, consider a cross section which is nonzero
J J

only over the ranee [oi . , cu ]. The angles 8 . and 8 are given byJ mm max ° min max *



min

maxr(6. - 6 ), 01 , 8. >
. ,

j max * j — mm
6 .

- 8. , 8. < . .

min j j min
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(2.52)

and

(2.53)

min [(6 +0 ),tt] , 6. + 8 . <ir,
a J J max j min —

max
I 2 TT - e - e . ,e.+e J >Tr,
I j min j min

where 3 cos to . and . = cos u
max min rain max

The fundamental concern when choosing a discrete-ordinates

quadrature set for exact kernel transport calculations is whether or not

the set can "completely model" scattering transfers within a group and

27
to the next lower group. The term "completely model" refers to the

ability of a quadrature set to produce at least one nonzero value of

o(u +u ), with i ^ j, for all u. values of the quadrature set. This is

referred to as first-order coverage of a quadrature set. In the same

manner, n'th-order coverage is that coverage which permits transfer from

u. to at least n different u. values. In general, a quadrature set

which provides first-order coverage is sufficient for transport

calculations. While larger quadrature sets (with a higher order of

coverage) may provide some increase in accuracy, they do so at the cost

of increased computational effort. On the other hand, if the quadrature

set is so coarse that not even first-order coverage is achieved, the

exact kernel method yields very poor results.

In the next chapter, a new method of evaluating the scattering

source term is introduced. This new method avoids the angular coverage

problem of the exact kernel method, and also provides better accuracy

for highly anisotropic problems than does the Legendre expansion method.
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3. DEVELOPMENT OF AN APPROXIMATED SCATTERING KERNEL FOR
SEMI-ANALYTICAL EVALUATION OF THE SCATTERING SOURCE TERM

In the previous chapter, two methods for evaluating the scattering

source term of Eq. (2.28) were summarized — the Legendre expansion

method and the exact kernel method. For problems characterized by

highly anisotropic fluxes and scattering cross sections, the Legendre

expansion method can lead to the calculation of inaccurate and even

unphysical fluxes. The exact kernel technique provides much more

accurate results, but can suffer from angular redistribution problems.

In the next two chapters we will examine a method based on the

analytical evaluation of the scattering source term of Eq. (2.11). This

method, which we will refer to as the "approximated scattering kernel"

method, will be seen to provide better accuracy than the Legendre

expansion method, and to alleviate the angular redistribution problem of

the exact kernel method for highly anisotropic problems.

3.1 Approximations for the Scattering Source

In Chapter 2 it was shown that the group-to-group scattering source

for a direction u is given by

1 tZV

S ,. (y) - dp' d* a ,. (co) 4 (u-), (3.1)
g *g 1 J g

+g g

where the spatial variable has been dropped for simplicity of notation.

Due to the dependence of , (id) on cos4, which is symmetric about 1 in

the interval [0, 2»] , Eq. (3.1) can be rewritten as

1 it

S ,. (u) = 2 [ dU' d4 a (w) * ,(U'). (3.2)
g*g I 1 g *g g

-1
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In order to evaluate Eq. (3.2) analytically, it is first necessary to

assume a functional form for both the group-to-group scattering cross

section and the angular flux density. In this section, we will examine

approximations which often represent the shape of a . (w) and $ ,(u')
g +g g

more accurately than the traditional Legendre polynomial expansions.

3.1.1 Approximation of the Scattering Cross Section

In previous studies of transport calculations involving anisotropic

scattering, it has been shown that the angular range of the scattering

cross section a , (id) is naturally divided into subregions bounded by

at most four breakpoints in. , i = 1, . . . , 4, such that

21-23
-1 < U, < u, < <d, £ <o, < 1. The values u

1
and to, represent the

minimum and maximum cosine of the scattering angle, respectively, for

which scattering is permissible within the constraints of energy and

momentum conservation for transfer from group g' into group g. Thus the

scattering cross section a . (10) is zero for CD<td, or co>to, . For
g -*-g 14

anisotropic scattering, the interval [oo, , id. 1 over which a , (oi) is
1 4' g'+g"

nonzero is often only a small portion of the entire range [-1,1] (cf.

Fig. 2.3).

In general, the breakpoints in the scattering cross section can be

23
expressed as

*j = [[-1, S(E
g

, E
g
,_

1
), 1]] , (3.3)

m
2

= [[-1, S(E
g
_ 1

, E
g
,_

1
), 1]] , (3.4)

[[-1, S(E
g

, Egl ), 1]] , (3.5)

and
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u
4

= [[-1, S(E , E ,), 1]] , (3.6)

where the notation [[a,x,b]] = max[a,min(x,b) ] , i.e., = x if

a<x<b, = b if x > b, or = a if x < a. The function S(E,E'), which

is obtained from scattering kinematics, gives the relationship among the

initial and final particle energies and the cosine of the scattering

angle. For elastic scattering of neutrons from a nucleus of mass number

2
A, this relationship is given by

0) = S(E.E') E i (A+l) f\r - (A-l) /|H . (3.7)

25
while for Cotnpton scattering of photons

2 2
m c ra c

a = S(E.E') E 1 - -2— + -%j- , (3.8)

2
where m c is the rest mass energy of the electron (0.511 MeV)

.

Under certain conditions, the four breakpoints defined by Eqs.

(3.3) - (3.6) are not all distinct. For energy group structures equally

spaced in lethargy [u = iln(E /E )] or Compton wavelength

2
[X = (m c /E) ] , to„ and oj_ coalesce. For such a group structure we can

define three distinct breakpoints as

Dj = [[-1, S(E , E
g

, .p. HI . (3.9)

and

,)

2
= [[-1, S(E

g
_ 1

, E
g
,_

1
), 1]] = [[-1, S(E , E ,), 11] , (3.10)

u
3

= [[-1, S(E , E ,), 1]1 . (3.11)
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For within-group scattering (e.g., one-speed transport problems), ui
9 ,

(ii_, and ui. are coincident at u • 1, We can thus define two distinct
3 4

breakpoints as

and

Oj = [[-1, S(E , E
,

_

1
), 1]] , (3.12)

U
2
- 1 . (3.13)

The utility of the in. breakpoints lies in the fact that the shape

of the scattering cross section is usually very smooth in each m

subrange and can generally be well modeled by piecewise, low-order

23
polynomials between the breakpoints. Such piecewise polynomial fits

are generally far superior to traditional full-range Legendre polynomial

expansions (see, for example, Fig. 2.3). In particular, piecewise

linear fits have been shown to be a good approximation for neutron

elastic scattering cross sections involving fine-energy-group structure

or scattering from light elements, while piecewise quadratic fits have

been shown to provide good results for Compton scattering of gamma

22
photons. In this work we will consider both piecewise linear and

piecewise quadratic models for the scattering cross section. We can

represent a general model for both cases as

k
max .

g +8 k^ 1
g *g

where
. a. ui + b. id + c. , -l<oi,<iii<u), ,<1
k . . JTc k k - Tc - - k+1 - ,, ...

a n'^M =
\

(3.15)

, otherwiseg ->g
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and k is one less Chan the number of distinct breakpoints in the
max

scattering cross section.

Given the values of the cross section at the breakpoints, it is a

simple matter to compute the coefficients of Eq. (3.15) for a linear

fit. In the case of a quadratic fit, it is necessary to know the cross

section at one additional point in each subdomain. A convenient point

to use is the midpoint of each subdomain.

22
For a quadratic fit the coefficients are given by

a^. = D /D , (3.16)

b
k

= D
2
/D , (3.17)

and

c
k

= D
3
/D , (3.18)

where

D = \ [ttkth - \*1 ] " Wis " "k+l 1
+ «W"k " VV '

OA9)

D
l

=
°k !uk+% " <Vn ] " ak+!s

[uk " <"k+ l
]

+ Vl !\ " "W '
O - 20)

D
2

=
"k^k-Mj " °k+ l

]
_

"iMijt'k " a
k+ l

]
+ "W°k - <W '

(3 - 2n

and

D
3

=
"k^+Jj °k+ l " "k+1 <W - "W"k <Vl - <\+ l °k ]

+ vi [\ ak+!i
- %* ak ] •

(3 - 22)

In Eqs. (3.19) through (3.22) u. , is the cosine of the scattering angle

at the midpoint of the k'th subdomain and a, * a, i , and a, , are the
k k+% k+1

cross section values at oj, , co. ! , and uv ,» respectively.

For a piecewise linear fit the coefficients of Eq. (3.15) are given

by
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, (3.23)

= JSil fe
, (3.24)k ID, ,

- ID,

k+l k

and

(3.25)
k+l

3.1.2 Approximation of the Angular Flux

The second approximation needed to evaluate the scattering source

term of Eq. (3.2) is a representation of the angular flux density.

Perhaps the simplest approximation is to represent the angular flux by a

series of straight lines between the discrete ordinates (v.). This

2
approximation was the basis of Carlson's original S method. In this

work, we will utilize this approximation and also generalize it to

higher-order, piecewise polynomial fits.

In particular, consider a set of (NM + 1) discrete ordinates {u.},

where y = -1 and U ,
= 1. We can divide this set into M segments of

1 NM+

1

N + 1 discrete ordinates each. Let the ordinates at the boundaries of

each segment be denoted byu.,j=l,...,M+l, where M ,
= U,. , % „ ,.

J : (j-l)N+l

In each of the M segments, the angular flux can be approximated by

an N'th order polynomial through the N + 1 ordinates in that segment.

In particular, the flux in the j'th segment can be approximated by an

N'th order Lagrange polynomial as

jN+1
* 00 " I L (u) * (u ) , i, < p < »' (3.26)
8 i=jN-N+l

l 8 * J J '

where



39

jN+1 u-u

L,(u) = n —
, u. < u < h . (3.27)

1
k=jN-N+ l Vk 3 " " J

+ l

The angular expansion of Eq. (3.26) may be extended to the whole range

u e [-1,11 as

NM+1

*JV) - I L. (u) * (ii ) , -1 < U < 1 (3.28)
8 i-1

1 8 i - -

where the full range Lagrange polynomials are defined by

M I jN+1 u-u

L
i
(u) E

I
n in* H([vV rVry

i
!)

•

(3>29)

j=l k=jN-N+l W
i

Uk
1 J 3

I Mi J

In Eq. (3.29) H(x) is the unit step function [i.e. H(x) = 0, x < 0;

H(x) = 1, x > 0], so that L. (y) vanishes unless y and y. belong to the

j
' th segment

.

3.2 Decomposition of the Source Integrals

Having developed explicit piecewise polynomial approximations for

the scattering cross section and the angular flux density, we now

consider the resulting form of the scattering source term of Eq. (3.2).

With the piecewise quadratic approximation for o
, (ut) of Eqs. (3.14)

and (3.15), the scattering source term can be written as

f
(Tr max ,

S
g

,+g
fti) - 2

J

du' I d* I a* (u) i ,(»') (3.30)

-1
k=1

or, equivalently

,
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k
max ,

h'+M " I S (ij) ' (3 - 31)
g *g

k-1

where

S
k
(u) E 2

|
du *

|
d* <Jgi + g

(u) *
g
.(u'). (3.32)

-1

The integration of Eq. (3.32) can be performed analytically using

the piecewise polynomial approximations for a , (aj) and $ , (u ' ) . In

order to carry out the integration, it is first necessary to decompose

the integration ranges of u' and $ into subranges, in each of which the

integrands assume a distinct functional form.

In Sec. 3.1.1 it was noted that a , ((d) is zero outside the

interval [to, , oj, . ] . Because dj is a function of u» v', and <|> Tcf. Eq.

(2.2)], there exist corresponding limits of the u' and 4> integrals of

Eq. (3.32) outside of which the integrand is identically zero. In this

section we will consider the specific limits of the y' and 1(1 integrals

for Eq. (3.32) and the form of the integrands in each of the resulting

integration subranges.

3.2.1 Restriction of the Azimuthal Integration Range

In order to evaluate the inner integral (i.e., the integral over (j>)

of Eq. (3.32), it is first necessary to determine the precise limits of

$ for which a , (oj) is nonzero. The desired limits can be found from

the iso-(u contours in the (u', i)>) integration plane as shown in Figs.

3.1 - 3.3. These contours are obtained by plotting f as a function of

u' for fixed values of u and oi, using Eq. (2.2). The minimum and

maximum values of <j> for which a , (a)) is nonzero depend on u and u' and

equal, respectively, the $ values on the ui, . and u), contours (or their
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limiting values of $ and <)> = it) . The $ integration range is thus

k+1 k
reduced from [0, Til to [if (y.U

1

), <t> (y,y')], where, from Eq. (2.2),

k -1 \ " W
Au.y') = cos

l
[[-l, £ 5-p , 1]1. (3.33)

(l-li
Z )'5 (1-u'V

The inner integral of Eq. (3.32) thus becomes

!k+l

k, , = I* k ,..., _ |

T
, M ,_ 2

I (y,y') = d* a , + (u) = d<(> (a^ + b^ + c
fe

) , (3.34)

<t>

k
"

which, upon use of Eq. (2.2), can be integrated to give

I
k
(y,y') = [a

ku
2
u'

2
+ b

k
Mi' + c

fc
] (*

k
-

f>

k+1
)

+ (l-y
2

)
!s (l-u'

2
)

I'
s
[2a

lc
uu' + b

k l (sini(.
k

- sin*
k+1

)

+ Y~ (1-U
2
)(l-P'

2
)[*

k
- *

k+1
+ sin*

k
cos<t>

k
- sin*

k+1
cos*

k+1
]. (3.35)

Substitution of Eq. (3.34) into Eq. (3.32) yields

1

S
k
(u) = 2

j
dy' I

k
(y,y') 4> ,(y'). (3.36)

-1

Before we proceed with the evaluation of the y' integral of Eq.

(3.36), it is instructive to examine the scattering source as defined by

Eqs. (3.31) and (3.36), i.e.,

k
imax A

S<,,_(") - I 2 dy' I*(y,y') * ,(y'). (3.37)
8 8 k=1 I 8

This expression could be evaluated by numerical quadrature to yield

max NM+1 .

V+e (u) =
I I 2 n»,ll ) » »,(,.), (3.38)

8 8 k-1 j=l J J g J



45

Comparison of Eq. (3.38) with Eq. (2.48) shows that the exact kernel

cross section defined in Section 2.5 can thus be calculated as

k
max .

TkWW = 2

J x

T Cui»V (3 - 39)

3.2.2 Evaluation of the Polar Integral

In order to evaluate the u' integral of Eq. (3.36) analytically, it

is first necessary to decompose the u' integration range into several

subranges, in each of which I (y,u') and $ ,(u') assume a single

functional form. The form of I (u,u') in each subrange is dependent on

k k+1
(J)

and * which take on different forms depending on u 1

. From Figs.

k k+1
3.1 - 3.3, it is seen that $ and <j> assume a single functional form

— 1 2 h 2
(namely, 0, tt, or cos { (w-uu ?

)/[ (1-y ) (1-y 1

)]}) in at most five

subintervals of y' e [-1,1], Let the u' breakpoints which define these

subintervals be denoted by iC,,* t - 1,..., 6. These breakpoints, which

are dependent on p, ov» and w, ., are the y
1 values at which the to. and

u, . contours in the u'-<t> space of Figs. 3.1 - 3.3 intersect the lines

$ * and
(J)

= it. In particular, u' = -1, yj = 1, and the other four

values are the ordered roots of Eq. (2.2) with = or = tt, i.e.,

{uk2' U
k3'

Uk4'
U
k5

} " °rdered Kl'Ks'K^'^ ' (3 - 40)

where

^2 = M\ + [(l-V
2
)(l-^)] h , (3.41)

U^
3

" W\ " [(1-U
2
)(1-«^)]'S , (3.42)

»U~»\+ i
+ [(^'"-Vi'''

1 "- 43 >
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and

^5 = ^k+i- raVm-^)]* . (3.44)

k k+1
Unless m. or to, , is equal to +u , $ and

<J>
will both equal or

tt in the intervals [u* , p'
] and [u* , u^

ft
] - Thus I (u,u !

) will vanish

in these intervals, so they can be neglected when evaluating Eq. (3.36).

Further decomposition of the u' integration range can be achieved

by considering the piecewise polynomial representation of the angular

flux. In each [u,jU, .] segment the flux is represented by Eq. (3.26),

where the interpolating polynomial of Eq. (3.27) can be expressed more

simply as

N

L.(u) =
I

C^ u
n

, S < u < u (3.45)

n=0 J J

Because the coefficients C are different in each of the j segments, the

integrand of Eq. (3.36) assumes a different form in each segment.

There are thus 6 breakpoints (v^p} in the u' integration range of

Eq. (3.36) imposed by the functional form of I (u,y T
)» and M+l

breakpoints {u.} imposed by the flux interpolating polynomials.

However, u,' U. = -1 and u' = uw . 1, so the number of distinct
Kl 1 ko M+l

breakpoints is at most M+5 (note that it Is possible for some of the

other u' and u. breakpoints to be coincident). These breakpoints

divide the u' integration range into at most M+4 subranges, in each of

which the integrand of Eq. (3.36) assumes a single functional form.

k f
-

Let tv.) represent the ordered values of (iC?^ anc* tv.}. Equation

(3.36) can then be rewritten as
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k

. M+4 A+l
S
k
(y) - 2 I dy' I

k
(y,y') * ,(y'). (3.46)

\

Use of Eqs. (3.28) and (3.45) allows Eq. (3.46) to be expressed as

. NM+1 M+4 N ...

S
k
(y) - 2 I \l I F

kUn(y)U (y ), (3.47)
1=1 u=i n-o 8 1

where

k

F
ki±n

(y) SCM '

dy' y'
n

I
k
(y,y'). (3.48)

n
J k

The problem of evaluating the scattering source components S (y) is

thus reduced to the evaluation of the integrals F (y) as defined by

Eq. (3.48). In the next section we will examine the analytical

evaluation of these integrals.

3.3 Evaluation of the F
n

Integrals

In order to evaluate the integrals F (y) of Eq. (3.48), we must

consider the exact form of the integrand in each of the integration

k k
subranges [v , v } . Substitution of Eq. (3.35) into Eq. (3.48) yields

F
kJlin

(y) = C
i
{G
Un

(y;k) - G
kin

(y;k+1)}

,

(3.49)

where
k

„k«.n, , ,, - (

+
, , / ,n. 2,2 , , , ,k'

G (y;k') = dy' jy' [a^v y' + b^y 1 + c
k ]

+ y'
n
(l-y

2
)
!i
(l-y'

2
)
!i [2a

k
yy' + b

k ] sin $
k '

+ y
i y'

n
(l-y

2
)(l-y'

2
)[<t.

k '
+ sin^'cos*

1"'

]}. (3.50)
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The exact form of G (u;k') depends on the form taken by if . In

k'
Section 3.2 it was shown that can, in general, take on three forms

(cf. Eq, (3.33)), although only one in a given integration subrange.

kin
Thus G (u;k T

) is given by one of three possible forms, viz.:

,k'
Case 1: 0;

G
kin

(]i;k') = . (3.511

Case 2:
xk'

Jtta, .,, JfV
2

\a-u2)
} (,k ,n+ 3 .k.n+ 3

G (y;k') » b I(n73T- <Vi> - <V

b,.U
k M

I, k x n+2 . k.n+2]
n+ 2

(Vl'

fTc
a
k
(1"y2)H, k ,n+l , k.n+1 1 '

[n+l 2(n+l)
J |

M' (3.52)

k' -if V " vv
Case 3 : + = cos =-r s-rrj

;

sinij)

2 2 2 W
k

, t(l - V - o^, + 20^,^^' - u
1

)

(1 - uV (1 - u'
2 )*5

G
kln

(u;k') j- (3u - 1)1 f (u') + b
ku

f (y')

• |c
k

+ — (1 - u )
J

f (u*)

|^««*V)* (b
k -rv)«

n
«" ,)

k

(3.53)
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where the functions f (u ' ) and g (u ' ) are defined by

f
n
(u') = [

u'
n

cos-
1

f
a - bu

.',] du 1

(3.54)

and

with

g
n
(u') =

|
u'

n
(c + du' - V'

2
)
H du'

, (3.55)

a = ^/(l-u 2
)
4

, (3.56)

b = u/d-u
2 )*5

, (3.57)

c = 1 - u
2

- u)
2
,, (3.58)

and d = 2oV.ll. (3.59)

The integrals of Eqs. (3.54) and (3.55), although somewhat complex,

can be evaluated analytically. In the following two subsections we will

examine the results of these integrals for n = 0, 1, and 2. These

results are sufficient for using linear or quadratic interpolation for

the angular flux. If a piecewise linear representation of the

scattering cross section is used (i.e. , a, = 0) , these results also

permit the use of cubic interpolation for the flux.

3.3.1 Evaluation of the Functions f"(u')

The argument of the arccosine in the integrand of Eq. (3.54) is

singular at u' = ±1. From examination of Figs. 3.1 - 3.3, it is clear

that, when u 1 = 1, <J>
= or tt (except when cu is exactly equal to u) .

k£n
Thus for u' = 1, G (u;k') is given by case 3 only if u). ,

= u. If u
,

= u, it is clear from Eqs. (3.56) and (3.57) that a = b. The

singularity in the integrand of Eq. (3.54) can then be removed by

factorization, i.e.
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a - bu'

|

a(l-u')
= . (3.60)

U'-l V-l
(l-u'

2 )*5
! (i+u')'

2
(i-u')

The singularity at U
1 = -1 can be removed in the same manner.

With the singularities removed, the functions f (u') of Eq. (3.54)

can be evaluated analytically using integration by parts and integral

tables. ' The following results are obtained for f (u'):

f°(u') = u'h^u') +
I h

2
(u') + h

3
(u') - h

4
(u'), (3.61)

l
l
(V') !{ll ,2h

1
(u') +

[

at "
3

br
)
h
2
(y') -h

3
(y')

h
4
(y') + ahjOl')} , (3.62)

f
2
(V) =j jy'^Oi') + f^tpOt

2
? 2b

2
- a

2
+ 1) + 2] h

2
(u')

+ h
3
(u') - h

4
(u') + | fay' - 2b + 3atpi h^y')}, (3.63)

f
3
(u') = ^ |w'\(u') + *-§• [5bt

2
p - 3bs] h

2

,<U*)
2r"

- -^r [3t
2
p - 3a

2
+ 2r

2
1] h (p') - h-(u')

2r

- h
4
(y') - | [u* + 3tp] h

5
(u')

+| [2u'
2

+ 5tpu' - 4sp + 15t
2
p
2

+ 6] h (u')^ ,

and
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tV) =}{u'\(u') +
-S" f

2^ ~ b)r 5t2p - 3s]h
2
(y')

+ -Ar [3t
2
p - 2b

2
+ 2r

2
- s] h (y

'

)

2r

- 32. [3t
2
p - s] h.(p') + h.(u') - h.(y')

8r

[

?atP
24~

4bP

) f

5— + 5tu' " 4s 15t
2

p)
h
5
(y')

,3

(M*)V, (3.65)(f-Jpjh,. 3tp]h
5
(„'> + [a^-b)h

5

where

h.(u') = cos'l a ~ &C] , (3.66)
1

l (l-u
,2 )*J

h
2
(p') 5 .l.-

1

[

- (b2

2̂
';'b

]
, (3.67)

2
I (l-aW)"4 >

.,,,_! a+b , -lf (ab+b
2
+l)(y'+l) - (a+b)

2 "

!

h.(u') = -z sin
5 5-r ,

3 2
|a+b| I Ip'+ll (1-a

2
+ b

2 )^ >

(3.68)

h.(u') 3 l^^sin-f^-b 2
-l)(p'-l) - (a-b)

2

] > (369)
4 2

|a-b| I- lu'-ll (l-a
2+bV 1

h,(p") E
/-(b 2

*Ou'' 2ab"' - ^la
, (3.70)

5
b + 1

p E (b
2
+l)

_1
, (3.71)
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r S (b^l)
15

, (3.72)

s = a
2

- 1, (3.73)

and

t = ab . (3.74)

3.3.2 Evaluation of the Functions g ("')

The functions g (u') of Eq. (3.55) can be evaluated using integral

tables. The following results are obtained for g (u'):

gV). (2U'-d)(c^--U-
2)^ di^c vul)> (3-75)

1 ,. _ (c-t-dy-U'
2
)
3/2 d(d-2u')(c+dU'-U'

2 )'1

d(d^4c)
M"'>. < 3 - 7«

lb b

2,r , -_[»• "1 (c^'-^'
2
)

3/2
+
Sd^c

16

and

where

i'2/„ .j,ii_ ii i2%3/2

g
3
(w .) - "' C^'-'- > + ^gV) + £gV>. (3.78)

10

h.(P') - sin"
1

-f
2^ . (3.79)

It can be shown that the function h.(U') defined by Eq. (3.79) is

equivalent to the function h„(u') defined by Eq. (3.67).
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3.4 Final Form of the Scattering Source Term

With the results of sections 3.1 - 3.3, the final form of the

scattering source term can be written as (cf. Eqs. (3.31) and (3.47))

NM+1

where ,

max M+4 N
F (u -u) S 2 t I I F^ ln

Oi). (3. 80
s B k=l £=1 n=*0

It should be noted that the form of Eq. (3.80) is exactly the same as

the form of the exact kernel scattering source term (Eq. (2.48)). Thus

any discrete ordinates code based on the exact kernel method can be used

with the above results.

In the next chapter, several slab albedo problems are examined.

Specifically, results for these problems obtained using the approximated

scattering kernel method are compared to those obtained using the exact

kernel and Legendre expansion methods.
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4. USE OF THE APPROXIMATED SCATTERING KERNEL METHOD
IN DISCRETE-ORDINATES TRANSPORT CALCULATIONS

In the previous chapter, a new method of evaluating the scattering

source term in discrete-ordinates transport calculations was examined.

The purpose of deriving this method was to find a means of evaluating

the scattering source term which, for highly anisotropic problems,

provides better accuracy than does the Legendre expansion method and

which does not suffer from the problem of angular coverage associated

with the exact kernel method.

In this chapter we will apply this new method, termed the

approximated scattering kernel method, to several one-speed slab albedo

transport problems and compare the results obtained to those obtained

using the exact kernel and Legendre expansion methods. However, before

examining the results of these calculations, let us consider the general

form of the slab albedo problem.

4.1 The Slab Albedo Problem

Consider a source-free, infinite, homogeneous slab of thickness T

mean-free-path lengths in a vacuum. The slab is illuminated on one face

by a monodirectional beam of particles. This problem has been widely

studied * ' and is known as the "slab albedo problem". Let the

incident flux at x be in direction u > 0, where u is one of the
s s

discrete ordinates {u }. The boundary conditions are then

0(0, u) = 6(u-u
g

) , u > (4.1)

and
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(t.m) =0 , u < (4.2)

where 6(u-u ) is Che Dirac delta distribution.
s

For the simple case of isotropic scattering, the exact analytical

solution for the reflected and transmitted angular fluxes can be

34
obtained by using the X-Y functions of radiative transfer. In terms

of these X and Y functions, the reflected and transmitted angular fluxes

are given by

CP
s

*(°' 1J ) " ofuJ, •>
[X<W)X(V ) " Y(u)Y(u )] , v < (4.3)

2(u+u ) s s
s

and

*( T > U > "
77?. ,. ^

rY(u)X(p ) - X(u)Y(l» )] . V > . (4.4)
2(u-ii ) s s

Values of X(u) and Y(y) are tabulated in Ref. 35 for various values of c

and T.

For both isotropic and anisotropic scattering, the diffusely

reflected and transmitted angular fluxes obey an important reciprocity

34
principle. [The diffusely reflected and transmitted fluxes consist

only of those particles which have undergone one or more scattering

processes. Thus the uncollided transmitted flux in the source

direction, 4(0, u )exp(-x/u ), is not included in the diffusely

transmitted flux *(t,u ).] The reciprocity principle can be stated as

follows

:

u*(0;u ;-u) = u *(0;u;-u ) (4.51
s s s

and

u*(t;u ;u) = u 4>(t;u;u ) (4.6)
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where <&(x;u ;u) is the angular flux at position x in direction u due to

an incident flux at x = in direction u .

s

The difference between the diffusely transmitted flux and the total

transmitted flux depends on the source angle of the incident flux as

well as the slab thickness. In some cases, such as a normally incident

flux on a thin slab, the uncollided transmitted flux may be much greater

than the diffusely transmitted flux. Since we are primarily interested

in the effects of scattering source calculations in this study, we will

compare only the diffuse fluxes in the problems of Sections 4.2 and 4.3.

4.1.1 Incident-Flux Normalization in Discrete-Ordinates Transport

Calculations

To obtain the proper angular fluxes when performing discrete-

ordinates transport calculations, it is necessary to normalize the

incident flux *(0,u ) in accordance with the boundary condition given in
s

Eq. (4.1). The presence of the delta distribution in Eq. (4.1) implies

that, for u >

4(0, u) = , u J u (4.7)
s

and .

dy *(0,u) - 1 . (4.8)

The specific form of the source normalization is dependent on the

method used to evaluate the integral of Eq. (4.8). When numerical

quadrature is used (as in the exact kernel or Legendre expansion

methods), Eq. (4.8) is evaluated as
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NM+1

I w *(0,u.) = 1 (4.9)

i-1
x

where NM+1 is the number of discrete ordinates. Because the incident

flux is zero in all directions other than u > the effective source
s

strength or normalization required to satisfy Eqs. (4.7) and (4.8) is

thus (for y > 0)

«(0,y
±
)

=
, y l< u

x

1 S
(4.10)

When the approximated scattering kernel method is used, the source

normalization is somewhat more complex. Substitution of Eqs. (3.28) and

(3.29) into Eq. (4.8) yields

1
NM+1 M ' jN+1 y-y

1=1 [ I \
' I —14 H([y -y" ][y -y ]) (O.w ) dy .(4.11)

' 1-1 j-1 k=jN-N+l u
i

M
kl

U
* k^i >

Since the incident flux is zero in all directions except y , Eq. (4.11)

can be simplified to

r
l

M I jN+1 M-V _ _
1 = (O.u ) I I —S- H([y -y ] [y -y ]) dy . (4.12)

s
)

q
j_i k=jN-N+l y

s
Uk

S J 2 L S

Because the integrand of Eq. (4.12) is zero outside the interval

[y . ,y . .] for each j, we can rewrite Eq. (4.12) as
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>1

j-1 J J ' k=jN-

jN+1

Ma

du (4.13)

so that the source normalization becomes

KO.iiJ I H([u,-5 ][y ru
s

j=i

J +1 1N+jN+1
n

N-S

Ms
k=jN-N+l U

s~
Uk

du

-1

(4.14)

4.1.2 Treatment of the Discontinuity in the Angular Flux at u=0

It may be recalled from Sec. 2.3.1 that the angular flux is

discontinuous at u = at any interfaces in a slab. For a homogeneous

slab, the only interfaces are the slab surfaces. The angular flux is

therefore continuous throughout the interior of the slab and

discontinuous at x = and x = T. Because the angular flux is treated

as a piecewise continuous function in the approximated scattering kernel

method, this discontinuity can be expected to produce some error in the

calculation of the reflected and transmitted angular fluxes.

One means by which this error can be minimized is to place the

ordinates immediately on each side of u as close to as is

practical. However, it must be remembered that the number of spatial

nodes required to ensure positivity of the calculated angular fluxes

increases as the absolute value of the ordinate closest to u =

decreases [cf. Eq. 2.38)]. This restriction places a practical

limitation on how close to zero the discrete ordinates can be located.

An approach to eliminate the effects of the discontinuity at u =

is to let the point u = be one of the discrete ordinates. More
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specifically, by letting u = be one of the boundaries u. in the

piecewise polynomial expansion of the angular flux, the scattering

source term will not be integrated across u = 0. This approach is

similar to that utilized in the DPW method, in that the scattering

source term is evaluated in the two half-ranges [-1,0] and [0,1] rather

than the full range [-1,1],

While this approach would eliminate integration across the flux

discontinuity, it introduces another problem, namely, the evaluation of

the angular flux at y = 0. The standard discrete-ordinates equations

[Eqs. (2.36) and (2.37)] cannot be used for u = 0. Hence an alternative

method of evaluating the angular fluxes would have to be utilized to

calculate $(x,0)

.

If the flux around u = were smooth, one could interpolate the

flux at with a reasonable degree of accuracy. When the flux is

discontinuous, however, interpolation could produce very poor results.

Essentially, then, interpolation of the flux at u = offers no

advantage over integrating across u = 0. As an alternative approach one

could evaluate the flux at p = 0+e and u = 0-e, where e is a very small

number, by extrapolating the flux from the positive and negative

directions. Under certain conditions, this approach could work very

well. Consider, for example, the transmitted flux emerging from a slab

at x = x. The angular flux in this case is zero for \i < 0, and non-zero

for u > 0. Extrapolation of the flux at 0-e would produce the correct

value (i.e., *(x,0-e) = 0). The accuracy of the extrapolation of

$(t,0+e)» however, would depend on the behavior of the flux near U = 0,

as well as on the location of the discrete ordinates used to extrapolate



60

the flux. If the flux were smooth near u = 0, the extrapolation could

be very accurate. However, if the flux varied rapidly near u = 0,

extrapolation could yield a very poor estimate of *(x,0+e).

In the transport calculations performed in this work, it was found

that the best results were usually obtained by using the full-range

expansion of the scattering source term (and thus ignoring the

discontinuity at the slab surfaces). In some problems, the use of flux

extrapolation produced results which were slightly more accurate than

those obtained without extrapolation. However, in most cases the use of

flux extrapolation produced no improvement, and, in fact, often led to

significant errors. It was therefore decided that the use of flux

extrapolation should be avoided because it is not a reliable method of

improving the accuracy of transport calculations.

4.2 Results for Isotropic Scattering

The first problem considered is the slab albedo problem with

isotropic scattering. The transport medium is a one mean-free-path slab

with c = 1. Figure 4.1 shows the diffusely reflected and transmitted

angular fluxes resulting from unit incident fluxes in directions

u = 1.0, u = 0.566331, and u = 0.66838, as calculated using the X-Y
s s s

functions.

The reflected and transmitted fluxes for the normally incident case

were first calculated using each of the scattering source treatments

(exact kernel, Legendre expansion, and approximated scattering kernel)

with a Lobatto-12 discrete-ordinates set. The approximated scattering

kernel calculations used an additional ordinate which was needed to

obtain an integral number of flux intervals for piecewise quadratic and
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cubic flux expansions. This additional ordinate was placed at u = 0.04

in an attempt to minimize the error produced by the discontinuity at

u = 0. The results of all the calculations were within about 1% of the

fluxes calculated using the X-Y functions. The fluxes calculated using

the approximated scattering kernel method with linear, quadratic, and

cubic flux expansions were actually somewhat more accurate than the

fluxes calculated using the exact kernel and Legendre expansion methods.

This difference may be due at least in part to the extra ordinate used

in the approximated scattering kernel calculations.

An obvious means of reducing the error in the calculated fluxes is

to increase the number of discrete ordinates. To illustrate this

effect, the transport calculations were next carried out for the

normally incident case with a Lobatto-24 discrete-ordinates set. The

approximated scattering kernel calculations again utilized an additional

ordinate at u = 0.04. For each of the scattering source treatments

used, nearly all the angular fluxes were within 0.25% of the X-Y

results.

Finally, calculations were performed with the Lobatto-24 set for

source angles of 0.566331 and 0.066838. For the source angle of

0.566331, the angular fluxes calculated using each of the scattering

source treatments were again nearly all within 0.25% of the X-Y fluxes.

For the source angle of 0.066838, the error was slightly greater, with

all the fluxes within about 0.5% of the X-Y results.
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4.3 Results for Anisotropic Scattering

We next consider three problems which exhibit increasing degrees of

scattering anisotropy. The transport medium in each problem is again a

one mean-free-path slab with c = 1.

Problem 4.3.1

The first anisotropic scattering problem considered has a

scattering cross section whose range of angular support is u e [0, 1].

This cross section, which is shown in Fig. 4.2, is representative of the

36
scattering of neutrons by hydrogen.

The reflected and transmitted angular fluxes resulting from a unit

incident flux were calculated for source angles of 1.0, 0.566331, and

0.066838 using each of the methods discussed for the evaluation of the

scattering source term. A Lobatto-24 discrete-ordinates set was used in

all the calculations. The approximated scattering kernel calculations

with the quadratic and cubic flux expansions contained an additional

ordinate which was needed to obtain an integral number of flux

intervals. This additional ordinate was placed at u = 0.04 in an

attempt to minimize the error incurred by interpolating across u = 0.

The results of the exact kernel calculations, which were judged to

be the most accurate on the basis of reciprocity, are shown in Fig. 4.3.

The percent deviations in the angular fluxes as calculated by the

Legendre expansion method and the approximated scattering kernel method

with linear, quadratic, and cubic flux expansions are plotted in Figs.

4.4 - 4.6.

It can be seen from Figs. 4.4 - 4.6 that the fluxes calculated by

the approximated scattering kernel method with a linear flux expansion
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give consistently good results. Nearly all of the fluxes calculated by

this method are within 1% of the exact kernel fluxes.

Use of quadratic and cubic flux expansion flux expansions in the

approximated scattering kernel method led to rather erratic results.

These methods often led to fluxes which were badly over- or

underestimated. The reason for this behavior is discussed in Section

4.5.

The fluxes calculated using an eighth-order Legendre expansion of

the scattering cross section exhibited oscillatory behavior*

particularly for the reflected fluxes. These oscillations were worst

for the normally incident case.

Problem 4.3.2

The second anisotropic scattering problem considered has a

scattering cross section whose range of angular support is u e [0.8, 1].

This fictitious piecewise linear cross section, which is representative

of an in-group scattering cross section for a multigroup energy

structure, is shown in Fig. 4.7.

The reflected and transmitted angular fluxes resulting from a unit

incident flux were calculated for source angles of 1.0, 0.566331, and

0.066838 using the same discrete-ordinates set as in Problem 4.3.1. The

results of these calculations are shown in Figs. 4.8 - 4.10. Many of

the fluxes calculated using the Legendre expansion and approximated

scattering kernel methods show significant deviations from the exact

kernel fluxes.

The fluxes calculated using the Legendre expansion method generally

exhibit oscillatory behavior. The oscillations are most severe for the
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normally incident flux, in which case most of the reflected fluxes were

actually calculated to be negative. For the other two source angles,

the oscillations were again most pronounced for the reflected fluxes.

Note that these results are qualitatively similar to those obtained in

Problem 4.3.1 (cf. Figs. 4.4 - 4.6).

The fluxes calculated using the approximated scattering kernel

method also exhibit the same type of behavior shown in the results of

Problem 4.3.1. Calculations using a linear expansion of the flux

generally yielded the closest agreement with the exact kernel fluxes.

The deviation between the two, however, was much more significant than

in Problem 4.3.1. For the normally incident case, the reflected fluxes

calculated using a linear flux expansion were up to 40% higher than the

exact kernel fluxes. The transmitted fluxes were up to 20% higher than

those calculated using the exact kernel method. For the other two

source angles, the reflected fluxes calculated using a linear flux

expansion were generally within 107. of the exact kernel fluxes, and the

transmitted fluxes within 5%.

The fluxes calculated using quadratic and cubic flux expansions

again yielded rather erratic results. It can be seen from Fig. 4.8 that

the quadratic and cubic flux expansions produced unrealistic transmitted

flux distributions in the normally incident case. The oscillatory

behavior of these fluxes is most likely due to the inability of

piecewise quadratic and cubic expansions to model the angular flux

distributions realistically. This phenomenon is discussed more

thoroughly in Sec. 4.5.
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For the incident flux at 0.566331, the quadratic expansion results

were in better agreement with the exact kernel fluxes than were those

obtained using any of the other methods tested. The cubic flux

expansion yielded the poorest results for this case. Finally, the

fluxes calculated using quadratic and cubic flux expansions gave rather

poor results for the source angle of 0.066838. Calculations using the

cubic flux expansion actually predicted negative angular fluxes near

II - 1.

Problem 4.3.3

The final problem considered has scattering that is even more

anisotropic than the previous problem, with a scattering cross section

whose range of angular support is to e [0.95, 1], This fictitious

piecewise linear scattering cross section, which is shown in Fig. 4.11,

is typical of in-group neutron scattering from light elements or with a

fine-energy-group structure (cf. Fig. 2.3).

The reflected and transmitted angular fluxes resulting from a unit

incident flux were calculated for source angles of 1.0, 0.544182, and

0.044247. A Lobatto-36 discrete-ordinates set was used in all the

calculations. The approximated scattering kernel calculations with

quadratic and cubic flux expansions again contained an additional

ordinate at u = 0.04.

Figure 4.12 shows the reflected and transmitted angular fluxes for

the normally incident case as calculated using the exact kernel method

and the approximated scattering kernel method with a linear flux

expansion. Calculations using the Legendre expansion method and the
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approximated scattering kernel method with quadratic and cubic flux

expansions yielded oscillatory and negative flux values for both the

reflected and transmitted fluxes.

Note that the fluxes calculated using the linear flux expansion

significantly overpredict the exact kernel fluxes over the entire

reflected range and much of the transmitted range. This behavior is

qualitatively similar to that shown in the results of Problem 4.3.2 (cf.

20
Fig. 4.8). It is of interest to note that Odom found that small

inaccuracies in scattering source calculations can produce relatively

large inaccuracies in the angular flux, particularly in reflected

fluxes.

The reflected and transmitted angular fluxes as calculated by the

exact kernel method and the approximated scattering kernel method with

linear, quadratic, and cubic flux expansions are shown in Fig. 4.13 for

the incident flux in direction 0.544182. The results obtained using

linear and quadratic expansions of the flux are in good agreement with

the exact kernel fluences, particularly for the transmitted fluxes. The

fluxes calculated using a cubic expansion show poor behavior in the

transmitted directions. Calculations using the Legendre expansion

method again produced oscillatory and negative angular fluxes.

The reflected and transmitted angular fluxes as calculated by the

exact kernel method and the approximated scattering kernel method with

linear and quadratic flux expansions are shown in Fig. 4.14 for the

incident flux in direction 0.044247. Both of the approximated

scattering kernel flux profiles are in good agreement with the exact

kernel fluxes. Calculations using the Legendre expansion method and the
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approximated scattering kernel method with a cubic flux expansion

yielded oscillatory and negative flux values.

4.4 Angular Redistribution in the Approximated Scattering Kernel Method

It can be seen from the results of the problems in Sec. 4.3 that

the approximated scattering kernel method provides better accuracy than

the conventional Legendre expansion method for highly anisotropic

problems. This increased accuracy was the first objective in developing

the approximated scattering kernel method. In this section we will

examine the second objective, namely, the elimination of the angular

coverage problem which limits the exact kernel method for low-order

quadrature.

The failure of the exact kernel method to produce angular

redistribution of scattered particles for coarse quadrature sets is due

to the discretization of the angular variable u. The approximated

scattering kernel method, on the other hand, treats the incident

particle direction u' as a continuous variable [cf. Eqs. (3.47) and

(3.48)]. Thus, instead of only those particles in some discrete

direction u. contributing to the scattering source term in some other

direction u ., all those particles with incident direction u' in some

specified range are considered. This specified range is determined by

the breakpoints described in Sec. 3.2.2.

The ability of the approximated scattering kernel method to allow

angular redistribution for problems in which the exact kernel method

fails to can be illustrated by the following example. Consider a unit

flux normally incident on the slab described in Problem 4.3.3. Let the
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discrete ordinates be given by a LobaCto-10 quadrature set. It can be

shown by use of Eqs. (2.51) - (2.53) that the Lobatto-10 quadrature set

has "zero order of angular coverage" and hence is unsuitable for exact

kernel transport calculations. The normally incident particles fail to

scatter into any other discrete directions and hence the fluxes in all

other directions are calculated to be zero (see Table 4.1). Use of the

approximated scattering kernel method, on the other hand, allows angular

redistribution from the source direction to all other directions (see

Table 4.1).

Although use of the approximated scattering kernel method will

allow angular redistribution with any discrete-ordinates set, the

accuracy obtained may be poor. For example, the fluxes calculated using

the approximated scattering kernel method in the example above show

significant difference from those calculated using the exact kernel

method with a Lobatto-36 quadrature set. The reasons for this

discrepancy are discussed in the next section.

4.5 Analysis of the Approximated Scattering Kernel Results

It can be seen from the problems examined in Sections 4.2 - 4.4

that the use of the approximated scattering kernel method in discrete-

ordinates transport calculations sometimes leads to very accurate

results, and yet at other times results in very poor estimates of

angular fluxes. In this section, we will examine the factors which

affect the accuracy of the approximated scattering kernel method.

The first, and probably most important, factor to consider is the

degree of anisotropy in the angular flux. Examination of the results of
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Table 4.1. The reflected and transmitted angular fluxes
resulting from a unit flux normally incident
on a one mean-free-path slab with c = 1 and
the scattering cross section of Fig. 4.11.
The discrete ordinates are given by a Lobatto-10
quadrature set.

Cosine of Approximated
Polar Angle Exact Kernel Scattering Kernel Reference

(u) Flux Flux Flux
3

-1.0 0.000 5.923(-8)
b

1 .333C-13)
-0.919534 0.000 1.184(-6) 1.602(-11)
-0.738774 0.000 2.107(-5) 1.657(-9)
-0.477925 0.000 1.916(-4) 6.166(-8)
-0.165279 0.000 4.813(-4) 2.433(-7)
0.165279 0.000 7.899(-3) 8.550(-6)
0.477925 0.000 4.062(-2) 2.315(-4)
0.738774 0.000 3.809(-l) 1.518(-2)
0.919534 0.000 3.570 9.714(-1)
1.0 2.371(1) 1.144(1) 2.108(1)

The reference flux values were calculated by performing cubic
spline interpolation on the exact kernel fluxes calculated with
a Lobatto-36 quadrature set (cf. Fig. 4.12).

Read as 5.923 x 10



84

the problems in Sections 4.2 and 4.3 reveals that, as the degree of

anisotropy in the angular flux increases, the difference between the

approximated scattering kernel results and the exact kernel results

becomes greater. This increased error is due to the inability of

piecewise polynomial interpolation to accurately model highly

anisotropic angular fluxes. This can be shown more precisely by

considering the error associated with polynomial interpolation, which is

, 37
given by

,(n+l). . j+n

where E(u) is the error in interpolating the function at u , f(u) is the

continuous function which is approximated by the interpolating

polynomial, the u are the n+1 values of u at which the function is

known, and 5 is a function of u and is within the range of the u., but

is otherwise unknown.

Equation (4.15) does not allow us to calculate the interpolation

error, for we do not know the function f(u) which describes the angular

flux, nor do we know the value of £. However, Eq. (4.15) does indicate

that the interpolation error is proportional to the (n+l)'th derivative

of f(u). This derivative would be expected to increase as the angular

flux becomes more anisotropic.

Another factor which affects the accuracy obtained in discrete-

ordinates calculations which utilizes the approximated scattering kernel

method is the order of flux expansion used. Use of a piecewise linear

flux expansion yields results which are often very accurate, and are
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always at least physically realistic. Use of quadratic and cubic flux

expansions, on the other hand, can lead to erratic results. In some

cases these expansions perform very well, while at other times they lead

to estimates of oscillatory and even negative angular fluxes. This

behavior should not be surprising, as one of the difficulties associated

with polynomial interpolation is the oscillatory behavior which it is

37possible for high order interpolating polynomials to assume.

For example, consider the following transmitted fluxes for the

normally incident case in Problem 4.3.3 as calculated by the exact

kernel method:

v
±

t(u
±)

0.851155 0.17756
0.894266 0.56950
0.930378 1.4096
0.959209 5.4667
0.980532 13.299
0.994179 18.654
1.0 252.84

These points are plotted in Fig. 4.15, along with the piecewise linear,

quadratic, and cubic polynomials that pass through the exact kernel

results. (The flux in direction y. 1.0 consists of a diffusely

transmitted component of magnitude 21.08 and an uncollided component of

magnitude 231.76. Only the diffusely transmitted flux is plotted in

Fig. 4.12.)

Between a
±

= 0.851155 and u = 0.959209, the flux exhibits very

smooth behavior and all the piecewise fits produce essentially the same

results. Between v± = 0.959209 and u. = 1.0, the results are much
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different. The "jump" in the angular flux at u = 1.0 produces serious

oscillations in the quadratic and cubic expansions for the segments

which contain u. = 1.0. The piecewise linear expansion appears to be a

much more realistic fit in this region.

Although there is no way to determine a priori when quadratic and

cubic flux expansions will fail to produce accurate flux profiles, it is

obvious from the results of Problems 4.3.1 - 4.3.3 (as well as the above

example) that quadratic and cubic expansions are very sensitive to the

degree of anisotropy in the flux. Thus one should be very cautious

about using quadratic or cubic flux expansions when dealing with

problems that are likely to yield highly anisotropic angular fluxes.

The results of Problems 4.3.2 and 4.3.3 show that cubic flux expansions

are particularly prone to error.

Another factor which affects the accuracy which can be obtained

when the approximated scattering kernel method is used is the number of

discrete ordinates which are used. In Sec. 4.2, increasing the number

of discrete ordinates resulted in a decrease in error no matter which

method was used to evaluate the scattering source. Similar comparisons

(which are not presented here) for the anisotropic scattering problems

of Section 4.3 revealed the same behavior. On the other hand,

decreasing the number of discrete ordinates in Problem 4.3.3 led to a

significant increase in error (cf. Sec. 4.4). It is of interest to note

38
that Atkinson states that, when using piecewise polynomial

interpolation, it is often more advantageous to increase the number of

interpolation nodes then to increase the degree of the interpolating

polynomial, due to the tendency of higher order polynomials to cause
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large oscillations between the nodes. Such appears to be the best

procedure for increasing the accuracy of the approximated scattering

kernel results.

An obvious means of avoiding the spurious oscillations in the

interpolated flux profiles would be to utilize a "smoother" interplation

technique, such as cubic spline interpolation. However, the use of a

technique such as cubic spline interpolation would require a significant

modification of the approximated scattering kernel method.

When Lagrange interpolation is used, the angular flux in the

segment [5 »U. + ,] is expanded as Tcf. Eqs. (3.26) and (3.45)]

jN+1 i NIII 1

5j < V < v.
+1

.

1N + 1 f N . I

i {i cMvv
t-jH-N+l 4i=0 ' s

Cubic spline interpolation, on the other hand, leads to an expansion of

the form

3

* 00 - I A"! u" , u. < u < u . (4.17)
8 n=0 J 3 l

Comparison of Eqs. (4.16) and (4.17) reveals why cubic spline

interpolation cannot be used in the approximated scattering kernel

method as derived in Chapter 3. In Eq. (4.16), the quantities which

change with each "inner iteration" of the discrete-ordinates solution

algorithm are the angular flux values * (tO. The expansion
g i

coefficients C are dependent only on the discrete-ordinates set and

hence are independent of the iterative process. Thus the approximated

scattering kernel transfer matrix needs to be calculated only once for a

particular transport medium and discrete-ordinates set.
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On Che other hand, if cubic spline interpolation were used [i.e.,

Eq. (4.17)], the quantities which change with each flux iteration would

be the expansion coefficients A-' . These coefficients are dependent on

the discrete ordinates used as well as on the angular flux values.

Hence the approximated scattering kernel transfer matrix would have to

be recalculated with each inner iteration. While such an approach is

possible, it would add considerably to the computational effort of the

transport calculations, and has not been pursued in this study.
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5. CONCLUSIONS

In this work a new method of evaluating the scattering source term

in discrete-ordinates transport calculations has been studied. This

method, termed the approximated scattering kernel method, was developed

especially for use in highly anisotropic problems (i.e., those problems

which are characterized by highly anisotropic angular fluxes as well as

by highly anisotropic scattering). The objectives in developing the

approximated scattering kernel method were twofold — to achieve better

accuracy than that afforded by the conventional Legendre expansion

method, and to eliminate the problem of angular redistribution that

limits the exact kernel method for low quadrature orders.

The first objective, achieving better accuracy than the Legendre

expansion method, was easily met when the piecewise linear flux

expansion model was utilized. For the problems considered in Chapter 4,

use of the approximated scattering kernel method with a piecewise linear

flux expansion consistently yielded angular fluxes which were as

accurate as, or more accurate than, the Legendre expansion results. For

highly anisotropic slab albedo problems, the approximated scattering

kernel results were far superior to the Legendre expansion results,

which exhibited oscillatory and even negative angular fluxes.

The second objective of the approximated scattering kernel method,

the elimination of angular coverage problems, was also met. In the

final example problem in Chapter 4, use of the approximated scattering

kernel method with a piecewise linear flux expansion produced nonzero

fluxes while the exact kernel method failed to achieve any angular

redistribution at all. The ability of the approximated scattering
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kernel method to achieve angular redistribution with any number of

discrete ordinates is due to the piecewise polynomial expansion of the

angular flux. In this sense, the approximated scattering kernel method

can be considered a combination modal and nodal method, In that it uses

a modal approach (expansion of the angular flux and the scattering cross

section) to generated nodal quantities (the elements of the approximated

scattering kernel transfer matrix).

As is the case with both the Legendre expansion method and the

exact kernel method, the approximated scattering kernel method is not

without its limitations. Like the exact kernel method, it is somewhat

more cumbersome to use than the Legendre expansion method, due to the

necessity of generating and storing a complete transfer matrix rather

than just a few expansion coefficients. Furthermore, it yields results

which are generally not as accurate as the exact kernel method for the

same discrete-ordinates set. In addition, the use of piecewise

quadratic and piecewise cubic flux expansions in the approximated

scattering kernel method leads to inconsistent results. Although these

methods sometimes work well, they produce oscillatory and even negative

angular fluxes in other instances. The reason for these erratic results

is the oscillatory behavior which the piecewise quadratic and cubic

interpolating polynomials can assume. It was found that this

oscillatory behavior is very sensitive to the degree of anisotropy in

the angular flux.

In general, it can be concluded that the adequacy of the

approximated scattering kernel method is entirely dependent on the

degree to which the angular flux exhibits low-order, piecewise
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polynomial behavior. If the angular flux can be well modeled by a

piecewise polynomial expansion, the approximated scattering kernel

method can be expected to work well. If the angular flux exhibits

"non-polynomial" behavior (e.g., a highly anisotropic profile), the

approximated scattering kernel method may produce very poor results.

Thus, any factors which affect the anisotropy of the angular flux can

significantly affect the accuracy of discrete-ordinates transport

calculations which utilize the approximated scattering kernel method.

For example, use of the approximated scattering kernel method with a

linear flux expansion in Problem 4.3.3 yielded accurate fluxes for a

grazing angle of incidence (y = 0.044247), yet greatly overestimated

many of the angular fluxes for the same problem when the slab was

normally illuminated (u =1.0).

In spite of its shortcomings, however, the approximated scattering

kernel method is a practical method for scattering source term

calculations in discrete-ordinates transport calculations. Provided a

piecewise linear flux expansion is utilized, the approximated scattering

kernel method yields positive (and apparently physically realistic)

angular fluxes for problems in which the Legendre expansion method

fails. Unlike the exact kernel method, it produces angular

redistribution of scattered particles with any number of discrete

ordinates. Furthermore, by obviating the need for numerical quadrature

in the scattering source term calculation, it allows one to choose a

discrete-ordinates set without the usual constraints involved in that

process.
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Further studies in this area could deal with ways of minimizing the

error associated with interpolation of the angular flux. One

possibility would be to attempt to optimize the location of the discrete

ordinates. This problem has been widely studied for global polynomial

interpolation, in which case choosing the N discrete ordinates as the

zeroes of the N'th order Chebyshev polynomial tends to (but does not

37
always) minimize the maximum value of the interpolation error.

However, this procedure does not apply to piecewise polynomial

interpolation.

If one knew a priori approximately what the angular flux profile

for a particular problem was, one could minimize the interpolation error

by locating many discrete ordinates where the angular flux varies

rapidly. However, while it may be possible to choose such an optimal

discrete-ordinates set for a particular problem (e.g., a flux incident

at some angle u on a slab of a certain thickness with a certain

scattering cross section) , a change in any one of the problem parameters

(such as the source angle) could result in a flux profile substantially

different from the original one, so that the discrete ordinates would no

longer be optimally located. It should be obvious that it would be

extremely inconvenient as well as inefficient to use a different

discrete-ordinates set (and hence have to generate a new approximated

scattering kernel transfer matrix) for every transport problem one

wished to solve.

Perhaps a more feasible means of improving the accuracy of the

approximated scattering kernel method would be to investigate other

functional representations for the angular flux. Such representations
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might employ exponential or logarithmic terms, or even rational

functions. Use of such non-polynomial representations would require

significant changes in the approximated scattering kernel method as

derived in Chapter 3.

Finally, the approximated scattering kernel method could be applied

to multigroup problems in plane or spherical geometry. This would

require no change in the calculation of the approximated scattering

kernel transfer matrices, and only minor changes in the transport code

utilized in this work.
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8. APPENDIX

Computer Codes

The three main computer programs which were utilized in this work

are listed in this appendix. A brief description of each code is given

here. The code listings are supplied with comment cards to facilitate

the understanding and use of the programs. All the programs are written

in FORTRAN-77. They were run on the Kansas State University Computing

Center's NAS 6630, which is functionally equivalent to an IBM 4831.

The first code listed is EXKERNEL, which is used to generate exact

kernel transfer matrices. EXKERNEL uses a piecewise linear or piecewise

quadratic approximation of the scattering cross section. This method

allows the exact kernel cross sections to be evaluated without recourse

to numerical quadrature. The only input data required are the

breakpoints in the scattering cross section, the values of the cross

section at the breakpoints (plus the cross section values at an

additional point in each subdomain if a piecewise quadratic cross

section approximation is used) , and a set of polar quadrature ordinates

(i.e., the discrete ordinates {u })

.

The second code listed is ASKERNEL, which is used to generate

approximated scattering kernel transfer matrices. For transfer between

any two directions of a discrete-ordinates set, ASKERNEL calculates the

various breakpoints in the integration range of the scattering source,

determines the form of the integrand in each subrange, performs the

required integrations, and sums the various components to obtain the

approximated scattering kernel. The input requirements are basically
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the same as those for EXKERNEL. In addition, the user must specify what

order of piecewise flux expansion he wishes to use (N) as well as the

number of flux intervals (M) . The sum NM+1 must equal the number of

discrete ordinates which are used.

The final code listed is TRANS, which performs one-dimensional,

azimuthally symmetric plane geometry discrete-ordinates transport

calculations. The version of TRANS listed here uses the approximated

scattering kernel technique for the evaluation of the scattering source

term. Modified versions of TRANS were used to perform transport

calculations with the Legendre expansion and exact kernel methods.

The input requirements, which vary slightly according to the version

used, are described in the program listing.



EXKERNEL.FOR 10 °

06-25-1986

C
C *** PROGRAM NAME: EXKERNEL ***
C
C PROGRAM TO INTEGRATE SCATTERING CROSS SECTIONS OVER THE
C AZIMUTHAL ANGLE TO GENERATE AZIMUTHALLY INDEPENDENT EXACT
C KERNEL CROSS SECTIONS. A PIECEWISE LINEAR OR PIECEWISE
C QUADRATIC CROSS SECTION EXPANSION IS USED SO THAT THE EXACT
C KERNEL CROSS SECTIONS CAN BE INTEGRATED ANALYTICALLY. THIS
C ALLOWS A MUCH MORE RAPID COMPUTATION THAN DOES THE USE OF
C NUMERICAL QUADRATURE.
C
C MAJOR VARIABLES ARE AS FOLLOWS:
C 'NR

1

= NUMBER OF REFLECTED POLAR QUADRATURE DIRECTIONS
C -NT

1

= NUMBER OF TRANSMITTED POLAR QUADRATURE DIRECTIONS
C •KMAX' = NUMBER OF DISTINCT BREAKPOINTS IN THE
C DIFFERENTIAL SCATTERING CROSS SECTION (I.E., DO
C NOT COUNT DUPLICATE BREAKPOINT VALUES MORE THAN
C ONCE)
C 'W(I)" = BREAKPOINTS IN THE ANGULAR CROSS SECTION (PLUS
C THE MIDPOINTS OF EACH CROSS SECTION SUBRANGE IF
C A QUADRATIC CROSS SECTION EXPANSION IS USED)
C •SIG(I)' = CROSS SECTION VALUES AT THE W(I) VALUES
C 'NORD

-

= ORDER OF CROSS SECTION FIT. INPUT 'I' FOR A
C LINEAR CROSS SECTION FIT AND '2' FOR A
C QUADRATIC CROSS SECTION FIT.
C •U(N)' = POLAR QUADRATURE ORDINATES
C

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(64,64)
C0MM0N/BL0CK1/ AA(3) ,BB(3) ,CC(3) ,W(7) ,SIG(7)
COMM0N/BL0CK2/ WB(4) ,SIGB(4) ,U(64)

C
READ(5.800) KMAX. NORD

800 F0RMAT(2(I5))
KMAX=KMAX-1
KMAX1=KMAX*N0RD+1

C
C READ IN ANGULAR BREAKPOINTS AND THEIR CORRESPONDING SCATTERING
C CROSS SECTIONS

READ(5,801) (W(I),I=1.KMAX1)
READ(5,801) (SIG(I),I=1,KMAX1)

801 F0RMAT(4(D18.8))
C

KMAX2=KMAX+1
DO 1 I=1,KMAX2
WB(I)=W((I-1)*N0RD+1)
SIGB(I)=SIG((I-1)*N0RD+1)

1 CONTINUE
C
C READ QUADRATURE ORDINATES

READ(5,802) NTOT
802 F0RMAT(I5)

READ(5,803) (U(I), 1=1. NTOT)
803 F0RMAT(3(D24.15))
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C
C CHECK FOR SYMMETRY OF ANGULAR MESH. IF IT IS SYMMETRIC, ONLY
C ONE-HALF THE EXACT KERNEL CROSS SECTIONS NEED BE CALCULATED.

IFLAG=1
DO 2 I=l,NTOT
IF(U(I).NE.-U(NTOT+l-I)) THEN

IFLAG=0
GO TO 3

END IF
2 CONTINUE
3 CONTINUE

C
IF(IFLAG.EQ.l) THEN
NT0T1=IFIX( (NTOT+1 )/2. )

ELSE
NTOT1=NTOT

END IF
C
C CALL SUBROUTINE TO EVALUATE EXPANSION COEFFICIENTS FOR CROSS
C SECTION EVALUATION.
C

CALL COEFF(KMAX,NORD)
C

DO 5 I=1,NT0T1
DO 5 J=l,NTOT
0MEGA1=U( I)*U(J)+DSQRT( ( 1 . -U( I )**2)*( I . -U( J}**2)

)

0MEGA2=U( I)*U( J)-DSQRT( { 1 . -U( I )**2)*( 1 . -U(J)**2)

)

C
C IF SCATTERING RANGES IMPOSED BY KINEMATICS AND BY QUADRATURE
C SET DO NOT OVERLAP, CROSS-SECTION IS ZERO
C

IF(0MEGA1 . LT . W( 1 ) . OR . 0MEGA2 . GT . W(KMAX2) ) THEN
A(I,J)=0.
GO TO 4

ELSE
A(I,J)=FNSIGG(I,J,KMAX)

END IF

C
4 CONTINUE

IF(IFLAG.EQ.l) A(NTOT+1-I,NTOT+1-J)=A(I, J)
C

5 CONTINUE
WRITE(6,900) ((A(I,J),J=1,NT0T),I=1,NT0T)

900 F0RMAT(4(D18.8))
STOP
END

C
C
C
C
C SUBROUTINE TO EVALUATE EXPANSION COEFFICIENTS FOR LINEAR OR
C QUADRATIC CROSS SECTION FIT.

SUBROUTINE COEFF(KMAX.NORD)
IMPLICIT REAL*8 (A-H.O-Z)
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COMMON/BLOCK1/ AA(3) ,BB(3) ,CC(3) ,W(7) ,SIG(7)
C
C EVALUATE COEFFICIENTS FOR LINEAR FIT

IF(NORD.EQ.l) THEN
DO 100 K=1,KMAX
K1=K
K2=K+1

C
AA(K)=0.
BB(K)=(SIG(K1)-SIG(K2))/(W(K1)-W(K2))
CC(K) = (W(K1)*SIG(K2)-W(K2)*SIG(K1))/(W(K1)-W(K2))

100 CONTINUE
C
C EVALUATE COEFFICIENTS FOR QUADRATIC FIT

ELSE
DO 200 K=1.KMAX
K1=(K-1)*2+1
K2=K1+1
K3=Kl+2

C
D=W(K1)^2*(W(K2)-W(K3))-W(K2)^2*(W(K1)-W(K3))+W(K3)^2*(W(K1)-W(

@K2))

D1^IG(K1)*(W(K2)-W(K3))-SIG(K2)*(W(K1)-W(K3))+SIG(K3)*(W(K1)-W(K2
@))
D2=W(K1)^2*(SIG(K2)-SIG(K3))-W(K2)**2*(SIG(K1)-SIG(K3))+W(K3)**2*

@(SIG(K1)-SIG(K2))
IB=W(K1)^2*(W(K2)*SIG(K3)-W(K3)*SIG(K2))-W(K2)**2*(W(K1)*SIG(K3)-

@W(ra)*SIG(Kl))+W(K3)**2*(W(Kl)*SIG(K2)-W(K2)*SIG(Kl))
C

AA(K)=D1/D
BB(K)=D2/D
CC(K)=D3/D

200 CONTINUE
C

END IF
C

500 RETURN
END

C
C
C
C
C FUNCTION SUBROUTINE TO EVALUATE THE EXACT KERNEL CROSS SECTION
C BY ANALYTICAL INTEGRATION OF THE PIECEWISE CROSS SECTION
C EXPANSION

DOUBLE PRECISION FUNCTION FNSIGG(I, J.KMAX)
IMPLICIT REAL*8(A-H.0-Z)
DIMENSION PHI (4)
COMM0N/BL0CK1/ AA(3) ,BB(3) ,CC(3) ,W(7) ,SIG(7)
COMMON/BL0CK2/ WB(4) ,SIGB(4) ,U(64)
KMAX2=KMAX+1
PI=4.*DATAN(1.D0)
SIGMA=0.
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Y=U(I)*U(J)
Z=DSQRT( ( 1 . -U( I)**2)*( 1 . -U( J)**2)

)

DO 15 K=1.KMAX
IF(U(I).EQ.-1..0R.U(I).EQ.1..0R.U(J).EQ.-1..0R.U(J).EQ.l.) THEN
DO 5 L=1,KMAX2
IF(Y.EQ.WB(L)) THEN
SIGMA=PI*SIGB(L)
GO TO 20

END IF

5 CONTINUE
K1=K+1
DO 10 L=K,K1
IF(WB(L).GT.Y) THEN
PHI(L)=0.

ELSE
PHI(L)=PI

END IF
10 CONTINUE

ELSE
ARG1=DMIN1((WB(K)-Y)/Z,1.D0)
ARG1 =DMAX1 ( - 1 . DO , ARG1

)

PHI(K)=DAC0S(ARG1)
ARG2=DMIN1((WB(K+1)-Y)/Z,1.D0)
ARG2=DMAX1(-1 .D0.ARG2)
PHI(K+1)=DAC0S(ARG2)

END IF

SIGMA^IGMA+((M(K)/40*Z^2)*(DSIN(2.*PHI(K))-DSIN(2.*PHI(K+1))) +

@(2.*M(K)*Y*Z+BB(K)*Z)*(DSIN(PHI(K))-DSIN(PHI{K+1))) + ((AA(K)/2.)*Z
(^2MA(K)*Y**2+BB(K)*Y+CC(K))*(PHI(K)-PHI(K+1))

15 CONTINUE

20 FNSIGG=2.*SIGMA
RETURN
END
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C
C *** PROGRAM NAME: ASKERNEL ***
C
C PROGRAM TO GENERATE THE APPROXIMATED SCATTERING KERNEL
C TRANSFER MATRIX FOR A GIVEN DIFFERENTIAL SCATTERING
C CROSS SECTION. DISCRETE-ORDINATES SET, AND ORDER OF
C ANGULAR FLUX EXPANSION. THE SCATTERING CROSS SECTION
C CAN BE REPRESENTED BY EITHER A PIECEWISE LINEAR OR
C PIECEWISE QUADRATIC EXPANSION BETWEEN THE BREAKPOINTS
C IN THE SCATTERING CROSS SECTION. THE ANGULAR FLUX CAN BE
C APPROXIMATED BY A PIECEWISE LINEAR OR PIECEWISE QUADRATIC
C EXPANSION. IN ADDITION, IF A PIECEWISE LINEAR EXPANSION OF
C THE SCATTERING CROSS SECTION IS USED, THE ANGULAR FLUX CAN
C BE REPRESENTED BY A PIECEWISE CUBIC EXPANSION.
C
C INPUT VARIABLES ARE AS FOLLOWS:
C 'NMAX

-

= ORDER OF FLUX EXPANSION
C -

M' = TOTAL NUMBER OF FLUX INTERVALS
C •NP' = TOTAL NUMBER OF FLUX DIRECTIONS (NUMBER OF
C DISCRETE ORDINATES)
C •NBREAK• = NUMBER OF DISTINCT BREAKPOINTS IN THE
C DIFFERENTIAL SCATTERING CROSS SECTION
C 'NORD' = ORDER OF CROSS SECTION EXPANSION
C •WB(I)' = BREAKPOINTS IN THE SCATTERING CROSS SECTION
C (PLUS THE MIDPOINTS OF EACH CROSS SECTION
C SUBRANGE IF A QUADRATIC CROSS SECTION
C EXPANSION IS USED)
C SIG(I)' = CROSS SECTION VALUES AT THE WB(I) VALUES
C 'U(J) ' = DISCRETE ORDINATES
C

IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION A(50,50) ,SIG(7) ,WB(7) ,SIGT(50)
COMMON/BLOCK1/ U(50) ,W(4) , AA(3) ,BB(3) ,CC(3)
C0MM0N/BL0CK2/ NMAX, KMAX.M.NP, NORD

C
C READ INPUT DATA
C

READ(5,800) NMAX.M.NP
800 F0RMAT(3(I5))

READ(5,802) NBREAK.NORD
802 F0RMAT(2(I5))

C
KMAX=NBREAK-1
KMAX1=KMAX*N0RD+1
NMAX1=NMAX+1
LMAX=M+4

C
READ(5.803) (WB(I) , 1=1 .KMAX1)
READ(5,803) (SIG(I) , 1=1 .KMAX1)

803 F0RMAT(4(D18.8))
READ(5.804) (U(J) , J=l ,NP)

804 F0RMAT(3(D24.15))
C
C CALL SUBROUTINE TO EVALUATE ANGULAR CROSS SECTION EXPANSION
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C COEFFICIENTS
C

CALL XSEC(KMAX,NORD,SIG,WB)
C

DO 5 I=1,NBREAK
W(I)=WB((I-l)*NORD+l)

5 CONTINUE
C
C CHECK FOR SYMMETRY OF THE ANGULAR MESH. IF THE MESH
C IS SYMMETRIC, ONLY ONE-HALF OF THE APPROXIMATED
C SCATTERING KERNEL VALUES A(I.J) NEED TO BE CALCULATED.
C THE CITHERS MAY BE DETERMINED FROM SYMMETRY CONDITIONS.
C

IFLAG=1
DO 10 1=1, NP
IF(U(I).NE.-U(NP+1-I)) THEN

IFLAG=0
GO TO 15

END IF
10 CONTINUE
15 CONTINUE

C
IF(IFLAG.EQ.l) THEN
NPl=IFIX((NP+l)/2.)

ELSE
NP1=NP

END IF
C

NP2=NP+1
C
C BEGIN LOOP TO CALCULATE SCATTERING KERNEL MATRIX ELEMENTS A (I, J)
C

DO 20 1=1, NP1
DO 20 J=1,NP

A(I,J)=0.D0
C
C CALL SUBROUTINE TO DETERMINE WHETHER A PARTICULAR A(I.J)
C SCATTERING KERNEL IS NONZERO.
C

CALL C0VER(I,J,IFLAG2)
C

IF(IFLAG2.EQ.l) THEN
WRITE(9,920) I.J

920 F0RMAT(5X,I2.\ '
. 12)

DO 25 N=1,NMAX1
DO 25 L=1,LMAX
DO 25 K=1.KMAX
A(I,J)=A(I,J)+F(K,L,I,N,J)

25 CONTINUE
END IF

C
A(I.J)=2.D0*A(I,J)
IF(IFLAG.EQ.l) A(NP2-I,NP2-J)=A(I, J)
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20 CONTINUE
C
C CHECK ACCURACY OF A(I,J) VALUES BY SUMMING UP THE SCATTERING
C SOURCE TERM FOR EACH U(I), ASSUMING A UNIFORM FLUX. IF THE
C A(I,J) VALUES ARE CORRECT. THE RESULTING SOURCE TERM FOR
C EACH U(I) SHOULD EQUAL THE GROUP SCATTERING CROSS SECTION.
C

DO 50 1=1, NP
SIGT(I)=0.
DO 50 J=1,NP
SIGT(I)=SIGT(I)+A(J,I)

50 CONTINUE
C

DO 60 1=1, NP
WRITE(6,900) U(I),SIGT(I)

60 CONTINUE
900 F0RMAT(5X, 'SIGMAf " ,F9.6, ' ) = \D13.6)

C
WRITE(6,901)

901 FORMAT(/////)
C

WRITE(6,902) ((A(I, J) , J=l ,NP) , 1=1 .NP)
902 F0RMAT(4(D18.8))

STOP
END

C
C
C
C XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXMXXXXMHXXXKXKHXXXXXXXXXXXXXXXXKXXXXX
C xxxxxxMXxxx»x»)()i)i)(x»)o< SUBROUTINE XSEC xxxxxxxxioooooooooowxxxmcx
C XXXXXXXXXXXXXXXXXXXXXXXXXXXXXMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C
C SUBROUTINE TO EVALUATE EXPANSION COEFFICIENTS FOR LINEAR OR
C QUADRATIC CROSS SECTION FIT.

SUBROUTINE XSEC(KMAX,NORD,SIG,WB)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION SIG(7),WB(7)
COMM0N/BL0CK1/ U(50) ,W(4) ,AA(3) ,BB(3) ,CC(3)

C
C EVALUATE COEFFICIENTS FOR LINEAR FIT

IF(NORD.EQ.l) THEN
DO 100 K=1,KMAX
K1=K
K2=K+1

C
AA(K)=0.
BB(K)=(SIG(K1)-SIG(K2))/(WB(K1)-WB(K2))
CC(K)=(WB(K1)*SIG(K2)-WB(K2)*SIG(K1))/(WB(K1)-WB(K2))

100 CONTINUE
C
C EVALUATE COEFFICIENTS FOR QUADRATIC FIT

ELSE
DO 200 K=1,KMAX
K1=(K-1)*2+1
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K2=K1+1
K3=Kl+2

C
D=WB{Kl)x*2*(WB(K2)-WB(K3))-WB(K2)**2*(WB(Kl)-WB(K3))+WB(K3)**2*

9 (WB(K1)-WB(K2))
Dl=SIG(Kl)*(WB(K2)-WB(ra))-SIG(K2)*(WB(Kl)-WB(K3))+SIG(K3)*(WB(K

@ 1)-WB(K2))
D2=WB(K1 )**2*(SIG(K2)-SIG(K3) )-WB(K2)**2*(SIG(Kl )-SIG(K3) )+WB(K3
)**2*(SIG(K1)-SIG(K2))
D3=WB(K1)**2*(WB{K2)*SIG(K3)-WB(K3)*SIG(K2))-WB(K2)**2*(WB(K1)*S

@ IG(K3)-WB(K3)*SIG(K1))+WB(K3)**2*(WB(K1)*SIG(K2)-WB(K2)»SIG(K1))
C

AA(K)=D1/D
BB(K)=D2/D
CC(K)=D3/D

200 CONTINUE
C

END IF

C
500 RETURN

END
C
C
c
C XXXXXXXXXXMXXXXXX>O<XXH)()000t)0(XXMXXX><)O(XXX><XXXXX><>OOOOOO<XXXXXXX>OOO<XXX

C xxxxxxxxxxxxxxxmxxmxxx SUBROUTINE COVER xhxxxxxxxxxxxxxkmxxxxxxxx
C »><>OCXH)<XXXHXMXM)000000<MHXXXXXX)»CH)0000<XXKMX)00(X)C)00000<XXXH)0000<X)001KX

C
C SUBROUTINE TO DETERMINE WHETHER A PARTICULAR SCATTERING KERNEL
C A(I.J) IS NONZERO.

SUBROUTINE COVER( I , J . IFLAG2)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION THETA(50),UBAR(50)
C0MM0N/BL0CK1/ U(50) ,W(4) ,AA(3) ,BB(3) ,CC(3)
C0MM0N/BL0CK2/ NMAX.KMAX.M.NP.NORD

C
PI=4.*DATAN(1.D0)
THEMAX=DAC0S(W(1))
THEMIN=DAC0S(W(KMAX+1

)

)

C
DO 10 11=1, NP
THETA(II)=DACOS(U(II))

10 CONTINUE
C

M1=M+1
DO 20 JK=1,M1
UBAR(JK)=U((JK-1)*NMAX+1)

20 CONTINUE
C

IF(I.EQ.l) THEN
IL=1

IU=NMAX+1
ELSE IF(I.EQ.NP) THEN

IL=NP-NMAX
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IU=NP
ELSE
DO 30 JK=1,M1
IF(U(I).EQ.UBAR(JK)) THEN

IL=I-NMAX
IU=I+NMAX
GO TO 40

ELSE IF(U(I).GT.UBAR(JK).AND.U(I).LT.UBAR(JK+1)) THEN
IL=(JK-1)*NMAX+1
IU=IL+NMAX
GO TO 40

END IF
30 CONTINUE

END IF

C
C DETERMINE POLAR BOUNDS FOR SCATTERING
C

40 CONTINUE
DO 50 II=IL,IU
IF(THETA(II)+THEMAX.LE.PI) THEN
BETMAX=THETA( 1 1 )+THEMAX

ELSE IF(THETA(II)+THEMIN.GE.PI) THEN
BETMAX=2 . *PI-THETA( 1 1 ) -THEMIN

ELSE
BETMAX=PI

END IF
C

IF(THEMAX.LT.THETA(II)) THEN
BETMIN=THETA( 1 1

)-THEMAX
ELSE IF(THETA(II).LT. THEMIN) THEN

BETMIN=THEMIN-THETA( I I

)

ELSE
BETMIN=0.

END IF

C
IF(THETA(J).GE.BETMIN.AND.THETA(J).LE.BETMAX) THEN

IFLAG2=1
GO TO 500

ELSE
IFLAG2=0

END IF

C
50 CONTINUE

C
500 RETURN

END
C
C
C
C XXXMXXXXKXXXMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXK
C XMXXXXMXXXXXXXXXXXXXXXXXXX FUNCTION F xxxxxxxxxxxxxxxxxxxxxxxxxxx
C )00CXXXXXXXXXX)1XXXXXXX)0(XXXXXXXXXXXXXXX)C)CXXXXX)(XXXXXXXXXXXXKM)()0()1)0()(XX

c
C SUBROUTINE TO EVALUATE THE FUNCTION F(K,L,I,N,J)
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DOUBLE PRECISION FUNCTION F(K,L, I.N.J)
IMPLICIT REAL*8 (A-H.O-Z)
COMMON/BLOCK1/ U(50) ,W(4) ,AA(3) ,BB(3) ,CC(3)
C0MM0N/BL0CK2/ NMAX.KMAX.M.NP.NORD
COMMON/BLOCK3/ V(54)

C
C CALL SUBROUTINE TO EVALUATE MU-PRIME BREAKPOINTS AND ORDER THE
C LIMITS OF INTEGRATION.
C

CALL LIMITS(K.J)
C
C CALCULATE F(K,L, I.N.J)

K1=K+1
COEF=COEFF(L,N.I)
IF(COEF.NE.O.DO) THEN

IF(NORD.EQ.l) THEN
C
C IF A LINEAR CROSS SECTION EXPANSION IS USED, THE 'SHORT'
C VERSION OF THE FUNCTION G(K,L,N,U,KK) IS UTILIZED.

F=C0EF*(FNGA(K,L,N,U(J),K)-FNGA(K,L,N,U(J),K1))
ELSE

C IF A QUADRATIC CROSS SECTION EXPANSION IS USED, THE 'LONG'
C VERSION OF THE FUNCTION G(K,L,N.U,KK) IS UTILIZED

F=eOEF*(FNGB(K,L,N,U(J),K)-FNGB(K.L,N.U(J),Kl))
END IF

ELSE
F=O.DO

END IF
C

RETURN
END

C
C
C
C *><'"'''>'>»<»><><*"">»«XXXX>(XXXXXX)U0CX)t»»XXXH)0<XXX>O0<XXX)0(XXXX>O<XXXXmcxX)00O<
C *><>oooochxxxxxxx>o<xxxxx SUBROUTINE LIMITS xxxxxxxxxxxxxxxiooootxxxx
C XXXXXX)H()<XXX)l)<XXX)()(XXX)()0 (XXX)0()(XXXXXXXXXXXXXXX)0(XXXXX»X)(XX)<XXX)O()(X)()<X
c
C SUBROUTINE TO EVALUATE THE MU-PRIME BREAKPOINTS AND ORDER THE
C INTEGRATION LIMITS

SUBROUTINE LIMITS(K.J)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION UPR(4),UBAR(50)
COMMON/BLOCK1/ U(50) ,W(4) .AA(3) .BB(3) ,CC(3)
C0MM0N/BL0CK2/ NMAX.KMAX.M.NP.NORD
C0MM0N/BL0CK3/ V(54)
EQUIVALENCE (V(l) ,UPR(1)) . (V(5) ,UBAR(1))

C
M1=M+1
M5=M+5

C
DO 10 JJ=1.M1
UBAR(JJ)=U((JJ-1)*NMAX+1)

10 CONTINUE
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WW=W(K)
WW1=W(K+1)
UU=U(J)
UPR( 1 )=UU*WW+DSQRT( ( 1 . -UU**2)*( 1 . -WW**2) )

UPR(2)=UU*WW-DSQRT( ( 1 . -UU**2)*( 1
. -WW**2)

)

UPR(3)=UU*WW1+DSQRT( ( 1 . -UU**2)*{ 1 . -WW1**2)

)

UPR(4)=UU»WW1-DSQRT( ( 1 . -UU**2)*( 1 . -WW1**2) )

C
CALL S0RT(V,M5)

C
RETURN
END

C
C
c
C XXXXXXXXXXXXXXXX>000<X><XXXXX»H»»XXXXXXXXXXXXXXXXXXXMHH)0(KXXXX»X)0000O<X
C xxxxxxxxxxxxxxxxxxxxxxxxx SUBROUTINE SORT xxxxxxxxxxxxxxxxxxxxxxx
C XXXMX)(XXXXXXXXX)<X)()0()(XX>(XXXXX)<)<)0(XX)(XXX)(XXXXXX)(XXXX)(X)0()()(XXX)»0()0()CXXH

c
SUBROUTINE SORT(A.N)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION A(54)
JUMP=N

10 JUMP=JUMP/2
IF(JUMP.EQ.O) GO TO 500
J2=N-JUMP
DO 25 J=1.J2

15 I=J
20 J3=I+JUMP

IF(A(I).LE.A(J3)) GO TO 25
HOLD=A(I)
A(I)=A(J3)
A(J3)=HOLD
I=I-JUMP
IF(I.GT.O) GO TO 20

25 CONTINUE
GO TO 10

500 RETURN
END

C
C
c
C XX)()<XXXX>(XX)()()<XXXXXXKXXX)<>(XXXXXX)0()»(X)(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

C Mxxxxxxxxxxxxxxxxioooooixx FUNCTION COEFF xxxxxxxxxiohoodcxxkxxxxxx
C X)0(XXXXXXX)(X)()<XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)()()0(»)0(XXXXXXXXXXXXXX)»(

c
C SUBROUTINE TO EVALUATE THE COEFFICIENTS OF THE ANGULAR
C FLUX EXPANSION.

DOUBLE PRECISION FUNCTION COEFF(L,N,I)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION H(3).UBAR(50),UN(4)
C0MM0N/BL0CK1/ U(50) ,W(4) ,AA(3) ,BB(3) ,CC(3)
C0MM0N/BL0CK2/ NMAX.KMAX.M.NP.NORD
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C0MM0N/BL0CK3/ V(54)
C

M1=M+1
DO 100 JJ=1,M1
UBAR( JJ)=U( ( JJ-1 )*NMAX+1

)

100 CONTINUE
C

DO 150 J=1,M
H(1)=(U(I)-UBAR(J))*(UBAR(J+1)-U(I))
H(2)=(V(L)-UBAR( J) )*(UBAR( J+l )-V(L)

)

H(3)=(V(L+1)-UBAR(J))*(UBAR(J+1)-V(L+1))

HH=1.D0
C

DO 200 11=1,3
IF(H(II).GE.0.D0) THEN
H(II)=1.D0
ELSE
H(II)=O.D0

END IF

C
HH=HH*H(II)

200 CONTINUE
C

O0EFF=0.D0
C

IF(HH.EQ.O.DO) GO TO 150
C

JL=J*NMAX-NMAX+1
JU=JL+NMAX

C
IF(NMAX.EQ.2) GO TO 300
IF(NMAX.EQ.3) GO TO 400

C
C EVALUATE EXPANSION COEFFICIENTS FOR FIRST ORDER FIT
C

DO 250 K=JL.JU
IF(U(K).NE.U(I)) THEN

IF(N.EQ.l) THEN
COEFF=(-U(K)/(U(I)-U(K)))

ELSE
C0EFF=(1/(U(I)-U(K)))

END IF

END IF
250 CONTINUE

IF(OOEFF.NE.O.DO) GO TO 500
GO TO 150

C
300 CONTINUE

C
C EVALUATE EXPANSION COEFFICIENTS FOR SECOND ORDER FIT
C

DEN0M=1.D0
DNUM1=0.D0
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DNUM2=1.D0
DO 350 K=JL,JU
IF(K.NE.I) THEN
DENOM=DENOM*(U( I )-U(K)

)

DNUM1=DNUM1-U(K)
DNUM2=DNUM2*U(K)

END IF

350 CONTINUE
C

IF(N.EQ.l) THEN
O0EFF=(DNUM2/DEN0M)

ELSE IF{N.EQ.2) THEN
OOEFF=(DNUM1/DENOM)

ELSE
COEFF=(1.DO/DENOM)

END IF
C

IF(COEFF.NE.O.DO) GO TO 500
GO TO 150

C
400 CONTINUE

C
C EVALUATE EXPANSION COEFFICIENTS FOR THIRD ORDER FIT
C

DEN0M=1.D0
DNUH1=0.D0
DNUM2=0.D0
DNUM3=1.D0

JJ=0
DO 450 K=JL,JU
IF(K.NE.I) THEN
JJ=JJ+1
DENOM=DENOM*(U( I )-U(K)

)

DNUM1=DNUM1-U(K)
DNUM3=DNUM3*U(K)
UN(JJ)=U(K)

END IF

450 CONTINUE
C

DNUM2=UN( 1 )*UN(2)+UN( 1 )*UN(3)+UN(2)*UN(3)
C

IF(N.EQ.l) THEN
C0EFF=-DNUM3/DEN0M

ELSE IF (N.EQ.2) THEN
C0EFF=DNUM2/DEN0M

ELSE IF(N.EQ.3) THEN
C0EFF=DNUM1/DEN0M

ELSE
C0EFF=1.D0/DEN0M

END IF
C

IF(COEFF.NE.O.DO) GO TO 500
C

150 CONTINUE
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C
500 RETURN

END
C
C
c
C XX*MXXXXXX><XXXXK»XH)00<X)00<X)00<)000»0(HKXXHH>(XXXXX>00(XXXXX>OOOOOOOCHX)(XX

C mmxmmmxxhioooooocxmxxxxxxx FUNCTION FNGA xxxxxxxxxxxxxxxxxxxxxxxxx
C ><XX)<X)<)<XXXKXX>OOOOO(MXXXH)OOO(X)0aO()0OOOCXXXXXXXXXMX><XXX)()»O<XXXXXXXXX)<XX

c
C SUBROUTINE TO EVALUATE THE FUNCTION FNG(K,L.N,U.KK)
C WHEN A PIECEWISE LINEAR CROSS SECTION EXPANSION IS USED

DOUBLE PRECISION FUNCTION FNGA(K.L,N,UU,KK)
IMPLICIT REAL*8 (A-H.O-Z)
C0MM0N/BL0CK1/ U(50) ,W(4) ,AA(3) ,BB(3) ,CC(3)
C0MH0N/BL0CK3/ V(54)

C
PI=4.D0*DATAN(1.D0)
WW=W(KK)
V1=V(L)
V2=V(L+1)
W=5.D-01*(V1+V2)

C
IF(WW.EQ.l.) THEN
FNGA=0.
GO TO 500

END IF
C

IF(V1.EQ.V2) THEN
FNGA=0.
GO TO 500

END IF

C
DNUM=WW-UU*W
DEN0M=DSQRT( ( 1 . -UU**2)*( 1 . -W**2) )

C
IF(DEN0M.EQ.0..0R.Vl.EQ.-1..0R.V2.EQ.l.) THEN

IF(DNUM.GT.O.) THEN
FNGA=0.
GO TO 500

ELSE IF(DNUM.LT.O.) THEN
ARG=-1.
GO TO 50

ELSE IF(DNUM.EQ.O.) THEN
IF(V1.EQ.-1.) THEN
Vl=-0. 99999

END IF

IF(V2.EQ.1.)THEN
V2=0. 99999

END IF
GO TO 100
END IF

END IF
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40 CONTINUE
ARG=DNUM/DENOM

IF(ARG.LT.l.DO.AND.ARG.GT.-l.DO) GO TO 100

50 CONTINUE

IF(ARG.GE.l.DO) THEN
FNGA=O.DO

ELSE IF(ARG.LE.-l.DO) THEN
A1=(BB(K)*UU/(N+1))*(V2**(N+1)-V1**(N+1))
A2=(CC(K)/N)*(V2**N-V1**N)
FNGA=PI*(A1+A2)

END IF
GO TO 500

100 IF(N.EQ.l) THEN
FNGA=BB(K)*UU*(FNF1(V2,W,UU)-FNF1(V1,TO,UU))^E(K)*(FNF0(V2,WW,

@ UU)-FNF0(V1,W,UU))+BB(K)*(FNG0(V2,W,UU)-FNG0(V1.WW,UU))

ELSE IF(N.EQ.2) THEN
FNGA=BB(K)*UU*(FNF2(V2,W,UU)-FNF2(V1,TO,UU))+CC(K)*(FNF1(V2,WW,

@ UU)-FNF1(V1,WW,UU))+BB(K)H(FNG1(V2,WW,UU)-FNG1(V1,WW,UU))

ELSE IF(N.EQ.3) THEN
FNGA=BB(K)*UU*(FNF3(V2,WW,UU)-FNF3(V1,W.UU))+<X(K)*(FNF2(V2,WW,

@ UU)-FNF2(V1,W,UU))+BB(K)*(FNG2(V2,WW,UU)-FNG2(V1,WW,UU))

ELSE IF(N.EQ.4) THEN
FNGA=BB(K)»UUx(FNF4(V2,WW,UU)-FNF4(Vl,WW,UU))+CC(K)»(FNF3(V2,WW,

@ UU)-FNF3(V1,W,UU))+BB(K)*(FNG3(V2,WW,UU)-FNG3(V1,WW,UU))

END IF

500 RETURN
END

C
C
c
C KM)0()()0(KX)()0<)()()<)l)0()()0()o<K)()0()()0O»<XXXXK)CX)»»0(K)()()0O()t)0()()0()()00000()0()»(XXX

C xx)(X)<)c)<)()(xx)i)<)<)()()oo(Xxxxx FUNCTION FNGB xxxxxxxxxxxhkxhxxxmxxxxxxx
C X)<X)()»0(X)C)(»)()()()<X)()()0()0»<XX)(»)(X)(XXXX)()()0()(XXXKX)<X)()(XXX)»()()()(XX)»()(HXX)(XXXX

c
C SUBROUTINE TO EVALUATE THE FUNCTION FNG(K.L,N,U,KK)
C WHEN A PIECEWISE QUADRATIC CROSS SECTION EXPANSION IS USED

DOUBLE PRECISION FUNCTION FNGB(K,L.N,UU,KK)
IMPLICIT REAL*8 (A-H.O-Z)
COMMON/BLOCKl/ U(50) ,W(4) ,AA(3) ,BB(3) ,CC(3)
C0MM0N/BL0CK3/ V(54)

C
PI=4.D0*DATAN(1.D0)
WW=W(KK)
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V1=V(L)
V2=V(L+1)
W=5.D-01*(V1+V2)

IF(WW.EQ.l.) THEN
FNGB=0.
GO TO 500

END IF

IF(V1.EQ.V2) THEN
FNGS=0.
GO TO 500

END IF

DNUM=WW-UU*W
DENOM=DSQRT( ( 1 . -UU**2)*( 1 . -W**2) )

IF(DENOM.EQ.0..OR.Vl.EQ.-l..OR.V2.EQ.l.) THEN
IF(DNUM.GT.O.) THEN
FNGB=0.
GO TO 500

ELSE IF(DNUM.LT.O.) THEN
ARG=-1.
GO TO 50

ELSE IF(DNUM.EQ.O.) THEN
IF(V1.EQ.-1.) THEN
Vl=-0. 99999

END IF

IF(V2.EQ.l.) THEN
V2=0. 99999

END IF

END IF

END IF

40 CONTINUE
ARG=DNUM/DEN0M

IF(ARG.LT.l.DO.AND.ARG.GT.-l.DO) GOTO 100

50 CONTINUE

IF(ARG.GE.l.DO) THEN
FNGB=0.DO

ELSE IF(ARG.LE.-l.DO) THEN
Al=(AA(K)*UU**2/(N+2)-AA(K)*( 1 . -UU**2)/(2 . *(N+2) ) )*(V2**(N+2)-Vl

@ **(N+2))
A2=(BB(K)*UU/(N+1

) )*(V2**(N+1 )-yi**(N+l) )

A3=(CC(K)/N+AA(K)*( 1 . -UU**2)/(2- *N) )*(V2**N-V1**N)
FNGB=PI*(A1+A2+A3)

END IF
GO TO 500
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100 IF(N.EQ.l) THEN
FNGB=M(K)/2.*(3.*UU**2-10K™F2(V2,WW,UU)-FNF2(V1,WW,UU))+BB(K

@ )*UU«(FOTl(V2,WW,UU)-FNFl(Vl,W,UU)) +((r(K)+M(K)*(l.-UU**2)/2.)
@ »«(FNF0(V2,WW.UU)-FNF0(Vl,WW,UU))+3./2.»*AA(K)«UU*«(FNGl(V2,WW,UU)-
@ FNG1(V1.WW,UU))+(BB(K)+AA(K)«WW/2.)*«(FNG0(V2,WW,UU)-FNG0(V1.WW,U
9 u))

c
ELSE IF(N.EQ.2) THEN
FNGB=M(K)/2.*(3.*UU**2-10*(FNF3(V2,WW,UU)-FNF3(V1,WW,UU))+BB(K

@ )*UU*^FNF2(V2,W,UU)-FNF2(Vl,W,UU)) +(CC(K)+M(K)*(l.-UU**2)/2.)
@ *(FNF1(V2,OT,UU)-FNF1(V1,W,UU))+3V2.*AA(K)*UU*(FNG2(V2,WW,UU)-

FTJG2(Vl,W,UU))+(BB(K)+M(K)xWW/2.)*(FNGl(V2,WW,UU)-FNGl(Vl,WW,U
e u))

c
ELSE IF(N.EQ.3) THEN

FNGB=AA(K)/2.»(3.s«UU^2-l.)'»(FNF4(V2,WW.UU)-FNF4(Vl,WW,UU))+BB(K
@ )*UU*(FNF3(V2.TO.UU)-FNF3(Vl,W,UU))+(CC(K)+M(K)*(l.-UU**2)/2.)
@ *(FNF2(V2,W,UU)-FNF2(Vl,WW,UU))+3./2.xAA(K)xUU*(FNG3(V2,WW.UU)-
@ FNG3(V1.W,UU)) +(BB(K)+M(K)*WW/2.)*(FNG2(V2,WW,UU)-FNG2(V1,WW,U
@ U»
END IF

C
500 RETURN

END
C
C
C
C
C XMXXXXXXXXXXXXXXXKXIOOCKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C xxii)i)[)()(i[)[)[K)i oodODOi FUNCTION SUBROUTINES xxxxxxxxxxxxxxxxxxxxxx
C XXXXXXXXXHHXXXXXXXXXXXXXXXXXXXXKXXHKKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
c
C SUBROUTINE TO EVALUATE THE FUNCTION F0(X,W,U)

DOUBLE PRECISION FUNCTION FNFO(X.W.U)
IMPLICIT REAL*8 (A-H.O-Z)
A=W/DSQRT(1.-U**2)
B=U/DSQRT(1.-U**2)
A1=A/DSQRT(B**2+1 . )

FNF0=X*FNH1(X,A,B)+A1*FNH2(X,A,B)+FNH3(X,A,B)-FNH4(X,A,B)
RETURN
END

C
C
C
C
C SUBROUTINE TO EVALUATE THE FUNCTION F1(X,W,U)

DOUBLE PRECISION FUNCTION FNF1(X,W,U)
IMPLICIT REAL*8 (A-H.O-Z)
A=W/DSQRT(1.-U**2)
B=U/DSQRT( 1 . -U**2)
A1=(A**2*B-B*(B**2+1 . ) )/( (DSQRT(B**2+1 . ) )**3)
FI^1=(X^2*FNH1(X,A,B)+A1*FNH2(X,A.B)-FNH3(X,A,B)-FNH4(X,A.B)+A*FN

@H5(X,A,B))/2.
RETURN
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END
C
c
c
c
C SUBROUTINE TO EVALUATE THE FUNCTION F2(X,W,U)

DOUBLE PRECISION FUNCTION FNF2(X,W,U)
IMPLICIT REAL*8 (A-H.O-Z)
A=W/DSQRT(1.-U**2)
B=U/DSQRT(1.-U**2)
Al=3.*A**2*B**2/( (B**2+l . )**2)
A2=Al+2.-(2.*B**2+A**2-l . )/(B**2+l . )

A3=A*A2/(2.*DSQRT(B**2+1.))
A4= (A*X-2 . *B+ (3 . *A**2*B/ {B**2+ 1 . ) ) )/2

.

FNF2=(X^3*FNH1(X.A,B)M3*FNH2(X,A,B)+FNH3(X,A,B)-FNH4(X,A,B)+A4*F
@NH5(X,A,B))/3.
RETURN
END

C
C
C
C
C FUNCTION SUBROUTINE TO EVALUATE F3(X,W,U)

DOUBLE PRECISION FUNCTION FNF3(X,W.U)
IMPLICIT REAL*8(A-H.O-Z)
A=W/DSQRT(1.-U**2)
B=U/DSQRT(1.-U**2)
P=1./(B**2+1.)
R=DSQRT(B**2+1

.

)

Al=(5 . *A**2*B**3*P-3 . *B*(A**2-l . ) )*A**2/(2 . *R**5)
A2= (3 . *A**2*B**2*P-3 . *A**2+ 1 . +2 . *R**2 )*B/ (2 . *R**3 )

A3=(X+3 . *A*B*P)*B/2

.

A4=(X**2/3 . +5 . *A*B*P*X/6 . -2 . *(A**2-1
.
)*P/3 . +1

.

)

A5=A*(A4+5 . *A**2*B*«2*P**2/2 . )

FOT3=(X^*™i(X,A,B) + (Al-A2)*FNH2(X,A,B)-FNH3(X,A,B)-FNH4(X,A,B)
@+(A5-A3)*FNH5(X,A,B))/4.
RETURN
END

C
C
C
C
C SUBROUTINE TO EVALUATE THE FUNCTION F4(X,W,U)

DOUBLE PRECISION FUNCTION FNF4(X,W,U)
IMPLICIT REAL*8 (A-H.O-Z)
A=W/DSQRT( 1 . -U**2)
B=U/DSQRT(1.-U**2)
P=1./(B**2+1.)
R=DSQRT(B**2+1.)
S=A**2-1.
T=A*B
A 1= (7 . *A*T/ ( 4 . *R**2 ) -B )* (5 . *T**2*P-3 . *S ) *T/ (2 . *R**5 )

A2=(3 . *A*T**2*P/2 . -A*S/2. -B*T+A*R**2)/(R**3)
A3=(3 . *A*S/(8 . *R**5) )*(3 . *T**2*P-S)
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A2=A1+A2-A3
A5= (X**2/ ( 3 . *P } +5 . *T*X/6 . -2 . *S/3 . +5 . *T**2*P/2

.

)*7 . *A*T*P**2/4

.

A6= (X+3 . *T*P+ (X**3 )/2
.
)*A/2 .

- (X+3 . *T*P )
*3 . *A*S*P/8

.

A7= (X**2/3 . +5 . *T*P*X/6 . -2 . *S*P/3 . +5 . *T**2*P**2/2 . + 1
.
) *B

A5=A5+A6-A7
FNF4=(X^5*FNH1(X,A,B)+A2*FNH2(X,A,B)+FNH3(X.A.B)-FNH4(X,A,B)+A5*F

@NH5(X.A.B))/5.
RETURN
END

C
C
C
C SUBROUTINE TO EVALUATE THE FUNCTION GO(X,W,U)

DOUBLE PRECISION FUNCTION FNGO(X.W.U)
IMPLICIT REAL*8 (A-H.O-Z)
C=l.-U**2-W**2
D=2.*W*U
ARG1=C+D»X-X**2
IF(ARGl.LT.0.D0.AND.ARGl.GT.-l.D-05) ARG1=0.D0
Al=(2 . *X-D)*DSQRT(ARG1 )/4

.

A2=(D**2+4.*C)/8.
FNG0=A1-A2*FNH6(X,C,D)
RETURN
END

C
C
C
C
C SUBROUTINE TO EVALUATE THE FUNCTION Gl(X.W.U)

DOUBLE PRECISION FUNCTION FNGl(X.W.U)
IMPLICIT REAL*8 (A-H.O-Z)
C=l.-U**2-W**2
D=2.*W*U
ARG1=C+D*X-X**2
IF(ARG1.LT.O.DO.AND.ARG1.GT.-1.D-05) ARGl=O.DO
Al=( (DSQRT(ARG1 ) )**3)/3.
A2=DSQRT(ARG1 )*D*(D-2 . *X)/8

.

A3=D*(D**2+4.*C)/16.
FNG1=-A1-A2-A3*FNH6(X,C,D)
RETURN
END

C
C
C
C
C SUBROUTINE TO EVALUATE THE FUNCTION G2(X.W,U)

DOUBLE PRECISION FUNCTION FNG2(X,W,U)
IMPLICIT REAL*8 (A-H.O-Z)
C=l.-U**2-W**2
D=2.*W*U
ARG1=C+D*X-X**2
IF(ARGl.LT.0.D0.AND.ARGl.GT.-l.D-05) ARGl=O.DO
Al=( (DSQRT(ARG1 ) )**3)/4.
A2=Al*(X+5.*D/6.)
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A3=(5 . *D»*2+4 . *C)/16

.

FNG2=-A2+A3*FNG0(X , W , U)
RETURN
END

C
c
c
c
C SUBROUTINE TO EVALUATE THE FUNCTION G3(X,W,U)

DOUBLE PRECISION FUNCTION FNG3(X,W.U)
IMPLICIT REAL*8 (A-H.O-Z)
C=l . -U**2-W**2
D=2.*W*U
ARG1=C+D*X-X**2
IF(ARGl.LT.0.D0.AND.ARGl.GT.-l.D-05) ARG1=0.D0
Al={ (DSQRT(ARG1 ) )**3)*X**2/5

.

A2=7.*D/10.
A3=2.«C/5.
FNG3=-A1+A2*FNG2(X,W,U)+A3*FNG1(X,W,U)
RETURN
END

C
C
C
C
C FUNCTION SUBROUTINE FOR Hl(X.A.B)

DOUBLE PRECISION FUNCTION FNH1(X,A,B)
IMPLICIT REAL*8 (A-H.O-Z)
ARG1=(A-B*X)/DSQRT( 1 . -X**2)
IF(ARG1 .GT. 1 .DO. AND.DABS(ARG1-1 .DO) .LT. 1 .D-05) ARG1=1 .DO
IF(ARGl.LT.-l.D0.AND.DABS(ARGl+l.D0).LT.l.D-05) ARG1=-1.D0
FNH1=DARC0S(ARG1)
RETURN
END

C
C
C
C
C FUNCTION SUBROUTINE FOR H2(X,A,B)

DOUBLE PRECISION FUNCTION FNH2(X.A,B)
IMPLICIT REAL*8 (A-H.O-Z)
Al=-1 . D0*(B**2+1 . DO)*X+A*B
A2=DSQRT( 1 . D0-A**2+B**2)
ARG1=A1/A2
IF(ARGl.GT.l.D0.AND.DABS(ARGl-l.D0).LT.l.D-05) ARG1=1.D0
IF(ARGl.LT.-l.D0.AND.DABS(ARGl+l.D0).LT.l.D-05) ARG1=-1.D0
FNH2=DARSIN(ARG1)
RETURN
END

C
C
c
c
C FUNCTION SUBROUTINE TO EVALUATE H3(X,A,B)
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DOUBLE PRECISION FUNCTION FNH3(X,A,B)
IMPLICIT REAL*8 (A-H.O-Z)
IF(A.EQ.-B) THEN
FNH3=0.
GO TO 500

END IF

A1=(A*B+B**2+1.D0)*(X+1.D0)-((A+B)**2)
A2=DABS (X+ 1 )*DSQRT ( 1 . D0-A**2+B**2

)

A3=5 . D-01*(A+B)/DABS(A+B)
ARG1=A1/A2
IF(ARG1.GT.1.DO.AND.DABS(ARG1-1.DO).LT.1.D-05) ARG1=1.D0
IF(ARGl.LT.-l.D0.AND.DABS(ARGl+l.D0).LT.l.D-05) ARG1=-1.D0
FNH3=A3*DARSIN(ARG1

)

500 RETURN
END

C
C
C
C
C FUNCTION SUBROUTINE TO EVALUATE THE FUNCTION H4(X.A,B)

DOUBLE PRECISION FUNCTION FNH4(X,A,B)
IMPLICIT REAL*8 (A-H.O-Z)
IF(A.EQ.B) THEN
FNH4=0.
GO TO 500

END IF

A1=(A*B-B**2-1 .D0)*(X-1 .D0)-( (A-B)**2)
A2=DABS (X- 1 . DO ) *DSQRT ( 1 . D0-A**2+B**2

)

A3=5 . D-01*(A-B)/DABS(A-B)
ARG1=A1/A2
IF(ARG1 .GT. 1 .DO. AND.DABS(ARG1-1 .DO) .LT. 1 .D-05) ARG1=1 .DO
IF(ARGl.LT.-l.D0.AND.DABS(ARGl+l.D0).LT.l.D-05) ARG1=-1.D0
FNH4=A3*DARSIN(ARG1

)

500 RETURN
END

C
C
c
C
C FUNCTION SUBROUTINE TO EVALUATE THE FUNCTION H5(X,A,B)

DOUBLE PRECISION FUNCTION FNH5(X,A,B)
IMPLICIT REAL*8 (A-H.O-Z)
ARG1=(2.D0*A*B*X-(B**2+1 .D0)*X**2-(A**2-1 .DO))
IF(ARG1.LT.O.DO.AND.ARG1.CT.-1.D-05) ARG1=0.D0
A1=DSQRT(ARG1)
A2=B**2+1.D0
FNH5=A1/A2
RETURN
END

C
C
C
C
C SUBROUTINE TO EVALUATE THE FUNCTION H6(X.C,D)
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DOUBLE PRECISION FUNCTION FNH6(X,C,D)
IMPLICIT REAL*8 (A-H.O-Z)
ARGl=(D-2 . *X)/DSQRT(D**2+4 . *C)
IF(ARG1 .CT. 1 .DO. AND.DABS(ARG1-1 .DO) .LT. 1 .D-05) AKG1-1 .DO
IF(ARGl.LT.-l.D0.AND.DABS(ARGl+l.D0).LT.l.D-05) ARG1=-1.D0
FNH6=DARSIN(ARG1)
RETURN
END
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C
C *** PROGRAM NAME: TRANS ***
C
C PROGRAM TO SOLVE THE ONE-DIMENSIONAL. AZIMUTHALLY SYMMETRIC
C PLANE GEOMETRY DISCRETE ORDINATES EQUATIONS. SCATTERING
C CAN BE ISOTROPIC OR ANISOTROPIC. ANISOTROPIC GROUP-TO-GROUP
C APPROXIMATED SCATTERING KERNELS ARE GENERATED BY THE CODE
C 'ASKERNEL' AND THE RESULTING APPROXIMATED SCATTERING KERNEL
C TRANSFER MATRIX IS INPUT INTO THIS CODE. BECAUSE THIS CODE
C USES THE APPROXIMATED SCATTERING KERNEL TECHNIQUE FOR
C EVALUATION OF THE SCATTERING SOURCE TERM, THE DISCRETE
C ORDINATES CAN BE ARBITRARILY CHOSEN (I.E. , THEY DO NOT HAVE
C TO BE A STANDARD NUMERICAL QUADRATURE SET)

.

C
C
C MAJOR VARIABLES ARE AS FOLLOWS:
C 'NR' = NUMBER OF REFLECTED DISCRETE DIRECTIONS
C 'NT' = NUMBER OF TRANSMITTED DISCRETE DIRECTIONS
C •NTCIT• = TOTAL NUMBER OF DISCRETE ORDINATES
C 'M' = NUMBER OF SPATIAL NODES. THE NODES ARE DEFINED
C TO BE AT THE EDGES OF THE MESH CELLS.
C •WIDTH' = WIDTH OF SLAB
C 'DEL' = WIDTH OF EACH SPATIAL MESH CELL
C 'IFLAG1' = BOUNDARY CONDITION FLAG. SET IFLAG1=0 FOR A UNIT
C FLUX BOUNDARY CONDITION. SET IFLAG1=1 FOR A UNIT
C CURRENT BOUNDARY CONDITION.
C 'IFLAG2' = UNITS FLAG. SET IFLAG2=0 FOR UNITS OF CENTIMETERS.
C SET IFLAG2=1 FOR UNITS OF MEAN FREE PATHS.
C 'NEXP' = ORDER OF FLUX EXPANSION
C •NINT' = NUMBER OF FLUX INTERVALS
C 'EPS' = CONVERGENCE CRITERIA FOR THE ANGULAR FLUXES
C 'IS' = SOURCE ANGLE (DISCRETE DIRECTION NUMBER)
C 'SIGT' = TOTAL GROUP CROSS SECTION
C 'CAP' = CONVERGENCE ACCELERATION PARAMETER
C 'NMAX' = MAXIMUM NUMBER OF ITERATIONS TO BE PERFORMED
C 'NUMB' = NUMBER DENSITY OF SCATTERING MATERIAL
C 'SIGGT' = TOTAL GROUP SCATTERING CROSS SECTION (NOT TO BE
C CONFUSED WITH THE TOTAL GROUP CROSS SECTION)
C
C NOTE: THE ORDER OF THE FLUX EXPANSION ('NEXP') CAN BE
C 1 (PIECEWISE LINEAR), 2 (PIECEWISE QUADRATIC), OR
C 3 (PIECEWISE CUBIC) . THE TOTAL NUMBER OF DISCRETE
C ORDINATES USED MUST EQUAL (NEXP*NINT)+1 . THE VALUES
C OF THESE VARIABLES MUST BE THE SAME AS THE VALUES
C USED IN THE CODE •ASKERNEL' TO GENERATE THE
C APPROXIMATED SCATTERING KERNEL TRANSFER MATRIX.
C
C NOTE: THE INPUT VALUES OF 'SIGT', 'NUMB', AND 'SIGGT' DEPEND ON
C WHETHER UNITS OF CENTIMETERS OR MEAN FREE PATHS ARE USED.
C THESE VALUES SHOULD BE INPUT AS FOLLOWS:
C
C CASE (1): IF UNITS OF CENTIMETERS ARE USED (IFLAG2=0),
C INPUT THE TOTAL GROUP MICROSCOPIC CROSS SECTION
C (IN BARNS) FOR 'SIGT' (THIS INCLUDES SCATTERING



TRANS FOR 123

06-25-1986

C AND ALL OTHER INTERACTIONS). INPUT THE NUMBER
C DENSITY (1/CM**3) OF THE SCATTERING MATERIAL FOR
C •NUMB', AND INPUT THE TOTAL GROUP MICROSCOPIC
C CROSS SECTION (IN BARNS) FOR ,

SIGGT'.
C
C CASE (2): IF UNITS OF MEAN FREE PATHS ARE USED (IFLAG2=1),
C INPUT A VALUE OF ' 1

' FOR •SIGT' AND THE VALUE OF
C C (THE MEAN NUMBER OF SECONDARIES PER COLLISION)
C FOR 'NUMB'. INPUT THE TOTAL GROUP SCATTERING
C CROSS SECTION (IN BARNS) FOR •SIGGT 1

.

C
C THE FOLLOWING ARRAYS ARE UTILIZED:
C F(M.N) = NEUTRON FLUX AT CELL EDGE
C G(M.N) = NEUTRON FLUX AT CELL MIDPOINT
C Q(M,N) = INSCATTER SOURCE
C A(I.J) = APPROXIMATED SCATTERING KERNEL TRANSFER MATRIX
C U(N) = ANGULAR MESH POINTS (THE DISCRETE ORDINATES)

C
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 NORM, NUMB
COMMON/B1/ F(200.50),G(200,50),Q(200,50),U(50),A(50,50)
C0MM0N/B2/ M.NR,NT,IS,WIDTH,ERR1,ERR2,ERR3

C
C READ INPUT PARAMETERS (DEFINED ABOVE)
C

READ(5,800) M, WIDTH, IFLAG1 , IFLAG2
800 F0RMAT(I5,D20.4,5X,2(I5))

READ(5.803) NEXP.NINT
READ(5,801) EPS

801 F0RMAT(5X,D20.4)
READ(5.802) IS.NMAX.SIGT.CAP

802 F0RMAT(2(I5),D17.6,D18.4)
READ(5,803) NR.NT

803 F0RMAT(2(I5))
C

MM=M-1
XMM=DFLOAT(MM)
DEL=WIDTH/XMM
NTOT=NR+NT

C
READ(5.804) (U(I) , 1=1 ,NTOT)

804 FORMAT(3(D24.10))
C

READ(5.805) NUMB.SIGGT
805 F0RMAT(2(D24.10))

C
IF(IFLAG2.EQ.O) THEN
CC=SIGGT/SIGT
SIGT=SIGT*NUMB
SIGGT2=1

.

ELSE
CC=NUMB
SIGGT2=SIGGT



TRANS FOR 124

06-25-1986

END IF

C
C READ IN APPROXIMATED SCATTERING KERNEL TRANSFER MATRIX

READ(5.806) ((A(I, J) , J=l ,NTOT) , 1=1 ,NTOT)
806 F0RMAT(4(D18.8))

C
DO 10 I=1,NT0T
DO 10 J=1,NT0T
A( I , J)=A( I , J)*NUMB/SIGGT2

10 CONTINUE
C
C INITIALIZE FLUX AND SOURCE ARRAYS AT ZERO
C

DO 40 1=1, M
DO 45 J=1,NT0T
F(I.J)=O.DO
Q(I,J)=0.D0

45 CONTINUE
40 CONTINUE

C
C SET INCIDENT FLUX USING BOUNDARY CONDITION
C

CALL N0RMAL(U,IS,IFLAG1,N0RM,NEXP,NINT)
C

F(1,IS)=1./N0RM
C
C CALL SUBROUTINE TO SOLVE D.O. EQUATIONS
C

CALL DO(DEL, EPS, SIGT, CAP, NMAX, ITER)
C
C
C CALL SUBROUTINE TO PRINT OUT RESULTS
C

CALL 0UTPUT(IFLAG1,IFLAG2, ITER, NMAX, EPS, SIGT, CC,NEXP,NINT)

STOP
END

C
C
C
C SUBROUTINE TO CALCULATE SOURCE NORMALIZATION

SUBROUTINE NORMAL(U, II.IFLAGl.NORM.NEXP.NINT)
IMPLICIT REAL*8 (A-H.O-Z)
REAL*8 NORM
DIMENSION U(50)
NORM=0.
DO 50 J=1,NINT
N0RM=N0RM+S0RCE( J, II ,U, IFLAG1 .NEXP.NINT)

50 CONTINUE
RETURN
END

C
C
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DOUBLE PRECISION FUNCTION SORCEfJ, II, U, IFLAG1 ,NEXP,NINT)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION U(50),UBAR(50),UN(3)
NINT1=NINT+1
DO 10 JJ=1,NINT1
UBAR(JJ)=U((JJ-1)*NEXP+1)

10 CONTINUE
H=(U(II)-UBAR(J))*(UBAR(J+1)-U(II))
SORCE=0.
IF(H.LT.O.) GO TO 500

C
JL=J*NEXP-NEXP+1
JU=JL+NEXP
UJ1=UBAR(J+1)
UJ=UBAR(J)
IF(NEXP.EQ.2) GO TO 450
IF(NEXP.EQ.3) GO TO 480

C
C EVALUATE NORMALIZATION FOR LINEAR FLUX EXPANSION

• DO 400 K=JL,JU
IF(K.NE.II) THEN

IF(IFLAGl.EQ.O) THEN
SORCE=( (UJl**2-UJ**2)/2. -(UJ1-UJ)*U(K) )/(U( II )-U(K) )

ELSE IF(IFLAGl.EQ.l) THEN
S0RCE=( (UJl**3-UJ**3)/3 . -(UJl**2-UJ**2)*U(K)/2 . )/(U( 1 1 )-U(K)

)

END IF

GO TO 500
END IF

400 CONTINUE
C

450 CONTINUE
C EVALUATE NORMALIZATION FOR QUADRATIC FLUX EXPANSION

DEN0M=1.D0
DN1=0.D0
DN2=1.D0
DO 475 K=JL,JU
IF(K.NE.II) THEN
DEN0M=DEN0M*(U( II)-U(K) )

DN1=DN1+U(K)
DN2=DN2*U(K)

END IF
475 CONTINUE

IF(IFLAGl.EQ.O) THEN
S0RC^((UJl**3-UJ*w3)/3.-(UJl**2-UJ**2)*DNl/2.+(UJl-UJ)*DN2)/DEN

@ OM
ELSE IF(IFLAGl.EQ.l) THEN
S0RC£=((UJ1^4-UJ>^)/4.-(UJl>«3-UJ**3)*DNl/3. + (UJl**2-UJ**2)*DN

@ 2/2. )/DENOM
END IF

GO TO 500
C

480 CONTINUE
C EVALUATE NORMALIZATION FOR CUBIC FLUX EXPANSION

DEN0M=1.D0
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DN1=0.D0
DN2=0.D0
DN3=1.D0

JJ=0
DO 485 K=JL,JU
IF(K.NE.II) THEN
JJ=JJ+1
DEN0M=DEN0M*(U( 1 1 )-U(K) )

DN1=DN1+U(K)
DN3=DN3*U(K)
UN(JJ)=U(K)

END IF

485 CONTINUE
DN2=UN(1)*UN(2)+UN(1)*UN(3)+UN(2)*UN(3)
IF(IFLAGl.EQ.O) THEN
SORCE=( (UJl**4-UJ**4)/4. -(UJl**3-UJ**3)*DNl/3 . + (UJ1**2-UJ**2)*DN

9 2/2.-(UJl-UJ)*DN3)/DEN0M
ELSE IF(IFLAGl.EQ.l) THEN
S0RCE=((UJl^-UJ^)/5.-(UJl*^-UJ>^)*DNl/4. + (UJl**3-UJ**3)*DN

@ 2/3.-(UJl**2-UJ**2)*DN3/2.)/DEN0M
END IF

C
500 RETURN

END
C
C
C
C
C SUBROUTINE TO SOLVE THE DISCRETE ORDINATES EQUATIONS.
C

SUBROUTINE DO(DEL, EPS, SIGT. CAP, NMAX, ITER)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION FP(200.50),F1(200,50),F2(200,50).X(50),Z1(50),Z2(50)
C0MM0N/B1/ F(200,50),G(200.50),Q(200.50),U(50),A(50,50)
C0MM0N/B2/ M.NR,NT,IS.WIDTH,ERR1,ERR2,ERR3
MM=M-I
NTOT=NR+NT
NR1=NR+1

C
XX=DEL*SIGT/2.D0
SIGT2=SIGT/2.D0

C
DO 1 I=1,NT0T
X(I)=(1.E»-XX/U(I))/(1.D0+XX/U(I))
Zl ( I )=SIGT2+U( I )/DEL
Z2(I)=SIGT2-U(I)/DEL

1 CONTINUE
C

ITER=0
100 ITER=ITER+1

DO 2 I=1,NT0T
DO 2 K=1,M
FP(K,I)=F(K,I)

2 CONTINUE



TRANS FOR 127

06-25-1986

C
C SWEEP FOR FORWARD DIRECTIONS

DO 4 I=NR1,NT0T
DO 5 K=1,MM
KK=K+1
F(KK. I)=X(I)*F(K, I)+Q(KK, I)/Z1(I)

5 CONTINUE
4 CONTINUE

C
C SWEEP FOR BACKWARD DIRECTIONS

DO 6 1=1,NR
DO 7 L=1.MM
K=M-L+1
KK=K-1
F(KK,I)=F(K.I)/X(I)+Q(K.I)/Z2(I)

7 CONTINUE
6 CONTINUE

C
C CALCULATE CELL-CENTER FLUXES USING DIAMOND-DIFFERENCE SCHEME

DO 8 I=1,NT0T
DO 9 K=2,M
G(K, I)=(F(K-1 , 1)+F(K, I) )/2.D0

9 CONTINUE
8 CONTINUE

C
C CALCULATE THE SCATTERING SOURCE TERM

CAPP=1.D0+CAP
DO 10 I=1,NT0T
DO 11 K=2.M
QS=O.DO
DO 12 J=1.NT0T
QS=QS+C(K,J)*A(J,I)

12 CONTINUE
Q(K,I)=Q(K,I)+CAPP*(QS-Q(K,I))

11 CONTINUE
10 CONTINUE

C
C CHECK FOR CONVERGENCE
C

CALL C0NVRG(F,FP.M,NR,NT.ITER,EPS,ERR1,ERR2,ERR3)
C

WRITE(9,910) ITER,ERR1,ERR2,ERR3
910 F0RMAT(5X.I2,5X,3(D20.6))

C
C IF CONVERGENCE REQUIREMENTS ARE SATISFIED, RETURN TO MAIN
C PROGRAM. IF NOT, CONTINUE WITH ITERATIONS.
C

IF(ERR1.LE. EPS. AND. ERR2.LE.EPS. AND. ERR3.LE.EPS) GO TO 200
C
C ADJUST CONVERGENCE ACCELERATION PARAMETER

150 IF(CAP.GE.2.D-1) GO TO 160
CAP=CAP*1 .

1

160 CONTINUE
C
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C IF MAXIMUM NUMBER OF ITERATIONS HAVE FAILED TO PRODUCE
C CONVERGENCE, CEASE CALCULATIONS AND EXIT TO MAIN PROGRAM.
C

IF(ITER.GE.NMAX) GO TO 200
GO TO 100

200 RETURN
END

C
C
C SUBROUTINE TO CHECK CONVERGENCE OF ANGULAR FLUXES

SUBROUTINE CONVRG(F,FP.M,NR,NT, ITER, EPS, ERR1 ,ERR2,ERR3)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION F(200,50),FP(200,50)

C
IF(ITER.EQ.l) THEN
ERR1=1.
ERR2=1.
ERR3=1.
GO TO 500

END IF
C
C CHECK REFLECTED FLUXES FOR CONVERGENCE

ERR1=0.
DO 10 1=1. NR
IF(F(l,I).NE.O.) ERR1=DMAX1(ERR1,DABS((F(1,I)-FP(1,I))/F(1,I)))

10 CONTINUE
C
C CHECK TRANSMITTED FLUXES FOR CONVERGENCE

ERR2=0.
NR1=NR+1
NTOT=NR+NT
DO 20 I=NR1,NT0T
IF(F(M,I).NE.O.) ERR2=DMAX1(ERR2,DABS((F(M,I)-FP(M,I))/F(M,I)})

20 CONTINUE
C

IF(ERR1. GE.EPS.0R.ERR2.GE.EPS) THEN
ERR3=1.
GO TO 500

END IF

C
C IF REFLECTED AND TRANSMITTED FLUXES HAVE CONVERGED, CHECK ALL
C FLUXES FOR CONVERGENCE

ERR3=0.
DO 30 I=1,NT0T
DO 30 K=1,M
IF(F(K,I).NE.O.) ERR3=DMAX1(ERR3,DABS((F(K,I)-FP(K,I))/F(K,I)))

30 CONTINUE
C
C
500 RETURN

END
C
C
C SUBROUTINE TO PRINT OUT PROBLEM PARAMETERS AND RESULTS
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SUBROUTINE OUTPUT( IFLAG1 , IFLAG2 . ITER , NMAX, EPS , SIGT , CC , NEXP , HINT)
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 JR.JT.JTU.JTOT
COMMON/Bl/ F(200,50),G(200.50),Q(200,50),U(50),A(50,50)
C0MM0N/B2/ M,NR,NT,IS,WIDTH,ERR1,ERR2,ERR3
NT0T=NR+NT

C
C
C WRITE OUT PROBLEM PARAMETERS

WRITE(6,900)
IF(IFLAG2.EQ.0) THEN
WRITE(6,901) WIDTH

ELSE
WRITE(6.902) WIDTH

END IF

WRITE(6,903) M
WRITE(6,920) CC
WRITE(6,904) NR
WRITE(6,905) NT
IF(IFLAGl.EQ.O) THEN
WRITE(6,906) U(IS)

ELSE
WRITE(6,907) U(IS)

END IF

WRITE(6,908) EPS
WRITE(6,909) ERR3
WRITE(6,910) ITER

C
C CHECK TO SEE IF CONVERGENCE WAS REACHED

IF(ERR3.LE.EPS) GO TO 50
C IF THE REQUIRED CONVERGENCE WAS NOT REACHED, WRITE OUT
C THE NUMBER OF ITERATIONS.

30 WRITE(6,911) NMAX
WRITE(9,911) NMAX
GO TO 100

C
C WRITE OUT PROBLEM RESULTS

50 CONTINUE
C
C CALL SUBROUTINE TO CALCULATE THE REFLECTED AND TRANSMITTED
C CURRENTS.

CALL CURENT(SIGT, JR.JT.JTU.JTOT, NEXP, NINT)
C
C CALCULATE THE SCATTERED FLUX IN THE SOURCE DIRECTION BY
C SUBTRACTING THE UNSCATTERED FLUX COMPONENT.
C

F(M,IS)=F(M,IS)-F(1,IS)*DEXP(-1.*WIDTH*SIGT/U(IS))
C

WRITE(6,912)
WRITE(6,913)
DO 60 I=1,NT0T
WRITE(6,914) U(I),F(1,I),M.U(I).F(M,I)

60 CONTINUE
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WRITE(6,916) JR
WRITE(6,917) JT
WRITE(6,918) JTU
WRITE(6,919) JTOT
IF(NEXP.EQ.l) THEN
WRITE(6,921)

ELSE IF(NEXP.EQ.2) THEN
WRTTE(6,922)

ELSE IF(NEXP.EQ.3) THEN
WRITE(6.923)

END IF

C
WRITE(6,915)

C
C OUTPUT FORMATS

900 FORMAT( "

1
' ,2X, 'PROBLEM PARAMETERS: ' ,/)

901 FORMAT(5X. 'SLAB WIDTH = \F7.4, ' CM.')
902 FORMAT(5X. 'SLAB WIDTH = ' ,F7.4, ' M.F.P.')
903 FORMAT(5X. 'NUMBER OF NODES = '

, 13)
904 F0RMAT(/,5X,I2, ' REFLECTED QUADRATURE DIRECTIONS')
905 F0RMAT(5X,I2, ' TRANSMITTED QUADRATURE DIRECTIONS')
906 F0RMAT(5X, 'UNIT FLUX INCIDENT AT \F9.6,/)
907 F0RMAT(5X, 'UNIT CURRENT INCIDENT AT ' .F9.6,/)
908 F0RMAT(5X, 'CONVERGENCE CRITERIA FOR ANGULAR FLUXES = ' .E11.4)
909 F0RMAT(5X. 'THE ANGULAR FLUX AT ALL POINTS CONVERGED TO WITHIN', Ell

@.4)
910 F0RMAT(5X, 'AFTER ',13,' ITERATIONS')
911 F0RMAT(//,5X,'N0 CONVERGENCE REACHED AFTER ',13,' ITERATIONS')
912 F0RMAT(4(/),3X, 'REFLECTED ANGULAR FLUXES', 17X. 'TRANSMITTED ANGULAR

@ FLUXES')
913 F0RMAT(1X,29('-'),12X.31('-'))
914 F0RMAT(1X,'F(1,'.F9.6.') = ' .E12.5. 12X. 'F( ' ,

13,
'

,

' ,F9.6,
'
) = ' ,E12

@.5)
915 FORMAT('l')
916 F0RMAT(////,5X, "THE REFLECTED CURRENT =',F9.6)
917 F0RMAT(5X, 'THE COLLIDED TRANSMITTED CURRENT = ' ,F9.6)
918 F0RMAT(5X. 'THE UNCOLLIDED TRANSMITTED CURRENT = \F9.6)
919 F0RMAT(/,5X,'THE TOTAL ESCAPING CURRENT = \F9.6)
920 F0RMAT(5X, 'C = ' ,F7.4)
921 F0RMAT(3(/),2X, 'APPROXIMATED SCATTERING KERNEL METHOD USED (LINEAR

@ FLUX EXPANSION) '

)

922 F0RMAT(3(/),2X, 'APPROXIMATED SCATTERING KERNEL METHOD USED (QUADRA
OTIC FLUX EXPANSION)')

923 F0RMAT(3(/),2X, 'APPROXIMATED SCATTERING KERNEL METHOD USED (CUBIC
@FLUX EXPANSION)')

100 CONTINUE
RETURN
END

C
C
C
C SUBROUTINE TO CALCULATE ESCAPING CURRENTS

SUBROUTINE CURENT(SICT, JR. JT, JTU, JTOT, NEXP.NINT)
IMPLICIT REAL*8 (A-H.O-Z)
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REAL*8 JR.JT.JTT.JTU.JTOT.NORM
DIMENSION FF(50),UU(50)
COMMON/B1/ F(200,50),G(200.50),Q(200,50),U(50),A(50,50)
C0MM0N/B2/ M,NR,NT.IS,WIDTH,ERR1,ERR2.ERR3

C
NR1=NR+1
NTOT=NR+NT

C
C CALCULATE REFLECTED CURRENT

JR=0.
DO 100 1=1, NR
CALL N0RMAL(U, 1,1, NORM, NEXP.NINT)
JR=JR+F(1.I)*N0RM

100 CONTINUE
C

JK=-1.*JR
C CALCULATE TOTAL TRANSMITTED CURRENT

JTT=0.
DO 200 I=NR1,NT0T
CALL NORMAL(U, 1,1, NORM, NEXP.NINT)
JTT=JTT+F(M. I)*NORM

200 CONTINUE
C
C CALCULATE THE COLLIDED TRANSMITTED CURRENT

DO 210 I=NR1,NT0T
FF(I)=F(M,I)

210 CONTINUE
FF( IS)=F(M, IS)-F( 1 , IS)*DEXP(-1 . *WIDTH*SIGT/U( IS) )

C
JT=0.
DO 220 I=NR1.NT0T
CALL NORMAL(U, 1,1, NORM, NEXP.NINT)
JT=JT+FF(I)*NORM

220 CONTINUE
C
C CALCULATE THE UNCOLLIDED TRANSMITTED CURRENT BY SUBTRACTING THE
C COLLIDED TRANSMITTED CURRENT FROM THE TOTAL TRANSMITTED CURRENT
C

JTU=JTT-JT
C

JTOT=JR+JTT
C

RETURN
END
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ABSTRACT

A fundamental difficulty with discrete-ordinates transport

calculations is the accurate evaluation of the scattering source term

for highly anisotropic problems (i.e., those problems that are

characterized by anisotropic fluxes as well as by anisotropic

scattering). For such problems, the conventional Legendre expansion of

the differential scattering cross section often yields very inaccurate

and even negative angular fluxes. Alternatively, the use of the exact

cross sections for transfer from one discrete direction to another (the

"exact kernel method") provides better accuracy, but suffers from an

angular redistribution problem when low-order quadrature is used.

In this work, a new method for evaluating the scattering source

term is proposed. This new method represents both the angular flux and

the scattering cross section by piecewise polynomial expansions so that

the resulting scattering source term can be integrated analytically.

The integrated results can be used in a standard discrete-ordinates code

with minor modification of the scattering source term calculation.

From the results of several slab albedo transport problems, it is

apparent that the new method provides better accuracy than does the

Legendre expansion method, and also eliminates the angular

redistribution problem which limits the exact kernel method for low

quadrature orders. The accuracy which can be obtained with the new

method, however, depends on the degree of anisotropy in the angular

flux, the number of discrete ordinates used, and the order of the

piecewise polynomial expansion used to represent the angular flux.

Often the simple linear approximation gives the best results for highly

anisotropic problems, since this approximation is the only one

guaranteed to always yield a positive source term.


