
HEAT TRANSFER BETWEEN A PLANE SURFACE
AND A PULSATING, PERPENDICULARLY

IMPINGING AIR JET

by

LOUIS CASIMIR BURMEISTER

B. S., Kansas State University, 1957

A THESIS

submitted In partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
OF AGRICULTURE AND APPLIED SCIENCE

1959



i-D

77/

Q0CU»)^ TABLE OP CONTENTS

INTRODUCTION 1

NOMENCLATURE. . . . , 3

STATEMENT OP PROBLEM £

ANALYSIS 5

DESCRIPTION OF EQUIPMENT 19

EXPERIMENTAL RESULTS 35

Influence of Reynolds Number 35

Influence of H/d Ratio \±o

Influence of a/v Ratio ij.3

Influence of cod/V Ratio ltf

Influence of Prandtls Number . 51

Maximum Radial Wall Jet Velocity Variation Along
the Plane Surface £l

CONCLUSIONS 65

ACKNOWLEDGMENTS 67

BIBLIOGRAPHY 68

APPENDICES 70



INTRODUCTION

The effect of forced convection has been observed and util-

ized for the transfer of heat in industrial and other applica-

tions for many years. However, the primary effort of investi-

gators of forced convection heat transfer has been focused on

steady state conditions. This area has been extensively treated

both analytically and experimentally.

In recent years transient or unsteady conditions have

achieved a position of more than academic interest. Technologi-

cal developments such as atomic fission reactors, rocket nozzles,

pulse jets and temperature sensitive instruments or automatic

controls have made knowledge of these conditions a matter of

practical importance.

The findings of observers and investigators have been that

unsteady or transient conditions do affect the magnitude of con-

vective heat transfer. Andreas (1) found that the heat transfer

of heat exchangers could be Improved by imparting to the ex-

changer a vibrational motion of 1 to 5 mm* amplitude and a fre-

quency of 1500 vibrations per minute.

This observation is supported by that of Lemlich (10) who

did an experimental Investigation of the effect of vibration on

the natural convection heat transfer from a horizontal, electri-

cally heated nichrome wire and found that vibration from 39 to

122 cycles per second Increased the heat flow and that the heat

transfer coefficient increased with increasing "frequency ampli-

tude". Boelter (Ij.) also investigated analytically and



experimentally the effect of vibration on natural convection

from a horizontally mounted, electrically heated tube and found

that it was possible to increase heat transfer by imparting an

oscillation to the tube. West (20) determined that heat trans-

fer coefficients Inside tubes for Reynolds Numbers of 3 x ICh- to

8.5 x lCr> were increased 60 to ?0 per cent by the use of par-

tially dampened pulsating flow from a reciprocating pump.

Thus, it can be seen that unsteady conditions, oscillations

in particular, do have a definite effect upon both natural and

forced convective heat transfer as previously stated. Generally,

as the references cited above indicate, the effect of oscilla-

tions can be made to increase the convective heat transfer.

The area of immediate Interest is that in which a pulsating

jet impinges normally or at some other angle upon a plane sur-

face, Milne-Thomson (12) treated the problem of the direct im-

pact of two equal Jets in steady flow which is the seme problem

as the direct impact of a jet in steady flow upon an infinite

plane surface. He obtained the streamlines by use of complex

variables and the Sohwarz and Christoffel transformation. How-

ever, the work of Glauert (7) is most applicable in that he

found solutions of the exact boundary layer equations for the

velocity distribution for a Jet of gas Issuing from a long slot

or a circular nozzle or orifice and impinging perpendicularly

upon an infinite flat plate. He terms these two cases a plane

and a radial wall Jet, respectively. Additionally, sinusoidal

oscillation of the infinite plate parallel to its own plane or



of the Jet In a plane parallel to that of the plate were con-

sidered and the exact boundary layer equations solved by Glauert

(6), Llghthlll (8) undertook the solution of the case of an in-

finite stream executing sinusoidal oscillations without flow re-

versal and with the stresm flowing normal to the axis of a rod.

The exact boundary layer equations were solved for high and low

ranges of oscillation frequencies. Unfortunately, his solution

is not applicable to the area of immediate interest as stated

beforehand except in the region of the stagnation point.

At this point, it will be noted that although some authors

are concerned with a fluid Jet impinging upon an infinite plane

surface, no angle of impingement other than 90° from horizontal

is considered and no pulsation of the Jet flow rste is taken

into aocount. Therefore, the subject of a fluid Jet impinging

on a plane surfaoe and undergoing time dependent flow rate

pulsations without flow reversal remains to be investigated,

NOMENCLATURE

A » constant; area, ft, 2

0C= k/^cp thermal diffusivity, ft, 2/hr,

B » constant

C * constant

Cp=* specific heat at constant pressure Btu/lb,m °P

d si nozzle diameter, ft,

D st constant

v at hydrodynamic boundary layer, (Jet thickness), ft.



Of a thermal boundary layer thickness, ft.

F =* force, lb
f

H « height of apparent Jet origin above the plane surface, ft.

h " film coefficient of heat transfer, Btu/hr. ft. 2 °P

I * integral

II" integral

/* * dynamic viscosity, lb#m/ir, ft.

<+> =* frequency of jet pulsation, radians/hr.

<P T-Te, °P

P " pressure, lbf/ft.
2

Q heat flow rate, Btu/hr.

Z
7 » mass density, lb.^/ft.3

7* " time, hr.

T « temperature

Tw» temperature of plane surface, °P

T
e» temperature of environmental fluid, °F

t « temperature difference between Jet and environmental fluid, °P

^ " Tw - Te , °F

r radial distance from nozzle centerline, ft.

U radial velocity, ft./hr.

U^* maximum radial velocity In the radial wall Jet, ft./hr.

Ue» environmental radial velocity, ft./hr.

y " vertical position above the plane surface, ft.

v P "^T , kinematic viscosity, ft.^/^ir.



Classical Dlmensionless Groups

H
R

« Reynolds Number,

Np
p

» Prandtls Number,

%u * Nuasel* 8 Number,

STATEMENT OP PROBLEM

A Jet of air undergoing flow rate pulsations issues from a

nozzle and impinges perpendicularly upon an infinite plane sur-

face with a temperature difference existing between the air Jet

and the surface. This thesis has as its objective the investi-

gation of the heat transfer between the plane surface and the

pulsating, impinging air Jet which will be termed a radial wall

Jet.

ANALYSIS

Rather than attempt a solution of the exact partial dif-

ferential equations due to their complexity, integral equations

will be derived which satisfy the same physical laws of conser-

vation of mass and energy and momentum. The fluid properties

are assumed constant and the flow to be incompressible. Bouy-

ancy effects are taken to be negligible. Plane surface tempera-

ture is assumed to be spatially uniform.

Calculation of the thickness of the Jet will first be

undertaken beoause the thermal boundary layer which is of pri-

mary interest will later be shown to be dependent upon the

hydrodynaralc boundary layer. Application of a momentum balance



to a differential element and integration through the thickness

of the hydrodynamic boundary layer leads to an expression for

the net change In momentum flux through the wall Jet along a

radial element of differential length. In this analysis the

total thickness of the Jet as It flows over the plane surface Is

called the hydrodynaralc boundary layer thickness. Equating this

net change in momentum flux to the force of friction acting at

the plane surfaoe yields the following equation for the hydro-

dynamic boundary layer along the plane surface. r

o

This cannot be solved as it stands. However, by making a

proper assumption as to the form of the velocity distribution

through the thickness of the wall Jet, the integrals in the pre-

ceding equation can be evaluated. In this matter there is some

help available in the literature. An experimental investiga-

tion of a radial wall Jet was performed by Bakke (2) and the

velocity distribution through the thickness of the Jet was

determined as shown on Plate I, The predictions of Glauert (7)

were oonflrmed. To approximate this velocity distribution let

the ratio JJ^ be taken as the polynomial 2. ?
(-jf-J #

This is the usual polynomial form of velocity distribution for

flow over a plate (5). But in the situation under considera-

tion the velocity must rise from zero at the surface to a maxi-

mum and then fall to zero again at the hydrodynamio boundary of

the Jet. In order that these conditions may be fulfilled, a



EXPLANATION OP PLATE I

Radial wall Jet veloolty profiles

(A) Bakke's data for a low speed, turbulent,
radial wall Jet velocity profile with
Jet thickness taken to be that point at
which ~=-jr

(B) Assumed radial wall Jet velocity profile
with Jet thickness taken to be that point
at which bL- e>

jj=«s&f-(f-fj£'-ff
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faotor will be Included so that the polynomial now appears as

(2)

The exponent of the faotor / *" -7=*" Is arbitrary except

that it must be greater than unity to Insure that the slope of

the velocity distribution curve will be zero at y=£~. Setting

n - 2 gives (3) $[=*&* Y~ff)]£/~ fj: . Rewriting (1)

as (U) -r),^/y=0^£^h^J^M^A^J
and substituting (3) Into (I4.) the following is obtained after

evaluation of the integrals,

(5) ~~~~f^
~~ 3'S & '* ^

Multiplying both sides by f
and taking the indicated partial derivatives and simplifying

leads to z

Obviously, U^ is a variable dependent upon time and radial

position from the nozzle center line. Up to this point, it has

not been necessary to specify the form of the dependency, but

solution of (8) requires that this now be done. Bakke (2) found

that maximum radial wall Jet velocity varies inversely with the

radial distance from the nozzle centerline. A relationship of

the form (7) 0^ « Arm may, therefore, be assumed for steady

state conditions. Substitution of this relationship into



10

equation (6) would permit its solution if -

yr - ° - -y^ signi-

fying that a steady state hydrodynamic boundary layer is being

considered* The problem is then reduced to solving the equation

(8) *3~ + S£ll^ jr-J- ^"4

An integrating factor for this ordinary differential equation is

(9) e
J °- r

'- tfr)

So . (10 , f _ - 3£± (u^'fuyj, t ccuM
L

Substituting u^ m Arra into (10),

(id r= -^f (û fa r *"* ,r

is obtained*

Evaluation of the integral in (11) yields

This, as mentioned before, is the steady state hydrodynamic

boundary layer and serves as an Initial condition for equation

(6). The value of the exponent ra is subject to some question.

In the region of the stagnation point it is probably positive

(5) while Bakke (2) found that at some distance from the nozzle

oenterline it is negative* This question is deferred until

later, and treated in the section presenting experimental re-

sults under the subheading of maximum radial wall Jet velocity

variation along the plane surface.
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Returning to the equation (6) of the unsteady hydrodynamic

boundary layer it is noted that U-j_ must have its dependence on

time specified as well as on r as has already been done by

equation (7). After some thought, it is logical to conclude

that some time will be required for a change in velocity at the

nozzle to make itself felt at a downstream position, r. There-

fore, the expression for the dependence of U^ on time should

contain a term giving the time lag at any radial position. This

time lag term is assumed to be Drn where D and n must be experi-

mentally determined.

Since the governing equation (6) is linear, the principle

of superposition may be applied to the phenomenon. In other

words, knowledge of the hydrodynamic boundary layer 1 s response

to a step change in velocity at the nozzle would enable predic-

tion of its response to any other form of change In nozzle exit

velocity. Now, a step change In nozzle exit velocity may be ex-

pressed by (13) U
t
=/? r

m£B ± AfT-vr")]

where B is a constant greater than unity to prevent flow re-

versal and A CY—DT ) is the unit step function with a time lag.

Unfortunately, this specification of U^ renders equation (6) too

difficult to solve, except, perhaps, by means of a digital com-

puter. By ohoosing U^ to be of the form

(1U ) U, = /1r
mCB i- sis Co r-£>r«)]

where B is as defined above and co ia the frequency of velocity

oscillation or pulsation, equation (6) is more amenable to
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classical methods of solution* I'orm (II4.) is one of the most

likely forms of nozzle velocity pulsation and, additionally, any

form of velocity pulsation should be able to be synthesized by

a Fourier Series of sines and the response to it calculated

through knowledge of the hydrodynamic boundary layer's response

to form (1U)»

Writing the subsidiary equations to (8) which is a Lagrange

equation, the relations below are achieved

dr _ JT _ M**)
(17) -7- 37^ ~^rlrJ^ J(4

xr) 7 jvn- 2rJ

Substituting (16) into (17) and taking the indioated partial

derivatives leads to

(18) As. - ^^
/ I

MfJ

The complete integral of (6) may be obtained by the evaluation

of any two of the three relations given above. Evaluation of

the above relations also enables the hydrodynamic boundary layer

to be solved for by means of the method of characteristics.
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Consider first

(19) <*r ~ 1_

Rearranging,

(20) ^y ~ ~ &Aer^£s+s/,c«?<^Jj**

Realizing that the term Drn represents the time required for a

change in nozzle exit velocity to reach a downstream radial

position, it can be seen that knowledge of a possible relation

between m and n would simplify (20)» Since U * dr/d Y , (7) can

be substituted for U and the simple differential equation

Arra dr/d'T' results. Evidently, %- 7? « r^/Ad-m). This

indicates that the exponent n can be said to be 1-m. Putting

n 1-ra into (20) and letting z oof -Dr1
"10

, yields

(2i) ±£-oa+ 43-A& o-'»)£&i-s;*ti)]' = o

which can be solved by separation of variables as follows:

(tt) f Ji - = r^fr

(23)
-£ *t~[m+»(i-t$*** i>ffl

- r/ 5~

(25) ;•£**& + $)*'*>% 6=?c



1*

Now, 6- <*>- $£4eoG"») and C = - i±/JoC/-^J

For b - ±Cf <^= 4±s40O-»OC8+:O

Since oozo <an<A &?/ , this case may be possible* A like

argument for the remaining two cases shows that equation (2I4.)

2 2
is also possible. However, the case for* which ^> 7 C most

••ally illustrates the difficulties to follow. Thus,

Now,

(27) kt£. s if—ZUZ

Note that (B + 1) is the upper limit of the maximum velocity

1) is

6*-c

variation while (B - 1) is the lower limit. If & ^ p> /

b-c -/

implying a relatively small flow rate pulsation. In this case

60>) Dr' = ^^sfiO-njr-ff+C-fco-^eoo-nij)]
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This solution is one of the two Independent Integrals of the

subsidiary equations required to form the general integral of

equation (8) for a sinusoidal flow rate pulsation at the nozzle.

Another independent integral can be found from the subsidiary

equations by evaluating with n 1-ra the relation from equation

(18)

(3D it Jtf
7

!

3S*i?

Substituting from equation (30) and simplifying,

+ 7cos;«£fa-&.40£>c/-*JI(Ttcr)]
3*£s rcosfa- &s4^^jfo*$

8
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In order to solve this ordinary differential equation, an Inte-

grating factor must be found. This Integrating factor could be

obtained from q # The quantity enclosed In the braces

of equation (32) can possibly be integrated with respect to T .

But the next step which involves integrating - 4~ *V G <J Y
would be extremely difficult except by numerical means even with

the assumed relatively small flow rate pulsation. The thermal

boundary layer is next shown to depend upon the above integral,

A vast increase in difficulty of the resultant equations then

becomes evident.

The thermal boundary layer will not be dealt with in detail

here, but the governing partial differential equation derived in

Appendix III is merely rewritten. This equation is

If ~J^ - & which implies no flow pulsation and constant

plane surface and .jet temperaturea equation (35) results with

rearrangement,

(35) -JT- + SfPi -r=- *t 6*4

An integrating faotor is (36) _? /Z£. JC-jrJ , __
] J *4r ° /u

(
fj \

e - LT-

'

z.

Now J was previously found to be given by equation (10) for

steady flow conditions. Since u - /4r
t
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(38) X - Jzl£2± fOts^J c, -*M*~J

So equation (37) takes the form .

i+$r +

/s-36/t

At this point a choice is available if the above integral is to

be evaluated. Either m can be specified or C. can be set equal

to zero. Let C^ m 0. When this is done it is found that

r
3

5-oc r - ?*-^L 7^ -3(i-»2 - 3C/f3>"J

The ratio of ~~g~ is then

(kl) ik. - 3I- ZiTIIEi UZ^Ts- - *C3+">J

To determine CV the plane surface is assumed to be unheated un-

til r- H? • Then

which compares favorably with the solution obtained by Eckert

and Drake (5) for flow of an infinite stream parallel to a

heated plate demonstrating the validity of the method used in

this thesis. Also, equation (lj.2) can be used as an initial

condition for equation (3k)

•
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The ratio —Jr occurs frequently. Previously the dif-
o

ficulty of calculating £ was illustrated and recourse to

numerical methods was shown to be necessary. Reliance upon

numerical solutions for determination of the thermal boundary

layer thickness is obviously even more inevitable. The many

calculations required for solution of the thermal boundary layer

thickness in particular, make programming of these equations on

a digital computer mandatory.

Once the thermal and hydrodynaraio boundary layer thickness

are known, the film coefficient of heat transfer can be com-

puted. Computation would be as given below. The heat trans-

ferred by convection per unit area, Q, is given by

(Ml <? = & (Zr*ie
- 7/er)

This heat must leave the plane surface by conduction through the

gas layer adjacent to the plane surface. So,

Equating these two expressions for Q produces

If T a T
Jet environment /# \ rt

The thermal boundary layer thickness, <C , being known thus en-

ables h to be determined.
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This analysis is intended to show that the feasibility of

solving the partial differential equations derived in Appendix

II and III governing the thermal and hydrodynamic boundary layer

thicknesses is slight unless numerical methods are used, A di-

gital computer is suggested as the best tool to facilitate a

numerical method of solution,

DESCRIPTION OF EQUIPMENT

An experimental study of the problem to oheck any result of

the mathematical analysis and to gain knowledge of the radial

wall Jet's heat transfer and kinetic characteristics was under-

taken.

Air for the Jet was supplied by a centrifugal fan driven by

a variable speed motor in the range of 0-1800 rpm. Air was de-

livered from the fan to the experimental apparatus from the fan

outlet duct through a 36 foot length of lA inch i.d, rubber

hose which also served to damp out pulsations in the air flow

rate delivered by the fan, A picture of this centifugal fan is

shown in Plate II,

The experimental apparatus itself is shown in Plate III,

The rubber hose through which air flowed from the centrifugal

fan was screwed into a series of 3/U
n pips fittings connected

by means of a reducer to an expansion chamber constructed of a

6" length of lj" pipe. In the uppermost fitting, a 3/I4." tee one

foot above the nozzle screwed into the bottom of the expansion

chamber, a thermocouple was inserted for measurement of the Jet
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air temperature before impingement. The second 3/1;" tee,

diately atop the expansion chamber, provided an outlet con-

trolled by a solenoid valve in series with a gate valve for

variable resistance to flow for variation of flow pulsation

amplitude, A relay operated by the output of a sinusoidal func-

tion generator allowed the solenoid valve to be opened and

closed with a frequency of 0,02-20 ops while producing a square

waveform of flow rate pulsation.

Two pressure taps, diametrically opposed, were provided in

the expansion chamber for determination of the pressure drop

across the nozzle. One tap 3 1/2" above the nozzle led to a

Meriam water micromanometer. Into the other tap, 1 l/lj." above

the nozzle was screwed a Consolidated Electrodynamics, 0-10psig,

pressure transducer. The output of this transducer was recorded

on a one-channel Sanbourn recorder to give a record of the pres-

sure drop across the nozzle which determines the Jet flow rate.

Nozzles from which the jet of air issued were calibrated

for volumetrio flow rate (CPH) versus pressure drop across the

nozzle (in, H2O), Calibrated nozzles were available In 1/8",

lA"» 1/2", 3A"» l w
. and 1 1/V diameters. Nozzle design is

shown in Plate IV,

The plane surface upon which the air Jet impinged was real-

ized by a 2 feet square of asbestos board 1/8" thick screwed to

the top of a cubic wooden box 2 feet on a side. In the center

of the asbestos board and with the two upper surfaces flush,

were located a Jj.£" diameter copper disk 1/V thick and a copper



EXPLANATION OP PLATE II

View of the centrifugal fan



PLATE II 22



EXPLANATION OP PLATE III

Closeup of expansion chamber assembly
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PLATE III



EXPLANATION OP PLATL IV

Design of nozzles used.

Nozzle diameter (d) l/8 M
, lA"t

1/2". 3A\ 1", * 1 lA"



26
PLATE TV

8.

Q I

m
OB »
< o

I

V2-0Nn9|-j|-^l
luojj Jdjdiuoqo gt?

•I
o ow5



27

annulus of the same thickness called the guard ring which had an

outer diameter of 8&" and an Inner diameter of k 5/8", A l/l6"

air gap existed between disk and guard ring. Plate V shows this

equipment.

Heating of the central disk was accomplished through the

use of a colled electrical heating element on a ceramic mount-

ing separating the disk from the current carrying resistance

wire. The guard ring was heated in a similar manner. All

heaters were controlled by Variacs and the rate of energy dis-

sipation read from wattmeters. The cavity of the box was filled

with glass wool insulation so that heat loss from the back of

the central disk could be counted as negligible. In order that

the heat given to the central disk by its heater be transferred

only to the air Jet, the outer oiroumferenoe of the disk and

Inner circumference of the guard ring were maintained as nearly

as possible at the same temperature.

Equality of disk and guard rim temperatures was attained

by the use of four pairs of copper-constantan thermocouples

equally spaced along the common circumference. One thermocouple

of each pair waa mounted in a grove on the rim of the central

disk so that the hot Junction comprised the entire thickness of

the disk. The other thermocouple of each pair was mounted

directly opposite the disk rim thermocouple in a similar fash-

ion.

Upper surface temperatures of the disk were measured by

means of ten copper-constantan thermocouples inserted as shown



EXPLANATION OF PLATE V

View of equipment reading from left to right:

One-channel Sanborn recorder
Merlam water microraonometer
Expansion chamber and heated box assemblies
Switching box
Thermos bottle for thermocouple cold Junction
Wattmeter for central disk
Square-wave function generator
Electronic null-balance indicator
Speed-O-Max twenty point recorder
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on Plate VI and their voltage output determined by a potentio-

meter when ateady atate conditiona prevailed. Standard calibra-

tion tablea were uaed to determine indicated temperaturea. When

the Jet flow rate pulsated, the thermocouple output was recorded

on a Speed-0-Max twenty point recorder. All thermocouple cold

Junctions were maintained at 32°F by immersion in an ice bath.

The expanaion chamber assembly and heated disk assembly

were mounted in a frame which permitted the nozzle centerline to

intersect the center of the central disk*s upper surface. Also,

the height of the nozzle above the central disk and the angle

of impingement could be varied. This arrangement ia indicated

in Plate VII.

A hot wire anemometer was used to determine maximum velo-

city variations of the radial wall Jet. For this phase of the

experimental investigation a 2 feet diameter glass mirror was

used on which a radial line divided into lA6tha of an inch was

drawn in ink. The hot wire probe was held in a disecting micro-

scope stand to give controlled vertical movement. This stand

traveled along runners for radial positioning of the hot wire.

By tilting the barrel of the diseoting microscope stand it was

poaaible to place the hot wire more nearly in the stagnation

region of the air Jet. For measurement of velocities while the

Jet was pulsing the voltage across the hot wire while the anemo-

meter was operated as a constant current devioe oould have been

recorded on a two channel Sanborn recorder. Simultaneous record-

ing of this voltage and pressure at the expanaion chamber would



EXPLANATION OF PLATE VI

Detail of thermocouple Installation in copper
disk and annulus. The thermocouple hot Junction was
bent at 90° and placed in a groove on the upper sur-
face. It was then soldered in place and the upper
surfsee polished flat.
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PLATE VI



EXPLANATION OP PLATE VII

View of expansion chamber assembly and heated disk
assembly mounted for variable impingement angle and
nozzle elevation.
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have enabled variations of velocity at any radial position to

be compared to the exit velocity at the nozzle. Plate VIII

shows this arrangement of equipment.

EXPERIMENTAL RESULTS

To correlate experimental data, a dimensional analysis was

performed on the variables thought to determine the film coef-

ficient of heat transfer. This analysis is presented in Appen-

dix III. Conventional dlmensionless groups such as Reynolds,

Prandtls, and Nusselts numbers were obtained. In addition,

since pulsating flow was considered, dlmensionless groups in-

volving the frequency and amplitude of pulsations were derived.

The Reynolds number at the nozzle was restricted to the range

of 1.8 x 103+0 to I4..8 x 1()3 #

Influence of Reynolds Number

Perry (llj.) did experimental work with a heated Jet imping-

ing at various angles upon a plane surface and evaluated the

dependence of Nussults number upon Reynolds number. He found

that for perpendicular impingement Nusselts number varied as the

0.7 power of Reynolds number. His work, however, was oonducted

with air Jets issuing from nozzles and heated to temperatures In

the range of 1,112°P and with Reynolds numbers at the nozzle

ranging from 7 x 1C-3 to 3 x 10^. It was not felt that this de-

pendence of Nusselts upon Reynolds number could be taken as

valid for the case treated in this thesis without first checking



EXPLANATION OF PLATE VIII

View of equipment and Its arrangement for measure*
»nt of velocities.
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by independent experimental date the value of the exponent of

Reynolds number. The investigation was confined to jets issuing

in steady flow from lA" diameter nozzle and with Reynolds num-

bers in the range of 1,8 x 1(P to U.8 x 10^ with the average

plane surface temperature restricted to II4.7 to 310°F.

The experimental procedure is given so that the validity of

the work may be Judged. The disk and guard ring heaters were

turned on and these surfaces allowed to come to thermal equili-

brium with their surroundings. Heaters were adjusted to make the

temperature of the inner guard ring rim equal to that of the

outer disk rim. Time required for these conditions of equili-

brium to be attained was generally about four hours during the

initial start-up period. After changing the Jet flow rate from

its value for the first run of data, about two hours elapsed

before steady state conditions once more prevailed. Temperatures

were read at intervals during periods of warmup or flowrate

change to determine the ocouranoe of steady state conditions as

evidenced by unchanging temperatures. Data as presented in

Table I was then recorded which consumed approximately twenty

minutes. Six runs were taken at a ratio of H/d » 7,16 , four

runs at H/d 15,2, and four runs at H/d 1|3,7«

Heat input to the central disk as read from a wattmeter was

then corrected for radiation to the room and for radial heat

transfer to the guard ring. The last correction was necessi-

tated by the fact that it was rarely ever poasible to exactly

equalize guard ring and disk rim temperatures. Heat transfer
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to or from the disk In this manner was negligible due to the low

thermal conductivity of the air gap between the guard ring and

disk — roughly, 0.0933 (Tgiaapd-Tdislc}3tu/hr. Calculation of the

radiant heat transfer from the disk to the room proved to be the

moat troublesome and the largest source of possible error. Dur-

ing installation of the thermocouples the copper disk was pol-

ished. Its emissivity was then approximately 0.0l|. In spite of

preliminary heating, the disk surface was found to be incomplete-

ly oxidized before data were recorded. Emissivity, therefore,

underwent a gradual increase while data were taken to the value

of 0.8 at the conclusion of data taking.

The seriousness of this change in disk emissivity is shown

by the following illustration : at an average disk temperature

of 25>1°F and a disk heater output of I4.3I4.0O Btu/hr. radiant heat

transmission from disk to room was 1.22 and 2lj..i|. Btu/ir. at disk

emlsslvities of O.Olt. and 0.8, respectively. This means that

radiation could account for 0,28 to 5»6 per cent of the disk

heater output. Oxidation of the copper disk, fortunately,

occurred very slowly so that a gradual Increase of emissivity

was compensated for by slowly increasing the emissivity used in

calculating radiant heat transfer. Error introduced by such a

procedure is estimated not to exceed 3 per cent. Temperatures

were recorded with an estimated accuracy of 0.2°F and the upper

surface area of the oentral disk was known with an accuracy of

four signIfleant figures.
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Calculation of the film coefficient of heat tran8fer be-

tween the plane surface represented by the central disk and the

radial wall jet was done by substituting data into the equation

Q »hA(Tdiik - T Jet ) where:

Q m heat transferred between disk and radial wall Jet, Btu/for.

A « area of disk, ft. 2

Tdisk a arithmetic average disk temperature, °F

T Jet s J * temperature before impingement, °P

and solving for h. Correlated data taken from Table I for this

phase of the investigation is shown on Plate IX. The value of

the exponent of Reynolds number was determined to be 0.66 + 3

p^r cent with all fluid properties taken at the arithmetic aver-

age of mean disk temperature and Jet fluid temperature before

impingement.

Influence of H/d Ratio

The height of the apparent Jet origin above the plane sur-

face was felt to affect the value of the film coefficient and so

was included in the list of variables upon which the dimensional

analysis was performed. According to this analysis, the ratio

of the height of the apparent Jet origin above the plane surface

to the nozzle diameter was the dimenslonless group Involved.

Determination of the value of the exponent of H/d was

achieved with the data that had been gathered for the evaluation

of the influence of Reynolds number upon the film coefficient of

heat transfer. For this reason, a recounting of experimental



EXPLANATION OF PLATE IX

Nusselts (hH/k) number vs. Reynolds number (Vd/*)

)

for a steady air Jet impinging perpendicularly upon a
heated disk from data of Table I.

a H/d m 7,16

o H/d 15.2

^ H/d • k$m1

Slope of the curves is 0,66 ±3 per cent.



PLATE IX
fH O 00 r*-. to

i-°" "^



U3

procedure and sources of possible error Is not undertaken here.

It is only noted again that the probable error of the immediate-

ly following result is t 3 per cent. Plotting Nusselts number

versus H/d for Reynolds numbers of 2 x 10^, 3 x lCp, and 5 x 1CF

indioated that Nusselts number varies as the +0.7& power of H/d.

The range of the existent data oould not have been extended much

beyond lj.3.7 due to limitations in the travel of the nozzle sup-

port assembly without use of a smaller nozzle than the 1/V'

diameter mainly used. It is recognized that lower ratios than

the present minimum of 7.16 would have been possible. But,

although, only three values of H/D were used, a straight line

fitted the data so well that it was not thought necessary to

gather data for other values of H/d. Plate X illustrates the

correlation of data taken from Table I for this phase of the

investigation.

Influence of a/V Ratio

Previous investigators such as Lemlich (10) and Boelter (I|)

discovered that the amplitude with which a horizontal, electri-

cally heated tube was vibrated had an influence upon the magni-

tude of natural convective heat transfer. Lighthill (11) eon-

curs for sinusoidelly pulsating flow without flow reversal nor-

mal to a tube. Amplitude of flow pulsation was therefore placed

among the list of variables to be included in the dimensional

analysis of Appendix I and the ratio of amplitude of velocity

pulsation to the mean nozzle exit velocity was found to be the



EXPLANATION OP PLATE X

Nusselts number (hH/k) versus H/d for a steady
air Jet impinging perpendicularly upon a heated disk
from data of Table I.

o Re =• 2 X 103

O Re
a 3.5 X 103

* R
e * $ x 103

Slope of the curves is 0.75*
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dimenaionleas group whose exponent must be determined*

The procedure for talcing data was the same aa that given in

the aection deacribing the influence of Reynolds number upon

Nusselts number* The exceptions to this procedure were that a

square wave form of flow rate pulsation was maintained at a

frequency of 2 cps. with a constant mean flow rate at the nozzle

exit. Amplitude at the nozzle varied from 9*73 per cent to

31*5 per cent of the mean flow velocity at the nozzle* Data

from which the curve of Plate XI waa drawn is presented in

Table II* Observation of this curve reveals that a plot of

Naaaelts number versus a/v Indicates no dependence of Nusselts

number upon the ratio aA for the conditions studied* Reynolds

number at the nozzle waa constant at 2 x 10^ + 3 per cent*

Influence of <*>d/V

Since the subject of pulsating jets was the topic of study

of this thesis, the effect of pulsation frequenoy upon the film

coefficient of heat transfer between the radial wall Jet and

the plane surface was a natural queation to treat experimentally*

The dimensional analysis of Appendix I yielded the ratio of

pulaation frequency tiraea nozzle diameter to the mean nozzle

exit velocity aa the dimensionless group with which to corre-

late experimental data*

Data taking procedure was unvaried from that described in

the previous sections except that all faotors other than pulsa-

tion frequenoy were held con8tant* The ratio of H/d equalled



EXPLANATION OP PLATE XI

Nusselts number (hH/k) versus a/v for a pulsating
air Jet Impinging perpendicularly upon a heated disk
from data of Table II.

H
9 «2i 10^ ± 3 percent

H/d - 15.2

dA » 6.0U x lO"1* t 2 percent
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15. 16, a/V equalled O.ij.17, and Reynolds number equalled

1,865 x 10^. Table III presents the data taken and Plate XII

shows the plot of Nusselts number versus oad/V by which the

correlation was accomplished. No dependence of Nusselts num-

ber upon dA was found for the range of variables tested which

waswdA a 3.2 x ID"1
* to 57.5 x 10"^. This was In spite of

claims of the numerous references cited In the Introduction.

It is possible that a certain critical pulsation frequency must

be achieved for there to be any effect of pulsation on the film

coefficient. The abrupt drop in Nusselts number at the value

of "dA kk x 10"^ lends credence to this possibility.

Influence of Prandtla Number

Only air was used for this investigation so that the effect

of a varying Prandtl number could not be determined. For this

reason the exponent of Prandtls number is assumed to be 0,33 as

used by other investigators suoh as Perry (U|) and the research-

ers mentioned In his paper.

Maximum Radial Wall Jet Velocity Variation
Along the Plane Surface

It was pointed out in the analysis that the maximum velo-

city of the radial wall Jet varies as the Jet impinges and then

flows radially outward. To facilitate solution of the derived

differential equations, the manner of variation was experiment-

ally investigated.



EXPLANATION OP PLATE XII

Nusselts number (hHA) versus od/v for a pulsating
air jet impinging perpendicularly upon a heated disk
from data of Table III*

Re 1.870 x 103 + 1 percent

aA - 0.1*17

H/d - 15.2
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The plane surface in this case was a glass mirror two feet

In diameter. I one-quarter Inch diameter nozzle directed a jet

of air perpendicularly upon the mirror center, A hot-wire ane-

mometer held in a stand permitting radial and vertical position-

ing was moved through the thickness of the jet until the point

of maximum velocity at some particular radial position was found.

Because of the delicate nature of the actual hot wire, it was

not possible to make the velocity traverse from the surface of

the mirror upward. Instead, the hot wire probe was gradually

lowered by means of its stand. Velocity readings while using

the hot-wire anemometer as a constant resistance ratio instru-

ment were taken at short spatial Intervals and the maximum

velocity was found at the point at which the radial wall Jet

velooity began to decrease. It is estimated that the closest

permissible approach of the hot wire to the mirror surfaoe was

I/6I4. of an inch. The design of this equipment was not suited

for determining the elevation above the plate at which the maxi-

mum velocity was found, but Inclusion of such a feature in

equipment for future experimental investigation is recommended

for the reason that this information would provide a check on

the analytical determination of the hydrodynamic boundary layer

thickness which depends upon the maximum radial wall Jet velo-

city's radial distribution,

Plate XIII gives the resultant variation of f> Vm„ with the

data given in Tables IV to IX, It is immediately noticed that

in the region of less than one nozzle diameter from the nozzle
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centerline fV^zx Increases with the distance from the nozzle

centerline. This may be caused by the constant addition of air

to the Jet stream along the plane surface without a compensat-

ing increase in thickness of the radial wall Jet. Outside the

one nozzle diameter region f> V^^ begins to decrease with

radial distance from the nozzle centerline. As evidenced by

the curve of Plate XIII the spread of data is too great to draw

accurate conclusions, but the slope of the curve seems to de-

crease with increasing flow rates. The curve for both H/d

15.14.1 and H/d 21.16 indicates that Reynolds numbers at the

nozzle in the transition range between laminar and turbulent

flow NRe m 2.10^ to 2.2 x l<y yield a much greater negative

slope than for higher Reynolds numbers. Possibly this is caused

by a large decrease in the percentage of entrained environ-

mental air. There is a transition region between positive and

negative slopes of /'Vj,^^ versus r/d which takes place at an

r/d ratio dependent upon the H/d ratio. Increasing the H/d

ratio increases the r/d ratio at which this transition occurs.

Due to the limited data, only trends can be concluded and no

detailed expressions are set forth.



EXPLANATION OP PLATE XIII

Maximum radial wall Jet velocity variation along
a plane surface for a steady air Jet impinging per-
pendicularly and plotted as/'

V

max# (lb^/ft? sec.) versus
r/d from data of Tables IV to IX,

q Bj & H/d » 15.24-

+, £±jG H/d » 21.2
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TABLE IV

IxU 1 Rr

:

: :

: } Nozzle
j/^l/at i dia-
t Nozzle : meter

f
•

:

t Nozzle
; eleva-
: tlon

•

xVk^at
t radial
: position
1

: Radial
: posi-
: tlon
: from
: center

ms :

: :

ilbn/^sec.: in.

:

: in. rlbn/ftfsec.

•
•

: in.

227 1.1 3.72 lA k 1/2 1.00 1

223 n n it 0.837 1 iA

220.5 n it it

0.7U0 1 1/2

21U
It it « 0.537 1 3A

210 II n it

O.lj-26 2

205 II it it

0.31U 2 1/2

20U
If It N 0.310 3

200 It It ft 0.219 k

191*.
II It It 0.120 5

191 It » It 0.090 6

190 It II II
0.081+1 7

189 It It It 0.0729 8

185 It It It

0.01+ 10

226 It II ft 0.960 7/8

227 It II It 1.00 3A
230 It II It 1.13 5/8

227.5 It It It

1.03 1/2

227.5 II It It 1.03 3/8

222 II It ft 0.81 iA
220.5 II II II

O.7I4.O 1/8

I current flowing through the hot wire with
anemometer operated as a constant resistance
ratio instrument

Rr» resistance ratio
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TABLE V

Ixr
j

Rr

: : :

: : *

: : Nozzle : Nozzle
: pV at : dia- : eleva-
: Nozzle : meter : tion

: radial
: position
•

•
•

:

«
|

:

X

Radial
posi-
tion
from

center

ma tlbm/ftfsec: in. : in. ilbja/ftrsec.
•

t in.

216 1.1 2.16 1/k k 1/2 0.551 1

212 it 0.1^9 1 iA

211*.
n 0.500 1 1/2

210 ii 0.397 1 3A

207 it 0.325 2

207 n 0.325 2 iA

201 n 0.212 3

198 it 0.16 k

193
it 0.0961 5

189 it 0.060 6

187 it O.Olj.62 7

219 it 0.614.8 7/8

217 •t 0.570 3A

218 O.62I4. 1/2

218 it 0.62lj. 3/9

216 it 0.555 IA

I » current flowing through the hot wire with
anemometer operated as a constant resistance
ratio instrument.

Rr» resistance ratio.
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TABLE VI

Ixl* .

: : :

: : :

: : Nozzle : Nozzle
t PV at : dia- : eleve-

Rr : Nozzle : meter : tion

t

! /& at
: radial
t position

•
•

:

:

t

•
•

•

Radial
posi-
tion
from

center

ma 1

1
2 *

!

rlbflj/ftfsec.: in. : in.
* 2
tlbjj/ft.sec.

•

•
• in.

210 l.i 1.I4.1 iA 1* 1/2 0.1*1*2 1

207 n it it it 0.367 1 iA

202 n it 11 it 0.258 1 1/2

198 It It H n 0.191* 1 3A
196.5 It N It It

0.11*1* 2

192 tt it it 11 0.110 2 1/2

189 it it 11 it 0.0713 3

187 It M It It 0.0600 1*

181*. 5
It It It M

0.01*1*1 5

181 n it it it 0.011*2 6

207 it 11 it it 0.367 7/8

208 R It It It 0.386 3A
209 it it it it

0.1*01 5/8

206.5 It It N It

0.351* 1/2

20 S It It It It

0.31*7 3/8

2ol*.5 iin it 11

0.311* IA
203.5 It tt It H 0.292 1/8

I * current flowing through the hot wire with
anemometer operated as a constant resistance
ratio instrument

Rp» resistance ratio
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TABLE VII

:

I

:

:

1x1+ t

• »
• •

t t

s : Nozzle
: fV at l dia-

Rr : Nozzle : meter

•
1

:

:

1

1

Nozzle
eleva-
tion

•

: A£*at
: radial
: position

•
•

:

•
•

•
•

t

Radiol
posi-
tion
from

center

1

no. : llbm/ft » sec « : in »

•
•

: in.

•
•

tlbn/ftfsec.

•
•

•
• in.

209 1.1 1.29 lA 3 1/16 0.381+ 1

205 n n « it 0.297 i i/U

200 n if rt it 0.203 1 1/2

197 it it * it 0.16 1 3A

191+
it it it tt 0.119 2

191*
n n it ft 0.119 2 1/2

186 It N it « 0. 01+20 3

182 H It It « 0.0196 k

180 II It It it 0.0121 $

205.5 It ft II n 0.308 7/8

206 It It It it 0.366 3A
2U+ It II It it 0.511 5/8

216 ft n it n 0.572 1/2

218.5 it n n n
0.61+8 3/8

I current flowing through the hot wire with
anemometer operated as a constant resistance
ratio instrument.

Rp» resistance ratio.
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TABLE VIII

1x4

ma

II *
• • •

: : t

i : : Nozzle
t :/Vat : dia-
: Rr s Nozzle : meter
t : p x

i tlbjjj/ftfsec.: in.

:

•
•

t Nozzle
: eleva-
: tion
:

: in.

: F^ok at
: radial
I position
•

tlbjj/ftrsec.

•

:

:

•
•

•
•

t

Radial
posi-
tion
from

center

in.

220 1.1 2.1*6 lA 3 1/16 0.714 1

216 n ii n 0.570 i iA

213 a a n 0.1*93 1 1/2

209 ii n it 0.388 1 3A

207 n n .« 0.348 2

203 n « n 0.260 2 1/2

200 n it it 0.203 3

195 it n it 0.133 4

192 W It ft 0.0961 5

191 it it n 0.0870 6

190 it n it 0.0784 7

225 n it it 0.893 7/8

227 it it n 0.976 3A

230 It It M 1.10 5/8

232 it it tt 1.19 1/2

232 it it it 1.19 3/8

I « current flowing through the hot wire with
anemometer operated as a constant resistance
ratio instrument

Rr
« resistance ratio
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TABLE IX

•
1

:

:

:

1x1+ :

:

ma :

• •
• •

: :

: : Nozzle
: fv at : dia-

Rr : Nozzle : meter
• •

slbro/ft.seo.t in.

•
|

•
•

: Nozzle
: eleva-
: tion
t

: in.

: ?{&«, at
: radial
: position
•

zlbg/ft.sec.

•
•

:

•
*

t

•
•

t

t

Hadial
posi-
tion
from

center

in.

227 1.1 36.8 lA 3 l/tt 0.98 1

219 it it it 0.694 i V4

214.5 n n it 0.537 1 1/2

209 it it 0.397 1 3A
208 •t it it 0.372 2

206 It It N 0.325 2 1/2

201.5 II It It 0.235 3

195 It II II 0.137 4

192 H n n 0.100 5

195 It N M 0.137 6

193 It II It 0.109 7

232 It It It 1.20 7/8

233 It It It 1.25 3/4

237 It II It

1.45 5/8

239 It N It 1.56 1/2

240 It II It 1.60 3/8

I * current flowing through the hot wire with
anemometer operating as a constant resistance
ratio instrument

Rp«* resistance ratio
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CONCLUSIONS

Experimental date for a pulsating Jet of air impinging per-

pendicularly upon a plane surface shows that the amplitude and

frequency of square wave flow rate pulsation do not affect the

magnitude of the film coefficient of heat transfer for Reynolds

number at the nozzle in the neighborhood of 2 x 10-*
t a>d/V

3.2 x 10"^ to 57.5 x 10"^ and aA * 7.3 x 10"3 to 315 x 10"3
.

The range of Reynolds number should be extended to larger values

since the possibility exists that an effect of these two vari-

ables would then be observed. This is in view of the fact that

a Reynolds number of 2 x 10-> is in the transition region between

laminar and turbulent flow and might be a special case. DM to

the limitations of experimental equipment no other pulsation

wave form was able to be investigated. Further investigation

should be performed at higher values of <»d/V since the data

gives some slight Indication that a critical value of this

dimensionless group must be attained before the effect of the

pulsation frequency is evident. Nusselts number was found to

vary with the +0,7$ power of H/d and with the 0.66 power of

Reynolds number. This result for the dependence of Nusselts

upon Reynolds number is in close agreement with Perry (Hi). No

attempt to evaluate the constant coefficient, C, in the dimen-

sional analysis was made since the range of data was not great

enough to make such an evaluation of general interest. A dimen-

sionless correlation Nu C(NRe )0«66(„ )0.33(///^)0. 75 ^a
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presented as the result of the experimental work.

Future Investigators would do well to work with a polished

plane surface to reduce the radiant heat transfer from this sur-

face. Polishing has the advantage of producing a low emissivity

compared to an oxidized surface and a resultant low rate of

radiant heat transfer. It is felt that proper care in polishing

could make this radiant heat transfer less than 1 per cent of

the total heat transfer from the surface.

Analytical Investigation of the film coefficient of heat

transfer for a pulsating jet issuing from a nozzle and imping-

ing upon a plane surface would best be done on a digital com-

puter. The thermal boundary layer which determines the value

of the film coefficient depends upon the hydrodynamic boundary

layer which is Itself difficult to solve. The hydrodynamic

boundary layer can possibly be calculated by means of the method

of characteristics if a sinusoidal flow rate pulsation is

assumed, but this method becomes unbearably complex when the

thermal boundary layer is considered. Before programming on the

digital computer can be accomplished, further experimental work

must be done to determine the time required for a change in flow

rate at the nozzle to be propagated to some downstream position.

Equipment adequate for such an investigation is described in

the section entitled, "Description of Equipment".

This thesis is not presented as a conclusive study of the

stated problem. For the most part, trends alone are given,

tfore experimental and analytical work remains to be done before

the problem can be said to be fully solved.
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APPENDIX I

Assume that h is a function of the variables as indicated,

h « f (k 9f>,jbt,<iv
,i0t }l tD,V ,b)

k « thermal conductivity of the Jet fluid, Btu
hr. °F ft,

/*a mass density of the Jet fluid, lbn/ft}

ft m dynamio viscosity of the Jet fluid, lbjg/hr. ft.

c
p
« specific heat of the Jet fluid, Btu/lbm °F

CO a oscillation frequency, radians/hr.

H height of the apparent Jet origin above plate, ft.

d * diameter of nozzle, ft.

V » mean Jet velocity at nozzle, ft./hr.

h « film coefficient of heat transfer, Btu/hr. ft. 2 °F

a « amplitude of Jet velocity oscillation at nozzle, ft./hr.

Choose the dimensions of time (T), length (L), mass (M),

and temperature (t), as fundamental dimensions. Express the

variables in terms of their dimensions and let represent heat

h a Btu/hr. ft. 2 °F a e/TL2t

k a Btu/hr. ft. °F a e/TLt

f>
a M/L*

JUL a M/LT

V /Wt

co a i/r

H • L

d a L

V a L/T

a a lA
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But heat © is a form of energy and so can be considered

to be equivalent to work. Therefore, since work equals force

multiplied by the distance in the direction of the force through

which the force acts, it can be said that O a "PL where f is the

dimension of force.

So, Omti (M) (acceleration) (L) (M) (L/T2 ) (L)

and has the dimensions as indicated by « ML2/r2 .

Rewriting the variables in terms of the fundamental dimensions,

h » M/T3t o3ai/r

k ML/T3 t H - L

f » M/L3 d =» L

/t a VLT V » L/T

c
p
- L2/T2t a L/T

Now, definition of the fundamental dimensions in terms of

selected variables can proceed as follows:

L d f>= H/l? * I^d3 V L/T d/T k tf./r3t «/>d3dV3/d3t

/^d3* H T dA t -/?dv3/k

Dimensionless 7T groups may now be formed.

J1 M/LT -^d^/dd -/^dV

So, ff" a^dV//"

And o
p

L2/r2t » d2V2k/d^dV3 k/^dV

7T2
- ^dVcp/k

Also, W»l/F« V/d

CO
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Similarly, H - L * d a » L/T = dV/d » V

77-^ - H/d 7T
5
- «A

Lastly, h M/T3 t » ^d3V3K/d3/>dV3 k/d

7T6
» hd/k

Combining dimensionless groups to obtain conventional

dimensionless groups

7rt/%L m (ndA)(H/d) - hHA \K
rrj-rr^ » (^dVo

pA) (y/^dv) =»^/cpa * aPr

The remaining dimensionless groups are left as they stand

and appwar as jj ^ * aA» 7T^ ** H/d, 7T- =^dAt 7^ */?&£/*

Thus, hHA * f(/^dV/^ ,/^OpA.^dA* H/d, a/v)

Finally, It is assumed that

hH/k - C(/"dV/« )

ra (^c
p
/k)n NA)° (H/d)p (aA)q

vhere C, m, n, o, p, and q are experimentally determined constants.
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APPENDIX II

Apply a momentum balance to the sketched ring shaped

differential element.

Momentum flux in at r = 2 7Tf>J ru dy

2.

Momentum flux out at r + dr = 2TTf>f(rtdr)(U+& Jr) c/</

f
L JCru*)

Neglecting 2nd order * 2-rr/°J[ru
L
+ -jp ^rjc/y

differentials

f *

Momentum flux in at

i

S = 27r^iye fJCr^dr){Ui^^c/r)Jy-frU^]

from continuity

requirements
27T^f^>dj Jr

where U^ radial velocity of environmental air.

Momentum flux stored = 2 "rj jj- J

Friction force at the , <JU I
= -2-nyurdr tth~°

plane surface
<yy/y
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-znh(rrdr)(P+*£jr)r2nr£P=2*f&J'Pressure force = -ZWdi' t°' A ' ' jr '; ' <«' "' ~-
J

NOW, y/=^ - YLMor*. - ^Mcr,. + LA/lo^-

Substituting from the previous page, S

S f f

Simplifying, ~ f

J(Pr)
But U a » ~Jr~~ • Tb« latter equals zero from Bernoulli's

equation which say that the pressure gradient is related to the

velocity Ue outside the boundary layer by ~Jj(~
:~ ~f e ZF/r'

Since Ue 0, ^t^3 0.

The final form of the hydrodynamic boundary layer equation is

then ,
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APPENDIX III

Apply a heat" balance to the sketched ring shaped differen-

tial element.

/ / 7 / / / / / / /
' /' '

/

Q, carried in at r 2 nfcrJ rut cJy

St

Q carried out a t r dr m**^J^"+&M*+&&4

Neglecting higher order m Z^^l^t + ~jy~ J/~J ^<7

differentials

Q carried in at «/

from continuity requirements

and after simplifying =

ft

Z

"o

Q, oonduoted in at y =* = —2LW^rdfj ty-o

Q stored in element m 2 TT/^C^ (fi- ±~ JyJr
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Now, Biln - E^out + ^ 8t0Ped

Substituting from the previous page,

o

ft
*

But t a T - Te to that the above equation becomes f^

°>y

Again let U/Ux « 4-8tZ £ ifj\U ' fJ

and T -VWface - f# - §" -T- £ Ei%J

Evaluating integrals , Z */&(&*)Jj = ", °j[r-% (§ -') Jy

r= - *F V k
«r

n: =/*(T-niJy =*r£{£-/)J*

ic = - ^*£
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Mao, ~ oc r —/«=<? oly y Z*t

The final form of the thermal boundary layer equation Is

obtained after simplification to be

7— *r
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The heat transfer between a plane surface and a pulsating,

iiqpinging Jet Is investigated both analytically and experi-

mentally* Rather than solve the exact differential equations

due to their complexity, first order linear partial differential

equations satisfying the same physical laws of conservation of

mass, energy, and momentum are derived.

Upon these equations, the hydrodynamio boundary layer thick-

ness (total Jet thickness as it flows over the plane surface)

and thermal boundary layer thickness depend. Recourse to numer-

ical methods is found necessary for calculation of the film

coefficient which determines the magnitude of heat transfer for

any particular temperature values. Use of a digital computer

to facilitate the many numerloal confutations is recommended.

A Jet of air supplied by a oentrifugal fan and issuing from

a nozzle impinged perpendicularly upon a oopper disk surrounded

by a copper annulus with both mounted flush with the surface of

a oubio wooden box 2 feet on a side and filled with glass wool

insulation served as experimental equipment, Electrioal heaters

whose output was measured by wattmeters were used. The oopper

annulus inner circumference was maintained at nearly the same

temperature as the outer disk circumference as indicated by

thermocouples. Eight oopper-constantan thermocouples measured

upper surface temperatures of the disk, A solenoid valve with

variable flow resistance provided flow pulsation with variable

frequency and amplitude by forming a parallel flow path with the

nozzle.



Experimental data shows that the amplitude and frequency

of square wave flow rate pulsation do not affect the magnitude

of the film coefficient of heat transfer for Reynolds number in

the neighborhood of 2 x ICp.cOdA * 3.2 x 10"1* to 57.5 x 10"^

and aA 7.3 x 10*3 to 315 x 10*3. The range of Reynolds num-

ber should be extended to larger values since the possibility

exists that an effeot of these two variables would then be

observed* This is in view of the faot that a Reynolds number

of 2 x 1<)3 is in the transition region between laminar and turbu*

lent flow and might be a special case* Due to the limitations

of experimental equipment, no other pulsation wave form could

be investigated* Higher values ofu)d/V should be investigated*

since the data gives some slight indication that a critical

value of this dimensionless group must be obtained before the

effect of the pulsation frequency is evident* A dimensionless

correlation hliA - C (Vd/^)°« 66 (fl/d) ^ J//cpA>
*33 where

d * nozzle diameter

H * height of apparent jet origin above disk

V mean velocity at nozzle

k = thermal conductivity

v kinematic viscosity

with all fluid properties determined at the arithmetic average

of disk and Jet temperature is presented as the result of the

experimental work*


