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ill

NOTATION

E Young* s modulus.

I Moment of inertia of the cross section about the neutral

axis through its centroid.

P External axial load.

X,Y Rectangular coordinates, X in the longitudinal direction,

Y in the direction of deflection.

L Reference length for the tapering, or the distance from the

origin, 0, to the larger end of a beam,

a The ratio of the distance from to smaller end and the

distance from to larger end.

2 PT
k A dimensionless quantity of 4,^

EIo

c^/P Parameters determine the cross section.

y^ ^ Parameters control the taper of the beam in width and

thickness.



INTRODUCTION

The problem of finding the critical load of a beam-column is

important in the analysis and design of modern structures such as

airplanes or space vehicles. If the external load P, which is an

axial force, is less than the critical value, the beam subject to

load P remains straight and undergoes only axial compression.

Only a small lateral deflection is produced if a lateral force is

applied. The deflection disappears when the lateral force is re-

moved, and the beam returns to its straight form. If P is grad-

ually increased to a certain value, even a small lateral force

will produce a large deflection which does not disappear when the

lateral force is removed. This phenomenon is called buckling.

Therefore, the critical load is defined as the axial force which

is sufficient to keep the beam in a slightly bent condition.

The problem of buckling has been discussed for a long time

and numerous methods to calculate the critical load of a beam

have been developed. Euler's Column Formula (Euler Theory),

Energy Method, Beam-column Theory, Rayleigh's method and Numeri-

cal Successive Approximation are some of the methods. All can be

found in any standard text on elastic stability and most are con-

venient for solving the problem of a beam having either a uniform

cross section or a cross section varying linearly.

For certain reasons, a column with a variable cross section

is most practical. In this report, the case where the moment of

inertia of the cross section varies according to the power n of

the longitudinal coordinate coinciding with axis of the beam X is



investigated. The assumption does not lose too much of the

(1)
generality of the problems involved. The method of Frobeniua* '

is applied here to solve the governing differential equation.

Then the general solution in the form of Bessel function is ob-

tained. Finally, the critical load is solved for by using the

boundary conditions of the system. Several kinds of tapered

beams are illustrated in this report.



PROFILES OF THE BEAM

Before investigating the buckling problems of tapered canti-

lever beams, the general expression of profiles of the beams will

be studied. In this investigation, the moment of inertia of a

beam varying according to an arbitrary power, n, of the longitu-

dinal coordinate is considered. The relationship may be written

as:

I = Io(f
)""

(1-1)

where Iq is the moment of inertia at the large end of the beam, L

denotes the longitudinal coordinate of the end and X denotes the

longitudinal coordinate.

The relation (1.1) can be applied to a general class of

cross sections with varying thickness and width. ^ The cross

section has two symmetrical axes whidi are perpendicular to each

other; its first quandrant is bounded by the curve of the

equation

(|/+ (jf - 1 (1.2)

where b represents half of the width and h represents half of the

thickness of the beam. These parameters vary according to the

relation

b = bo(^r h = ho(^) (1.3)

The constants
"f-

and
<f>
are positive but not necessary integers.

The selection of different values for the parameters o< andj3



in Eq, (1.2) permits the cross section of the beam to be varied

from the diamond shape, o(=^=l, through the elliptical shape,

o(=j3=2, to the rectangular shape, c!(and|3»l. The moment of in-

ertia of this group of cross sections may be expressed in terms

of oc and B which gives

(1.4)

Comparison of Eq. (1,4) with Eq. (1.1) yields the relationship

n = y--*- 30 (1.5)

If the constants 'J^ and are not zero, an important group of

beam-shapes can be considered as shown in Fig. 1.

||M/|I^=

'

Fig. 1. Tapered beam ^-^ ^ 0.



If the constants arel^j^O and 0=0, the beam shape can be con-

sidered as shown in Fig. 2.

8

Fig. 2. Tapered beam with }^0 and 0=0.

If the constants are ^0 and 0^0, the beam shape can be con-

sidered as shown in Fig. 3»

* Z

Fig. 3. Tapered beam with V-=0 and 07^0.



BASIC EQUATION

By using the Euler theory, the differential equation for a

bending beam is

EI ^-2 = -M.

dx'

^

TTTTT-rrrrrTr

P

O

(2.1)

Fig. 4. A cantilever beam under an axial load.

If the coordinate axes are taken as indicated in Fig. 4, where

the curve oa represents the center line of the beam and if the

relationship of Eq. (1.1) is used, Eq. (2.1) yields

V n j2
Ei,(X, ^ = -Py

,

(2.2)

By letting x be a dimensionless parameter and defined as x=I/L,

then Eq. (2.2) becomes

EIq nd2yO X S_Z IS -Py
A-„^dx

(2.3)

Multiplying each term in Eq. (2.3) by x^-n yields

.2d:

dx'^
(2.4)



where

u2 _ PL*" (2.5)
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METHOD OF SOLUTION

A, Series Solution

The differential equation Eq, (2,4) has a general solution

(2)
in the form of series. For simplicity, a differential oper-

ator S, which represents x ^, is introduced. Let the operator

operate any function f{x). Then by definition, the following

relations are obtained:

Sf = xdf
,

dx

^^f = X f.(x ^) = x^ d!f ^ ^ ^dx dx ^^2 dx .

It may be verified that

x^£i= i(5-l){<r-2) . . . {S-r^l)f.
dx^

Using the above results, it is a simple matter to express any

linear homogeneous differential equation in terms of o

.

Now ^x"^ = x{^) = mx^ .

dx

- ,2 m
and <^(<r-l)x'^ - x^ M- = m{m.l)x^

dx''

In the case that m?r, an identity can be derived as follows:

i{5-l){.J-2) . . . (<r-r+l)x'° = x^ ^^
dx^

= m(m-l) . . . (m-r+l)x°^ '

(3.I)



By using this notation, Eq. (2.4) becomes

(SiS'l) + k^x^)y = (3.2)

where q = 2-n.

In general, Eq. (3.2) possesses a series solution in ascending

powers of x in the form^^^

y = f a^xs-^r.

r=0

In this investigation of a tapered beam, q is not necessarily

an integer. Therefore, a more general series solution must be

assumed which takes the form^^'

y = f a_xs-^^q. (3.3)
r=0

^

Substituting series Eq. (3.3) into Eq. (3.2), and using the

identity of Eq. (3.I) yields

1 arC(s+rq)(s-Hrq-l)+k^x^Jx^"'^^ =
r=0

or

a s(s-l)x^-»-;ECar(s+rq)(s+rq-l)+kV x^""^^ = (3.4)
r=l

Equating the coefficients of each power of x in Eq. (3.4) to

zero, gives the recurrent relations

ar.(s+rq)(s+rq-l)+k aj._2 = r^l

or

-k2
^^ " ls+rq)(s+rq-l) ®r-l ^^^

.
(3.5)



10

The value of s is determined by equating the coefficient of

the first term in Eq. (3,4) to zero, i.e., the coefficient of the

term x . This gives the indicial equation

s(s-l) = 0.

si=0 and S2=l are two roots of the indicial equation. If s=0,

the coefficients a^. in Eq. (3.5) can be written as

o^r = rq(rq-l) oVl ' ^'^ ^^'^^

or

<^*1 " q(q-l) ^^O " qqU-i) °*° '

0^2 ' 2q(2q.l) o^ =
2qV(2-i) (1-A) <>*<>

*

0^3 ' WWTT 0^2 =
3!qV(3^)(2-^)(l-^) °*° *

The general term is

a = .

(-1)^ (k f a (3.7)°^ rlq2r(r-l){r-l.l) ... (2.i)(l-l) 0*0
^^'^'

Eq. (3.7) can be expressed in Gamma functions as

rlq2ryn(r-^l)
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Hence, Eq. (3 •3) yields

y^ . f i-^'f „ao x"-" (3.8)
r=o r!q^^r(r - i -f l)

q

k -i
By choosing o^o~^q^ ^ ^'^^ substituting it into Eq, (3.6), the

result is

V =xi| LdLll_ i^.h'k^'' (3.9)
°

r=o rlptr - ^ + 1) ^
q

For the case s=l, the coefficients Sj, in Sq, (3.5) can be vrritten

as

Similarly, Eq. (3.10) can be expressed in terms of ,a as

a
(-1)'' {^^f la^ (3.11)

r!q^ ""

•!q2^(r +i)(r +i-l) ... (2-Hi)(l+I)

which can be written in gamma functions as

(-1)^ (k^)^
a_ =

^ ^ rlq2^r(r^i-^ 1) ^ °

Then Eq. (3.3) yields

y. = f (-1)'' (k^)"^
a

>rq
^1 ^ ov. >-,, T T" l®o ^ (3.12;

r=o rlq2r p(r + i + 1)
' q

f

, 1
Again choosing ^^a^. = (-)q, Eq. (3.12) then yields
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4 1

y = xi ^ LdLll (k /)q ^- (3.13)
^

r=o rl r(r + i + 1) ^

A comparison of Eqs. (3.9) and (3.13) with the expression for the

Bessel function of the order K ^ '

^
r=o rl p(r^-V+l) ^2^

(-1)^ x.-^'^Zr (3.14)

^
j.=o ^* r (r->'+l; ^

indicates that Eqs, (3.9) and (3.13) may be expressed in the form

a

q
yo = x^ J^;^ (2k x^)

q

y^ = x^ Ji (^ X«)

q

In general, s-^ and S2 differ by an integer; these two series

solutions y and y, are not always independent. Now Jq and yi^

are expressed in Bessel functions, and the two Bessel functions

Jj,(x) and J_^/(x) are independent of each other if y is not an

integer. Hence, y and y, are independent when i is not an

integer. Then the general solution of Eq, (2.4) is the linear

combination of these two Independent convergent series (except

for x=0) y^ and y^^. Thus

y = Aoyo -^ Aj^yi

or

y = X* CVl^~ ^*^ " ^o*^ 1 ^~ ^*^^ ~ ^^ "°^ ^^ integer

q
"^

"q "^
"^

(3.15)
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where Aj^ and A^ are constants of integration. The solution for

the case when l/q is an integer will be discussed later in this

paper.

B. By Changing Variable

(5)
Another method for solving Eq. (2.4) is by assuming '^

y - x^ Y. (3.16)

The following relationships may then be derived

y' = -ix"^ Y + x^ Y'

ytt =4x^ Y + x~^ Y* + x^ y"
4

Here, the primes indicate differention with respect to the dimen-

sionless coordinate x. Substituting those relationships into

Eq. (2.4) results in the following equation:

i 1 oil
x^ y" + x2 y' + (k^x^ * -^x^) Y = (3.17)

4

where q = 2-n. Multiplying each term in Eq, (3.1?) by x"* yields

the equation

x^y" + xy' + (k^x*' - i)Y = (3. Id)
4

Let

then

2 a.

X = (3_ x)^ or ^ X = x^
^2k

'
2k

f x2"' dx =
f^ dX

,



lU

Using the above relations, Eq. (3.16) now yields

(fC)2
A . (a.i„fX) S MfC) § .(k^lf)^ -IJY . (3.19)

Simplifying Eq. (3.19) gives

X^ dfl ^. xdY + ^x^ - ^r,-)Y = (3.20)
dx2 clX q^''

which is known simply as Bessel*s equation of order l/q and has

as a complete solution

Y = A^Jj^(X) + A^J ^(X) ^Is not an integer (3.21)

where A, and k^ are constants of integration. Substituting

Eq. (3.21) into Eq. (3.16) results in

y = x^CAiJi(X) + A2J.i(X)J

q q

= x^CA^J^(|i xh + A2J^i(|S x^); (3.22)

q 'q

Eq. (3.22) has the same form as Eq, (3.15). It checks that

either Eq. (3.15) or Eq. (3.22) is the solution for the differ-

ential equation Eq. (2.4) when l/q is not an integer, or, in

other words, when l/(n-2) is not an integer. If l/q is an
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integer, the solutions y^ and y^^ are not independent of each

other and Eqs. (3.15) or (3.22) are no longer the complete solu-

tion of Eq. (2.4). The solution for such case vdll be discussed

next.

C. The Complete Solution for l/q as an Integer

In Eq. (3.22), the term J ]^(X) can be changed to the Bessel

q

function of the second kind of order i, Y3^(X) by the following

q

relation:

cos ?• Jx(X) - J.jl(X)

y-(X) = 3 1 S . (3.23)
i sin JL
q q

Thus, the complete solution of Eq, (2.4) can be written as:

y = x^(k^J^{^ x^) + A2Y^(2k x^)J. (3.24)
i q *• i q
q q

If i = m, m = 0, 1, 2,..., the right hand side of Eq, (3.23) has
^

(2)
an indeterminate form. In this case, Y^(X) is interpreted as^

q
w^ cos ? • Jj.(X) - J.a(X)

ym(X) = ^^^ 3 % S

i-m sin :IL
q q

^q' q q q q

by L'Hopital»s rule. That is,
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a^^iix) la-^i^x)

VX) = (i)(^ -,.X,i_2_)^^^ <3.26,

q' °'^?

Now, for any case, the complete solution of Eq. (2.4) is

y = x*[AiJi(|ii x2) ^ A2Yi(^ x^)] (3.2?)

where A^^ and A2 are constants of integration,

J^U) is defined as Eq. (3.U),

q

I-i (X) is defined as Eq, (3»23), fori is not an integer, and
- q
q

Yt(X) is defined as Eq. (3.26), for i = m, m = 0, 1, 2, . . . .

(2)
In practical use, Eq. (3.26) is equal to

V^) = (f )i:{iog X - log 2 ^i^} . ji(x) - i^^^l^ifiiUia!
J -m+2s

5^ St

" i lo
<-^>'' irfi^'f ^'=' * ^'=^»-'}) <3-26')

where p'= lim(l + i + I +•••+ i - logs) = 0.57726, is Euler«s

constant: and 0(8)=l + i + '»+***+-i with 0(0) » 0.
^ > s

Up to this stage, the general solution of the differential

equation Eq. (2.4) has been established for any parameter "n"

except for n=2, because when n equals 2, q is zero and l/q is

undefined. But when n=2, Eq. (2.4) is the Euler Differential
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(3)
Equation and can be solved directly. In this case (n=2),

Eq, (2.4) has the form

x2 £X+ k^y = • (3.2d)
dx^

which can be reduced to an equation with constant coefficients by

the substitution

X = e'* . (3.29)

From Eq. (3.29) ~ = -^ is obtained. Therefore,
dx X

dy _ di.dz _ 1 dy
dx dz dx X dz

d2y ^ d_(l dj) = 1 d2y ^ 1 dz
jjj^2 dx X dz X dz ^ ^^dx

Substituting the above relation into Eq. (3.2^) gives the follow-

ing differential equation with constant coefficients:

dz-^ dz

The general solution of Eq. (3.30) is
t

y = (e^)^ (A sin|3z + B cos/9z) (3.31)

where A and B are constants of integration and the quantity

/'=JK^-t (3.32)

is assumed to be real and positive. Using Eq. (3.29), the

solution of Eq. (3.31) is expressed in the form

y = x*CA sin(/91og x) + B cos (/31og x)J (3.33)



Id

Therefore

,

'» =ix (A sin (plog x) + B cos (plog x)j

+ x'^CpA cos (^log x) - B^sin (^log x)) (3.34)

Note that there is a singularity point at origin, i.e., x^O, thus

the solution (3.34) does not hold for x=0.
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CHARACTERISTIC EQUATION

Eq. (3.27) has two constants of integration which can be de-

termined by boundary conditions. Considering a tapered canti-

lever beam truncated at the location x=a as shown in Fig. 1, the

total length of the beam is (l-a)L where L is the reference

length for the tapered beam or is the longitudinal coordinate of

the far end at which the moment of inertia is maximum. Now the

boundary conditions of the cantilever beam are:

(4.1)

(4.2)

y = at X = a 0<a<l

y» = at X = 1
,

For simplicity, Eq, (3.27) can be written as

y = A(2k x2}q • j (2k ^2) + B(2k x^)^ Y, {^ x^)
q i q q i q

q q

and . ,

y» = A(2k x2)q • Ji
(2k ^2) + B{^ x2)q Yi A^ x^)

q 7-1 q q ^-i q
q q

Applying the boundary conditions of Eq. (4.1) to Eq. (4.2) yields

= A(2k)q a^. J.(^ a2) + B{^)^ a* Y, (^ a^)
q i q q i q

q q

= A(2ii)q. J, (2k)^B(^)^Yi (^)
q i-i q q -i-i q
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EC[. (4.3) can be rewritten in matrix form as

1

a^Jl(2ka2) a^Yi(21Sa2)

t^

A-1 q

r
A-1 q

r A(^)^ \

V Bi^)"^ y

.f°i (4.4)

If solutions A and B in Eq. (4.4) are not both equal to zero,

the determinant of coefficient of A and B vanishes; that is

® '^l'q~^ '

q

..iq
{2k)

a^Y,(2ka2)
^ q

Y, (2k)

4-1 q

= (4.5)

Expanding the determinant and dividing the result by the factor

ia* yields

J(2ka2).Y, {2k) . y (2k ^2) .J (2k) =, qi q A-1 q A q i-1 q
(4.6)

This is the characteristic equation of this problem, the roots of

which give the characteristic values. From these characteristic

values the critical load can be calculated.

Eq. (4.6) does hold either when 1/q Is an Integer or when

it is not. If 1/q is not an integer, the characteristic equation

can be expressed as:

,j^ at) . J.,x.^,(f^) ^ J_i(f at) .

,^jf)
= (4.7)
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EXAMPLES

In this section, several values of "n" are taken to illus-

trate how to evaluate the critical loads.

A. For the Case N = 4

For the first example, a truncated cone as shown in Fig, 5

is used. In this case,

b = bo(^) and h = ho(^)

where b^ and h^ are equal, and)^=0=l.

1^

b^k(i)

Fig. 5. A truncated cone column, )^0=1.
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No matter what the values of b^, h^ are, the value of n depends

only on -J^and 0. From Eq. (1.5),

n = 7^+ 30 = 1 -»- 3 = 4.

Then substituting q=2-n=-2 into the characteristic equation

Eq, (4.7) gives

J_l(-ka'^) J^(-k) + JiL(-ka"^) J ^(-k) = 0. (5.1)

2 2 2
"2

All of those Bessel's functions can be expressed in a series of

trigonometric functions. ''

Jl(x) = (^) sin X

2

2

jjx) = (l_)^( sin X _cos x)
ITX X

J (x) = (;|-)^-sin X - .Sos^x)
.

-i 'TTX X
2

From the above relationships, Eq. (5.1) can be simplified to

cos(|)(-2i|Ji - cos k) - 8ln(5)(8in k + ^^25Ji) = q. (5.2)

Dividing each term in Eq. (5.2) by Ccos(i^)cos kVk, Eq. (5.2)

yields

tan k - k*tan(ii)tank -k - tan(li) =
a a
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or

tank-tan(ii)
,

a = tan(k- i) = k
l+tan{ii)tan k ®

(5.3)

Let e = § - k = (i^)k, then Eq. (5.3) bee
a a

omes

tan e = -k = -At .

a-1 (5.4)

The value of in Eq. {5.4) can be solved easily (see page 36) if

any particular value of "a" is given. Knowing 6, the critical

load can be found from Eq. (2.5).

El"
'} = (-a-)V

a-1 (5. a)

iiq. (5. a) can be rewritten as

- ( a \2q2 EIo _ y, EIo
cr ^TIT' " rr^ ^ ^l2

(5.b)

2 2
where M = (^) 9 . Table 1 shows the values of M with different

"a".

Table 1. The value of 6 and M at first mode for n=4.

a e M

0.1 2.g36 0.099

0.2 2.570 0.413

0.3 2.352 1.016

0.4 2.175 2.102

0.5 2.029 4.116

0.6 1.908 8.191

0.7 I.S04 17.718
O.g 1.716 47.114

0.9 1.638 217.326
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Values of M of higher mode are listed in Table 2.

Table 2. Value of M of higher mode for n = 4.

M^s^ode

3 ^^""^-^
1st 2nd 3rd 4th 5th

0.1 0.099 0.404 0.926 1.676 2.663

0.2 0.413 1.729 4.30S g.030 12.794

0.3 1.016 4.^49 12.150 23.044 37.554

0.4 2.102 11.127 2^.719 55.052 90.150

0.5 4.116 24.139 63.660 122.^90 201.852

B. The Case When N =
|

In this example, a truncated pyramid is considered, but both

the thickness and width of the pyramid vary according to -i power

of the longitudinal coordinate, i.e., two constants ')^0= -i. The

shape is shown in Fig. 6.

— \
\

\

K_ ?A_^
/

\ iP̂
1

.;

L*' '

1

' 77-
*"*.

Fig. 6. Pyramid withy-=0= \,
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From Eq. (1.5) , n = j^+ 30 = 4. Substituting q = 2 - n = | into

characteristic equation (4.7) gives

J^Oka^) • J i(3k) + J -^(3ka') • Ji(3k) = " (5.5)

2 '2 '2 2

Rewriting Eq. (5.5) in trigonometric function and simplifying it

results in

cos3kr^ii:i^ - cos3ka^l - sin3krsin3ka'^ + cos^kaS, q (5.6)
^ 3ka^

'^ 3ka^
'^

Dividing each term in Eq. (5.6) by factor (co83k.cos3ka )/3ka
,

yields

or

4 - ' '

tan(3ka ) - 3ka^ - 3ka^tan(3ka^)tan3k - tan3k =

tan(3ka^) - tan3k ^ tan(3ka^ - 3k) = 3ka^ (5.7)

1 + tan(3ka' )tan(3k)

_i J.

Let e = 3k-3ka^ = 3k(l-a^), then Eq. (5.7) becomes

tan e = (-f^)e
. (5.8)

a^-1

Eq, (5.8) can be solved for 9 for any particular value of "a"

(see page 37). The critical load is obtained from the following

relation:

1^ = ? ^ = M or p = M 5^
^^o 9(a^-l)^

^'^ L'
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The value of M of several values of "a" are listed in Table 3»

Table 3. The values of M for n = 4/3.

M >smode
1st 2nd 3rd 4th 5th

0.1 1.671 9.451 24.750 47.673 7S.230

0.2 2.3^7 15.20g 40.666 7d.S3S 129.731

0.3 3.419 23.570 63.721 123.936 204.222

0.4 5.025 36.755 100.397 195.073 321.722

0.5 7.730 59.324 162.397 317.000 523.136

C. The Case for N =
|

In the third example, a plate beam of uniform thickness is

considered. The width of the plate varies according to i power

of the longitudinal coordinate. For a uniform thickness, 0=0.

The other constant is )^= -i. The shape of this beam is shown in

Fig. 7 and also in Fig. 2.

b -

-5^-H
;c 2K

x^-^
^=4(f)

Fig. 7. Uniform thickness beam with Y'^ "n*



27

From Eq. (1.5), ^^ - i and q = ^. Substituting this into charac-

teristic equation (4.7) yields

1 1
J2( ka4) . J^{^) + J^g^kka^) • J_i(|k) = " (5.9)

Where J2(x) and J 2(x) cannot be expressed in a trigonometric

3 3

function for small k, the relationships

Jw(x) = f (-1) (x/2)

r=o rir(r+/^+l)

J.^(x) (-l)^(x/2)
->'+2r

r=o rI/^(r-/'+l)
(5.10)

are used. Then the values of k in Eq. (5.9) can be solved by a

computer if particular value of "a" is given. (The computer

program is given in the Appendix, pp. 3^-40.) The results are

listed in Table 4.

,2 _ PL^ ._ „ _ ,.2 E^o
k*- =

EI,
or Pot. = kcr L

Table 4. Critical load J^ for n =s i.Mq 2

>«^ode
]

k^ \ ;

a ii^

1st 2nd 3rd 4th 5th

0.1 2.556 19.691 44.305 66.381 92.340

0.2 3.399 26.910 70.796 128.680 225.938

0.3 4.7^5 33.765 35.562 183.517 318.399

0.4 6.566 39.062 127.972 257.001 437.211

0.5 9.765 74.121 1S9.062 412.597 648.657
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D. The Case When N = |.

A beam of uniform width but whose thickness varies according

to i power of the longitudinal coordinate is considered here.

The two constants are y-= and = l/2. From Eq. (1.5), the

value of n is 1 , and q = 2 - n = i. Now 1 = 2 is an integer and
2

'
2 q

the characteristic equation (4.6) is used. A beam of this type

is shown in Figs. 3 and 5.

A*A/f)'

Fig. g. Beam with uniform width when = 1/2.

When q = ^, Eq. (4.6) yields

1 1

J2(4ka^) • Yi(4k) - Y2(4ka^) • Ji(4k) = (5.11)

Eq. (5.11) cannot be expressed in a trigonometric function for

small argument, so the relationships of Eqs. (3 •2?') and (5.10)

are used. Also mathematical table can be used to solve

Eq. (5.11). (The detail processes are shown in the Appendix,
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PP . 41-43.) If the argument is sufficiently large, the following

relationships can be used:.(9)

Jjq(xM|^)^cos(x -
J -^7rx

i
v^)-^4^^^"^^-f-^^

The computer program is shown on page 44* Results obtained are

shown in Table 5.

2 PT ^ "5

Table 5. Critical load k = |j- for n = ^.

NvPiode

1st 2nd 3rd 4th
«
•

5th

0.1 1.562 7.362 20.135 39.454 65.225

0.2 2.281 12.656 35.161 68.903 113.889

0.3 3.1546 20.567 57.073 111,896 185.003

0.4 4.622 33.152 92.040 180. 356 298.102

0.5 7.426 54.853 152.368 298.641 493.673

E, The Case When N = 2

In the previous examples, the cases where ± is an integer

and where it is not were discussed. Now the case when q = is

considered. Several combinations of y-and ^yields n = 2, for

example y(-= = 1/2. If '}^= = 1/2, the shape is as shown in

Fig. 6 except that the width and thickness vary according to

i power of the longitudinal axis.
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When n = 2, the solution of Eq. (2.4) is expressed in Eqs.

(3.34) and (3.35). Using the boundary conditions of Eq. (4.1) in

Eqs. (3.34) and (3.25), results in the following characteristic

equati on:

tan e = -^
log a

e = ^log a (5.12)

where ^=Jk2 - i. If any particular value of "a" is given, G and^

can be solved from Eq. (5.12). Knowing |3 , the critical loads

PL^ are found from the following relation:

0'

^ (log a)2 ^
1 =M

or

P = M ^^cr
l2

The results M are listed in Table 6.

Table 6. The values of M for n = 2,

I^Vmode
1st 2nd : 3rd 4th 5th

0.1 1.064 4.S55 12.312 23. 4^5 3S.37^

0.2 1.734 9.42g 24.676 47.543 7^.027

0.3 2.690 I6.3S5 43.630 S4.4S5 13s. 950

0.4 4.1^5 27.777 74.^07 145.341 239. 3^5

0.5 6.732 47.S99 130.077 253.334 417.674
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There is another particular and very useful structure vAiose n

equals 2. It is a built-up column consisting of four angles

connected by diagonals. In this case, the cross sectional area

of the column remains constant and the moment of inertia is

approximately proportional to the square of the distance of the

centroids of the angles from the axes of symmetry of the cross

(3)
section, '



32

M

a

Fig. 9. Relation between a and M for several n
(First Mode)

.
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DISCUSSION AND CONCLUSION

In general, the critical load of a tapered or a tapered

truncated beam with various cross sections can be determined from

the characteristic equation (4.6). The characteristic equation

is in terms of the Bessel function, in general, and the order of

those functions depends on i, where q = 2 -y-- 30. Hence, the
q

coefficients of the series as well as the order of the Bessel

function depend directly on y- and which control the taper of

the beam in thickness and in width, respectively.

Characteristic equation (4.6) can be used for any value of

"q"; that is, the value which is any combination of the two

parameters y- and 0, except the following two cases:

(1) The first case is that q equals zero. If q = 0, - is

undefined and Eq. (4.6) does not hold. However, for the partic-

ular case y-+ 30 = 2 and differential equation (2,4) yields the

Euler differential equation which can be solved easily.

(2) The second limitation is when q equals infinity, or

i = 0. The argument of the Bessel function (^ a ) is always
q q
zero no matter what the finite value of "k". Actually, this does

not occur in practice. If q equals infinity, either )^ or or

both must equal infinity. Then it is not a beam or column.

Previous examples show that the smaller the value of "n",

the higher critical load is obtained if the moment of inertia of

the base section lo and reference length L are the same.
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(I)

APPENDIX

C ( FORGO PROGRAf^i OF CRIIICAL LOADo OF N =4.o
Diy,LNSlOf Y(5 ) tYl (b) ,r2(8) ,Y3(8) »Z1(;3) »D( 5) .» P(iO)

40 FORMAT (3Flv..p )

A = t.l
2 DO 51 1=1,5 •

'

;

X = A/(A-1.L.)
Z=I-1
Yl ( I )=1. 6+2*3. 1416

•

Y2( I )=Y1( I )+1.5
1 Y3 ( I ) = (Yl( I )+Y2 ( I ) ) /2.i

AA =CCS( Y3( I )-Z*3.1416)
bB =SIN( Y3( I )-Z-K-3. 1416 )

Y( I )=BB/AA
Zl ( 1 )=X*Y3( I )

b( I )=AbS( Y ( I )-^l( 1 ) )

IF(B( I )-J..-..'l )5L'»5 ..',10

10 IF( Y( I )-Zl ( I ) )2G,5' , 30
20 Yl( I )=Y3( I) -

:

GO TO 1

3 Y 2 ( I ) = Y 3 ( I ) .

GO TO 1

'

5u P ( I ) = (X*-»2 )*( Y3 ( I )**2 )

51 PUNCH 4.. ,A,Y3( I ) ,P( I )

A=A + v..l

IF( A-u.5)2 ,2,3
3 STOP

FN'D

C C RFSULTS OF iNI = 4.0
A THETA PL**2/EI

_ .K.QLO 2.83633 .u9932
.lOOOu 5.71719 .4U353
.lOOLO 8.65884 .92562
.iLcwC 11.65322 1.67651
.10000 14.68715 2.66312 '

: .

.2000U 2.57-46 .41295

.2wOLO 5.35391 1.79152 :'

.2'^LoO b.3t26b 4.3>-.861

.2LULU 11.3348w 8.02985

.2'- Low 14.4.-8-1 12.97442
,3'o(jcL 2.3522U 1.01623
.30000 5.13857 4.84989 '

' •
'

:

.30000 8.13332 12. 15:: 17

.30G0O 11. 2 '.'..9 5 23. c 4391 '

.300(.0 14.29897 37.55398 .

.40L/OU 2.1745V 2.K17l

.4u0u0 5.ov,362 11.12723

.4-'cOL 8.L.3847 28.71870

.4u0^v^ 11.12956 55.u52;,'5

.4(n.oL 14.24214. 9u. 15045

.buOuu 2.>j28b3 4.11616

.5u0uu 4.91317 24.1^924

.5L01.U 7.97869 63.65949

.500v,0 11...8556 122.88962

.5CC(;0 1A.2'.'746 2'.'1.8510R



'-5':?—r-—T-^-jtr^

37

(II)

CFCRGC PKCJbRAIv. CF CRITICAL LOADS FOR N = 4, 0/3.0

D 1 NiLNS I CiN Y ( b ) » f 1( b ) » Y 2 ( 8 ) » V 3 ( 8 ) . Z i ( i* ) . tS ( b )

40 FCRMATC BFlu.b

)

? DC bl I=l.b
A = !,).l

X = A**{ 1.0/3. '.)/ (A-^*{ !.(/ 3.0 ) -1.0)

Z = I-1
Yl ( I )=1.5708+Z*3.1416
Y?( I )=Y1( I ) + 1.5

1 Y3( 1 ) = { Yl ( I )+Y2( I ) ) /2.0
AA =COS{ Y3( I )-Z*3.1416)
bB =SIN(Y3( I )-Z*3.1416)
Y( I )=RB/AA
Zl ( I )=X*Y3( I )

B( I )=AbS(Y( I )-Zl( I ) )

IF(B( 1 )-0.U01 )50»50,10
10 I F( Y( I )-* 1 ( I ) )20»5w.30
2 Yl ( I )=Y3( I )

GO TO 1

30 Y2( I )=Y3( I )

GO TO 1

50 P ( I ) =Y3( I )**2/ (9.o*( A**(

L

bl PUNCH 4u,A,Y3( I ) »P( I

)

A=A+0,1
IF(A-0.b)2.2»3

3 STOP
END

C RESULTS /F N=A. 0/3.0

P( 10)

0/3.O)-1.0)*«2)

A

,10000
,10000
. It.OOt

,1000
, 1 u C' o o

, 2>-' o u

,2oOou
, 2 c L

,2u00o
.20000
,30000
,30 00
.30 00
,300t(.;

,300^.0
.400UO
.40 0cO
.4i^0tu

. 4 o u u

. 4 O L/

. b w u

, b I- C o

. b t w

.5LC00
• boo; i.

THETA
2.07791
4.94192
7.99737

11. '-9923
14.21821
1.92428
4.db7b3
7.9431b

1 1 . u b 9 7

1

I4.1872i.
1.83383
4.8 146w
7.9 1629

11.. 4.. 29
1A.172-.?

] .76993
4. 78688
7.89919
11.^2798
14.16241
1. /2.. 72

4.76687
7.88694

11.. 1918
I4.15bb6

PL**2/EI
1 . 6 7 8 b

9.4b097
24.7b024
47.67289
7o. 2303b
2.38664

lb. 20831
4J. 66636
78.83834
129.73093

3.41943
2 3.56997
63.72089
123.93654
204.22180

b. 02478
36.7b457

It. ^.08bb6
19b. 07348
321.72219

7.7 300 1

b 9 . 3 2 3 b 3

162.39692
317.0.;C01
523.13b97
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(III) SOLUTION FOR N =
"I. 3

1) If the argument (^a^) is small, the following program

is used.

C C rCKOC PKJGkA:-, FC1-< CUITICAL LCAD V.iilN N = i/2 (LOWER MODE)
^l,'±KblCrH F(N) »P1 (N) »P2 (f,l) »IV1 CnI) jl-P^d'O
L- 1 MENS ION bl (N) »B2(N) B3(N) »Li^( N)
DIlvENSICN CI ( .'\ ) »C2 ( N ) »C3 ( ij ) »C-'f ( iN )

lui fc.::-;at( 112

)

102 PC:Rf-'AT(E2..1^ ) • '

103 FCRKAT(3Flb.5 ) .

15 FCRr,AT(3FU .5)
'

READ lul N .'.,•._
READ 1^.2(P( I ) I = 1»N)
KEAul02{Pl ( i ) 1 = 1 »N)
REAbU/i (P2 ( I ) 1 = 1 .N)

REAul^2(PPl( I ) 1 = 1 ,N)
READ 1-2(PP2( I ) I=1,N)
DC 1 i = l,K.
1 = 1

oli I )=^»C7 + 2,u^(l-l,^ )

1 C] ( I )=2.u*--bl( I )*P( I )^';-P2( I )

DC 2 1=] ,10
1 = 1

d2( 1 )=^'. 333 + 2. CJ«-(Z-1.0) .

. 2 L2( I )=2.w>-*-u2( I ) 'HM I )*P1{ I )

,
l;C 3 1 =1 » !>.

' 1=1
i-i3(I)=^«^-"(Z-l»(j)-u«Db7

3 C3( 1 )=2.o*-i<-D3( 1 )*P( 1 )^-PP2( I )

JC '^ I = l»i.
Z=I
u^( I )=2.oS (Z-1.G)-G,3 33

A CA( I )=2.w«*84( I )-P( I )^'fPPl ( I )

.'

DFLX=G.5 • ,

RFAD U^3 A1,W1,X >
.

3u A = Al**o.7!3

AT=A*T
loZi = -«v>

ZZ1=<^.^
DCli I=l»b
y.=2*i-i
Zl-Zl+{ AT )**bl (M) /Cl (f-J

N=^«I
11 Z Z J =ZZ 1 + ( A T ) * ^^> B 1 ( N ) / C 1 ( N )

Z1=Z1-ZZ1
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Z2 = ^..u

DC21 1=^1. "3

|v". =2*I-l
Z2 = Z? + T**Li2(;-:)/C2(M)

i\ = 2«I
21 ZZ.: = ZZ2 + T---*b2(i\)/C2{ N)

,
LZ^L2-LLl

UCJ>1 I = l»3
M = 2-»I-1

Z 3 = Z 3+ ( A T ) *-x- D 3 ( ."^
) / C 3 { M )

N = 2^-I

31 Z Z 3 =ZZ j+ ( AT ) -"-^-b3 ( N )/ C 3 ( N )

Z3=Z3-ZZ3
Z4= w ,u

DZ^l I=l»5
i'i =2*I-l
Z4 = Z4+ I*^*-Lj4( ;•!) /C4(Ki)

N = 2 -"-

1

Al ZZ4 = ZZh+1 **D't (N) /C4( iM)

Z4=Z4-/.Z^
Y=Z1*Z2+Z3*Z4
IF( W1*Y) 13v 150,125

12 5 W]=Y
X=X+DELX
GO TO 3C

13'C W = AdS(Y)
IK (W-u.. 1 )lb^ ,15o» 12o

12o X = X-L)tLX
L;tLX = U.D*ULLX
X=X+DtLX
GC TO Ji..

15l XX=X*X
PUNCH lb»Al»X»XX
STCP -

tNi) {'

c c -.'-;
.ICOOO 1.59961 2.55672
,1L0.;L 4,43750 lv,6914u
.iLOuu 6.65625 44.3v.499
.livL/Cu o..-b5v4 65.3bl/7

• 2 >- L U w

. ^ Cr «J O V>

• 3 >- o L. u

• 3 '- 1^ ^^

.400i.u
,4(jOJO

. 5 Cj c o

1 .64:373
5.16/5'^
2 . i o 7 5 'J

5.6125^
2.5625U
6.25-- <-. o

3 . 1 2 5 V. V.'

3 . 3 •:/ 9 2 2

2 6 . 9 i U 1 5

^4 . 7 £> D 1 5

3 3 . 7 6 5 ]. 5

6.56640
39. 62 5

u

9.76562
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1
ii) If the argument (^a^) Is sufficiently large, the fol-

owing relationship is used.

J^(xM^)^cos(x - 21- ^)," TTX k ^

and the computer program of this example is written below.

L C tCKoU riwoK/V-. UK LKlllL/vL L'^/Vo h'^L. iM^l/^ (hlGHtR MCUE)

ULLX=0.5
'a' = V . U i •

A 1 = .. . t3

1 T=A.u*X/3.0 . ^

AT=A*T
Z] = (?.<-/( ;^, i41by*AT ))**".^*CL;b{A|-t.^833*3.14159)
Z2= ( P.-/ (?. l'tl'?'^*T ))*-*-'. '-^*CL.S(T-0. A 166 /*-3.i^] b9)

Z3= (2.^/ ( 3. i^iby'-^-AT ) )*^<-0.b*CCS{ AT + 0..,'8 3 3-*3.141t)9)

Z^= { 2.-/ ( 3. i4iby*l ) )
«*': .5*CC;S (T-0.^^«33 3*3.i^flb9)

^=Z i*^2 i-Zi-K-Z^

1 I- ( iv-i-^ ) 3'.. » 3w ,23

2 5 /.=Z

X=X+OlLX
OC I C i

3'; W1 = AHS(Z)
le- ('A'1->J.'-" i ) be i.bu,2u

?() X = X-?tLX '

'

-

UHLX=i,'.b-^L)tLX

X = X + L)tLX •

bc I c: 1
. - .

bb XX=X**2
HUN<.-t-l '*^' » A i AA
H K 1 /\ I ^ - » A i , A A

4U f'JHHf\ I l^r ie. b )

bTCJK ' .:.;''
c

.lUUOf V2.3'tOi-9

,2uO'JU /t.7y64b
.2U(;uU 128.68J66
.2U(..uC/ 225.938-^6
.iouwi.. to. 36^ be
.juwoo ioj.5l^b2
.jjuLwo 3io.:)9y^i
./*Ut;;;u i^ t , ) Ubb
. 4 e u u u 2 :w . w^ .J •> o

.'^i.u^.w 4:^1. 2 ilia

. 3 >.' I. ^' t. Ml , i ^ i J ^

» be-ju L io V , ^ 52 :}t

. b t L; ;
;

'.; '4 i 2 . 2 V / 6 b

.bOOi.C: 0'+«. 6b/ 23
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(IV) SOLUTION FOR N = I.

When n = 3/2, -i = 2 is an integer. The characteristic

equation (4.6) yields

J2(4ka^) • Yj^(4k)-Ji(4k) • Y2(4kai) = 0. (a)

The values Jq, Ji, Yq, and Y^ can be found from table, and the

values J 2 and Y2 can be calculated by the following relationships:

and let n = 1.

The method of using mathematical table to solve Eq. (a) is

illustrated below. Let x = 4k, z = xa^ and

F = J2(z)-Yi(:x)-Ji( x).Y2(z).

If a = 0. 1,

X Jl(x) Yi(x) z J2(z) Y2(z) F

4 -0.0660 0.3979 2.24 0.4090 -0.3230 0.1414

5
•

-0.3276
•

0.1479
•

2.81
•

0.4783
•

-0.2423
•

-0.0086
•

• •

0.2346

•

-O.I58I

•

4.50

•

0.2177

•

O.328O

•

-0.0932

9 0.2453 0.1043 5.05 0.0292 0.3674 -O.O8O7

10 0.0435 0.2490 5.61 -0.15 0.3563 -0.0528

11 -0.1768 0.1637 6.17 -0.1753 0.1841 -0.0297

:. 10.5 -0.0789 0.2337 5.89 -0.2198 0.2568 -0.0311

II 10.7 -0.1224 0.2114 6.00 -0.2414 0.2299 -0.0229

' 10.8 -0.1422 0.1973 6.05 -0.2532 0.2170 -0.0114

10.9 -0.1603 0.1813 6.12 -0.2610 0.2014 0.01725
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From the above table, the result is that x = 5, and x = 10.^5,

the value of F equals to zero, or k = 1.25 and 2.7134. Now

.2^ Pl2 ^

o
\x^= |L^ = 1.5625 and 7.3625.

If a = 0.2

X Jllx) Yi(x) z J2(z) Y2(z) P

5 -0.3276 0.1479 3.35 0.4758 -0.0182 0.0644

6 -0.2767 -0.1750 4.01 0.2052 0.2178 0.0243

7 -0.0047 -0.3025 4.68 0.1566 0.3524 -0.0457

6.1 -0.2559 -0.1993 4.08 0.3427 0.2384 -0.0206

From the above table, F equals to zero at x « 6.05. Then k = 1.51.

PL'
El,

k^ = St = 2.2801

If a = 0.3.

X Ji(x) Yi(x) z J2(z) YgCz) F

6 -0.2767 -0.1750 4.44 0.2373 O.3187 O.O4665

7 -0.0047 -0.3027 5.13 -0.0015 0.3630 0.0058

8 0.2346 -0.1581 5.92 -0.2274 0.2485 -0.02234

X » 7.1} F approximates to zero, k = x/4 = 1.775

2 PT ^

k^ =
If

= 3.1546
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If a = 0.4.

X Ji(x) Yi(x) z J2(z) Yglz) F

7 -0.0047 -0.3027 5.56 -0.1350 0.3217 " 0.0423

d 0.2346 -0.15^1 6.35 -0.2952 0.1327 0.0155

8.5 0.2731 -0.0262 6.75 -0.2656 O.OI36 0.0102

8.7 -0.0125 0.0280 6.91 -0.3074 -0.0304 -0.0089

F - at X equals to 8.6 or k = 2.15.

k^ = 1^^ = 4.6225.

If a = 0.5.

X Ji{x) Yi(x) z JgCz) Y2(z) F

9 0.2545 0.1043 7.64 -0.2018 -0.2138 0.03288

10 0.0435 0.2490 8.50 0.0224 -0.2772 0.01763

11 -0.1768 0.0579 9.34 0.2494 -0.0665 -0.00504

F = at x = 10.9, or k = 2.725.

k^ =
1^

= 7.4256.

When X is larger and larger, the following relationships can be

used:

Computer program is typed next page,
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^5

3

20

KtAU i » Ai »W1 Al<^

i r UKi-iA M :5r 3,^^ )

UtLA = o« :j

A = Ai**0»/''5

iU X=4.U*AK
AX=A*X
£^:'=1<:^.-/IJ. i'+i5':^-*^AX ) )**U. D*CL;b(AA-:).V^M
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Many methods to solve for the critical load on a column

with either a uniform cross section or with the cross section

varying linearly are presented in texts on elastic stability.

In this report, a tapered cantilever column with the moment of

inertia of the cross section varying according to a power of the

longitudinal coordinate coinciding with the beam axis is investi-

gated. A general differential equation of a deflection curve of

a buckling bar is derived. The method of Frobenius and the

change of variable method are used to solve the governing

equation. A general solution is obtained in terms of Bessel

functions, A characteristic equation is found by applying the

boundary conditions to the solution. By using a computer and

a mathematical table, the critical loads of the first five

modes for several kinds of tapered columns are obtained.


