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PREDICTING EPHEMERAL GULLY LOCATION AND  
LENGTH USING TOPOGRAPHIC INDEX MODELS 

P. Daggupati,  K. R. Douglas-Mankin,  A. Y. Sheshukov 

ABSTRACT. Ephemeral gullies (EGs) are incised channels resulting from concentrated overland flow that often form in a 
similar location every year. These erosional features add to producers’ management efforts and costs. Locating EGs and 
predicting their length is crucial for estimating sediment load and planning conservation strategies. Since topography 
plays an important role in the formation of EGs, this study investigated the prediction of EG location and length in two 
agricultural areas (S1 and S2) in two different physiographic regions using four topographic index models: compound 
topographic index (CTI), slope area (SA), wetness topographic index (WTI), and slope area power (SAP). The impacts of 
digital elevation model (DEM) resolution, agricultural land use mask data source, and topographic model critical 
thresholds were also evaluated. Automated geospatial models were developed to locate and derive EG length. Results 
show that the SA model predicted EG occurrence and length better than other models tested. The SA and CTI model 
predictions had similar patterns in terms of locating EG trajectory; however, the CTI model had greater discontinuity 
along the trajectory. The method developed to derive length in this study was sensitive to discontinuity, so the performance 
of the CTI model was poor. Finer-resolution DEMs (2 m) predicted EG location and lengths better than coarser-resolution 
DEMs (10 m or greater). Use of actual field-level reconnaissance data instead of NASS data for agricultural land use 
masking decreased false negative classification by 16% or more for all models. Detailed calibration of the SA model 
yielded different optimal thresholds for the two study regions: TSA = 30 for S1 and TSA = 50 for S2. Topographic index 
models were found to be useful in locating EGs and estimating expected lengths, but site-specific calibration of the 
topographic index model threshold was required, which might limit the general utility of these methods. 

Keywords. Ephemeral gully, Modeling, Sediment, Topography. 

oil erosion by water in agricultural fields is a 
widespread land degradation problem 
(Montgomery, 2007) that occurs mainly through 
interrill and rill erosion, ephemeral gully (EG) 

erosion, and classical gully erosion. This study focuses on 
EG erosion, which is referred to as concentrated-flow 
erosion, mega-rill erosion, or shallow gully erosion. 
According to Foster (1986), EGs are larger than rills and 
smaller than classical gullies, and flow in EGs is clearly 
channelized. 

Definitions of EGs vary. According to the Soil Science 
Society of America (SSSA, 2008), EGs are “small channels 
eroded by concentrated overland flow that can be easily 
filled by normal tillage, only to reform again in the same 
location by additional runoff events.” Hauge (1977) and 
Poesen (1993) distinguished EGs from rills with a cross-

sectional area of 930 cm2 (1 ft2) or greater. According to 
Grissinger (1996a, 1996b), EGs are produced by 
concentrated flow erosion in swales or other 
topographically controlled locations and may be either a 
continuous or discontinuous extension of a drainage 
network. Smith (1993) defined EGs as small drainage 
channels that, if not filled in, would become permanent 
features of the drainage network. 

The importance of EG erosion is well established 
(Foster, 1986; Thorne et al., 1986; Poesen et al., 1996; 
Nachtergaele and Poesen, 1999; Poesen et al., 2003), but 
only a few process-based hydrologic or erosion models 
have included EG subroutines: Ephemeral Gully Erosion 
Model (EGEM; Woodward, 1999); Revised Ephemeral 
Gully Erosion Model (REGEM; Gordon et al., 2007); 
Chemicals, Runoff, and Erosion from Agricultural 
Management Systems (CREAMS; Knisel, 1980); Ground-
water Loading Effects of Agricultural Management 
Systems (GLEAMS; Knisel, 1993); Water Erosion 
Prediction Project (WEPP; Flanagan and Nearing, 1995); 
and Annualized Agricultural Nonpoint Source Model 
(AnnAGNPS; Bingner and Theurer, 2003). These models, 
however, do not predict the location of EGs, which must be 
input into the models. A simple means of predicting the 
location of EG initiation is needed (Vandaele et al., 1996a; 
Vandekereckhove et al., 1998; Desmet and Govers, 1997; 
Knapen and Poesen, 2010). Souchere et al. (2003) reported 
that the development of models able to predict the location, 
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length, and cross-sectional area of EGs is of great 
importance. 

The concept of a topographic threshold is widely used to 
predict locations in the landscape where gullies may 
develop (Moore et al., 1988; Vandaele et al., 1996a; 
Vandekerckhove et al., 1998, 2000; Desmet et al., 1999; 
Knapen and Poesen, 2010; Poesen et al., 2011). The idea 
was first proposed by Horton (1945), who stated that a 
channel incision occurs when a threshold force is exceeded. 
Many studies used slope and drainage area to represent 
channel incision and found that an inverse relationship 
exists between drainage area and local slope that can be 
represented by a power-type equation (Patton and Schumm, 
1975; Begin and Schumm, 1979; Vandaele et al., 1996a). 

Another concept that is widely used to identify the 
location of EGs is unit stream power. The EG formation 
depends on “generation of concentrated surface runoff of 
sufficient magnitude and duration to initiate and maintain 
erosion, leading to channelization” (Thorne and 
Zevenbergen, 1984). Concentrated surface runoff can be 
represented by specific stream power, which is a function 
of discharge, slope, and channel width. Drainage area 
multiplied by slope yields a parameter that can be used to 
represent total stream power (Desmet et al., 1999). 

The importance of topographic parameters such as slope 
and drainage area in locating EGs is well established. 
Another topographic parameter, plan curvature or 
convergence, also contributes to EG formation models 
because it provides the measure of the degree of flow 
convergence along the cross-section of a flow path 
(Zevenbergen and Thorne, 1987). Moore et al. (1991) 
indicated that slope (S), upstream drainage area (A), and 
plan curvature were primary topographic attributes that can 
be derived directly from digital elevation models (DEMs) 
and can be combined in some form (e.g., S⋅A or ln[A/S]) to 
characterize the spatial variability of specific processes 
occurring in the landscape; these combinations of primary 
topographic attributes are commonly referred to as 
topographic index models, topographic indices, secondary 
topographic attributes, compound attributes, or compound 
indices (Moore et al., 1991). In this study, the term 
“topographic index models” will be used to refer to models 
that represent combinations of primary topographic 
attributes. 

Several topographic index models were studied in the 
past few decades to predict the location of EGs. Thorne et 
al. (1986) used the CTI (compound topographic index) 
model to predict EG formation: 

 tCTI = S⋅A⋅PLANC (1) 

where tCTI is a topographic EG index value, S is local slope 
(m m-1), A is upstream drainage area (m2), and PLANC is 
plan curvature (m per 100 m). Formation of an EG occurs 
when t exceeds some critical threshold value (T). Parker et 
al. (2007) tested the CTI model to predict EG locations in a 
GIS environment for different sites and found that TCTI 
varied from 5 to 62 depending on the study site, and that 
the general pattern of EGs predicted did not change when 
TCTI varied between 10 and 100. 

Moore et al. (1988) used two methods to estimate EG 
location: the SA (slope area index) model: 

 tSA = S⋅As (2) 

and the WTI (wetness topographic index) model: 

 tWTI = ln(As/S) (3) 

where tSA and tWTI are topographic EG index values, S is 
slope gradient (m m-1), and As is unit upstream drainage 
area (m2 m-1). Moore et al. (1988) found that EGs were 
constrained to areas for which S⋅As > 18 (i.e., TSA = 18) and 
ln(As/S) > 6.8 (i.e., TWTI = 6.8). Vandaele et al. (1996b) 
reported that the EG locations in a study area in south 
Portugal were better predicted using TSA = 40 and TWTI = 
9.8. 

Vandaele et al. (1996a) used the SAP (slope area power 
index) model: 

 tSAP = S⋅As
b (4) 

where tSAP is a topographic EG index value, S is slope 
gradient (m m-1), As is unit contributing area (m2 m-1), and b 
is an empirical coefficient commonly assumed to be 0.4 
(Vandaele et al., 1996a, 1996b; Desmet et al., 1999). 
Vandaele et al. (1996a) tested the model in the Kinderveld 
catchment in Spain and found out that TSAP = 0.486 was 
needed for locating initiation points of EGs. In separate 
studies, Desmet et al. (1999) reported that TSAP = 0.75 and 
Vandaele et al. (1996b) reported that TSAP = 1.0 performed 
better in predicting location of EGs in their study areas. 

The topographic index models discussed above were used 
to locate the EGs. Although the importance of length is well 
established, none of these studies used these topographic 
index model results to derive EG length (Woodward, 1999; 
Nachtergaele et al., 2001a, 2001b; Capra et al., 2005, 2009; 
Gordon et al., 2007; Poesen et al., 2011). Length of an EG is 
an important parameter because it is needed as an input by 
process-based models, such as EGEM and WEPP, to 
estimate EG sediment losses (Woodward, 1999). 
Nachtergaele et al. (2001a, 2001b) reported a strong 
correlation between EG length and volume of soil eroded. 
Length of an EG also can be used to estimate EG volume 
using simple models (Capra et al., 2005, 2009; Poesen et al., 
2011). Gordon et al. (2007) reported that topographic index 
models are used to locate potential EG locations, but no 
method is currently available to predict EG length. 

The goal of this study was to evaluate existing 
topographic index models (CTI, SA, WTI, and SAP) in 
predicting EG location and length within agricultural fields 
according to two metrics: occurrence (presence or absence 
within a given area) and length (total accumulated length 
within a given area). Specific objectives were to 
(1) develop a GIS-based methodology to locate and derive 
length of EGs using existing topographic index models, 
(2) compare and evaluate the impacts of DEM resolution 
(2 m, 10 m, and 30 m) and agricultural land use mask data 
source (NASS or field reconnaissance) on EG occurrence 
and length predictions, and (3) evaluate the impacts of 
topographic index model thresholds (T) on EG occurrence 
and length predictions. 
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STUDY AREA 
Two study areas where EGs are a major concern were 

selected. Study area 1 (S1) is located in Douglas County in 
northeastern Kansas, and study area 2 (S2) is located in 
Reno County in south central Kansas (fig. 1). S1 has an 
area of 4,359 ha (10,771 ac) (43% cropland), and S2 
encompasses 1,927 ha (4,762 ac) (81% cropland). Grain 
sorghum and corn were the major crops in S1, and wheat 
was the major crop in S2. The EGs in S1 were smaller 
(mostly single EGs; average length: 210 m) and narrower, 
whereas the EGs in S2 were larger (mostly branched EGs; 
average length: 408 m) and wider. The average catchment 
in which EGs were present was 2.5 ha (6.2 ac) with 1.7% 
slope in S1 and 2.35 ha (5.8 ac) with 0.97% slope in S2. In 
this study, S1 was used for evaluating performance of all 
topographic models, whereas S2 was used for verification 
of the best model. 

METHODS 
DIGITIZING EGS IN STUDY AREAS 

One or more EGs were seen in many agricultural fields 
across the study areas during field reconnaissance surveys 
in 2009, 2010, and 2011, especially after rain events 

(Daggupati et al., 2010); however, field measurements of 
EG characteristics (e.g., length, width, and depth) were not 
possible because access to the agricultural fields (private 
land) in both study watersheds was limited. Because of this 
limitation, we drove on public roads in the study areas and 
recorded the fields that were observed to have EGs. During 
field reconnaissance, a common landuse unit (CLU) field 
boundary shapefile was edited in ArcGIS on a laptop 
computer to record fields with EGs. 

In the lab, the shapefile of fields with EGs was overlaid 
on a corresponding aerial image. The 2010 National 
Agricultural Imagery Program aerial image was selected 
for S1, and the 2003 Digital Ortho Quarter Quadrangle 
aerial image was selected for S2 because EGs could be 
clearly identified on these images. Aerial images from other 
years (1995 through 2011) were also acquired, but locating 
EGs was difficult on these images since they were taken 
during the crop growing season when a crop canopy was 
fully established. EGs were manually digitized over the 
aerial images in the study areas in the fields where EGs 
were observed during field visits. Extreme care was taken 
to digitize the trajectory of each EG located on the aerial 
image. Starting and ending points of each EG were difficult 
to determine precisely. Color changes on an aerial image 
and our expert judgment were used to digitize accurately, 

Figure 1. Study areas S1 and S2 showing digitized ephemeral gullies. 

S1 

S2 
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with an estimated error of approximately 5% of EG length. 
Google Earth together with hill-shade images (which 
enhanced the relief of the surface) were used to verify and 
cross-check the location during the digitizing process. 
Many EGs (69% in S1, 38% in S2) were seen on the aerial 
image within the study area but were not visible from the 
windshield during the field visit for several reasons: 
(1) EGs were located far away from roads or obscured by 
topographic features, (2) established crops concealed the 
EGs during the field visit, or (3) multiple EGs were located 
within one field. EGs that were located on the aerial image 
but were not seen during the field visit were also digitized. 
Because this study compared model-simulated EGs to 
observed EGs (i.e., digitized EGs on the aerial image), 
including all EGs was considered essential. Finally, the 
digitized EGs were used as observed or reference data to 
evaluate performance of the topographic index models. 

EG TOPOGRAPHIC INDEX MODELS AND THRESHOLDS 
Four published EG topographic index models were used 

to predict EG location (table 1). EG topographic index 
models determine the presence or absence of an EG at each 
point (i.e., in a pixel) within a given area for which the 
topographic EG index value (t in eqs. 1 through 4) exceeds 
a threshold value (T). For the CTI and SAP models, the 
three (minimum, middle, and maximum) values of T were 
selected based on values reported in the literature (12, 62, 
and 100 for the CTI model, and 0.3, 0.5, and 1 for the SAP 
model). For the SA model, the new value of 5 was added to 
widen the default reported range of 18 to 40 to seek better 
identification of EGs, whereas for the WTI model the 
maximum value was increased to 12 from the default range 
of 6.8 to 9.8 because no ephemeral gullies were recorded 
within that range. 

DATA INPUTS FOR TOPOGRAPHIC INDEX MODELS 
DEMs provide key data for topographic index models. 

Topographic attributes, such as slope, upstream drainage 
area, and plan curvature are directly derived from DEMs. 
Many studies have investigated the impact of DEM 
resolution for evaluating model responses to changes in 
topographic attributes and have concluded that DEM 
resolution substantially affects topographic attributes and 
thereby model results (Holmes et al., 2000; Chaubey et al., 
2005; Parker et al., 2007; Momm et al., 2011). Impacts of 
DEM resolution (2 m, 10 m, and 30 m) on the performance 
of topographic index models were evaluated in S1 to 
correctly predict EG location. 

EGs within agricultural fields were of interest in this 
study; therefore, land use was used as an input to mask 
areas other than agricultural fields. Daggupati et al. (2011) 
reported that the land use data source has a major impact on 
modeling results for field-scale targeting, so this study 

evaluated the impacts on topographic index model 
performance of masking agricultural lands using either 
USDA National Agricultural Statistical Service (NASS) 
data or field reconnaissance land use data. Field 
reconnaissance land use data were collected during EG 
field reconnaissance in 2011, described above. Field 
boundaries used for both data sources were digitized 
manually using high-resolution aerial images. Care was 
taken to exclude waterways from the digitized land use. 

METHODOLOGY TO LOCATE EGS 
An automated geospatial model was built in a GIS 

environment (ESRI, 2011) using a model builder platform 
(Daggupati, 2012) to locate EGs for each of the 
topographic index models. The geospatial model requires 
elevation (DEM), land use, and roads as inputs. When the 
inputs are satisfied, the model calculates topographic 
attributes such as local slope, upstream drainage area, unit 
upstream drainage area, and plan curvature from the DEM. 
Filling a DEM or removing pits was not recommended by 
Kim (2007) and Bussen (2009) in gully-related studies 
because doing so fills out natural depressions that are 
important to EG formation; therefore, pit removal was not 
applied in this study. After the required topographic 
attributes are generated, the geospatial model calculates the 
topographic index value (t) for each pixel in the study area 
and compares that value to the user-defined threshold (T) 
for the topographic index model being used. If the pixel 
value of t is greater than T, then an EG pixel is located on 
the output raster (fig. 2). Because our interest was in 
identifying EGs only in agricultural fields, the geospatial 
model used land use and roads to mask non-agricultural 
areas. 

METHODOLOGY TO ESTIMATE EG LENGTH 
Several post-processing techniques were developed to 

derive length of EGs from the output raster (generated for 
each topographic index model from the geospatial model 
discussed above) using the following steps: 

• Pixels that represent EGs in the output raster of a 
topographic index model were converted into a 
polyline shapefile (fig. 3a). 

• The polylines within the trajectory of an EG were 
sometimes disconnected (fig. 3a) (i.e., some points 
along an apparent EG trajectory did not meet the 
given threshold). To make the polylines continuous 
within the trajectory of an EG, the polylines were 
“snapped” to each other using a snapping rule of 5 m 
(i.e., two lines that were 5 m apart, or less, were 
joined) (fig. 3b). Higher snapping distance (>5 m) 
resulted in lines snapping to other lines that were not 
part of the EG trajectory, thus distorting the shape 
along the trajectory (most prevalent in branched 

Table 1. EG topographic index models and thresholds tested in S1. 
Model Equation Eq. No. Thresholds (T) References 
CTI tCTI = S⋅A⋅PLANC (1) 12, 62, and 100 Thorne et al. (1986), Parker et al. (2007) 
SA tSA = S⋅As (2) 5, 18, and 40 Moore et al. (1988), Vandaele et al. (1996a) 

WTI tWTI = ln(As/S) (3) 6.8, 9.8, and 12 Moore et al. (1988), Vandaele et al. (1996b) 
SAP tSAP = S⋅As

0.4 (4) 0.3, 0.5, and 1 Vandaele et al. (1996a, 1996b), Desmet et al. (1999) 
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EGs); consequently, snapping distance greater than 
5 m was not used in this study. 

• The lengths of the polylines were calculated, and 
lengths smaller than 10 m were removed (fig. 3c). 

• At this point, each polyline had its own identification 
number, and many EGs were represented by multiple 
polylines. Catchments were developed separately 
using the DEM (areas outlined by blue lines in 
fig. 3d), and each individual polyline within a 
catchment was given a unique identification number 
(fig. 3d). The size of the catchment is user-defined 
and can be varied. In this study, 1 ha catchments were 

used. All individual polylines within a catchment 
were dissolved to a single polyline, which was 
considered an EG with a unique identification 
number. 

• EGs shorter than 50 m were removed. 
Using the above steps, EGs were given a length and a 

unique identification number so that they could be used 
either as input to the process-based model or to estimate 
soil loss volume using empirical relationships. It should be 
noted that lengths obtained by this method are “potential 
lengths” derived from topographic attributes and do not 
consider any processes occurring during the formation of 
EGs. It should also be noted that some discontinuity within 
lengths may remain along an EG trajectory. An automated 
geospatial model was developed in the ArcGIS 
environment using the model builder platform to automate 
the process of deriving lengths of EGs and eliminate the 
tedious steps outlined above. 

PERFORMANCE OF TOPOGRAPHIC INDEX MODELS 
There is no established method to compare and evaluate 

the performance of topographic index models. Desmet et al. 
(1999) compared the percentage of predicted EG pixels that 
corresponded to the location of observed EG pixels. Parker 
et al. (2007) used visual interpretation by comparing 
potential EG pixels generated by the model to observed EG 
pixels. 

Performance of each topographic index model to predict 
EG location and length was assessed by three methods: 
(1) visual evaluation of EG trajectories, (2) error matrix 
assessment of model performance in correctly identifying 
EG occurrence (presence or absence) within a given area, 
and (3) statistical assessment of model performance in 
correctly identifying EG length (total accumulated length) 
within a given area. 

Visual Evaluation 
Locations of EGs (model predictions along the 

trajectory) and derived lengths were evaluated using visual 
comparison of digitized EGs to model-simulated EG 

Figure 2. Ephemeral gully (EG) pixels in an agricultural field in study
area 1 (S1). 

Figure 3. Steps in deriving the length of ephemeral gullies (EGs): (a) EG raster converted to polyline, (b) polylines snapped, (c) length of EGs 
calculated and smaller lengths (<10 m) deleted, and (d) EGs given unique identification number. Black polylines represent EGs, and polygons 
outlined by blue lines represent EG catchments. 



1432  TRANSACTIONS OF THE ASABE 

polylines. Visual evaluation provided a qualitative 
assessment of each model’s performance. 

Occurrence Evaluation 
Statistical analysis using an error matrix approach was 

carried out to evaluate the occurrence (presence or absence) 
of EGs in a given area. An error matrix (also called 
confusion matrix, correlation matrix, or covariance matrix) 
summarizes the relationship between two datasets, often an 
observed dataset and a predicted dataset. The error matrix 
approach was used by Gutierrez et al. (2009) and Meyer 
and Martinez-Casasnovas (1999) to predict the location of 
gullies in rangeland for models developed by regression 
analysis using observed gully data. 

In this study, we used the presence-absence model of the 
error matrix (table 2). One-hectare catchments within 
agricultural fields were used. Occurrence of an EG within a 
catchment was treated as a binary variable (1 = presence, 
and 0 = absence) for each catchment based on predicted 
and observed EGs present within that catchment. The 
observed EGs are the digitized EGs over an aerial image 
based on the field reconnaissance survey, and the predicted 
EGs are the EGs generated by each of the topographic 
index models. Finally, the error matrix recorded the 
frequencies of the four possible types of prediction from 
analysis of the predicted and observed EGs for each 
catchment (table 2). Frequencies were recorded in an error 
matrix using the format in table 2 for each topographic 
index model. All the processes discussed above were 
automated using a geospatial model in the GIS environment 
(ArcGIS v. 10) using the model builder platform and an 
output of error matrix table generated in Excel format. 

Several statistics can be calculated using the error matrix 
table (Daggupati, 2012). In this study, false positive rate, 
false negative rate, and kappa (κ) statistics (an occurrence 
statistic that measures the relationship between beyond 
chance agreement and expected disagreement) were used to 
evaluate the topographic index model performance 
(Congalton, 1991). A good model should have high κ with 
low false positive and low false negative rates. A higher 
false positive rate does not necessarily indicate model error 
because the model may identify areas or catchments with 
high vulnerability to ephemeral gullying that had not yet 
developed EGs at the time of field reconnaissance or aerial 
imagery; however, high false negative rates are considered 
an error in model performance (Gutierrez et al., 2009). 

 
 

Length Evaluation 
There is no standard procedure to evaluate the EG length 

derived from topographic index models. In this study, we 
compared the total cumulative predicted length of EGs 
generated by the topographic index model to that of the 
observed EG length (digitized over aerial images) in each 
catchment for which both predicted and observed EGs were 
present (a in table 2). Statistics used for comparison were 
the coefficient of determination (R2), Nash-Sutcliffe 
efficiency (NSE), and estimation bias (PBIAS). The above 
statistics are often used to evaluate the performance of 
watershed models (such as SWAT, AnnAGNPS, etc.) 
relative to measured data (Moriasi et al., 2007). Both NSE 
and R2 increase with improving model performance, with a 
value of 1 indicating perfect agreement between predicted 
and observed EG lengths. The optimal value of PBIAS is 0, 
with low-magnitude values indicating accurate model 
predictions. Positive values indicate model underestimation 
bias, and negative values indicate model overestimation 
bias. 

Each topographic index model along with a 
corresponding T (table 1) was evaluated using the above-
mentioned location, occurrence, and length evaluation 
procedures in S1. DEM resolution (2 m, 10 m, and 30 m) 
was compared and evaluated using all topographic index 
models. Agricultural land use mask data source (NASS or 
field) was compared and evaluated using the CTI and SA 
models. The best topographic index model, DEM 
resolution, and land use mask data source were selected and 
further evaluated using a range of T values in S1 to 
understand how T affected the topographic index model 
performance in predicting occurrences and lengths of EGs. 
Furthermore, the best topographic index model was applied 
in S2 under varying T conditions to evaluate how T affected 
topographic index model performance in a different 
geographic location. 

RESULTS AND DISCUSSION 
VISUAL INTERPRETATION OF LOCATION  
AND LENGTHS OF EGS 

Figure 4 shows output maps of location and derived 
lengths for the CTI (eq. 1, TCTI = 62), SA (eq. 2, TSA = 18), 
WTI (eq. 3, TWTI = 12), and SAP (eq. 4, TSAP = 0.3) models 
using the given thresholds (T value noted for each 
equation), with 2 m DEM and land use determined by field 
reconnaissance. The T values used in the four models in 
figure 4 were selected based on their better prediction of 
EG location and length when compared with the results 
obtained with the two other values of T within their 
respective models. The visual interpretations of the output 
maps showed that the CTI and SA models predicted EG 
locations (in the form of pixels along the trajectory of the 
observed EGs) better than the WTI and SAP models (left 
images of figs. 4b, 4c, 4d, and 4e) for given T values. 

The CTI and SA models had similar patterns in 
predicting location because both models are strongly 
influenced by slope and upstream drainage area, and a 
strong positive correlation exists between upstream 

Table 2. Error matrix to evaluate occurrence (presence or absence) of
ephemeral gullies (EGs) in a catchment.[a] 

Predicted 
Observed 

Totals Present Absent 
Present a (true positive) b (false positive) a + b 
Absent c (false negative) d (true negative) c + d 
Totals a + c b + d N 

[a] N = total number of catchments, a = number of catchments with both
observed and predicted EGs present, b = number of catchments with
predicted EGs present and observed EGs absent, c = number of 
catchments with observed EGs present and predicted EGs absent, and
d = number of catchments with both observed and predicted EGs
absent. 



56(4): 1427-1440  1433 

drainage area and plan curvature (which was included only 
in CTI). Closer observations, however, revealed that the 
CTI model predictions were more discontinuous along the 
trajectory (fig. 5). Discontinuity using the CTI model was 
due to the inclusion of plan curvature, which identifies the 
areas of reduced flow convergence in the landform 
topography and removes those pixels from the model 
predictions (Parker et al., 2007). 

The WTI model was not able to predict the location of 
EGs in our study area using TWTI = 6.8 and 9.8, although 

these thresholds successfully predicted EG location in 
Portugal and Australia (Vandaele et al., 1996b; Moore et 
al., 1988). Increasing the TWTI to 12 improved prediction of 
EG locations. Momm et al. (2011) also used TWTI = 12 to 
locate EGs in a small field in Kansas; however, TWTI = 12 
tended to overpredict the location of EGs in this study. 
Increasing TWTI beyond 12 may have further improved 
model performance, but such simulations were not pursued 
in this study. 

The SAP model underpredicted the location of EGs for 

 
Figure 4a. Aerial image (left) and digitized EGs (right) of an agricultural field in study area 1 (S1). 

 

 
Figure 4b. Output maps of location (left) and derived lengths (right) for the CTI model (eq. 1, TCTI = 62) in S1. 



1434  TRANSACTIONS OF THE ASABE 

all TSAP values tested. Desmet et al. (1999) reported that 
lower values of b in the SAP model (eq. 4) better predicted 
EG initiation points. In our study, we used b = 0.4 in the 
SAP model, which may have contributed to this poor 
performance. Overall, the SA (eq. 2) model location 
predictions appeared better than those of the other 
topographic index models based on visual assessment of 
results. 

The right images of figures 4b, 4c, 4d, and 4e show the 

lengths derived from the location predictions for each 
topographic index model for selected T values. Visual 
interpretations revealed that the WTI (eq. 3) and SAP 
(eq. 4) models were unable to predict length correctly along 
the EG trajectory. The CTI (eq. 1) model also was unable to 
predict the length due to its greater discontinuity of pixels 
along the trajectory (fig. 5), despite the methodology 
developed in this study that overcame small discontinuities 
by snapping together EGs separated by 5 m or less. 

 
Figure 4c. Output maps of location (left) and derived lengths (right) for the SA model (eq. 2, TSA = 18) in S1. 

 

 
Figure 4d. Output maps of location (left) and derived lengths (right) for the WTI model (eq. 3, TWTI = 12) in S1. 
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OCCURRENCE ANALYSIS USING ERROR MATRIX  
Error matrix tables were developed (table 2), and 

statistics for the false positive rate and false negative rate 
(table 3) were used to analyze the performance of each 
topographic index model and their corresponding T values, 
DEM resolutions, and land use data sources in S1. An 

important application of an EG model is to help watershed 
planners locate fields with greater potential for EG 
formation. With this goal in mind, our judgment was that it 
would be better to simulate the presence of an EG that, 
upon field inspection, was not there (i.e., a false positive) 
than to fail to simulate the presence of an EG that was there 

 
Figure 4e. Output maps of location (left) and derived lengths (right) for the SAP model (eq. 4, TSAP = 0.3) in S1. 

 

 

Figure 5. Closer observation of CTI model along the trajectory of EG (right). Light blue arrows (left) show discontinuity along the trajectory of 
the EG. 
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(i.e., false negative). Thus, we generally attempted to 
minimize the false negative rate to a greater extent than the 
false positive rate. 

Impacts of DEM Resolution 
An ideal model would minimize both false negatives 

and false positives. The four topographic index models in 
this study exhibited a trade-off in which finer DEM 

resolution decreased false negatives but increased false 
positives. This trade-off is shown in figure 6; fewer 
potential EG pixels are observed as DEM resolution 
becomes coarser (from 2 m to 30 m). Analysis of the error 
matrix indicates that as DEM resolution became coarser, 
from 2 m to 30 m, the false negative rate increased, 
whereas the false positive rate decreased for all four models 
(table 3). For example, in the SA model with TSA = 5, the 
false negative rate increased from 21% to 97%, whereas the 
false positive rate decreased from 54% to 1% (table 3). As 
discussed above, the decrease in false negative rates for 
2 m DEM resolution (relative to 10 m and 30 m DEM) was 
considered more beneficial than the decrease in false 
positive rates for the coarser (10 m and 30 m) DEM 
resolutions. 

Impact of Land Use 
The false positive rate either decreased slightly or 

remained the same, and the false negative rate increased as 
the land use mask changed from field to NASS in the CTI 
and SA models for all T values. The increase in false 
negatives was attributed to misclassification of cropland 
fields as rangeland by NASS. This misclassification had the 
effect of removing some cropland fields from the analysis 
in the masking process. Because of this error, the EGs were 
not included in the analysis and thus not predicted by the 
model, despite the presence of observed EGs, thereby 
slightly increasing false negative rates. 

The relatively small change in false positive rates 
between the field and NASS land use masks indicated a 
relatively small contribution of two potential sources of 
error. First, pixels representing rangeland in the middle of 
agricultural fields were resampled with surrounding 
majority pixels during GIS rectification of the NASS land 
use data. Second, the NASS land use mask led to prediction 
of EGs in waterways and forested areas on the edges of 
agricultural fields. Unless these areas are masked and 

Table 3. Occurrence statistics for four topographic index models (SA,
CTI, SAP, and WTI) by topographic data resolution (2 m, 10 m, or
30 m) and agricultural land use mask data (field or NASS). 

 T Statistic 

2 m 

 

10 m 

 

30 m 
Field 
(%) 

NASS 
(%) 

Field 
(%) 

Field 
(%) 

SA model       
 5 False positive rate 54 52  25  1 
  False negative rate 21 27  37  97 
 18 False positive rate 27 25  8  - 
  False negative rate 21 37  66  - 
 40 False positive rate 10 10  3  - 
  False negative rate 38 43  83  - 

CTI model       
 12 False positive rate 35 30  7  0 
  False negative rate 18 36  65  98 
 62 False positive rate 9 9  2  - 
  False negative rate 32 47  95  - 
 100 False positive rate 5 6  1  - 
  False negative rate 51 62  95  - 

SAP model       
 0.3 False positive rate 7 -  6  0 
  False negative rate 49 -  83  100 
 0.5 False positive rate 1 -  1  - 
  False negative rate 86 -  96  - 
 1.0 False positive rate 0 -  0  - 
  False negative rate 98 -  100  - 

WTI model       
 6.8 False positive rate - -  -  - 
  False negative rate - -  -  - 
 9.8 False positive rate - -  -  - 
  False negative rate - -  -  - 
 12.0 False positive rate 34 -  10  5 
  False negative rate 23 -  60  80 

Figure 6. EG occurrence comparison for 2 m, 10 m, and 30 m DEM resolutions at TSA = 18. 
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excluded from analysis, the topographic index models will 
predict the presence of EGs when they are not actually 
present (e.g., in waterways), increasing the false positives. 
Our definition of EG catchments as contained fully within 
cropland fields (i.e., catchments were clipped to field land 
use, so grassed waterways, forested lands, etc., were not 
included) minimized the impact of within-field resampling 
but could not compensate for NASS-misclassified edge-of-
field areas. However, similar false positive rates among the 
NASS and field land use data sources indicate that these 
errors were relatively small in the study areas. 

Impact of Thresholds 
All four topographic index models demonstrated an 

increasing false negative rate and decreasing false positive 
rate as T value increased (table 3); for example, as TSA 
increased from 5 to 40 using field land use and 2 m DEM 
resolution, the false positive rate decreased from 54% to 
10% and the false negative rate increased from 21% to 38% 
(table 3). Better (lower) false positive and false negative 
rates were seen for TSA = 18. Further investigation of the 
role of thresholds in correctly predicting the occurrence and 
length of EGs using the SA model is discussed below. 
Similar trends were observed in the case of the CTI model, 
where the false positive rate decreased and the false 
negative rate increased as TCTI increased from 12 to 100. 
Optimum false positive and false negative rates were not 
found with the selected thresholds in case of CTI. The CTI 
model also resulted in higher false negative rates because it 
was less accurate in predicting the EG location along the 
trajectory (seen earlier); thus, performance of the CTI 
model was considered poor. 

In the SAP model, the false positive rate decreased from 
7% to 0% and the false negative rate increased from 49% to 
98% as TSAP increased from 0.3 to 1.0 (table 3). Optimum 
false positive and false negative rates were difficult to 
obtain because the SAP model was used to locate the 
initiation point of EGs rather than the trajectories 
(discussed earlier). Hence, the performance of this model 
was also considered poor. In the WTI model, TWTI of 6.8 
and 9.8 could not predict the locations (i.e., all cells were 
identified as EG cells), resulting in no statistics being 
calculated; however, the model predicted locations using 
TWTI = 12.0. The false positive rate was 34%, and the false 
negative rate was 23% (table 3). The false positive and 
false negative rates were both near optimum, and 
increasing TWTI further may have improved the model 
predictions but was not pursued in this study. 

The results show that the error matrix approach 
(occurrence analysis) produced a result similar to visual 
interpretation. The importance of the T value in EG 
predictions was also well established. Further analysis to 
examine T values using the SA model is presented below. 

LENGTH ANALYSIS 
Catchments in which both observed and predicted EGs 

were present were extracted and compared using NSE, R2, 
and PBIAS for all models and their corresponding T values 
using 2 m DEM and field land use (table 4). The SA model 
with TSA = 5 resulted in poor model agreement, whereas 

TSA = 18 and 40 resulted in very good agreement based on 
the R2, NSE, and PBIAS statistics (table 4). In the CTI 
model, TCTI = 12 resulted in poor model agreement, but TCTI 
= 62 and 100 resulted in good agreement (table 4). An 
increase in T value resulted in improved performance of 
both models. Model agreement for the SA model was better 
compared with the CTI model for higher T. The inclusion 
of plan curvature in the CTI model resulted in discontinuity 
and lower EG lengths (discussed earlier), which led to the 
observed reduction in agreement compared with the SA 
model. 

For the SAP model, model agreements were good 
despite the poor results from occurrence statistics. This is 
because only catchments in which EGs (both predicted and 
observed) were present were considered for analysis, and 
the SAP model had very few catchments with EGs (both 
predicted and observed) present (103 for TSAP = 0.3, 26 for 
TSAP = 0.5, and 5 for TSAP = 1.0). Thus, the statistics 
appeared better even though the SAP model was not 
capable of predicting location of EGs along the trajectory 
and had poor occurrence analysis results. Therefore, 
although the length statistics were better, overall model 
performance was considered poor. The WTI model with 
TWTI = 6.8 and 12.8 did not yield results because no EGs 
were predicted at those thresholds, but TWTI = 12 resulted in 
poor model agreement (table 4). 

SA MODEL ANALYSIS USING DIFFERENT THRESHOLDS 
Occurrence and length statistics revealed that T values 

play a major role in predicting the occurrence and length of 
EGs. Further analysis of the SA model, which was the most 
promising from the above analyses, was used to explore 
response to varying T values. The upper end of TSA was 
expanded to 200 with eight individual values of 10, 25, 30, 
50, 70, 100, 150, and 200 added to cover the larger threshold 
range. Study area S1 was used for this analysis, and the 
results were verified in study area S2. For each T value, the 
SA model was executed using 2 m DEM and field land use. 
Model performance was evaluated using the occurrence and 
length statistics procedures discussed earlier. 

Figure 7 shows the false positive rate, false negative rate, 
and κ statistic for each threshold T. In S1 (solid lines), the 
false positive rates decreased rapidly from 38% to 7% as TSA 
increased from 10 to 50 and decreased gradually to 1% as 

Table 4. Coefficient of determination (R2), Nash-Sutcliffe efficiency 
(NSE), and percentage bias (PBIAS) for topographic index models 
(SA, CTI, SAP, and WTI) and their corresponding threshold (T) 
values in S1. 

Threshold 
and Statistics 

SA 
Model 

CTI 
Model 

SAP 
Model 

WTI 
Model 

Threshold TSA = 5 TCTI = 12 TSAP = 0.3 - 
R2 0.11 0.56 0.21 - 

NSE -6.14 -0.04 0.66 - 
PBIAS (%) -194.2 -79.7 20.4 - 
Threshold TSA = 18 TCTI = 62 TSAP = 0.5 - 

R2 0.58 0.45 0.15 - 
NSE 0.66 0.48 0.53 - 

PBIAS (%) -41.4 60.2 54.5 - 
Threshold TSA = 40 TCTI = 100 TSAP = 1.0 TWTI = 12 

R2 0.53 0.41 0.37 0.27 
NSE 0.86 0.60 0.72 -0.35 

PBIAS (%) 14.6 65.3 41.3 -59.7 
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TSA increased from 50 to 200. The false negative rates 
increased gradually from 20% to 25% as TSA increased from 
10 to 30 and increased rapidly from 25% to 89% as TSA 
increased from 30 to 200. The κ increased rapidly from 0.22 
to 0.46 as TSA increased from 0 to 30, attained a peak of 0.48 
at TSA = 50, and gradually decreased to 0.15 as TSA increased 
to 200. 

The length statistics (R2, NSE, and PBIAS) are presented 
in table 5 for all thresholds. In S1, as TSA increased from its 
minimum value, R2 and NSE also increased, reaching 
maximum values at TSA at 25 (R2) and 30 (NSE), followed 
by a gradual decrease. PBIAS values were negative for small 
TSA and positive for TSA above 25, with the best fit value at 
TSA of 30. All three statistics presented better results for the 
TSA range from 25 to 40 (gray cells in table 5). 

Increase in the TSA value resulted in a decreased number 
of pixels meeting the TSA value, resulting in reduced lengths 
predicted by the model. Because of this, the predicted 
number of EGs decreased, resulting in a lower number of 
catchments predicting the presence of EGs despite the 
presence of observed EGs, hence resulting in higher false 
negative rates. Increased TSA (resulting in reduced length 
predicted by the model) also results in a lower number of 
catchments where predicted EGs are present, while observed 
EGs were absent, resulting in lower false positive rates. 

In studies related to EGs, the TSA thresholds that result in 
lower false positive and false negative rates while 

maintaining higher κ and producing the best length 
comparison statistics better predict the occurrence and 
estimates length of EGs. In analyzing the statistics in figure 7 
and table 5, a TSA of 30 produced near-optimal κ, the best 
NSE and PBIAS, and high R2 values (bold values in table 5) 
and is the best threshold value for EG identification in study 
area S1. 

The SA model was verified in study area S2 using the 
procedures described above. The occurrence statistics are 
represented by dashed lines in figure 7, while the length 
statistics are summarized in table 5. Model performance 
differed between the two study areas. In S2, the false positive 
rates were higher and false negative rates were lower for all 
TSA values compared with S1. The false negative rate 
increased gradually, unlike in S1 where the false negative 
rate increased suddenly after TSA = 30. At a TSA of 200, for 
example, κ was 0.37, the false negative rate was 67%, and 
the false positive rate was 4% in S2, compared with κ of 
0.15, a false positive rate of 1%, and a false negative rate of 
89% in S1. This result shows that the SA model was able to 
predict the location of EGs along the main trajectory, even at 
higher TSA, better in S2 than in S1. Higher false positive rates 
in S2 were partially because EGs were identified along 
terrace channels. These EGs were not seen on the aerial 
images, and field investigation would be needed to verify 
their existence. 

 

Figure 7. Occurrence statistics for SA model using TSA values from 10 to 200 in S1 (solid lines) and S2 (dash lines). 

Table 5. Length statistics for SA model with TSA values from 10 to 200 in S1 and S2. Threshold ranges with better statistics are highlighted in 
gray, and statistics for the best performing threshold are printed in bold. 

Study Area Statistics 
Index Threshold (T) 

10 18 25 30 40 50 70 100 150 200 
S1 R2 0.56 0.58 0.62 0.58 0.53 0.42 0.36 0.43 0.52 0.41 

NSE -0.75 0.66 0.83 0.86 0.86 0.80 0.72 0.78 0.76 0.67 
PBIAS (%) -110.8 -41.4 -13.8 5.3 14.6 23.4 37.6 29.3 34.7 43.9 

S2 R2 0.64 0.68 0.67 0.66 0.64 0.61 0.49 0.47 0.51 0.35 
NSE 0.10 0.66 0.77 0.81 0.84 0.85 0.81 0.81 0.82 0.74 

PBIAS (%) -74.1 -38.7 -25.6 -20.0 -10.9 -4.0 4.1 8.0 11.3 16.7 
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Similar to the occurrence statistics, the length statistics 
showed better results for higher TSA in S2 than in S1 
(table 5). Values of R2 were above 0.6 for TSA values from 10 
to 50, NSE peaked at TSA of 40 and 50, and PBIAS was 
closest to zero for TSA of 50 and 70. The optimum false 
positive and false negative rates with κ close to peak were 
seen for TSA of 40 and 50. Considering all the statistics, a TSA 
of 50 can be selected as the best threshold value for S2. 

TSA of 50 better predicted the occurrence and length of 
EGs in S2, whereas TSA of 30 performed better in S1. 
Different critical thresholds in S1 and S2 were influenced by 
differences in slope distribution and catchment size in two 
areas. While average catchment size of agricultural fields 
where EGs were present in S1 was only 6% (2.5 ha vs. 2.35 
ha) larger than in S2, the average catchment slope was 41% 
higher in S1 than in S2. Both larger catchment size and 
steeper slopes in S1 contributed to longer EGs that required 
lower TSA to be identified by the SA model. This finding, that 
the optimal TSA differed between study areas separated by 
only 290 km (180 mi), may indicate that a given EG 
topographic index model needs to be calibrated to find the T 
value for optimal EG occurrence and length simulation for a 
given location. 

CONCLUSIONS 
The performance of existing topographic index models 

(SA, CTI, SAP, and WTI) to predict EG locations was 
evaluated. Impacts of topographic model critical thresholds, 
DEM resolution, and land use data source were also 
evaluated. A methodology to derive length using the 
topographic index models was developed and evaluated. 

Results of visual interpretation show that the SA model 
better predicted EG location and lengths than the other 
models. The SA and CTI model predictions had similar 
pattern in terms of locating EG trajectory, but the CTI model 
predictions had greater discontinuity along the trajectory. 
The method developed to derive length in this study was 
sensitive to discontinuity, so the CTI model performance was 
poor. Occurrence and length statistics also show that the SA 
model better predicted the occurrence and length of EGs than 
the other models. The SAP model performed poorly among 
all the models in predicting occurrence and lengths because 
this model was used to find EG initiation points. The WTI 
model was not able to predict the occurrence and lengths at 
TWTI = 6.8 and 9.8, but it improved prediction of location and 
lengths at TWTI = 12. Further testing of the WTI model was 
not conducted. 

Different threshold values were required by the SA model 
to best predict the occurrence and length of EGs in S1 (study 
area 1, TSA = 30) and S2 (study area 2, TSA = 50). The need 
for different thresholds among study regions indicated that 
other factors that vary among the regions influence EG 
occurrence and length prediction; therefore, individual 
calibration of the topographic index model threshold for each 
application site is needed. 

Finer-resolution DEMs (e.g., 2 m) are needed to better 
predict occurrence and length of EGs. Coarser-resolution 
DEMs (10 m or greater) cannot locate EGs but may be useful 
for locating larger classical gullies in agricultural fields or 

gullies in rangeland. When considering EGs only within 
agricultural fields, field land use is recommended over 
NASS land use because NASS land use results in either 
over- or underpredictions. 

The EG locations predicted using these topographic index 
models were not accurate without calibration. Topographic 
features specific to a study area, such as average catchment 
size and slope, play an important role in EG identification. 
Future studies may apply scaling techniques to seek 
normalization of such topographic parameters, making the 
topographic index model approach independent of land area. 
Inclusion of other factors that vary by region or field, such as 
land management practices, precipitation characteristics, and 
soil properties, would likely improve EG model performance 
and may be useful in simulation of ephemeral gullies. 

ACKNOWLEDGEMENTS 
This material is based on work supported by the USDA 

National Institute of Food and Agriculture (NIFA) under 
Agreement No. 2005-51130-02364 and No. 2011-51130-
31128. Comments on the manuscript provided by three 
anonymous reviewers are greatly appreciated. 

REFERENCES 
Begin, Z. B., and S. A. Schumm. 1979. Instability of alluvial valley 

floors: A method for its assessment. Trans. ASAE 22(2): 347-350. 
Bingner, R. L., and F. D. Theurer. 2003. AnnAGNPS technical 

processes documentation. Version 3.2. Oxford, Miss.: USDA-
ARS National Sedimentation Laboratory. 

Bussen, P. 2009. Analysis of a rapid soil erosion assessment tool. MS 
thesis. Manhattan, Kans.: Kansas State University, Department of 
Biological and Agricultural Engineering. Available at: 
https://krex.k-state.edu/dspace/handle/2097/2351. 

Capra, A., L. M. Mazzara, and B. Scicolone. 2005. Application of the 
EGEM model to predict ephemeral gully erosion in Sicily (Italy). 
Catena 59(2): 133-146. 

Capra, A., P. Porto, and B. Scicolone. 2009. Relationships between 
rainfall characteristics and ephemeral gully erosion in a cultivated 
catchment in Sicily (Italy). Soil Till. Res. 105(1): 77-87. 

Chaubey, I., A. S. Cotter, T. A. Costello, and T. Soerens. 2005. Effect 
of DEM data resolution on SWAT output uncertainty. Hydrol. 
Proc. 19(3): 621-628. 

Congalton, R. G. 1991. A review of assessing the accuracy of 
classifications of remotely sensed data. Remote Sensing Environ. 
37(1): 35-46. 

Daggupati, N. P. 2012. GIS methods to implement sediment best 
management practices and locate ephemeral gullies. PhD diss. 
Manhattan, Kans.: Kansas State University, Department of 
Biological and Agricultural Engineering. Available at: 
https://krex.k-state.edu/dspace/handle/2097/13522. 

Daggupati, P., K. R. Douglas-Mankin, A. Y. Sheshukov, and P. L. 
Barnes. 2010. Monitoring and estimating ephemeral gully erosion 
using field measurements and GIS. ASABE Paper No. 1009663. 
St. Joseph, Mich.: ASABE. 

Daggupati, P., K. R. Douglas-Mankin, A. Y. Sheshukov, P. L. Barnes, 
and D. L. Devlin. 2011. Field-level targeting using SWAT: 
Mapping output from HRUs to fields and assessing limitations of 
GIS input data. Trans. ASABE 54(2): 501-514. 

Desmet, P. J. J., and G. Govers. 1997. Two-dimensional modelling of 
the within-field variation in rill and gully geometry and location 
related to topography. Catena 29(3-4): 283-306. 

Desmet, P. J. J., J. Poesen, G. Govers, and K. Vandaele. 1999. 
Importance of slope gradient and contributing area for optimal 



1440  TRANSACTIONS OF THE ASABE 

prediction of the initiation and trajectory of ephemeral gullies. 
Catena 37(3-4): 377-392. 

ESRI. 2011. ArcGIS Desktop: Release 10. Redlands, Cal.: 
Environmental Systems Research Institute. 

Flanagan, D. C., and M. Nearing. 1995. Water Erosion Prediction 
Project: Hillslope profile and watershed model documentation. 
Report No. 10. West Lafayette, Ind.: USDA-ARS National Soil 
Erosion Research Laboratory. 

Foster, G. R. 1986. Chapter 4: Understanding ephemeral gully 
erosion. In Soil Conservation: An Assessment of the National 
Resources Inventory, Vol. 2, 90-128. Washington, D.C.: National 
Academy Press. 

Gordon, L. M., S. J. Bennett, R. L. Bingner, F. D. Theurer, and C. V. 
Alonso. 2007. Simulating ephemeral gully erosion in AnnAGNPS. 
Trans. ASABE 50(3): 857-866. 

Grissinger, E. 1996a. Rill and gullies erosion. In Soil Erosion, 
Conservation, and Rehabilitation, 153-167. M. Agassi, ed. New 
York, N.Y.: Marcel Dekker. 

Grissinger, E. 1996b. Reclamation of gullies and channel erosion. In 
Soil Erosion, Conservation, and Rehabilitation, 301-313. M. 
Agassi, ed. New York, N.Y.: Marcel Dekker. 

Gutierrez, A. G., S. Schnabel, and A. M. Felicisimo. 2009. Modelling 
the occurrence of gullies in rangelands of southwest Spain. Earth 
Surf. Proc. Landforms 34(14): 1894-1902. 

Hauge, C. 1977. Soil erosion definitions. California Geol. 30: 202-
203. 

Holmes, K. W., O. A. Chadwick, and P. C. Kyriakidis. 2000. Error in 
a USGS 30-meter digital elevation model and its impact on terrain 
modeling. J. Hydrol. 233(1): 154-173. 

Horton, R. E. 1945. Erosional development of streams and their 
drainage basins: Hydrophysical approach to quantitative 
morphology. Geol. Soc. America Bull. 56(3): 275-370. 

Kim, I. J. 2007. Identifying the roles of overland flow characteristics 
and vegetated buffer systems for non-point source pollution 
control. PhD diss. Manhattan, Kans.: Kansas State University, 
Department of Biological and Agricultural Engineering. 

Knapen, A., and J. Poesen. 2010. Soil erosion resistance effects on rill 
and gully initiation points and dimensions. Earth Surf. Proc. 
Landforms. 35(2): 217-228. 

Knisel, W. G. 1980. CREAMS: A field-scale model for chemicals, 
runoff, and erosion from agricultural management systems. 
Conservation Research Report No. 26. Washington, D.C.: USDA 
Science and Education Administration. 

Knisel, W. G. 1993. GLEAMS: Groundwater loading effects of 
agricultural management systems. Publication No. 5. Tifton, Ga.: 
University of Georgia, Coastal Plains Experiment Station. 

Meyer, A., and J. A. Martinez-Casasnovas. 1999. Prediction of 
existing gully erosion in vineyard parcels of the NE Spain: A 
logistic modelling approach. Soil Tillage Res. 50(3-4): 319-333. 

Momm, H. G., R. L. Bingner, R. Wells, and S. D. S. Dabney. 2011. 
Analysis of topographic attributes for identification of ephemeral 
gully channel initiation in agricultural watersheds. ASABE Paper 
No. 1111250. St. Joseph, Mich.: ASABE. 

Montgomery, D. R. 2007. Dirt: Erosion of Civilizations. Berkeley, 
Cal.: University of California Press. 

Moore, I. D., G. J. Burch, and D. H. Mackenzie. 1988. Topographic 
effects on the distribution of surface soil water and the location of 
ephemeral gullies. Trans. ASAE 31(4): 1098-1107. 

Moore, I. D., R. B. Grayson, and A. R. Ladson. 1991. Digital terrain 
modelling: A review of hydrological, geomorphological, and 
biological applications. Hydrol. Proc. 5(1): 3-30. 

Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. 
Harmel, and T. L. Veith. 2007. Model evaluation guidelines for 
systematic quantification of accuracy in watershed simulations. 
Trans. ASABE 50(3): 885-900. 

Nachtergaele, J., and J. Poesen. 1999. Assessment of soil losses by 

ephemeral gully erosion using high-altitude (stereo) aerial 
photographs. Earth Surf. Proc. Landforms 24(8): 693-706. 

Nachtergaele, J., J. Poesen, L. Vandekerckhove, D. O. Wijdenes, and 
M. Roxo. 2001a. Testing the ephemeral gully erosion model 
(EGEM) for two Mediterranean environments. Earth Surf. Proc. 
Landforms 26(1): 17-30. 

Nachtergaele, J., J. Poesen, and A. Steegen. 2001b. The value of a 
physically based model versus an empirical approach in the 
prediction of ephemeral gully erosion for loess-derived soils. 
Geomorphology 40(3-4): 237-252. 

Parker, C., C. Thorne, R. Bingner, R. Wells, and D. Wilcox. 2007. 
Automated mapping of potential for ephemeral gully formation in 
agricultural watersheds laboratory. Publication No. 56. Oxford, 
Miss.: USDA-ARS National Sedimentation Laboratory. 

Patton, P. C., and S. A. Schumm, 1975. Gully erosion, northwestern 
Colorado: A threshold phenomenon. Geology 3(2): 88-90. 

Poesen, J. 1993. Gully typology and gully control measures in the 
European loess belt. In Farmland Erosion in Temperate Plains 
Environment and Hills, 221-239. S. Wicherek, ed. Amsterdam, 
The Netherlands: Elsevier. 

Poesen, J., J. Boardman, B. Wilcox, and C. Valentin. 1996. Water 
erosion monitoring and experimentation for global change studies. 
J. Soil Water Cons. 51(5): 386-390. 

Poesen, J., J. Nachtergaele, G. Verstraeten, and C. Valentin. 2003. 
Gully erosion and environmental change: Importance and research 
needs. Catena 50(2-4): 91-133. 

Poesen, J., D. Torri, and T. Vanwalleghem. 2011. Chapter 19: Gully 
erosion: Procedures to adopt when modelling soil erosion in 
landscapes affected by gullying. In Handbook of Erosion 
Modelling, 360-386. R. P. C. Morgan and M. A. Nearing, eds. 
Oxford, U.K.: Blackwell-Wiley. 

Smith, L. 1993. Investigation of ephemeral gullies in loessial soils in 
Mississippi. Technical Report GL-93-11. Vicksburg, Miss.: U.S. 
Army Corps of Engineers, Waterways Experiment Station. 

Souchere, V., O. Cerdan, and B. Ludwig. 2003. Modeling ephemeral 
gully erosion in small cultivated catchments. Catena 50(2-4): 489-
505. 

SSSA. 2008. Glossary of soil science terms. Madison, Wisc.: Soil 
Science Society of America, Soil Science Glossary Terms 
Committee. Available at: https://www.soils.org/publications/soils-
glossary. 

Thorne, C. R., and L. W. Zevenbergen. 1984. On-site prediction of 
ephemeral gully erosion. Report to the USDA Agricultural 
Research and Soil Conservation Services. 

Thorne, C. R., L. W. Zevenbergen, E. H. Grissinger, and J. B. 
Murphey. 1986. Ephemeral gullies as sources of sediment. In 
Proc. 4th Federal Interagency Sed. Conf., 3.152-3.161. Reston, 
Va.: U.S. Geological Survey. 

Vandaele, K., J. Poesen, G. Govers, and B. van Wesemael. 1996a. 
Geomorphic threshold conditions for ephemeral gully incision. 
Geomorphology 16(2): 161-173. 

Vandaele, K., J. Poesen, J. R. Marques da Silva, and P. Desmet. 
1996b. Rates and predictability of ephemeral gully erosion in two 
contrasting environments. Geomorphologie: Relief, Proc., 
Environ. 2(2): 83-96. 

Vandekerckhove, L., J. Poesen, D. Oostwoud Wijdenes, and T. de 
Figueiredo. 1998. Topographical thresholds for ephemeral gully 
initiation in intensively cultivated areas of the Mediterranean. 
Catena 33(3-4): 271-292. 

Vandekerckhove, L., J. Poesen, and D. O. Wijdenes. 2000. Thresholds 
for gully initiation and sedimentation in Mediterranean Europe. 
Earth Surf. Proc. Landforms 25(11): 1201-1220. 

Woodward, D. E. 1999. Method to predict cropland ephemeral gully 
erosion. Catena 37(3-4): 393-399. 

Zevenbergen, L. W., and C. R. Thorne. 1987. Quantitative analysis of 
land surface topography. Earth Surf. Proc. Landforms 12(1): 47-56. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


