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INTRODUCTION

In the last twenty years, the operating environment of farm tractors has

changed drastically in size and ergonomics. The environment has become quite

comfortable, particularly on the larger tractors. Often, operators tend to

use their more comfortable tractors to perform even the light-duty tasks which

do not utilize the full power of the big mp. i.-s. When a large tractor is

operating under a light load, fuel can potentially be saved. Most operators

tend to operate the engine at a higher engine HPM than necessary; if they

would gear up the transmission and lower the RPM, they could move to a more

fuel-efficient location in the engine load map while still producing the same

power output.

To this end, extension personnel at Kansas State University have

encouraged an adjustment in operating practices, called gear up and throttle

back. A concern expressed by some operators about this change in driving

habits was that they might, inadvertently, throttle the engine down to a range

that could damage it under sustained low speed operation. To avoid such an

occurrence, a gear selection aid was developed (Blumanhourst
. 1984), (Blu-

manhourst, et al. 1984). The device monitored the power being used and

displayed a new engine speed, gear ratio, and fuel savings if more than .5

gal/hr of fuel could be saved by switching from the present to the new set-

ting. The device was generally successful at saving fuel, although the amount

saved depended on the operating habits of the person and the nature of the

load. The .5 gal/hr figure was used as the minimum to prevent the algorithm

from constantly recommending minor changes in gears and engine speeds for

insignificant fuel savings. The use of the threshold implies that potential

fuel savings still exist even if the device recommendations are followed



faithfully. Blumanhourst (1984, Fig. 6) shows that more fuel can be saved by

increasing shift frequency. However, in the range of 20-30 shifts/hr, the

fuel savings is small compared to the inconvenience of shifting often.

Histograms obtained by Blumanhourst showed variations both within a field

operation and between field operations. For some operations where the load

varies only slightly, many of the load changes may be below the level that

would translate to significant fuel savings if the gears were shifted. For

the more abrupt load changes common to primary tillage tools, fuel savings

could also be difficult to realize due to the impossibility of shifting fast

enough to maximize the savings.

The present project seeks to capture the potential fuel savings by using

a continuously-variable transmission to more closely approximate the point of

maximum fuel efficiency. The laboratory setup consists of a Caterpillar 3304

engine coupled to a Vadetec continuously-variable transmission (CVT) in series

with a Funk power-shift transmission and planetary gearbox with a Midwest

eddy-current dynamometer loading the system. The entire system is under com-

puter control so that the engine will remain in the most fuel-efficient area

of the engine map.

To test the control algorithm for stability and actual fuel savings, a

"typical" pattern of loading due to tillage patterns will be needed. Data

files from the gear selection aid project were used to provide the test pat-

terns. The many hours of collected data were to be condensed and represented

by a short 10-15 minute sample. Methods such as selecting a short piece of

data, using the increment from the last reading, or deviation about a local

mean were considered. Finally, it was decided to represent the pattern using



statistical methods such as spectral density or autoregressive-moving average

processes. Thus, a short cycle could be characteristic of the hours of data

collected in the field.

OBJECTIVE

The objective of this study was to represent various tillage implements

by characteristic power series obtained from data of previous fieJd trials.

LITERATURE REVIEW

Standards and Soil Models

For guidelines on how to derive a typical test cycle simulating field

tillage on a dynamometer, one potential source is the tractor test standards

published by the engineering societies. In the United States, the American

Society of Agricultural Engineers (ASAE S209.5) and the Society of Automotive

Engineers (SAE J708 JUN80) use the same standard to test the claims of the

manufacturer. These tests subject the tractor to drawbar, PTO, and fuel con-

sumption tests. The testing is done on a hard surface at a constant speed for

consistency and convenience. The International Organization for Standardiza-

tion also lists standards (ISO 789/1) which are similar to the ASAE and SAE

standards for testing tractors.

Relationships betwleen the variables which affect a tractor's performance

on a hard surface may relate test track data to actual working conditions.

Information, including graphs, on variables such as the wheel loading factor,

tractor size and configuration, and tractive performance on a concrete surface

is given by Leviticus and Reyes (1985). In addition, ASAE standard D230.3



gives guidelines to predict field performance from test data and estimate the

expected draft/unit cross section for various tools.

The above test procedures all deal with a constant level of power. These

methods work satisfactorily for checking durability and estimating average

fuel consumption. However, the load histograms obtained by Blumanhourst

(1984) show that the load does not remain constant, but varies as the tractor

progresses through the field.

The change in draft force while pulling tools through the field perhaps

could be calculated by using soil models to give a test cycle which imitates

the loading on a tool. However, these models are still in an elementary stage

of development. Grisso and Perumpral (1985) evaluate different soil models,

all of which use the basic wedge in front of the tool to calculate the draft

force and make other simplifying assumptions such as uniform soil which would

tend to make the load constant.

Industry Simulations from Data

Industry and government use road simulations to test a variety of vehi-

cles without the expense of field testing. The Environmental Protection

Agency prescribes a sequence of automobile speeds to check exhaust gas emis-

sions (SAE J1094a) using a dynamometer. On actual roads, the road profiles

can be examined (see Chaka (1978) for a description of an electronic road pro-

filer) to verify that no changes in input have occurred to vehicles on dura-

bility tests. Chaka also says that the road profiles are useful in duplicat-

ing public road profiles on special test roads.
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Histograms have been used to simulate the conditions of a tractor in the

field (Whelpley, 1973). Field data of axle torque was collected and analyzed

to produce frequency of occurrence histograms of various field operations. A

histogram using 20 load increments was constructed for each unique field

operation. The individual histograms were then combined on a time-weighted

basis to produce master histograms for a specific operation (i. e. third-gear

operation using heavy draft implements). These histograms were then used to

make master histograms for the engine and the drive train. The field data was

combined based on percent of time spent at heavy, medium, and light draft

loads to make a final histogram consisting of ten blocks. For the engine his-

togram, data from all gears was used in proportion to the amount of actual

field usage. For the power train, the histogram consisted only of data for a

specific gear ratio. The load levels for the dynamometer were then selected

through a randomized block sequence. The final histogram could also be

represented in continuous form by the amplitude probability distribution

(Bekker, 1969), which uses a single curve to display the load levels. As an

alternative to the histograms, Whelpley also considered using a mean torque

signal combined with a random signal to simulate the deviation of the load

history.

Cryer and Nawrocki (1976) used spectral density to determine the inputs

for a road simulator. Four basic steps were used in this approach. First,

the vehicle was driven on a road of interest while instruments recorded the

vertical acceleration on each wheel spindle. Second, the vehicle was placed

on appropriate actuators and the dynamic characteristics which relate the

spindle response to the actuator inputs were measured. Third, using the

desired response obtained from the test road, the effective road inputs were



derived by using the dynamic characteristics of the test stand. Fourth, the

response to the derived inputs was determined and compared to the desired

response. The actuator inputs were then varied iteratively until the power

spectral density plots for the simulated road profile matched that obtained

for the actual surface. Cryer and Nawrocki (p. 2) report that "the PSD

description of road profiles is gaining acceptance, since it is an accurate

description of the road" and that it has been proposed to the ISO as a stan-

dard description of road roughness.

Time Series Models

Evenly -Spaced Method s

Several methods of analyzing time series are widely encountered in the

literature. Two closely-linked methods are autocovariance. commonly displayed

as autocovariance versus lag, and spectral analysis which maps the relative

covariance, known as power spectral density, versus frequency. The autoco-

variance shows patterns, if any, as the time variable changes while power

spectral density shows whether the spectrum has peaks of variance in narrow

frequency ranges, as would be the case with a cosine curve, or whether the

relative covariance changes gradually over a wide frequency range. The clas-

sic text on spectral density analysis, and with it autocovariance, was written

by Blackman and Tukey (1958). The theory is now covered in many books that

deal with time series analysis. The basic theory is outlined in Appendix A

along with a procedure used by Walls et al . (1954) and Wendenborn (1966) to

generate PSD plots for discrete data.

Another type of time series analysis consists of the AutoRegressive and

Moving Average, ARMA(p,q), models which Box and Jenkins (1976) deal with
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extensively. These models consist of three parts, the autoregressive
,

the

moving average, and the random plant noise. The autoregressive part makes the

present value dependent on p past values, each multiplied by a distinct coef-

ficient which reflects the degree of dependency. The moving average part

makes the present value dependent on q past random noises. The random noise

term, present in all models even if q is zero, is added to reflect the assump-

tion that the next value is not determined absolutely, but will fall within a

certain range, assumed to be gaussian in distribution.

Irregularly -Spaced Methods

The theory for time series analysis methods like power spectral density

or the ARMA models has been well-developed for continuous or evenly-spaced

data (see Otnes and Enochson (1972) or Box and Jenkins (1976)). Only recently

have methods been suggested for dealing with irregularly-spaced data. Various

methods for analyzing irregular time series are given by Parzen (1984).

Irregular spacing can be dealt with by weighting the individual elements.

Masry (1984) uses a mean value of sampling rate which is a constant in his

spectral density calculations. Marquardt and Acuff (1984) weight the i.jth

element's contribution to the spectral density by the proportion of time

represented in a square containing that element. An attempt was made to

analyze the available data using this method (see "Methodology"). The Direct

Quadratic Spectrum Estimation (DQSE) method developed by Marquardt and Acuff

is summarized in Appendix B.

Harvey and Pierse (1984) describe an ARMA method that is useful when the

data was taken at long intervals initially and then later taken at closer

intervals, as would be the case with stock prices which were recorded yearly
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at first, and later changed to monthly index. Their technique reverses the

series so to obtain the initial covariance matrix. The state space approach

is then used to evaluate the parameters with an optimization program which

uses numerical derivatives to fit the parameters. They also show an approach

for evaluating an AutoRegressive Integrated Moving Average (ARIMA) method for

use with differencing, the change between the data points instead of the

actual points, and seasonal differencing.

Jones (1980, 1985a) details an ARMA method which is useful for cases of

evenly-spaced data with missing values. The method uses the state space

approach on a given data set. The initial covariance matrix is calculated

recursively from the expected data values, which can be expressed in terms of

the coefficients of past values and random noise. The scheme of model fitting

begins with initial estimates of the parameters and then uses a nonlinear

optimization program to vary the parameter values until the minimum value of

-2 ln( likelihood) is reached. This method is described further under the sec-

tion entitled "Theory of the ARMA Process". Jones also considers the ARMA

method for the case of data with irregular spacing (Jones. 1985b).

In the ARMA(p,q) model, which bases the present value upon p past values

and q past random plant noises, the accuracy of the estimate of the p and q

coefficients used with the past values can be judged by any of several guide-

lines (see Jones (1985a) for a summary). The least squares approach selects

the value that minimizes the sum of squares of the residual. The Yule-Walker

equations choose the parameters which best predict the present covariances

from the past covariances. The maximum entropy approach is similar to least

squares, except that a backwards autoregression is considered. Forward and

backward autoregressions converge to the same value. The term in the
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numerator for the parameters is the same for both directions, but the denomi-

nator differs by a term. Burg's maximum entropy estimate uses an average of

the two denominators from forward and backward autoregression as the denomina-

tor.

Yet another way of estimating the best fit, under the assumption that the

noises are normally distributed, is the likelihood function which depends upon

a combination of the innovation; that is, the difference between the actual

and predicted values, and the variance of the innovation. The likelihood

function is often simplified to ln( likelihood) . The relative value of likeli-

hood for a data set is considered rather than the absolute since the value

differs according to the type and length of the data sample. Akaike (1974)

makes another modification to the likelihood function by adding a penalty for

increasing the order of the autoregression. Akaike 's Information Criterion

(AIC) is meant to be an estimate of 2N times the average information for dis-

tinguishing between the assumed and true model, where N is the number of data

points. The first part, consisting of -2 ln( likelihood) , is the penalty for

the badness of fit between the modeled value and the actual value in the data.

The second part, the addition of twice the number of parameters, is the

penalty for increased unreliability caused by using an increasing number of

variables to describe the system. In the concept of the AIC number, the best

model is the one with the lowest AIC value. Models with an AIC value close to

the lowest can also be considered, with a lower order model being preferable

to a more complicated model.
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ORIGINAL DATA COLLECTION

The raw data collected in the original gear selection aid project con-

sisted of time, engine and transmission hertz signal counts, and position of

the injector pump rack. The transmission ratio and ground speed were thus

easily obtained. The power and fuel flow were obtained by regression equa-

tions from rack position and rpm. The specific fuel consumption was then

easily calculated. The above values were recorded: the variables considered

in the present analysis are time, velocity, and power.

The instrumentation sampled the data points at a rate of 1 sample/sec.

At the time of the experiment, the interest was in the overall patterns so a

long time-length sample was desired to accurately estimate the load histogram.

Tape was chosen as a storage media, so in order to work within the storage

space of the microcomputer and minimize the tape-writing time, the sampled

values were recorded in the cycle described below and shown in Fig. 1.

2
.^

c

2
O
a.

/

Jl

r
1

2 3

Time (min)

Figure 1 . Data Cycle

1. Readings were taken each second.

2. For the first minute of the 5-minute cycle, the data was stored as 15 4-
second averages. The data treated in this way will be referred to as
fine data.
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3. The subsequent 4 minutes of readings were stored as 4 1-minute averages.
The data treated in this manner will be referred to as coarse data.

The short-term (4-sec) averages showed the faster variations while the 60-sec

averages showed the long-terms variations in loading patterns. The result of

the data was used to plot histograms of power-usage variation (Blumanhourst

,

1984). The data files contained several segments of data since the original

project disregarded values when the gears were shifted or the tractor was

traveling from one location to another. The longest "continuous" data segment

was used to represent each file. A FORTRAN program checked the fine and

coarse values for the beginning and end of the segment. The end occurred if

values were missing when the total accumulated time was less than or equal to

5 minutes or when the count was above 30 minutes and the time skipped was

greater than or equal to 10 minutes. The total sample length varied by loca-

tion and ranged from 30 minutes to over 4 hours.

MATERIALS

The materials used in the current analysis consisted of the data files,

collected as described above, computers to analyze the data, and programs to

control the data processing. A DEC PDP 11/34 was used to run the first two

methods of analysis using a spectral density approach. A Harris 800 was used

to run Jones' exact likelihood method due to the speed of the Harris and the

amount of iteration necessary in the program. The three methods considered

for analysis are described below.
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METHODOLOGY

Analysis of the series was attempted using three different methods. The

first two attempts were based on the idea that any pattern can be represented

as a collection of sine and cosine waves. The third method of analysis

assumed that the present value is dependent on the past values as well as on

random noises.

Regularly-Spaced Spectral Density

The first analysis attempt used Blackman and Tukey's power spectral den-

sity which deals with regularly-spaced data with no missing values (Walls, et

al,1954) and (Wendenborn, 1966). Since the available data was evenly spaced

with missing values in the coarse segments, it was forced into evenly-spaced

i:i. . .: : s by recombining the data. The basic interval used was the 4-second

interval. The mean of each minute of data was determined. For the first

minute of the data-taking cycle, this was the mean of 15 points. For the

remaining four minutes, this was simply the recorded value, since this was

already the average over 60 seconds. The data was then recombined starting

with the first minute of fine data. The deviations from the one-minute mean

of the fine data were determined. The data was then reorganized by combining

the deviations of the fine data from minutes 1,6,11,16,21,... about the means

of minutes 1,2,3,4,5 This recombined data was then analyzed by the

autocorrelation-fourier transform method described in Appendix A. Since there

was little, if any, statistical support for the above recombination of data,

the search was continued for methods that were suitable for the data spacing

pattern.
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Direct Quadratic Spectrum Estimation

Marquardt and Acuff's Direct Quadratric Spectrum Estimation (UQSE) method

was used in the second approach (Marquardt and Acuff, 1984). This method cal-

culates the spectrum by giving a weighting factor, which is dependent on the

time since the last sample, to each correlation value. The samples are

assumed to be point samples taken at irregular intervals. Since the algorithm

had the capability of dealing with irregular spacing, the samples were

analyzed on a distance basis, as determined from the average speed at each

data sampling, instead of on a time basis. The data in the present case is

not a point sample, but rather an average. The fine samples are close enough

to be regarded as point samples, and indeed, the apparent amplitudes in aver-

aged data and the point samples can be related by regression. The minute

averages are too different from the 4-sec averages to be regarded as point

values and so they are left out of the spectral density analysis by the DQSK

method. The Marquardt-Acuf f algorithm is given in Appendix B.

The most obvious result of the weighting by time intervals is that the

beginning and end values of the minute of fine data, within the sample, are

given a much larger weight than the other values in the minute. Consequently,

known curves in the form A cos(2*;tx/T) where A is the amplitude, T is the

period, and t is the time were also analyzed by this method. The known curve

was treated in the same manner as the original data. Values were calculated

at 1 second intervals. For the first minute, 15 values were recorded, each

consisting of averages over 4 seconds. The next four minutes were not

recorded, as they are not representative of the same area as the 4-second

value. The cycle was repeated until a suitable length was obtained. On the

spectral density plot of a known curve, an abrupt peak occurs at the expected
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frequency. On either side are prominent side lobes, their presence due to

leakaf^e and their height to the effect of irregular spacing. These lobes make

interpretations of the resulting spectrum inexact. In order to obtain a sharp

window which focuses only on the frequency under consideration, as recommended

by Marquardt and Acuff, the lag was long enough to stretch over several 5-

minute cycles.

An attempt was made to relate the main peak in the spectral density plot

of a known curve to the original amplitude by regression equations. The fac-

tors affecting the height were mainly the amplitude, A. of the original curve,

and to a lesser degree, the length of the data sample and the period, T, of

the wave (due to the averaging). The regression equations showed a poor

degree of correlation with a changing rate of variance so this approach was

reexamined by limiting the weight assigned to each data value. With the ori-

ginal Marquardt-Acuf f approach, the weight was assigned to the minimum of the

length of the Nyquist wavelength and the halfway distance between the data-

taking intervals. This resulted in the starting and ending points of the data

being given much greater weight than any other values. Limiting the weight

that could be assigned to each point by setting the maximum possible distance

to 10 m, which was approximately the distance represented in each 4-second

interval in the data samples, eliminated most of the sharp peaks and gave a

spectrum that was quite flat. Since the influence of the beginning and end

values of the fine data samples could be unpredictable, yet another method was

sought.
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Autoregressive-Moving Average Approach

The third and last means of analyzing the data is the autoregressive mov-

ing average (ARMA) approach. Jones (1980,1985a) shows an adaptation of the

ARMA process to deal with missing data. A way to recursively estimate the

parameters is (Jones, 1980) by changing to the state space form as derived by

Akaike (1974). The fit of the model is evaluated by minimizing the -2

ln( likelihood) function. The model calculates likelihood where the data

exists and ignores portions of nonexistent values. Thus, the value is exact

for the given data. See the section "Theory of the ARMA Process" for more

detail

.

The model fitting was done by using a set of subroutines written by Jones

(1978). The main program was based on one supplied by Jones and modified to

read in the data, figure the average and standard deviation, and subtract the_

average from the data values to yield numbers distributed about zero. As in

the DQSE approach, only the fine values were used; the coarse were neglected.

The program checked 40 models in the form ARMA(p,q), with varying integers as

p and q values. The AR value p ranges from to 6 and the MA value q from

to 5. The sum of p and q is ^ 10. due to program limitations, so the highest

order model is ARMA(6,4). When the order of p or q is increased, the value of

the transformed new variable is set to zero and the parameter values from the

previous model are used to initialize the present model. If a problem is

encountered in finding the minimum -2 In(likelihood) in the previous model,

such as exceeding the iteration limit, the array of transformed parameters is

reset to zero for the next model. The subroutines calculate the -2

ln( likelihood) function and then feed the parameters into a non-linear optimi-

zation system which varies the transformed parameter values until the -2
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ln{ likelihood) is minimized. After the optimization routine has completed its

work, the main program prints the output and begins the next model. After all

40 models have been evaluated, the valid solutions are sorted into ascending

order of AIC (Akaike's Information Criteria is the sum of -2 In(llkelihood)

plus twice the number of parameters used in the model.) and the orders of p,

q, their coefficients, estimated error variance, and AIC are printed.

The optimization program used in this experiment was developed at the

National Center for Atmospheric Research in Boulder, Colorado. It finds the

local minimum of a twice continuously-dif ferentiable real-valued function f

from a given starting point x . The input for this subroutine consists of the

dimension, n, of the problem, a subroutine to evaluate the function. in this

case the -2 ln( likelihood) function, and an estimate x of the minimum of the

function. When the program is finished, the values returned are an approxima-

tion to the local minimum, the value of the gradient, and a flag to designate

the reason for stopping. Termination may not necessarily be due to conver-

gence to the solution; other reasons may be errors in input, inefficient use

of the program by setting the dimension of the program to 1, or exceeding the

iteration limit.

Some minor changes were made in the routines obtained from .Jones. The

Markrep routines called for IMSL routine LEQTIF to be used as a linear equa-

tion solver using Gaussian elimination (Crout algorithm) with equilibration

and partial pivoting. The IMSL library was not available so a routine based

on the Cholesky method was used instead ( James ,et . al . , 1977). The subroutines

for calculating -2 ln( likelihood) were modified so that they checked the sign

of the (1,1) element in the covariance array, which should always be positive,

before attempting to take the square root of that element (dimensioned real).
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According to Jones, a negative sign could be caused by roundoff error and

could be alleviated by inserting a small observational error into the reading.

Consideration of observational error was available in the routines, but not

used in order to contain the number of models. The program stopped prema-

turely on 6 of 24 data files before this check was implemented. Roundoff

error was also observed in one test case where the values were small and many

were missing, in a pattern of 15 present, 60 missing. A solution was ade-

quately obtained after doubling the values in the file and processing. The

non-linear optimization routine also was modified to check the sign of numbers

before taking the square root. No case was observed where this error

occurred, but the check was inserted as a precaution.

The output of the optimization routine was also modified. Originally,

the program had three levels of messages which would print out varying levels

of information as the program progressed, none of which would print out no

information and also allow the model to run an ARMA(0,1) or ARMA(1,0) model.

Since the program could generate sizable amounts of monitoring data while run-

ning 40 models, the desired change was made.

THEORY OF THE ARMA PROCESS

The following is the theoretical basis for the subroutine set Markrep,

which calculates -2 In(likelihood) , as given by Jones ( 1980 , 1985a) , and is

included here for the benefit of the reader. An autoregressive moving average

process with an order of p,q (ARMA(p,q)) and a zero mean can be expressed as

^i = ,^Vt-k ^ \ ^ ,^ ^k^-k •
fiJ

k=l k=l

The first summation term represents the autoregressive part where the present
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X is dependent on p previous x's. The second summation term determines the

contribution that the past shocks make to the present vaJue of x; only the

past q values are considered, hence the model is referred to as ARMA(p,q).

The e term is a part of the model no matter what degree of q is used. The

"real x" is considered to be specified within a certain range which is indi-

cated by the magnitude of 6 . The random noise is the only input from the

environment into the system. The value has a defined mean, in this case 0,

with the true value distributed about the mean. Thus even an ARMA(O.O) model

would not always have a value of 0: the mean of the data would be and the

numbers would be distributed within a defined variance.

An assumption is made that the process is stationary; in other words, if

the process is sampled from time t to t+k and then sampled at time t+m to t+n,

the mean will be the same and the variance of the shock noise will be the

same. The values of k, m, and n are arbitrary and the value of the mean is

not necessarily zero for the definition of stationarity to be met. The

assumption of stationarity means that the roots of

P k
1 - E a, z = [2]

k=l "

must lie outside of the unit circle. The coefficients of the x (equation
t — K

(1)) not have to lie between -1 and 1 to meet this condition. For example,

the roots of the equation could be 2 and 5/4. both of which lie outside of the

unit circle; equation (2) would then be

1 - 1.3z + .4z^ =

The equation must also be invertible; that is, the equation below must have

roots outside the unit circle.
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k=l
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[3]

Without this constraint, the influence of the random shocks would continue to

grow as time progressed and the uniqueness of the parameters would be lost.

The state of the process in Akaike's Markovian representation

(Akaike, 1974) is defined as a column vector, Z, with a length of m, where

m = Max(p, q+1

)

Z(t)

X(ti t)

X(t+l! t)

[4J

[5J

.x( t+m-1 It).

where x(t+jlt) is the prediction j steps ahead when given the x values up to

the time t. Hence, x(t|t) is simply the value x Rewriting equation (1) for

a one-step prediction using this terminology gives

x(t.lit) = E Vt.l-k^ ,\ Vt.l-k
k=l k=l

Expanding to a j-step prediction uses the previous predictions and yields

[6]

J-1
x(t+jlt) = Z aj^x(t + j-kit) + E aj^x^^.

j^

+ Z (3, £
, ^k t*-j-k [7J

k=l k=j ' k=j

If the indices are beyond their proper range, the summations concerned are

eliminated. Updating equation (7) to time t+1 , it becomes

J-2 p q
x(t+j!t^l) = I a x(t+j-klt + l) + I «wX + Z K^t^i ic

f^J
k=l

^
k=j-l ^ ^^'^

k-^j-1 ^ ^^'^

Subtracting equation (7) from (8) gives a recursion which involves only the

random input at time t+1:
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J-1
x(t+jit+l) - x(t+jit) = L a, [x(t+j-kit-l) - x(t+j-k't)] ^ /3 . ,e^

,

k=l
^ J""^ ^^^

[91

If the term in brackets is redefined,

x(t-j|t+l) - x(t+j!t) = gjet^.1 10]

where g. is some, as yet undefined, constant. Equation (9) can be rewritten

as

x(t+jlt+l) = x(t+jit) +
J-1

J-1

k=l
k^j-k 't + 1

[11]

The quantity in brackets may be combined into one general variable called g,

where

^1 = ' [12]

and /3 = for j > q. Equation (11) can then be written more compactly as

x(t+jit + l) = x(t^jlt) + g-e^.^j [14-

with the final element in the state vector written as

x(t+mit+l) = Z a, x(t+m-k!t) + g e ,

, , k m t-^1
k=l

[15]

The autoregressive-moving average (ARMA) model can be described in a

recursive fashion by using the state space framework. As an example, the

technique is shown for a first-order autoregression and later generalized to a

higher-order model. The equation for the ARMA(1,0) model consists of:
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x(t+l) = ax(t) + e(t) [16J

where x(t) is the state at time t, assuming zero mean, a is a vaiue represen-

tative of the state transition matrix (For this first-order process tho state

transition matrix is a scalar.), and e(t) is a random shock with a variance of

2
a . If the process is observed with error, the observation equation becomes

y(t) = x(t) + v(t) [11]

where x(t) is the "true" process, v(t) is a white noise process with a vari-

ance R, and y(t) is the process for which values are actually obtained. This

modification of (16) is equivalent to an ARMA(1,1) process since y(t+l) now

depends on the previous value at (t) and an error in addition to a random

excitation. The variance of this estimated state is

P(t+lit) = E{[x(t+1) - x(t+llt)]^} [18]

At the beginning of a zero-mean process, the best estimate of the state

is zero:

x(0!0) = [19]

The variance of the process at the beginning is best estimated as

2

P(0!0) = —^—

T

[20]

1 - a

This is the variance that would be expected from a no-skills forecast. For

the special case of first-order autoregression, the recursion proceeds as fol-

lows :
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(a) Make a one-step forecast

x(t+l It) = ax(tit)

.

[21]

(b) Calculate its variance

P(t+l|t) = a^F(tit) + a . [22]

(c) Predict the next observation by

y(t+l't) = x(t+l!t). •23

(d) When the next observation is available, calculate the residual or "inno-

vation"

I(t+1) = y(t+l) - y(t+l!t) [24

(e) The variance of the innovation is

V(t+1) = P(t+1 !t) + R [25]

;f) If the errors are Gaussian, the contribution to

this step of the recursion is

ln(V(t+l) 4- [I(t + 1)]^ / V(t+1).

-2 ln( likelihood) from

[26]

(g) The state is updated by

x(t+l!t+l) = x(t+l!t) + P(t+1 it)I(t+l) / V(t+1). [27;

This equation can also be written as a weighted average of the old esti-

mate and the new observation, with the weighting inversely proportional

to the variances, giving

x(t+l:t+l)
x(t^lit) ^ v(t+l)
P(t+llt) R

/
1

P(t+llt) R
[28]

(h) Finally the variance is updated by

P(t+lit+l) = P(t+llt) - [P{t-l!t)] / V(t+1) [29]
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2
The -2 ln( likelihood) function is calculated for assumed values of a. a .

and

R by summing (26) over all the data points:

-2 In(likelihood) = S {ln[V(t+l)] + [I(t+1)]^ / V(t+1)} [30]

A nonlinear optimization routine then varies the values of the parameters

until the minimum value for -2 In(likelihood) is found. When data points are

missing, only :._..ps (a) and (b). which make a prediction and estimate its

variance, are calculated and then the algorithm returns to step (a). Thus,

the above procedure gives the exact likelihood for the available data even

though observations are missing.

Most times, the variance a is not known: it can be removed from the

2
estimation problem by differentiating (30) with respect to a and setting the

result equal to zero (Jones . 1980)

.

a^ = i E 1(1)^ / V(i) [31]
" i = l

Substituting this result back into equation (30) gives the function to be

minimized.

n n 2

1 = £ In V. + n In Z [I(t+1)] / V. [32]

1=1
^

i=l

Akaike's Information Criterium (AIC) is then computed by

AIC = -2 ln( likelihood) + 2 [33]

Generalizing to a higher-order model necessitates the use of two equa-

tions when using the Kalman state space model. The general case uses matrices

instead of scalars. The first equation is the state equation, expressed in

matrix form as



x(t+lit^l)
x(t+2it+l)

x(t-^mi t+1

)

1 . . . x(t.it)
1

1 . . .

X

x(t+l: t)

r

^2

m • «2 «1
.x(t+ni-l It).

.^m.

The state equation can be written as

't-il
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[34]

X(t + 1) = (D{t)X(t) + U(t) [35]

where X(t) is the state vector, <I»(t) is the state transition matrix, and U(t)

is a vector of the random plant noise with a covariance matrix Q(t). The ge

term (see equation (10)) corresponds to the U(t) term. The second equation in

the state-space representation is the observational equation

Y(t) = M(t)X(t) + v(t) [36]

where M(t) is the matrix showing which linear combinations of the state vector

are observed. The observation vector Y(t) does not have to be the same length

as the X(t) vector. The random observational error vector v(t) has the

covariance matrix R(t). The algorithm for the general case is:

(a) Make a one-step forecast by

X(t + ll t) = a>(t)X(t! t) . [37]

(b) Calculate its covariance by

P(t^lit) = «(t)P(tit)[0(t)] ' + Q(t: [38]

!c) Predict the next observation vector by

Y(t+li t) = M(t-l)X(t-^li t) [39]

(d) When the next observation is available, calculate the innovation vector

I(t+1) = Y(t+1) - Y(t-lt) [40]
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(e) The covariance matrix of the innovation vector is

V(t-H) = M(t + l)P(t-(-lit)[M(t + l) j
' -H R{t^l) [41]

(f) The contribution to -2 ln( likelihood) is

lniV(t+i)! + [Kt+D] '[V(t+l)]"4(t + l) [42]

where 'V(t+l)i is the determinant of the covariance matrix.

(g) The state is updated by

X(t + lit + l) =X(t + l't) ^- P(t + li t)[M(t + l)] ' [Vlt-fDj^^it + J ) . [43]

(h) Finally, the state covariance matrix is updated by

P(t + 1 t + 1) = P(t + llt) - P(t + l|t)[M(t)]' [V(t + l)]~-^M(t)P(t + l!t). [44]

The AIC number is computed by an expansion of equation (33):

AIC = -2 In(likellhood) + 2(p + q) [45]

The above procedure proceeds satisfactorily as long as the coefficients

show no inclination to pass the boundary as established in equations (2) and

(3). If they wander close to the boundary while being evaluated by the optim-

ization program, the stability and invertibility of the model may be

threatened. Therefore, Jones' subroutines ensure that the model stays within

its limits by reparameterizing in terms of the partial autoregressivo coeffi-

cients, a , so that the a's can be constrained to lie between -1 and +1 by the

transformation

a^ = [1 - exp(-u^)] / [1 + exp(-u^)] [46]

The a's can then be calculated using the Levinson-Durbin recursion, for

n=l p. The n's in equations (45-48) increment by 1, up to and including

the value p. each time the recursion is done.
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a = a [47

1

n n

If n = 1, the recursion is complete and begins again at equation (45) with n =

2. When n equals 2 or more, a is calculated, where m = l,...,n-l
m

a = a - a a [48]
m m n n-m

The a. variables are then reset for the next recursion.
1

a. = a. i = l n-1 [49]11 '

If n 5<= p, the recursion begins again at equation (46); otherwise the autore-

gressive (a.) coefficients have been found when n = p.

The moving average coefficients can similarly be transformed in the

recursion (equations (50-53) for n = l,...,q.

bj^ = [1 - exp(-Wjj)] / [1 + exp(-w^)], [50]

The newest ^'s are initialized for the current process by

|3 = b [51]
n n

with the next value for b , when n > 1, calculated by
n ^

\-^m^\^m -"^l-^ n-1 [52]

As in the autoregressive case, |3 = b when n = 1. The /3 values are updated

by

3. = b. i = 1 n-1 [53]

and the process continues at equation (50) until n = q.
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When observation error is included in the model, a transformation can be

used to ensure a nonnegative estimate for the observational error variance.

2 s
R = s or R = e [54]

Now, the optimization routine can safely be run using the transformed vari-

ables

u, . k = 1
k

\. k = 1 q

while the likelihood routine uses the untransformed variables of the a's and

the ^'s.

RESULTS

The following models (Table 1) were selected for each data file by the

criteria of AIC value, number of parameters, and suitability to the present

case. A pattern to simulate the data in each file can be generated by using a

slightly modified version of equation (1). Since a zero mean was used in that

equation, the data simulation series, y, requires the mean x value to be added

to the X value.

\ = " «1^-1 ' «2^-2 " •
•• '%\-p

- ^iVl " '^2^-2 - • • • ^ Vt-q " \

y^ = x^ +- X [55]
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The a's and (3's are given in the table below, as is the mean. The e's are

generated from a gaussian random number generator with a standard deviation

given by the estimated error deviation in the table. For test files, the

recursive processes can be started by generating q gaussian random noises and

initializing p x variables to zero. The process then generates numbers. The

first few hundred values are not recorded so as to avoid the effects of the

initial zeros. Any subsequent values can be collected and used to simulate

the data in the original file. A FORTRAN program to regenerate the data

series is given Appendix D.
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DISCUSSION

Spectral density was considered as an analysis technique in the hope that

the data would show distinct variances at certain frequencies. One author,

Wendenborn(1966)
, showed the recovery of both the original amplitude and fre-

quency of three sine functions which made up a test series. The procedure

worked for that series, but did not give consistent results for other series.

An attempt at relating the amplitude of known sine curves to their peaks on

the spectral density graph as obtained by the DQSE method by regression as a

function of original amplitude, length of the time series, and frequency of

the original curve was not successful. In light of the unpredictable effects

of the beginning and end of the fine data, the attempt was abandoned. An

attempt to follow the procedure used by Cryer and Nawrocki (1976) was impossi-

ble because the original tractor was no longer available.

The models were obtained by ranking 40 ARMA(p,q) models. The values of p

ranged from to 6 and the values of q from to 5, with the sum of p and q

less than or equal to 10, giving models from ARMA(0,1) to ARMA(5.5). and

ARMA(6.0) to ARiMA{6,4). The parameters for the models were selected by a com-

puter program according to the the lowest -2 ln( likelihood) . The values of

AIC for each model were calculated from the likelihood value and the number of

parameters and the models were ranked by ascending order of AIC. For each

data file. the models with the lowest AIC numbers were considered in the

selection of the best model of that data. To test each model. a series was

generated by setting the first p variables to zero and generating q random

noises. Values for x were then recursively generated to check the suitability

of these models. The first 300 values of the series were discarded so as to
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eliminate the effect of the initial zeroes. Subsequent values were then exam-

ined for similarity to the existing parts of the data file.

For some of the models that were considered, but not chosen, the gen-

erated series differed from the original, likely because the solution calcu-

lated by the optimization routine was approximate due to nonlinearity of the

likelihood function near the optimum point. These approximate solutions often

were rated among the best by AIC number and usually gave reasonable results so

these models were considered as possibilities. In a few cases, the regen-

erated series oscillated through a much wider power range than was possible or

was unreasonable, with ridiculously low power levels, for the tractor.

Another reason for rejection was the occurrence of many values over the power

rating of the tractor. This happened only when the mean power level was high.

While some of these values would be expected to occur from the statistical

standpoint from the properties of gaussian distribution, for practical imple-

mentation, they would be undesirable. The third reason for rejecting a model

was observation of repetitive sharp changes in load level. Although some of

these sharp increments were observed in the data, for some numbers generated

by the models, the changes were large and frequent; at times, changes of :t20

kW were observed to occur sequentially. Despite instances where the parame-

ters did not adequately fit the data, no cases were observed where the

sequence diverged radically from the mean and never changed sign again; all

the tested models oscillated about a mean of approximately zero.

The models that remained under consideration after checking the regen-

erated series were then rated by the closeness of the AIC numbers and the

estimated error variance. If several models displayed similar AIC and EEV

values, the simplest model was chosen. The definition of "close" was changed
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from the guideline used by Jones. The reason for this was the greater value

of the likelihood from the data files used in this analysis as compared to

that of Jones'. If the models appeared to give the same type of values, with

widely-differing AIC values, the model with the lowest AIC value was chosen.

Some data files (9a and 10b2) give highly cyclical patterns with the "best"

choice according to AIC and the other considerations. While the individual

increments are not excessive, the series as a whole appears to be more cycli-

cal than the available data. Thus, alternate models are offered for con-

sideration.

The complexity of the models is perhaps related to the amount of missing

data. In a test run with data generated from a known AR(3) process, the AIC

number correctly predicted the model for the cases which used a complete data

set and a pattern of 15 values followed by 1 missing. The AR(3) model was not

selected as the top model for the case of 15 present followed by 5 missing or

in the case of 15 present followed by 60 missing, as in the data files. In

the last two cases, the parameters were correct for the AR(3) model, but the

AIC number showed that this model was not the most probable. The "top" models

were the more complex models.

As with all modeling procedures, roundoff error in the model-fitting rou-

tine is a concern. Such a problem was encountered in 6 out of 960 models.

According to Jones, this could be remedied by inserting a small value for

observational error into the program, which has the option to consider values

read with error. Roundoff error was also noted when using a file of small

test values with a pattern of 15 present, 60 missing. When the complete file

was used, the problem did not occur. The problem was alleviated by multiply-

ing the file by 2; the solution was adequately obtained.
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A small section of data and the regenerated series is shown in Appendix C

for each data sample. On some of the graphs of actual data, a large power dip

can be noted. This occurs when the tractor makes a turn since the speed is

constant and the rack signal, indicating torque, drops sharply. On the

graphs, two other items of note are that the data displayed is only a small

portion of that available for analysis and on the regenerated series, if the

power value exceeds 115 kW, as is possible according to a gaussian distribu-

tion, the graphed value was 115 kW, as it would be limited when actually used

on the dynamometer.

The resulting models are unique for each field data file, but some gen-

eral characteristics can be noted. The difference between models reflects the

variability between agricultural fields and operating practices. The drills

show a low mean. Both la and lb show only small deviations from the general

trend, which is relatively flat. The 2a and 2b series show a rougher pattern,

particularly 2a. While some these changes may appear to be excessive, the

actual does show some large steps. Sample la is chosed to represent the

drills since the actual and regenerated series are quite similar and resemble

the rest of the samples.

The series for a chisel (location 4b) is quite rough. This is expected

since this tool is a primary tillage tool with a fracturing mode of soil frac-

ture as opposed to cutting by a disk. The mean level is relatively high (79.7

kW) and the series show power fluctuations reaching almost to the maximum

power level.

The drag/harrow combination (locations 7a2 and 7b2) showed a smooth pat-

tern. The simulated series for 7b2 does not show the sharp peaks that some of
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the data shows. The drag, as recorded by Blumanhourst , was an old truck

frame. This combination was not hooked soiidly to the tractor and so would

tend to jerk at the corners. The smoothness of the series is expected since

this tool combination was being used to level and smooth the seedbed under a

center pivot irrigation system. The operation can be represented by location

7a2.

The disk/springtooth combination (locations 7al and 7bl ) shows a pattern

of small oscillations about the long-term trend. The data for series 7 shows

the effect of turns with this operator. The combination of tools does not

appear to be distinct from the disk alone, given the variability of disk sam-

ples. The series are quite similar, but since 7al avoids the apparent cycli-

cal tendency of 7bl, an ordinary field without definite slopes can be

represented by the 7al series.

The field cultivator (locations 9b2 , 10b2, and 10b3) provide the oppor-

tunity to observe the differences between operators and fields. Location 9b2

had an actual mean of 62.9 kW, and 10b2 is 89.1 kW. while at 10b3 the mean was

96.3 kW. As a result, 10b3 shows a series with some oscillations near the

maximum level while 9b2 never approaches these levels. For 9b2, the simulated

series varies from the mean with no evident pattern while 10b2 and 10b3 have

some cyclical tendencies. At location 10, the apparent small field size, with

the resulting frequent drops in power levels at the turns, may have contri-

buted to a cyclical tendency and large step size between the proposed patterns

for 10b2 and lObS while the data shows a finer variation. Thus, 9b2 is the

best choice to represent a field cultivator. At 10b2, the alternate choice

agrees more with the series for 3b. which is NH3 application, in that the

variations from one time increment to the next are smaller. The ground
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surface would be expected to be fairly even when applying anhydrous ammonia

since the soil surface needs to be fine enough so the ammonia does not escape

from the soil

.

The disk tool has the largest number of samples and also the largest

variation between the eleven samples. Four sizes of disks are represented.

5.5m, 6.1m, 6.7m. and 9.1m. The mean power levels range from 39.8 kW to 88.3

kW. Most samples and regenerated series show a moderate variation from one

Increment to the next. The long term trend for some is cyclical (6a or 9a,

alt.). For others, the trend is flat (8a or 8b). Size of tool does not

appear to be a determining factor for the variation; the EED for 9b (5.5m

disk) is .923 kW, for 6b (9.1m disk) it is 1.086 kW. and for 8b (6.7m disk)

the deviation is .832 kW. There is also variation between samples for the

same location. For location 8, 8a has 1.826 kW EED, 8b has .832 kW, and 8blo

has 1.790 kW, yet the means for 8a and 8b are close. Given the variability

between each series, a "typical" disk pattern is difficult to select. In the

interests of providing a pattern intermediate between the smooth drag/harrow

and the chisel, which most of the samples appear to be, 8a is selected because

it contains both small incremental changes and sharp adjustments in power

usage.

CONCLUSIONS

1. The results of this study are a model of each of the data samples. The
models were obtained using the ARMA(p,q) approach in which the value at

time t is dependent on p past values, q past random noises, and a random
noise at time t.

2. Generalizations about the models are possible. Drills and the

drag/harrow combinations have a relatively smooth pattern. The chisel
showed a rough pattern. The field cultivator has a roughness less than

the chisel, but more than the disk. The disk samples showed a variety of
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patterns, but the power loading pattern for each model was generally
between the drill and chisel in terms of roughness. The disk/springtooth
combination was not noticeably different from the disk. The variation
when NH3 was applied was apt to be small between successive time incre-
ments .

SUMMARY

The autoregressive moving average approach was used to determine a model

for each data sample which could recursively regenerate the represented series

of power loading variations for a tractor. The method accommodated evenly-

spaced data with missing values by adjusting coefficients for the past values

through a nonlinear optimization routine until the minimum value of -2

ln( likelihood) was reached. Spectral density was also considered, but was

rejected due to the difficulty of definitely correlating the amplitude of

known sine curves to the values on the power spectral density graph.

The models of power loading variation obtained for the different tillage

tools show that the drill and drag/harrow have fairly small variations between

time increments. The disk samples generally show a moderately rougher pat-

tern, with no noticeable difference when a sprlngtooth is attached. The

chisel appears to be the roughest series and the field cultivator shows

slightly smaller deviations. When NH3 is applied, the increments from step to

step are small although the general trend varies.

SUGGESTIONS FOR FURTHER RESEARCH

Anyone wishing to do work on the time series of tractor power variations

with various tillage implements, or any other time series, would find it bene-

ficial to begin with a series with no missing values at evenly-spaced
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intervals. This would allow the use of conventional theory for which means of

analysis have been well-established.

The time series analysis in this study was done on field data without

quantifying the effects of different variables on the power level. A careful

analysis could lead to an even better representation of power usage during

tillage. Possible areas to investigate include the following:

1. The effect of different soil types on the power usage pattern. Soils of
varying composition could possibly yield distinct patterns.

2. The differences between the sequences derived from specific tillage
implements

.

3. The impact on the regenerated series of the actual power drops due to
turns. When the tractor makes a turn, the power level drops sharply and
then rises sharply. The regenerated series was not able to show these
sharp drops

.

4. Simulation of hills with the possibility of adding or removing slopes
when desired.
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APPENDIX A - CONTINUOUS AND DISCRETE SPECTRA

Continuous Spectra

The spectral density method of analyzing time series relates the autoco-
variance to the frequency. A plot of power spectral density against frequency
shows whether a series is white noise, with a constant variance over all fre-

quencies, or has a periodic tendency within a certain frequency range. The

main sources for this presentation are Blackman and Tukey (1958) and Otnes and

Enochson (1972). The theory can also be found in other sources dealing with
time series analysis.

To begin with, let the time series x(t) be a simple sinusoid.

X(t) = cos (tit [1]

For simplicity, let w be a nonnegative number. This series goes through one

complete cycle, a period, in time T. The frequency, f, is the reciprocal of T

and is measured in cycles/sec (hz). So the units cancel, w is defined as the

angular frequency (rad/sec). By definition, 2k radians equal a cycle so

w = 27rf [2]

Adding two more parameters, A and 0, called amplitude and phase, respectively,
gives a more general equation

x(t) = A cos(wt + (p) [3]

A is the maximum amplitude from the mean value, in this case zero, and <p is

the displacement of the sinusoid from the given time origin (the phase shift).

For simplicity, A is a non-negative number. Any number of patterns can be

created by changing the parameters in equation (3) and adding one or more
sinusoids together. Most natural processes would be expected to contain more
than one frequency. This new type of series is given by

n

x(t) = I A.cos(cw.t + 0.). -00 < t < 0° [4].,111 •

1 = 1

The classic approach to the power spectral density as outlined by Blackman and
Tukey (1958, pp. 84-87) deals first with autocovariance . Let x(t) be some real
function of time. If the mean of the function is as time approaches time
limit T

T/2

rtl ? ^ ><(t) dt = [5]
-T/2

then the autocovariance function, R, of the process is defined as:
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T/2

•^(^^ = 1^1 T i x(t).x(t^r) dt [6J

-T/2

The variable t is a difference in time known as the time lag and is unre-

lated to (t>. Where R(t) is defined for a finite piece of a function, it is

called the apparent autocovariance function. When t is 0, a special case of

the autocovariance function results, the variance function:

T/2
R(0) =111^ I [x(t)]^ dt [7J

-T/2

This definition of variance is the same as the usual statistical definition

since the function x(t) has the mean defined to be zero.

The spectral density function is the Fourier transform of the autocovari-

ance density.

P(f) = I R(r).e"^"''^dr [8]

For a derivation of this as well as an explanation of the use of the word

"power" to describe the spectrum, see Blackman and Tukey (pp. 85-86). K(f) is

the inverse Fourier transform of P(r):

00

R(r) = I P(f) e^^'^df [9]

Even and odd functions have properties that can simplify an equation

(Boyce and DiPrima, 1977). P(f) and R(r) are even functions since P(f) = P(-

f ) and R(r) = R(-r)

.

Letting g(T) be an even function as shown above,

00 09

; g(z)dv = J g(r)dr + J g(r)dT

substituting r = -s in the rightmost term,

00

=1 g{r)d(r) - ; g(s) ds
oo

The - sign comes from the derivative of s [g(s) = g(-s)]. Inverting limits on

the rightmost term adds another - sign, making the overall sign of the term

positive

.

00 00

= I g(r)dr + J g(s)ds
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= 2 ; g(T)dr

The area in both integrals is the same and additive.

When h{r) is an odd function, h(-r) = -h(r) and the integration from

-00 to +» gives a result of zero.

00 00

J h(r)dr = J h(T)dr + J h(T)dr
-oo -<"

oo

= J h(r)dr + j -h(s)(-ds)
"

00 CO

= ih(r)dr - j h(s)ds =

The area in both integrals is the same, leading to an answer of 0.

Equation (8) can be rewritten as

00

P(f) = J R(t)[cos(ut - i sin u)z](iz [10]

The function cos wz is even since cos(«>r) = cos(-u)z). Multiplication of an

even function by another even function yields an even function:

Let g(r) = R{r)cos(a)T)

g(-r) = R(-r) -cosl-wr)

= R(r) • cos{<ur

)

= g(r)

Multiplication of an even function by an odd function yields an odd function.

The sin (wr) is an odd function since sin(a)T) = -sin(a)r).

Let h(r) = R(T)sin cur

h(-r) =R(-r)sin(-a)T)

= R(r ) [-sin wz]

= -R(r)sin wz
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-h(T)

Since the integral of an odd function h(r) is zero, equation (10) can be sim-

plified to the cosine transform of R(r)

P(f) = I R(t)cos o)z dr and R(z) =
I P(f)cos 2KfT df [11]

(2Kf = (O)

or even more simply as one-sided cosine transforms using the property of an

even function:

P(f) = 2 I R{r)cos uiz dr [12]

R(r) = 2 J P(f)cos 2;rfr df [13]

For further discussion of the power spectral density, two more mathematical

concepts will be helpful. One of these is known as the Dirac delta function.

The delta function, 8(t-t ) is introduced by formally identifying f(t - ty)<lt

with dh(t - t ) (BlacSman and Tukey, 1958, p. 69) where h(t - t^) is Heavi-

sides' step function

h(t

h(t

t„) = 0,

^o^ - '

t < t
c

t < t

So if the time function is the delta function

G(t) = 6(t-t )

the equivalent frequency function is

S(f)

-iwt
]41

The delta function is arbitrarily tall and narrow, yet has a unit area. Otnes

and Enochson (1972, p. 14) also give two functions derived from the delta func-

tion.

1 5(f-f )
- 5(f-f„,

o o
cos 27:f t

o

sin 2;rf t
o

[15]

[16]
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Convolution, another important property, is the operational transform
between the frequency and time domain that works as follows (Blackman and
Tukey,1958, p. 72): If G(t) = G (t) ' G (t), and S(f) is the frequency counter-
part of G(t), then the Fourier transform of G{t) in terms of G (t) and G (t)

is

S(f) = I G^{t).G2(t).e
-i(ot

dt [17]

= ; G^(t) J S^in.e^'^^^dl • e dt

,

[18]

where S (f) is the frequency domain equivalent of G (t)

= J ;
G^(t).e-i2.(f-e)t^^ S2(€)d§ [19]

= J S^(f-e)S2(§)d^ [20]

S (f) and S (f) are interchangeable in this operation, also written as

S(f) = Sj(f) * S^ff) [21]

The "*" indicates the convolution operation. For the completeness of the
transform operation, the process of going from multiplication in the frequency
domain to convolution in the time domain is, given S(f) = S (f) ' S (f).

G(t) = J G^(r-/5) . (^^KX)AX = G^(t) * G^tt) [22]

For the continuous domain, the limits of +«> to -«> work well, but In the
real world of experiments, the data samples have a beginning and an end as
well as a finite length. To deal with these difficulties, the idea of a "box-
car function" is introduced, designated as u (r).

u.^ ( r ) = 1 I r I ^ T

u^{r) = > T

Its Fourier transform is

U^(f) = I u^(t)e ^"'^dt
— 00

T

J e

-T

-io)t _ 2 sin oT
[23]

The infinite limited transform integral for the power spectrum can now be
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written in terms of the boxcar function (Otnes and Enochson, 1972). The prime
sign shows the variable is computed for the finite length rather than the
infinite.

00

P'(f) = I u^(T) . R{r) - e""''"^dr [24]
— 00

As shown above in the convolution theorem, multiplication in the time domain
corresponds to convolution in the frequency domain. Thus, equation (24) can
be written as

P'^m = P^(f) * U^(f) [25]

00

= J S(fJ.U,j,(f-f^)df^ [26]
— 00

Substituting for the U,j,(f-f^) term (see Equation (23)) yields

sin [2;rT(f-f )]

P'x(f) = ^ ^x^^o^ 2 2.(f-f
)°

'^^o
t^^^

-00 ' O

As can be seen, the frequency components are not dependent on one another and
hence their contributions to the power spectrum are additive; each source con-
tributes separately.

For an example (Otnes and Enochson, 1972, p. 202), let the K (r) function
be the covariance of a cyclical batch of data:

^

2

R (r) = ^ cos 2;tf z [28]

Then, R^(f)T) corresponds to P^H) in the frequency domain (see equation (15))

P^(f) = ~- [<5(f-f ) + 5(f + f )], [29]
X 4 o o

which are delta functions centered at -f and -^f . When this value for P (f)
is substituted into Equation (27) the result for°the truncated P'(f) is

^

.2 sin[27tT(f-f^)] 2 sin[2;rT(f^f )]
pi

I f \ _ 2 O A
X* ' 2 2;t(f-f ) 2. 2;r(f-f )

^30]
o o

For positive frequencies where

« i « f^_
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P',^(f)

/I sin[2;rT(f-f )1
A o

'

2 271 (f-f )

[31]

The maximum P' (f) is reached when the denominator approaches zero
(f-»f ). Since an' indeterminant form is reached (0/0) when the limit is

applied, the maximum P' (f) is determined by L'Hospital's rule to be

P' (f)
X '

lim
f-f

9 -- [sin 27rT(f-f )JA dt o

df ^^^'-'o^

[32]

, . ,2 2;tT cos 27rT(f-f ) 2^
lira A_ o _ A T

f-f 2 27t
'2 [33;

As T gets larger, the peak becomes higher and narrower, until T

Since T is fin-approaches infinity, when P' (f) approaches a delta function,
ite, what would have been a very sharp peak with the power concentrated within
a very narrow frequency range now has become a shorter, broader curve with the
power spread out due to the (sin x)/x term as shown in Figure (Al). This
spread of power is termed leakage.

PSD

Figure Al . Boxcar function window

The first zero crossing to the right will occur at 1/4 of the cycle.

27rT(f - f

f
r o 4J

f

o

4T

2

r o

For the left side, the first zero crossing occurs at f

of the curve is thus due only to the length of data sample:
4T'

^ = ^o " H [f
4T^ 2T

The spread

[34]
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The areas to the side of the main peak, referred to as side lobes, may be

of a significant size and cause the main peaks to be distorted, particularly
if frequencies in the data are located close together and the side lobes hap-

pen to be in phase so that they are additive. The distinct beginning and end
of the data have the effect of inserting a (sin x)/x term. The spreading can-
not be eliminated, but different windows, as the the type of function (sin

x)/x is referred to, may be used to increase the height of the main peak or

increase the spread of the main peak. These windows can operate directly on

the data in time domain or on the transformed values in the frequency domain.

A data window operates in the time domain for a given interval with the effect
of multiplying data or signals that are defined for a longer period and which
will then be subjected to further processing.

Windows may seem to be a complicating addition, but they are unavoidable.
By default, the window present is the basic boxcar, which has some undesirable
characteristics that can be reduced by other windows. These windows tend to

smooth the data for improved quality in the frequency analysis. The

categories of lag and spectral windows appear most often in literature. The

lag windows are a function of lag, a time difference between two events con-

sidered together. These windows exist for a certain interval and then vanish.

Their counterparts in the frequency domain are the spectral windows. Blackman
and Tukey ( 1958 , pp .95-99) list five possible lag-spectral window pairs. The

boxcar window, inherent in finite data was discussed above. Two windows that

were considered in the data analysis were the banning and hamming window.

The banning window is defined by

=0 r < -T

Uj (T) - - (1 + cos —

)

m m

-T ^ r ^ T
m m [35]

= r > T

T is the length of autocorrelation used.

The Fourier transform of this is

u^ (f) = K <f) ^ f
m m

sin [T {2Kf - :^)\ sin[T (2Kf + i^)ml ml
m m+

TJ2Kf - ^)m T
m

TJ2k{ + -
m T

[36]

i I'

2 ^T
f) - i^T <f - ^' - i^T (f ^ if'

m m m m m
[37

Thus the banning window turns out to be the summation of three of the boxcar
functions. Since these lobes are spaced 1/(2T ) Hz apart, tbe banning window
has the effect of averaging three adjacent lobes and giving the center one
twice as much weight as the end pair, reducing the center lobe to 1/2 of its
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former height, but also doubling its width. The distance between the first
zero crossings on either side of the main lobe is now 2/T while the effective
bandwidth, the frequency interval between half power poinds, is now 1 /T

m

The second spectral window is the hamming window, defined by

=0 z < -T m

u (r) = .54 + .46 cos f^ -T < r < T r-^„-,
T T m III L>>oJ
m m

= r > T
m

After Fourier transform,

U^ (f) = .54 L-^ (f) + .23 U^ (f ^ i^) ^ -23 U^ (f - ^) ^39^
ID m mm mm

So, the hamming window is similar to the banning window in that they are both
sums of (sin x)/x terms, but with different weights. Two differences between
them can be noted:

1. The height of the maximum side lobe for the hamming window is approxi-
mately 1/5 that of the banning window.

2. The heights of the side lobes of the banning window drop more rapidly
than do those of the hamming window.

Thus one difference favors the hamming and the other favors the banning win-
dow.

For either the banning or hamming window, the adjacent side lobes with
their positive and negative values will tend to cancel. If the spectrum has a
strong power level at a distance which is resonant with a low main peak and
the negative side lobes tend to cancel it out, the low peak can still be noted
by the presence of the side lobes. Confidence intervals for spectral densi-
ties can be obtained by using both a positive window such as Parzen's and a
negative window (See Wonnacott (1961)).

Discrete Spectra

The popularity of digital data collection indicates that discrete inter-
vals may be of more use. Accordingly, the equations are modified to handle
discrete data by using summations rather than intcjgrals and At instead of dt.
The following approach, which has been described by Blackman and Tukey (1958)
and Otnes and Enochson (1972 p. 270), has been used to compute the power spec-
tral density (Walls, et al., 1954) and (Wendenborn, 1966).

1. Let X be a sequence of N evenly-spaced points having a zero mean; if this
is not the case, find the mean and use the set of standard deviations.
Wendenborn (1966) and Walls, et al . (1954) use a running average to
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eliminate the low frequency cycles that would not be adequately
represented in the data.

2. The sample autocorrelation R is calculated for (m+1) values where m

represents the maximum "time" lag. Since the data is evenly spaced, the
total time represented is mAt , so the number lag becomes a time lag.

N-r

r = 0,1, .. .m [40]
1

N-r . , 1 i+r
1 = 1

The power spectral density is calculated for various frequencies, using
trapezoidal integration.

r^ ' X

m-1
;trq

R + 2 I R cos -—^ - R cos ;rr
o , q mm

q=l
[41]

These P' (f) values are at evenly-spaced frequencies (rad/unit time)
given by

f =
m At

r = 0.1 [42]

These raw spectral density estimates are then smoothed using a spectral
window. For example, if the hamming window is used:

P "(f ) = .23 P'
, ,

,(f ) + .54 P' (f

)

r (q-1) q
23 P' ( f ) a ;<= 0,m [43]

P-^lf) = .54 P'o(f) + .46 P',{f) [44]

P" (f)
m

.46 P'_^_j(f) .54 P' (f)
m

[45]

Step 3 could be done by alternate methods, such as the Fast Fourier Transform,
that would decrease the computer time needed if the data is evenly spaced.
For equally-spaced data, the frequency range of the estimated spectrum ranges
from to l/(2At), the Nyquist folding frequency. Any frequency present in
the data that is higher than the folding frequency will be represented, by
aliasing, in the principal part of the spectrum. When < f < l/2At, f is

called the principal alias and could possibly represent its aliases f,

etc . . with2f 4-f, 4f -

N ' N
f. 4fj^.f. f equal to the Nyquist frequency.

2f -f.
N

The discrete method was the first attempt to analyze the data. Indivi-
dual minutes of fine data were analyzed and the resulting spectra were aver-
aged to obtain an "overall" spectra. Sequences of coarse data (minute aver-
ages) were also analyzed for low frequency patterns. The results from the
second analysis were not practical for a regenerated data cycle of 10-15
minutes and the results from analyzing just 15 points at a time were incon-
clusive so a longer series was proposed by recombining the data. The litera-
ture listed no method to recombine data with unusual spacing so Blackman-
Tukey's approach for evenly-spaced discrete data was abandoned.
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APPENDIX B - DIRECT QUADRATIC SPECTRUM ESTIMATION

Ways of handling a real data sample for the discrete evenly-spaced case

have been discussed in Appendix A. Further work on time series has generated

methods of dealing with gaps in data and even irregularly-spaced data. One

method for dealing with irregular-spaced data is the Direct Quadratic Spectrum

Estimation (DQSE) method developed by Marquardt and Acuff. This appendix sum-

marizes the DQSE method (Marquardt and Acuff. 1984) which was used to deter-

mine the spectrum for the data on an irregular-space basis.

Several assumptions are necessary to apply the DQSE method. It is

assumed that the pattern of irregular spacing is not related to the stochastic

properties of the process y(t) being sampled, where the independent variable t

represents either time or distance units. The process y(t) is assumed to be

at least weakly stationary, meaning that the covariance between two points t.

and t., where t. < t., depends only on the time difference (t. - t.). The

mean ii^ assumed to be zero. The data comes from a process y(t) in which

observations are made at times t. during a single, continuous period of obser-

vation [O.Tl. Data is in the form (t.,Y.), where i=l,2,3,...n and ^ t. ^ T.

The maximum frequency range of the spectrum, if evenly spaced, is from

to l/(2At); any frequency in the data which is higher than the folding fre-

quency is represented by its alias. For irregularly spaced data, the cutoff

point for folding is less sharp, particularly so as the spacing becomes more

random. The sensitivity to high frequency cycles below the Nyquist frequency

is diminished, but some cycles above the cutoff frequency can be obtained.

Jones (1962) provides a theoretical base for the direct quadratic spectrum

estimation using irregular data.

The DQSE equation takes the form

n n

P(a,) =
;f7

^ 5: W Y(t.)Y(t ) [1]

i<j

T' is the effective record length. Depending on the data spacing, it is

equal to the record length or less (see equation (8)).

W. . is the weight represented by the l,j element in the

symmetric quadratic form (W.. = W..)

The weight element is dependent on several factors:

W. .
= D(T:)F(t. ,t .) cos 2k(i).z [2]

ij 1 J

D(r) is the lag window for lag r, r = t.-t.

F(t,. ,t_.) is the "data spacing factor", more precisely defined

by equation (9 or 10)

frequency in cycles per unit time or distance

1 J
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The window could be one of those of discussed in Appendix A or another suit-
able window; the banning window was used by Marquardt and Acuff. The hamming
window gave similar results in the present analysis. So the window takes the
form

1 r
D(t) = - [1 + cos K —

]

m

z ^ r
[3]

= T > r
[4]

T is the maximum time (or distance) lag used

The data spacing factor is based on the idea that the weight given to
each ij element should be proportional to the time represented by that ele-
ment. The spacing factor was suggested in work done by Jones (1962). In
terms of each i,j element, the data spacing factor is

F(t,
^J^

=

t. +t.
1 + 1 a

t.+t.
1 1-

t . +t . t.+t.
,

[5]

[t,
i( + ) 'i(- "'ji -'j(-)'

= Vj

The endpoint conditions are t

the time
maximum length used for defining the sinusoid, that corresponds to the fre
quency. Thus, an upper bound is placed on the weight given to an area by lim-

^_j ^ and t. ^ T. For large time increments,
intervals may be greater than 174 of the cycle length, which is the

itmg t.
i( + ) ^i(-)-

t., ^, and t., , where necessary,
J(+) J{-)

* where

t.
i( + )

= mm
t. , + t.

^'i 40)' [6]

^i(-)
^ max

t

.

, 1 ^i-l
),

:^i
- ^^

The <5 factor is expressed similarly by substituting j in place of i on the
right side of the last two equations. End conditions are defined at t = and
t = T by setting t^ = -t^ , and t = 2T-t . When (o = 0, or is still small,
the periods are very large, with the possible result of large data gaps being
within the minimum 5, and having an undue influence on the spectrum. The
value of (1) is thus constrained to be

a>(see equation 6) = max[(u, Mo JM [7J
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The variable, M, is an arbitrary multiplier (.1 is given as an example) and

(t) = (n-l)/2T) is the Nyquist frequency associated with the average inter-

point interval in the given record.

Equation (6) implies a decrease in the effective length of time when the

data is irregularly spaced or contains gaps. The effective length of

T' (w) ^ T is defined:

n

T' ((1)) = Z (5. [8]

i = l

The (5. are defined in equation (6). If the data is evenly spaced with no

gaps, the effective length simplies to the actual length for frequencies less

than or equal to the folding frequency. For data with large holes, the effec-

tive length gets shorter as the frequency increases.

The data spacing factor can be viewed as the result of a discrete

integration over the area where, but not including, t. = t. to the boundary

t. = t. + r . See Figure Bl for the nomenclature. Some area outside the

squares wholly in the integration area will be included with this approach.

This makes the integration area larger than it actually is, leading to a dis-

torted value for the data spacing factor. Hence the following adjustment is

made in the equation (5).

F(t. ,t .) = 5.8 .
- A. . [9]

The A. . represents the area to be subtracted from the rectangular local area.

The following diagnostic criteria are needed:

P : If t.. ^ ^w-i ^ ^ ' ^^^-^ Pp i^ inside the domain of integration:

otherwise P is outside.

P • If t., . - t.. . + T , then P is inside the domain of integration;
otherwise both P and P are outside.

P : If t . . , ^ t . , . + r , then P is inside the domain of integration;

otherwise both P„ and P, are outside
2 4

P : If t . - ^-1 "•" ^ ' then P is inside the domain of integration;

otherwise P, , P„ , P^ , and P^ are outside.12 3 4

These criteria define the area cut off the local rectangle by the diagonal
line t = t . + T . A point on the boundary is defined to be inside the
domain. For convenience the following notation is used:

d . length cut off the rectangle in the i-direction along the side meas-
ured from point P

d lengt'. cut off in the j-direction, measured from point P , etc.
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4-1

(ti_iHi)/2
-

ti^

lVW/2-.(P3>

4+1 \
T 1 ^-r

tfi

Vi 'Vi'V ^i ^VVi^

V^i^.

t.
i+1

Figure Bla. Nomenclature for a rectangular local area associated with a

covariance ordinate.

\
—

^

\,V \ •*

\
N

*

\
\ * •

\ *

^
H

Figure Bib. Example of partial rectangular local areas at domain boundaries.

Source: Marquardt and Acuff (1985, Figure la and lb).

When t.-t. > r , the areas of these partial rectangles does not need to

be computeii since ?heir covariance ordinate location (t ,t ) lies outside the
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domain of integration, where the lag window D(r) is zero. Where the covari-
ance lies inside the domain of integration, the following cases could apply.

Case 1: Pp '^^ inside

A. . =

Case 2: P is outside. P P and P are inside. Then

d-. = t., ,-t.,. >0.
2j J(+) i(-) m

A. .
= dJ./2.

Case 3: P and P are outside. P and P are inside. Then

'2j = ^j(.) - tj(-, >

^21 = ^j(.) - ^i(-) - ^m>«-

\j = ^^i ^'^2i)^2j/2-

Case 4: P and P are outside. P and P are inside. Then

d-. =t., , -t., , >0
21 i(+) i(-)

d-. = t., ,-t.,,-r >0
2 J j( + ) i(-) m

d. .
= t., ,-t., .-T >0

4j J(+) i(+) m

^j = ^'23 ^ '^4j"*2i/2.

Case 5: P P and P are outside. P is inside. Then

d„. =t.,,-t., ,>0
21 i(+) i(-)

^2j = ^j(.) - tj(-) >0
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11 = ^j(-l ^i(-
>

4j ^J(^)
- t

i( + )

> 0.

A. .

IJ
= ^2i'^4j ^ ^^li^^2i» 2j

- d^ .)/2.

Case 6: If the period of observation begins before the first time point (t >

0) , or if t < T, the local areas at the ends of the domain of

integration are given by the definitions for the endpoints and bounded
by equation (6)

.

Case 7: The covariance ordinates on the main diagonal where i = j are not
used, although some of the area is within the integration area. The
triangular region above the main diagonal can be associated with the
areas of the "above" and "right" rectangles. The area is split
between these two regions by perpendiculars from the main diagonal
connecting to the point P of the rectangle above in the integration
area and from the main diagonal to the point P of the triangle to the
right. When the area is unaffected by the restraints of the minimum
time increment for the Nyquist folding frequency, the points P and P

coincide. Case 7 applies only to the points on the main diagonal with
the associated rectangles for which j = i + 1. The data spacing fac-

tor is then modified by adding the area of the triangles.

F(t^.t.) S.Sj - A. . +
1 IJ

B.
ij

when j-i+1 [lOj

There are five possible subcases.

7.1

t. + t. t • + t

.

'' h(.) < "2 ' -^"^/^^
S(-) ' '

2'"

then the point P for the rectangle is constrained away from the

main diagonal and B. .
= 0.

7.2

If t. + (t ., .
- t ., . )/2 < t. + 7-

i( + ) j(-t-) J(-) 1 4<o

then the entire triangular area below the rectangle is appended to

the rectangle , and B.. = (t., ,
~ t., ,) /4.

ij J(+-) J(-)

7.3

If t ., .
- (t.

, ,
- t.

,
,)/2 > t .

- 7-
J(-) l( + ) i(-) J 4(0
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then the entire triangular area to the left of the rectangle is

apporiued to the rectangle, and B.^ - (t ""
; / _ i

^ /'*-

7.4

then a trapezoidal area below the rectangle is appended and

7.5

then a trapezoidal area to the left of the rectangle is appended

and

B. .
= (t., ,

- t. + 7") (t. -
-f-

- t. . , )

ij J(-) J 4(0 J 4(0 i(-)

To follow the recommendation of Marquardt and Acuff, the spectral window

is evaluated in parallel with the estimation of the spectrum. The window has

the shape

n n n n

Z*((o) -;p5:EW. . =p-ZZ D(r) F(t..t ) cos 27:<o(r). [12]

i<j ^^ i<j

When working with evenly spaced data. Z*((o) is a periodic function of w, the

sharp center lobe being repeated at all even multiples of the Nyquist fre-

quency. This property leads to 100 percent aliasing of all frequencies above

the folding frequency. When dealing with irregularly spaced data, Z*(m) is an

almost periodic function, with the possibility of having important side lobes

far from the center lobe and within the principal frequency. Due to the

nature of irregularly spaced data, the spectral window has two moderate defi-

ciencies when dealing with irregular instead of even data:

1. The center-lobe is less sharp, which leads to somewhat higher variances

of the spectral estimates.

2. Care must be taken in interpreting the estimated spectra due to the pos-

sibility of partial aliasing if important side lobes are present in the

actual window.

The weights in the DQSE quadratic form will change with each set of data due

to the change in spacing. They can be adjusted to sharpen the shape to yield

a good window. Characteristics of a good window include a sharp center lobe,

minimum area outside the center lobe, being positive almost everywhere, by

constraint if necessary, and sometimes smoothness. Marquardt and Acuff (1982)

show examples of the DQSE method without the B .
^,
factor and discuss both the

soectrum and the window.
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APPENDIX C

ACTUAL AND REGENERATED DATA
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APPENDIX D

FORTRAN PROGRAM TO REGENERATE TIME SERIES

cccccccccccccccccccccccccccc
c

C THIS PROGRAM, DARMA.F, GENERATES AN ARMA(6,5) PROCESS USING
C PARAMETERS COMPUTED BY THE MINIMIZATION OF THE -2 LN( LIKELIHOOD)
C FUNCTION OR ANY OTHER TEST NUMBERS
C
C AUTHOR - NAOMI REGIER
C AGRICULTURAL ENGINEERING
C SEATON HALL
C KANSAS STATE UNIVERSITY
C MS CLASS OF 1986
C

C IMPORTANT NOTE: THE ROUTINES, "RANNP" AND "RANN" ARE FROM
C HARRIS FORTRAN AND MAY NOT BE AVAILABLE ON ALL SYSTEMS.
C

C THE SUBROUTINE RANNP INITIALIZES THE ARRAY FOR RANN.
C ITS ARGUMENT IS THE SEED, BY DEFAULT = 1.

C

C THE FUNCTION RANN IS A REAL RANDOM NUMBER DISTRIBUTED ABOUT
C A NORMAL DISTRIBUTION CURVE. ITS FIRST ARGUMENT IS THE MIDPOINT
C OF THAT CURVE AND THE SECOND ARGUMENT IS THE STANDARD DEVIATION.
C
C Input is UNIT 7

C Output is UNIT 8

C

C VARIABLE LIST
C INPUT VARIABLES:
C RMEAN - Desired mean of the regenerated numbers
C DEV - Standard deviation of the random error input
C NP - Number of autoregressive parameters
C NQ - Number of moving average parameters
C A - Coefficients for autoregressive numbers
C B - Coefficients for moving average numbers
C OUTPUT VARIABLES:
C A, B - Provide label of coefficients at top of file
C XM - Predicted number with a nonzero mean
C INTERNAL VARIABLES:
C COEF - Array of random values, normally distributed,
C at time t-1 to t-q
C X - Array of past predicted values back to time p
C RNEW - Random value at time t

C XSUM - Amount due to autoregressive contribution
C CSUM - Amount due to moving average contribution
C XNEW - Curent predicted value
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

REAL X(6),A(6),B(5),COEF(5)
C Initialize gaussian random number generator

CALL RANNP(3.)
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C Read input
READ(7,*) RMEAN
READ(7,*) DEV
READ(7,*) NP, NQ

C Read in autoregressive coefficients
DO 5 1=1, NP

5 READ(7,*) A(I)
C Read in moving average coefficients

DO 10 J = l.NQ
10 READ(7,*) B(J)

C Write out coefficients
WRITE( 8,2000) A,B

2000FORMAT(' ','A: ',6(F6.3 ,1X)
,
' B: '.5(F6.3 ,1X))

C Get random numbers for moving average noises
DO 15 I = l.NQ

COEF(I) = RANN(0.,DEV)
15 CONTINUE

C Initialize X values with zeroes
DO 20 J = l.NP

X(J) = 0.0
20 CONTINUE

C Recursively generate series of numbers from ARMA(p,q) model
DO 100 I = NP+1, 600

RNEW = RANN(0.,DEV)
C Add up autoregressive contribution to present value

XSUM = 0.

DO 25 K = l.NP
25 XSUM = XSUM + A(K) * X(K)

C Add up moving average contribution to present value
CSUM = 0.0
DO 30 KK = 1,NQ

30 CSUM = CSUM + B(KK) * COEF(KK)
C Present value with zero mean

XNEW = XSUM + CSUM + RNEW
C Adjust mean to actual

XM = XNEW + RMEAN
C Reset calculated values for new calculation

DO 35 J = 0, NP-2
35 X(NP-J) = X(NP-J-l)

X(l) = XNEW
C Reset random numbers for next calculation of X

DO 40 JJ = 0,NQ-2
40 COEF(NQ-JJ) = COEF(NQ-JJ-l)

COEF(l) = RNEW
C Discard first 300 values to eliminate effects of initial zeroes

IF(I .GT. 300) THEN
WRITE( 8,1000) XM

1000 FORMATCIX, F10.2)
END IF

100 CONTINUE
STOP
END
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ABSTRACT

Evenly-spaced time series with missing values of tractor power loading

variations were analyzed by spectral density and autoregressive-moving average

(ARMA) methods. The spectral density method was unsatisfactory for easily

reproducing a series on the dynamometer and so the coefficients in the ARMA

model were found by optimizing the value of -2 ln( likelihood) and selecting

the order from among the top five models.

The series for the different tillage tools show some difference between

the implements. The drill and drag/harrow have fairly small variations

between one point in time and the next. The disk samples generally show a

moderately rougher pattern, with variation between the samples. The addition

of a springtooth behind the disk did not produce any distinguishable differ-

ence. The chisel shows the roughest series while the field cultivator is only

slightly smoother. When NHS is applied, the power increments from one value

to the next are small although the general trend may vary.

Appendices include an outline of the basic theory for continuous and

discrete evenly, and irregularly-spaced spectral density analysis, as well as

graphs of actual data and the series regenerated from the ARMA models. The

algorithm for the ARMA model with missing values is given in the main part of

the text

.


