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Abstract

Several computational biology and bioinformatics problems involve DNA sequence classi-

fication using supervised machine learning algorithms. The performance of these algorithms

is largely dependent on the availability of labeled data and the approach used to represent

DNA sequences as feature vectors. For many organisms, the labeled DNA data is scarce,

while the unlabeled data is easily available. However, for a small number of well-studied

model organisms, large amounts of labeled data are available. This calls for domain adapta-

tion approaches, which can transfer knowledge from a source domain, for which labeled data

is available, to a target domain, for which large amounts of unlabeled data are available.

Intuitively, one approach to domain adaptation can be obtained by extracting and repre-

senting the features that the source domain and the target domain sequences share. Latent

Dirichlet Allocation (LDA) is an unsupervised dimensionality reduction technique that has

been successfully used to generate features for sequence data such as text. In this work, we

explore the use of LDA for generating predictive DNA sequence features, that can be used

in both supervised and domain adaptation frameworks. More precisely, we propose two

dimensionality reduction approaches, LDA Words (LDAW) and LDA Distribution (LDAD)

for DNA sequences. LDA is a probabilistic model, which is generative in nature, and is

used to model collections of discrete data such as document collections. For our problem, a

sequence is considered to be a “document” and k-mers obtained from a sequence are “doc-

ument words”. We use LDA to model our sequence collection. Given the LDA model, each

document can be represented as a distribution over topics (where a topic can be seen as a

distribution over k-mers). In the LDAW method, we use the top k-mers in each topic as our

features (i.e., k-mers with the highest probability); while in the LDAD method, we use the



topic distribution to represent a document as a feature vector. We study LDA-based dimen-

sionality reduction approaches for both supervised DNA sequence classification, as well as

domain adaptation approaches. We apply the proposed approaches on the splice site predi-

cation problem, which is an important DNA sequence classification problem in the context

of genome annotation. In the supervised learning framework, we study the effectiveness of

LDAW and LDAD methods by comparing them with a traditional dimensionality reduction

technique based on the information gain criterion. In the domain adaptation framework,

we study the effect of increasing the evolutionary distances between the source and target

organisms, and the effect of using different weights when combining labeled data from the

source domain and with labeled data from the target domain. Experimental results show

that LDA-based features can be successfully used to perform dimensionality reduction and

domain adaptation for DNA sequence classification problems.
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Chapter 1

Introduction

In this chapter, we begin by providing the motivation for this work along with the problem

statement. We then give a brief overview of the approaches proposed to solve these problems.

1.1 Motivation and Problem Statement

Today, we have a plethora of biological data available to us, due to the next generation

sequencing technologies, which make it possible to sequence DNA at an ever-faster speed

for lower cost. With the introduction of next generation sequencing, throughput per machine

has increased 500,000-fold, while the number of reads per genome has increased by ∼ 100-

fold [Monya, 2010]. Everything from storage to data processing to data analysis has to

catch up with the speed of the new sequencing machines. Machine learning algorithms,

which are extensively used to annotate DNA sequences, also have to keep the pace with the

new sequencing machines. Some of the challenges with DNA sequences classification using

machine learning algorithms are given by:

• Need for compact feature representation: DNA sequences contain certain ‘features’

(signals), which make it possible to apply learning algorithms on such data. Ex-

tracting and representing DNA sequences as feature vectors, which can capture useful

information, is a challenging problem. If we naively use a brute force approach to

obtain features from sequence data, then, we might end up a with large number of
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features. In such a situation, there will be many irrelevant features. This will have an

adverse effect on the accuracy of the classifier learned from the data. Furthermore,

due to the large number of features, the processing time and resources needed would

also be large.

• Need for labeled data: There are some model organisms which are extensively studies

and huge amounts of labeled data are available for such organisms. However, for

many species there is not much labeled data available, even though huge amounts of

unlabeled data is available for them. Given such scenarios, it has become essential to

design techniques for learning how to transfer knowledge from one domain for which

labeled data is available to a new domain for which not much labeled data is available.

This problem is known as Domain Adaptation [Arnold et al., 2008], [DaumeIII, 2007],

or more generally, Transfer Learning [Arnold et al., 2008]. With domain adaptation we

can use labeled data from one organism to make predictions about another organism.

Latent Dirichlet Allocation (LDA) is unsupervised dimensionality reduction technique

that has been successfully used to generate features for sequence data such as text, but not

for DNA sequences. In this work, we want to explore if we can use LDA to identify predictive

features for DNA sequence classification in a supervised learning framework. Furthermore,

we explore if we can use LDA to identify features shared by two domains, a source domain,

for which labeled data is available, and a target domain, for which not much labeled data

exists, but large amounts of unlabeled data are available. Thus, the problems address in

this work are as follows:

• Study LDA-based dimensionality reduction approaches in the context of supervised

DNA sequence classification.

• Study the usefulness of LDA features in the context of DNA sequence classification

using domain adaptation approaches (where the goal is to transfer knowledge from a

source domain to a target domain).
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• Apply the proposed approaches to the problem of predicting splice sites in DNA se-

quences.

1.2 Overview of the Proposed Approaches

As discussed in the above section, a major issue in building a classifier for biological sequence

classification tasks is how to represent a sequence, as the accuracy of the classification largely

depends on the adopted representation. A simple way to represent a biological sequence is

to consider all k-mers for the sequence [Islamaj et al., 2006]. However, this technique will

produce a large number of k-mers. We propose two approaches for feature extraction, (a)

LDA words (LDAW) (b) LDA distribution (LDAD). Both approaches make use of Latent

Dirichlet Allocation (LDA) for feature extraction. LDA, is a generative probabilistic model

for collections of discrete data such as text corpora [Blei et al., 2003]. Given a set of

sequences represented in form of k-mers, LDA models each sequence in this collection as a

mixture of topics, where each topic is a mixture of k-mers. In LDAW we use the top k-mers

in each topic (i.e., k-mers with the highest probability) as our features. On the other hand,

in LDAD we use the topic distribution to represent a document as a feature vector. These

approaches are explained in detail in Chapter 4.

We used supervised machine learning algorithms to study the LDAW and LDAD ap-

proaches for feature generation in the first part of this work. For supervised algorithm we

need enough labeled data to learn a model during training phase. If we do not have enough

data then the performance degrades. Domain adaptation can be used even when we do not

have enough labeled data to learn a model. It makes use of labeled data from a related

domain called source domain to learn a model for a domain called target domain, which

does not have enough labeled data. There are several assumptions about the source and

target datasets that we make in this study. First, the source domain has a large number

of labeled samples and the target domain has a small number of labeled samples but a lot

of unlabeled samples. Nevertheless, we are studying the behavior for various data set sizes.

3



Second, both the source and the target domains are represented by the same set of features.

Third, for our study we also assumed that both the source and the target domains have the

same classes, which means that we are addressing a domain adaptation problem. The basic

assumption in any domain adaptation method is that, the source and the target domains

have different data distribution. If this was the case then there would not be any need of

domain adaptation.

The rest of the thesis is organized as follows: Chapter 2 provides biological background

and gives an overview of the machine learning algorithms used. This chapter also gives an

overview of Latent Dirichlet Allocation, which is the foundation of our work. A discussion

of the related work can be found in Chapter 3. Chapters 4 presents the two approaches

for dimensionality reduction, along with the overview of domain adaptation algorithms.

Chapters 5 and 6 describe the experimental setup and the results obtained for our experi-

ments, respectively. Chapters 7 presents several directions for future work and summarizes

conclusions drawn from this work.
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Chapter 2

Background

In this chapter, we provide some biological background and also explain machine learning

techniques and topic modeling fundamentals, which form the basic building blocks of this

work.

2.1 Biology

The mRNA splicing prediction problem, which is the main focus of this work, is a sub-

problem of the gene prediction problem. Before getting into the details of gene prediction,

we need to understand gene structure. Thus, we begin our discussion by describing the gene

structure.

2.1.1 Gene Structure

The modern working definition of a gene is “A locatable region of genomic sequence, corre-

sponding to a unit of inheritance, which is associated with regulatory regions, transcribed

regions and/or other functional sequence regions.” [Pearson, 2006]. We restrict this discus-

sion to eukaryote protein-coding genes, which are the type of genes we will be dealing with

in this work.

Transcription, splicing and translation are the three main steps involved in protein syn-

thesis (see Figure 2.1). We will explain each of these steps in details and, in the process, we

will also explain various regions in a gene.
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Figure 2.1: Central dogma of molecular biology: transcription, splicing and translation. 1

1. Transcription: In simple terms, transcription is defined as the process of formation of

RNA from DNA. There are three important phases of this process. Initiation is the first

phase in which a mRNA polymerase binds to a sequence of DNA located immediately

upstream of a gene, called promoter. Elongation is the next phase, in which there is

a covalent addition of nucleotides to the 3’ end of the DNA. This produces a short

stretch of DNA that is single-stranded. Termination is the last phase of this process,

in which the transcription termination sequence is recognized, the RNA polymerase

is released and a poly-A tail is appended. The final product of this step is primary

mRNA [Marketa and Jeremy, 2008].

2. Splicing: A gene contains coding regions known as exons, which are expressed (i.e.

transcribed into mRNA), and intervening sequences, known as introns, which are not

1Figure source: http://en.wikipedia.org/wiki/File:Gene2-plain.svg, Date: 04/01/2011, License type:
This work has been released into the public domain by its author.
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expressed. Primary mRNA contains both exons and introns. Most introns start with

the sequence GT, which is called donor site and end with the sequence AG, which is

called acceptor site. Introns are removed from primary mRNA to form mature mRNA.

This process is called splicing [Marketa and Jeremy, 2008] (see Section 2.1.2 for more

details).

3. Translation: Translation is the final step in the information flow from gene to protein.

During translation the mature mRNA is translated into protein. Three nucleotide of

an RNA sequence code for one amino acid. The triplets are called codons. Translation

has three important steps. Initiation is the first step, in which translation starts

with a standard condon (AUG). This codon is called start codon. Elongation is the

second step, amino acids get added to the elongating polypeptide chain in this step.

Termination is the last step, in which translation stops at another standard sequence

signal called stop codon, which is either UAA, UAG or UGA. Segments at both ends

of the mRNA which are not translated are called 5’ UTR (UnTranslated Region) and

3’UTR, respectively [Marketa and Jeremy, 2008].

Figure 2.2: A simple gene structure showing the position of sequence signals relevant to
gene finding.

A simple gene structure and the positions of sequence signals relevant to gene finding

are shown in Figure 2.2. The promoter is a potentially long region upstream of the tran-

scription start site (TSS). The region between TSS and translation start is referred to as 5’

7



untranslated region (5’ UTR). The figure also shows introns and exons, introns are bounded

by the donor site on the 5’ end and by acceptor site on the 3’ end. Translation is terminated

at translation stop, the region between translation stop and the cleavage site is called 3’

UTR. After transcription, the poly-A tail is appended to the mRNA. The poly-A tail plays

important role in mRNA stability.

In this work, the main focus is on recognition of splice sites. This problem is discussed

in details in Section 2.1.2.

2.1.2 Splicing

Splicing is an important step in gene expression, as it is responsible for gene regulation,

and protein diversity in eukaryote. We have already mentioned above that, during splic-

ing, introns are removed from primary mRNA to produce mature mRNA. This process

is quite complex. It involves several other proteins and five snRNPs (small nuclear ri-

bonucleoprotein): U1,U2, U5, U4, and U6, each of these contain a small RNA bound by

proteins [Douglas, 2003] (see Figure 2.3).

As soon as the primary mRNA is transcribed, it is bound by snRNPs. The snRNPs are

responsible for splicing introns out of primary mRNA. They bind to sites of a primary mRNA

at or near the intron-exon boundaries. These sites, called donor/acceptor sites, contain

nucleotide sequences that are shared by most primary mRNAs. The donor/acceptor sites

and snRNPs have complementary base pairing, so that snRNPs can bound to them [Nilsen,

1994].

The snRNPs attach not only to the consensus sequence but some of them attach to

other sequences in the intron. These snRNPs group together into a large complex called a

spliceosome. The intron loops out with the formation of the spliceosome. The spliceosome

cuts the primary mRNA at one intron-exon boundary leaving a free hydroxyl (-OH) group

on the exon. It uses this hydroxyl group to attack the other end of the intron, and in the

2Figure source: http://en.wikipedia.org/wiki/File:Two-step Splicing Reaction.png, Date: 04/01/2011,
License type: GNU Free Documentation License.
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Figure 2.3: Formation of the spliceosome during RNA splicing.2

process removes the intron and joins the ends of two exons, producing a mature mRNA [Scott

and Gilbert, 2006], [Collins and Guthrie, 1999].

Although introns are discarded, they do contain important sequences. snRNPs bind to

the consensus sequences within the introns. The snRNPs use these sequences as markers

to direct them to the correct splice sites. We make use of Machine Learning techniques to

identify the splicing sites with the help of consensus sequence. We will discuss the Machine

Learning techniques used in this work in the next section.

2.2 Machine Learning

Machine Learning is a branch of Artificial Intelligence which involves developing algorithms

that can learn by repetition and experience just as humans learn [Mitchell, 1997]. It is

widely used for classification tasks. A classification task in machine learning is defined as a

9



method for assigning a label (or category) to an instance, from a number of categories. A

simple example would be assigning a label as spam or non-spam for an email. Supervised

learning is a class of machine learning techniques which are very popular for classification

tasks. The main idea of supervised learning algorithms is to use externally supplied labeled

instances to learn a general hypothesis, which can make prediction about new instances.

The general hypothesis which is generated by a classification algorithm is called a classifier,

which is usually a mathematical function or a probabilistic model. The classifier maps

the unlabeled instances to labels. We have used Logistic Regression classifier and Support

Vector Machine classifier for our classification task. We will discuss each of these in detail

in the next sub-sections.

2.2.1 Logistic Regression

Logistic regression predicts the probability of occurrence of an event by fitting the data to

a logistic curve [Kleinbaum et al., 1994].

Figure 2.4: The logistic function, with z on the horizontal axis and f(z) on the vertical
axis. The variable z represents the exposure to some set of independent variables and f(z)
represents the probability of a particular outcome3.

10



The logistic curve is shown in the Figure 2.4. The equation of this curve is given as:

f(z) =
1

1 + e−z
(2.1)

where z variable represents the exposure to a set of independent variables and f(z) represents

the probability of particular outcome.

An important property of this curve is that its input value z can range from a negative

number until infinity, but its output f(z) can range only from 0 to 1. Furthermore, z is

usually given as:

z = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βkxk, (2.2)

For a classification task in machine learning x1, x2, ..., xk represent the features of train

or test instances, i.e. they are the independent variables; β0, β1, ..., βk are called regression

coefficients. The training instances are used to determine the values of these coefficients,

who produce a logistic regression classifier. Once the value of these coefficients is known,

unlabeled instances can easily be classified by using Equation (2.1). This equation tells us

that what is the probability that a particular instance belongs to a given class.

2.2.2 Support Vector Machines

The Support Vector Machine (SVM) classifier works by finding a hyperplanes which sepa-

rates points belonging to one class from the points belonging to another class. Figure 2.5

shows how points belonging to two classes can be separated by a hyperplane. However,

there could be several hyperplanes separating these points. A good choice for classification

is the maximum margin hyperplane (see Figure 2.6), which maximizes the distance from

the nearest data points on each side [Cortes and Vapnik, 1995].

3Figure source: http://en.wikipedia.org/wiki/File:Logistic-curve.svg, Date: 04/01/2011, License type:
This work has been released into the public domain by its author.

4Figure source: http://en.wikipedia.org/wiki/File:Svm separating hyperplanes.png, Date: 04/01/2011,
License type: GNU Free Documentation License.
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Figure 2.5: Example of hyperplanes in a 2-dimensional space and a data set consisting of
two classes. H3 (green) does not separate the 2 classes. H1 (blue) does, with a small margin
and H2 (red) separates the two class with the maximum margin.4

Formally, let us suppose that we have a set of training vectors belonging to two classes

denoted by 1, -1. This set of data points will be denoted by:

D = {(x1, y1), ....(xm, ym)|xi ∈ Rn, yi ∈ {1,−1}} (2.3)

A hyperplane in the Rn space can be represented as:

w · x− b = 0 (2.4)

In the above equation, w is a normal vector which is perpendicular to the hyperplane.

The parameter b
‖w‖ determines the offset of the hyperplane from the origin along the normal

vector ‖w‖.

Parameters w and b are to be constrained, such that the margin between two classes

is maximized, i.e. the parallel hyperplanes are as far as possible (see Figure 2.5). These

hyperplanes can be described by the equations below:
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w · x− b = 1 (2.5)

and

w · x− b = −1 (2.6)

Figure 2.6: Maximum-margin hyperplane and margins for an SVM trained with samples
from two classes. Samples on the margin are called support vectors.5

The distance between these two hyperplanes is given by 2
‖w‖ (see Figure 2.6). In order

to maximize this distance, we need to minimize ‖w‖2, with respect to w and b, subject to

several constraints specified below.

Any of the points representing instances (see Equation (2.3)) must not lie in between

the hyperplanes represented by Equation (2.5) and Equation (2.6)). Therefore for the first

class we have:

w · xi − b ≥ 1 for xi of the class 1 (2.7)

5Figure source: http://en.wikipedia.org/wiki/File:Svm max sep hyperplane with margin.png, Date:
04/01/2011, License type: GNU Free Documentation License.

13



And for the second class we have:

w · xi − b ≤ −1 for xi of the class -1 (2.8)

By simplifying Equations (2.7) and (2.8) we get:

yi(w · xi − b) ≥ 1, for all 1 ≤ i ≤ m (2.9)

The solution for the above optimization problem is found by considering the dual problem

and using the technique of Lagrange multipliers. The solution is represented as:

w =
n∑
i=1

αiyixi (2.10)

where, αi’s are the non-negative Lagrange multipliers corresponding to the constraints

in the primal problem.

Thus, given the training points we can determine the maximum-margin hyperplane in

the training phase. Later, to classify an unlabeled instance we find its class by determining

on which side of the separating hyperplane it is located. The SVM formulation above is

for perfectly linearly separable data. If the data is almost linearly separable, a soft-margin

SVM is used, which includes a term for error penalty in the optimization function [Cortes

and Vapnik, 1995].

There are two important points to note here. First, we described SVM for two-class

problems but it can be extended to multi-class classification problems, although some good

properties of the binary classifier are lost, when extending SVM to the multi-class classi-

fiers [Crammer et al., 2001] (we are only using binary SVM classifiers in this work). Second,

the algorithm described above is for linear SVM classifier. However, it is possible to create

a non-linear SVM classifier using the kernel trick6.

6The kernel trick is used to convert any linear classifier into a non-linear classifier, given that the original
linear classifier solely depends on dot products between two vectors. In the extension to the non-linear case,
the dot product is replace by a the kernel function. [Cristianini and Shawe-Taylor, 2000], [Aizerman et al.,
1964], [Boser et al., 1992]
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2.3 Topic Modeling

We make use of topic modeling for dimensionality reduction for DNA sequence classification

task. The first part of this section will give a general overview of generative topic models.

The second part of this section will discuss Latent Dirichlet Allocation in detail, as it is the

topic modeling scheme which we have used in our work.

2.3.1 Generative Topic Models

Topic models provide an easy way to analyze unlabeled text of very large volume. Words

that occur together frequently are clustered together in a topic. Topic modeling can help us

to group words with similar meaning, as well as distinguish between the same words with

different meaning.

Topic models are establish on the idea that documents are mixtures of topics, while

topics are mixtures of words. These models give us a simple probabilistic procedure to

generate documents. Topic model are, thus, seen as generative models for a collection of

documents. If we want to generate a document on the basis of a topic model, then we first

choose a distribution over topics. After that, we randomly select a topic according to the

distribution and generate a word according to the distribution over words. This process

is repeated to generate each word in the document and, therefore, a complete document

is generated. By reversing this process we can infer the set of topics which generated a

document corpus [Steyvers and Griffiths, 2007].

Probabilistic sampling rules, which describe how words in documents might be generated

based on latent (random) variables, form the basis of generative models. In order to find

a model that produced a document corpus, we need to find the best set of latent variables

which can justify the observed data. This is done with the assumption that the model

actually generated the data. The left side of Figure 2.7 shows how a document is generated

given a topic model. In this example we have two topics, which generated three documents

based on the known topic distributions. The right side of the Figure 2.7 shows how topic
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Figure 2.7: Illustration of the generative process and the problem of statistical inference
underlying topic models (this figure is adapted from [Steyvers and Griffiths, 2007]).

modeling can be viewed as a problem of statistical inference. Here, we are given three

documents and we need to find the best model (i.e. topics or set of latent variables) that

might have generated these documents. Note that the model shown in this figure also

captures polysemy, by allowing a same word to appear in multiple topics. The word bank

appears in both topics and the subscript in the figure helps to distinguish between bank

from topic 1 and bank from topic 2. Another important thing to note here is that this

model makes the bag of word assumption [Blei et al., 2003], i.e. this model does not take

into consideration the order in which the words appear in documents.

2.3.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic model which is used to model

any collections of discrete data [Blei et al., 2003]. A text document corpus can be seen as a

collection of discrete data, therefore LDA can be used to model a document corpus. LDA

was first introduced by Blei et al. [2003]. They defined LDA as “A three-level hierarchical

Bayesian model, in which each item of a collection is modeled as a finite mixture over an
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underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an

underlying set of topic probabilities”. To fit a document corpus to this definition, we can

view a document as a collection of topics and each topic is viewed as a collection of words.

The paper Blei et al. [2003] presented an efficient method from which given a collection

of documents, it is possible to approximate the parameters of the model representing this

corpus, i.e. we can estimate topic probabilities and word probabilities within a topic.

Figure 2.8: Graphical model representation of LDA. The boxes are “plate” representing
replicates. The outer plate represents documents, while the inner plate represents the re-
peated choice of topics and words within a document. 7

According to Blei et al. [2003], LDA assumes the following generative process for each

document w in a corpus D.

1. Choose N ∼ Poisson( ξ ).

2. Choose θ ∼ Dirichlet(α).

3. For each of the N words wn in document w:

7Figure source: http://en.wikipedia.org/wiki/File:Latent Dirichlet allocation.svg, Date: 04/01/2011, Li-
cence type: GNU Free Documentation License.

17



(a) Choose a topic zn ∼ Multinomial(θ).

(b) Choose a word wn from p(wn | zn, β), a multinomial probability conditioned on

the topic zn.

Some of the assumptions that we make to obtain a generative probabilistic LDA model

of a corpus are as follows. Firstly, we assume that the dimensionality k of the Dirichlet

distribution hence the dimensionality of topic variable z is known and fixed. Second, we

assume that the word probabilities are parameterized by a kXV matrix where βij = p(wj =

1|zi = 1), which is treated as a fixed quantity that is to be estimated.

A k-dimensional Dirichlet random variable θ which lies in the (k − 1)-simplex has the

following probability density on this simplex:

p(θ|α) =
Γ(εki=1αi)∏k
i=1 Γ(αi)

θα1−1
1 ...θαk−1

k (2.11)

where α is a k-vector with components αi > 0, and Γ is the Gamma function.

α and β are corpus level parameters, which are sampled only once during the process of

corpus generation. θd is a document-level variable and it is sampled once per document (θd

is the topic distribution for document d). N is independent of all the other data generating

variables (θ and z). Therefore, it is an ancillary variable and we will generally ignore its

randomness. For given values of α and β, we can find a joint distribution of a topic mixture

θ, a set of N topics z, and a set of N words w as:

p(θ, z,w | α, β) = p(θ | α)
N∏
n=1

p(zn | θ)p(wn | zn, β) (2.12)

In the above equation p(zn | θ) is θi for a unique i such that zin = 1. If we integrate over

θ and then sum over z, then we get:

p(w | α, β) =

∫
p(θ | α)

(
N∏
n=1

∑
zn

p(zn | θ)p(wn | zn, β)

)
dθ (2.13)

Finally, taking the product of the marginal probabilities of single documents, we obtain

the probability of a corpus:
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p(D | α, β) =
M∏
d=1

∫
p(θd | α)

(
Nd∏
n=1

∑
zdn

p(zdn | θd)p(wdn | zdn, β)

)
dθd (2.14)

The probabilistic graphical model representation of LDA is shown in Figure 2.8. It is

clear from the figure that LDA has three levels. Finally, the variables zdn and wdn are

word-level variables, which are sampled once for each word in each document. This is how,

under LDA, documents can be associated with multiple topics and each topic is associated

with multiple words.

LDA can find a short description of a large collection of documents. As a result, LDA

can be used for processing large collections, while preserving the essential statistical rela-

tionships that are useful for document classification [Blei et al., 2003]. In our work, we used

LDA to model our sequence collection (which is the equivalent of the document corpus).

This enabled us to obtain a set of “topics” and set of “words” representing our sequence

collection. The set of words obtained from modeling the sequence collection with LDA is

much smaller than the actual number of words in the sequence collection. We only used the

set of “important” words (words with high probability in a topic) obtained from LDA as

features for representing each document in our sequence collection. This is how, LDA was

used for dimensionality reduction.

Several techniques are proposed to estimate the parameters of LDA model, α and β,

given a document corpus. Empirical Bayes approach [Blei et al., 2003] and Gibbs sam-

pling [Steyvers and Griffiths, 2007] are two popular approaches. In the implementation that

we used, MALLET: A Machine Learning Toolkit [McCallum, 2002], Gibbs sampling is used

for inference.
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Chapter 3

Related Work

This chapter reviews a number of works done in the past, which are related to the objectives

of this thesis. Section 3.1 presents previous works on techniques employed for feature gen-

eration and selection. Section 3.2 describes the techniques employed in the past for solving

the RNA splicing problem. Section 3.3 presents previous work related to domain adaptation

techniques for biological data. Finally, in Section 3.4 we discuss some of the applications of

topic modeling.

3.1 Dimensionality Reduction

Dimensionality reduction techniques for text data have been studied extensively. Some of the

previous works which presented dimensionality reduction techniques for text data are [Liu

and Motoda, 1998], [Koller and Sahami, 1996], [Yu and Liu, 2003] and [Tasci and Gungor,

2009]. Liu and Motoda [1998] cover all the basic concepts related to feature generation

and feature selection. Koller and Sahami [1996] examine an approach for dimensionality

reduction based on information theory. Yu and Liu [2003] introduce a novel concept of

predominant correlation, and present a fast filter method which can identify relevant features

as well as redundancy among relevant features without pairwise correlation analysis.The

work presented by Tasci and Gungor [2009] uses LDA for dimensionality reduction and

selection of key features. Their work suggests that the performance of LDA dimensionality

reduction technique was not better than that of the Information Gain technique (for details
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of Information Gain technique refer to [McCallum and Nigam, 1998]). However, they obtain

a 75% reduction in corpus size without any loss in performance by using these features.

Lately, feature extraction for biological data has also gained attention from several re-

searchers. Some of the feature extraction techniques used for the mRNA splicing site pre-

diction problem are presented in [Yeo and Burge, 2004], [Zhang et al., 2003a] and [Degroeve

et al., 2002]. Yeo and Burge [2004] model sequence motifs based on the Maximum Entropy

principle (MEP). Zhang et al. [2003a] use SVM algorithm to discover sequence information

(motifs/features), which is further used for classification. Degroeve et al. [2002] present a

wrapper-based feature subset selection algorithm. Although, LDA had been used to solve

some biological problem (see Section 3.4), to the best of our knowledge, LDA has not been

used for dimensionality reduction on biological sequences.

3.2 The mRNA Splicing Prediction Problem

In the past few decades the genome sequences of many organisms have become available.

Due to the availability of labeled data, it has been possible to use supervised machine

learning techniques to automate the splice site prediction process. A comprehensive overview

of splicing site recognition can be found in [Sonnenburg, 2002] and a general overview

along with a comparison of several gene and splice site prediction methods can be found

in [Mathe et al., 2002] and [Zhang, 2002]. Among several supervised machine learning

techniques that have been used for splicing site prediction, are methods based on Maximum

Entropy Modeling [Yeo and Burge, 2004] and Support Vector Machines (SVM) [Zhang

et al., 2003b]. SVMs along with related kernel methods are found to be very effective for

solving gene prediction problems [Boser et al., 1992], [Scholkopf and Smola, 2002]. The

main reason for the SVM popularity in computational biology is grounded ability to handle

high-dimensional spaces and large data sets [Scholkopf et al., 2004], [Scholkopf et al., 2005].

Some other techniques used for solving the mRNA splicing site problem are based on genetic

programming [Vukusic et al., 2007] and artificial neural networks combined with a rule based
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system [Hebsgaard et al., 1996]. Some researches also used micro-arrays for mRNA splicing

site prediction problem [Johnson et al., 2003], [Zheng et al., 2004].

3.3 Transfer Learning Techniques for Biological Data

All the methods mentioned in Section 3.2 are based on supervised machine learning. As a

result, these methods require a large amount of labeled data (already annotated instances)

to learn models, which can be then used to make predictions for the unknown instances

in the rest of the genome. Semi-supervised learning may be useful in the situation when

we have a small amount of labeled data and large amount of unlabeled data available.

However, we may also have a large amount of labeled data from a related domain, which

may have a different feature representation or data distribution. Transfer learning tries to

find the similarity and relatedness of different domains with the goal of learning what can

be transfered from a source domain to a target domain. In recent years, it has been used

to solve bioinformatics problems. Protein name extraction [Arnold et al., 2007] and micro-

array data classification [Widmer et al., 2010] are among the few bioinformatics problems

for which researchers have used domain adaptation techniques.

Some very recent studies have also focused on domain adaptation techniques for the

gene prediction problem [Schweikert et al., 2009; Widmer et al., 2010]. These techniques are

based on the assumption that the cellular mechanisms that are responsible for transcription

and translation of genes are conserved between organisms. Therefore, it should be possible

to use the knowledge from an organism, which has a large number of labeled genes to make

predication about an organism which has a very small number of labeled genes. In the

work done by Schweikert et al. [2009], they consider different domain adapation methods

and evaluate them on genomic sequence data from model organisms of varying evolution-

ary distances. In this work, the source organism used was C. elegans. In 1963, Sydney

Brenner introduced Caenorhabditis elegans (C. elegans) as a model organism. C. elegans is

a free-living, non-parasitic soil nematode that can be safely used in the laboratory and is
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common around the world. It is 1mm in length and can be cheaply housed and cultivated

in large numbers (10,000 worms/petri dish) [Riddle et al., 1997]. All these properties made

many researchers to work on this organism. Consequently, large amounts of labeled data are

available for this organism, making it an ideal choice as a source organism. Convex combi-

nation of source and target data, weighted combination of source and target data, multitask

learning, kernel mean matching are some of the domain adaptation algorithms considered

by Schweikert et al. [2009],. The results in [Schweikert et al., 2009] showed that the use of

domain adaption improves classification performance in cases where the organisms are not

closely related.

One of the factors that contributed to the success of the approach in [Schweikert et al.,

2009] is the use of the weighted degree kernel, which works by counting matching sub-

sequences between two sequences. Due to the use of the weighted degree kernel [Fodor,

2002], they do not have to represent the data in a high dimensional space. We are also using

the same dataset as used by Schweikert et al. [2009]. However, as an alternative approach

to dimensionality reduction, we propose to use Latent Dirichlet Allocation (LDA) model to

generate features for our experiments. In what follows, we review some of the previous work

done based on LDA model.

3.4 Topic Modeling Applications

LDA is a generative probabilistic model for collections of discrete data such as text cor-

pora. It was originally used for document modeling, text classification and collaborative

filtering [Blei et al., 2003]. LDA has been used for many different applications after it was

used by Blei et al. [2003] for document modeling. Among others, it has been used for

various problems involving text data like tag recommendation [Krestel et al., 2009], word

sense disambiguation [Boyd-Graber et al., 2007], named entity recognition [Guo et al., 2009],

friendship link prediction problem [Parimi, 2010], etc. There have been some attempts in

the past to use LDA for biological data. Items in a biomedical text corpus were modeled
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using the Latent Dirichlet Allocation (LDA) model by Blei et al. [2006]. An adapted version

of LDA, called Latent Process Decomposition (LPD), which can explicitly model expression

levels, was proposed by Rogers et al. [2005]. This work used LPD for clustering expression

micro-array data. Biologically-aware Latent Dirichlet Allocation (BaLDA), which extends

LDP, was introduced and used by Perina et al. [2010] for classification of expression micro-

array data. However, to the best of our knowledge, LDA has not been used for feature

extraction for the RNA splicing site prediction problem or for any other prediction problem

where DNA sequences are used.
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Chapter 4

Problem Definition and Approach

We begin this chapter by describing the splice site prediction problem. Then, we present

LDAW and LDAD approach considered in the first part of this work. Finally, we describe

all the Domain Adaptation algorithms which we used for the second part of this work.

4.1 Splice Site Prediction Problem

We will be validating the performance of our approaches on the splice site prediction prob-

lem. We have already described the gene structure and splicing in Section 2.1.1 and Section

2.1.2, respectively. We discussed in these sections that there is a consensus sequence sur-

rounding the acceptor site (GT) and the donor site (AG) to which the snRNPs bind during

splicing. Due to presence of consensus it is possible to use machine learning algorithms to

predict splice site. We will now discuss the details of this problem.

The donor site is identified by a GT sequence and acceptor site is identified by AG.

However, this GT-AG rule does not always hold. Therefore, we can model this problem as a

binary classification problem. The sequences with experimentally confirmed splice sites are

our positive examples and the sequences confirmed as not real splice site are our negative

examples. Given a DNA sequence surrounding a donor or acceptor site, our goal is to predict

if it is a real splice site or not.

Figure 4.1 shows examples from our dataset of both positive and negative instances.

Each instance has a possible acceptor site as it contain the AG sequence. However, only the
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instances in the positive class are real acceptor sites. Although the instances in negative

class have AG sequence, still they are not real acceptor sites. In our dataset, each instance

is composed of 60pb before and 79 bp after the possible donor site (AG). The information

surrounding the AG sequence is used to discriminate between the real acceptor site and

decoy acceptor site.

Figure 4.1: Samples from positive and negative classes. The 3’ splice site or splice acceptor
site (AG) is highlighted in yellow.

4.2 LDAW and LDAD Approaches to Feature Gener-

ation and Construction

We have already presented a brief overview of our approaches in Chapter 1. As discussed

in Chapter 1, we need to represented biological sequences as feature vector before applying

any classification algorithm on them. A simple way to do this would be to find all the

k-mers and use each k-mer as a feature. However, this method will produce a large number

of features, which would be difficult to work with when learning. Therefore, it is desirable

to perform dimensionality reduction on the set of k-mers. We are using LDA to select the

best features from the set of all k-mers representing the sequences.

26



Figure 4.2: Illustration of the process of obtaining the set of k-mers from a biological
sequence. The biological sequence is taken from the same dataset which we have used in our
work.

Figure 4.3: Illustration of the process of obtaining the LDA model from a document collec-
tion. The LDA model has 10 topics with 10 words (k-mers) in each topic.
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Our first step for feature generation was to find the set of all possible k-mers for a given

biological sequence. The biological sequences in our dataset are of length 141bp and we

represented each sequence using 6-mers, 7-mers and 8-mers. Figure 4.2 shows an example

from our dataset depicting how a sequence can be represented as a collection of k-mers.

Each set of k-mers corresponding to a sequence represents a “document” associated with

the sequence. The next step in our approach is to find the LDA features by topic modeling

this document collection. This step is shown in Figure 4.3. The order of the k-mers does

not matter in a document as LDA makes the bag of words [Blei et al., 2003] assumption.

As mentioned earlier in Chapter 1, we used two approaches for dimensionality reduction:

(a) LDA words (LDAW) (b) LDA distribution (LDAD). We will now discuss each of these

approaches in details.

4.2.1 LDAW Approach

In LDAW, we use all the k-mers (with high probability) obtained by modeling the document

collection as our features. Figure 4.4 illustrates the process of representing a test or a

training document using LDAW features. To represent a document, we simply count the

number of occurrences of each word (k-mer) from each LDA topic. Thus, for an LDA model

represented by 10 topics with 10 words (k-mers) in each topic, we will have 100 features

(unless there is word overlap between topics). An important point to note is that, we can

control the number of LDA features, by controlling the number of topics and the number of

words shown in a topic used for modeling our document collection. For example, if we set

the number of topics as 10 and number of words in each topic as 10, then after modeling

the documents using LDA we will be left with only 100 LDAW features.

4.2.2 LDAD Approach

In LDAD we use the topic distribution for each topic as our features. Figure 4.5 illustrates

how we can represent a training or a test document using LDAD features. A document is

represented by the topic distribution of each topic obtained from LDA model. Therefore,
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Figure 4.4: Illustration of the process of representing a document with LDAW features. A
document is represented by the count of occurrences of each word (k-mer) in LDA model
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the number of features is equal to the number of topics, which represent the LDA model of

the document collection. For example, if the LDA model has 10 topics then the number of

features would also be 10, as shown in the example in Figure 4.5.

The number of LDAD features only depends on the number of topics and not on the

number of words. Figure 4.4 illustrates this approach.

Figure 4.5: Illustration of the process of representing a document with LDAD features. A
document is represented by the topic distribution of each topic in the LDA model.
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4.2.3 Using LDA Features for Classification

Once we obtain the features using either LDAW or LDAD, we represent both our training

and test instances using these features. We then use a classifier to built a model from

the training instance. We used logistic regression and Support Vector Machine (SVM)

classifiers to learn models during training phase. Finally, the use the model learned during

training phase to determine if a given instance belongs to positive class or negative class.

An important point to note is that the sequence collection from which we obtained LDA

model consisted of only the training instances and not the test instances.

4.3 Domain Adaptation Algorithms

In the second part of this work, we evaluate the effect of using LDA features in a domain

adaptation framework. For this purpose we use different domain adaptation methods, sim-

ilar to the methods used in Schweikert et al. [2009]. Before going into the details of these

approaches let us first define the source domain and the target domain with respect to do-

main adaptation. A classifier trained using a traditional supervised learning algorithm can

make predictions only about the unlabeled instances from the domain to which the training

instances belong. However, domain adaptation algorithms make use of data from a different

but related domain called as source domain to help make predictions about another domain

called target domain. Basically, a source domain has some informative knowledge, which can

be used to improve the classification accuracy of a target domain. Mostly, transfer learning

is used when the number of labeled instances is very small in the target domain and we

need to make use of labeled instances from the source domain to improve the performance

of the classifier. Given this description of the source domain and the target domain, let us

now describe each of the domain adaptation algorithms, and the baselines we have used.
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4.3.1 Target Only (DAt) and Source Only (DAs) Baselines

As baseline algorithms, we used two methods named as target only (DAt) and source only

(DAs) (see (A) and (B) of Figure 4.6). As the names suggest, in the target only method,

we use labeled data from target domain only to train a classifier, and in the source only

method we use labeled data from source domain only to train the classifier. An important

point to note here is that the setting used for domain adaptation DAt is the same as the

one corresponding to the supervised learning framework. In other words, all the results

obtained for supervised learning are the same as those obtained for DAt.

4.3.2 Weighted Combination (DAxs+yt)

In the weighted combination approach the classifier is trained on the combination of source

and target data (see (C), (D) and (E) of Figure 4.6). The weight of source data was kept

double of target data in one set of experiments (DA2s+t). In the second set of experiments

the weight of target data was kept double of the weight of target data (DAs+2t). Finally, in

the third set of experiments the weight of target and source data was kept equal (DAs+t).

An important point to note is that the sequence collection from which we obtained the

LDA model in the domain adaptation setting consisted of the training instances from both

source and target training instances. Unlike, the supervised learning framework where we

used training instances only from the target domain.
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Figure 4.6: Illustration of Target Only (DAt), Source Only (DAs) and Weighted Combi-
nation (DAxs+yt) approaches.
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Chapter 5

Experimental Setup

This Chapter describes the details of the experiments conducted to find the effectiveness

of LDA as a dimensionality reduction tool for biological sequences in a supervised learning

framework and domain adaptation framework.

In supervised learning framework, we conducted experiments with the aim to answer the

following questions:

• How effective are the LDAW features for classification of DNA sequences?

• How effective are the LDAD features for classification of DNA sequences?

• How does the performance vary with the number of LDA topics used?

• How does the performance vary with the size of k-mers?

• How does the performance vary with the amount of labeled data in the target domain?

• What is the effect of using different classifiers?

In domain adaptation framework, we conducted experiments with the aim to answer the

following questions:

• How effective are the domain adaptation approaches with increasing evolutionary dis-

tances between species?
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• What is the effect of using a weighted combination of source and target data as training

data?

We will begin by explaining experimental setup for supervised learning framework and

then we will discuss the experimental setup for domain adaptation framework.

5.1 Supervised Learning Framework

We begin this section by describing the dataset that we used and how we split the dataset

for training and testing. We then discuss about the set of experiments which we performed.

5.1.1 Dataset Description

We consider the task of identifying acceptor and donor splice sites within a large set of

potential splice sites on the basis of the sequence surrounding the potential site. We obtained

the dataset for this problem from Schweikert et al. [2009]. This dataset has larger amounts

of labeled samples and unlabeled samples for C. remanei, P. pacificus, D. melanogaster and

A. thaliana, which we used to study our approaches in supervised learning framework.

5.1.2 Dataset Splits

The dataset splits which we used for our experiments are shown in Figure 5.1. In the training

phase, we used the datasets of sizes 1,000, 2,500, 6,500, 16,000, 25,000, 40,000 and 100,000.

These datasets were formed by randomly selecting samples from the labeled data for each

organism. For all sample sets, the positive to negative ratio was 1/100. For cross-validation

purpose, each target set was divided in three parts and all experiments were performed three

times by considering two-third of the set for training. For our experiments, we balanced the

training dataset such that we were left with equal number of positive and negative samples.

If the training data is skewed towards a class, called majority class, then the classifier tends

to predict always the majority class (even though they belong to minority class). To avoid

this behavior we balance the training data by randomly removing samples from majority
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class. A set of 60,000 samples was kept aside for each organism, which was used for testing

purpose. Each of the three classifiers built in training phase were tested with one-third of

the testing dataset of size 20,000. We averaged the results obtained from all three sets of

experiments.

Figure 5.1: The train set is split in three parts. Two-third of the train set is used for
training. Similarly, test set is split in three parts and each part is used in each of the three
experiments.

5.1.3 Experiments

We performed experiments using both LDAW and LDAD approaches with all the four

species, C. remanei, P. pacificus, D. melanogaster and A. thaliana to study the effectiveness

of these approaches for classification of DNA sequences. Below are some other details about

the experiments which we performed in supervised learning framework:

• To evaluate the effectiveness of LDAW and LDAD approaches we compared their

results with a traditional dimensionality reduction approach based on the information
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gain criterion. This dimensionality reduction approach is called Mutual information

(MI) method (for details refer to [McCallum and Nigam, 1998]). We use Weka’s

1 implementation for information gain (InfoGainAttributeEval along with Ranker’s

search algorithm) to rank a set of features in the decreasing order of their mutual

information with the class variable [Hall et al., 2009]. We performed four sets of

experiments by selecting top 100, 500, 1000 and 2000 features from this ordered list

of features.

• To study the performance variation with the number of LDA topics, we used 10, 50,

100 and 200 topics. The number of words in each topic were kept constant as 10.

Therefore, the number of LDAW features obtained were 100, 500, 1000 and 2000 and

the number of LDAD features obtained were 10, 50, 100 and 200, respectively.

• To study the performance variation with the size of k-mers we performed experiments

using only 6-mers and only 8-mers.

• To study the effect of using different classifiers, we performed experiments with both

Logistic Regression classifier and Support Vector Machine classifier.

5.2 Domain Adaptation Framework

We begin this section by describing the dataset that we used and how we split the dataset

for training and testing. We then discuss about the set of experiments which we performed.

5.2.1 Dataset Description

We consider the same task of identifying acceptor and donor splice sites on the basis of

the sequence around the potential site, as we considered in supervised learning framework.

We obtained the dataset for this problem from Schweikert et al. [2009]. This dataset is

specifically designed to be used in a domain adaptation setting. C. elegans is a very well

1http://weka.wikispaces.com/
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studied model organism, which makes it appropriate as a source domain. The dataset has a

large amount of splicing site labeled data for C. elegans. It also has larger labeled samples

and unlabeled samples for C. remanei, P. pacificus, D. melanogaster and A. thaliana, which

will be used as target domains. Although, domain adaptation is used when the target domain

does not have enough labeled data, however, in our experiments we also studied the effect

of increasing labeled data in target domain. C .remanei is the closest to C. elegans amongst

all other organisms and they diverged around 100 million years ago [Stein et al., 2003].

More distantly related, P. pacificus diverged from C. elegans more than 200 million years

ago [Pires-Dasilva and Sommer, 2004]. D. melanogaster diverged from C.elegans around

990 million years ago [Abel et al., 2003]. Lastly, A. thaliana is a plant and it separated

from other organisms more than 1,600 million years ago (see Figure 5.2). As the target

domain organisms have varying evolutionary distances from the source domain, therefore,

this dataset will be suitable to study the effectiveness of the domain adaptation approach

for increasing evolutionary distances among the species.

5.2.2 Dataset Splits

We used the same dataset splits as used by Schweikert et al. [2009]. In the training phase, we

used the target datasets of sizes 1,000, 2,500, 6,500, 16,000, 25,000, 40,000 and 100,00 and

a source dataset of size 25,000. These datasets were formed by randomly selecting samples

from the labeled data for each organism. For all sample sets, the positive to negative ratio

was always kept as 1/100. We balance the training data by randomly removing samples

from majority class. A set of 60,000 samples was kept aside for each target organism, which

was used for testing purpose. Each of the three classifiers built in training phase were tested

with one-third of the testing dataset of size 20,000. We averaged the results obtained from

all three sets of experiments. (see Figure 5.3).
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Figure 5.2: Information transfer from source to target domains. As source organism,
we used the well-annotated model organism C. elegans. As target domains, we used four
organisms with varying evolutionary distances to C. elegans.

5.2.3 Experiments

We used only LDAW approach to study the effect of using different Domain Adaptation

algorithms. We performed experiments for both the baselines (DAt and DAs) algorithms

four target species. To study the variation of the performance with changing the weights

of labeled data in source and target domain, we performed experiments for DAs+t, DA2s+t

and DAs+2t. The weighted combination experiments were also performed for all the four

target species. We used Logistic Regression classifier for all experiment performed in domain

adaptation framework.

The results obtained from all the experiments discussed in this chapter are presented in

Chapter 6 and conclusions derived from them are discussed in Chapter 7.
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Figure 5.3: The target train set is split in three parts. Two-third of the labeled samples
from target domain is combined with the labeled sampled from source domain and is used for
training. Similarly, target test set is split in three parts and each part is used in each of the
three experiments.
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Chapter 6

Results

In this chapter, we discuss the results obtained by running the experiments described in

Chapter 5. We begin by discussing the results obtained for the experiments performed in

supervised learning framework in Section 6.1. We then discuss the results obtained for the

experiments performed in domain adaptation framework in Section 6.2.

6.1 Supervised Learning Framework Results

The organization of this section is as follows: in Section 6.1.1 we report the results of

the experiments performed to study the effectiveness of LDAW and LDAD approach as

compared to MI features; in Section 6.1.2 we examine the results of using different classifiers;

in Section 6.1.3 we discuss the effect of varying different parameters for LDAW method i.e.

number of topics and size of k-mers, and in Section 6.1.4, we study the effect of increasing

labeled data in training dataset.

6.1.1 Study of Effectiveness of LDA Topic Modeling Features

In this section, we investigate the effectiveness of using LDA topic modeling for dimensional-

ity reduction. This section is further divided into two sub-sections. In the first sub-section,

we compare LDAD and LDAW methods to see which one gives better performance. In

the second sub-section, we compare LDAD results with MI results, which is a traditional

dimensionality reduction method.
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LDAW vs. LDAD

We first compare the results obtained from LDAW and LDAD approaches. For this experi-

ment, we only use the supervised learning framework (DAt) approach with logistic regression

classifier. We perform experiments for different training data sizes and for different number

of LDA topics. The results obtained with LDAW approach are shown in Table 6.1, while

the LDAD approach results are shown in Table 6.2. These tables show that auROC values

obtained from LDAW methods are greater than that of LDAD approach.

C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.615 0.574 0.549 0.635 0.682 0.699 0.718
50 0.586 0.56 0.613 0.536 0.546 0.544 0.621
100 0.591 0.592 0.585 0.638 0.528 0.559 0.568
200 0.634 0.62 0.658 0.606 0.563 0.56 0.645

P. pacificus
1000 2500 6500 16000 25000 40000 100000

10 0.486 0.494 0.501 0.489 0.491 0.492 0.488
50 0.49 0.49 0.507 0.49 0.487 0.491 0.487
100 0.493 0.592 0.585 0.638 0.492 0.506 0.487
200 0.473 0.5 0.477 0.515 0.501 0.502 0.501

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.512 0.552 0.579 0.544 0.524 0.577 0.664
50 0.553 0.576 0.598 0.603 0.602 0.626 0.643
100 0.594 0.523 0.613 0.655 0.606 0.549 0.521
200 0.621 0.587 0.636 0.646 0.575 0.629 0.512

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.525 0.525 0.523 0.579 0.651 0.64 0.667
50 0.554 0.548 0.585 0.556 0.543 0.549 0.587
100 0.561 0.592 0.593 0.546 0.571 0.56 0.524
200 0.572 0.593 0.603 0.597 0.592 0.553 0.501

Table 6.1: auROC values obtained from LDAW method in supervised learning framework
(DAt approach) with logistic regression classifier. The target data set sizes used are 1000,
2500, 6500, 16000, 25000, 40000 and 100000, respectively (column names). The number of
topic used are 10, 50, 100 and 200, respectively (row names). The best value obtain for a
given number of topics with increasing data set sizes is highlighted in each row.
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C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.458 0.486 0.524 0.533 0.512 0.481 0.489
50 0.455 0.505 0.52 0.525 0.506 0.476 0.469
100 0.438 0.491 0.525 0.526 0.508 0.483 0.496
200 0.489 0.521 0.533 0.531 0.522 0.509 0.503

P. pacificus
1000 2500 6500 16000 25000 40000 100000

10 0.472 0.472 0.502 0.498 0.507 0.493 0.481
50 0.481 0.482 0.513 0.509 0.495 0.485 0.473
100 0.47 0.484 0.482 0.491 0.482 0.479 0.467
200 0.494 0.517 0.524 0.523 0.523 0.518 0.518

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.453 0.487 0.523 0.551 0.502 0.473 0.462
50 0.497 0.518 0.515 0.521 0.533 0.48 0.46
100 0.514 0.527 0.53 0.526 0.503 0.492 0.459
200 0.499 0.506 0.503 0.511 0.537 0.516 0.511

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.495 0.506 0.505 0.516 0.514 0.509 0.492
50 0.454 0.499 0.51 0.514 0.517 0.484 0.484
100 0.476 0.482 0.506 0.51 0.531 0.487 0.493
200 0.43 0.498 0.52 0.528 0.528 0.505 0.509

Table 6.2: auROC values obtained from LDAD method in supervised learning framework
(DAt approach) with logistic regression classifier. The target data set sizes used are 1000,
2500, 6500, 16000, 25000, 40000 and 100000, respectively (column names). The number of
topic used are 10, 50, 100 and 200, respectively (row names). The best value obtain for a
given number of topics with increasing data set sizes is highlighted.

Figure 6.1 shows a graph obtained by plotting auROC values against training data size

for both LDAW (red) and LDAD (blue) approaches. It is clear from this graph that LDAW

gives better performance as compared to LDAD for various training data sizes. Furthermore,

even for the same number of LDA topics LDAW performs better that LDAD. An explanation

for this behavior could be that for the same number for LDA topics the number of features

for LDAW is ten times larger that the number of features for LDAD. For example, for 10

LDA topics the number of LDAW features is 100 as each topic has 10 words, whereas for
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LDAD we just consider the topic distribution, therefore, there will be only 10 features.

Note that we have shown results only for C. remanei, D. melanogaster and A. thaliana.

The results obtained for P. pacificus were very poor. All the auROC values were less that

0.5 and there was no improvement with training data size for any of the methods.

LDAW vs. MI

The results from the above sub-section clearly show that LDAW is more effective than the

LDAD approach. In this section, we present the results of the experiments which compare

LDAW with a traditional dimensionality reduction method, specifically Mutual information

(MI).

Summary of all the results obtained using the MI dimensionality reduction method is

shown in Table 6.3. We performed experiments using MI features for all four organisms and

varied both training data set sizes and number of features. The classifier used for this study

was logistic regression and the approach used was DAt.

As discussed in the previous section, the results for P. pacificus are very poor using

LDAW method. These results do not follow the pattern observed for the other three organ-

isms. Thus, all the observations made in this section are based on results obtained from C.

remanei, D. melanogaster and A. thaliana.

First, to study the effect of number of features on performance of LDAW method and

MI method, we plotted a graph against the number of features which gave best performance

for a given training data set size. Figure 6.2 shows the graphs obtained by plotting the

number of features which gave best performance for difference data set sizes for C. remanei,

P. pacificus, D. melanogaster and A. thaliana, respectively. It can be seen from these graphs

that for MI method the best performance is obtained for 1000 features, irrespective of the

size of training data set. However, in case of the LDAW method, for smaller training data

sets, larger number of features give better value whereas for large training data set smaller

number of features (10 topics i.e. 100 features) give better value. The best performance

obtained for small number of features with large training set can be explained for biological
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Figure 6.1: Graphs obtained by plotting auROC values against training data size for C.
remanei, D. melanogaster and A. thaliana, respectively. Each data series corresponds to a
different number of LDA topics (LDAW10 corresponds to LDAW method with 10 topics).
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data, however, the best performance obtained for small number of topics with larger number

of features is counter intuitive. Discussion of such behavior is presented in Section 6.1.3.

Also, from Table 6.3, it can be observed that for MI method the performance increases

with the increase in number of features and then it starts decreasing after a threshold.

For our experiments the best performance is obtained for 1000 features, however, for 2000

features again the performance degrades.

Second, to compare the performance of LDAW and MI method, we plotted a graph of

the best auROC values obtained from LDAW method and MI method against dataset sizes.

Figure 6.3 shows a graph obtained by plotting best auROC value, irrespective of the number

of features against the training dataset for C. remanei, P. pacificus, D. melanogaster and

A. thaliana. The most important thing to note here is that for all three organisms, C.

remanei, D. melanogaster and A. thaliana, the performance of LDAW method is better

than MI method for large training data sets. Otherwise the MI method gives better result

than LDAW method. Thus, we can say that LDAW is able to select better features than

MI method when the size of the training dataset is very large.

6.1.2 Study of Support Vector Machine vs. Logistic Regression
Classifiers

In the previous subsection, we analyzed the effectiveness of using LDA features. All these

experiments were performed using Logistic Regression classifier (see Section 2.2.1). In this

section, we will study the effect of using a different classifier. For this comparison we used

Support Vector Machine classifier (see Section 2.2.2), as a classifier and compared it to the

Logistic Regression classifier.

Table 6.4 shows the results obtained for LDAW method using the Support Vector Ma-

chine (SVM) classifier (with default parameters). We performed experiments using SVM

classifier for all four organisms and varied both training data set sizes and number of fea-

tures. We have performed these experiments only in supervised learning framework.

To compare the performance of logistic regression classifier and SVM classifier we plot-
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Figure 6.2: Graphs obtained by plotting the number of features which gave the best perfor-
mance against training data size. Blue data series corresponds to the LDAW method and
Orange corresponds to the MI method.
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Figure 6.3: Graphs obtained by plotting best auROC for a given training data set size
against training data size. Blue data series corresponds to the LDAW method and Orange
corresponds to the MI method.
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C. remanei
1000 2500 6500 16000 25000 40000 100000

100 0.544 0.589 0.593 0.597 0.604 0.587 0.58
500 0.605 0.625 0.634 0.638 0.628 0.632 0.606
1000 0.624 0.644 0.667 0.687 0.696 0.677 0.670
2000 0.584 0.597 0.612 0.62 0.653 0.646 0.632

P. pacificus
1000 2500 6500 16000 25000 40000 100000

100 0.489 0.532 0.54 0.544 0.568 0.573 0.568
500 0.538 0.547 0.60 0.625 0.628 0.583 0.571
1000 0.558 0.568 0.623 0.611 0.633 0.603 0.59
2000 0.547 0.549 0.564 0.577 0.598 0.581 0.573

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

100 0.546 0.550 0.567 0.565 0.574 0.577 0.563
500 0.552 0.558 0.592 0.618 0.587 0.562 0.540
1000 0.573 0.583 0.628 0.643 0.63 0.617 0.611
2000 0.566 0.572 0.592 0.612 0.605 0.587 0.580

A. thaliana
1000 2500 6500 16000 25000 40000 100000

100 0.554 0.574 0.581 0.597 0.608 0.588 0.583
500 0.616 0.624 0.639 0.642 0.675 0.636 0.612
1000 0.630 0.632 0.642 0.672 0.703 0.651 0.620
2000 0.592 0.604 0.613 0.612 0.623 0.607 0.587

Table 6.3: auROC values obtained from MI method in supervised learning framework (DAt
approach) with logistic regression classifier. The target data set sizes used are 1000, 2500,
6500, 16000, 25000, 40000 and 100000, respectively (column names). The number of fea-
tures used are 100, 500, 1000 and 2000, respectively (row names).

ted a bar graph showing the auROC values for increasing training data set sizes for both

classifiers. Figure 6.4 shows these graphs for C. remanei, P. pacificus, D. melanogaster and

A. thaliana. The red data series corresponds to results from logistic regression classifier and

the blue data series corresponds to SVM classifier. Following are the observations made

from this graph:

• Firstly, for C.remanei SVM classifier performs better than logistic regression classifier

except for larger number of topics (features) i.e., for training data set sizes of 1,000,
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2,500, 6,500 and 1,00,000 for 200 topics logistic regression gives better results than

SVM classifier.

• Secondly, for both A. thalians and D. melanogaster the logistic regression classifier

performs better than SVM classifier in most of the cases.

• Lastly, for P. pacificus for all the training data set sizes and number of topics logistic

regression classifier performs better than SVM classifier.

From the above observations we can see that the performance of logistic regression classifier

is better for majority of the organisms. Thus, we perform the rest of our experiments using

the logistic regression classifier only. Note: SVM has not been tuned. It has been used with

a definite parameters (meaning a linear kernel).

6.1.3 Study of Different LDA Topic Modeling Settings

In the previous section, we studied the effect of using different classifier. An important aim

of this work is also to study the effect of varying the number of LDA features on classification

performance. With this aim in mind, we performed our next set of experiments with different

number of LDA topics and different k-mer sizes. Results from each of these experiments are

presented in the subsections that follow.

The Effect of Increasing the Number of LDA Topics

We varied the number of LDA topics for each set of experiments that we performed. In this

section, we studied the effect of varying LDA topics on LDAW and LDAD methods. We

begin our discussion with LDAW method and then we move to LDAD method.

The results obtained from LDAW approach for in supervised learning framework using

logistic regression classifier are summarized in Table 6.1. Based on this table we constructed

a graph showing the number of topics which give best auROC values against the training

data set sizes for C. remanei, D. melanogaster and A. thaliana. As mentioned in Section

6.1.1, the results for P. pacificus do not follow the patterns observed for the other three
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Figure 6.4: Graphs obtained by plotting auROC values against training data size. Each data
series corresponds to a different number of LDA topics (LR10 corresponds to LR classifier
with 10 topics). Results for Logistic Regression classifier are shown in red and for Support
Vector Machine classifier are shown in blue.
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C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.669 0.674 0.675 0.698 0.692 0.667 0.68
50 0.616 0.605 0.734 0.561 0.54 0.58 0.631
100 0.601 0.56 0.703 0.518 0.578 0.645 0.594
200 0.589 0.541 0.533 0.655 0.648 0.577 0.596

P. pacificus
1000 2500 6500 16000 25000 40000 100000

10 0.486 0.483 0.499 0.489 0.475 0.481 0.482
50 0.467 0.489 0.488 0.514 0.482 0.489 0.48
100 0.476 0.483 0.492 0.503 0.48 0.497 0.484
200 0.503 0.495 0.49 0.492 0.49 0.485 0.501

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.53 0.566 0.579 0.555 0.569 0.552 0.588
50 0.534 0.583 0.535 0.562 0.505 0.56 0.537
100 0.551 0.521 0.546 0.562 0.566 0.517 0.572
200 0.531 0.521 0.545 0.582 0.544 0.588 0.563

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.517 0.518 0.517 0.533 0.53 0.532 0.529
50 0.516 0.52 0.505 0.538 0.522 0.512 0.526
100 0.527 0.523 0.524 0.498 0.501 0.505 0.536
200 0.49 0.524 0.542 0.527 0.523 0.524 0.529

Table 6.4: auROC values obtained from LDAW method in supervised learning framework
with SVM classifier. The target data set sizes used are 1000, 2500, 6500, 16000, 25000,
40000 and 100000, respectively (column names). The number of LDA topics used are 10,
50, 100 and 200. respectively (row names).

organisms for LDAW method. Therefore, we did not plot the result for P. pacificus. This

graph is shown in Figure 6.5. The following observations are made based on this graph:

• For training data set sizes of 1,000, 2,500 and 6,500 the best auROC value is obtained

for 200 topics.

• For training data set sizes of 16,000 the best auROC value is obtained for 100 topics.

• For training data set sizes of 25,000, 40,000 and 100,000 the best AUROC is obtained

for 50 or 10 topics.
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The best auROC values for small number of features with large training set is easy to

explain for biological data. Every sequence in our dataset is 141bp long. About 100 - 500 k-

mers are enough to cover all the possible consensus sequences in a given sequence collection.

Thus, we can classify only using small number of features even for a large datasets. However,

the best performance obtained for small number of topics with larger number of features is

counter intuitive and only some kind of over fitting can explain these results. We need to

investigation deeper to explain these results. We can use a denser LDA topic scale, with

steps of 10 topics to understand this behavior.

The results obtained from LDAD approach in supervised learning framework approach

using logistic regression classifier are summarized in Table 6.2. Based on this table we

constructed a graph showing the number of topics which give the best auROC value against

the training data set sizes for all the organisms. This graph is shown in Figure 6.5. We

can clearly see from this graph that the best performance is obtained from 200 topics for

almost all sizes of training data sets and all organisms. There are only few exceptions for

smaller data, set sizes where performance with less number of topics is better. Thus, we can

conclude that the performance of LDAD is better for large number of topics than for small

number of topics.

The Effect of Increasing the Size of k-mers

In this section, we studied the effect of increasing the size of k-mer and effect of using com-

bination of k-mers as features. All the results we presented so far were using a combination

of 6-mers, 7-mers and 8-mers features (6+7+8 mers). In order to perform this study, we

conducted two sets of experiments. In the first set of experiments we used only 6-mers

features and in the second set of experiments we used only 8-mers features. We used the

logistic regression classifier and the DAt approach for these experiments. We compared the

results obtained from these experiments with the results in Table 6.1, where we have also

used logistic regression classifier and DAt approach but with the combination of 6-mers,

7-mers and 8-mers. Thus, for each of these experiments the classifier, approach, test data,
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Figure 6.5: Graph obtained by plotting the number of topics that give the best auROC
against the training data size for LDAW method and LDAD method. Each data bar color
corresponds to a different organism.
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train data and number of LDA topics used are the same, only the type of features are

changed. The results which we obtained from 6-mers only features and 8-mers only features

are summarized in Tables 6.5 and 6.6, respectively. We did not presented the results for

P.pacificus for the reasons discussed in the above sections.

In order to further analyze these results we plotted graphs for auROC values obtained

for 6-mers only, 8-mers only and combination of k-mers against the increasing size of train-

ing data sets. We will study the graphs obtained from C. remanei, D. melanogaster and

A.thaliana. The graphs obtained for C. remanei for topic count 10, 50, 100 and 200 are

shown in Figure 6.6. We plotted similar graphs for D. melanogaster, which are shown in

Figure 6.7, each graph corresponding to topic count of 10, 50, 100 and 200. Finally, the

same type of graphs were also plotted for A. thaliana. These graphs are shown in Figure 6.8,

each corresponding to topic count of 10, 50, 100 and 200. Following are the observations

made based on these graphs:

• The maroon data series representing 6-mers only features is lower than the other two

data series in nearly all graphs. This shows that performance of 6-mers only is worst as

compared to both 6+7+8 mers features and 8-mers only features. Since, 6-mers only

features gave poor results as compared to 8-mers only features we can conclude that

the performance of LDAW method would improve with the increase in the size of k-

mers used for obtaining LDAW features, although the improvement is not very drastic.

This can be explained by the fact that the information captured by a larger k-mer

is more as compared to the information captured by a smaller k-mer. An important

point to note here is that, after a threshold the performance will degrade with the

increase in the k-mer size.

• The blue data series representing 6+7+8 mers features is above the green data series

representing 8-mers features for smaller data sets. However, for larger data sets green

data series is above the blue data series. Therefore, we can say that for smaller training

data sets 6+7+8 mers performs better, whereas for larger training data sets 8-mers
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only features perform better. Better performance of 8-mers only features as compared

to 6+7+8 mers can be explained by the fact that number of features in 6+7+8 mers

combination are much more than 8-mers only features. Large number of features lead

to overfitting, thereby decreasing the performance of 6+7+8 mers features.

Figure 6.6: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics in supervised learning framework for
C.remanei. Data series blue corresponds to features obtained from combination of 6-mers,
7-mers and 8-mers, data series green corresponds to features obtained from 8-mers only and
data series maroon corresponds to features obtained from 6-mers only.

6.1.4 The Effect of Increasing Labeled Data in Training Dataset

In this section we will analyze the effect of increasing the amount of labeled data in the

Training Dataset. We used seven labeled data sizes as 1,000, 2,500, 6,500, 16,000, 25,000,
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Figure 6.7: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics in supervised learning framework for
D. melanogaster. Data series blue corresponds to features obtained from combination of
6-mers, 7-mers and 8-mers, data series green corresponds to features obtained from 8-mers
only and data series maroon corresponds to features obtained from 6-mers only.
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Figure 6.8: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics in supervised learning framework for
A. thaliana. Data series blue corresponds to features obtained from combination of 6-mers,
7-mers and 8-mers, data series green corresponds to features obtained from 8-mers only and
data series maroon corresponds to features obtained from 6-mers only.
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C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.52 0.538 0.566 0.625 0.615 0.64 0.655
50 0.504 0.556 0.55 0.548 0.538 0.537 0.601
100 0.553 0.554 0.597 0.521 0.511 0.535 0.563
200 0.535 0.541 0.58 0.546 0.542 0.524 0.591

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.516 0.537 0.548 0.655 0.644 0.672 0.65
50 0.547 0.554 0.577 0.626 0.602 0.615 0.633
100 0.589 0.601 0.566 0.588 0.61 0.535 0.546
200 0.613 0.60 0.587 0.611 0.597 0.563 0.586

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.511 0.51 0.536 0.545 0.601 0.634 0.624
50 0.532 0.543 0.567 0.562 0.539 0.54 0.573
100 0.539 0.556 0.558 0.545 0.55 0.537 0.534
200 0.543 0.571 0.603 0.582 0.564 0.568 0.548

Table 6.5: auROC values obtained from using only 6-mers features with LDAW method in
supervised learning framework with logistic regression classifier. The target data set sizes
used are 1000, 2500, 6500, 16000, 25000, 40000 and 100000, respectively (column names).
The number of topic used are 10, 50, 100 and 200, respectively (row names).

40,000 and 1,00,000 for training the classifier. We will see the effect of increasing labeled

data size for both LDAW method and LDAD methods. Let us first look at the results for

LDAW method.

Table 6.1 summarizes the results of LDAW method in supervised learning framework and

using logistic regression classifier. The best auROC value in each of the row is highlighted

in the table. When we look at the highlighted auROC values we can see that for topic count

of 10 and 50 the best performance is obtained for training data set size of 100,000. However,

for topic count of 100 and 200 the best performance is obtained for data set sizes of 6,500 or

16,000. Therefore, we can say that for small number of features the performance improves

with larger training data set and for large number of features the performance is best with

intermediate training data set size. If the data sets are small they cannot train the classifier
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C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.509 0.547 0.586 0.622 0.653 0.659 0.663
50 0.573 0.55 0.592 0.586 0.591 0.605 0.621
100 0.581 0.573 0.575 0.562 0.548 0.571 0.632
200 0.594 0.598 0.608 0.594 0.587 0.576 0.645

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.509 0.534 0.563 0.571 0.583 0.612 0.658
50 0.547 0.563 0.566 0.579 0.597 0.647 0.654
100 0.586 0.559 0.572 0.592 0.605 0.556 0.651
200 0.604 0.56 0.587 0.605 0.583 0.568 0.607

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.513 0.515 0.521 0.553 0.623 0.638 0.649
50 0.545 0.537 0.554 0.567 0.552 0.553 0.608
100 0.55 0.574 0.563 0.551 0.568 0.568 0.562
200 0.563 0.585 0.573 0.612 0.604 0.578 0.551

Table 6.6: auROC values obtained from using only 8-mers features with LDAW method in
supervised learning framework with logistic regression classifier. The target data set sizes
used are 1000, 2500, 6500, 16000, 25000, 40000 and 100000, respectively (column names).
The number of topic used are 10, 50, 100 and 200, respectively (row names).

well when using a small number of features. Moreover, when we increase size of training data

set the classifier can perform better even for small number of features, which explains why

we obtained best auROC values for topic count of 10 and 50 with larger training data set

sizes. Furthermore, for large training data set and large number of features the performance

drop can be explained by over fitting.

Table 6.2 summarizes the results of LDAD method with supervised learning framework

using logistic regression classifier. Again, we highlighted the best auROC value in each row.

Unlike, the LDAW method, for the LDAD method the best auROC values are obtained for

data sizes of 6,500, 16,000 or 25,000. Consequently, we can say that LDAD method performs

best for intermediate sizes of training data set irrespective of the number of features used.
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6.2 Domain Adaptation Framework Results

We analyze our results in terms of performance for different domain adaptation settings.

We have already discussed about the experimental setup used in this framework and domain

adaptation algorithms in Section 5.2 and Section 4.3, respectively. One of the main goals

of this thesis is to study the performance of our approach for different domain adaptation

algorithms with an increasing evolutionary distance between the source and the target do-

main. We have organized this section in two parts: in Section 6.2.1, we study the effect

of increasing the evolutionary distance between the source and target species; in Section

6.2.2, we compare weighted domain adaptation approaches with target only and source only

approaches.

6.2.1 The Effect of Increasing Source and Target Species Evolu-
tionary Distance

We performed experiments using four domain adaptation approaches,DAs, DAs+t DA2s+t

and DAs+2t, as discussed in Section 4.3. For these set of experiments we used both source

and target domain training sequences for obtaining a LDA model. As opposed to DAt, where

we used training documents from target domain to obtain LDA model. We will analyze the

effect of increasing evolutionary distance on performance of each of these approaches. We

will begin with DAs approach, then we will see the results of DAs+t approach and finally

we will discuss results from DA2s+t and DAs+2t approach.

Effect on DAs

The results obtained from DAs are summarizes in Table 6.7. These results are obtained

using Logistic regression classifier. In order to analyze the effect of increasing evolutionary

distance on performance we plotted the graph of auROC values for each of the target

organism against the size of the training data set. Graphs shown in Figure 6.9 is for DAs

approach and for a topic count of 10, 50, 100 and 200. As you can see each data series
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represents a target species. It is clear from all four graphs that best auROC values are

obtained from C. remanei, which is closest to our source species, C. elegans. The auROC

for D. melanogaster and A. thaliana are very close, but in most of the cases D. melanogaster

gave better results than A. thaliana and we know that D. melanogaster is closer to C. elegans

than A. thaliana. Lastly, P. pacificus gave lowest auROC values. Exceptionally bad values

of P. pacificus can be attributed to low quality of data. We can ignore the results from P.

pacificus as it did not perform well even for DAt approach, which was using only target data

for training the classifier. We can easily conclude from the results of other three species

that the performance of DAs algorithm is better when the source and target species have

smaller evolutionary distances.

Effect on DAs+t

The results obtained from DAs+t are summarizes in Table 6.8. We plotted graphs similar

to what we plotted for DAs, as discussed in the above section. These graphs are shown in

Figure 6.10, which summarizes the results for a topic count of 10, 50, 100 and 200. Again,

for all the four graphs we can see that best auROC values are obtained for C. remanei,

then for D. melanogaster, then for A. thaliana and then P.pacificus. We ignore the results

from P.pacificus for the same reason as mentioned in above section. We can say that the

performance of DAs+t approach gives better results when the source and target species have

smaller evolutionary distances.

Effect on DA2s+t

The results obtained from DA2s+t are summarizes in Table 6.10. The graph plotted from

the results of DA2s+t algorithm are shown in Figure 6.11, which show results for a topic

count of 10, 50, 100 and 200. These graphs are similar to the graphs plotted for DAs and

DAs+t. Again, for all the four graphs we can see that best auROC values are obtained for

C. remanei, then for D. melanogaster, then for A. thaliana and then P.pacificus. We ignore

the results from P.pacificus for the same reason as mentioned in above section. We can say

62



that the performance of DA2s+t approach gives better results when the source and target

species have smaller evolutionary distances.

Effect on DAs+2t

The results obtained from DAs+2t are summarizes in Table 6.9. The graph plotted from

the results of DAs+2t algorithm are shown in Figure 6.12. They are plotted in the similar

way as we plotted the graphs in the above sections. However, the results from these graph

are not similar to the results for the other two approaches. The data series for all the

three species C. remanei, D. melanogaster and A. thaliana are very close to each other

and there are few instances where either D. melanogaster or A. thaliana performs better

than C. remanei. This can be explained by the fact that here we are using higher weight

for the target instances that the source instances. Therefore, the effect of instances from

source domain is reduced, which resulted in better results for C. remanei in case of DAs and

DA2s+t approaches. Again, we are ignoring the results from P. pacificus for the reason given

in above sections. We can thus conclude that DAs+2t does not necessarily perform better

for species with smaller evolutionary distance to the source domain, as in this approach the

weight of target instances is higher and, therefore, the results are less effected by the source

instances.

6.2.2 The Effect of Using Weighted Combination of Source and
Target as Training Data

In this section, we will compare the performance of allDAt, DAs, DAs+t, DA2s+t andDAs+2t

approaches. This study will shed light on the effect of using different weighted combinations

of source and target instances as training data. The results for DAt, DAs, DAs+t, DA2s+t

and DAs+2t approaches are summarized in Tables 6.1, 6.7, 6.8, 6.9 and 6.10, respectively.

The classifier used to obtain all these results was the same, i.e. logistic regression. In order

to compare these approaches we plotted a graph of auROC values obtained by using each of

these approaches against increasing training data set sizes for each of the organisms, keeping
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Figure 6.9: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics and DAs approach. Each data series
corresponds to a different organism.
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Figure 6.10: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics and DAs+t approach. Each data series
corresponds to a different organism.
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Figure 6.11: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics and DA2s+t approach. Each data
series corresponds to a different organism.
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Figure 6.12: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics and DAs+2t approach. Each data
series corresponds to a different organism.
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C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.565 0.547 0.559 0.612 0.576 0.553 0.557
50 0.56 0.562 0.615 0.592 0.596 0.614 0.588
100 0.534 0.597 0.62 0.592 0.619 0.605 0.574
200 0.599 0.777 0.589 0.602 0.582 0.586 0.606

P. pacificus
1000 2500 6500 16000 25000 40000 100000

10 0.484 0.502 0.503 0.514 0.492 0.498 0.504
50 0.505 0.49 0.495 0.497 0.478 0.502 0.491
100 0.473 0.48 0.488 0.489 0.5 0.478 0.476
200 0.476 0.486 0.483 0.491 0.481 0.483 0.489

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.509 0.512 0.543 0.521 0.565 0.534 0.524
50 0.522 0.506 0.537 0.529 0.524 0.569 0.542
100 0.516 0.533 0.547 0.509 0.503 0.496 0.516
200 0.541 0.545 0.551 0.548 0.527 0.551 0.537

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.514 0.489 0.513 0.524 0.538 0.538 0.548
50 0.546 0.48 0.533 0.492 0.535 0.551 0.523
100 0.51 0.518 0.507 0.512 0.519 0.535 0.518
200 0.513 0.519 0.515 0.522 0.55 0.541 0.548

Table 6.7: auROC values obtained from LDAW method using DAs approach with logistic
regression classifier. The target data set sizes used are 1000, 2500, 6500, 16000, 25000,
40000 and 100000, respectively (column names). The number of features used are 10, 50,
100 and 200, respectively (row names).

the number of topics constant. We will begin our discussion with results from C. remanei,

then we will move to D. melanogaster and finally we will discuss results from A. thaliana.

We have not plotted graphs for P. pacificus due to its poor data quality.

The graphs obtained for C. remanei for topic sizes 10, 50, 100 and 200 are shown in

Figure 6.13. When we look at these graphs it is very difficult to find any trend showing

that one of the approaches performed better than the rest. If we look at the graph in

Figure 6.13 for 10 topics, we can see that four of the data series are almost overlapping.

68



C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.599 0.554 0.605 0.675 0.698 0.692 0.704
50 0.564 0.605 0.554 0.59 0.632 0.598 0.631
100 0.553 0.636 0.612 0.598 0.587 0.645 0.594
200 0.548 0.62 0.623 0.655 0.648 0.577 0.703

P. pacificus
1000 2500 6500 16000 25000 40000 100000

10 0.486 0.483 0.499 0.489 0.475 0.481 0.482
50 0.467 0.489 0.488 0.514 0.482 0.489 0.48
100 0.476 0.483 0.492 0.503 0.48 0.497 0.484
200 0.503 0.495 0.49 0.492 0.49 0.485 0.501

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.51 0.516 0.579 0.595 0.609 0.62 0.651
50 0.514 0.503 0.525 0.532 0.562 0.57 0.639
100 0.521 0.521 0.546 0.552 0.537 0.544 0.56
200 0.531 0.537 0.545 0.572 0.578 0.588 0.573

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.517 0.518 0.517 0.573 0.591 0.623 0.625
50 0.516 0.52 0.505 0.536 0.522 0.532 0.576
100 0.527 0.523 0.524 0.498 0.519 0.543 0.536
200 0.547 0.524 0.542 0.547 0.523 0.554 0.569

Table 6.8: auROC values obtained from LDAW method using DAs+t approach with logistic
regression classifier. The target data set sizes used are 1000, 2500, 6500, 16000, 25000,
40000 and 100000, respectively (column names). The number of features used are 10, 50,
100 and 200, respectively (row names).

Since, C. remanei is very close the source domain species C. elegans we can assume that

the distribution of both the species is more or less the same. Thus, when we compared the

performance of DAs and DAt we did not find one approach better than the other. Similarly,

performance of DAs+t, DA2s+t and DAs+2t did not show much differences.

The graphs obtained for D. melanogaster for topic sizes 10, 50, 100 and 200 are shown

in Figure 6.14. From all the four graphs it can be observed that the performance of DAs is

worst and performance of DAt is the best among all the four approaches. Further, when we
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C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.594 0.513 0.615 0.669 0.698 0.707 0.711
50 0.53 0.523 0.544 0.512 0.638 0.609 0.621
100 0.542 0.629 0.544 0.601 0.525 0.581 0.604
200 0.552 0.62 0.621 0.624 0.579 0.605 0.701

P. pacificus
1000 2500 6500 16000 25000 40000 100000

10 0.483 0.505 0.488 0.499 0.491 0.492 0.493
50 0.486 0.476 0.503 0.504 0.496 0.473 0.488
100 0.483 0.473 0.501 0.492 0.514 0.5 0.503
200 0.482 0.48 0.499 0.511 0.498 0.492 0.513

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.525. 0.528 0.596 0.623 0.636 0.65 0.681
50 0.507 0.531 0.528 0.514 0.578 0.589 0.67
100 0.53 0.491 0.536 0.574 0.532 0.588 0.55
200 0.56 0.578 0.585 0.616 0.625 0.608 0.579

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.531 0.539 0.558 0.611 0.652 0.647 0.666
50 0.533 0.52 0.513 0.533 0.552 0.548 0.598
100 0.53 0.521 0.522 0.5 0.541 0.542 0.534
200 0.555 0.521 0.55 0.535 0.548 0.571 0.543

Table 6.9: auROC values obtained from LDAW method using DAs+2t approach with logistic
regression classifier. The target data set sizes used are 1000, 2500, 6500, 16000, 25000,
40000 and 100000, respectively (column names). The number of features used are 10, 50,
100 and 200, respectively (row names).

compare DAs+2t and DAs+2t we see that DAs+2t gives better results than DA2s+t. Since,

the evolutionary distance between D. melanogaster and the source species is large, DAs

approach does not give very good results. For same reason performance of DA2s+t is not

better than DAs+2t. Giving more weight to source domain instances will only result in

worsening of classification performance.The performance of DAs+t is closer to DA2s+t in

some cases and in some cases it is closer to DAs+2t.

The graphs obtained for A. thaliana for topic sizes 10, 50, 100 and 200 are shown in
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C. remanei
1000 2500 6500 16000 25000 40000 100000

10 0.592 0.563 0.625 0.664 0.7 0.705 0.725
50 0.575 0.523 0.544 0.596 0.636 0.617 0.652
100 0.562 0.650 0.635 0.592 0.585 0.694 0.614
200 0.555 0.633 0.611 0.652 0.630 0.634 0.728

P. pacificus
1000 2500 6500 16000 25000 40000 100000

10 0.484 0.499 0.492 0.498 0.487 0.489 0.488
50 0.485 0.459 0.511 0.499 0.491 0.483 0.496
100 0.484 0.477 0.503 0.511 0.506 0.489 0.508
200 0.482 0.479 0.477 0.518 0.482 0.493 0.509

D. melanogaster
1000 2500 6500 16000 25000 40000 100000

10 0.502 0.517 0.579 0.517 0.605 0.634 0.662
50 0.495 0.497 0.521 0.537 0.58 0.592 0.627
100 0.514 0.539 0.62 0.554 0.53 0.56 0.556
200 0.536 0.557 0.575 0.572 0.542 0.558 0.596

A. thaliana
1000 2500 6500 16000 25000 40000 100000

10 0.504 0.507 0.548 0.571 0.607 0.586 0.641
50 0.515 0.516 0.519 0.481 0.543 0.541 0.593
100 0.512 0.53 0.542 0.538 0.527 0.536 0.531
200 0.533 0.531 0.539 0.582 0.539 0.554 0.574

Table 6.10: auROC values obtained from LDAW method using DA2s+t approach with logis-
tic regression classifier. The target data set sizes used are 1000, 2500, 6500, 16000, 25000,
40000 and 100000, respectively (column names). The number of features used are 10, 50,
100 and 200, respectively (row names).

Figure 6.15. The observations made from A. thaliana are similar to the observations for D.

melanogaster. Again, the worst performance is obtained for DAs approach and in most of

the cases DAs+2t performed better than DA2s+t. We can conclude that as the evolutionary

distance between A. thaliana is very large from the source domain, we did not obtain good

results for DAs approach and assigning higher weight to the source instances in DA2s+t did

not help to improve classification performance. The performance of DAs+t is sometimes

close to DA2s+t and sometimes close to DAs+2t.
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Figure 6.13: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics for C. remanei. Data series blue is
for DAt approach, maroon is for DAs approach, pink is for DAs+t, green is for DA2s+t

approach and purple is for DAs+2t approach.
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Figure 6.14: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics for D. melanogaster. Data series blue
is for DAt approach, maroon is for DAs approach, pink is for DAs+t, green is for DA2s+t

approach and purple is for DAs+2t approach.
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Figure 6.15: Graphs obtained by plotting the auROC against the training data size for
LDAW method with 10, 50, 100 and 200 LDA topics for A. thaliana. Data series blue is
for DAt approach, maroon is for DAs approach, pink is for DAs+t, green is for DA2s+t

approach and purple is for DAs+2t approach.
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Chapter 7

Conclusion and Future Work

In this chapter, we being by presenting the conclusions of our work by answering the ques-

tions which we raised in Chapter 5 based on the results which we obtained in Chapter 6.

Finally we showcase some related problems that we would like to address in future work.

7.1 Conclusion

In Chapter 5, we listed several settings for which we wanted to study the effectiveness of

LDA as a dimensionality reduction tool for biological sequences. The following are insights

we gained after thoroughly investigating the results of our experiments.

• We compared the performance of LDAW and LDAD methods in the first part of

Section 6.1.1. We can conclude from these results that LDAW approach gives better

performance as compared to LDAD approach for all the organisms irrespective of the

training data sizes and number of LDA topics used.

• We compared the performance of LDAW approach with the traditional dimensionality

reduction approach called MI method in the second part of Section 6.1.1. Investigation

of these results suggest that the LDAW method is a better method that the MI

method for larger data sets. Also, we found that for the MI method the classification

performance increases with the increase in the number of features selected, however,

it decreases after a threshold on the number of features selected is reached.
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• We compared the performance of LDAW approach with logistic regression classifier

and SVM classifier in Section 6.1.2. We found that the classifier performance depends

on the organisms, i.e. the type of data. For C.remanei, SVM classifier performance

is better than the performance of the logistic regression classifier, except for larger

number of topics. Only for training data set sizes of 1,000, 2,500, 6,500 and 1,00,000,

when we take words from 200 topics, logistic regression gives better results than SVM

classifier. Contrarily, for both A. thalians and D. melanogaster, the logistic regression

classifier performs better than SVM classifier in most of the cases. And for P. pacificus

for all the training data set sizes and number of topics logistic regression classifier

performed better than SVM classifier.

• We studies the effect of increasing number of LDA topics on classification performance

for both LDAW and LDAD method in the first part of Section 6.1.3. Based on the

results which we examined in this section we concluded that the performance of LDAW

is better for large number of topics when the train data set is small, whereas the

performance of LDAW is better for small number of topics when the train data set is

large. Nonetheless, the performance of LDAD is better for large number of topics for

almost all the sizes of train data set.

• We reviewed the effect of increasing the size of k-mer and effect of using combination of

k-mers as features in the second part of Section 6.1.3. After analyzing the results from

this section we concluded that the performance of LDAW method would improve with

the increase in the size of k-mers used for obtaining LDAW features. Also, for smaller

training data sets 6+7+8 mer features perform better, whereas for larger training data

sets 8-mers only features perform better.

• We studied the effect of increasing the labeled data for both LDAW and LDAD meth-

ods in Section 6.1.4. We observed that for the LDAD method, for a small number of

features the performance improves with a larger training data set and for large number
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of features the performance is best with intermediate training data set sizes. On the

other hand, for LDAD method the best auROC values are obtained for data sizes of

6,500, 16,000 or 25,000 and it is independent of the number of features.

• We investigated the effect of increasing source and target species evolutionary distance

for TLs, TLs+2t and TL2s+t approaches in Section 6.2.1. Based on the results which

we analyzed in this section we can conclude that for TLs algorithm performs better

when the source and target species have smaller evolutionary distance. TL2s+t gives

better results when the source and target species have smaller evolutionary distance.

TLs+2t does not perform better for species with smaller evolutionary distance to the

source domain, as in this approach the weight of target instances is more, the effect

of source instances is suppressed.

• We studied the effect of using weighted combination of source and target as training

data in Section 6.2.2. The analysis of the results obtained in this section suggested

that TLs and TL2s+t are better only when the evolutionary distance between source

and target species are small.

Use a variable number of words in each topic (e.g., based on a threshold on the word

probability).

7.2 Future Work

This section showcases several related problems that we would like to address in future work.

They are briefly described in what follows:

• We used a combination of k-mers (6-mers, 7-mers and 8-mers) for our experiments. It

is possible that a shorter k-mer may be a subsequence of a longer k-mer. For example,

a 6-mer sequence aaggtt is a subsequence of a 8-mer sequence caaggtta. The presence

of such sequences leads to redundant features. In future work we would like to keep

only the longer k-mer and remove all shorter overlapping sequence.
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• In this study, we considered LDA topic counts of 10, 50, 100 and 200. We observed

that for LDAW, for smaller datasets 100 and 200 topics gave better results than 10

and 50 topics. These results were counter intuitive led us to believe that they are the

effect of over fitting. Thus, we would like to use a denser topic scale (e.g., generate

all topic models between 10 and 1000, with a step of 10) to understand better the

variation of the performance with the number of topics, for both LDAW and LDAD.

• We used top 10 words from each topic as our features in LDAW. However, in the future

we would like to use a variable number of words in each topic based on a threshold on

the word probabilities.

• In this study, we used only C. elegans as our source domain. However, as a part of

future work we can use a combination of several source data sets. We have training

data from five organisms and only one was used as source domain. We can combine

data from two or more organisms to form the source domain and see how it effects the

classification performance.

• In this work, we studied mRNA splicing classification task. However, we can apply

the LDAW or LDAD methods or obtain features for other biological problems. Once

such biological problem which uses machine learning is motif-based machine learn-

ing approach for identifying intergenic regulatory elements is described by Bahirwani

[2010].
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Appendix A

Basic Terminology

• auROC: Short for area under receiver operating characteristic (ROC) curve. ROC is a

graphical plot of true positive rate, vs. false positive rate for a binary classifier system

as its discrimination threshold is varied.

• Bioinformatics: Bioinformatics is the application of information technology and com-

puter science to the field of molecular biology [Marketa and Jeremy, 2008].

• Classifier: Classifier maps input data into defined output categories based on the

characteristics of input (also called features).

• Consensus Sequence: Consensus sequence refers to the most common nucleotide or

amino acid at a particular position after multiple sequences are aligned [Marketa and

Jeremy, 2008].

• Domain adaptation: Domain adaptation is a subproblem of transfer learning where

a model trained over a source domain is generalized to perform well on a related

target domain, here the two domains data are distributed similarly, but not identi-

cally [Arnold et al., 2008].

• Dimensionality Reduction: Given a p-dimensional random variable x = (x1, ...., xp)
T ,

and a lower dimensional representation of it, s = (s1, ...., sk)
T with k ≤ p, that cap-

tures the content in the original data according to some criterion, we say that s is a
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representation of x in a reduced dimensionality space [Fodor, 2002].

• DNA: Short for deoxyribonucleic acid. The nucleic acid that is the genetic material

determining the makeup of all living cells and many viruses. It consists of two long

strands of nucleotides linked together in a structure resembling a ladder twisted into

a spiral. In eukaryotic cells, the DNA is contained in the nucleus (where it is bound

to proteins known as histones) and in mitochondria and chloroplasts. In the presence

of the enzyme DNA polymerase and appropriate nucleotides, DNA can replicate itself

(http://www.thefreedictionary.com/DNA).

• Features: Features are the individual measurable heuristic properties of the phenom-

ena being observed.

• Latent Dirichlet Allocation: Latent Dirichlet Allocation (LDA), a generative proba-

bilistic model for collections of discrete data such as text corpora. LDA is a three-level

hierarchical Bayesian model, in which each item of a collection is modeled as a finite

mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite

mixture over an underlying set of topic probabilities [Blei et al., 2003].

• K-mer: k-mer is a subsequence of a nucleic acid or amino acid sequence of k nucleotides.

• Nucleotide: A compound consisting of a nucleoside linked to a phosphate group. Nu-

cleotides form the basic structural unit of nucleic acids such as DNA.

• Splice site(donor/acceptor): The intron-exon boundary in a gene is splice site. The

beginning of an intron is a donor site and end of an intron is acceptor site.

• Supervised learning: Supervised learning is the machine learning task of producing

an inferred function, which is called a classifier by making use of training data. The

inferred function should predict the correct output value for any valid input object.
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• Transfer learning: Transfer learning is a problem in machine learning, where informa-

tion gained in one learning task is used to improve performance in another related

task [Arnold et al., 2008].

• Unsupervised learning: Unsupervised learning is the machine learning task of inferring

a hidden structure of unlabeled data.
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