
THE DESIGN AND HARDWARE EVALUATION OF
AN ADVANCED 16-BIT, LOW-POWER, HIGH PERFORMANCE

MICROCOMPUTER SYSTEM FOR DIGITAL SIGNAL PROCESSING

by

GARY S. MAUERSBERGER

B. S., Kansas State University, 1983

Department of Electrical and Computer Engineering

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

Major Professor

CONTENTS

Page
1. Introduction 1
2. Processor Description 4

2.1 Chip Description 4
2.2 Compatibility 4
2.3 Modes of Operation 5
2.4 Executive Processor State Descriptor (PSD) Table 7
2.5 Executive and User Stack 7
2.6 Task Scheduling 8
2.7 Exception Handling 10
2.8 Interrupts 10

2.8.1 Event Interrupts 10
2.8.2 Reset Interrupts 11
2.8.3 Bus Error Interrupt 12

2.9 Memory Address Formation 13
2.10 Addressing Modes 14
2.11 Data Formats 14

2.11.1 Boolean 14
2.11.2 Integer 14
2.11.3 Fractional Numbers 14
2.11.4 Floating-Point Numbers 15

2.12 Bus Transfer Protocol 17
2.13 Timing 20

3. Microcomputer Description 25
3.1 Design Considerations 25 3.2 Hardware Description 27

3.2.1 Clock, Reset, and Interrupt 27
3.2.2 Device Select and Transfer Acknowledge Circuit 31
3.2.3 Microprocessor to Read-Only Memory Interface 3 8
3.2.4 Microprocessor to Random Access Memory

Interface 41
3.2.5 Microprocessor to Parallel Port Interface 45
3.2.6 Microprocessor to Analog-to-Digital Interface 49
3.2.7 Microcomputer to Host Computer Interface 54

3.3 System Software Description 57
4. Widrow Adaptive Linear Predictor Algorithm Implementation 62

ii

Page
5. Microcomputer System Performance 65

5.1 AAMP Based Microcomputer System Compared to
Other Processors 65

5.2 Analog-to-Digital Sampling Rate 66
5.3 Peripheral Data Transfer Rate 67
5.4 Power Consumption 67

6. Concluding Remarks 69
Acknowledgements 72
References 73
Appendices 74

Appendix A: CMOS vs CMOS/SOS Versions of the Advanced
Architecture Microprocessor (AAMP) 74

Appendix B: Microcomputer System Board Layout and
Parts List 76

Appendix C: Guide for Programming the CD82C55A 79
Appendix D: Edge Connector Pin Assignment and HP-98032A

General Purpose I/O Jumper Requirements 83
Edge Connector Pin Assignment 83
GPIO Jumper List 84

Appendix E: AAMP Based Microcomputer Operation System 85
Executive Entry Table 85
Initialization Procedure 86
Trap Handling Procedure 87

Appendix F: System Status Retrieval Programs 89
Exception Handling Program 90
Status Retrieval Program 90

Appendix G: Listings for the Widrow Adaptive Linear
Predictor Algorithm 92

Standard Widrow Adaptive Linear Predictor Algorithm 94
Modified Widrow Adaptive Linear Predictor Algorithm 95
Standard Floating-Point Object Listing 97
Standard Fixed-Point Object Listing 101
Modified Fixed-Point Object Listing 105

iii

List of Figures

Figure 1.
Page

Floating-Point Number Format 16
Figure 2. Methods of Generating Transfer Acknowledge 19
Figure 3. AAMP Timing Diagram 21
Figure 4. Effects of Selectable Setup and Synchronization

on Transfer Request 24
Figure 5. Microcomputer System Picture 28
Figure 6. Microcomputer System Block Diagram 29
Figure 7. Microcomputer System Schematic 30
Figure 8. Device Select and Transfer Acknowledge Circuit 32
Figure 9. Range of Possible Device Access Times 35
Figure 10. Allowable Skew Between Data Valid and Transfer

Acknowledge 36
Figure 11. Microprocessor to Read-Only Memory Interface 39
Figure 12. Microprocessor to Read-Only Memory Timing Diagram 40
Figure 13. Microprocessor to Random Access Memory Interface 42
Figure 14. Microprocessor to Random Access Memory Timing

Diagrams 43
Figure 15. Microprocessor to Parallel Port Interface 46
Figure 16. Microprocessor to Parallel Port Timing Diagrams 48
Figure 17. Microprocessor to Analog-to-Digital Section

Interface 50
Figure 18. Microprocessor to Analog-to-Digital Section

Timing Diagram 52
Figure 19. Microcomputer to Host Computer Interface 55
Figure 20. Widrow Adaptive Linear Predictor Algorithm

Block Diagram 63
Figure B-l Microcomputer Board Layout

iv

78

Page
Figure C-l. PPI Mode 1 Configurations 80
Figure C-2. Port C (Status Register) Format 81

v

List of Tables

Table 1. Executive Entry Table
Page

6
Table 2. User Processor State Descriptor (PSD) Table 6

Table 3. Executive Processor State Descriptor (PSD) Table 7
Table 4. Single Precision Floating-Point Representation 17
Table 5. Bus Timing values 22
Table 6. System Address Assignments 33
Table 7. System Improvements Using Modified Valid Data

to AAMP Requirement 37
Table 8. Widrow Adaptive Linear Predictor Algorithm

Executive Rates 66
Table A-l Pin Assignment Changes 75
Table C-l Port and Register Addresses 79
Table C-2 Control Word Bit Assignment 81
Table C-3 Set/Reset Function Bit Assignment 82

vi

1. Introduction

The Department of Electrical and Computer Engineering at
Kansas State University, under contract with Sandia National
Laboratories, has an ongoing program to identify and evaluate
"state of the art" microprocessors. The objective of the program
is to identify microprocessors with low power consumption; easy
interfacing and programming; and capability of rapid
multiplications.

A microprocessor which appears to satisfy the above criteria
is the Advanced Architecture Microprocessor (AAMP) designed by
the Collins Avionics Group of Rockwell International at Cedar
Rapids, Iowa. The AAMP is a high-performance, general-purpose,
16-bit microprocessor. The AAMP design was first implemented
using two-micrometer CMOS/SOS VLSI technology. 1 The availability
of the CMOS/SOS version is limited; however, an AAMP implemented
in VLSI CMOS technology should become available in 1985. The
general architecture of both versions will be the same, but some
difference in timing and pin function does exist. Appendix A
highlights the notable differences.

The purpose of this thesis is to evaluate the hardware
oriented characteristics of the CMOS/SOS version of the AAMP. A
Master's Thesis by Kenneth Albin evaluated the internal and
instruction set architectures. 2 Kenneth Albin also encoded
various versions of the Widrow and Lattice adaptive linear
predictor algorithms and estimated the AAMP's execution times for
these algorithms. There has been no attempt to duplicate the
research accomplished by Kenneth Albin but to continue that

1

evaluation by building an AAMP based microcomputer system,
determining the actual execution rate for the Widrow adaptive
linear predictor algorithm, and measuring the power consumption.

The features desired in the AAMP based microcomputer system
were communication to a host computer via a parallel input/output
port, execution of any AAMP encoded program sent to it from the
host computer, and acquisition of analog information for digital
processing. The Hewlett-Packard HP-9845B desktop computer was
used as the host computer. The Datel Intersil ADC-HC12B, 12-bit
analog-to-digital converter, was chosen for the analog-to-digital
data acquisition. These were chosen because they satisfied the
necessary requirements and were immediately available. The
Harris 82C55A, programmable peripheral interface, was chosen for
the parallel input/output port because of its speed and
versatility. In order to execute any program sent from the host
computer, the microcomputer system had to also include read-only-
memory to house the operating system programs and random-access
memory to store the programs for execution and data.

The remainder of this thesis covers the AAMP's operational
characteristics, the developed microcomputer system, and the
evaluation results. The description of the AAMP is contained in
Section 2. Special emphasis is given to the aspects of the
AAMP's architecture and operational characteristics which are
important to the design of an AAMP based microcomputing system.
The design and operation of the AAMP based microcomputer system
is described in Section 3. Particular attention is given to the
AAMP's timing characteristics and how they affect the choice of

2

system timing parameters. Implementation of the Widrow adaptive
linear predictor algorithm on the microcomputer system is
discussed in Section 4. System performance measurements and
concluding remarks are given in Sections 5 and 6 respectively.

3

2. Processor Description

The purpose of this section is to briefly describe the
features and characteristic of the Advanced Architecture
Microprocessor (AAMP). The objective is to provide a supplement
to already available literature and is not intended to be
exhaustive.

2.1 Chip Description

The AAMP is a high-performance, 16-bit, stack architecture
microprocessor implemented on a single, silicon-on-sapphire die.
The AAMP is housed in 68 pin, square pin-grid package measuring
1.1 x 1.1 inches. The CMOS/SOS technology provides the AAMP with
the qualities of low power and high speed. The AAMP operates
from a single +5 volt supply and consumes between 50 and 125 mW
of power. 1 The AAMP is rated to operate with a 20 MHz crystal or
external clock.

2.2 compatibility

All inputs and outputs are TTL and CMOS compatible. The
output fanout is one when interfacing to TTL; therefore,
transceivers and buffers are required to isolate the AAMP from
the rest of the system. When interfacing the AAMP to other CMOS
devices, conventional CMOS interfacing rules apply.

4

2.3 Modes of Operation

Programs executed in the AAMP can reside in either the
executive or user mode. In a system where multitask functions
are needed, the user mode should be used for the working
programs, and the executive mode should be the "executive" or
manager over the various user tasks. If, however, the system is
to execute only one program, that program can be defined as the
initialization routine and can be operated entirely in the
executive mode. The executive mode is the "privileged" mode of
operation and is intended for processor initialization, bus error
handling, interrupt handling, trap handling, exception handling,
and task scheduling. All these functions need not be defined.
The processor determines which executive mode programs exist by
address offsets given in the Executive Entry Table (Table 1).
The first nine read-only memory (ROM) locations are reserved for
the Executive Entry Table. An address offset referred to as a
pointer (PTR) is a word address offset. An address offset
referred to as a procedure ID (PROCID) is a byte address offset.
The equivalent word address is obtained by right shifting the
PROCID one bit. The right most bit tells the processor which
byte of the corresponding word starts the program. The program
starts with the high byte or low byte depending on whether the
right most bit is a one or zero, respectively. A zero address
offset means that particular routine does not exist.

The user mode is for the general purpose "user" defined
functions and programs. There can be any number of user
programs. They are defined in a manner similar to the executive

5

Table 1
Executive Entry Table

Address Description
000000
000001
000002
000003
000004
000005
000006
000007
000008

Continuation Status Pointer (PTR)
Initial Exec. Stack Limit PTR
Initial Exec. Top of Stack (TOS) PTR
Initialization Procedure ID (PROCID)
Bus Error Interrupt PROCID
Nonmaskable Interrupt PROCID
Maskable Interrupt PROCID
Trap PROCID
Exec. Exception PROCID

mode programs. Each user program has a separate entry table
called a User Processor State Descriptor (PSD) Table which must
lie in random access memory (Table 2). The primary difference
between the Executive Entry Table and the User PSD Table is
that the User PSD Table also contains the syllable program
counter (SPCR) which points to the next byte of code for
execution.

Table 2

User Processor State Descriptor (PSD) Table

Address
(User PSD Pointer plus)

Description

0
1
2
3
4
5
6
7
8
9

Initial User Stack Limit Pointer
Initial User Top of Stack Pointer
Local Environment
Data Environment
Syllable Program Counter (SPCR)
Code Environment
Task Procedure ID (PROCID)
Task Code Environment
User Exception PROCID
User Exception Code Environment
6

Table 3
Executive Processor State Descriptor (PSD) Table

Address
(Initial TOS plus)

Description

0
1
2
3
4
5
6
7
8

User PSD Pointer
Exec. Stack Limit (SKLM)
Exec. Top of Stack (TOS)
Exec. Local Environment
Exec. Data Environment
Exec. Sellable Program Counter (SPCR)
Exec. Code Environment
Interrupt Enable Flip-Flop
Exec. Error Code

2.4 Executive Processor State Descriptor (PSD) Table

The eight locations above the executive top-of-stack (TOS)
location are reserved for the Executive Processor State
Descriptor (PSD) Table (Table 3). Anytime the processor leaves
the executive mode, the processor's state, including any error
condition, is recorded in the Executive PSD Table. Thus, the
information can be very helpful in determining the cause of
system failure.

2.5 Executive and User Stack

The AAMP is a stack-type processor. A cache memory inside
the AAMP, makes up the top four usable stack locations. The
remaining stack locations reside in external RAM. The size and
location of the executive stack is specified in the Executive
Entry Table and the size and location of the user stack is

7

defined in the User PSD Table. Only one executive stack can be
defined, but it is possible to have as many user stacks as user
programs. However, only one user stack can be active at any
given time. The active user program is specified by the User
PSD Pointer described below.

2.6 Task Scheduling

The executive mode is by design responsible for task
scheduling. The initialization routine usually schedules the
first user program or task. A context switch from the executive
to the user mode requires that the User PSD Pointer, the address
offset to the User PSD Table, be stored in the initial executive
top-of-stack (TOS) location defined in the Executive Entry Table.
When an executive program terminates with a RETURN instruction,
the processor does what is called an "outer procedure return", a
return from the outermost procedure of a program. The outer
procedure return causes the processor to do a context switch
from the executive mode to the user mode and run the program
specified by the User PSD Pointer.

Further task scheduling is normally performed by the
executive trap handler. When a user program is finished and a
RETURN instruction is executed, the processor does an outer
procedure return which restores the User PSD to its original
values and forces a context switch back to the executive mode. A
trap code number 0 is also passed to the trap handler. The trap
handler then schedules the next user task by updating the User
PSD Pointer. The context switch from the executive mode to the

8

user mode is accomplished by an outer procedure re
trap handler.

The executive trap handler can be invoked from the user mode
in two other ways besides the normal user program termination
just described. The context switch from the user to executive
mode can also be initiated by either a processor or user
generated trap. Illegal instructions encountered in the user
program, user stack overflows, and user stack underflows are
considered nonrecoverable errors. If such an error occurs, the
processor suspends the user task's execution, updates the task's
process state in the User PSD Table, places on top of the
executive stack a trap number (0-7) which corresponds to the
error condition, and forces a context switch to the trap handler.
Traps can also be generated from within the user program. Trap
numbers (8-65,535) are software generated. To initiate a
software trap, the user program must place the trap number minus
8 on top of the user stack and then execute the TRAP
instruction. The user task's execution is suspended as described
above and the trap number is passed as a parameter to the trap
handler. The trap handler can then either schedule another task,
correct the error if one exists, or halt the processor. If no
trap handler exists, the processor will stop execution and store
an executive error code number 13 in the Executive PSD Table. To
resume execution, the processor must be reset.

Task scheduling can also be performed by the executive
interrupt procedures. If an external interrupt occurs, the user
task is suspended and the associated interrupt procedure is
invoked. The interrupt procedure can then define a new active

9

user task by changing the User PSD Pointer and terminating
execution with an outer procedure return.

2.7 Exception Handling

When the result of an arithmetic operation is too large or
too small to be represented in the accumulator, an exception
number corresponding to the problem is passed to the exception
handler. The exception handler must exist in the processor
mode where the exception occurs, such as in the executive or
user mode. The processor determines if an exception handler
exists by checking the exception PROCID in the Executive Entry
Table or User PSD Table. If the PROCID is zero (meaning no
exception handler exits), the processor will automatically handle
the exception by placing the largest or smallest possible value
on the stack depending on the number format and the type of
exception.

2.8 Interrupts

An interrupt is a request for service from a device external
to the processor. The AAMP has three types of interrupt
structures: event, reset, and bus error.

2.8.1 Event Interrupts — The AAMP has two forms of event
interrupts: nonmaskable and maskable. The nonmaskable interrupt
(NMI) is an edge-triggered input which is ideally suited for a
power failure system. The maskable interrupt (INT) is a level-
sensitive input. Maskable interrupts are enabled by the INTE

10

instruction when the processor is in the executive mode and are
are always enabled when the processor is in the user mode.
When an interrupt occurs, the processor completes the current
instruction and does a call to the appropriate interrupt handler.
If the interrupt PROCID is zero the processor halts.

Once a maskable interrupt is enabled in the executive mode,
the interrupt remains enabled until an interrupt occurs. The
call to the maskable interrupt handler disables further
interrupts; therefore, to allow later interrupts in the
executive mode, the maskable interrupts must again be enabled.
Maskable interrupts can also be enabled within the interrupt
procedure to allow nested interrupts.

Since the maskable interrupt is level sensitive, some
precautions must be considered. First, the logic high to the INT
input pin must remain high until the call to the INT handler has
been made. Second, the input to the INT input must return to a
logic low before further interrupts are enabled, or the interrupt
will nest back on itself.

2.8.2 Reset Interrupts — The AAMP has a dual-purpose reset
interrupt (RST). The processor will do a cold or warm restart
depending on the value of the continuation-status word. The
location of the continuation-status is defined by the
continuation-status pointer, the first location in the Executive
Entry Table. If the continuation-status pointer is zero, the
continuation-status word is also defined to be zero, and the
processor will do a cold restart. The cold restart configures
the stack as defined in the Executive Entry Table and starts

11

execution of the initialization procedure. When the
continuation-status word is nonzero, the processor will attempt
to do a warm restart. If the executive error code in Executive
Entry Table is also nonzero, the processor will return to an idle
state and wait for a second reset which will force a cold
restart. 3 The nonzero executive error code indicates that the
processor is in a nonrecoverable state. A zero executive error
code indicates that the processor was stopped by the HALT
instruction and that program operation can be resumed.

2.8.3 Bus Error Interrupt — The bus error interrupt
provides a means for external hardware to provide memory access
protection and processor recovery from data transfer failures
such as a device not responding. 4 The bus error signal is
returned to the processor in place of a normal transfer
acknowledge (XAK) signal. When the processor is in the
executive mode, the bus error will cause the processor to halt.
Operation can only continue with a cold restart. When the
processor is in the user mode, the bus error will cause the
processor to store the state of the user task in the User PSD
Table and do a context switch to the executive bus error
handler. The bus error handler then determines what program
execution is to continue, if any, by updating the User PSD
Pointer. The bus error handler can also halt the processor with
a HALT instruction. Note that if the bus error PROCID is zero,
the processor will always halt when a bus error interrupt occurs.

12

2.9 Memory Address Formation

The AAMP has 2 4 address lines and two status lines which can
be used to effectively address 32 M bytes of program memory and
3 2 M words of data memory. The two status lines are the
code/data (C/D) and the executive/user (E/U). The executive/user
line allows for external memory to be divided into executive and
user spaces. Each space can then be further divided into code
and data environments by the use of the code/data line.

A 24-bit memory address is formed by concatenating an 8-bit
environment pointer with a 16-bit offset. The 8-bit environment
pointer allows 256 unique environments to be defined in both the
executive and user memory spaces. The 16-bit offset allows 64 K
elements to be defined within each environment.

Memory code addresses are formed by concatenating the 8-bit
code environment pointer to the left of the 16-bit syllable
program counter (SPCR) which is a byte offset corresponding to
the next byte of program code. The result is a 24-bit byte
address. The 24-bit byte address is right shifted one bit and
zero filled to form a 24-bit memory word address. The most
significant bit is always zero; therefore, 8 M words or 16 M
bytes of program code can be accessed in both the executive and
user memory spaces.

Memory data addresses are formed in a similar manner. The
8-bit data environment pointer is concatenated with a 16-bit data
environment offset given by the program's execution. The result
is a 24-bit word address. Thus 16 M words of data can be
addressed in both the executive and user memory spaces.

13

2.10 Addressing Modes

The AAMP has four basic types of addressing modes:
universal, global, indexed, and local. The addressing modes can
access single (16-bit), double (32-bit), and triple (48-bit)
precision words. For a description of these modes, the reader is
referred to the work by Kenneth Albin. 2

2.11 Data Formats

The AAMP can work with four data types: Boolean, integer,
fractional, and floating-point.

2.11.1 Boolean — Boolean variables require the use of a
16-bit word. The least significant bit is defined as the Boolean
bit? however, all 16 bits are used by instructions which require
Boolean data. All zeros represents a FALSE condition and a
nonzero word represents a TRUE condition. Instructions that
generate Boolean data will produce "0000" for a FALSE condition
and "0001" for a TRUE condition.

2.11.2 Integer — Integer variables are single (16-bit) or
double (32-bit) precision, signed, two's complement numbers. The
most significant bit is the sign bit with "0" representing
positive numbers and "1" representing negative numbers. The
least significant portion of a double precision integer resides
in the lower address location of two consecutive memory
addresses.

2.11.3 Fractional Numbers — Fractional variables are
single (16-bit) or double (32-bit) precision, signed, two's
complement numbers. The sign bit is the most significant bit

14

with "0" representing a positive fraction and "1" representing a
negative fraction. The range for single precision numbers is -1
to (l-2**(-15)). The range for double precision numbers is -1 to
(l-2**(-31)). 3 The binary point is assumed to be fixed between
the sign bit and the first data bit.

The use of the fractional number format is limited to
special applications. Accumulator overflows and underflows
present a major problem. The fractional number format works well
if the multiplication operation is the only arithmetic operation
performed. The AAMP is designed in such a way that the
multiplication of two fractions conforming to the above format,
one sign bit and 15 fraction bits, will produce a product of the
same format. This is not necessarily true on all
microprocessors. Some microprocessors return a product where the
binary point moves to the right. 5 For example, the
multiplication of two fractions with one sign bit and 15 fraction
bits will result in a product with two sign bits and 14 fraction
bits.

2.11.4 Floating-Point Numbers — Floating-point variables
can be either single (32-bit) precision or extended (48-bit)
precision. Floating-point variables are composed of three
fields: a sign bit; a 24-bit or 40-bit mantissa depending on
whether the variable is single or extended precision,
respectively; and a 8-bit exponent. Note that one bit of the
mantissa is hidden and is not considered in the variable length
(Figure 1).

15

The most significant bit of the floating-point variable is
the sign bit for the mantissa. A sign bit of "0" represents a
positive mantissa, and a sign bit of "1" represents a negative
mantissa.

The most significant bit of the mantissa is hidden and is
not represented in the actual variable. The binary point is to
the left of the hidden bit as shown in Figure 1. The value of
the hidden bit is always "one" except when zero is expressed. A
zero is represented when the exponent field is zero. Regardless
the value in the mantissa, if the exponent is zero, the value of
the variable is also zero.

The exponent field is eights bits in length. The most
significant bit is the sign bit and the seven remaining bits are
the two's complement representation of the exponents value. The
exponent sign bit is inverted so that a "1" represents a positive
exponent and a "0" represents a negative exponent. As explained
above, an exponent of zero defines the value "zero". Some
examples of single precision floating-point variables are given
in Table 4. Note that the exponent is a straight binary
representation from the smallest positive (or negative) number to
the largest positive (or negative) number with zero as the only
valid number between the positive number range and the negative
number range.

Figure 1. Floating-Point Number Format
16

Table 4
Single Precision Floating-Point Representation

7FFF FF FF

Decimal Value

0.9999999702 x 2^27 = 1.7014 E3 8
(largest positive)

0000
0000
0000

00 81
00 80

00 7F

= 0.5 x 2^ = 1.0
= 0.5 x 2° = 0.5
= 0.5 x 2*1 = 0.25

0000 00 01 = 0.5 x 2*127 = 2.9387 E-39
(smallest positive)

xxxx
8000

8000
8000
8000

XX 00
00 01
00 7F
00 80
00 81

0.0
-2.9387 E-39 (smallest negative)
-0.25
-0.5
-1.0

FFFF FF FF -1.7014 E38 (largest negative)

2.12 Bus Transfer protocol

The AAMP uses an asynchronous, interlocking, handshaking
protocol for bus transfers. This is accomplished by the transfer
request (XRQ) and transfer acknowledge (XAK) signals. The AAMP
initiates the transfer with the XRQ signal. The transfer cycle is
not terminated until the AAMP receives a XAK signal from the
external device being accessed or a bus error interrupt (XER).
The handshake protocol makes the AAMP compatible with devices of
widely varying speeds. Most devices such as memories do not

17

Hexadecimal value
Word 1 Word 0
Mantissa EXP

provide a transfer acknowledge signal; therefore, the circuit
designer is responsible for generating this signal at the
appropriate time. Matters become somewhat complicated when a
system is made up of devices that have differing access times.
Two examples of circuits to generate the transfer acknowledge
signal are shown in Figure 2.

The address, data, and status lines of the AAMP become
invalid at the same time that transfer request is removed. If an
external device or bus protocol requires an address or data hold
time after the negation of XRQ, the hold output (HLD) from the
AAMP can be used to control external transparent latches to
accommodate this requirement.

The read/write output of the AAMP is valid during the same
time period as the address and data lines and can't be used as a
read/write pulse to external devices. Its intended purpose is
to control the direction of the external data transceivers in a
common bus system. The transfer request (XRQ) and read/write
(R/W) signals must be combined externally to generate memory
read and write pulses.

The AAMP has a selectable setup time between enabling the
address, data, and status lines to the assertion of the transfer
request (XRQ) signal. The setup time is controlled by two
inputs, S0 and S1. This gives the AAMP four different setup
delays and makes it more adaptive to any given system.

18

(b) Selectable delay of XAK wrt XRQ

Figure 2. Methods of Generating Transfer Acknowledge

19

2.13 Timing

The external 20-MHz crystal or clock signal is divided by
two inside the AAMP to provide the 10-MHz clock for
synchronization and is divided by four to provide the 5-MHz CPU
clock. A timing diagram is shown in Figure 3. The nominal time
values are shown in Table 5.

A transfer cycle is initiated by bus request (BR) going low.
Before this can happen, transfer acknowledge (XAK) and transfer
error (XER) must be low and bus grant (BG) must be high. If
these conditions are met, the AAMP initiates the bus request and
waits for a bus grant from the bus arbitration logic. On a read
cycle, the setup time (Tg) begins at the next 20-MHz clock edge
after BG goes low. Therefore, even with BG connected directly
to BR, one period (50 ns) is required between BR low and the
start of Tg. On a write cycle, the read/write line (R/W) goes
high when BG goes low which starts the delay to output data valid
(Tw). The address setup time (Tg) begins at the end of Tw. If
the system is configured with BG connected to BR, Tg will begin
one period (50 ns) after BR goes low since Tw is one period.
Thus in a no wait state configuration, address setup time occurs
at the same point in time with respect to bus request for both
the read and write cycles.

During a write operation, the setup time selected by the SO
and SI inputs is extended by one additional cycle to allow data
transceivers extra time to switch from the normal read direction.
(Note that transceivers are only required if the AAMP is used in
a system with a shared bus or when the system is composed of TTL

20

21

Figure 3. AAMP Timing Diagram

TABLE 5
Bus Timing Values

Symbol Parameter Maximum
T Oscillator period at input YO 50ns

Delay time between sync, of READ 2T
Tc XAK to the 10-MHz clock and WRITE 0

restart of the 5-MHz CPU elk.
Delay time from the restarting of

Td the 5-MHz CPU clock to XRQ low or 2T
any change in A23-A00,R/W,D15-D00

Tg Delay time from the negation of XRQ 2T 2T
to the negation of HLD.
Allowable skew from the received

Tg assertion of XAK to the validity of 4T-150
D15-D00 as input.

Tr Delay time from the negation of XRQ 2T (note 1)
to the negation of BR.

Tw Time from the assertion of R/W high T
to the enabling of D15-D00 as output.

(READ) (WRITE)
Setup from BG low, S1,S0=00 T 2T
XAK low, A23-A00 valid, S1,S0=01 2T 3T

Ts R/W valid, D00-D15 S1,S0=10 3T 4T
valid to assertion S1,S0=11 4T 5T
of XRQ and HLD.

(note 1: Tr is normally 2T if no data transfer is to occur on
the following machine cycle.)

devices.) The read/write line always returns to the read state
between transfers. The majority of code and data transfers are
read operations; therefore, the choice to have the read direction
the quiescent direction of the transceivers is an optimal one.

Once XRQ goes high, it will remain so until a XAK signal is
received from the external device. When XAK goes high, the delay

22

time Tc for restarting the 5-MHz CPU clock begins at the point of
synchronization of XAK and the next rising edge of the 10-MHz
clock. The time Tc is dependent on the type of transfer
operation. On a read operation, Tc is two periods; but on a
write operation, Tc is zero. The extra two periods on a read
operation allow for internal chip delays in latching the
received data.6 The delay time (Td) is the time from restarting
the 5-MHz CPU clock to any changes of the address, data, and
control lines.

The 5-MHz CPU clock is halted at the center of the
microcycle following the bus request and remains halted
throughout the transaction. The bus transfer is ended by a
transfer acknowledge (XAK) or bus error interrupt (XER). The
AAMP can retain control of the bus for more than one transfer
cycle. If the AAMP does retain control of the bus a subsequent
cycle, the setup time will begin and the 5-MHz CPU clock will
halt two periods after XRQ low provided XAK has already returned
to a low state. If XAK goes low after XRQ, the setup time is
delayed until XAK is low.

The synchronization of XAK to the 10-MHz clock, the extra
one period setup time for a write operation, and the extra two
periods delay of XRQ low for a read operation, all affect the
overall transfer cycle time. Figure 4 shows the timing waveforms
for XRQ when the AAMP is operating in a no-wait configuration, BR
connected directly to BG and XRQ connected directly to XAK.

23

Figure 4. Effects of Selectable Setup and Synchronization on Transfer Request

24

3. Microcomputer Description

The primary purpose of this thesis is to incorporate the
Advanced Architecture CMOS/SOS Microprocessor (AAMP) into a
computing system and identify any problem areas associated with
the microprocessor's operating characteristics and available
documentation. To my knowledge, the system described in this
section is the first AAMP based system built outside Rockwell
International, the designer of the AAMP.

3.1 Design Considerations

Three features were required in the AAMP based microcomputer
system.

(1) The system had to be able to send and receive digital
information to and from a host computer by means of a
parallel interface.

(2) The system had to be able to run any AAMP encoded
program sent to it by a host computer. The system was
not to be limited to just the execution of programs
stored in read-only memories.

(3) The system had to be able to process both digital and
analog data. The motivation for having analog signal
sampling capability is so the system can be used to test
linear adaptive filter algorithms, such as the Widrow,
on real-time data.

The above features required that the microcomputer system design
include a read-only memory (ROM), a random access memory (RAM), a

25

parallel input/output interface, and an analog-to-digital
converter. The Hewlett-Packard, HP-9845B, desktop computer was
chosen as the host computer. The HP-98032A, general purpose
input/output parallel interface (GPIO), was chosen as the
Hewlett-Packard interface to be used with the HP-9845B computer
because of its 16-bit unidirectional data transfer capabilities.

To effectively realize the AAMP's high speed and low power
consumption, a system was needed which would not appreciably
degrade these attributes. Therefore, the maximal use of high
speed CMOS devices was chosen over the traditionally used low-
powered Schottky (LS-TTL) devices. The high speed CMOS devices,
such as the 54HC/74 HC family of CMOS circuits, have the noise
immunity and low power consumption of the older metal gate CMOS
devices but operate at speeds similar to the LS-TTL family of
integrated circuits. The 54HC/74HC family of CMOS devices has
lower power consumption than the 54LS/74LS family of TTL devices
at input frequencies below 1 to 10 MHz. The difference is
attributed to the fact that all LS-TTL devices use a constant
amount of dc current even when the devices are idle. CMOS
devices, on the other hand, have an almost zero quiescent dc
current and power consumption. However, at operating speeds
above 10 MHz, the high speed CMOS devices actually consume more
power than the low-power Schottky. One might question the
decision to use all CMOS devices since the system clock is 20
MHz. A close examination will reveal that only a few gates
external to the AAMP operate at this frequency. The majority of
the gates operate at frequencies far below 1 MHz; thus, high

26

speed CMOS provides a more power efficient system than could be
obtained by using LS-TTL devices.

A second reason for choosing high speed CMOS devices is that
the CMOS/SOS AAMP has a fanout of one when interfacing to TTL.
Therefore, the use of all CMOS devices reduces the chip count of
the system by removing the need of buffers between the AAMP and
the other system components.

3.2 Hardware Description

The microcomputer system is constructed on a perforated
board using wire wrapping techniques. A 50-pin edge connector
provides a connection point between the microcomputer system and
the host computer. A picture of the microcomputer system is
provided in Figure 5. The microcomputer system consists of seven
basic sections: the clock, reset, and interrupt; device select
and transfer acknowledge; read-only memory; random access memory;
parallel peripheral interface; analog-to-digital converter; and
microcomputer to host computer interface. Figure 6 shows a block
diagram and Figure 7 shows the schematic for microcomputer
system. Appendix B gives a parts list and board layout. A
discussion of each section of the microcomputer system follows.

3.2.1 Clock, Reset, and Interrupt — The timing source for
the AAMP can be a 20 MHz crystal connected directly between Y0
and Y1 or 20 MHz clock signal clock signal connected to Y0 with
Y1 left disconnected. A 20 MHz clock signal was needed elsewhere
in the microcomputer system design, so an external clock circuit
was added. Resistor R1, capacitors C1 and C2, inverter UlA, and

27

Figure 5. Microcomputer System Picture

28

29

Figure 6. Microcomputer System Block Diagram

Figure 7. Microcomputer System Schematic
30

a 20 MHz crystal make up the clock circuit. U1B is a output
buffer for the oscillator circuit.

The reset (RST) signal to the AAMP comes from two sources.
On power turn-on, resistor R4 and R5, capacitor C3, and inverter
U1F generate a 260 ms positive pulse through OR gate U5A. A
manual reset is also provided with switch SI. The D-type flip-
flop U6B, resistors R2 and R3, and switch SI produce a debounced
positive pulse through OR gate U5A when SI is toggled.

The AAMP has three interrupt inputs: bus error (XER),
maskable (IRQ), and nonmaskable (NMI). The bus error interrupt
is not used and is permanently connected to ground. The maskable
interrupt (IRQ) and nonmaskable interrupt (NMI) are user
configurable. The suggested configuration is to have NMI
connected to switch S2 and the maskable interrupt connected to
ground or the programmable peripheral interface (PPI) interrupts.
Switch S2 is debounced by D-type flip-flop U6A and resistors R7
and R8. Connecting the Q output of U6A to the nonmaskable
interrupt provides a means of halting the processor regardless
its mode of operation.

3.2.2 Device Select and Transfer Acknowledge Circuit — The
AAMP has an asynchronous, interlocking, handshaking protocol for
bus transfers as described in Section 2.12. Since the bus of the
microcomputer system is dedicated to the AAMP, bus request (BR)
and bus grant (BG) are connected together (Figure 8). Only
address lines A0 through A10 and A12 through A14 are used;
therefore, the code, data, and local environment pointers are
restricted to zero. Address lines A12 through A14 are decoded by

31

32

Figure 8. Device Select and Transfer Acknowledge Circuit

Table 6
System Address Assignments

Address Purpose

ROM
0000-0008 Executive Entry Table
0009-000F not used
0010-0028 Initialization Procedure
0029-002F not used
0030-0036 Trap Procedure
0037-07FF not used
0800-0FFF undefined

RAM
1000 TRAP Number
1001 User SPCR (where TRAP occurred)
1002 * User Exception Number
1003 * User SPCR (where exception occurred)
1004-100F not used
1010-1019 User PSD Table
101A-1700 User Programs and Stack
1701-17F0 Executive Stack
17F1-17FF not used
1800-1FFF not defined

PPI
2000 Input Buffer
2001 Output Buffer
2002 Status Register
2003 Control Register
2004-2FFF not defined

ADC
3000 ADC Start Conversion and Digital

Output Buffer
3001-FFFF not defined
NOTE: Data, Code, and Local Environment Pointers = 0

* (ONLY with user exception routine described in Section 3.3)

Ull to provide eight select lines, but only four select lines are
used. Table 6 gives the system's address assignments.

A selectable transfer request (XRQ) to transfer acknowledge
(XAK) delay circuit is used to generate the XAK signal at a time
appropriate to the speed of the device accessed (Figure 8). The

33

circuit allows XAK to be delayed from 15 to 3 90 ns after a
transfer request. Figure 9 shows the possible range of access
times with the AAMP configured for the minimum address and data
setup time before XRQ, that is SO and SI both connected to
ground.

When the delay between XRQ and XAK is set to the minimum
(15 ns), the system functions the same as if the delay were zero.
The delay between XRQ and XAK can range from 0 to 100 ns (minus
the propagation delays in the AAMP) for a read operation and from
0 to 50 ns (minus the propagation delays in the AAMP) for a write
operation and still synchronize with the 10 MHz clock at the
same point. The synchronization points mark #1 in Figure 9
indicate this situation.

The amount of XAK delay chosen depends on the
characteristics of the device being accessed. According to the
available timing information for the CMOS/SOS AAMP, input data to
the AAMP has to be valid at least (4T-150) ns or 50 ns after
assertion of XAK. Figure 10 shows that this need not be the
case. From any given rising edge of the 10 MHz clock, the
assertion of XAK can range from 0 to 100 ns (less propagation
delays inside the AAMP) and still synchronize with the next
rising edge of the 10 MHz clock. If the assertion of XAK is 95
ns prior to the synchronization point, data would have to be
valid 45 ns prior to this point (Figure 10: Case 1); however, if
the assertion of XAK is 10 ns prior to the synchronization point,
data does not have to be valid until 40 ns after this point
(Figure 10: Case 2). The transfer cycle time is the same for
both case? therefore, the time when valid data is required at the

34

Figure 9. Range of Possible Device Access Times

35

36

Figure 10. Allowable Skew Between Data Valid and Transfer Acknowledge

Table 7
System Improvement Using Modified Valid Data to AAMP Requirement

Device XAK Delay Reduction Access Time Improvement

ROM
RAM

0
25 ns

none
none (read)
100 ns (write)
100 ns (read)
none (write)
none

PPI 50 ns
ADC 0

.AAMP can be based on the synchronization point of XAK to the 10
MHz clock and not just the assertion point of X A K . 7 The
developed microcomputer system timing is based on the premise
that data be valid no later than 40 to 50 ns after the described
synchronization point. In doing so, the system performance is
improved (Table 7).

The timing characteristics of the read/write line (R/W)
caused some problems with the initial system design. On a write
cycle, the R/W line goes high 5 to 10 ns after BR and BG go low
and returns low 5 to 10 ns before XRQ goes low. XRQ and R/W are
gated together to generate a write pulse to the RAMs and PPIs;
consequently, the removal of R/W before XRQ caused a 5 to 10 ns
read pulse to occur at the end of the write cycle. The glitch on
the read enable input caused the PPIs not to program correctly
but had no apparent effect on the RAMs. Available AAMP
specifications indicate that R/W and XRQ are removed
simultaneously. Internal chip delays in the AAMP probably
account for the skewing effect. Since the R/W timing

37

characteristic was discovered after the microcomputer system was
designed and built, the simplest way to remove the glitch problem
was to delay R/W by passing it through inverters connected in
cascade. Inverters U2B and U3B were added to the design. Thus
R/W passes through redundant inverters U1E and U3B before it is
used by the RAM and PPI select circuits (Figure 7).

3.2.3 Microprocessor to Read-only Memory interface — The
read-only memory (ROM) is required to store the Executive Entry
Table and programs required by the microcomputer system at power
turn-on. The Executive Entry Table has to reside at addresses
"000000" through "000008". Procedure pointers in the Executive
Entry Table define where the executive programs lie in memory.

Two CMOS 20 4 8x8-bit UV erasable and electrical
reprogrammable read-only memories (EPROMs) were used to realize a
2048-word ROM. National Semiconductor NMC27C16Q-35 EPROMs were
used which have a 350 ns Access time. The microprocessor to ROM
interface is shown in Figure 11. The timing diagram is given in
Figure 12.

The ROM is selected when address lines A14, A13, and A12
are "000" and bus request (BR) is low. The output from the ROM
is enabled only when R/W is low, XRQ is high ,and the ROM select
is low. The design allows for processor write attempts to the
ROM addresses without causing damage to the system. Write
attempts generate a XAK but do not enable the ROM output, that
is, the output remains in a high-impedance state.

The delay between XRQ going high and XAK going high is 240
ns. The amount of delay chosen depends on when the data from

38

Figure 11. Microprocessor to Read-Only Memory Interface

39

40

Figure 12. Microprocessor to Read-Only Memory Timing Diagram

the ROM becomes valid. The first possible synchronization point
of XAK to the 10-MHz clock is shown in Figure 12.

3.2.4 Microprocessor to Random Access Memory Interface —
The random access memory (RAM) is required for executive stack
and data storage. The microcomputer system also uses RAM to
store user programs, stacks, and User PSD Tables.

Two Hitachi HM6116P-2, 120 ns access time, static CMOS
2048x8-bit RAMs were used to form a 2048-word random access
memory. The AAMP to RAM interfacing is shown in Figure 13 and
the timing diagrams are given in Figure 14.

A "001" on address lines A14, A13, and A12 provides a RAM
select signal from decoder Ull. The RAM select, R/W, XRQ, and a
delay of XRQ are used to generate a RAM output enable and a
RAM write enable. When the RAM select is low and XRQ is high,
the output of NOR gate U10A enables signals to pass through NAND
gates U8B and U8C. The output of U8B is low only when the output
of U10A is high and R/W is low. The output of U8C is low only
when the output of U10A and R/W are high. Thus, the RAM output
enable and write enable can not be active at the same time. On a
write operation, the write enable (WE) must be removed at least 5
ns prior to data invalid. The write enable (WE) and a 125 ns
delay of XRQ is combined through OR gate U4B to force WE high
approximately 20 ns before the data goes invalid. The length of
the resultant write pulse is approximately 105 ns which also
satisfies the required minimum length of 70 ns.

The R/W line is normally in the low or read state. The R/W
line returns from the write to read state 5 to 10 ns before XRQ
goes low. If the two redundant inverters U1E and U3B are removed

41

Figure 13. Microprocessor to Random Access Memory Interface

42

Figure 14. Microprocessor to Random Access Memory
Timing Diagrams

43

from the circuit, the output of U10A would still be a logic high
when the change in the read/write state is felt at the inputs of
U8B and U8C. The change does not influence write enable (WE)
because it has already been disabled by the XRQ delay into U4B?
however, the change causes a small glitch on the RAM output
enable line (OE). The propagation of R/W through the added
inverters insures that the output of U10A is low before the
change in the read/write state is felt at U8B and U8C.

The delay between XRQ and XAK is determined by finding the
allowable delays possible for the read cycle and observing the
effect they have on the write cycle timing. On the READ timing
diagram in Figure 14, the first possible synchronization point of
XAK with the 10 MHz clock is marked with an arrow. A delay of 15
or 40 ns (values include 15 ns for the propagation delay through
U7 and U8) will both be synchronized at the indicated point.
From the WRITE timing diagram in Figure 14, note that the use of
a 40 ns delay will cause the indicated synchronization point to
be missed, thus a delay of 15 ns is the optimal choice. Missing
the synchronization point would cause a 100 ns increase in the
write cycle time.

The use of the 15 ns delay between XRQ and XAK allows for
earlier synchronization but it violates the manufacturer's
suggested allowable skew time between the assertion of XAK and
data valid on a read cycle. The skew time would not be violated
if a 40 ns delay were used. Since both delays result in the same
read cycle time, the violation does not influence the AAMP's
operation as was shown in Section 3.2.2.

44

3.2.5 Microprocessor to Parallel Port Interface — A
peripheral interface is required to facilitate communication to
external systems. A programmable parallel interface was chosen
for this purpose. Two 8-bit, Harris 82C55A, programmable
peripheral interfaces (PPIs), are used to form a 16-bit parallel
interface. Each PPI has 24 programmable input/output lines which
can be used in three major modes of operation: mode 0, basic
input/output; mode 1, strobed input/output; and mode 2,
bidirectional bus input/output. The various modes are selected
by writing to a control register.

The programmable peripheral interfaces are connected in the
microcomputer system as shown in Figure 15. Each PPI is
programmed for operation in mode 1 and provides an 8-bit output,
an 8-bit input, four handshaking control lines, two
microprocessor interrupt lines, and two general purpose input/
output lines. Together, the two PPIs provide 16 lines of
parallel output, 16 lines of parallel input, four handshaking
lines, two microprocessor interrupt lines, and four general
input/output lines. Four control lines and two interrupts are
redundant and are not considered for use. The input data
buffer address is "002000"; the output data buffer address is
"002001"; the PPI status register address is "002002"; and the
control register address is "002003". Appendix C explains how to
program and configure the PPIs for operation in mode 1. A
control word of "BCBC" configures the PPIs as described with the
general input/output lines configured for the input direction.

A "010" on address lines A14, A13, and A12 decodes to select
the PPIs. The write and read enable circuit is the same as that

45

Figure 15. Microprocessor to Parallel Port Interface

46

for the RAMs. See Section 3.2.4 for a description of operation.
The read glitch on the end of a write cycle described in
connection with the RAM select circuit also applies to the PPI
select circuit. In fact, the PPIs would not program (configure)
correctly until the glitch was removed.

To determine the optimum XRQ to XAK delay, the minimum delay
times were first found for the read operation. The final choice
was determined by the write operation timing restraints. From
the read timing diagram in Figure 16, data becomes valid
approximately 20 ns after the marked synchronization point;
therefore, the synchronization of XAK to the 10 MHz clock can
only occur at the indicated point or later. A 90 ns XRQ to XAK
delay results in the indicated synchronization point being missed
because of propagation delays inside the AAMP. Thus XRQ to XAK
delays of 15 and 40 ns were both considered for use. Note that
both violate the XAK to data skew time restriction (Table 5), but
the use of either will not affect the read cycle time.

The PPIs require a 100 ns minimum write pulse length and a
60 ns minimum data/address hold time following the removal of the
write pulse. A 15 ns XRQ to XAK delay and a 125 ns XRQ delay to
U4D will generate a write pulse length of approximately 105 ns
and a data/address hold time of only about 20 ns. A 40 ns XRQ to
XAK delay and a 125 ns XRQ delay to U4D will provide a write
pulse length of 105 ns and a data/address hold time of 100 to 110
ns. Thus, the later is used.

The write timing diagram in Figure 16 shows XAK to 10 MHz
clock synchronization points for both 15 ns and 40 ns XRQ to XAK

47

Figure 16. Microprocessor to Parallel Port Timing Diagrams

48

delays which are marked #1 and #2 respectively. Note that the 40
ns XRQ to XAK delay results in XAK going high too close to
synchronization point #1 which results in a 100 ns delay and
synchronization at point #2.

3.2.6 Microprocessor to Analog-to-Digital Interface — The
analog -to-digital conversion section of the microcomputer system
provides a means of sampling real-time data for digital
processing. An analog-to-digital converter (ADC) is used with a
sample-and-hold to do the conversions (Figure 17).

An Analog Devices AD583 sample-and-hold and a Datel Intersil
AD-HC12B 12-bit analog-to-digital converter are used. The
sample-and-hold and analog-to-digital converter operate from -15
and +15 V power sources; therefore, digital logic level shifters
are required for interfacing these devices into the system. The
12 digital outputs, the end-of-conversion (EOC), and the start
conversion signal are all passed through level shifters. The
HOLD signal to the sample-and-hold is designed to operate with 0
to 5 V input levels and does not require level shifting. The ADC
is configured to provide a two's complement digital value at its
output. EOC clocks the digital output into the three-state D-
type flip-flops (U25 and U26) which form an addressable data
register to the AAMP.

A "Oil" on address lines A14, A13, and A12 will select the
analog-to-digital section of the microcomputer system. If the
prior conversion is complete (E0c=0), the three-state flip-flop
register can be accessed like any memory location. The data from
the register becomes valid on the bus approximately 20 ns after

49

50

Figure 17. Microprocessor to Analog-to-Digital Section Interface

the output enable goes low; therefore, no XRQ to XAK delay is
required. See Figure 18 for the timing diagram.

The ADC is configured so that it goes into a low-power
standby mode when no conversion is taking place. When the
addressable data registers U22 and U23 are accessed by the
processor, the D-type flip-flop U24A is set by the output of NAND
gate U9C. The Q output of U24A is the start conversion signal to
the ADC. The required start conversion pulse width is obtained
by using counter (U28) to reset the flip-flop. The Q output of
U24A is used to control the sample-and-hold (U30). The HOLD
signal to the sample-and-hold is the complement of the ADC start
conversion signal, thus the sample-and-hold only samples data
during the time the start conversion signal is high and is in the
hold mode the rest of the time.

The analog-to-digital conversion section of the
microcomputer system is selected anytime address lines A14, A13,
and A12 are "Oil". If a write operation occurs, NAND gate U8D
prevents the analog-to-digital conversion section from responding
to the ADC select from Ull? however, the XAK signal is generated
to prevent a system failure.

The first read operation to the analog-to-digital section
starts the first conversion cycle and subsequent read operations
return valid data. The system was designed so that the AAMP
could consecutively access the analog-to-digital conversion
section? however, the system fails to operate properly. The EOC
line is connected to U7 in the XAK generation circuit to delay
the generation of XAK until the ADC is finished with the current

51

Figure 18. Microprocessor to Analog-to-Digital Section
Timing Diagram.

52

conversion and is also connected to the data register U22 and U23
to latch the ADC output when the conversion is complete.

Two problems were encountered when the analog-to-digital
section was accessed repeatedly without any delay between
accesses. First, the AAMP is fast enough that the EOC line does
not have time to go low before the second read occurs. The
circuit will initiate another conversion cycle and the processor
will receive invalid data. There must be approximately 500 ns
between reads to the ADC to prevent this problem, but a second
problem then occurs. If the subsequent read operation occurs
after EOC goes low but before the conversion is finished, the
conversion will terminate correctly, the processor receives valid
data, and a new start pulse is generated as designed. The
problem is that the ADC does not respond to the start pulse and
the end-of-conversion signal remains high. The start pulse
occurs approximately 20 ns after the EOC goes high, but the ADC
fails to respond. The start pulse must occur too soon following
the previous conversion.

To remedy the problems, the EOC line has been connected to
U17-10, a general purpose input/output line on the PPI U17. The
PPIs are configured so that the general purpose input/output
lines are in the input mode. Thus the processor can poll the PPI
status register to determine the state of the EOC line. Bit 7 of
the PPI status word corresponds to the state of the EOC line. A
"zero" indicates EOC is low (conversion in progress), and a "one"
indicates EOC is high (conversion finished). If the time between
accesses to the analog-to-digital section is less than
approximately 0.35 ms, software polling of the EOC state must be

53

added to the data acquisition program. The suggested method is
to poll for an EOC transition from a "high" to "low" before
continuing normal program execution and to poll for an EOC
transition from a "low" to "high" before accessing the analog-to-
digital section the next time.

An alternative method to correcting the problem would be to
change the hardware design. This approach would increase the
chip count and circuit complexity and would not appreciably
change the maximum possible conversions per second. Thus,
correction by hardware is not viable solution.

3.2.7 Microcomputer to Host Computer Interface — The
Hewlett-Packard System 45 Desktop Computer (HP-9845B) was used as
the host computer to the AAMP based microcomputer system. The
computer interface chosen was the HP-98032A general purpose, 16-
bit input/output interface (GPIO). A 50-pin edge connector on
the microcomputer board serves as the connect point between the
two systems. The communication process is accomplished using a
handshake protocols Multiplexers (U14-A/B/C) are used to connect
the GPIO peripheral control lines to the PPI input and output
handshake lines (Figure 19). All outputs from the GPIO are open-
collector; therefore, resistive line terminators U32 and U33 are
required as shown in Figure 7.

The GPIO has three control lines (I/O, PCTL, and PFLG), two
input lines (STI 0 and STI 1), two output lines (CTL 0 and CTL
1), 16 data input lines, and 16 data output lines. I/O indicates
the direction of the transfer with respect to the HP system and
is used to control the multiplexers. The logic level of PCTL and

54

55

Figure 19. Microprocessor to Host Computer Interface

PFLG can be complemented by installing jumpers in the GPIO. PCTL
was configured such that a "high" means CLEAR and a "low" means
SET. PFLG was configured where a "high" means the microcomputer
system is READY and a "low" means the microcomputer system is
BUSY. The PPI output buffer full line is connected to the GPIO
input STI 0 with a "high" meaning the buffer is EMPTY and a "low"
meaning the buffer is FULL. GPIO output line CTL 0 is connected
to PPI input line PC6 (U17-11). This line is used to indicate to
the microcomputer system when the program transfer from the host
computer is complete (see Section 3.3).

When the microcomputer system to GPIO interface was designed
a choice had to be made on how to handle transfers of data from
the microcomputer system to the host computer. If the PPI output
buffer full line is connected to the PFLG line, interrupt
handling is required in the HP computer in order to know when to
read data from the microcomputer system. A preferred alternative
was to use software polling of the PPI output buffer full line.
The later approach simplifies the programming required in the HP
computer and is used. To implement this approach, the PPI output
buffer full line was connected directly to the GPIO input STI 0.

The I/O line is normally in the INPUT state which means PCTL
is connected to both the PPI output buffer acknowledge line and
PFLG through U14B and U14C. When PCTL is CLEAR, PFLG gets an
indication that the microcomputer system is READY for the next
transfer. When PCTL is SET, PFLG gets an indication that the
microcomputer system is BUSY or not ready for the next transfer.
The configuration completes the required handshake to the GPIO
but does not actually indicate the state of the PPI output

56

buffer. The host computer has to check the state of input line
STI 0 to determine when the PPI's output buffer is full.

To write data to the PPI, the GPIO puts a "low" on I/O and
data on the output bus before setting PCTL. The "low" on I/O
connects PCTL to the PPI input buffer strobe line in U14A and
connects the PPI input buffer full line to PFLG in U14C. When
PCTL goes SET, the data is clocked into the PPI and the PPI
input buffer full line goes "high" which corresponds to a BUSY on
PFLG. The host computer is then free to do an input or wait for
the microcomputer system to clear the PPI input buffer.

The GPIO has two modes of operation: full and pulse. Either
mode can be used. The reader is referred to the HP-9 8032A
Installation and Service Manual for further information on the
GPIO. 8 The GPIO jumpers that are required for proper operation
are listed in Appendix D along with the pin assignment for the
microcomputer system edge-connector.

3.3 System Software Description

The software, for controlling the microcomputer system on
power turn-on and system reset, resides in ROM. The software
allows programs for execution to be transferred from the host
computer (HP-9845B). The transferred programs are stored in RAM
and executed in the user mode.

Two initialization procedures were developed and tested.
One uses maskable interrupts and the other uses software polling
of the PPI status register to determine when the host computer
has transferred a word into the PPI. The interrupt method was

57

implemented only to identify any problems associated with the use
of interrupts. The adopted procedure for the system uses
software polling of the PPI status register. Appendix E gives a
listing of the later initialization procedure.

The initialization procedure is written such that the user
program must be transferred from the host computer in a
code/address sequence. A single output line from the host
computer tells the microcomputer system when the transfer is
complete. The output line is connected to PPI U17-11 (input line
PC6). Bit 6 of the PPI status register is a logic "1" when the
program transfer is in progress and is a logic "0" when the
program transfer is complete. When the initialization procedure
detects a zero on the end-of-program transfer line, the
initialization procedure stores a User PSD Pointer value "1010"
in the initial executive top-of-stack location (TOS) and does a
outer-procedure return which causes the processor to context
switch to the user mode and execute the transferred program. The
system software is not set-up to allow multitask scheduling, but
a user program can have multiple subprograms. The User PSD Table
must be transferred to locations "001010" through "001019". The
user program and stack locations must lie within the space
specified in the memory map (Table 6).

The AAMP determines which executive procedures are defined
from the Executive Entry Table. If a procedure ID (PROCID) is
zero, the processor will halt when that procedure is called. The
only procedures presently defined in the microcomputer system are
the initialization and trap procedures.

58

A user program's execution can be halted by the execution of
a trap instruction or by the processor if a fatal error occurs.
When the processor aborts a user program, it records the state of
the processor in the User PSD Table and passes a trap number to
the executive trap handler. If no trap handling procedure
exists, the processor will halt and must be reset.

To aid in debugging user programs, a method was developed
which tells the host computer where the user program's execution
stopped and what the associated trap number was. A system reset
will destroy this information, so a trap handling procedure is
used to store the trap number and the user syllable program
counter (SPCR) in RAM addresses "001000" and "001001",
respectively. The trap handler saves the described information
and then halts the processor by executing the HALT instruction.
The microcomputer system can then be restarted, and a user
program can be transferred from the host computer to retrieve
this information.

When the execution of the user program results in an
accumulator overflow or underflow, the processor looks to the
User PSD Table for the exception handler PROCID. If no exception
handler exits, the result for the mathematical function which
caused the exception will be as described in the instruction
manual. 3 If an exception handler is defined, the processor
passes an exception number to the exception handler. The
exception number identifies the type of operation which caused
the exception. Exceptions are generally undesirable and indicate
a programming problem; therefore, an exception handler was
developed to store the user exception number and user SPCR in

59

RAM addresses "001002" and "001003", respectively. The exception
handler then passes a trap number value of eight to the executive
trap handler. The executive trap handler halts the processor as
described above. Appendix F gives a listing of the exception
handler. The user program, which retrieves the trap number and
associate user SPCR, can also be used to retrieve the exception
number and associated User SPCR. Appendix F also gives a listing
of such a program.

The microcomputer system has two switches labeled "start"
and "stop". The start switch is gated to the processors reset
input and will always cause a cold restart because the system
Continuation Status Word is zero. The stop switch is connected
to the nonmaskable interrupt by a user installed jumper. The
nonmaskable interrupt PROCID is zero which means no procedure is
defined. When the stop switch is activated, the processor aborts
what it is doing and halts. Thus the two switches function as
"run" and "stop" switches.

If a user program's execution is completed normally (by way
of an outer-procedure return from the user mode), a trap code "0"
will be passed to the trap handler and the user SPCR will be
reset to zero. The trap handler will store the trap number and
SPCR as described above and halt the processor. If the user
program's execution is halted by the stop switch, the state of
the user program is recorded in the User PSD Table and a context
switch to the executive mode is made. Since the nonmaskable
PROCID is zero, the processor halts. In both cases, the user
program can be re-executed or restarted without the need of

60

transferring it again from the host computer. First, the
microcomputer system has to be reset (restarted). The
initialization procedures must receive one code/address pair
before it checks the end-of-program transfer line; therefore, the
host computer must set the end-of-program transfer line low and
send a "dummy" code/address pair. Any unused RAM address or any
ROM address can be used for the "dummy" address. The
initialization procedure then stores the address offset to the
User PSD Table in the User PSD Pointer location and executes a
RETURN instruction which causes the processor to context switch
to the user mode. The user program will either start from the
beginning or continue from the point of interruption depending on
the stored value of the user SPCR.

61

4. Widrow Adaptive Linear Predictor Algorithm Implementation

The simplest method to compare the performance of
microprocessors is to implement the same algorithm on each and
compare results. The Widrow adaptive linear predictor algorithm
was previously implemented on several other microprocessors at
Kansas State University and thus was chosen as a benchmark
program for the AAMP. The Widrow adaptive linear predictor
algorithm involves a large number of multiplications and array
handling which is representative of algorithms for many
applications in which the AAMP may be used. Figure 20 shows a
block diagram of the algorithm.

Kenneth Albin did the ground work for implementing the
Widrow adaptive linear predictor algorithm on the AAMP based
microcomputer system. 2 He encoded four versions of the algorithm
of which three were implemented. They include an Ada to AAMP
compiled floating-point version, an Ada to AAMP compiled fixed-
point fractional version, and a hand coded fixed-point fractional
version. The later eliminates much of the array updating
required in the other two versions. Kenneth Albin's work was
very comprehensive; but because no AAMP based microcomputer
system existed on which the programs could be tested with real-
time data; a couple of minor problems went undetected. Appendix
G contains a description of these problems and revised listings.

Software for the HP-9845B computer was developed to
facilitate the microcomputer system testing. Program file
generation, program file editing and storage, data file
generation, program and data file transfer, and received data

62

Figure 20. Widrow Adaptive Linear Predictor Algorithm Block Diagram

63

file plotting are among the routines developed. These routines
have not been considered essential to this thesis and are not
discussed.

To verify proper operation of the Widrow linear adaptive-
filter algorithm, an existing FORTRAN version was translated into
BASIC for use in the HP-9845B (host computer). Sample data files
were processed on both systems and the outputs were plotted for
comparison. The plotted results from the AAMP encoded floating-
point version were identical to those from the HP-9 845B. The
plotted results from the two fixed-point versions had the same
general shape as those from the floating-point version, but of
course differed in scale. The plotted results from the two
fixed-point versions were however identical with each other which
confirmed their equivalence. Thus the operation of the three
AAMP encoded Widrow linear adaptive algorithms was verified.

64

5. Microcomputer System Performance

The performance evaluation of the AAMP based microcomputer
system encompasses four areas: system performance compared to
other processors, analog-to-digital sampling rate, peripheral
data transfer rate, and power consumption.

5.1 AAMP Based Microcomputer System compared to Other processors

The Widrow adaptive linear predictor algorithm was used to
benchmark the microcomputer system. The maximum execution rate
was determined for the three versions of the algorithm described
in Appendix G. The programs were stripped of all instructions
dealing with the interfacing to the host computer. The input was
simulated by reading from the analog-to-digital conversion
section. The output was simulated by writing to the PPI. Table
8 shows the comparison of the AAMP's performance to that of other
microprocessors. The information in the table comes from the
work of Kenneth Albin with the exception that the estimates of
the AAMP's performance are replaced by the actual values. 2 The
number of iterations given for the AAMP are nearly the maximum
possible. With the exception of the storing of the output to the
PPI, the AAMP executed the algorithm in essentially a no-wait
state configuration because the program was completely executed
from RAM. If the programs were executed from ROM, each
instruction fetch would require an additional 200 ns. The
estimated iteration rates for execution of the algorithm from ROM
are also given in Table 8.

65

Table 8
Widrow Adaptive Linear Predictor Algorithm

Execution Rates

Processor Iterations/ Clock rate Multiply
second (MHz) # bits / type / time(US)

Z80 130
Z80 47
NSC800 296
NSC800 273
8748 80
AAMP (standard) 770
AAMP (modified) 817
AAMP (standard) 345

(note 1)
(note 2)
(note 3)

4
4
4
4
6

20
20
20

8
16

8
16

8
16
16
24

SW,fixed
SW,fixed
HW,fixed
HW,fixed
SW,fixed
HW,fixed
HW,fixed
HW,float.

147.25
554.25

252.5
4.75
4.75

19.15
(note 1
(note 2
(note 3

Execution from RAM
Execution form RAM
Execution form RAM

Execution from ROM would be 757)
Execution from ROM would be 804)
Execution from ROM would be 341)

5.2 Analog-to-Digital Sampling Rate

The maximum sampling rate obtainable from the Datel Intersil
Model ADC-HC12B, analog-to-digital converter (ADC), was
determined as follows. A known frequency sinewave was applied to
the system. A program was executed with the following sequence:

(1) read value from the ADC
(2) poll for the end-of-conversion line "low"
(3) store value from step (1) in an array
(4) poll for the end-of-conversion line "high"
(5) repeat steps 1-4 for 1024 readings

The 1024 values were then transferred to the host computer and
plotted. The number of samples per cycle of the sinewave were
counted and divided by the known period to yield a sampling
frequency of 3000 samples per second.

66

5.3 Peripheral Data Transfer Rate

The maximum rate at which the microcomputer system can
communicate to a peripheral system was determined by executing an
infinite loop consisting of a read/write sequence to the
programmable peripheral interface (PPI). The loop was repeated
at a rate of 4.5 MHz. Thus the system could transfer up to 9 M-
words of data per second. No external device was connected to
the microcomputer system; therefore, the value does not take into
account the time required for a transfer protocol to an external
system.

5.4 Power Consumption

The power consumption of the microcomputer system was
determined for the system as a whole with regard to only the 5 V
supply. Since the outputs of the HP general purpose parallel
interface (GPIO) are all open collector, resistive line
terminators had to be installed on the microcomputer system
board. The line terminators are peculiar to the host computer
and are not considered part of the microcomputer system. With
the line terminators installed and the system connected to the
HP-9845B computer, the power consumption is approximately 2.5 W.
With the line terminators installed and the system disconnected
from the host computer, the power consumption is approximately
1.42 W. With the line terminators removed and the system not
connected to the host computer, the power consumption is
approximately 207.5 mW. These values were taken with the system

67

executing the initialization procedure. When the AAMP is halted,
the power consumption decreased by an additional 12.5 mW.

68

6. Concluding Remarks

The AAMP is a high-performance single-chip microprocessor
which appears to meet all published performance claims. The
AAMP's low power consumption and floating-point arithmetic
capabilities make it attractive over other microprocessors such
as the Motorola 6 8000 and National 16032 which are not available
in low-power versions or the Intel 80C86 which is low powered but
does not have built-in floating point arithmetic capabilities. 1

The AAMP is designed for use in systems of medium to high
complexity. The asynchronous, interlocking, handshaking bus
protocol allows the AAMP to be easily interfaced to a wide
variety of devices. The AAMP can be configured so that bus
operations have no delay or have as long of delay as required by
the devices being accessed. Because the AAMP uses a handshaking
bus protocol, external hardware must generate the transfer
acknowledge signal if the devices being interfaced do not provide
this feature.

The only difficulty encountered in the AAMP based
microcomputer design was associated with the AAMP's read/write
line. The read/write line only indicates the direction of the
transfer and must be combined externally with the transfer
request signal to generate chip read and write enables. The
read/write line is normally in the "low" (read) state. During a
write cycle, the read/write line goes "high" when the bus is
granted to the AAMP and returns to the "low" (read) state 5 to 10
ns before transfer request is removed. This fact is not
indicated in the available timing specifications. The removal of

69

read/write before the transfer is terminated by transfer request
can have an impact on the design of the chip select circuit. For
example, the initial microcomputer system design had a glitch on
the PPI and RAM read enables at the end of a write cycle. The
read/write line had to be delay in order to correct the problem.

Rockwell International designed the AAMP's instruction set
so that the AAMP could be programmed in high-level languages such
as PL/I, Jovial, and Ada. The AAMP was not intended to be
programmed manually in machine code. 1 The AAMP's instruction set
was found to be very structured and easy to learn. The only
aspect of hand coding the AAMP which required some special
attention was the calculation of jump offsets. The program
counter deals with byte addresses; therefore, the actual word
addresses have to be converted to byte addresses before a byte
jump offset can be calculated. The procedure is not difficult but
is troublesome when editing and revising programs.

The AAMP based microcomputer system's performance proved to
be superior over all other microprocessors previously evaluated
at Kansas State University. Using the Widrow adaptive linear
predictor algorithm as a benchmark, the only processor previously
evaluated which comes even close to competing with the AAMP is
National Semiconductor's NSC800. When comparing the execution
rate of the above algorithm using 16-bit, fixed-point arithmetic,
the AAMP is 282 percent faster than the NSC800.

The microcomputer design allows the AAMP to execute programs
from random-access memory with essentially no wait states. The
minimum possible transfer cycle access time to the read-only-

70

memory is 200 ns greater than the access time to the random-
access memory. Thus, programs executed from read-only memory
take longer. If the benchmark algorithm had been executed from
ROM, the AAMP's execution rate would decrease to 277 percent
greater than that of the NSC800.

The maximum operating rates for the analog-to-digital
converter and the parallel interface were also measured. The
maximum rate of the Datel Intersil ADC-HC12B, analog-to-digital
converter, operating in a power standby configuration, is 3000
samples per second. The maximum rate that the microcomputer
system can send and receive information via the Harris 82C55A,
programmable peripheral interface, is 9 M words per second.

The amount of power the microcomputer system consumes from
the 5 V supply is greatly increased by the resistive line
terminators required for proper operation of HP-98032A interface.
Since these components are not part of the hardware required to
support the AAMP, they were removed and the host computer was
disconnected while measuring the power consumption of the AAMP
based microcomputer system. The measure power consumption was
207.5 mW with the AAMP executing the the board's operating system
program. This value indeed supports the figures that Rockwell
International has published.

The Advanced Architecture Microprocessor (AAMP) developed by
Rockwell International should definitely have its place in the
digital systems of tomorrow. High-performance, low power
consumption, and versatility make the AAMP a very remarkable
device.

71

Acknowledgements

This research project was sponsored by the Systems
Engineering Division, Organization 5238, Sandia National
Laboritories, Kirtland Air Force Base, Albuquerque, New Mexico.

I would like to give a special thanks to the United States
Air Force for sponsoring my degree. Thanks is also extended to
Dr. D. H. Lenhert, Dr. M. S. P. Lucas, and Dr. J. G. Thompson for
serving as committee members. I would also like to acknowledge
Mike Kadlicek for the fine job he did in drawing the AAMP based
microcomputer schematic utilizing the HP-9845 Engineering
Graphics System.

72

References

1 Dave W. Best et al, "An Advanced-Architecture CMOS/SOS
Microprocessor," IEEE Micro. 2:3, August 1982, pp 10-26.

2 Kenneth L. Albin, "An Evaluation of Rockwell's Advanced
Architecture Microprocessor for Digital Signal Processing
Applications" (MS Thesis, Kansas State University, 1984).

3 AAMP CAPS-7, and CAPS-10 instruction Set Architecture,
Processor Technology Section, Advanced Technology and
Engineering, Collins Avionics Division, Rockwell International,
1982.

4 AAMP Hardware Reference manual, Rockwell International,
1984.

5Kenneth J. Hass, "On a Microprocessor Implementation of an
Intrusion-Detection Algorithm" (MS Report, Kansas State
University, 1978), pp 17-18.

6Dave W. Best, "Design of an Advanced Architecture
Microprocessor" (MS Thesis, Iowa State University, 1984), pp 100-
114.

7 Confirmed by Dave W. Best, Design Engineer for the Advanced
Architecture Microprocessor, phone conversation, Rockwell
International, April 10, 1985.

8HP 98032A Installation and Service Manual, Hewlett-Packard
Desktop Computer Division, 1976.

73

Appendix A

CMOS vs CMOS/SOS Versions of the Advanced Architecture
Microprocessor (AAMP)

The Advanced Architecture Microprocessor (AAMP), developed
by Rockwell International, is currently in a transition state.
The AAMP was first implemented using two-micrometer CMOS/SOS VLSI
technology. Problems in producing the SOS devices has forced
Rockwell International to change the AAMP over to a VLSI CMOS
technology. Along with the change in technology, some features
and characteristics of the AAMP have also been changed. The
notable differences are described below.

The CMOS AAMP has an output enable pin (OE) which the
CMOS/SOS AAMP does not have. The output enable feature is
complemented by a three-state operation added to the address
lines and the bus control lines (R/W, E/U, C/D, and XRQ). The
CMOS AAMP will connect into multiple master bus systems without
the need of external transceivers. When OE is "high", the
address and control lines will be in the high impedance state
which effectively removes the AAMP from the system. For
applications where the CMOS AAMP is the only master, OE could be
strapped to ground to continuously enable the outputs.

The bus timing on the CMOS AAMP is also changed; but the
basic asynchronous, interlocking, bus protocol remains unchanged.

74

The CMOS AAMP has a built-in 50ns hold time after XRQ goes "low"
for address, data, R/W, E/U, and C/D. The CMOS/SOS AAMP had no
hold time but was equipped with a hold line to control external
hardware to accomplish this purpose. The synchronization of XAK
to the 10 MHz clock has also been changed. Transfer acknowledge
is synchronized to the 20 MHz clock which will reduce transfer
cycle times.

The CMOS AAMP will be TTL compatible as with the CMOS/SOS
version. The difference is that the CMOS AAMP will have a higher
fanout. The exact fanout is yet to-be-determined.

The CMOS AAMP pin assignment has also undergone some
changes. The changes only affect pin functions which have been
either added or deleted. Table A-1 lists the changed pin
assignments.

Overall, the changes in the AAMP architecture are
improvements. The only aspect of the change which could be
considered otherwise, is that the CMOS AAMP will use more power
than the CMOS/SOS version. The exact power consumption is yet
to-be-determined.

Table A-1
Pin Assignment Changes

Pin Number CMOS AAMP Function SOS AAMP Function
9 (F) VDD

GND
SIN*
NC
NC
OE
GND

NC
NC
NC
HLD
HB
LB
NC

18 (L2)
34 (L10)
35 (K11)
39 (H11)
40 (H10)
62 (A5)

*test pin

75

Appendix B

Microcomputer System Board Layout
and Parts List

The component layout of the microcomputer system is given in
Figure B-1. The parts list follows:

Reference part Number Description
CI UNKNOWN 68 pF ceramic disc capacitor
C2 UNKNOWN 68 pF ceramic disc capacitor
C3 UNKNOWN 10 pF 20V tantalum capacitor
C4 UNKNOWN 0.0047 pF polystyrene capacitor
CR1 MV5054-1 LED
Pl 52-1150-50 50-pin wire wrap edge connector
R1 UNKNOWN 1/4 W, IK ohm carbon resistor
R2 UNKNOWN 1/4 W, 10K ohm carbon resistor
R3 UNKNOWN 1/4 W, 10K ohm carbon resistor
R4 UNKNOWN 1/4 W, 33K ohm carbon resistor
R5 UNKNOWN 1/4 W, 3.3K ohm carbon resistor
R6 UNKNOWN 1/4 W, 330 ohm carbon resistor
R7 UNKNOWN 1/4 W, 10K ohm carbon resistor
R8 UNKNOWN 1/4 W, 10K ohm carbon resistor
R9 UNKNOWN 9K ohm trimmer potentiometer
R1O UNKNOWN 10K ohm trimmer potentiometer
R11 UNKNOWN 1/4 W, 830K ohm carbon resistor
R12 UNKNOWN 100K ohm trimmer potentiometer
SI 570-15 DIALIGHT SPDT momentary switch
S2 570-15 DIALIGHT SPDT momentary switch
U1 74HC04N Hex invertor
U2 74HC04N Hex invertor
U3 74HC04N Hex invertor
U4 74HC32N Quad 2-input OR gate
U5 74HC32N Quad 2-input OR gate
U6 74HC74N Dual D Flip Flop with PR & CLR
U7 74HC51N Dual AND-OR_INVERT gate
U8 74HC00N Quad 2-input NAND gate
U9 74HC00N Quad 2-input NAND gate
U10 74HC02N Quad 2-input NOR gate
Ull 74HC138N 3-to-8 line decoder
U12 74HC194N 4-bit Bidir. Univ. Shift Register
U13 74HC194N 4-bit Bidir. Univ. Shift Register

76

Reference Part Number Description
U14 74HC157N Quad 2-input Multiplexer
U15 HM6116P-2 CMOS 2048x8-bit static RAM
U16 HM6116P-2 CMOS 2048x8-bit static RAM
U17 CD82C55A Programmable Peripheral Interface
U18 AAMP Advanced Architecture Microprocessor
U19 NMC27C16Q-35 CMOS 2048x8-bit UV Erasable ROM
U20 NMC27C16Q-35 CMOS 2048x8-bit UV Erasable ROM
U21 CD82C55A Programmable Peripheral Interface
U22 74HC374N Tri-state Octal D Flip Flop
U23 74HC374N Tri-state Octal D Flip Flop
U24 74HC74N Dual D Flip Flop with PR & CLR
U25 74HC4050N Hex Logic Level Down Converter
U26 74HC4050N Hex Logic Level Down Converter
U27 74HC4050N Hex Logic Level Down Converter
U2 8 74HC4040N 12 Stage Binary Counter
U29 ADC-HC12BMC 12-bit CMOS ADC
U30 AD583KD Sample-and-Hold
U31 MC14504B Hex Logic Level Up Converter
U32 316E221331 220/330 ohm line terminators
U33 316E221331 220/330 ohm line terminators
XTL 07XTL20.00HH 20MHz crystal

(28 each)* A5C103K 0.01 uF despiking capacitor
(4 each) Banana Jacks, Double-D Body
(1 each) 6x8 bare wire wrap board

(all integrated circuits are installed in wire wrap sockets
which are not listed)

* Despiking capacitors are connected between ground and vcc on
integrated circuit chips Ul-13 and U15-29.

77

78

Figure B-l. Microcomputer Board Layout

Appendix C

Guide for Programming the CD82C55A

The CD82C55A, programmable peripheral interface (PPI), has
three major modes of operation that can be selected by system
software. These include mode 0, basic input/output; mode 1,
strobed input/output; and mode 2, bidirectional bus. Mode 1 is
used in the microcomputer system design and will be the only mode
considered.

The PPI has three ports, two control registers, and a status
register. In mode 1, Port A and Port B can be configured in four
different ways. Figure C-l shows three configurations. The
fourth configuration is the opposite of Figure C-l(C). Port C is
defined as shown. All registers and ports are bus addressable.
Table C-l gives the address for the ports and registers. The
format of the status register is given in Figure C-2.

Table C-l
Port and Register Addresses

Address
00
01
10

Designation
Port A
Port B
Port C (Status Register

11
in mode 1)

Control Function (Control
Register and Bit Set/Reset)

79

Figure C-l. PPI Mode 1 Configurations

80

BIT 7 6 5 4 3 2 1 0
I/O I/O IBF A INTE A INTR A INTE B OBF B INTR B

(PC6 and PC7 are input/out lines)
Figure C-2. Port C (Status Register) Format

The control function address has two purposes depending on
bit 7 of the byte stored to that location. If bit 7 is a "one",
the byte is defined as the control word and is used to set the
PPI mode, port direction, and input/output line direction as
shown in Table C-2. If bit 7 is "zero", the byte is a bit
set/reset command used to set interrupt enables and to control
the single bit input/output lines as shown in Table C-3. Bits 1-
3 define which bit is selected and bit 0 specifies the value it
is to receive. The selected bit number corresponds to the status
register bit and associated function. The PPI control function
address can also be accessed by a read operation to return the
contents of the control register.

Table C-2
Control Word Bit Assignment

Bit Function
0 Don't Care
1 Port B direction *
2 Port B mode (1 = mode 1)
3 PC6 and PC7 direction *
4 Port A direction *
5 Port A Mode bit 0
6 Port A Mode bit 1 (01 = mode 1)
7 Function Select (1 = Active)

(* Direction: 1 = input / 0 = output)
81

Table C-3
Set/Reset Function Bit Assignment

Bit Function
0 Bit Set/Reset (1 = SET / 0 = RESET)
1 Bit (0) -
2 Bit (1) — > Bit Select
3 Bit (2) -
4 Don't Care
5 Don't Care
6 Don't Care
7 Function Select (0 = Active)

82

Appendix D

Edge Connector Pin Assignment and HP-98032A
General Purpose I/O Jumper Requirements

The microcomputer system was connected to the HP-98032A
general purpose parallel input/output interface (GPIO) through a
50-pin edge connector. The pin assignment for the edge connector
is the same as that suggested in the HP-98032A Installation and
Service Manual. 8 This appendix includes a listing of the pin
assignments as well as a list of the GPIO internal jumpers that
are required for the handshake between the two systems to work
properly.

Edge Connector Pin Assignment
Pin Microcomputer Microcomputer GPIO

Number Connection Signal Name Signal Name
Al GND GND GND
A2 U32-1 U21-37(PA7) DI-15 DO-15
A3 U32-2 U21-38(PA6) DI-14 DO-14
A4 U32-3 U21-39(PA5) DI-13 DO-13
A5 U32-4 U21-40(PA4) DI-12 DO-12
A6 U32-5 U21-1(PA3) DI-11 DO-11
A7 U32-6 U21-2(PA2) DI-10 DO-10
A8 U32-7 U21-3(PA1) DI-09 D0-09
A9 U32-9 U21-4(PA0) DI-08 D0-08
A10 U32-10; U17-37(PA7) DI-07 D0-07
All U32-11; U17-3 8(PA6) DI-06 D0-06
A12 U32-12; U17-39(PA5) DI-05 D0-05
A13 U32-13; U17-40(PA4) DI-04 D0-04
A14 U32-14; U17-1(PA3) DI-03 D0-03
A15 U32-15; U17-2(PA2) DI-02 D0-02
A16 U33-1; U17-3(PA1) DI-01 DO-01
A17 U33-2; U17-4(PA0) DI-00 DO-00

83

Pin
Number

Microcomputer
Connection

Microcomputer
Signal Name

GPIO
Signal Name

A18 NC GND
Al9 U33-3; U14-2,6,10 STB-A,ACK-B PCTL
A20 U33-4;U14-1 SELECT I/O
A21 NC PRESET
A22 U33-5; U17-11(PC6) 1/0-1 CTL 0
A23 U33-6 CTL 1
A24 GND GND GND
A25 NC DRAIN
Bl GND GND GND
B2 U21-25(PB7) D0-15 DI-15
B3 U21-24(PB6) D0-14 DI-14
B4 U21-23(PB5) D0-13 DI-13
B5 U21-22(PB4) D0-12 DI-12
B6 U21-21(PB3) D011 DI-11
B7 U21-20(PB2) D010 DI-10
B8 U21-19(PB1) D0-09 DI-09
B9 U21-18(PB0) D0-08 DI-08
BIO U17-25(PB7) D0-07 DI-07
B11 U17-24(PB6) D0-06 DI-06
Bl2 U17-23(PB5) D0-05 DI-05
B13 U17-22(PB4) D0-04 DI-04
Bl4 U17-21(PB3) D0-03 DI-03
Bl5 U17-20(PB2) D0-02 DI-02
B16 U17-19(PB1) D001 DI-01
B17 U17-18(PB0) D000 DI-00
Bl8 NC DRAIN
B19 U14-9 IBF-A;PFLG PFLG
B20 NC PSTS
B21 NC EIR
B22 U17-15 OBF-B STI 0
B23 NC STI 1
B24 GND GND GND
B25 NC NC

GPIO Jumper List
Jumper Number Status Function

1 REMOVED Input data negative logic
2 REMOVED Output data negative logic
3 REMOVED PCTL(high) = CLEAR
4 INSTALLED PFLG(high) = READY
5 DON'T CARE Logic of PSTS
6 DON'T CARE Pulse vs Full Handshake
7 DON'T CARE DMA Enable
8,E INSTALLED Latch input when PFLG goes

READY for BUSY
9,D REMOVED Alternate data latch function
A,C REMOVED Alternate data latch function
B,F INSTALLED I/O word mode

84

Appendix E

AAMP Based Microcomputer Operating System

The operating system developed for the AAMP based
microcomputer system consists of three parts: the Executive
Entry Table, the initialization procedure, and the trap handling
procedure.

Executive Entry Table

The Executive Entry Table used in the microcomputer system
is as follows:

Address
000000
000001
000002
000003
000004
000005
000006
000007
0 0 0 0 0 8

Contents Description
0000 Continuation Status Pointer
1701 Initial Executive Stack Limit
17F0 Initial Executive Top-of-stack
0020 Initial Executive Procedure ID
0000 Bus Error PROCID
0000 Nonmaskable Interrupt PROCID
0000 Maskable Interrupt PROCID
0060 Trap PROCID
0000 Exception PROCID

(TOS)
(PROCID)

The "0000" in the continuation status pointer defines all resets
to be "cold", that is the processor must go through the
initialization procedure each time the system is reset. A
procedure identifier PROCID of "0000" means that procedure does
not exist; therefore, if a call is made to a procedure with a
zero PROCID, the processor will halt. A PROCID is the byte

85

address offset pointer to a procedure's header. The executive
stack limits on the other hand are word address offsets. The
Initial Executive TOS location is reserved for the User Processor
State Descriptor (PSD) Pointer which specifies which user task is
active. Initialization Procedure

The initialization procedure is always invoked when power is
applied or when the system is reset because the Continuation
Status Pointer is zero. The procedure performs three functions
in the microcomputer system: configures the programmable
peripheral interface, accepts a user program from the host
computer and stores it in RAM, and defines the location of the
user task. The programmable peripheral interface (PPI) is
configured by the initialization program storing "BCBC" to system
address "002003". The procedure can then accept user program
code and data from the host computer (HP-9 845B). The
initialization program requires the host computer to send
information in a code (or data)/address sequence. The
initialization program checks the end-of-program transfer line
after receiving each code/address word pair. When bit 6 of the
PPI status word changes to a "one", the initialization program
stores "1010" in the User PSD Pointer location. The
initialization procedure then terminates with a RETURN
instruction which causes the processor to context switch to the
user mode and execute the user program defined by the User PSD
Table located at address "001010".

86

The following is a listing of the microcomputer system's
initialization procedure. The leading two zeros have been
omitted from the addresses because all addresses are with respect
to code environment zero.

Address Contents Opcode Instruction Comments
0010 0000 0000 procedure header
0011 BC1A BCBC1A LIT16 load control word
0012 54BC
0013 2003 200354 ASNSI store PPI control word
0014 BC1A BCBC1A LIT16 load control word
0015 1CBC
0016 2003 20031C REFSI get PPI control word
0017 19EB EB EQ ?is control word correct
0018 EE0E 0E19 LIT8N

EE SKIPZ jump to 0011(L) if "no"
0019 021C 20021C REFSI get PPI status
001A 1820 2018 LIT8
001B E820 E8 AND ?is input buffer full
001C 0819 0819 LIT8N

?is input buffer full
001D 1CEE EE SKIPZ jump to 0019(L) if "no"
001E 2000 20001C REFSI get data from PPI
001F 021C 20021C REFSI get PPI status
0020 1820 2018 LIT8

get PPI status
0021 E820 E8 AND ?is input buffer full
0022 0819 0819 LIT8N

?is input buffer full
0023 1CEE EE SKIPZ jump to 001f(L) if "no"
0024 2000 20001C REFSI get RAM address
0025 1CD3 D3 ASNS store data at address
0026 2002 20021C REFSI get PPI status
0027 4018 4018 LIT8

get PPI status
0028 19E8 E8 AND ?is transfer complete
0029 EF21 2119 LIT8N

EF SKIPNZ jump to 0019(L) if "no"
002A 101A 10101A LIT16
002B 5410 17F054 ASNSI store User PSD Pointer
002C 17F0 10 LIT4A.0
002D 5F10 5F RETURN procedure end

Trap Handling Procedure

If no trap handling procedure exists, the processor will
halt when an error occurs in the user mode or when the user
program terminates by a RETURN instruction. A trap number

87

corresponding to the error condition is placed on the executive
stack before the trap handling procedure is invoked. The ability
to recover this information is useful in determining the cause of
processor termination. The trap handling program given below
stores the trap number at RAM address "001000". The procedure
also stores the value of the user syllable program counter (SPCR)
at RAM address "001001". The trap handler then executes the HALT
instruction. The trap handling procedure listing follows:

Address Contents Opcode instruction comments
0030 0000 0000 procedure header
0031 5400 00 REFSL.O get trap number
0032 1000 100054 ASNSI save trap number
0033 141C 10141C REFSI get User SPCR
0034 5410

get User SPCR
0035 1001 100154 ASNSI save User SPCR
0036 00FE FE HALT procedure end

88

Appendix F

System Status Retrieval Programs

A program scheme was developed to aid in determining the
cause of premature program terminations. The trap handling
routine in the operating system records the trap number and SPCR,
where the trap originated, in RAM address "001000" and "001001"
respectively. An exception handling program was also developed
to identify program locations which cause accumulator overflows
and underflows. When an overflow or underflow occurs, an
exception number corresponding to the error condition is passed
to the exception handler. The exception handler records the
exception number and the user SPCR, corresponding to where the
exception occurred, in RAM locations "001002" and "001003"
respectively.

The information saved by the exception and trap handlers can
be retrieved by the host computer. First, the microcomputer
system is reset. Next, the host computer can send a short
program to the microcomputer system which returns the saved
information.

Listings for both the exception handler program and status
retrieval program are given below. The leading zeros have been
omitted from the addresses.

89

Exception Handling Program

Address Contents Opcodes Instruction Comments
1100 0000 0000 procedure header
1101 5310 10 LIT4A.0

53 LOCL
1102 E514 14 LIT4A.4

E5 SUB
1103 5455 55 REFS get SPCR from user

stack mark
1104 1003 100354 ASNSI save SPCR
1105 5400 00 REFSL.O get exception number
1106 1002 100254 ASNSI save exception number
1107 5810 10 LIT4A.0

58 TRAP trap #8
(Note that the User Exception PROCID must be set to "2200".)

Status Retrieval Program

-User PSD Table:
Address contents Description
1010 1600 Stack Limit
1011 1700 Top of Stack
1012 0000 Local Environment Pointer
1013 0000 Data Environment Pointer
1014 0000 Syllable Program Counter
1015 0000 Code Environment Pointer
1016 2040 Task PROCID (addr. 1020)
1017 0000 Task Code Environment
1018 0000 Exception PROCID
1019 0000 Exception Code Environment

-Program Listing:

Comments
procedure header
k=0
get exception SPCR
get exception number
get trap SPCR
get trap number
get PPI status
?is output buffer empty

Address Opcode Instruction
1020 0002 0002
1021 4111 11 LIT4A.1

41 ASNSL. 1
1022 031C 10031C REFSI
1023 1C10
1024 1002 10021C REFSI
1025 011C
1026 1C10 10011C REFSI
1027 1000 10001C REFSI
1028 021C 20021C REFSI
1029 1220 12 LIT4A.2
102A 19E8 E8 AND

90

Address Contents Opcode Instruction Comments
102B EE07 0719 LIT8N

EE SKIPZ jump to 1028(L) if "no
102C 0154 200154 ASNSI output value
102D 7A20 017A INCSLE k = k + 1
102E 0101 01 REFSL.1 get k
102F EC14 14 LIT4A.4

get k
EC GR ?is k > 4

1030 1219 1219 LIT8N
1031 12EE EE SKIPZ jump to 1028(L) if "no

12 LIT4A.2
1032 005F 5F RETURN procedure end

91

Appendix G

Listings for the Widrow Adapter Linear Predictor Algorithm

Three versions of the Widrow adaptive linear predictor
algorithm were used to benchmark the AAMP. The Ada-subset
compiler resident on a VAX11-780 at the Rockwell Collins facility
in Cedar Rapids, IA was used to encode the standard floating-
point and standard fixed-point fractional versions of the
algorithm while the modified fixed-point fractional version was
hand coded by Kenneth Albin. 2

The modified version of the algorithm was never implemented
on any system before this evaluation? however, Ken Albin ran the
standard versions on a AAMP test system at Rockwell Collins to
verify that the code had no fatal errors. No actual data could
be processed, and the Widrow weighting constants u and v were
defined as "1" and "0", respectively. Also no overflow or
exception handling was considered.

The following listings are basically as documented by Ken
Albin? however, some minor changes have been made. First, the
fixed-point version was originally encoded for integer data. It
was changed into fixed-point fractional version because the large
number of multiplications would cause accumulator overflow
problems? and in addition, the Widrow constants u and v are
fractional values. Second, a logic error was encountered in the

92

moving average filter portion of the fixed-point versions. The
values entering the moving average filter had not been divided by
the filter length (16) which caused the running sum to overflow
the accumulator. Third, a coding error was discovered in the
loop where the input signal array and error array are updated.
The limits on the looping variable (k) were inadvertently
interchanged which caused one value to be stored in 15 of the 16
array locations. Fourth, some variable initialization changes
and additions were made to insure the same response from the
algorithm each time a given test data file was processed. Last,
some code was added to facilitate the exchange of information
between the microcomputer system and the host computer. These
include

(1) polling of the programmable peripheral interface
(PPI) input and output buffers to slow the
microcomputer system down to the rate at which the
HP-9845B computer can send and receive information

(2) inverting the data because information was passed
between the two systems in negative logic (Negative
logic was used to increases the transfer rate of
information through the HP-98032A general purpose
parallel interface.)

(3) scaling of the input and output data in the
floating-point version

All changes have been flagged in the following listings. The "#"
indicates a changed or added line essential for proper algorithm

93

operation. The "&" indicates a changed or added line required
for interfacing the system to the HP-9845B computer.

standard Widrow Adaptive Linear Predictor Algorithm
-Variables:

k :
f :
g :
e :
q :
c :

-Arrays:

integer — loop variable
number-system — current input value
number-system — summation value
number-system — current error value and filter output
number-system — "alarm" output
number-system — intermediate value

b_array
f_array
e_array

number-system — weight array
number-system — sample array
number-system — error array

-Constants:
u
v

number-system — (0.96875 used)
number-system — (0.03125 used)

-Algorithm:
(variable initialization)

q = 0
e_array (1..16) = 0
f_array (1..16) = 0
b_array (1..16) = 0

(end initialization)
(begin main body)

Loop: Wait for input buffer FULL
f = NOT (input buffer)
g = 0
for k = 1 to 16 loop

g = g + b_array(k) * f_array(k)
end loop

&
&

94

e = f - g
c = v * e
for k = 1 to 16 loop

b_array(k) = u * b_array(k) + c * f_array(k)
end loop
e = e / 16 #
q = q - e_array(16) + e
Wait for output buffer EMPTY &
output buffer = NOT (q * q) &
for k = 15 to 1 loop #

e_array(k + 1) = e_array (k)
f_array(k + 1) = f_array (k)

end loop
e_array(l) - e
f_array(l) - f

end main loop
(end algorithm)

Modified Widrow Adaptive Linear Predictor Algorithm
-Variables:

k :
ptr
f :
9 :
e :
g :
c :

-Arrays:

integer — loop variable
: integer — oldest array element pointer
number-system — current input value
number-system — summation value
number-system — current error value and filter output
number-system — "alarm" output
number-system — intermediate value

b_array :
f_array :
e_array :

number-system — weight array
number-system — sample array
number-system — error array

95

-Constants:
u : number-system — (0.96875 used)
v : number-system — (0.03125 used)

-Algorithm:
(variable initialization)

q = 0 #
ptr = 1 #
e_array (1..16) = 0 #
f_array (1..16) = 0 #
b_array (1..16) = 0 #

(end initialization)
(begin main body)

Loop: wait for input buffer FULL &
f = NOT (input buffer) &
g = 0
for k = 1 to 16 loop

g = g + b_array(k) * f_array(k)
end loop
e = f - g
c = v * e
for k = 16 to 1 loop

b_array(k + 1) = u * b_array(k) +
c * f_array(k)

end loop
b(l) = b(17)
e = e / 16 #
q - q - e(ptr) + e
Wait for output buffer EMPTY &
output buffer = NOT (q * q) &

96

e(ptr) - e
f(ptr) = f
if ptr = 16

then ptr - 1
else ptr = ptr + 1

end if
end main loop

(end algorithm)

Standard Floating-Point object Listing
-User PSD Table:
Address Contents Description

1010 1600 Stack Limit
1011 1700 Top of Stack
1012 0000 Local Environment Pointer
1013 0000 Data Environment Pointer
1014 0000 Syllable Program Counter Register
1015 0000 Code Environment Pointer
1016 2040 Task PROCID (addr. 1020)
1017 0000 Task Code Environment
1018 0000 Exception PROCID
1019 0000 Exception Code Environment

-Program Listing:

Address Contents Opcode Instruction Comments
1020 006E 006E Procedure header
1021 8025 7800008025 LIT32 #
1022 0000
1023 F778 69F7 ASNDLE u = 0.96875
1024 2569 0000007C25 LIT32 #
1025 007C
1026 0000
1027 6BF7 6BF7 ASNDLE v = 0.03125
1028 0025 0000000025 LIT32 #
1029 0000
102A C700 C7 ASNDL.7 q = 0 #
102B 5C11 11 LIT4A.1
102C 1E6D 6D5C ASNSLE k = 1
102D 186D 6D1E REFSLE get k
102E EC10 1018 LIT8

get k
102F 295B EC GR ? k > 16

97

Address Contents Opcode Instruction Comments

1030 0025 295B SKIPNZ 1 jump to 1044(H) if true
1031 0000 0000000025 LIT32 #
1032 1E00 6D1E REFDLE
1033 176D 17 LIT4A.7
1034 8C53 53 LOCL
1035 0025 8C ASNDX b array(k) = 0
1036 0000 0000000025 LIT32 #
1037 1E00 6D1E REFSLE
1038 186D 2718 LIT8
1039 5327 53 LOCL
103A 258C 8C ASNDX f array(k) = 0
103B 0000 0000000025 LIT32 #
103C 0000 6D1E REFSLE
103D 6D1E 4718 LIT8
103E 4718 53 LOCL
103F 8C53 8C ASNDX e_array(k) = 0
1040 6D1E 6D1E REFSLE
1041 E411 11 LIT4A.1

E4 ADD
1042 6D5C 6D5C ASNSLE k = k + 1
1043 2F19 2F19 LIT8N
1044 1C59 59 SKIP jump to 102C(H)
1045 2002 20021C REFSI get PPI status &
1046 2018 2018 LIT8 &

1047 19E8 E8 AND ?is input buffer full? &
0819 LIT8N &

1048 EE08 EE SKIPZ jump to 1044(H) if "no"&
1049 001C 20001C REFSI get input data
104A F420 F4 NOT invert &
104B D965 65 CVTSD convert to double

D9 CVTDF convert to floating
104C 8D25 0000008D25 LIT32 &

104D 0000
104E 8700 87 DIVF &

104F 25C1 CI ASNDL.1 f = input / 4096
1050 0000 0000000025 LIT32
1051 0000 C3 ASNDL.3 g = 0
1052 11C3 11 LIT4A.1
1053 6D5C 6D5C ASNSLE k = 1
1054 6D1E 6D1E REFSLE get k
1055 1018 1018 LIT8
1056 5BEC EC GR ? is k > 16

185B SKIPNZ 1 jump to 1063 (H) if true
1057 3318 33 REFDL.3 get g
1058 6D1E 6D1E REFSLE
1059 5317 17 LIT4A.7

53 LOCL
105A 1ED7 D7 REFDX get b_array(k)

6D1E REFSLE
105B 186D 2718 LIT8
105C 5327 53 LOCL
105D 86D7 D7 REFDX get f_array(k)

86 MPYF
98

Address Contents Opcode Instruction Comments
105E C384 84 ADDF

C3 ASNDL.3 g = g + b_array(k) *
f_array(k)

105F 6D1E 6D1E REFSLE get k
1060 E411 11 LIT4A.1

E4 ADD
1061 6D5C 6D5C ASNSLE k = k + 1
1062 1E19 1E19 LIT8N
1063 3159 59 SKIP jump to 1054(L)

31 REFDL.1 get f
1064 8533 33 REFDL.3 get g

85 SUBF
1065 11C5 C5 ASNDL.5 e = f - g

11 LIT4A.1
1066 6D5C 6D5C ASNSLE k = 1
1067 6D1E 6D1E REFSLE get k
1068 1018 1018 LIT8
1069 5BEC EC GR ? is k > 16

225B SKIPNZ 1 jump to 107B(H) if true
106A 2222 6922 REFDLE get u
106B 1E69 6D1E REFSLE
106C 176D 17 LIT4A.7
106D D753 53 LOCL

D7 REFDX get b_array(k)
106E 2286 86 MPYF
106F 356B 6B22 REFDLE get v

35 REFDL.5 get e
1070 1E86 86 MPYF

6D1E REFSLE
1071 186D 2718 LIT8
1072 5327 53 LOCL
1073 86D7 D7 REFDX get f_array(k)

86 MPYF
1074 1E84 84 ADDF

6D1E REFSLE
1075 176D 17 LIT4A.7
1076 8C53 53 LOCL

8C ASNDX b_array(k) -
u * b_array(k) +
v * e * f_array(k)

1077 6D1E 6D1E REFSLE get k
1078 E411 11 LIT4A.1

E4 ADD
1079 6D5C 6D5C ASNSLE k = k + 1
107A 2819 2 819 LIT8N
107B 3559 59 SKIP jump to 1067(L)

35 REFDL.5 get e #
107C 8525 0000008525 LIT32 #
107D 0000
107E 8700 87 DIVF #
107F 37C5 C5 ASNDL.5 e = e / 16 #

37 REFDL.7 get q
1080 6722 6722 REFDLE get e_array(16)

99

Address Contents Opcode Instruction Comments
1081 3585 85 SUBF

35 REFDL.5 get e
1082 C784 84 ADDF

C7 ASNDL.7 q = q - e_array(16) + e
1083 3737 37 REFDL.7 get q

37 REFDL.7 get q
1084 2586 86 MPYF
1085 008D 0000008D25 LIT32 &

1086 0000
1087 DB86 86 MPYF q * q * 4096 &

DB CVTFD convert to double
1088 F4DA DA CVTDS convert to single

F4 NOT invert &
1089 021C 20021C REFSI get PPI status &
108A 1220 12 LIT4A.2 &

108B 19E8 E8 AND ?is output buffer empty&
0719 LIT8N &

108C EE07 EE SKIPZ jump to 1089(L) if "no"&
108D 0154 200154 ASNSI output result
108E 2F20 2F LIT4B.F #
108F 6D5C 6D5C ASNSLE k = 15
1090 6D1E 6D1E REFSLE get k
1091 EB10 10 LIT4.0 #

EB EQ ? is k = 0 #
1092 215B 215B SKIPNZ 1 jump to 10A3(H) if "yes"
1093 6D1E 6D1E REFSLE
1094 4718 4718 LIT8
1095 D753 53 LOCL

D7 REFDX get e_array(k)
1096 6D1E 6D1E REFSLE
1097 4918 4918 LIT8
1098 8C53 53 LOCL

8C ASNDX e_array(k+l)=e_array(k)
1099 6D1E 6D1E REFDLE
109A 2718 2718 LIT8
109B D753 53 LOCL

D7 REFDX get f_array(k)
109C 6D1E 6D1E REFSLE
109D 2918 2918 LIT8
109E 8C53 53 LOCL

8C ASNDX f_array(k+l)=f_array(k)
109F 6D1E 6D1E REFSLE get k
10A0 E511 11 LIT4A.1

E5 SUB #
10A1 6D5C 6D5C ASNSLE k = k - 1
10A2 2619 2619 LIT8N
10A3 3559 59 SKIP jump to 1090(L)

35 REFDL.5 get e
10A4 49F7 49F7 ASNDLE e array(1) = e
10A5 F731 31 REFDL.1 get f
10A6 1929 29F7 ASNDLE f_array(l) = f
10A7 59C6 C619 LIT8N

59 SKIP jump to 1044(H)
100

Address Contents Opcode Instruction Comments
10A8 6E18 6E18 LIT8
10A9 005F 5F RETURN procedure end

-Local Variable Map:
Local Environment Offset Variable

1 f
g

5 e
q

9 - 27 b_array
29 - 47 f_array
49 - 67 e_array
69 u
6B v
6D k

Standard Fixed-Point Object Listing
-User PSD Table:
Address Contents Description

1010 1600 Stack Limit
1011 1700 Top of Stack
1012 0000 Local Environment Pointer
1013 0000 Data Environment Pointer
1014 0000 Syllable Program Counter Register
1015 0000 Code Environment Pointer
1016 2040 Task PROCID (addr. 1020)
1017 0000 Task Code Environment
1018 2200 Exception PROCID
1019 0000 Exception Code Environment

-Program Listing:
Address Contents Opcode Instruction Comments

1020 0036 0036 Procedure header
1021 4410 10 LIT4A.0 #

44 ASNSL.4 q = 0 #
1022 5C11 11 LIT4A.1

355C ASNSLE k = 1
1023 1E35 351E REFSLE get k
1024 1835 1018 LIT8

get k
1025 EC10 EC GR ? is k > 16
1026 1D5B 1D5B SKIPNZ 1 jump to 1035(H) if true
1027 1E10 10 LIT4A.0 #

351E REFSLE
1028 1435 14 LIT4A.4
1029 A653 53 LOCL

101

Address Contents Opcode Instruction
A6 ASNSX b_array(k) = 0

102A 1E10 10 LIT4A.0 #
351E REFSLE

102B 1835 1418 LIT8
102C 5314 53 LOCL
102D 10A6 A6 ASNSX f_array(k) = 0

10 LIT4A.0 #
102E 351E 351E REFSLE
102F 2418 2418 LIT8
1030 A653 53 LOCL

A6 ASNSX e_array(k) - 0
1031 351E 351E REFSLE
1032 E411 11 LIT4A.1

E4 ADD
1033 355C 355C ASNSLE
1034 2319 2319 LIT8N
1035 1C59 59 SKIP jump to 1023(H)
1036 2002 20021C REFSI &

1037 2018 2018 LIT8 &

1038 19E8 E8 AND &

0819 LIT8N &

1039 EE08 EE SKIPZ jump to 1035(H) if "no "&
103A 001C 20001C REFSI
103B F420 F4 NOT invert &

103C 1041 41 ASNSL.1
10 LIT4A.0

103D 1142 42 ASNSL.2
11 LIT4A.1

103E 355C 355C ASNSLE
103F 351E 351E REFSLE
1040 1018 1018 LIT8
1041 5BEC EC GR

185B SKIPNZ 1 jump to 104E(H) if true
1042 0218 02 REFSL.2
1043 351E 351E REFSLE
1044 5314 14 LIT4A.4

53 LOCL
1045 1ED0 DO REFSX
1046 1835 351E REFSLE
1047 5314 1418 LIT8

53 LOCL
1048 F9D0 DO REFSX

F9 MPY #
1049 42E4 E4 ADD

42 ASNSL.2
104A 351E 351E REFSLE
104B E411 11 LIT4A.1

E4 ADD
104C 355C 355C ASNSLE
104D 1E19 1E19 LIT8N
104E 0159 59 SKIP jump to 103F(L)

01 REFSL.1
102

Address Contents Opcode Instruction Comments
104F E502 02 REFSL.2 get g

E5 SUB
1050 1143 43 ASNSL.3 e = f - g

11 LIT4A.1
1051 355C 355C ASNSLE k = 1
1052 351E 351E REFSLE get k
1053 1018 1018 LIT8

get k
1054 5BEC EC GR ? is k > 16
1055 1A24 245B SKIPNZ 1 jump to 1067(H) if true
1056 7C00 7C001A LIT16 u #
1057 351E 351E REFSLE
1058 5314 14 LIT4A.4

53 LOCL
1059 F9D0 DO REFSX get b array(k)

F9 MPY #
105A 001A 04001A LIT16 v #
105B 0304 03 REFSL.3 get e
105C 1EF9 F9 MPY #
105D 1835 351E REFSLE
105E 5314 1418 LIT8

53 LOCL
105F F9D0 DO REFSX get f array(k)

F9 MPY #
1060 1EE4 E4 ADD
1061 1435 351E REFSLE

14 LIT4A.4
1062 A653 53 LOCL

A6 ASNSX b_array(k) =
u * b_array(k) +
v * e * f_array(k)

1063 351E 351E REFSLE get k
1064 E411 11 LIT4A.1

get k
E4 ADD

1065 355C 355C ASNSLE k = k + 1
1066 2A19 2A19 LIT8N
1067 0359 59 SKIP jump to 1052(L)

03 REFSL.3 get e #
1068 B814 14 LIT4A.4 #

B8 ARS #
1069 436A 6A DUP #

43 ASNSL.3 e = e / 16 #
106A 1E04 04 REFSL.4 get q
106B E534 341E REFSLE get e_array(16)

E5 SUB
106C 44E4 E4 ADD

44 ASNSL.4 q = q - e_array(16) + e
106D 0404 04 REFSL.4 get q

04 REFSL.4 get q
106E F4F9 F9 MPY q * q #

F4 NOT invert &
106F 021C 20021C REFSI get PPI status &
1070 1220 12 LIT4A.2 &
1071 19E8 E8 AND ?is output buffer empty&

103

Address
1072
1073
1074
1075
1076
1077
1078
1079
107A
107B
107C
107D
107E
107F
1080
1081

1082
1083
1084
1085
1086
1087
1088
1089
108A
108B
108C
108D
108E
108F

Contents
EE07
0154
2F20
355C
351E
EB10
215B
351E
2418
D053
351E
2518
A653
351E
1418
D053
351E
1518
A653
351E
E511
355C
2619
0359
255C
5C01
1915
59B0
3618
005F

opcode instruction
0719

EE
200154

2F
355C
351E

10
EB

215B
351E
2418

53
DO

351E
2518

53
A6

351E
1418

53
D0

351E
1518

53
A6

351E
11
E5

355C
2619
59
03

255C
01

155C
B019

59
3618

5F

-Local Variable Map:
Local Environment Offset

LIT8N
SKIPZ
ASNSI
LIT4B.F
ASNSLE
REFSLE
LIT4A.0
EQ
SKIPNZ I
REFSLE
LIT8
LOCL
REFSX
REFSLE
2518
LOCL
ASNSX
REFSLE
LIT8
LOCL
REFSX
REFSLE
LIT8
LOCL
ASNSX
REFSLE
LIT4A.1
SUB
ASNSLE
LIT8N
SKIP
REFSL.3
ASNSLE
REFSL.1
ASNSLE
LIT8N
SKIP
LIT8
RETURN

Comments
&

jump to 106F(L) if "no"&
output result

k = 15
get k

? is k = 0 #
jump to 1089(H) if "yes"

get e_array(k)

e_array(k+l)=e_array(k)

get f_array(k)

f_array(k+l)=f_array(k)
get k

k = k - 1
jump to 1076(L)
get e
e_array(l) = e
get f
f_array(l) = f
jump to 1035(H)
procedure end

Variable
1 f

g
3 e

q

5 - 14 b_array
15 - 24 f_array
25 - 34 e_array
3 5 k

104

Modified Fixed-Point Object Listing
-User PSD Table:
Address Contents Description

1010 1600 Stack Limit
1011 1700 Top of Stack
1012 0000 Local Environment Pointer
1013 0000 Data Environment Pointer
1014 0000 syllable Program Counter Register
1015 0000 Code Environment Pointer
1016 2040 Task PROCID (addr. 1020)
1017 0000 Task Code Environment
1018 0000 Exception PROCID
1019 0000 Exception Code Environment

-Program Listing:
Address Contents Opcode Instruction Comments

1020 0039 0039 Procedure header
1021 5C10 10 LIT4A.1 #
1022 1138 385C ASNSLE q = 0 #

11 LIT4A.1
1023 375C 375C ASNSLE ptr = 1
1024 5C11 11 LIT4A.1

ptr = 1
1025 1E35 355C ASNSLE k = 1

351E REFSLE get k
1026 1835 1018 LIT8
1027 EC10 EC GR ? is k > 16
1028 195B 195B SKIPNZ 1 jump to 1035(H) if true
1029 1E10 10 LIT4A.0

jump to 1035(H)

351E REFSLE
102A 1335 13 LIT4A.3
102B A653 53 LOCL

A6 ASNSX b_array(k) - 0
102C 1E10 10 LIT4A.0 #

351E REFSLE
102D 1835 1418 LIT8
102E 5314 53 LOCL
102F 10A6 A6 ASNSX f_array(k) = 0

10 LIT4A.0 #
1030 351E 351E REFSLE
1031 2418 2418 LIT8
1032 A653 53 LOCL

A6 ASNSX e array(k) = 0
1033 357A 357A INCSLE k = k + 1
1034 1F19 1F19 LIT8N
1035 1C59 59 SKIP jump to 1025(H)
1036 2002 20021C REFSI get PPI status &
1037 2018 2018 LIT8

get PPI status
&

1038 19E8 E8 AND ?is input buffer full? &
1039 EE08 0819 LIT8N &

EE SKIPZ jump to 1035(H) if "no"&

105

Address contents Opcode instruction Comments
103A 001C 20001C REFSI get input data
103B F420 F4 NOT invert &
103C 1041 41 ASNSL.1 f = input data

10 LIT4A.0
103D 1842 42 ASNSL.2 g = 0

3518 LIT8
103E 5335 53 LOCL
103F 1811 11 LIT4A.1

1018 LIT8
1040 1110 11 LIT4A.1
1041 108F 00108F DO do for k = 1 to 16

then jump to 104A(H)
1042 0200 02 REFSL.2 get g
1043 351E 351E REFSLE

get g
1044 5313 13 LIT4A.3

53 LOCL
1045 1ED0 DO REFSX get b_array(k)
1046 1835 351E REFSLE
1047 5314 1418 LIT8

53 LOCL
1048 F9D0 DO REFSX get f array(k)

F9 MPY #
1049 42E4 E4 ADD

42 ASNSL.2 g = g + b_array(k) *
f_array(k)

104A 019F 9F ENDO end do loop
01 REFSL.1 get f

104B E502 02 REFSL.2 get g
E5 SUB

104C 1A43 43 ASNSL.3 e = f - g
104D 0400 04001A LIT16 V
104E F903 03 REFSL.3 get e

F9 MPY #
104F 365C 365C ASNSLE c = v * e
1050 3518 3518 LIT8
1051 1853 53 LOCL
1052 1110 1018 LIT8

11 LIT4A.1
1053 0019 0019 LIT8N
1054 198F 00198F DO do for k = 16 to 1

then jump to 1062(L)
1055 1A00
1056 7C00 7C001A LIT16 u
1057 351E 351E REFSLE
1058 5313 13 LIT4A.3

53 LOCL
1059 F9D0 DO REFSX get b array(k)

F9 MPY #
105A 361E 361E REFSLE get c
105B 351E 351E REFSLE

get c
105C 1418 1418 LIT8
105D D053 53 LOCL

DO REFSX get f_array(k)
106

Address Contents Opcode Instruction Comments
105E E4F9 F9 MPY #

E4 ADD
105F 351E 351E REFSLE
1060 5314 14 LIT4A.4

53 LOCL
1061 9FA6 A6 ASNSX b_array(k+l) = u *

b_array(k) + c *
f_array(k)

9F ENDO end do loop
1062 141E 141E REFSLE get b_array(17)
1063 0344 44 ASNSL.4 b_array(l) = b_array(17)

03 REFSL.3 get e #
1064 B814 14 LIT4A.4 #

B8 ARS #
1065 436A 6A DUP

43 ASNSL.3 e = e / 16 #
1066 381E 381E REFSLE get q
1067 371E 371E REFSLE
1068 2418 2418 LIT8
1069 D053 53 LOCL

DO REFSX get e_array(ptr)
106A E4E5 E5 SUB

E4 ADD
106B 5C6A 6A DUP
106C 6A38 385C ASNSLE q = q * e_array(ptr) + e

6A DUP
106D F4F9 F9 MPY q * q #

F4 NOT invert &
106E 021C 20021C REFSI get PPI status &
106F 1220 12 LIT4A.2 &

1070 19E8 E8 AND ?is output buffer empty&
0719 LIT8N &

1071 EE07 EE SKIPZ jump to 106E(L) if "no"&
1072 0154 200154 ASNSI output result
1073 0320 03 REFSL.3 get e
1074 371E 371E REFSLE
1075 2418 2418 LIT8
1076 A653 53 LOCL

A6 ASNSX e array(ptr) = e
1077 1E01 01 REFSL.1 get f
1078 1837 371E REFSLE
1079 5314 1418 LIT8

53 LOCL
107A 1EA6 A6 ASNSX f_array(ptr) = f
107B 1837 371E REFSLE get ptr
107C EB10 1018 LIT8

EB EQ ?is ptr = 16
107D 055A 055A SKIPZ 1 jump to 10 80(H) if "yes"
107E 5C11 11 LIT4A.1
107F 1D37 375C ASNSLE ptr = 1
1080 7A02 021D SKIPI jump to 1081(H)
1081 1937 377A INCSLE ptr - ptr + 1
1082 599A 9A19 LIT8N

107

Address Contents Opcode Instruction Comments
59 SKIP jump to 1035(H)

1083 3918 3918 LIT8
1084 005F 5F RETURN end procedure

-Local Variable Map:
Local Environment Offset variable

i f g
3 e
4 - 14 b_array
15 - 24 f_array
25 - 34 e_array 35 k
36 c
37 ptr
38 q

108

THE DESIGN AND HARDWARE EVALUATION OF
AN ADVANCED 16-BIT, LOW-POWER, HIGH PERFORMANCE

MICROCOMPUTER SYSTEM FOR DIGITAL SIGNAL PROCESSING

by

GARY S. MAUERSBERGER

B. S., Kansas State University, 1983

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

This thesis is a hardware evaluation of Rockwell
International's Advanced Architecture Microprocessor (AAMP) which
is a single-chip, CMOS/SOS device. The microprocessor is
evaluated by designing and testing an AAMP based microcomputer
system.

The Electrical and Computer Engineering Department at Kansas
State University has an ongoing program to evaluate
microprocessors and identify those with low power consumption,
easy interfacing and programming, and capability of rapid
multiplications. The AAMP is a microprocessor which appears to
possess these qualities. It is a high-performance, 16-bit,
CMOS/SOS microprocessor and operates from a 20 MHz clock. The
AAMP's instruction set is well suited for compiling from high
level languages, such as Jovial and Ada, and includes integer,
fractional, and floating-point arithmetic operations.

This thesis covers the AAMP's operational characteristics,
the developed microcomputer system, and the evaluation process.
Special emphasis is given to the aspects of the AAMP's
architecture and operational characteristics which are important
in the design of a microcomputer system. The performance of the
microcomputer system is determined by implementing the Widrow
linear adaptive predictor algorithm in both fractional and
floating-point formats. The AAMP's execution rate of the
evaluation algorithm is compared to that of other microprocessors
previously evaluated at Kansas State University. The power
consumption of the microcomputer system is also measured.

	Mauersberger 1-35
	Mauersberger 36
	Mauersberger 37-116

