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Quantitative rescattering theory of high-order harmonic generation for polyatomic molecules
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We report applications of the quantitative rescattering theory (QRS) for calculation of high-order-harmonic
generation (HHG) from polyatomic molecules in ultrashort linearly polarized intense laser pulses, using the
example of the CCl4 molecule. In particular, we present a detailed analysis and a treatment for the phase of the
electron returning wave packet, which recollides with the parent molecular ion to emit high-energy photons. Our
results show that Cooper-type minimum structures in the molecular photoionization cross section lead to quite
distinguishable minima in the HHG spectra, even for unaligned polyatomic molecules.
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I. INTRODUCTION

High-order-harmonic generation (HHG) has been studied
extensively both experimentally and theoretically over the
past two decades. HHG can serve as a coherent extreme
ultraviolet (XUV) and soft x-ray source, and currently, it is
used as the only source for attosecond pulses [1–3]. HHG
has also been shown to carry information about the targets
[4–6]. Indeed, HHG spectroscopy has proved to be very
promising for revealing various types of structural information
about atoms and simple linear molecules [4,5,7–13], such
as internuclear distance, symmetry of the highest occupied
molecular orbital (HOMO) or even the HOMO wave function,
and the photoionization transition dipole. Recent experiments
have now started to focus on polyatomic molecules [14–17].
However, for HHG spectroscopy to become a practical tool
for polyatomic targets, a solid theoretical method needs to
be established. Whereas direct numerical solution of the
time-dependent Schrödinger equation (TDSE) can be used
for atomic and simple linear molecular targets within the
single-active-electron approximation, such an approach is
not practical for polyatomic molecules. Thus most of the
current calculations for HHG from molecules are still based
on simple theories, such as the strong-field approximation
(SFA) [18–20], the eikonal-Volkov approximation [11,21], and
the quantitative rescattering theory (QRS) [22,23]. Clearly, in-
terpretation of experimental data and the extraction of structure
information rely heavily on the accuracy of those theories.

The QRS has proved so far to be quite successful for atomic
and simple linear molecules [22,23]. In this paper, we discuss
technical issues relevant to the practical applications of the
QRS for HHG from polyatomic molecules. Although the main
purpose of this paper is to illustrate how the QRS is carried out
in a real application for the case of polyatomic molecules, we
have additional goals. First, we introduce some simplifications
for the treatment of the phase of the electron wave packet.
As HHG spectra from some polyatomic molecules contain
robust and pronounced minima [15–17], they provide ideal
benchmarks with which different theories can be compared.
Thus the second goal of this paper is to test our theory against
available experimental data on an example molecule, which
we take to be CCl4.

This paper is organized as follows. In Sec. II, we briefly
describe the QRS theory and discuss practical complications

for the case of polyatomic molecules. We then provide a
detailed analysis for the phase of the electron returning wave
packet on CCl4, which is our example molecule. Such analysis
suggests that an angle-dependent phase needs to be added
to the phase of the electron wave packet obtained from the
SFA for a reference atom. This additional phase can be
approximated by the phase of the asymptotic wave function
of the active electron. The method will be illustrated by
considering the CCl4 molecule in Sec. III, where our results
will be compared with data from the experiment by Bhardwaj
and collaborators for CCl4 [17] for the case of isotropic
molecular distribution. In particular, the minimum in HHG
spectrum observed in their experiment [17] is well reproduced.
We further provide detailed analysis of the origin of this
minimum. The effect of molecular alignment dependence and
degenerate HOMOs are also discussed. Finally, we give a
summary and outlook in Sec. IV.

II. THEORETICAL METHOD

A. The quantitative rescattering theory

Although the QRS has been described in detail in
Refs. [22,23], in this section we briefly describe the QRS
and discuss several technical issues specifically related to
polyatomic molecules. We first describe the theory in the
molecular frame, in which photoionization is more conve-
niently calculated. The results can then be converted to the
laboratory frame by appropriate transformations. Atomic units
are used throughout the paper unless otherwise indicated.

Within the QRS, the complex induced dipole D(ω,θ,φ) for
a molecule in a linearly polarized intense laser pulse is written
as a product of a returning electron wave packet W (E,θ,φ)
and the transition dipole d(ω,θ,φ),

D(ω,θ,φ) = W (E,θ,φ)d(ω,θ,φ), (1)

where ω is the photon energy of the emitted harmonic and
θ and φ are the polar and azimuthal angles, describing the
direction of the laser polarization with respect to the z axis of
the molecular frame. Here, the electron energy E is related to
the emitted photon energy ω by E = ω − Ip, with Ip being the
(vertical) ionization potential of the target. The HHG power
spectrum can be calculated from the induced dipole as

P (ω,θ,φ) ∝ |a(ω,θ,φ)|2 ≈ ω4|D(ω,θ,φ)|2, (2)
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where a(ω,θ,φ) is the induced dipole acceleration. The
QRS theory has been well established for atomic and linear
molecular targets and has been shown to agree very well with
benchmark calculations using the numerical solution of the
TDSE [6,24,25] as well as experiments (see Refs. [7,22,23]
and references therein for the earlier results and [26–31] for
more recent results with the inclusion of the macroscopic
propagation).

In practice, transition dipoles can be calculated by using
modern molecular photoionization methods. In this paper, we
use the EPOLYSCAT package [32] for polyatomic molecules.
As for the returning electron wave packet there are two main
methods of calculation. First, it can be conveniently and quite
accurately calculated by using the SFA. This method was
called the QRS1 in Ref. [22]. More specifically,

WQRS1(E,θ,φ) = DSFA(ω,θ,φ)

dPWA(ω,θ,φ)
, (3)

where DSFA is the induced dipole calculated within the SFA
[18] and dPWA is the transition dipole in the plane-wave
approximation. Second, the wave packet, as a function of
energy, has been shown to be nearly independent of the target,
except for an overall factor, which is proportional to the
ionization rate [6,22,24]. Therefore, for practical purposes,
a reference atom of similar ionization potential as the target
can be used to extract the returning electron wave packet. This
reference atom method was called QRS2 in Ref. [22], which
can be written as

WQRS2(E,θ,φ) =
(

N (θ,φ)

N ref

)1/2

W ref(E)ei�η(E,θ,φ)

=
(

N (θ,φ)

N ref

)1/2
Dref(ω)

d ref(ω)
ei�η(E,θ,φ). (4)

Here, N and N ref are the ionization probability for electron
emission along the laser polarization direction from the
molecule and reference atom, respectively. In practice, N can
be approximated in the tunneling regime as the total ioniza-
tion probability and can be calculated using the molecular
tunneling ionization [molecular Ammosov-Delone-Krainov
(MO-ADK)] theory [33]. �η is introduced to account for
the phase difference between the two wave packets. This
phase difference has been shown to be nearly independent of
energy [24]. One can calculate Dref by solving numerically the
TDSE and use it in conjunction with d ref from the well-known
exact analytical expression for scaled H(1s). Alternatively,
one can again use the SFA and plane-wave approximation for
Dref and d ref , respectively, as in the QRS1. We remark that a
“reference atom” has been used before in the context of orbital
tomography [4,34].

It has been shown that both methods of calculating the
returning electron wave packet agree quite well with each
other. The SFA method, however, has a serious drawback
at times. Indeed, near a Cooper minimum in the plane-wave
approximation, where the transition dipole vanishes, the wave
packet is undetermined. For example, the transition dipole
in the plane-wave approximation from Ar(3p0) vanishes near
22 eV, which leads to a spurious spike in the HHG spectra
near ω = 22 eV [22,24]. This could be a minor problem if
it occurs outside the energy range of interest. The problem

is more serious for complex polyatomic targets, in which the
wave packet depends on the direction of the laser polarization
θ and φ. The reference atom method, on the other hand, does
not suffer from this problem. Indeed, for a reference atom one
can choose the 1s ground state of a scaled “hydrogenlike”
atom, in which the nuclear charge is chosen so that the
atom has the same ionization potential as the target. In this
case there are no zeros in the transition dipole. This method
further requires knowledge of the ionization rate. However,
the additional phase of the wave packet �η, as a function of
angles, is largely unknown (except for simple linear molecules;
see the next section). This would not be an issue in the
case of perfectly aligned molecules and when one is only
interested in HHG intensity. In real experiments, molecules
can only be partially aligned or even nonaligned. Since HHG
induced dipoles need to be added up coherently from different
alignment angles, one needs to know their relative phase for
different alignment angles. Although our theory is applicable
to aligned polyatomic molecules, in this paper we consider
only the nonaligned (isotropic) case, which is of interest for
recent experiments (see, for example, [15–17]). In this case
the alignment-averaged induced dipole can be written as

D(ω) = 1

4π

∫ π

0
dθ

∫ 2π

0
dφD(ω,θ,φ) sin θ. (5)

In the next section, we provide a detailed analysis for the
phase of the wave packet from polyatomic targets.

B. Phase of the returning wave packet

As can be seen from Eq. (3), the phase of the returning
wave packet W can be calculated explicitly, except at the
singularities where the transition dipole vanishes in the plane-
wave approximation. Since the phase is less sensitive to
the singularities, in comparison to the amplitude, it can be
smoothed out by using appropriate interpolation procedures.
The smooth phase, as a function of angles, can then be used
together with the wave-packet amplitude from a reference
atom in Eq. (4). In this section we show that the phase can
be more conveniently approximated by using the asymptotic
molecular orbital wave function of the active electron. We will
demonstrate our procedure for the case of the CCl4 molecule.

The CCl4 molecule (Td symmetry group) has a triply
degenerate (2t1) HOMO, with an ionization potential Ip =
11.47 eV. Induced dipoles from degenerate HOMOs are added
up coherently [19]. For illustration purposes, we can therefore
limit ourselves to one HOMO. Since the other HOMOs can
be obtained by appropriate rotations, the HHG from the
degenerate HOMOs should be identical to each other in the
case of nonaligned CCl4.

In Fig. 1(a) we show a color-coded plot of the asymptotic
wave function for one of the degenerate HOMOs (denoted
HOMO1 in the following). For convenience in the following
analysis, the wave function is plotted as a function of spherical
angles θ = π − θe and φ = φe + π , where θe and φe are the
electron azimuthal and polar angles, respectively, defined with
respect to the molecular frame. This reversed direction (re →
−r) is used since the electron (a negative charge particle)
tunnels in the opposite direction of the electric field. The
HOMOs are first calculated by using the Gaussian quantum
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FIG. 1. (Color online) (a) Asymptotic wave function of a HOMO
(denoted as HOMO1) of CCl4. (b) Phase of the returning electron
wave packet for H55 at φ = 60◦. The asymptotic wave function at
φ = 60◦ is also shown (red line). (c) Same as (b), but for H71 and the
asymptotic wave function at φ = 90◦. (d) Wave-packet phase differ-
ence between θA = 100◦ and θB = 120◦ (points A and B in the inset)
and between θB = 120◦ and θC = 140◦ (points B and C in the inset).
Here φ is fixed at 240◦. The inset shows the asymptotic wave function.

chemistry code [35]. We use the augmented correlation-
consistent polarized valence triple-zeta (aug-cc-pVTZ) basis
set at the Hartree-Fock level. These HOMOs are then used
to extract the asymptotic limit in the same manner as in the

molecular tunneling ionization theory (MO-ADK) [33,36].
This procedure is typically done at r ≈ 10 a.u.

We show in Fig. 1(b) the phase of the wave packet for
55th harmonic (or H55) as functions of θ for fixed φ = 60◦.
The calculation was done by using Eq. (3) with an 1800-nm
wavelength laser pulse with an intensity of 0.55 × 1014 W/cm2

and 40-fs pulse duration. We also plot in Fig. 1(b) the phase
of the asymptotic wave function at this fixed φ. It is clear
that the phase of the wave packet is nearly unchanged with
θ , except for some abrupt jumps by π , which are associated
with the phase jumps in the asymptotic wave function. Another
example is shown in Fig. 1(c) for H71 at φ = 90◦ under the
same laser pulse. In this case, the phase is unchanged except
near θ = 90◦, where the wave function is very small. Similar
behavior is observed for other harmonics.

The above results suggest that the phase of the asymptotic
wave function can be used, up to a constant (orientation
independent) shift, as an approximation to the “extra” phase
of the returning wave packet in the reference atom approach.
We found that the phase of the wave packet is more angle
dependent near directions where the asymptotic wave function
is small. This does not cause much problem for our approxi-
mation in general since the tunneling ionization (and therefore
the wave packet) is weak for those directions.

To further illustrate our approximation, we show in Fig. 1(d)
the phase difference between the wave packets at {θA =
100◦,φ = 240◦} and {θB = 120◦,φ = 240◦} (points A and
B in the inset) as a function of harmonic order. The phase
difference is nearly π for all harmonics, although the phase
itself varies quickly as a function of energy (or harmonic
order). This is the case when the asymptotic wave function has
the opposite phase in the two directions (see the inset). This is
in contrast to the phase difference between the wave packets
at {θB = 120◦,φ = 240◦} and {θC = 140◦,φ = 240◦} (points
B and C in the inset), which is close to zero, as the asymptotic
wave function has the same phase in these two directions (see
the inset). This indicates that the phases for different harmonics
are “locked” to each other. In other words, they are different by
some phase shift (see the previous paragraph), which can be
obtained from the SFA for a chosen direction or for a reference
atom. In practice it is therefore more convenient to use the
wave packet from the reference atom approach [Eq. (4)], with
the additional phase �η from the phase of the asymptotic
wave function. As can be seen from Eq. (4), the origin of this
additional phase is due to the missing phase in the ionization
probability amplitude. Within this approximation, there is no
need to carry out any interpolation to smooth out the possible
spurious spikes in the amplitude and phase of the wave packet,
which are difficult to control in the standard approach [Eq. (3)].

We note that for simple linear molecules studied before
using QRS such as N2, O2, and CO2, the phase of the wave
packet for any harmonic is nearly the same for θ = [0,π/2].
For θ = [π/2,π ] this phase remains the same for N2 (with the
HOMO in σg) and experiences a jump by π at θ = π/2 for
O2 and CO2 (both with the HOMO in πg) due to symmetry,
as can also easily be seen from the HOMOs (not shown).
For completeness, we remark that the transition dipole d(ω,θ )
from the HOMO for both O2 and CO2 also experiences a
phase jump by π at θ = π/2. The complex induced dipole [see
Eq. (1)] therefore does not experience any phase jump. In fact,
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D(ω,θ ) = D(ω,π − θ ), and the averaging over the alignment
distribution can be carried out for θ = [0,π/2] only, as can be
expected from symmetry considerations. We refer readers to
Refs. [4,12,13] for previous treatment of the phase of the wave
packet in the case of linear molecules in the context of orbital
tomography. The situation is more complicated for polyatomic
molecules, as can be seen in Fig. 1(a) for the case of CCl4.

III. RESULTS

A. Molecular frame treatment: Case of perfectly aligned CCl4

In this section, we show the application of our method
for the case of CCl4. This molecule is of interest since it
has been shown quite recently as an example when HHG
spectra show the influence of the Cooper-type minimum in
photoionization cross section (PICS) [17]. We start with the
treatment in the molecular frame for the case of fixed-in-space
molecules. In the case of partial molecular alignment (although
not applicable to this particular molecule), averaging over
the alignment distribution should be carried out for complex
induced dipoles from all degenerate HOMOs.

First, we show the real and imaginary parts of the transition
dipole in Figs. 2(a) and 2(b), respectively, for a photon energy
of 54.4 eV (or H79 for the case of an 1800-nm wavelength)
as functions of the laser polarization direction. Note that
within the QRS, only an electron that was emitted along this
direction and returned back to the parent ion contributes to
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FIG. 2. (Color online) (a) Real and (b) imaginary parts of the
photoionization transition dipole from HOMO1 of CCl4 at a photon
energy of 54.4 eV vs the laser polarization direction (or the electron
emission direction) 	 = {θ,φ}.
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FIG. 3. (Color online) (a) Ionization rate from HOMO1 of CCl4

vs the laser polarization direction, calculated by the MO-ADK theory
[33] for a laser intensity of 0.55 × 1014 W/cm2. (b) Asymptotic
electron density for HOMO1 of CCl4. See text for more details.

the HHG process [22]. The calculation was carried out with
the state-of-the-art molecular photoionization code EPOLYSCAT

[32]. The transition dipole shows much more complicated
structures compared to the typical diatomic molecules such
as N2 and O2 [22]. The ionization rate, calculated within the
MO-ADK theory [33], is presented in Fig. 3(a) for a laser
intensity of 0.55 × 1014 W/cm2. We also show in Fig. 3(b)
the probability density of the asymptotic wave function. For
Fig. 3(b), angles θ and φ are defined in the same way as in
Fig. 1(a) (see discussion in Sec. II B). Clearly, the ionization
rate resembles closely the asymptotic probability density, as
has been noted before (see, for example, Zhao et al. [36]).
In this respect, it is not entirely surprising that the missing
phase for the ionization probability amplitude in Eq. (4) can be
approximated by the phase of the asymptotic wave function. A
typical amplitude of the wave packet, calculated from Eq. (4)
with a reference hydrogenlike atom, is shown in Fig. 4(a).
The calculation was performed for the case of an 1800-nm
wavelength laser pulse with an intensity of 0.55 × 1014 W/cm2

and a 40-fs pulse duration.
With all the ingredients for the QRS theory in place, we

can now calculate the HHG spectrum by using Eq. (1). First,
we show in Fig. 4(b) HHG spectra from HOMO1 for different
laser polarizations θ = 30◦,φ = 110◦; θ = 65◦,φ = 140◦; and
θ = 110◦,φ = 10◦. We note that the shapes and magnitudes
of the spectra are quite different. In particular, there is a
quite pronounced minimum near 40 eV for θ = 30◦,φ = 110◦.
This minimum is shifted quite significantly up to 48 eV for
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FIG. 4. (Color online) (a) Amplitude (scaled by ω2) of the
returning electron wave packet vs emitted photon energy ω for a
typical case of an 1800-nm wavelength laser pulse with an intensity
of 0.55 × 1014 W/cm2 and a 40-fs pulse duration. (b) HHG spectra
from HOMO1 for different laser polarization directions (as shown in
the legend). (c) HHG spectra for a fixed laser polarization direction
(or fixed molecular alignment) at θ = 80◦,φ = 140◦ from the three
degenerate HOMOs. Only envelopes (odd harmonics) are shown.

θ = 110◦,φ = 10◦ and down to near 36 eV and becomes quite
shallow for θ = 65◦,φ = 140◦. Clearly, this differences reflect
the changes in the transition dipole as a function of photon
energy and angles (also see Figs. 2 and 7). These spectra
cannot be observed experimentally. Instead, HHG yields from
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FIG. 5. (Color online) Induced dipole amplitude (vertical axis)
and phase (color code) for H79 (photon energy of 54.4 eV) from
HOMO1 of CCl4 vs the laser polarization direction 	 = {θ,φ}. The
phase is given in units of π rad. Laser parameters are the same as in
Fig. 4.

all three degenerate HOMOs of CCl4 are added up coherently.
In Fig. 4(c) we show the contribution from each HOMO for
a fixed polarization direction at θ = 80◦,φ = 140◦. Clearly,
interference from these contributions is expected due to the
differences in the amplitude and phase of the induced dipoles
for a fixed polarization direction (not shown). We remark that
these degenerate HOMOs of CCl4 can be obtained from one
another by appropriate rotations. Therefore, averaging the
HHG yield from any one of the degenerate HOMOs over
an isotropic distribution is expected to yield a result that is
identical to that obtained from the others (see next the section).

Apart from the interference due to degenerate HOMOs,
interference from different alignment angles is expected to
be significant in polyatomic molecules. Here we use CCl4 to
further illustrate this point, although laser-induced alignment
is not applicable to this molecule. We show in Fig. 5 the
amplitude and phase of the induced dipole from HOMO1
at a photon energy of 54.4 eV (H79) as functions of laser
polarization direction. The rapid changes in phase with
polarization (or alignment) direction seen in Fig. 5 suggest
that, depending on the alignment angles, the constructive (or
destructive) interference effect could be very dramatic in the
case of partially aligned molecules. It would be of great interest
to observe this kind of interference from polyatomic molecules
in future experiments.

B. Case of isotropic molecular distribution and the nature
of the Cooper-type minimum in CCl4

In general, the HHG induced dipoles for all three degenerate
HOMOs need to be added up coherently. In the case of the
nonaligned molecules, we have checked that the HHG yields
from the degenerate HOMOs are identical to each other after
averaging over the isotropic distribution using Eq. (5), as
expected. The result of this averaging is presented in Fig. 6.
One can easily see the pronounced minimum in the spectrum
near 41 eV. This minimum can be associated with the Cooper-
type minimum in the calculated photoionization cross section,
found near 48 eV using EPOLYSCAT [see Fig. 9(a) below].
The experimental observed minimum in the photoionization
cross section is near 43 eV [37]. In fact, the minimum is quite
stable with respect to the laser intensity and wavelength. As
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FIG. 6. (Color online) HHG spectra from CCl4 for different
laser pulses for the case of isotropic molecular distribution. Laser
parameters are given in the text. The yield from an 1800-nm laser
pulse (black line) has been multiplied by a factor of 50. Only
envelopes are shown.

an example, we also show in Fig. 6 the HHG spectrum for the
case of a 1300-nm wavelength laser pulse with an intensity of
1.2 × 1014 W/cm2 and a pulse duration of 40 fs. Although the
calculation is done for the single molecule response, we expect
this pronounced minimum to survive after the macroscopic
propagation is carried out.

Compared to the experimental data by Wong et al. [17],
the theoretical result shows a slightly deeper minimum. This
is probably due to the fact that the macroscopic propagation
can suppress HHG yields near the cutoff. This is especially
true for the case of the midinfrared laser of relatively high
laser intensity used in the experiment due to the modification
of the driving laser pulse in the medium [38]. This conclusion
is further supported by the fact that the experimental laser
intensity estimate is 9 × 1013 W/cm2, significantly higher than
the theoretical estimate of 0.55 × 1014 W/cm2, based on the
position of the cutoff. The discrepancies at lower energies
could be partly due to the absorption of the HHG by the
medium, which is neglected in the single molecular response.
It has been shown, for example, by Wang et al. [39] that
absorption tends to suppress HHG yield more strongly at lower
energies.

In order to understand the origin of the minimum in HHG
spectra, we now analyze the transition dipole. We show in
Figs. 7(a)–7(c), the transition dipole amplitude |d(ω,θ,φ)| at
different photon energies of 41, 48, and 60 eV, respectively.
Although the shape is slightly changed in this energy range
as energy increases, as a whole the transition dipole appears
to have a minimum near 48 eV (see the color scale). This
is exactly the location of the Cooper-type minimum in the
theoretical total PICS (after averaging over the alignment
and photoelectron distribution), obtained from EPOLYSCAT [see
Fig. 9(a) below]. Note that within the QRS, only the electron
emitted along the laser polarization direction contributes to the
HHG process. On the other hand, the theoretical minimum in
HHG spectra occurs near 41 eV [see Fig. 4(b)]. This shift to
a lower energy is partly due to the positive slope of the wave
packet as a function of energy, as shown in Fig. 4(a).
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FIG. 7. (Color online) Transition dipole amplitude for CCl4 at a
photon energy of (a) 41 eV, (b) 48 eV, and (c) 60 eV vs the laser
polarization direction.

The analysis of the case of CCl4 is rather simple, as
the angular dependence of the PICS only slightly changes
with energy near the position of the Cooper-type minimum.
In general, however, the angular dependence of both the
amplitude and phase of the transition dipole and their overlap
with the ionization rate varies with energy, so the appearance
of any structure in a HHG spectrum needs to be analyzed
carefully. Constructive or destructive interference from differ-
ent directions can, in principle, greatly affect the shape of the
observed HHG spectra. This type of interference is expected
to be even more dramatic for aligned molecules, as discussed
in the previous section.

To further illustrate this issue, we compare in Fig. 8
theoretical spectra from (nonaligned) CCl4, trans-C2H2Cl2,
and CH4. The data have been shifted vertically for clarity.

063406-6



QUANTITATIVE RESCATTERING THEORY OF HIGH- . . . PHYSICAL REVIEW A 87, 063406 (2013)

20 30 40 50 60 70 80 90 100
Photon energy (eV)

10
-11

10
-10

10
-9

10
-8

H
H

G
 y

ie
ld

s 
(a

rb
. u

ni
ts

)

CCl
4

C
2
H

2
Cl

2
CH

4

FIG. 8. (Color online) Theoretical HHG spectra from CCl4, trans-
C2H2Cl2, and CH4. Results have been shifted vertically for clarity.
Only envelopes are shown.

We see a shallow minimum near 44 eV in the spectrum
from trans-C2H2Cl2, although there is no clear evidence of
the Cooper-type minimum in the total PICS (after averaging
over the alignment and photoelectron distribution). However,
the angular dependence of the transition dipole changes quite
significantly near the observed HHG minimum. Experiments
by Bhardwaj’s group [16,17] found a Cooper-type minimum
in HHG spectra near 43 eV, which is quite stable with respect
to laser parameters. Finally, the spectrum from CH4 shows
no obvious minimum. Its PICS (not shown) has no minimum,
and the angular dependence of the transition dipole is nearly
unchanged in the range of energy under consideration. There
is no obvious minimum seen in the experimental HHG spectra
using midinfrared laser pulses [40,41]. Note that for CH4 we
have used an 1800-nm wavelength laser pulse with an intensity
of 0.8 × 1014 W/cm2 to explore a more extended plateau.

C. On the possibility of extracting PICS from HHG spectra for
nonaligned polyatomic molecules

HHG spectra carry information about the photorecombi-
nation process (or its time-inverse process, photoionization)
[6,7,22,23,42]. In fact, it has been shown that the differential
photoionization or photorecombination cross section and the
dipole phase can be extracted from HHG spectra for atomic
targets and aligned diatomic molecules (see, for example,
[6,8,10,24,43]). The question is, can one extract the total (i.e.,
integrated over all emission directions and the polarization di-
rection) PICS from an HHG spectrum of nonaligned molecules
by a simple procedure using a reference atom, as has been
done in Refs. [6,8]? This question is of interest since total
PICS is normally measured in the molecular photoionization
experiments. By combining Eqs. (1), (2), (4), and (5) within
the reference atom approach, the HHG power spectrum for
nonaligned molecules can be written as

P (ω) =
∣∣∣∣ω2W ref(ω)

∫ π

0
sin θdθ

∫ 2π

0
dφ

×N1/2(θ,φ)ei�η(ω,θ,φ)d(ω,θ,φ)

∣∣∣∣
2

. (6)
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FIG. 9. (Color online) Extracted total photoionization “cross
section” from HHG spectra for (a) CCl4 and (b) CH4. The theoretical
total PICS calculated by the EPOLYSCAT code [32] are also shown.

It is clear from Eq. (6) that from an HHG spectrum of
nonaligned molecules one can only extract the angle-averaged
cross section weighted by the angle-dependent complex
tunneling ionization amplitude. Furthermore, this cross section
contains only information for the electron emission direction
along the laser polarization, whereas in the total PICS,
averaging over the emission direction is carried out. We
therefore do not expect, in general, the result of this simple
extraction procedure to agree with the total PICS. In Fig. 9(a)
we show the comparison for the weighted cross section,
extracted from the HHG spectrum, together with the theoretical
total PICS for CCl4, calculated by EPOLYSCAT [32]. The laser
parameters are the same as in Fig. 3. They do not agree with
each other, as expected. On the other hand, we have observed
situations when the two agree. As an example we show in
Fig. 9(b) a comparison for the case of CH4. Surprisingly, the
extracted PICS agrees quite well with the theoretical one.

IV. SUMMARY AND OUTLOOK

In this paper we have discussed various technical issues
related to the practical application of the quantitative rescat-
tering theory as applied to the HHG process from polyatomic
molecules. A major simplification presented in this paper
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is for the treatment of the phase of the returning wave
packet, used in the reference atom approach. The conceptual
simplicity of this method should be useful for developing
intuitive understanding of the HHG process. Furthermore,
such a simplification is important for the efficiency of any
realistic simulations of HHG from polyatomic targets since
macroscopic propagation still needs to be carried out. For a
typical macroscopic propagation, calculations at hundreds or
thousands of laser intensities in the interaction volumes are
needed.

We have also presented an application of our theory to
CCl4. Our results agree well with available experiments. In
particular, the minimum in HHG spectra observed in CCl4
by the Bhardwaj group [17] is well reproduced in our theory.
Within the QRS, the origin of these minima can be traced
back to the photorecombination (or photoionization) transition
dipole. The presence of structures in HHG spectra is of
great significance for the understanding of target structures,
and it can also serve as a benchmark for different theories.
This is even more so for the Cooper-type minima, which
are robust with respect to laser parameters, compared to

the other dynamic structures. Strictly speaking, the QRS is
applicable only in the tunneling regime (when the Keldysh
parameter is close to 1 [1,22]). In this paper we have not
included the depletion of the ground state. Although it can be
incorporated into the QRS, the accuracy of the QRS has not
been documented for the case when depletion is significant. In
this regard we remark that the MO-ADK and SFA ionization
rates used in the QRS are also questionable in this regime,
in particular, in over-barrier ionization. While the agreement
with current experiments is encouraging for the QRS, it would
be interesting to see how the QRS performs in even more
severe tests in the future. With ultrafast intense midinfrared
laser sources becoming available, future HHG experiments
with aligned polyatomic molecules are extremely desirable.
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