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Abstract: Pathogens traverse disciplinary and taxonomic boundaries, yet infectious disease research occurs in

many separate disciplines including plant pathology, veterinary and human medicine, and ecological and

evolutionary sciences. These disciplines have different traditions, goals, and terminology, creating gaps in

communication. Bridging these disciplinary and taxonomic gaps promises novel insights and important

synergistic advances in control of infectious disease. An approach integrated across the plant-animal divide

would advance our understanding of disease by quantifying critical processes including transmission, com-

munity interactions, pathogen evolution, and complexity at multiple spatial and temporal scales. These ad-

vances require more substantial investment in basic disease research.
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INTRODUCTION

Pathogens do not respect disciplinary or taxonomic

boundaries. However, infectious disease research has been

and still is the province of many separate disciplines

including veterinary medicine, plant pathology, and human

medicine, where these fields are defined by the host organism

being studied rather than by the concepts that cut across

taxonomic boundaries. In the past decade, infectious disease

research also has captured the full attention of the ecological

and evolutionary sciences. These disciplines each have dif-

ferent traditions, different goals, and often quite different

terminology, creating significant gaps in communication.

For example, the word ‘virulence’ is defined differently by

plant pathologists, evolutionary biologists, and medical

doctors; similarly, the term ‘drift’ evokes quite different

processes for a population geneticist and a researcher of

influenza. Terminological inconsistency is only a symptom

of larger divides, and it is clear that bridging these disci-

plinary and taxonomic gaps to allow true interdisciplinary
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research efforts will lead to novel insights, important syn-

ergistic interactions across fields, and advanced under-

standing and ability to control infectious disease.

A truly interdisciplinary approach will hasten under-

standing, leading to novel insights that will benefit all of the

disciplines involved. In particular, an approach which is

agnostic to the taxonomy of the host, focusing on the fun-

damental ecological and evolutionary processes inherent to a

pathogenic lifestyle (e.g., transmission, host immune or other

defenses, virulence, or species interactions), promises rapid

conceptual and technical advances. Further, by employing a

comparative approach that is inclusive of microorganisms,

plants, wild and domestic animals, and humans, we will

deepen our understanding of disease for all of these fields.

The exchange of specific techniques and quantitative tools

also will open up approaches for dealing with complexity at

multiple spatial and temporal scales. Infectious disease in

humans and in plant and animal agriculture (or in domes-

ticated companion animals) is often the direct consequence

of interactions with non-agricultural populations of the same

hosts (Cleaveland et al. 2001; Taylor et al. 2001; Anderson

et al. 2004; Parrish et al. 2008). Achieving an understanding of

transmission and evolutionary dynamics in both wild and

domesticated hosts will offer novel solutions to emerging

infectious disease challenges. For example, this type of ap-

proach has proven successful in advancing our understand-

ing of two recent emerging diseases, white nose syndrome in

bats and chytridiomycosis in frogs (Berger et al. 1998; Blehert

et al. 2009). In both cases, long-term expertise in the

pathology and ecology of fungal pathogens of plants allowed

the efficient identification of these extremely significant

fungal pathogens of wildlife. The study of plant sexually

transmitted diseases also has stimulated increased under-

standing of sexually transmitted diseases in animals and

humans (Lockhart et al. 1996), including the role played by

basal immune system functioning (Nunn et al. 2000).

Fundamental epidemiological problems can be ad-

dressed and illuminated by gathering data across many

systems. For example, a general understanding of the

accelerating nature of epidemic spread has arisen from a

multi-species approach (Mundt et al. 2009). Similarly, well-

understood principles in one area can provide critical in-

sights in another. For example, genetic variation in host

resistance is commonly considered in plant pathology, but

is less often explicitly considered in studies of animal dis-

eases. While it is hard to judge issues from hindsight, we

posit that if the medical research community, when con-

fronted with the early stages of the AIDS epidemic, had

been as aware of genetic variation in host resistance to

pathogens as the average plant pathologist, the under-

standing of the pathology of HIV and the development of

anti-viral therapies based on this knowledge would have

advanced far more rapidly (Pettipher and Cardon 2002;

Lederman et al. 2006). Communication across this divide

could have changed history.

The science of infectious disease is poised for enor-

mous advances if scientists can communicate, collaborate,

and synthesize across organismal and conceptual divides.

Here we provide examples of concepts and techniques

spanning disciplinary divides, where combining the com-

mon approaches taken to understand plant, animal, and

human disease could generate strong synergy, and we argue

that such translational science requires active investment in

truly interdisciplinary programs by funding agencies.

Pathogen Transmission and Epidemics

The principles underlying pathogen dispersal among hosts

and epidemics are shared across animal and plant hosts

(Mundt et al. 2009), and control strategies for both plant and

animal pathogens can be mutually informative. For example,

Asiatic citrus canker, an infection caused by the bacterium

Xanthomonas citri subsp. citri, produces bacterium-leaking

lesions on leaves and fruit which are harmless to humans but

are unsightly and dramatically reduce the economic value of

infected citrus (Gottwald et al. 2002a). By providing infor-

mation on critical parameters to stem an epidemic, the

mathematical models of the spread of foot and mouth disease

(FMDV) that have been developed to inform the control of

outbreaks in European livestock (e.g., Keeling et al. 2003;

Haydon et al. 2004) could have provided information to

guide control strategies for plant pathogen outbreaks like

citrus canker in Florida (Schubert et al. 2001; Gottwald et al.

2002b). Further, the lessons learned from the coordinated

response between individual producers, industry, and na-

tional agencies to implement policy and response to FMDV

outbreaks (Haydon et al. 2004) are key components for

evaluation of practical control strategies for citrus canker and

other large-scale agricultural pathogens. For example,

FMDV data now exist on the social, biological, and economic

effects of ring culling, culling of apparently uninfected herds,

and bans on livestock movement, all of which could be used

for developing more effective strategies to control the

transmission of other plant and animal diseases.

In addition, predicting the scaling of epidemic pro-

cesses from local to continental levels remains a challenge
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because of a paucity of examples within any individual host

taxa (i.e., humans, livestock, wildlife, crops). The handful

of well-documented continental scale outbreaks (e.g.,

influenza in humans (Viboud et al. 2006), rabies in rac-

coons (Smith et al. 2002), soybean rust (Isard et al. 2005),

and sudden oak death (Meentemeyer et al. 2008)) have

revealed that locally homogeneous transmission dynamics

give way to strongly heterogeneous transmission patterns at

the continental scale that are dominated by a combination

of local environmental suitability (Isard et al. 2005;

Meentemeyer et al. 2008), host movement patterns (Smith

et al. 2002; Viboud et al. 2006), or atmospheric currents

(Isard et al. 2005). Novel methods combining transmission

models, geographic information system (GIS), and remote

sensing to quantify risk of outbreaks and predict disease

spread in plant pathogens (Meentemeyer et al. 2004;

Mumma et al. 2009) can be adapted to address other

threats at the national level, and experimental work on

pathogens, such as sudden oak death or wheat rusts

(Mundt et al. 2009; Meentemeyer et al. 2011) promises

significant advances in predicting regional- or national-

scale infectious disease spread. Given the limited number of

continental or global scale epidemics that can be studied,

understanding the role of local and regional controls on

transmission dynamics would clearly benefit from a com-

parative approach that is agnostic to host taxonomy.

Containing any emerging infectious disease, newly intro-

duced or evolved pathogen, bioterror or agroterror agent

will benefit from recognition of the similarities among

pathogens infecting animal and plant hosts and rapid,

efficient communication among researchers in different

disciplines to effectively translate such models into rec-

ommendations that can aid decision makers.

Within-Host Dynamics and Among-Host

Heterogeneity

A major challenge in the study of infectious diseases is to

explain the large variation in the response of hosts to

infection, from those that exhibit no disease symptoms to

those that die rapidly or result in exceptionally high levels

of transmission (super spreaders). These variable responses

have important repercussions for identifying and predict-

ing disease spread and consequently for developing and

implementing intervention methods. Though behavioral,

physiological, and genetic determinants of variation in

susceptibility have been well-studied, recent work in both

medicine and agriculture suggests that variation in host

health and resistance to novel microbes may also be caused

by community level ecological interactions among different

microbes. The vast majority of microbes are not patho-

genic, and thus pathogen infection in many cases is akin to

the invasion of a novel microbe into an existing community

within a host. Current work in both plant and animal hosts

is revealing that colonies of microbes can produce anti-

microbial compounds that protect against infection or

colonization by unrelated pathogens (Conn et al. 2008;

Harris et al. 2009; Verma et al. 2009). Bacteriotherapy is a

new and extremely promising manipulation of microbes in

humans to control disease (Khoruts et al. 2010). Through

closer communication, these parallel inquiries and novel

findings in both plants and animals have great potential to

develop powerful new ‘‘biocontrol’’ tools for both humans

and agriculture, especially given the ubiquitous problem of

rapid evolution of resistance to anti-microbial agents.

Genomic advances also are opening the window onto

polymicrobial infections (e.g., AIDS and TB co-infections

in humans, fungal co-infections within crops, phage

diversity within bacterial infections), and the Human

Microbiome Project is expanding our knowledge of the vast

microbial diversity and its critical functions for human

health (Nelson et al. 2010). The field of community ecology

is able to bridge the plant–animal divide to explain how the

diversity of species and their interactions in communities of

both micro- and macro-organisms affects the stability and

resilience of individual species and the community as a

whole. The specific application of community ecology

principles to pathogen and parasite communities promises

substantial conceptual and technical synergy in under-

standing the heterogeneity in responses to infection among

hosts as well as treatment of microbial perturbations in

plant and animal hosts, including humans.

Prediction and Prevention

Many agricultural populations are made up of genetically

identical or very closely related individuals, posing unique

challenges for disease control, but also providing a fertile

testing ground for predicting pathogen evolution within

hosts and across landscapes (McDonald 2010). Plant crop

systems have provided clear tests of the basic prediction

that genetic homogeneity of hosts should favor more vir-

ulent pathogens (Clay and Kover 1996; Zhu et al. 2000).

The development of genetically engineered crops for food

and biofuels or cloned animals will almost certainly involve

important tradeoffs among productivity, disease tolerance,
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and disease resistance that will not be fully understood until

production is at a large scale. A comparative approach,

drawing from research on such tradeoffs in both plants and

animals, will provide us with advanced warning of such

problems. In addition, careful analysis will provide a better

understanding of the potential threat of transfer of trans-

genes into wild populations, but that will require an

appreciation of the effects of net trait fitness in both agri-

cultural and wild settings (e.g., Sasu et al. 2009, 2010).

Further, in plants, movement of strains or prediction of

which endemic strains will reach outbreak levels can be

improved by genetic tracing, now that sequencing is

becoming much less expensive. This type of tracking is

done extensively for human pathogens like influenza and

anthrax (Fricke et al. 2009) and has been performed

intensively for a small number of plant pathogens (e.g.,

rusts, Chen et al. 2010). Prediction of evolutionary trajec-

tories and outbreaks of human and crop pathogens are

therefore critical to informing broad-scale pathogen con-

trol programs in animals and humans, and breeding pro-

grams in plants. Genomic approaches promise to

revolutionize our ability to predict and prevent biological

threats to both humans and agriculture (Fricke et al. 2009).

Cross-Species Transmission and Emergence

Many pathogens cross the boundaries between wild or non-

agricultural hosts and humans or agricultural species

(Cleaveland et al. 2001; Taylor et al. 2001; Anderson et al.

2004; Parrish et al. 2008), and these interspecific transmis-

sion events are often the source of new emerging infectious

diseases (Lloyd-Smith et al. 2009). Diseases such as Lyme

disease, bartonellosis, and West Nile Virus have highlighted

the roles of wild animal host species as reservoirs of infection

that increase human health risk (Ostfeld and Holt 2004;

Ezenwa et al. 2006; Telfer et al. 2007). We are only beginning

to examine pathogens that can replicate and cause disease in

both animal and plant hosts (Schikora et al. 2008; Saleh et al.

2010). Viral, fungal, and bacterial plant pathogens, such as

barley yellow dwarf virus, Macrophomina phaseolina (char-

coal rot), or X. citri subsp. citri (Asiatic citrus canker) can

serve as excellent, experimentally tractable, model systems

for understanding the underlying drivers and outcomes of

cross-species transmission for both plants and animals

(Gottwald et al. 2002a; Power and Mitchell 2004; Malmstrom

et al. 2005; Borer et al. 2009; Borer et al. 2010; Saleh et al.

2010). Disease risk across taxonomic boundaries requires a

greater understanding of the interspecific force of infection

or host barriers to infection, as well as the barriers that pre-

vent outbreaks from developing, that likely result from

complex pathways of ecological change. Using this knowl-

edge for infection control or prevention will require under-

standing the population and community dynamics of the

non-human and non-agricultural host species.

The emergence and establishment of significant novel

pathogens is a rare and poorly understood phenomenon.

Predicting the risk of emergence is fundamentally limited by a

lack of well-documented case studies and of good experi-

mental data. As such, basic questions about the role of

encounter rates versus genetic variance (in either the host or

pathogen) in determining the likelihood of emergence remain

open. Comparative analyses across taxa have provided the best

picture of the limits to pathogen host range and interspecific

variation in within-host parasite diversity (Power and Flecker

2008; Lloyd-Smith et al. 2009) and may provide the best steps

toward a general theory of pathogen emergence. The factors

that lead to emergence of novel diseases and epidemics span

disciplines including biomedical, earth systems, epidemiology,

ecology, environmental sciences, and evolutionary genomics,

to name a few. Communication and collaboration by

researchers who study plant, animal, and human pathogens, as

well as between basic researchers and applied practitioners are

critical for advancing our ability to predict pathogen emer-

gence and establishment in the coming years.

Invasive Species

Wildlife animal and plant trade, relocation, and invasion all

can lead to movement of pathogens, threatening biological

diversity and human, domesticated animal, and crop health

(Daszak et al. 2000; Waage and Mumford 2008), and plant,

animal, and microbial invasions into agriculture cause

enormous economic losses (Schumann and D’Arcy 2010).

Invasions may be driven by pathogen loss; alternatively,

invasive species may themselves become pathogen reser-

voirs (Allison 1982; Calvo-Ugarteburu and McQuaid 1998;

Borer et al. 2007). Moreover, the invasion of novel

arthropod vectors is a problem common across the taxo-

nomic spectrum (e.g., Juliano and Lounibos 2005; Morse

and Hoddle 2006). Biosecurity threats for both animals and

plants are commonly treated on a case-by-case basis,

sometimes at extreme expense. A critical current and future

challenge is to place these threats and events into a broader,

quantitative risk-assessment context that includes estab-

lished pests and diseases and the natural ecosystems in

which they occur (Waage and Mumford 2008).
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Policy Issues

Translational science drawing on the opportunities outlined

here will require investment in both basic and applied disease

research. While the synergies available from examining disease

across the plant-animal divide are recognized by some scien-

tists and practitioners (Olsen et al. 2011), the funding agencies

lag far behind. With few exceptions, the funds devoted to

infectious disease research at the United States Department of

Agriculture (USDA) and the US National Institutes of Health

(NIH) are designated for specific problems associated with

specific diseases. While research in closely defined areas is

appropriate and should continue, it is remarkable that only a

miniscule fraction of funding is available for basic disease

research. For example, the Division of Allergy and Infectious

disease at NIH receives a total annual budget of nearly $5,000

million (excluding programs dealing explicitly with AIDS),

whereas the only program supporting research on infectious

disease that is independent of the taxonomy of the study

organism is entitled ‘‘Ecology of Infectious Disease.’’ This

program is jointly funded by NIH and NSF in the region of

only $15 million per year, to which NIH makes a contribution

of about a third (less than 0.1% of the Allergy and Infectious

Disease division funding at NIH). To date, there has been no

contribution to this program from USDA, which itself does

not support general research on infectious disease, even

though approximately $70 million of the USDA budget is

dedicated annually to research on specific plant diseases. It is

critical that all agencies, especially NIH and USDA, strongly

support basic research in ecology and evolution of infectious

diseases, particularly recognizing the great potential insights

promised by cross-disciplinary and cross-taxonomic research

initiatives. Active calls for proposals that bridge the plant-

animal-human divides and which integrate evolutionary and

ecological theory into understanding the fundamental pro-

cesses that are shared among infectious diseases would greatly

stimulate important translational science. Such programs also

would stimulate interactions among scientists who are con-

strained by the organism-specific, or disease-specific funding

structures and programs.

SUMMARY

Ecological, epidemiological, and evolutionary principles

guide our understanding of disease emergence, epidemic

spread, host-pathogen co-evolution, and the cascading

repercussions of disease on the dynamics of all host-pathogen

systems, whether microbial, plant, or animal, including

human-based. Such understanding has already directly in-

formed the practical needs of agriculture and medical sci-

ences, but much more could be done to promote this

synergism. Agricultural and natural systems provide

experimental opportunities unavailable to human medi-

cine. Plants in particular have illuminated our knowledge

of mobile genetic elements, the role of gene-silencing in

resistance and its application to genetic engineering, and

conceptual aspects of demography and micro-evolution.

Plants provide tractable model systems in which large

experiments in disease dynamics at multiple spatial scales

are possible (e.g., Borer et al. 2010). While the disjunction

between the needs of pure and applied sciences may seem

large, the success of genomic and phylogenetic approaches

in explaining infectious disease dynamics and evolution in

all kingdoms of life illustrates the tremendous potential

synergism that could arise from close communication

among ecologists, evolutionary biologists, applied scien-

tists, plant pathologists, and veterinary and medical prac-

titioners. We urge development of new programs and

increased funding for existing programs that facilitate

integration of these parallel lines of questioning to over-

come language, taxonomic, and disciplinary barriers.

Such funding will refocus these fields, opening the door to

increased synthesis and providing important synergistic

advances in understanding, analyzing, and controlling

infectious disease.
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