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INTRODUCTION

A primary function of museums is to preserve and exhibit objects

having historical or archaeological significance, such as historic tex-

tiles and costumes. Museum display techniques should be judiciously

chosen to maximize the benefits obtained from display without causing un-

necessarily adverse effects (44).

Light is indispensable for displaying objects, but it also can be

a potential environmental hazard since radiant energy may induce reac-

tions that result in the deterioration and/or color change of historic

artifacts. Textiles often are damaged during display when the radiation

emitted by the light source is rich in ultraviolet and high-energy, vis-

ible regions of the electromagnetic spectrum and these regions are ab-

sorbed by the object (24, 34, 179, 194). In museums and art galleries,

it is essential to control the spectral distribution of lighting systems

and to select display techniques which will not accelerate textile deter-

ioration needlessly (172).

All wavelengths of electromagnetic radiation emitted by museum

light sources have been shown to contribute to fading and photodegrada-

tion, including ultraviolet, visible, and infrared (50, 73, 99, 193).

Though the spectral distribution of the radiant energy upon objects af-

fects fading and deterioration, total incident radiant energy, expressed

by the reciprocity princiole (light intensity multiplied times exposure

1
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time) is recognized as the major factor which determines the extent and

rate of fading and degradation of artifacts. According to a 1976 Canad-

ian Museum's survey, however, only 25 percent of the museums surveyed

were aware of lighting levels being used in their textile exhibition

areas, and only 12 percent maintained illumination at acceptably low

values. This suggests insufficient concern in museums today for the

potential hazards of lighting and display techniques on fragile arti-

facts (141, 158).

Light is not an isolated factor, but part of the total museum

environment. Environmental factors, including temperature, relative

humidity, atmospheric composition, and physical state of dye and sub-

strate, have been investigated and found to affect degradation and fading

in varying amounts. Suggestions for controlling radiant energy and

environmental factors that accelerate degration have been made to aid

museums in selecting optimal display techniques for aged and fragile

artifacts (72, 73, 101, 117, 118, 192). As an example, a maximum illum-

ination level of about 50 lux has been established as acceptable for

adequate visibility with minimal deterioration (51, 96, 151, 156).

The Illuminating Engineering Society's 1966 Lighting Handbook

(24) thoroughly explains theories of light physics, color and vision,

radiant energy measurement and technology, and the design of lighting

systems. lES Report 14 (132) applies these principles to museum lighting

and display techniques. Research in m.useum lighting has explored the

effects of emission spectra of natural and artificial light sources on

fading, deterioration, and color rendering of textiles and other arti-

facts. Specific lighting sources investigated include daylight,
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incandescent, fluorescent, and quartz (33, 120, 141, 172). Research

utilizing ultraviolet- and infrared-filtered quartz lamps as a possible

museum lighting source is scarce, even though they possess such attrac-

tive characteristics as superior color reducing properties, good energy

conservation characteristics, and small lamp size for high light output

(34).

This research compared the effects of six lamp and filter systems

on the lightfastness of natural dyes and chemical properties of the cot-

ton substrate. The six systems investigated were: incandescent lighting

with and without an infrared filter, fluorescent lighting with and with-

out an ultraviolet filter, and quartz lighting with and without infrared

and ultraviolet filters. Cotton samples were evaluated for color change

by visible spectrophotometry and the presence of cellulose deterioration

products were evaluted by the copper number test.



REVIEW OF LITERATURE

Radiant Energy

Electromagnetic Spectrum

Radiant or electromagnetic energy is produced when excited elec-

trons revert to stable positions within their atoms, releasing energy

(24). Electromagnetic energy emitted by artificial and natural light

sources varies in intensity and spectral distribution, both of which

influence the color of the lighting source and its ability to degrade

organic textiles and other objects. The spectral distribution of a light

source may range from ultraviolet to infrared radiation (10, 24, 28, 99,

151).

Early attempts to explain the nature of radiant energy included

the Corpuscular Theory, advocated by Newton, which postulated that

energy particles were ejected intermittently from luminous bodies and

transmitted to the retina of the eye, resulting in the sensation of

light. Huygen's Wave Theory stated that light resulted from molecular

vibration in luminous material and these vibrations were transmitted as

wavelike movements to stimulate the optic nerves of the eye. Maxwell's

Electromagnetic Theory suggested that radiant energy was propagated

through space in the form of waves. The modern Quantum Theory, similar

to the Corpuscular Theory, is based on the premises that energy is
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emitted and absorbed in particles or quanta which, in the case of radi-

ant energy, are called photons. The Unified Theory, proposed by

DeBroglie and Heisenberg, combines ideas of both the Electromagnetic and

Quantum Theories and these three theories now form the basis of current

ideas on the physics of light (13, 24, 50).

The electromagnetic spectrum (Figure 1) represents all forms of

radiant energy plotted as a function of wavelength (the distance from

wave crest to crest). Every moving element of mass has an associated

wavelength, the length expressed by:

X = h/mv

where: A = wavelength of wave motion
h = Planck's constant (6.62 x 10"" ergs/sec.)
m = mass of the particle
V = velocity of the particle.

Wavelength and frequency (the number of wave crests passing a point in

one second) are two characteristics which distinguish one type of elec-

tromagnetic radiation from another, and indicate chemical and optical

properties and utility of the radiation (13, 24, 25, 151, 179). Fre-

quency is inversely proportional to wavelength. Waves with higher fre-

quency, and thus shorter wavelength, contain photons of greater energy

than lower frequency, longer wavelengths. Gamma and cosmic rays have

the shortest wavelengths which are measured in million millionths of a

meter; whereas, low energy radio and television waves are measured in

hundreds of meters (101, 154, 179). "The relationship between wavelength,

frequency, and velocity of wave motion is expressed by the formula:

c = 'A

where: c = velocity of light (3 x lO'^cm. per second in
free space, or 186,000 mi. per sec.)
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f = frequency of radiation in vibrations per sec.
A = wavelength in cm. (13, 25. 151).

Changes in wavelength are accompanied by changes in radiant properties.

As shown by the following formula, the amount of energy per

photon varies in direct proportion with wavelength (13):

E = hf = hc/A

where: E = energy of a single quantum (photon) in ergs
h = Planck's constant
c = velocity of light
f = frequency of radiation
A = wavelength of radiation in cm. (13, 25, 34, 101, 151).

Visible light comprises only a small portion of the electromag-

netic spectrum. White light is the basis of all colors of the spectrum,

and these colors may be obtained by the suppression or adsorption of one

or more parts of white light. The visible spectrum contains as many as

200 full-intensity colors in its progression through violet, blue, green,

yellow, orange, and red (22, 85, 146, 154). The exact points at which

the eye becomes sensitive to radiant energy varies slightly with each

individual, but the limits established by the International Commission

on Illumination (CIE) are 380 to 780 nanometers (nm). The nanometer

(1 nm = 10"'m or 10 A) is an international wavelength measurement

adopted by the International System of Units (SI) (10, 25, 59).

Color and Vision

All matter lacks color and is not directly visible. The three

phases and major disciplines of color vision are: 1) the spectral

nature and intensity of the light emitted by the light source and how

it is reflected from, transmitted through, or emitted from the object or

light source to the eye, as explained by the science of physics, 2) the



response of the eye to the light and transmittance of signals to the

brain, as explained by physiology, and 3) the mental image of apparent

color perceived by the individual, as explained by psychology (23, 64,

95, 114, 189). The combination of these sciences in relation to color

vision is called psychophysics (i.e., the study of the physical nature

of the light and the repeatable and measurable effects produced) (95).

Color results from visible radiation being either refelcted from

an opaque object, transmitted through a transparent object, or emitted

from a light source (23, 157). Light, and thus color, as it reaches the

eyes of two people viewing the same object from the same position at the

same time, are identical and have the following three attributes which

are necessary for its physical description: hue or color name, bright-

ness or lightness, and saturation or intensity. These three character-

istics are governed by the amount of light of each wavelength in the

electromagnetic spectrum falling on the object, and the proportion of

each wavelength reflected or transmitted to the eye (24, 59, 71, 95,

149). The physical and molecular properties of the object determine

which wavelengths are absorbed and which are reflected or transmitted

through the object (27, 41, 84). The light adsorption characteristics

of many objects such as textiles often are modified by the addition of

dyes or pigments which selectively adsorb various portions of incident

light.

The photoreceptors in the eye (i.e., rods and cones) generate

nerve impulses by photochemical mechanisms in response to visible radi-

ant energy (24). The rods perceive brightness and darkness, are sensi-

tive to small amounts of light, and are affective in scotopic, or night
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vision. Three types of cones, concentrated at the central fovea! region,

are sensitive to detail and color, operate at higher levels of illumina-

tion, and are used in photonic, or daytime vision (51, 71). Each type

of cone has a spectral sensitivity to one of the three additive primary

colors, red, blue, and green. Though their absorption bands overlap to

some extent they are generally known as: "r" type which absorb the red

end of the spectrum, "g" type which absorb the green region of the spec-

trum, and "b" type which absorb the olue end of the spectrum. The light

energy is transformed into chemical energy which triggers the optic

nerves into activity. By nerve cell synapses, a pattern of activity is

transferred to the occipital lobe in the cortex (23, 45, 59, 184, 202).

The eye has the ability to integrate stimuli at different wave-

lengths of the visible spectrum to produce the sensation of a single

color (71). A person with normal color vision has maximum photopic

sensitivity to the visible spectrum in the green/yellow region at about

554-555 nm (12, 23, 101, 146, 151, 195). The luminosity function of the

eye, or variation of the eye's sensitivity to color, plotted as a func-

tion of wavelength, yields a basically bell-shaped curve called the

luminous efficiency curve. This accounts for the great color discrim-

ination near the middle of the visible spectrum, and poor discrimination

at the violet and red ends of the spectrum, reaching zero at ultraviolet

and infrared beginning points (12, 22, 23, 101, 195).

The eye is not simply a physical instrument which gives identi-

cal responses to the same light source. In addition to variations in

individual physiological and/or psychological characteristics, physio-

logical factors may influence the visual signals received by the optic
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nerves, such as state of health, eye disorders, and the darkening of

macular pigment with age (24, 71, 202). The appearance of a stimulus

to the individual observer may be influenced as much by psychological

as by physiological factors. The mental picture and colors produced are

influenced by experience, recognition, and attitudes and are not neces-

sarily a true representation of the stimulus or of what others see (95,

202).

Color Measurement

The human eye and brain are almost unequalled in discerning pre-

cisely whether two colors are alike. As many as 500,000 to 10,000,000

colors and variations of lightness/darkness and intensity may be dis-

tinguished by the eye. Color cannot be expressed, measured, or matched

accurately, however, solely by individual description due to differences

of opinion in comparative color evaluation (22, 62, 149).

Color is expressed in one of three ways. Colorant-mixture sys-

tems, for example, are based on subtractlve pigment mixing. Color-

appearance systems are based on color change progressions which look

uniform in difference to the normal human eye, such as the Munseil

numerical method of color description. Color-mixture systems, or addi-

tive light mixing systems, are based on a set of colored lights which

can be mixed in expressed amounts to match specific colors. The CIE

method of instrumental color measurement is based on the last system

(22, 71).

A spectrophotometric curve produced by a recording spectrophoto-

meter also can be used to characterize a color. Spectrophotometers
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measured the light reflected or adsorbed by an object as a function of

wavelength (24, 71, 137, 154). Spectrophotometry eliminates many varia-

bles in the measurement of color by controlling the following factors

which influence apparent color: 1) geometry of illumination and viewing,

which is generally non-specular, that is 45° and 0°, respectively, in

order to eliminate gloss or surface reflectance; 2) character, color, and

intensity of light incident on the sample by using standard illuminants

A, B, C, or D; and 3) response of the "observer" or recording mechanism by

employing standard observer characteristics (51, 59, 86, 95, 136).

Additional variables which affect instrumental color measurement

and should be controlled in order to obtain comparable color measurements

include: gloss and reflectance characteristics of specimens; uniformity

of size, shape, and surface texture of specimens; relative transparency

(two layers may be required in measurement of textiles); atmospheric

conditions such as content, temperature, relative humidity, and air cur-

rent; manner in which specimens are prepared, mounted, and exposed for

measurement; complete specif-ics and history of specimens; and specific

measurement scales employed (51, 86, 130, 136).

CIE System . Colorimetric analysis of the spectrophotometric

curves is a means of numerically evaluating the color appearance of an

object (23). In 1931, CIE developed a method of color description based

on computation of colorimetric data from spectrophotometric measurement

which permits precise mathematical definition and description of all

manifestations of color (24, 64, 71, 86). This system has become one of

the most frequently employed methods used internationally by industries



12

relying on precise and objective standardized color measurement. It

also has been recommended by the Optical Society of America since 1943.

Color expressed in CIE terms can be converted or compared to any other

color-designating system in use today (23, 24, 186).

The CIE system is based on tristimulus values (Y, X, and Z)

which numerically represent the amounts of the three additive primaries

that are required to produce a match with a color stimulus. Two color

specimens having the same X, Y, and Z values will always match if light-

ing and viewing conditions are the same. The relative amounts of the

three additive primaries have to be adjusted mathematically for a stan-

dard light source and a standard observer (22, 27, 39, 59, 54, 85).

The two dimensional color space in the CIE system is called the

chromaticity diagram (Figure 2). Since the sum of the tristimulus

values equals unity (X + Y + Z = 1), a color in the chromaticity dia-

gram can be located by plotting the chromaticity coordinates derived by

calculating the relative amounts of each tristimulus value required to

match a color stimulus (22, 23, 45, 54, 86). To obtain chromaticity

coordinates mathematically from the tristimulus values, the following

formulas are employed:

X = X/{X + Y + Z)

y = Y/(X + Y + Z)

z = Z/(X + Y + Z).

Since X + Y + Z = 1, chromaticity can be described and plotted in terms

of only X and Y, which also designate chromaticity (hue and chroma) (22,

64).

Located near the center of the diagram, equi-energy white repre-

sents the location of a color or light source having an equal energy
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CIE 1931
Chromaticity diagram

Figure 2

CIE (Commission International de I'Eclairage) x,y-Chromaticity Diagram
Taken from Judd and Wyszecki, p. 31 (23).
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spectrum with neutral chromaticness (hue and saturation), and chroma-

ticity coordinates of x = .3333, y = .3333, and z = .3333 (59, 81). The

tristimulus value Y represents luminous reflectance (luminance or light-

ness) of the sample and may be plotted on the third-dimensional achro-

matic axis which begins at the equi-energy point or illuminant point and

rises above the X,Y plane. The x, y, and Y axes form an irregular cone

color solid (22, 24, 27, 59, 64, 71). Since the Y value is not visible

on a two-dimensional chromaticity diagram, it may be stated numerically.

A color located high above the x,y plane on the Y axis would have a

higher numerical value and be lighter in appearance than a color plot-

ting closer to the x,y plane. The x,y chromaticity coordinates plus the

Y value represent a specific position in the CIE color solid for each

color and are sufficient to specify any color (22, 39, 64, 86, 202).

The spectrum locus is the limit of the x,y plane formed by con-

necting the points representing the chromaticness of the spectrum

colors. The farther a color is located from the equi-energy point on

the x,y diagram, and the closer to the spectrum locus, the more intense

or saturated it will be. The most saturated colors are located on the

spectrum locus (22, 59, 64).

In the CIE system, color also can be specified in terms of

dominant wavelength and excitation purity. Dominant wavelength is

roughly synonymous with hue, and excitation purity with saturation (45,

59, 71). The CIE standard illuminants are all close to white in color

(have little saturation) and are located in approximately the central

portion of the x,y-diagram. The dominant wavelength of a color is

determined by running a straight line through the x,y point of the illu-
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itiinant and specimen location and extending it to spectrum locus. Exci-

tation purity is calculated as the percentage relative distance of the

graphed line from the illuminant to the specimen, compared to the dis-

tance from the specimen to the spectrum locus (24, 64). Spectral colors

have 100 percent excitation purity. A color specimen plotting halfway

between the x,y point of the illuminant and the spectrum locus would have

an excitation purity of 50 percent (23, 24, 64).

Uniform Color Solids . Color difference systems are based on

increments of change required to produce equal amounts of change in

color stimulus to the human eye under standard psychophysical condi-

tions (87). The Munsell color space used for visual evaluation of color

is based on equal steps of perceptible change (124). In the CIE chroma-

ticity diagram, however, a distortion exists with respect to equal

change in visual perception (22, 39, 71, 103). For example, if two

pairs of colors of equal visual difference were plotted on the diagram

and the distances between the colors of each pair measured, a pair in

the upper right portion of the x,y-diagram would be greater in distance

than a pair in the lower left portion of the diagram. Therefore, Y,x,y,

alone are not a means of specifying equal perceptible color difference,

and formulas which transform the CIE space into a uniform chromaticity

space must be employed so that equal numerical differences are attached

to equal visual differences (22, 59, 64, 86).

Over 20 different uniform transformations of CIE space have been

established. A uniform scale which converts CIE coordinates to equal-

difference Munsell notation is the ISCC-NBS Method of Designating Colors.
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Two other systems which assess uniform tri-dimensional differences are

the CIElab system, which is considered best by Morton (161) for deter-

mining color difference in color matching, and the Hunter AE combined

chromaticness and lightness scale (22, 24, 45, 139). The CIElab scale

is specified in dimensions, called L*, a*, and b*, which can be approxi-

mately related to lightness (L), redness-greenness (a), and yellowness-

blueness (b). These scales are correlated to the eye's ability to judge

differences, and represent the magnitude of the perceived difference of

the combined tristimulus values of the colors by reducing the tri-

dimensional CIE coordinates to an adjusted single number (45, 59).

Light Measurement

Several measurable qualities of energy emitted by light sources

are important in the selection of museum lighting systems. These in-

clude: illumination value, total incident energy, relative damage

factor, and lamp efficacy (24, 131). Illuminance (E), or illumination

value, represents the total luminous or visible energy reaching a sur-

face from a light source at a specific moment. The lumen is a unit of

luminous energy. Though footcandle (fc), or lumen per square foot, is

commonly used in the United States to measure illuminance, SI has adopted

the lux which is equal to one lumen per square meter. For a light

source, the footcandles emitted may be computed by the following equa-

tion:

, .214 I

where: E = maintained illumination in footcandles
I = manufacturer's listed, initial candlepower
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h = height of lamp above sightline or object
(based on an 30 percent maintenance factor),

and converted to lux by the conversion equation: 1 fc = 10.754 lux (24,

32. 101, 131. 193).

While illumination describes light delivered to an object,

luminance or photometric brightness is the brightness of an object or

surface, and is the result of indicent illuminance and the reflectance

characteristics of the object. Because of differences in physical char-

acteristics of objects, the same illumination may achieve different

luminance values. It has been suggested that luminance, rather than

illumination, is the ultimate factor determining the ability of a viewer

to perform a visual task. The SI unit for luminance measurement is the

candelas per square meter (cd/m^) and this value should be taken into

consideration when determining visibility of exhibits (131, 199).

The reciprocity principle states that total visible energy (or

photoperiod) emitted from a light source, or illuminant, is equal to the

product of the intensity times the exposure period (33, 34, 99, 107.

121, 132, 150, 190, 195):

total visible energy = light intensity x exposure time.

Whenever possible, both illumination level and exposure time should be

kept to a minimum in museum environments. Research has shown that the

reciprocity principle may not hold true for all situations, such as in

high intensity light sources used in accelerated light fastness tests or

in low intensity accelerated light used for testing light sources used

in museums for long exposure periods (32, 99, 105, 110, 170).

Total museum exposure to light is sometimes expressed in
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millHux-hours (1,000,000 lux hours), which takes into account both

light intensity and exposure time. A museum illuminating at intensi-

ties of 100 lux, or approximately 10 footcandles, for an average of six

hours daily for five years would amass a total quantity of illumination

of one millilux-hour (IMlxh). Carefully controlled low illumination

levels, and total exclusion of light whenever possible can result in

annual exposures as low as .005 MLxh, or 5,000 lux hours (106, 193).

Instruments available for measuring illumination levels include

photocells and light meters which register in footcandles or lux.

Radiometers can be used to determine amount of total radiation. Care

should be exercised in choosing a museum light monitor because some

instruments measure accurately only at higher illumination levels than

are reasonable for museum requirements. Others must be color-corrected

for each light source and are affected by oblique light (132). Illumin-

ation measurements always should be taken as close to the position of

the object as possible, with the monitor placed in the chief plane of

the object and with all display case doors shut so that all light inci-

dent upon the object, radiated or reflected, will be measured (24, 132,

140, 156).

An important factor in light measurement for conservation pur-

poses, as opposed to visibility purposes, is total visible and invisible

radiant energy reaching the specimen over time, since this governs the

amount of potential damage attributed to a specific illuminant. Total

visible and invisible radiant energy incident upon an object may be

measured in kilojoules though this measurement is not equal to or inter-

changeable with illumination level (34, 101, 134, 193).
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Though no exact prediction of the degrading effects of specific

lamp/filter systems can be made, Harrison (50) and others suggested

using the Probable Relative Damage Factor (D/) which is a function of

total radiant energy and is inversely related to wavelength (24, 50,

51, 150, 156, 188). Spectroradiometers are used to determine the spec-

tral distribution and relative intensities of light sources. When

multiplied times the DA for each wavelength. Probable Relative Damage

per Footcandle (D/fc) for a light source can be determined (24, 101,

151, 192). Since light sources emit ultraviolet, visible, and infrared

radiation, and possible damage to objects is dependent on all three

regions of the electromagnetic spectrum, D/fc is a more meaningful factor

than illumination level. Charts have been prepared listing specific

light sources, filters, and combinations and their D/fc values. D/fc

times intensity of illumination yields "Relative Degree of Hazard" ex-

pected for that light source. Relative Degree of Hazard increases with

increase in intensity as well as with increase in output of high fre-

quency wavelengths by light sources (50, 101, 188).

Lamp efficacy is a measure of the efficiency of the conversion

of energy input to light output and, for electric lamps, is expressed in

lumens per watt. This value is dependent on power efficiency and lumin-

ance efficacy, the amount of visible light output per unit of energy

consumption at each wavelength. Since the eye is most sensitive to

yellow/green wavelengths, lamps emitting the greatest amount of their

light in this region and with the least amount of energy input dissi-

pated in invisible wavelengths would exhibit the highest efficacy (24,

132, 184).
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Chemistry of Cotton

Cotton, a seed-hair fiber, has been used in textiles since anti-

quity (38, 59). Babylonian cotton tapestries were mentioned by Greek

and Roman writers, and tablets from 2200 BC record weavers of cotton in

Ur (38). Other historic peoples that used cotton textiles include the

Hebrews, Phoenicians, Egyptians, Persians, Greeks, Romans, Byzantines,

Indians, Japanese, East Indians, and the early American Cultures (38).

Cellulose (CeHioOs) is a complex, long-chain carbohydrate poly-

mer. The basic component of cellulose is the glucose unit (30, 69):

CH2OH
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Through a condensation reaction glucose molecules combine to form a

long-chain, high molecular weight polymer with a degree of polymeriza-

tion (DP) of approximately 10,000. The repeat unit in cellulose is

anhydro-S-cellobiose, which is illustrated as two glucose units joined

together by glycosidic or oxygen linkages (30, 3?, 34, 126).

The composition, structure, and size of a molecule account for

its chemical reactivity and physical characteristics. The chemical and

physical stability of cellulose fibers depends on both the primary
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valency forces within the molecule and the secondary valency forces

exerted by the quadrivalent oxygen atoms between molecular chains (27,

127).
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The cotton fiber is hydroscopic. A rise in relative humid-

ity increases moisture regain of the fiber; it will swell in diameter,

and contract in diameter when moisture content drops. Very low relative

humidity causes drying and embrittlement of the fiber, yet relative humid-

ity above about 60 percent encourages microorganism growth which may

prove detrimental. High temperatures can cause damage to the fiber (32,

119). Like most organic materials, cellulose is susceptible to degrada-

tion by environmental factors (44, 194). Cellulose is degraded by con-

centrated mineral acid. Acid hydrolysis results in a cleavage of the

glycosidic linkages and the formation of hydrocellulose, a degradation

product of cellulose. Cleavage of the glycosidic linkage results in a

lower DP and strength and an increase in solubility and reducing power due

to the formation of aldehyde groups. Oxidative degradation of cellulose

occurs at the primary and secondary hydroxyl (OH) groups, resulting in

the formation of oxycelluloses as degradation products (34, 127).
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Dyes and Dyeing

History

The earliest evidence of dyes used by man dates from the Neo-

lithic Period (about 7000-2000 BC) (7). Peoples in several areas of the

world had learned to spin, weave, and cultivate and were using vegetable

dyes primarily as fugitive stains. Forbes (14) suggests that the first

dyes were berry and fruit juices, crushed flowers, and roots and bark.

Evidence of the earliest use of madder, woad, indigo, and some animal

dyes date from this era (23, 70, 129, 154).

China may have originated the true craft of dyeing; 5,000 years

ago the Chinese had attained fairly fast dyeings with indigo and alizarin

from madder, and were impregnating yarns with mordants. Middle Kingdom

Egypt also used mordants in textile dyeing. The first Western dyers were

probably the Swiss Lake Dwellers who lived about 2000 BC (3, 14, 102).

During the Hellenistic era (approximately 500 BC), dyeing

was a major industry but was monopolized by the state. Since dyeing was

one of the earliest technical arts, the search for better dyeing tech-

niques was a major factor in the development of a new science--chemistry.

The art of dyeing increased in knowledge and sophistication until the

fall of the Roman Empire, at which time the industry temporarily stag-

nated (14, 31).

During the late Middle Ages in Europe, guilds were responsible

for fostering the dye industry and standardizing quality (38, 165). The

earliest printed book on dyeing was written by Allerley Matkel and

contained recipes to improve colorfastness to light (102).
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From 1500 AD, India had more influence on Western dyeing than

any other country. Renaissance Italy and, in particular, the city-state

of Venice were known for superior dyeings. In 1540, Rosetti , a Venetian,

wrote Plictho de Larti de Tentori , which was the best source of dyeing

information of the period (3, 30, 70).

Since dyeing methods and recipes had traditionally been handed

down from father to son and the information was carefully guarded, reci-

pes were seldom written, or if they were, they appeared as cryptic and

obscure documents (14, 165, 166). The first organized synthesis and

dissemination of dyeing theory occurred in the second quarter of the

18th century in Europe, when French chemists began to organize informa-

tion and experiment with dye methods and 1 ightfastness tests. Basic

understanding of the physical and chemical mechanisms of dyeing led to

the formulation of a theoretical framework, and the dye industry became

the first industry to be based on knowledge gleaned from continuous sci-

entific research and publication (3, 102, 159).

Colbert, minister to France's Louis XV, commissioned Charles

Francois Dufay (1698-1729) to revise and organize all dyeing recipes and

information. Dufay also performed controlled lightfastness tests (102,

166). Jean Hellot (1685-1766) published Application of Chemistry to

Dyeing and L'Art de la Teinture des Laines . Other dye manuals of the

18th century from Europe include Le Teinturier Parfait and Le Nouveau

Teinturier Parfait in 1708 and 1769, respectively, Pierre Joseph Macquer's

(1718-1734) Elements de 1 'art de la Teinture , J. N. Bischoff's 1780 History

of Dyeing , and two other manuals. The True and Proper Art of Dyeing , and

The New Dyer's Manual (102, 166). Bancroft, in 1794, produced Experi -
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mental Researches Concerning the Philosophy of Permanent Colours , the

best survey of dye materials and methods available at that time (102,

156).

Elijah Bemiss' 1806 Dyer's Companion listed "Five Material

Colors" (i.e., blue, yellow, red, brown, and black) and "Three Powers"

(i.e., alkali, acid, and corrosive) (1, 59). Sigismund Hermbstadt (1760-

1833) published Outline of the Art of Dyeing and J. A. Claude Chaptal

(1756-1832) the Traite de la Teinture au Coton en Rouge (166). Parnell

,

in 1844, produced the first list of all dyes in use at the time, and

Slater in 1870 contributed the first comprehensive dictionary of dyes

(102). David Smith's The English Dyer (1882) was a widely circulated

British dye manual (78).

The head of the dyeing department of the Gobelin factory, Michel

Eugene Chevreul (1786-1889), carried out extensive lightfastness tests,

finding that some dyes vary in fastness to light on different fibers (102,

166). Natural dyes, in general, exhibit poor lightfastness by modern

standards, with the exception of some mordanted and vat dyes. Yellow

dyes were notoriously fugitive (172, 179, 188). Since few natural green

dyes were known, this color was often obtained by mixtures of yellow and

blue dyes (14, 154).

Most historic textiles found in museums are dyed with natural

dyestuffs, since the first synthetic dyes were not discovered until the

latter half of the 19th century. In 1856, William Henry Perkin's discov-

ery of aniline mauve marked the beginning of the end of the use of

natural dyes (14, 154, 155, 171). The synthetic dyes generally were

purer, easier to obtain and use, and produced dyeings that were more pre-



25

dictable than its natural counterparts. Though most early synthetic dyes

were unreliable in lightfastness, this disadvantage was soon corrected.

Today, except for indigo which is still used in the production of some

cotton denims, natural dyes are seldom used in the dye industry (3, 200).

Natural Dyes

Turmeric . Turmeric, tumeric, or curcuma is a yellow dye used on

cotton, wool, and silk. It is obtained by grinding the root of the Cur-

cuma longa plant, also called Indian Saffron, which yields a waxy powder

containing the dye substance curcumin (3, 9, 14, 29, 37):

CO- CH- :CH

CH,

OCH3

OCH3

CO CH= CH / \

OH
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Curcumin

The plant grew primarily in the Middle East, East Indies, India, and

Asia and was used as an edible source of starch and as a medicinal spice,

in addition to a dye substance. The unmordanted color is yellow, with a

range from orange to brown obtainable with mordants. It also has been

used to improve reds, and to obtain greens. Though turmeric was consid-

ered the finest yellow by many dyers in the 18th and 19th centuries, it

is notoriously fugitive to light and alkaline solutions (1, 26, 29, 34,

37, 43).



26

Madder . Madder is a mordant dye that was used widely on cotton

and wool to obtain many shades in the red family or was used in combina-

tion with indigo and other dyes to obtain madder blacks or purples. Also

known as "dyer's root" to the ancients, it is obtained mainly from the

roots of the plant Rubia tinctorum, a herbaceous perennial, though 34

other variants are known (3. 14, 29, 37, 43, 102, 128).

Alizarin, the dyestuff in madder, is obtained from glucosides

located between the core and the outer layer of the root (7, 26, 29):

Alizarin

Roots of plants 18 to 28 months old and taken in late autumn yield the

best dye when dried, beaten, and pulverized (1, 14, 26, 43).

Indigenous to tropical and temperate zones, it was cultivated

originally in Syria, Turkey, Egypt, and India {3, 14, 29). Egyptian

mummy cloths and textile fragments from the third millenium BC have been

found which were dyed with madder. Ancient Hebrews, Persians, and Lib-

yans used madder and it is mentioned in the Old Testament. The Classical

Greeks and Romans were familiar with madder and used it extensively (26,

29, 31, 37, 43).

By Medieval times, it was cultivated in much of Europe (i.e..
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Holland, France, and Italy) and Asia and was an important element in

Asiatic commerce. From the fifth to seventh centuries AD, madder

decreased in commercial importance as a crop in Europe, but was revived

when Charlemagne decreed its cultivation in the seventh century. The

Moors revived the use of madder in Spain about 900 AD and during the

Crusades it was reintroduced into France. From 1500, Dutch madder was

considered superior to other varieties until France took over the market

after Louis XV aroused interest in its production (26, 29, 43, 159).

England passed legislation to encourage cultivation of madder in 1757.

Though it never reached commercial proportions, it was used widely, such

as to dye the British "Redcoat" uniforms. The crop was introduced into

America and widely used there in the 18th century. A complicated process

of mordanting madder on cotton produced a scarlet called "Turkey Red,"

one of the most sought-after colors of 19th century Europe and America.

Graebe and Lieberman synthesized alizarin in 1868, which soon replaced

natural madder because it was less expensive (1, 2, 29, 37, 155, 200).

Madder usually is applied in conjunction with a mordanting agent,

such as soluble salts of aluminum, chromium, iron, or tin (14, 69, 200).

The mordanting process generally results in relatively permanent colors

(69). Several sources state that madder, or any dyestuff taken from the

ground, should not be boiled or heated for a prolonged time or the recipe

will be "killed" and the red madder tone turn to brown (1, 43).

Indigo . Indigo, one of the oldest and perhaps the most impor-

tant blue dye in history, is a naturally occurring vat dyestuff. It is

obtained from plants of the genus indigofera, mainly Indigofera tinctoria.
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a leguminous plant which contains the dye substance indican in the

leaves (9, 11, 14, 70, 94, 139). India was the birthplace of indigo and

the main supplier until 1500 AD, but it has been cultivated in China,

Japan, West Indies, Central America, Brazil, South and Central Africa,

Madagascar, Java, Philippines, and North America as well. Sanskrit manu-

scripts tell how the dye was prepared and transported along ancient trade

routes to Egypt 5,000 years ago. Mummy wrappings dyed with indigo have

been discovered from ancient Egypt. Asia has used indigo for over 4,000

years, and Peruvian Inca graves contain indigo-dyed textiles (5, 15, 26,

29, 174).

Indigo was introduced to the Mediterranean countries in the last

century BC and it was used extensively by the Greeks and Romans. The

name indigo is derived from the Latin "indicum" which referred to all

imports from India (15). Pliny the Elder mentioned indigo in his Histor-

ia Natural is . The Venetian Marco Polo (1254-1324) mentioned the dye and

its preparation in his books of trade with the East, and the Venetians

were the first Western Medieval people to use it. In the Americas,

Indians were using indigo long before the Spanish arrived (29, 168).

In Medieval and Renaissance Europe, strong objections to the

use and cultivation of indigo arose because of the extensive revenue

gained from the production of woad (Isatio tinctoria), a plant which

contains indican, but in much smaller quantities than Indigofera (112,

168). By the 14th century, indigo had replaced woad in Europe, despite

the label of "ruffian's color" and "devil's color," and King Henry IV of

England's decree that indigo dyeing constituted a capital crime. Efforts

in France to revive woad continued until 1737, and Napoleon briefly and
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unsuccessfully tried to stimulate woad cultivation in 1811. In the early

16th century, after the discovery of the all-water route to India, the

Portuguese and Dutch imported large quantities of indigo to Western Eur-

ope (15, 29, 168, 169).

In the 17th century, the East India Company imported indigo into

Europe and England began to cultivate the plant in her colonies (159).

For a brief period, 1747-1776, indigo was a lucrative crop in the Caro-

linas and was the first major export item from the colony. Political

conditions signaled the decline of indigo production, but only after

American indigo had reached the superior quality of French indigo which

had enabled the British to undersell France in 1773. After the war, rice

became a more lucrative crop in the Carolinas and indigo cultivation was

transferred to the British West Indies (174). Indigo was extensively

used to dye American and British sailors' uniforms and became the most

important American dyestuff of the 18th and 19th centuries (3, 29).

The year 1893 marked the peak of world indigo production,

shortly after which synthetic indigo began to supplant the use of the

natural material. The chemical structure of indigo had been discovered

by A. von Baeyer in the 1880's and by 1897 the synthetic dyestuff "Indi-

gosol" was being marketed at a very low price compared with natural

indigo (9, 92, 112, 155, 168).

Since the dye substance in indigo is present in water-insoluble

and colorless form, a special reducing process, called vatting, is neces-

sary to yield a usable dye (69, 169). Originally the dye was extracted

by the natural fermentation of vegetable matter and human urine (15, 169,

189). The plants were harvested while in bloom and steeped in water
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until fermentation and reduction had extracted the dye-yielding sub-

stance, the glucoside indican, from the plants and reduced it to

indoxyl. The solution was then drawn off, the plants disposed of, and

the liquid beaten to incorporate oxygen into the vat and, with the help

of anmonia, precipitate indigo, the oxidized form of the dye. A boil

was then reached to arrest fermentation, and the precipitated indigo was

dried into cakes or a powder, ready to be dissolved in a dyeing vat (3,

5, 15, 112, 174).

In the application of vat dyes, the dyestuff first was reduced

to its soluble, sodium leuco state (3, 29, 94, 189). The fibers were

entered into the bath at this point, and the water-soluble reduced dye

substance was absorbed into the fiber; when exposed to oxygen in the air

or treated with an oxidising agent, the dye reverted back to a water-

insoluble form, indigo blue, or indigo (2, 7, 15, 31, 94, 112):

II
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To create deep shades, the fabrics were dipped and exposed to air

several times (69, 189). As an aftertreatment to help develop the true

shade, remove loose dye particles, and further crystallize the dye in

the fiber, soaping at the boil was sometimes performed to increase

lightfastness (5, 9).

Indigo vats used historically include: the lime and copperas

vat (ferrous sulfate), oldest and most commonly employed historically;
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the bran and madder vat; zinc-lime vat; zinc powder vat; and, first

used in 1873 and most common thereafter, the hydrosulfite vat (2, 37,

112, 189).

Since the leuco form of the dye is water-insoluble, properly

applied vat dyes show good washfastness. They also exhibit superior

lightfastness, unless used as a pigment. Indigo is generally faster on

wool than on cotton, due to a greater chemical potential on cotton.

Some extant textiles dyed with indigo centuries before the time of

Christ still hold their color (2, 29, 70, 101). In general, vat dye-

stuffs have good lightfastness properties, but certain vat dyes, espe-

cially in the yellow-orange hues, may accelerate photo-oxidization of

the fabrics.

Mordants . Colour Index (9) suggests that the classification of

"mordant dyes" has little logical basis since a wide range of hetero-

genous dyestuffs may require or be assisted by a mordant, including most

natural dyes (172, 183). The mordants may be applied before dyeing (i.

e., the on mordant process), during dyeing (i.e., the metachrome process),

or after dyeing (i.e., the afterchrome process). Mordants influence the

ultimate hue of the dyestuff and make possible a range of colors or

shades from one dye (3, 43, 69, 102).

The word mordant comes from Latin "mordere," to bite, which

indicates the ability of the mordant to create a bond oetween dyestuff

and fiber or to create a larger, insoluble dye molecule. Commonly used

mordants with historical significirce include (3, 43, 59, 70, 78):
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Common name Technical name Formula

alum aluminum potassium suilfate KA1(S002
chrome potassium dichromate KjCrOj
iron ferrous sulfate or copperas FeSO^
tin stannous chloride Na->SnCl6

blue vitriol copper sulfate CuSC
Glauber's salts sodium sulfate NazSO^
oak gal Is, sumach tannic acid Cii+Hi 0O9

leaves
acetic acid acetic acid CiHuOz
ammonia ammo n i a NH3
cream of tartar potassium bitartrate C^HsKOe
certain oils.

Chemistry of Dyeing Cellulose

The chemical constitution of a dye influences its color and

coloring potential. The presence of certain chemical groups within a

dye molecule facilitate the adsorbtion of visible light and, hence, in-

crease color potential. These groups are called chromophores and in-

clude nitro (NO2), nitroso (NO), azo (N2), and carbonyl groups (CO).

Additional groups, called auxochromes, impart water solubility to the

dyestuff and give it affinity for the fiber substrate. These include

amino (NH2), substituted amino (NHR) , hydroxyl (OH), sulphonic (SO3H),

and carboxyl (COOH) groups (35, 68, 132, 143, 196). The color potential

of a molecule also is increased by resonance or the existence of alter-

nating states of distribution of valencies within a ring molecule, bi-

symmetry of molecular geometry, and conjugation. A highly conjugated

molecular system of alternating single and double bonds absorbs in the

visible spectral region, producing color. Compounds with only a few

conjugated or double bonds tend to absorb in the ultraviolet region.

Compounds containing easily excited electrons (i.e., non-bonding or pi (ll)

electrons) absorb longer-wavelength (red region) visible wavelengths
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and tend to appear blue in color, whereas molecules containing less

easily excited electrons (i.e., Sigma single bonds), absorb toward the

blue end of the spectrum and appear red in color (35).

Factors which influence the dyeing and fastness properties of

the dye include size and chemical structure. For example, a small

molecule may be easily absorbed and as equally easily released from the

fiber, whereas a molecule larger than the fiber interstices may not be

able to enter the fiber at all. Fading characteristics also rely par-

tially on chemical constitution. Symmetrical molecules exhibit greater

lightfastness than non-symmetrical dyes, and in vat dyes 1 ightfastness

increases as planer length: breadth (axial) ratio decreases (85, 143).

In addition, a dye with greater molecular weight is generally less

susceptible to fading than a low molecular weight compound (179).

Though fastness is not dependent entirely on specific groups,

certain chemical groups and auxochromes may accelerate fading, such as

hydroxyl (OH), amino (NH2), and thiol (SH) groups and the quinoline ring

(85, 143). Fade-retarding components and chromophores include nitro

(NO;), sulfate (SO^), the carboxyl hydrogen ion, and bromine and chlor-

ine atoms (85, 143).

Dyeing proceeds in three basic steps: 1) migration of the dye

from the solution to the fiber surface, governed by dye concentration,

electrical charge of fiber due to presence or absence of hydroxyl ions

(pH), and temperature of the dyebath; 2) diffusion of the dye molecules

from the surface toward the center of the fiber, which is dependent on

dyestuff molecule size, crystall ini ty of the fiber, number of attractive

sites in the fiber, dye concentration, and number of substituents on the
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dye molecule; and 3) type of chemical bond or physical force which

anchors dye and fiber together (35, 164).

The chemical structure of both the dye and the fiber influence

the method of dye fiber association and, hence, the dyeing characteris-

tics and colorfastness properties of the dye (75). Most dye-fiber bond-

ing associations may be classified into: mechanical, hydrogen bonding,

ionic bonding (salt links), and covalent bonding (35, 59). Vat dyes

rely on mechanical or physical entrapment, whereas direct, acid, basic,

mordant, and reactive dyes are held more by chemical means (34, 59, 69).

Other factors affecting the formation of a dye-fiber unit levelness,

quality, lightfastness, and other dyeing characteristics include acidity

of the dyebath, electrolytes, rate of exhaustion, temperature, degree of

agitation, ratio of fiber weight to volume of dyebath, and dye content

(15, 44, 163, 179).

Museum Lighting Environments

The museum should employ lighting systems which eliminate un-

necessary ultraviolet and infrared radiation by controlling spectral

emission and intensity, and by limiting exposure time. The museum

environment also must provide an inconspicuous, energy-efficient, and

visually comfortable surrounding for the viewer with proper color rendi-

tion, luminance, contrast, modelling, and suitable visibility.

Efficacious lighting systems provide maximum effect with minimum risk,

extend the lifetimes of museum objects, and encourage close study of

exhibits (24, 119, 132, 157, 176).
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Daylight versus Artificial
Light

Daylight is difficult and costly to control, especially at low

illumination levels. Fenestrations and skylights may cause disabling

glare, as well as loss of display space. Psychological considerations

require that daylighted galleries be brighter than those artificially

lighted, especially with the trend in architecture for highly illumin-

ated rooms with glass walls {60, 117, 118, 119, 120, 139, 193).

Direct sunlight reaches intensities of 10,000-100,000 lux and

should never be used to illuminate objects susceptible to actinic

degradation (121, 151). Even diffuse or reflected daylight generally

is too intense and contains too high a percentage of ultraviolet radia-

tion for proper conservation of susceptible objects. Of six light

sources listed by the National Bureau of Standards (NBS) (zenith sky,

sunlight, cool-white deluxe fluorescent, warm-white deluxe fluorescent,

and incandescent) all types of natural lighting possessed the highest

ultraviolet content and resulted in the greatest photochemical damage

in light-exposure research, followed by unfiltered fluorescent, then

unfiltered incandescent, though sometimes warm-white deluxe fluorescent

rated better than incadescent (42, 73, 98, 151, 157, 192). Taylor (191),

comparing relative footcandle hours required to produce equal fade,

reached similar conclusions:

sunlight and skylight 1.00
daylight fluorescent 1.68
tungsten filament 1.80.

Zenith skylight is known to have a greater percentage of ultraviolet

content than any other source listed above (about 25 percent), and
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ultraviolet content percentages decrease in the same order as listed

above. All factors considered, for strictest control of intensity and

spectral distribution, and for lower ultimate installment and operation

costs, total exclusion of daylight has been suggested (57, 101, 120,

139, 150).

Light Sources

Lighting systems may be either general (lighting a whole area

with even illumination) or localized (lighting directed at specific

small areas only). Many museums concerned with maintaining low illumi-

nation levels while achieving adequate visibility use localized lighting

systems (119).

Though the cause of light emission for all light sources is

fundamentally the same (i.e., electronic transition from higher to lower

energy states) there are two main classes of artificial light sources:

1) those which are based on the principle of incandescence (matter

heated to the point of glowing), such as filament lamps, and 2) those

which are based on luminescence (glow caused by an electric discharge

passed through an inter gas, and phosphorescence of powders deposited

inside a tube) such as fluorescent lamps (12, 13, 24, 45, 82, 107).

Emission spectra produced by lighting sources are either con-

tinuous (containing some energy of each wavelength within its range),

or discontinuous (emitting energy in isolated wavelengths or groups of

wavelengths with areas of abrupt discontinuity). Natural and incandes-

cent sources characteristically emit continuous spectra, whereas gaseous

discharge lamps generally emit predominantly discontinuous line or band
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spectra (24, 25, 106, 132). Total radiation emitted by an artificial

lamp depends upon spectral emission, electric power input and pov/er

efficiency, luminous efficacy, and operating efficiency and maintenance

{21, 179, 184).

Incandescent . Incandescent lamps consist of a filament, usually

tungsten, which is located within a glass bulb filled with inert gas

(i.e., argon and nitrogen) or evacuated. The filament is heated to

approximately 2600°C, causing violent molecular agitation and the emis-

sion of light having a long-wave, continuous visible spectrum of warm

colors (reds to yellows). As wattage and, therefore, operating tempera-

ture increases, the wavelength of maximum intensity shifts to higher fre-

quency, the emission shows less red/yellow color, and the light becomes

whiter in appearance (13, 21, 106, 132, 156). Incandescent light emits

4 percent or less ultraviolet radiation and generally contains no wave-

length below 320 nm. As much as 90 percent of emitted energy is in the

infrared region of the spectrum, resulting in excessive heating which

is the major disadvantage of incandescent lamps. A light source emit-

ting a high percentage of invisible light operates at low efficacy,

producing relatively small amounts of visible light for a specific

amount of energy input (21, 24, 34, 45, 57, 150, 160).

Incandescent illumination can cause rapid and uneven heating of

objects, especially when used in display cases. Maximum illumination

value at the beam axis as it reaches an object should not exceed about

125 lux (12 fc.) in showcases containing textile objects (24, 96, 151).

Ventilation and cooling of air in a room or showcase may decrease local
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heating. Other precautions include the use of infrared filters between

the lamp and artifacts, or the use of incandescent lamps with dichroic

reflectors which direct the heat produced in the bulb backward, and

reduce the heat energy emitted toward an object and the amount of dust

collection on the bulb (44, 72, 96, 132).

Advantages of incandescent lighting include sparkle and good

modelling (planes illuminated in such a way as to show form well), ease

of light control, and the possibility of localized accenting. In addi-

tion, incandescent lights are available on moveable track systems (118,

119, 132).

Quartz . Quartz (tungsten halogen) lamps are incandescent lights

which contain halogen gases inside a quartz bulb. The quartz bulb is

necessary because of high operating temperatures. Quartz characteris-

tically is an efficient radiation transmitter in the infrared, visible,

and ultraviolet regions above 210 nm (145, 179). Quartz lamps may emit

a considerable amount of infrared and ultraviolet radiation, and often

require heat- and ultraviolet-absorbing filters (28, 34, 175, 178).

The disadvantages of quartz lighting include high heat output

and ultraviolet content, and the discoloration of the quartz bulb if

touched directly. Advantages include high intensity light output for

small size, low voltage requirements, higher efficacy than regular in-

candescent bulbs, and extremely white light emission due to the presence

of halogen or iodine (24, 25, 34).

Fluorescent . Fluorescent, or electric discharge, lamps consist
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of a thin glass tube lined with fluorescent powders (called phosphors)

and sealed with electrodes at both ends. The lamp is filled with

mercury vapor and a small amount of inert gas. Light from fluorescent

lamps is produced in two ways. When electric energy is passed from

electrode to electrode through the mercury gas, mercury electrons are

driven from orbit and emit energy as they return to stable states. As a

result, the radiation spectrum of mercury is emitted, which consists of dis-

continuous bands high in ultraviolet, and a very small amount of visible

light called luminescence. The ultraviolet energy produced excites the

phosphors, or fluorescent powders, lining the tube which respond to

ultraviolet radiation, particularly at 253.7 nm. The phosphor absorbs

and re-emits the ultraviolet energy in longer wavelength to produce

radiant energy consisting of a fairly continuous spectrum of visible and

ultraviolet light. The emission of light by the phosphors during exci-

tation is called fluorescence, and light emitted by the phosphors after

excitation ceases is called phosphorescence (13, 24, 43, 45, 101).

Though clear window glass characteristically absorbs radiation

below about 320 nm., the glass tube of a fluorescent lamp is so thin

that radiation below about 280 nm. is allowed to pass. Therefore, the

total spectrum emitted from a fluorescent lamp consists of: 1) invisible

ultraviolet from the direct line spectrum luminescence of mercury vapor,

which is about 7 percent of total energy output; 2) 5 to 10 percent of

visible light from the same; and 3) 90 to 95 percent of visible light

from the indirect continuous spectrum of phosphor coating fluorescence

and phosphorescence. A negligible amount of ultraviolet also may be

produced by the phosphor powders (33, 105, 107, 148, 151, 157, 179).
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Different electrode materials, combinations and thicknesses of

phosphors, vapor pressures, current densities, and glass tube composi-

tions yield fluorescent light having different spectral emissions and

different amounts of ultraviolet content (24, 45, 101, 106, 132). Even

though the ultraviolet output may vary as much as a factor of 10 for

different makes of the same type of fluorescent lamp, the level is suffi-

cient enough to justify using ultraviolet filters (106, 132).

High ultraviolet content is the major disadvantage of fluorescent

lighting; it contains ultraviolet energy of such short wavelengths (below

340 nm.) that no other museum lighting source, even sunlight through

glass, allows passage of wavelengths as short. The appreciable amount

of 280-310 nm. ultraviolet radiation from unfiltered fluorescent lamps

may result in substantial fade and deterioration, and life of suscepti-

ble objects is extended up to 100 percent by its removal (79, 107, 132,

193). Because of the presence of discrete, radiant energy bands in

fluorescent lamplight, the spectral emission is different from relative-

ly continuous, spectral emission sources such as incandescent and natural

light; thus, color rendering properties must be carefully evaluated.

The characteristically bluish color of most fluorescent lamplight may

appear too cold at low illumination values, since the eye is adjusted to

natural light which becomes warmer in color as illumination level de-

creases toward sunset. Special fluorescent lamps are available with

relatively low ultraviolet content and warmer color light, which may be

better suited to the needs of museums. Localized, low-illumination

light is difficult to achieve with fluorescent tubes (13, 98, 106, 148,

151, 195).
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The advantages of fluorescent lamps are many. They exhibit

luminous efficacy up to four times greater than incandescent lights

with much less heat for equivalent light output. Fluorescent lamps are

used with current-limiting devices called ballasts which may generate

heat, but total heat radiation is vastly lower than incandescent, which is

desirable for showcase lighting. Fluorescent lamps also have a long

operating life and are ultimately more economical than incandescent,

though initial installation cost may be higher (148, 185). Lamp life

varies from 1,000 to 20,000 hours of operation, though visible and in-

visible radiant energy output efficiency may be decreased by 15 to 25

percent by excess dust accumulation. The first hours of operation may

emit unsteady radiation, which should be considered if a fluorescent

lamp is being used for testing purposes. The tubular shape of fluores-

cent lamps, though unsuitable for local or spot lighting, ensures good

spatial distribution of light. A variety of color tones of fluorescent

lamps are available, though some, due to type of phosphors used in the

coating to obtain a specific color, may be fairly low in luminous effi-

cacy compared to fluorescent lamps in general. The metal-halide lamp

yields improved color-rendering properties obtained by the addition of

metal-halide to the mercury. This modification of the mercury lamp is

still in developmental stages as a museum light source (24, 34, 72, 99,

134, 160, 178).

Filters

A filter may be any material that selectively absorbs or trans-

mitts certain wavelengths of radiant energy (41, 79). Total inc-ident
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radiant energy upon a filtfir is divided i;ito three parts:

Pi = Pt ^ Pa " Pr

where: P.- = total incident power from a light source
reaching a filter

P|. = amount of energy transmitted
Pg = amount of energy absorbed

Pf = amount of energy reflected (41).

Filters which absorb invisible radiation only (i.e., infrared or

ultraviolet) are colorless, but any filter which absorbs a portion of

visible light must be at least slightly colored (41, 79, 179). Both

inorganic and organic materials are used as light filters (i.e., glass,

plastics, and varnishes).

Main considerations in selection of filters for museum light

sources include: the range of wavelength transmitted and filtered and

sharpness at which transmittance falls, filter life (transmittance shift

or embrittlement with age), production of undesirable volatile by-

products during use, and heat resistance or decomposition due to heat

energy from light sources (101).

Infrared filters . Necessary for regular incandescent and quartz

lamps, infrared filters are generally heat-absorbing glasses. Most

plastic filters would be distorted or decomposed by the substantial

infrared heat output of incandescent or quartz lamps. Ordinary glass

used for incandescent bulbs transmits little radiant energy of wave-

length longer than 3500 nm., therefore, the major concern for filtering

purposes is near infrared radiation. Glasses are available from several

sources which efficiently filter near infrared radiation. Dichroic

reflecting filters, available in special incandescent bulbs, transmit
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visible light to the object wnile reflecting infrared energy toward the

back of the bulb where it may be dispersed by moving air. Infrared

filters may reduce heat incident on objects by 11-22°C (20-40°F), but

also may result in a slight loss of candlepower (41, 45, 50, 57, 96).

Colored filters . Eliminating invisible radiation does not make

a susceptible material safe from harm. Visible radiation also causes

fading and deterioration and, in some cases, may be partially filtered

to reduce potential harm (105, 150). Colored filters have been used to

separate the effects of different wavelengths. Research has suggested

that actinic degradation, though affected by many factors, is substan-

tally less under colored filters which absorb toward the blue, high

frequency, end of the visible spectrum (55, 73, 150, 172, 190). A

filter absorbing blue radiant energy would transmit red/orange radia-

tion, thus causing the apparent color of objects viewed beneath it to

shift toward the orange region of the spectrum. Research has revealed

that, in general, filters in the following colors allow progressively

more fading: red, yellow, blue-green, blue, and clear. Several

sources, however, noted greater degradation under the blue than under

the clear filter, due possibly to greater passage of ultraviolet light

under the blue filter (32, 46, 50, 51, 101, 190).

Since filters may produce by-products harmful to organic objects

and a colored filter has the least effect on object color when placed be-

tween lamp and object, colored filters should not be placed between

viewer and object or in close proximity to artifacts (101). Because of

their influence on object color, colored filters are seldom used in
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actual museum display situations.

Ultraviolet filters . Effective ultraviolet filters must absorb

efficiently in the ultraviolet region, remain stable during performance

by dissipating the absorbed ultraviolet energy In such a way as to cause

minimal degradation and color change in the filter, and be resistant to

heat (79, 105). Quartz and fluorescent lamps often require removal of

ultraviolet components. Materials used as ultraviolet filters include:

glasses, polyvinylchloride plastics, acrylic sheets, cellulose acetate

films, and varnishes of various kinds. Several sources recommend rigid

cast acrylic plastics which may be placed above louvers under fluorescent

lamps (50, 105, 121, 132).

Ultraviolet absorbers are compounds or chemicals incorporated

into filters which cause the absorption of ultraviolet radiant energy.

They include substituted benzophenones, titanium dioxide, and ferric

oxide. Many white pigments used in paint (lead, titanium, and zinc)

also absorb ultraviolet energy, and light reflected from paints contain-

ing these pigments is lower in ultraviolet content than direct light (13,

33, 79, 88, 101, 105, 151). There is no strongly-defined cut-off point

between ultraviolet and visible regions of the spectrum. The most effi-

cient filters absorb all ultraviolet and a proportion of wavelengths up

to 400 nm ; these filters are slightly yellow in color, but generally

not enough to affect object appearance noticeably. Padfield (32) and others

suggest that sacrificing a small portion of the energetic, blue component

in museum lighting by using slightly yv^llow filters •:>r eriiployitig vwrmer

color lamps may reduce the degradation of susceptible artifacts.
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Filter life is generally five to ten years (42, 73, 120, 121, 141, 160,

178).

Adaptation, Contrast,
and Glare

Adequate ease of seeing, with respect to necessarily low illumi-

nation levels, may be achieved most effectively when adaptation, con-

trast, and glare are properly controlled. Adaptation is the ability of

the eye to change its sensitivity to brightness, which plays an Important

role in the visibility of objects illuminated at the low levels suggested

for textiles. Because of adaptation, the visual image transmitted to the

retina is not directly related to the amount of light that initiates the

image. The eye adapts to its visual environment and is, therefore, no

judge of absolute illumination level. Response of the retina to illumi-

nation level depends on previous stimulation. The amount of light

pleasing to the eye and necessary for visual acuity is lower if the

illumination level of light falling on the eye preceeding that instant

was low. Apparent brightness of a surface or object is increased when

viewed by the dark-adapted eye. There are limits, however, to the adap-

tation capacities of the eye, and the viewer should be gradually exposed

to progressively lower illumination levels to facilitate gradual adapta-

tion and reduce the discomfort of eyestrain (24, 95, 101, 132, 151, 195).

Since the eye responds automatically to the brightest area in the

visual field, ambiant lighting should be reduced to direct the eye to

accented exhibits (138, 158). .distracting brightness of light sources

may upset adaptation and cause difficulty in visualizing detail, and,

therefore, should be eliminated by concealing lamps with louvers or
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shutters or recessing them in ports so that the viewer is not aware of

their location or placement. Absolute intensity is less important in

determining visibility of displays than provision for proper adaptation

and lighting objects at higher intensities than background illumination

levels (44, 60, 138, 139, 158). Care should be taken to avoid too great

a contrast between object and background illumination, and some diffuse

or reflected light may be employed to prevent impairing visual perform-

ance (24, 178). Background materials should be unobtrusive in color and

glare, as well as low in luminance. Proper contrast is aided by allowing

for adequate space between artifacts, by placing objects at eye level

or slightly below, and by good display of form and proper illumination

of all planes of three-dimensional objects. Deep shadows may be avoided

by correct placement of lamps (120, 138, 158, 176).

Good lighting and modeling for complete costumes may be diffi-

cult to achieve with overhead lighting. If the garment is illuminated

to 50 lux at eye level, for example, the floor level may be 10 lux or

below. Vertical directional lighting, if well -screened, would emphasize

modelling and produce even luminance over the entire length of the object

(117, 118).

The eye also adapts to color. In chromatic adaptation, areas in

the visual field can change the appearance of each other. When a group

of color receptors is subjected to stimulation for a prolonged period of

time, the sensitivity is diminished through decomposition of chemicals

within the receptors and the eye becomes adapted to that color. There-

fore, variation in color or spectral distribution of light sources with-

in the visual field causes a conscious reaction to color difference and
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diminishes the efficiency of vision. All light sources within a room

should have about the same spectral distribution (95, 139, 202).

A distracting problem in low-intensity galleries may be dis-

comfort glare, occurring when a bright area (i.e., a light source or

reflecting background or showcase) in the visual field prevents proper

adaptation and reduces perception of detail. Highly reflecting materials

on floors, ceilings, and backgrounds should be avoided. Internally

lighted showcases produce discomfort or disability glare when reflected

by neighboring showcases. The problem is compounded in galleries con-

taining showcases viewed from more than one side. The effect may be

alleviated by using vertical screens to separate cases, by sloping the

front glass slightly, by concealing light sources in the cases, and by

using as low luminance as is efficacious. The brightness of any exter-

ior object, including floors, ceilings, and windows, should be substan-

tially less than the luminance of artifacts within the case in order to

reduce reflected glare (24). External lighting often is a source of

glare on glass showcase surfaces, but it has the advantages of generally

producing less heat inside the case and creating greater distance be-

tween artifact and light sources, thus decreasing intensity. Because

desk-type, horizontal cases are difficult to light externally without

producing glare from ceiling lamps, lES suggests the use of angled lec-

tern showcases for textiles. Several sources consider internal showcase

lighting most effective, provided ventilation is adequate to remove heat

from lamps, illumination level is kept low, and proper filters are

placed between lamps and artifacts. High-intensity, external lighting

or sunlight should not be used to illuminate unventilated showcases, due
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to a deleterious buildup of heat, called the "greenhouse effect," which

may occur. Objects within the case are warmed by absorbed, high-intensity

light and give off blackbody radiation in longer wavelengths than the

glass can retransmit (60, 96, 132, 134, 150).

Color Temperature and

Rendering

A method of expressing the color of light emitted by a light

source is color temperature, which is based on the principle that a

perfect heat absorber and radiator (i .e. , a theoretical "blackbody") incan-

desces or emits absorbed energy as heat and visible radiation, due to

violent molecular agitation, when it reaches 600°C (873°K) and beyond

(24, 96, 151). Subsequent heating of the blackbody produces energy

emission in progressively shorter wavelengths, ranging from dull red to

bright red (about 900''K), orange to yellow (about SOOO^K), white (about

5000°K), and finally bluish-white (about 9000°K) and sky-blue (about

100,000°K) (Table 1) (24, 51). This principle accounts for the color of the

heated tungsten filament in an incandescent lamp, though the color of

any light source may be compared to blackbody color and specified in

degrees Kelvin (24, 96). Color temperature refers only to amount of

light at various wavelengths produced by a light source and is not

synonymous to intensity of illumination or "warmness" and "coolness" of

color. High color temperature (blue-white) light indicates "cool"

colors, and low color temperature indicates "warm" colors (i.e., red,

orange, yellow) (132, 151).

If a light source is moved closer to an object, the illumination

will increase, but color temperature will remain constant. Electrical
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Table 1

Color
(

Temperature Ranges and Predominant
:olor of Various Light Sources,
Daylight, and CIE Standard

Illuminants

Light source Color temperature ranges Color

incandescent 2400 to 3400°

K

yellowish

fluorescent 2800 to 6500°K yellowish to white

daylight 6500 to 100,000°K white to blue-white

lamp with white light
the color of interna-
tional white point 5500°K white

CIE standard
illuminant A 2854°K orangish, color of

incandescent light

CIE standard
illuminant B 4870°K neutral , color of

direct noon sun-
light

CIE standard
illuminant C eyycK bluish, color of

average daylight

CIE standard
illuminant D65 6500°K color of daylight
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dimmers alter the color of lamplight by decreasing color temperature as

electrical power is reduced. Placing a mesh screen in front of a lamp

reduces intensity, without altering color temperature (151, 178). As

color temperature increases, the proportion of shorter wavelengths in-

creases. A lamp emitting short, visible wavelengths would appear blue

to the eye and be potentially more injurious to dyes and fibers than

lamps with more of the yellow or red component (24, 73, 121). Harris

(21) states that warm color (low color temperature) lamps are potentially

less destructive than cooler color (higher color temperature) lamps, and

probably would cause less fading for equal illumination values (121).

Characteristic color temperature ranges for various light sources are

given on Table 1 (23, 45, 135, 169).

Object color appearance is influenced by lamp color, since

materials can reflect only those rays present in incident light (3, 23,

83, 120,132, 151, 156). Color rendering refers to the effect of a light

source on object color appearance. An efficient museum lighting environ-

ment should provide proper color rendition, which is governed by the

color temperature or spectral distribution of the light source, to en-

hance both the color and appearance of an object (120, 138, 184).

Since many artifacts were made in yellow candlelight (color temperature

about 1700°K), the question often arises as to whether illumination

should imitate color rendering properties of daylight or candlelight

(160). Most sources seem to support the idea that white daylight, with

a color temperature of a cool-white of approximately 4200 to 4500°K, is

ideal (50, 90, 120, 138, 157, 160, 180).

Two light sources may have the same color temperature and yet
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vary in spectral emission, showing evidence of their differences only

when their effects on object color are compared. White light may be

produced by even wavelength distribution, mixing of two complementary

wavelengths, or many other combinations. Some research suggests that

best color rendering properties are achieved by lamps containing all

wavelengths of visible light (24, 120, 134, 151). Other researchers

suggest good color rendering also may be achieved by using three-line

prime color lamps composed of three orimaries, at about 450, 540, and

610 nm. (184). Though fluorescent lamps with good color rendering prop-

erties generally have lower luminous efficiency than most fluorescent,

prime-color lamps achieve relatively high luminous efficiency (132, 184).

The Test Color Method, utilized by CIE, measures and specifies

color rendering properties of light sources in terms of R, color render-

ing index. Color rendering properties increase as R approaches 100 (45,

184). Incandescent lamps rate low on the scale and generally are inade-

quate for portraying accurate color apoearance. Several fluorescent

lamps have superior color rendering properties (72, 117, 118, 178, 180).

There are psychological dimensions to color rendering that may

influence desired color temperature (151). For each color temperature,

there exists a level of illumination at which the color temperature is

considered pleasing to the eye. Daylight color may appear too "cold",

dull, and depressing at the illumination levels suggested for textiles

(i.e., about 50 lux) (82, 83, 101, 118, 132, 151, 156). Crawford (83)

suggests that warmer color temperature, with lower rendition capabili-

ties, may be best for illumination at low light levels, and Mantle (156)

and Harris (118) recommend 2200 to 3C00°K as preferable to higher color
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temperatures. Since low color temperature light usually includes less

high frequency, blue wavelengths than high color temperature light, it

may result in less photo degradation (73, 101, 117).

Though Ruhemann (180) and others suggest that mixing cool fluor-

escent with warm incandescent lamps may lead to unpleasant results,

other sources recommend "warming" fluorescent lamplight with incandes-

cent light and mixing cool -white and warm-white fluorescent lamps (50,

60, 83, 138, 180).

Photochemical Deterioration of
Fibers and Dyes

All textiles will eventually discolor and deteriorate, regard-

less of the environment. Any organic object located in an oxygenated

atmosphere will suffer degradation by photodecomposition when radiation

is absorbed (156). The rate and extent of degradation is influenced by

the intensity and wavelength distribution of the light source and by

other environmental factors such as temperature, relative humidity, and

atmospheric pollutants. There is no threshhold light level below which

fading ceases to occur, and the effects of light are both irreversible

and cumulative (35, 50, 110, 121).

Photochemical or actinic degradation (i.e., deterioration caused

by radiant energy) of dyed textiles may result in either a change in

color or of the fiber substrate. Research has shown that a correlation

often exists between fading and fiber deterioration (51, 52, 145). The

types of color changes that may occur during light exposure include:

one-tone fading or lightening and graying of color without hue change,

off-tone fading or hue change, or an increase in yellowness (23, 179).
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Fibers vary in their susceptibility to deterioration by light

because different configurations of atoms are capable of being affected

by energies of different quanta or wavelengths. Silk, for example, is

the most light sensitive fiber, whereas acrylics and polyesters have

good sunlight resistance (101, 107, 150, 151). The actinic degradation

of cotton may result in the production of oxycelluloses and hydrocellu-

lose, rupture of oxygen bridges, a decrease in the degree of polymeriza-

tion and viscosity, changes in crystall inity, an increase in fluidity

and solubility, an increase in copper number due to formation of carbon-

yl groups, an increase in methylene blue absorption due to formation of

carboxyl groups, shortening of staple length, reduction in abrasion

resistance and a loss of strength, embrittlement, and alterations in

hand (3, 32, 34, 44, 48, 51, 58, 101, 173, 198).

Photodegradation of Fibers

and Dyes

Radiant energy affects dyed cotton cellulose in three ways.

These include direct photolysis, photosensitization (i.e., both photo-

chemical changes caused primarily by ultraviolet and visible radiation),

and thermo-dynamic action (i.e., changes caused primarily by infrared

radiation) (6, 173, 179). A molecule will be directly affected by

radiant energy only if the energy is absorbed, which is possible only

if the radiation has a frequency which closely corresponds to the mode

of vibration within the receptor molecule (46, 85, 99, 101, 175). Ab-

sorption of high frequency, ultraviolet and visible radiation may cause

changes in electronic energy levels of substances, whereas low frequency,

infrared radiation results in an acceleration of molecular vibrations (10).
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Direct photolysis . Direct photolysis is the rupture of inter-

atomic bonds by direct absorption of electromagnetic radiation of suffi-

cient quantum energy {32, 179). The energy of photon bombardment must,

in order for chemical reactions to be initiated, be of sufficient energy

to raise a molecule in the irradiated substance from ground state to

excited state. This amount of energy required, which differs depending

on molecular structure, is called the "activation energy" (98, 194). An

excited molecule may dissipate the absorbed energy by: dissociating,

transferring energy to another molecule at collision, rearranging into

a new substance, giving off light by fluorescence, or producing heat

(105, 143, 151).

Most organic materials absorb in the far and middle ultraviolet

region, which often results in photochemical decomposition. Wavelengths

below 486 nm are capable of breaking the C-C bond in many materials, and

ultraviolet energy is generally capable of breaking the C-H and C-0

bonds (13, 50, 56, 147, 194). Pure cellulose only absorbs light energy

below about 270 or 340 nm and, therefore, cannot be affected directly by

radiation of higher wavelengths. Effects of near ultraviolet radiation

on cellulose are of lesser magnitude than those at 253.7 nm. Since near

ultraviolet of about 300 to 400 nm may be present in light sources in

much greater quantities than shorter wavelength ultraviolet, the near

ultraviolet region may account for more ultimate damage (32, 33, 177,

179).

Photosensitization . Though visible and near ultraviolet radia-

tion has little affect on pure cellulose, it is seldom completely free
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of impurities and additives (42, 73). The reaction of light energy upon

a sensitizer (i.e., impurities or additives such as dyes and finishes),

and the resulting chemical action between the oxidation products and

cellulose, or between the additive and the fiber, constitutes the photo-

chemical action called photosensitization (33, 42, 92, 99, 132).

Impurities, foreign matter, and additives such as dyes, mor-

dants, pigments, and sizings, often increase cellulose deterioration in

the presence of light, since these types of matter may absorb longer

wavelengths of radiation (i.e., near ultraviolet and visible) than the

fiber substrate (32, 132). Though energy must be absorbed to affect

reaction, absorbed energy does not, in all cases, cause photochemical

changes, and much of the absorbed light is dissipated as heat (59, 179).

The sensitizer may suffer decomposition and change the water or oxygen

molecules present to hydrogen peroxide (H2O2) or ozone (Os), which are

capable of oxidizing cellulose, resulting in chain scission and/or rup-

ture of the pyranose ring. Light and oxygen may convert the cellulose

in cotton to oxycellulose, which may further degrade into strongly col-

ored, low molecular weight compounds capable of staining and yellowing

the fibers (32, 42, 99, 132, 179). Bleached cellulose may be more sus-

ceptible to light than raw cotton because impurities which could have a

light filtering effect are removed, and the bleaching process may weaken

the fibers (51).

Thermo-dynamic degradation . Thermo-dynamic energy affects cot-

ton by increasing the vibrational activity of atoms and molecules,

disturbing the chemical bonds, and thus increasing the rate at which
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chemical reactions take place (98, 101, 150, 179). Much of the light

energy reaching the surface of an object is converted to heat. The

temperature of an irradiated object varies with light intensity, ventil-

ation, relative humidity, and object color, with dark areas being about

30 percent higher in temperature than light areas (132, 162, 194).

Though ultraviolet and visible radiant energy cause deterioration mainly

on the surfaces of objects to a distance of only about 154 microns,

infrared heat energy has a greater penetration potential , which may

result in bond cleavage, embrittlement, and strength loss (96, 150).

Research has shown that an increase in temperature during light

exposure may result in faster rates of fading and fiber deterioration.

Feller (96, 98), for example, reported that a 10°C rise in temperature

increased the fading of some fugitive pigments by a factor of 1.3, and

a 12°C rise in temperature doubled the deterioration rate of selected

textiles.

Factors Affecting Deterioration
and Fading

Intrinsic and Extrinsic . The following are recognized factors

influencing the fading and/or deterioration of textile objects:

Environmental Factors;

Atmospheric composition and contaminants (oxygen, pollutants)

Temperature
Relative humidity
Air currents
Microbial and enzymatic attack
Mechanical stress

Radiant Energy:
Spectral distribution per wavelength
Light intensity
Exposure time



57

Fabric Characteristics:
Fiber type

Thickness of yarn, yarn twist, weave construction

Presence of foreign substances or additives

Type of dye (chemical constitution) and dyeings conditions (dyebath

additives, pH, concentration)
Type of dye-fiber bond
Physical state of dye in substrate
Aftertreatments
Spectral sensitivity and absorption characteristics of substrate and

dye (luster, reflectance)
Deterioration already occurred (42, 45, 46, 108, 110, 145, 146, 162,

(188).

Environment condition and radiant energy characteristics are extrinsic

elements and should be controlled in a museum environment. Intrinsic

elements, or the nature of the medium, are generally beyond museum con-

trol (44).

Light Source . Though isolated portions of the spectrum present

in light sources are known to cause specific effects on materials, there

is no simple relation between spectral distribution of radiant energy

emitted by light sources and fading or deterioration rate (110). The

wavelength causing most damage varies depending upon the dye (172, 190,

195). In general, however, for equal number of wavelengths of radiant

energy, as wavelength decreases through infrared, visible, and ultra-

violet regions, fading and deterioration increase (45, 117, 118, 132,

172, 195). Ultraviolet and blue rays are potentially more injurious

than longer wavelength red or infrared (50, 59). Absorbed ultraviolet

radiation, containing photons of energies, is potentially more potent

than absorbed visible or infrared energy (150, 195). It is generally

accepted that, relatively, ultraviolet radiation is the most potentially

harmful component of daylight, sunlight, and museum lighting sources.
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though each of the three regions alone may cause fading and ultraviolet

elimination does not ensure the safety of objects (42, 50, 123).

Light sources vary in their spectral emission characteristics,

some emitting light with a greater proportion of short wavelengths than

others. Ultraviolet radiation, however, is often present in light

sources in low or negligible amounts (150). It has been established,

therefore, that fading is principally due to visible radiation in most

lighting situations (50, 139, 190, 192). The visible region is respon-

sible for causing photochemical damage to many textile impurities or

additives, and may cause indirect damage to the fabric itself. All dyes

absorb and reflect radiant energy in the visible spectral region,

reflecting most energy in the region of the color of the object (3, 154).

All substances, except those most intensely colored, are capable of

absorbing some of all visible wavelengths. Even bright blues absorb

some radiant energy within the blue region. Ultraviolet and infrared

energy also may be absorbed by dyes, finishes, impurities, and the fiber

substrate (73, 192).

Fading often is caused primarily by a narrow band of wavelengths

near the absorption maximum of the dye (50, 85, 162). A bright blue

dye would absorb maximally in the red region, reflecting the blue. A

red dye, absorbing high energy blue wavelengths would be expected to,

and often does, fade more readily than a blue dye (172). Many factors

are involved, however, and it is important to consider the fiber-dye-

environment system as a whole. An object's color is not a fail-safe

guide in determining the spectral region causing greatest damage (73,

145, 195).
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McLaren (73) states that short wavelengths, if absorbed, can

cause fading of a dye if longer wavelengths do so. Every dye-fiber sys-

tem seems to possess a threshhold wavelength, such that only shorter

wavelengths, if absorbed, can cause photochemical activity. This criti-

cal wavelength is toward the red end of the spectrum for fugitive dyeings

and toward the blue end for fast dyeings. Therefore, fugitive dyes may

be faded by a greater range of wavelengths than fast dyeings, and,

therefore, primarily by visible light (73, 172, 176, 179). For the

faster dyes, visible light above the blue region may be inactive even

if absorbed, and ultraviolet and short wavelength visible radiant energy

may be the main factors in fading (33, 105, 190, 192). Thomson (195)

states, "The more resistant a material is to deterioration by light, the

more its eventual deterioration will be caused by ultraviolet rather

than by visible light" (42, 195). Filtering out ultraviolet radiation

may, therefore, benefit relatively light-stable objects more than fugi-

tive ones. Some organic dyestuffs fade so rapidly that removal of

ultraviolet has almost no retarding effect on fading (79, 101, 150).

Both ultraviolet and infrared energy are invisible; they contribute

nothing to the visibility of objects and, consequently, should be eli-

minated (42, 44, 132, 141, 160, 193, 195).

Total luminous energy (visible light intensity times exposure

time) is more operative in affecting fading rate and deterioration than

spectral distribution of the light source or spectral characteristics of

energy absorbed by the object. Lowering illumination intensity reduces

the number of photons per second reaching the surface of the illuminated

object, thereby decreasing the potential rate of fade and deterioration
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(110, 121, 151, 192).

Light intensities allowing adequate visibility and comfortable

viewing will be affected by the size of the object, the reflection fac-

tor, color and brightness contrast between object and background, adap-

tation time for the eye, and individual visual differences. If the eyes

were not previously excited by strong light, and if the background were

recessive in color and brightness, illumination levels as low as 10 to

30 lux (about 1 to 3 fc.) can be acceptable for comfortable, adequate

viewing (42, 120, 132, 141, 151, 157). Detail discrimination suffers

below about 10 lux (approximately 1 fc.) and color discrimination below

about 32 lux (3 fc). The generally accepted limit for the most suscep-

tible organic materials, including leather, feather, textiles, dyestuffs,

and hair is 50 lux (about 5 fc), while other sources recommend a minimum

of about 125 to 160 lux (12 to 15 fc.) (72, 97, 101, 117, 118, 138).

Due to variation in individual vision and other conditions,

levels cannot be fixed at exactly the same number of lux for all museums

(42). Electrical dimmers allow systems to fluctuate with changing needs

and to keep a relatively constant service value of illumination, which

may vary due to dust collection and lamp depreciation over time (119,

121). Devices which limit exposure time, according to the reciprocity

principle, reduce total energy reaching specimens as well. Rooms or

showcases which illuminate only when a viewer walks into the area or

operates a switch which automatically turns off, reduce unnecessary ex-

posure time (151, 172). Special curtains which eliminate light and

ultraviolet radiation may be placed over cases, to be moved and replaced

by the viewer (44, 151). Especially sensitive objects, or those showing
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noticeable fade should be transferred to storage to reduce exposure

time (151).

Atmospheric Conditions . The influence of temperature on hydro-

scopic materials is interdependent with relative humidity (98). Relative

humidity directly affects moisture content of natural fibers (194). Most

dyes, especially on cotton, show an increase in fading with an increase

in relative humidity and moisture content (53, 73, 110). Total elimina-

tion of moisture causes almost total elimination of fading in many

cases. Though fibers and dyes differ in their sensitivity to moisture,

the increase in rate of fading on cotton is often as much as 50 percent,

with an increase in relative humidity from 45 to 50 percent to 80 to 90

percent (53, 73, 122). Therefore, relative humidity ideally should be

kept low for textiles, though not low enough to cause dehydration and,

thus, mechanical embrittlement (73, 101). Considering all factors (i.e.,

microbial growth, textile embrittlement, fading, and deterioration rates)

Leene (33) suggests a relative humidity range of 45 to 65 percent for

museums containing textile objects, and a temperature range of 19 to 22°C.

Due to their interdependence of temperature and relative humidity

(i.e., relative humidity increases with a decrease in temperature and

vice versa) it is difficult to establish a direct pattern of effect on

fading of either one separately. Relative humidity is known to affect

fading more than temperature and, thus, should be more carefully con-

trolled. Especially at high temperatures, high relative humidity encour-

ages fading. Only in the presence of moisture may hydrogen peroxide be

formed to bleach and/or deteriorate dyes and fabric (33, 91, 106).



62

Lighting objects with lamps emitting large quantities of heat

can raise the temperature of the object, thus lowering the effective

relative humidity in the immediate area (73). The end results, even in

a museum with carefully controlled climate, may include dimensional

change, dehydration of the fabric, or increase in fading (119). A

reduced fading rate may, in some cases, also result from lowered relative

humidity, but extreme localized heating is not justified by this possi-

bility (33, 73, 162).

Temperature and relative humidity fluctuation cause dimensional

changes in absorbant objects, such as textiles, resulting in a mechani-

cal strain on the object and ageing (96, 119, 152, 194). When light ad-

justments are made for day and night conditions, especially if heat-

producing, high-intensity lighting is used, temperatures vary twice

daily and produce inverse fluctuations in relative humidity, causing

climactic fatiguing (150, 178, 194). In time, old and progressively

ageing textiles become increasingly embrittled and inelastic until a

point is reached when the object can no longer accommodate the daily

dimensional changes (194).

The presence of oxygen in the atmosphere is an important factor

in both deterioration and fading. Radiant energy often causes cellulose

to become sensitive to oxidation, perhaps as a result of modifications

in the glycosidic linkage, so that the linkage becomes susceptible to

rupture by oxidation. Oxygen atmospheres usually accelerate actinic

degradation, but direct photolysis of cellulose also can occur in the ab-

sence of oxygen, especially with high-intensity, ultraviolet radiation

(89, 179, 190). An evacuated or inert environment, however, is not
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recommended for all objects, since oxygen is essential to the stability

of some chemical structures (32, 51, 73).

Gases found in polluted atmospheres, such as sulphur dioxide

(SO2), ozone (O3), carbon dioxide (CO2), also may increase fading.

Museum climate control systems should eliminate these pollutants effec-

tively without the production of ozone, which is a by-product of some

climate control systems (101).

Cotton is most stable in neutral condition. When irradiated in

the presence of oxygen, it often suffers a reduction in pH, and is more

susceptible to photodecomposition. Photochemical damage also increases

the susceptibility of cellulose to damage by weakly alkaline solutions

often used in wet-cleaning (42, 51, 73, 132).

Fading Rate . The rate of photochemical decomposition of cellu-

losic materials diminishes with time. This may be due to a screening

effect in which the uppermost layer of a substance absorbs damaging

radiant energy, forming a protective barrier, and because penetration

of textiles by visible light energy occurs to a very shallow depth. The

same is true for fading rate of dyes; the rate of fading decreases as

the dye is progressively destroyed (73, 132, 172). Possibly, this re-

sults because only accessible dye particles are faded by light energy,

causing a progressive increase in lightfastness when most small particles

have been affected. In one test, the most rapid fading occurred within

the first two hours of accelerated light exposure (by quartz 360-watt

"Uviarc" lamp at two feet distance), the fading rate being nearly con-

stant for 130 subsequent hours under the same exposure. Therefore, the
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point at which fading of different dyes is compared is important because

of this inconstant rate of fading (134, 153).

A fading rate curve may be constructed by plotting increase (or

decrease) in reflectance at the wavelength of maximum absorption as a

function of exposure time (145). A fugitive dyeing generally will yield

a curve displaced to the left, a dye of higher fastness will yield a

curve displaced to the right (Figure 3), but the shape of the curves

should be about the same (50, 152, 188).

As depth of dyeing or dye concentration increases, fading de-

creases (54, 101, 133). In addition, discoloration of a substrate gen-

erally results in a more or less uniform change in reflectance at all

wavelengths, whereas fading of a colorant yields a greater reflectance

change at selected wavelengths only (135).

Off-tone fading of a dye may affect fading rate curves by caus-

ing a reddening of water-soluble dyes and a blueing of water-insoluble

dyes (108). Slight color increase in the early stages of the fading rate

curve is sometimes noted and may be due to heat energy breaking down

large aggregated dye particles to smaller particles, causing an apparent

rise in depth of color and counteracting the effects of fading (108).

Individual fading curves consist of reflectance spectra of the

dye before and after light exposure, as shown in Figure 4 (59). Berger

and Brackes (59) state that a reduction of relative reflectance at the

region of maximum absorption and a slight increase in reflectance at the

region of minimum absorption is the general activity of dyes faded by

light. An individual spectral curve, or some indication of color of

artifacts before exposure may be obtained without relying simply on
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Fading Rate Curves for a Fugitive Dyeing
and a Fast Dyeing
(Taken from 50, 188).
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.
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memory of original artifact color (172).

Quantitative Tests

Copper Number

Aldehyde or potential aldehyde groups are formed in cellulose as

a result of acid hydrolysis and oxidative degradation. As the number of

aldehyde groups in degraded cellulose increase, its reducing power also

increases. The copper number test is a quantitative method for deter-

mining the reducing power of cellulose and, hence, the extent of degrada-

tion (34, 35).

Pure, undegraded cellulose reduces .2 to .3 grams of copper

(Fehling's solution) from the cupric to the cuprous state, resulting

in a copper number of 0.02 to 0.03. Degraded cellulose may attain a

copper number as high as 14 (32, 34).

K/S Value

The Kubelka-Munk equation defines the relationship between

spectral reflectance data and dye concentration. K/S values may be used

to express color change quantitatively. The function is as follows:

S 2R

where: R = decimal reflectance
S = coefficient of scatter (constant)
K = coefficient of absorption (proportional to concen-

tration of dye)

.

Since the region of maximum absorption exhibits the greatest change

in reflectance with a change in color, the percentage reflectance at point

of maximum absorption, read from the spectral reflectance curves of
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colored samples, is used to obtain K/S value data.



PLAN OF PROCEDURE

The purpose of this study was to evaluate and compare the amount

of color change and deterioration which occurred on undyed and dyed cot-

ton samples exposed to incandescent, fluorescent, and quartz lighting

systems. Samples were exposed to incandescent lamps with and without

infrared filters, to fluorescent lamps with and without ultraviolet fil-

ters, and to quartz lamps with and without infrared and ultraviolet

filters. After light exposure, the samples were evaluated for color

change with a Gary 219, recording, ultraviolet/visible spectrophoto-

meter. Chemical degradation was ascertained by determining changes in

copper number.

Questionnaire

Prior to selecting the lighting systems to be evaluated in this

study, the following letter and questionnaire were mailed to 80 textile

museums and galleries in the United States (see Appendix A). The purpose

of the questionnaire was to determine the types and brands of lighting

and filter assemblies and general environmental conditions that were be-

ing used or that had been used by museums. The lamps and filters eval-

uated in this study were those listed most often by museums as the types

of lamps used in textile exhibits or planned for use in the immediate

future.

69
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November 24, 1977

Dear

I am a graduate student in textile science and conservation at Kansas

State University. I feel it is important to produce a thesis which is

timely and useful to industry and/or organizations. As my field is

conservation, feedback from museums will help me to investigate timely

problems and produce a viable manuscript which has potential for actual

contributions to the field. The topic I am investigating is museum

lighting, more specifically, the effects of available fluorescent lights

and filters on the fading of certain historical dyes on textiles.

Response from you would be greatly appreciated. A short questionnaire

is provided as well as a stamped, addressed return envelope.

Thank you.

Sincerely,

Janet Bowman
Clothing/Textiles/ Interior Design

Department
Justin Hall

Kansas State University
Manhattan, Kansas 66506
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Experimental Fabric

The fabric selected for this research was an 80 x 80, bleached,

cotton print cloth (Style #400) manufactured by Testfabrics, Inc. All

samples were scoured in a 0.5 percent solution of AATCC Detergent 124

prior to dyeing. Randomly selected samples were dyed with three natural

dyes. Within each dye type, samples, measuring 5 x 8.25 cm., were

randomly assigned to the six lighting/filter systems. Undyed (control)

cotton samples also were prepared for light exposure.

Application of Natural Dyes

The three dyes chosen for this research, turmeric, madder, and

indigo, are all vegetable in origin. They represent three of Bemiss'

"five material colors", and three of the major dye application classes

(i.e., direct: tumeric; mordant: madder; and vat: indigo). Turmeric

was known to be a fugitive dye, whereas indigo and madder were reported

as having greater lightfastness. All three were commonly used through-

out history to dye both cotton and wool textiles and are well repre-

sented in current museum textile collections. The procedures given by

Weigle (43), Adrosko (3), and Colour Index (9) were used in applying the

turmeric, madder, and indigo dyes, respectively.

Turmeric

To extract the turmeric dyestuff, 14 g of turmeric powder was

placed in a cheesecloth bag, soaked overnight in one liter of distilled

water, and then boiled gently for one hour. After removing the cheese-
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cloth bag containing the turmeric powder, the level of the bath was

brought up to the one liter mark with distilled water. Cotton samples

weighing 50 g were entered into the dyebatch (pH 5.8) and then the

temperature was raised slowly to 60°C. After dyeing for 45 minutes at

60°C, the samples were removed, rinsed thoroughly^ and allowed to dry at

room temperature.

Madder

Prior to applying the madder dyestuff, the cotton samples,

weighing 50 g, were pre-mordanted by the alum (aluminum potassium sulfate)

and tannic acid procedure described by Adrosko (3). The samples were

each wetted out thoroughly -in distilled water, and im-

mersed in an alum mordanting solution containing 113.4 g alum and 28.35

g sodium carbonate dissolved in 15.14 liters of distilled water. Samples

were gently boiled for one hour. After remaining in the solution over-

night, the samples were rinsed in distilled water, and placed in a bath

containing 28.35 g of tannic acid dissolved in 15.14 liters distilled

water. The samples were soaked in the tannic acid solution overnight

and then rinsed briefly. The alum mordanting process was repeated and

excess moisture was removed from samples just before dyeing.

A 15.14 liter dyebath was prepared using 56.7 g of madder which

had been soaked in distilled water overnight and strained through cotton

muslin. After adjusting the pH to 6.0, the cotton samples were immersed

in the dyebath, the temperature was raised to 35°C, and the dyeing was

continued for one hour. The dyebath was cooled to room temperature and

the samples were allowed to soak overnight. The dyeing process was
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repeated twice more using 85.05 g of madder for the second and third

dyebaths. After dyeing, the samples were rinsed well and allowed to

dry at room temperature.

Indigo

Colour Index (9) Method IV (hydrosulphite vat) was used to dye

the cotton samples, weighing 50 g, with indigo. The first vat contained

18 ml of sodium hydroxide (30 percent), 4 g of sodium hydrosulphite,

7.78 ml liquid indigo, and 2.653 liters of distilled water. Samples

were entered into the dyebath set at SO^C and dyed for 20 minutes. The

second dye vat was similar to the first, except 9.98 ml of indigo was

used and the temperature was maintained at 80°C for 20 minutes while the

samples were immersed.

The dyed samples were allowed to oxidize in air for 30 minutes

between dyeings and were scoured at the boil in a 0.5 percent solution

of AATCC detergent after the second vat.

Lamps and Filters

The incandescent lamp/filter systems used in this study were an

unfiltered, Sylvania 300-watt, spot-lamp and a Sylvania, 300-watt, PAR/

56, dichroic filter, heat reflecting lamp with Corning Noviol glass

heat (infrared) filter. The filter was placed 30.5 cm. below the lamp.

The quartz systems used were an unfiltered, Sylvania, Super Q

Clear, Tungsten Halogen Quartz, 250-watt lamp and the same lamp with

both Corning Noviol glass infrared filter and Rohm and Haas rigid LIF3,

Plexiglass, ultraviolet filter. The infrared filter was placed 30.5 cm.
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below the lamp and 716 cm. above the ultraviolet filter to reduce the

amount of heat reaching the ultraviolet filter.

The fluorescent systems used were an unfiltered, Verilux F40T12-

VLX, 40-watt, 40-inch, medium, bi-pin lamp and Verilux F40T12VLX/M, low

ultraviolet, 40-watt, 40-inch, medium bi-pin lamp with a Rohm and Haas

rigid UF3, °lexiglass, ultraviolet filter. Tables 2 and 3 list the

spectral power distributions per lumen per 10 nm for the lamps and the

manufacturer's transmittance specifications for the two filters used in

the study. Appendix B lists lamp and filter suppliers.

Exposure

Lamps and filters were arranged in plywood light boxes, painted

matte black to reduce light reflection, so that light intensity reached

150 footcandles (1615 lux) at sample level (see Figure 5). The tempera-

ture and relative humidity of the ambient air during light exposure were

21 ± 1°C and 65 ± 2 percent, respectively. To ensure constant light in-

tensity, all lamp and filter systems were preaged for 100 hours prior to

sample exposure as suggested by the manufacturers. IJndyed and dyed cotton

samples were assigned randomly to lamp and filter systems, and positions in

light exposure boxes. Berger and Brackes (59) reported a 50 percent fading

of certain dyed textiles after 50,000 footcandle hours of exposure; there-

fore, 60,000 footcandle hours of exposure was selected as the maximum ex-

posure time in this study, which was achieved by an exposure period of 400

hours with light intensity at 150 footcandles for each lamp and filter

system. Samples were exposed to alternating periods of 100 clock hours

(15,000 fc hours) of light and 68 hours of darkness. Black bulb tempera-

tures recorded are listed in Table 4.
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Table 2. Spectral Power Distribution of Incandescent, Quartz,
and Fluorescent Lamp:5 (Microwa tts/sq. cm ./lO nm/lumen) (T£iken partially
from Thomson (34)).

Wave- Low IR

length, Incan- Incan- Low UV
nm descent descent Quartz Fluorescent Fluorescent

250 1

250 1

270 2

280 3
290 4

300 6

310 7 20
320 3 8

330 4 1 10 4
340 5 2 13

350 6 7 16 2

360 8 9 19 3+44 1+8
370 10 10 22 6 6
380 13 13 26 9 15
390 16 16 31 12 17

400 20 18 36 15 19+45
410 24 19 41 19+87 20+3
420 28 20 47 23 25
430 33 22 53 28 35
440 39 27 59 33+150 54+135

450 46 29 65 36 75
460 52 32 71 38 94
470 59 37 78 40 106
480 66 41 84 40 108
490 74 49 91 40 110

500 82 57 98 40 no
510 90 68 105 41 108
520 99 72 112 47 107
530 107 84 119 57 107
540 117 101 125 85+113 108+111

550 127 105 132 124 112
560 137 118 138 165 119
570 146 120 145 197 126
580 156 123 151 210+39 134+35
590 166 125 157 205 142
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Table 2. (Continued)

Wave- Low IR

length, Incan- Incan- Low UV

nm descent descent Quartz Fluorescent Fluorescent

500 176 126 153 184 150

610 185 127 169 156 155

620 195 128 175 124 158

630 205 130 181 99 165

640 217 130 187 74 165

650 225 133 192 55 172

660 234 135 198 39 175

670 244 137 202 30 136

680 252 137 206 22 102
690 261 138 210 17 81

700 270 140 214 13 67
710 278 147 217 10 58
720 285 152 221 8 50
730 295 142 224 6 40
740 302 130 228 4 30

309 110 231 2 20

750 316 234 1 12
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Table 3. Spectral Range Distribution Transmitted through Lamp
Filters.

Percentage Transmittance

Wave- Wave-
length, Corning length. Rohm and Haas
nm Noviol nm UF3

680-720 60 370-380

720-760 45 380-390 1

760-800 33 390-400 3

800-840 20 400-410 22

840-880 12 410-420 60

880-920 7 420-430 85

920-960 3 430-440 91

960-1000 1 440-450 97

1000-1040 1

1040-1080 1

1080-1120 1

1120-1160 1

1160-1200 1

1200-1240 1
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Table 4. Black Panel Temperatures for Lamp and Filter Systems
During Sample Exposure.

Lamp and Filter System Black Panel Temperature, °C

Fluorescent
Unfiltered 26.5
Filtered 25.5

Quartz
Unfiltered 36.5
Filtered 32.0

Incandescent
Unfiltered 35.0
Filtered 32.0
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Color Measurement

After 0, 100, 200, 300, and 400 clock hours of light exposure,

reflectance readings (380-480 nm) were taken on the undyed and dyed cot-

ton samples with a Gary 219 uv/visible recording spectrophotometer with

a D55 illuminant. Percentage reflectance readings at X^ax for each

sample were converted to K/S values according to the procedures outlined

by Judd (23, 108, 109, 110). Scanning parameters were recorded on the

original reflectance spectra, presented in Appendix C.

Quantitative Tests

Copper Number

Copper number was determined on the undyed and dyed cotton sam-

ples before exposure and after 400 clock hours of exposure. Because of

the small sample size available for testing, Skinkle's (40) micro-copper

number procedure was adapted for this test.

Calculations were based on the bone dry weight of the test

samples. The following solutions were prepared for the test:

Solution A: 100 g of crystalline copper sulfate dissolved in 1 liter
of distilled water,

Solution B: 50 g of sodium bicarbonate and 150 g of sodium carbonate
dissolved in 1 liter of distilled water.

Solution C: 100 g of ferric alum (ammonium sulfate) and 49 ml of con-
centrated sulfuric acid in 1 liter of distilled water.

Solution D: 0.5 percent sodium carbonate solution (5 g of sodium car-
bonate in 1 liter of distilled water.

Solution E: 1 liter of two normal sulfuric acid solution (55 ml of con-
centrated sulfuric acid in 1 liter of distilled water), and
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Solution F: .04 normal potassium permanganate solution (128 g of
potassium permanganate in 1 liter of distilled water).

Micro samples, weighing 0.25 g each, were placed in individual

test tubes. A boiling mixture of 0.5 ml of solution A and 9.5 ml of

solution B was poured over each sample. The test tubes were covered

and placed in a boiling water bath for two hours. The contents of each

test tube were filtered by suction through a fritted glass filter, then

washed with 10 ml each of solution D and distilled water. Filtrate and

washings were discarded. Next, 5 ml of solution C, and 5 ml of solu-

tion E were poured over the residue. The ferric acid and alum washings

were titrated with solution F.

In addition, 5 ml of unused solution C and 5 ml of unused solu-

tion E were titrated as a control.

The following equation was used to determine copper number:

Copper Number = [(S x C x (D/A))] x 100

where: A = dry weight of sample (moisture regain 3.178
percent for undyed specimens, 3.199 percent
for turmeric-dyed specimens, 3.306 percent
for madder-dyed specimens, and 3.178 percent
for indigo-dyed specimens),

B = true volume of KMnOi, (volume of KMnO,, used
for blank was subtracted from volume of
KMnOu used for specimen),

C = normality of KMnO^ (0.0395), and
D = milliequivalent weight of copper (0.0636).



PRESENTATION OF DATA WITH DISCUSSION

Museum lighting systems should be selected carefully so that the

characteristics of the art objects are enhanced and viewing is facili-

tated, while minimizing the rate of deterioration. Textiles as well as

many other types of art objects are susceptible to color change and

deterioration during light exposure. The rate of change is determined

by the light sensitivity of the object being illuminated, in addition to

environmental factors such as the spectral characteristics and intensity

of the light source.

Evaluated in this study were the effects of six lighting systems

on the rate and extent of colorfastness and deterioration of cotton

fabric dyed with selective natural dyestuffs commonly found on historic

textiles. The three dyes selected for this study were turmeric, madder,

and indigo; undyed cotton samples also were evaluated. Samples were

exposed for 0, 100, 200, 300, and 400 clock hours to the following

lighting/filter systems:

incandescent lamp, unfiltered,
incandescent lamp, filtered with an infrared filter,
quartz lamp, unfiltered,
quartz lamp, filtered with ultraviolet and infrared filters,
fluorescent lamp, unfiltered, and
fluorescent lamp, filtered with an ultraviolet filter.

After light exposure, color change was assessed by comparing the

K/S values of the light-exposed cotton samples with those from unexposed

84
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controls. K/S values were calculated based on the percent reflectance

at the point of maximum absorption read directly from the reflectance

spectra. Actinic degradation of the cotton substrate was evaluated by

the copper number test. The undyed and dyed cotton samples were evalu-

ated for both color change and actinic degradation after 0, 100, 200,

300, and 400 clock hours of exposure to the six lighting/filter systems.

The Kansas State University Computing Center performed the

statistical analysis for this study. The Synscort IV-and-a-half program

developed and copyrighted by Whitlow Computer Systems, Inc., in 1977 was

used.

Null Hypotheses

1. There was no significant difference in color change among

the undyed samples exposed to incandescent, fluorescent, and quartz

lighting/filter systems.

2. There was no significant difference in color change among

the undyed samples exposed to unfiltered and filtered lighting/filter

systems.

3. There was no significant difference in color change among

the undyed samples exposed to light for 0, 100, 200, 300, and 400 clock

hours.

4. There was no significant difference in color change among

the dyed samples exposed to incandescent, fluorescent, and quartz

lighting/filter systems.

5. There ^as no significant difference in color change among

the dyed samples exposed to unfiltered and filtered lighting/filter
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systems.

5. There was no significant difference in color change among

the dyed samples exposed to light for 0, 100, 200, 300, and 400 clock

hours.

7. There was no significant difference in color change among

the samples dyed with turmeric, madder, and indigo.

8. There was no significant difference in deterioration among

samples exposed to incandescent, fluorescent, and quartz lighting/filter

systems

.

9. There was no significant difference in deterioration among

samples exposed to unfiltered and filtered lighting/filter systems.

10. There was no significant difference in deterioration among

samples exposed to light for and 400 clock hours.

11. There was no significant difference in deterioration among

undyed samples and samples dyed with turmeric, madder, and indigo.
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Eva-luation of Color Change

Table 5 shows the K/S values of the undyed cotton samples before

and after 100, 200, 300, and 400 clock hours of exposure to the six

lighting/filter systems evaluated in this study. The mean differences

in the K/S values after each exposure level also are presented in Table

5. The sources of variation were lighting (three levels: incandescent,

quartz, and fluorescent), filter type (two levels: unfiltered and fil-

tered), and exposure time (five levels: 0, 100, 200, 300, and 400 clock

hours of exposure). The analysis of variance results showed that filter

type and exposure time had a significant effect on the extent of color

change which occurred in the undyed samples during light exposure. Light

source and all second order interactions were not significant (see Table 6).

According to the Duncan's Multiple Range Test, a significantly

greater amount of change occurred in the cotton samples exposed to the

unfiltered light sources than to those samples exposed to the filtered

light sources (see Table 7). However, even though the mean differences

in the K/S values for the unfiltered and filtered treatments differed

significantly, the actual differences were small, and there were no

perceivable differences in the color of the cotton samples before and

after light exposure (i.e., no significant yellowing)

.

As exposure time increased, the mean differences in K/S values

for the undyed samples progressively increased (see Table 8). Results

from the Duncan's Multiple Range Test showed no significant change in

the mean differences in K/S values between 100, 200, and 300 clock

hours of exposure. The 400 hour exposure level produced K/S values dif-
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Table 5. Differences in K/S Values cif Undyed Cotton Samples
after Light Exposure.

K/S Value

Exposure
Time, Clock After Differences in

Light Filter Hours Initial Exposure K/S Values

Incandes-

cent Unfiltered 100 0.0294 0.0330 0.0036
200 0.0294 0.0314 0.0020
300 0.0294 0.0327 0.0033
400 0.0294 0.0334 0.0040

Filtered 100 0.0294 0.0330 0.0036
200 0.0294 0.0330 0.0036
300 0.0294 0.0330 0.0036
400 0.0294 0.0334 0.0040

Quartz Unfiltered 100 0.0294 0.0323 0.0029
200 0.0294 0.0327 0.0023
300 0.0294 0.0330 0.0036
400 0.0294 0.0354 0.0060

Filtered 100 0.0294 0.0323 0.0029
200 0.0294 0.0361 0.0067
300 0.0294 0.0333 0.0039
400 0.0294 0.0354 0.0060

Fluores-
cent Unfiltered 100 0.0294 0.0317 0.0023

200 0.0294 0.0310 0.0015
300 0.0294 0.0310 0.0015
400 0.0294 0.0337 0.0043

Filtered 100 0.0294 0.0317 0.0023
200 0.0294 0.0334 0.0040
300 0.0294 0.0350 0.0056
400 0.0294 0.0344 0.0050
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Table 6. Analysis of Variance (ANOVA) for K/S Value Differences
for Undyed Samples.

Source of
Variation

Degrees of
Freedom

Sum of
Squares F PR>F*

Light (L) 2 0.00000553 4.37 0.0675

Filter (F) 1 0.00000672 10.52 0.0173*

Exposure Time
(E) 3 0.00001212 6.39 0.0269*

L X F 2 0.00000174 1.38 0.3219

L X E 6 0.00000687 1.81 0.2445

F X E 3 0.00000601 3.17 0.1066

Error 6 0.00000380

Total 23 0.00004280

*Significant groups at the 0.05 level of confidence are marked
with an asterisk.
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Table 7. Duncan's Multiple Range Test for K/S Value Differences
in Filter Type Associated with Undyed Cotton Samples.

Filter Mean Grouping*

Unfiltered 0.004267 A

Filtered 0.003208 B

*Non-significant groupings at the 0.05 level of confidence are
marked with the same letter.

Table 8. Duncan's Multiple Range Test for K/S Value Differences
of Exposure Time Associated with Undyed Cotton Samples.

Exposure Time Mean Grouping*

100 Hours 0.002933 A

200 Hours 0.003533 A

300 Hours 0.003600 A

400 Hours 0.004883 B

*Non-significant groupings at the 0.05 level of confidence are
marked with the same letter.
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ferences that were significantly greater from all other exposure levels,

but these differences were not visually perceptible.

K/S values for the undyed cotton samples at each exposure level

are shown in Figure 6. The curve indicates the greatest change in K/S

values after 100 hours of exposure and between 300 and 400 hours of ex-

posure.

The K/S values and differences for the cotton samples dyed with

turmeric, madder, and indigo after 0, 100, 200, 300, and 400 hours of

exposure to the six lighting/filter systems are shown in Table 9. Ana-

lysis of variance results showed the significant independence variables

to be dye type, light source, filter type, and exposure time (see Table

10). However, the following second order interactions also were signi-

ficant: dye type X light source, dye type X exposure time, and light

source X exposure time.

The Duncan's Multiple Range Test performed on K/S value differ-

ences for dye type showed that indigo exhibited the greatest amount of

color change, whereas madder had the least amount of color change (see

Table 11). These values correlate with visual difference perceived in

the samples after light exposure. In general, the samples dyed with

indigo and turmeric exhibited a greater color loss (i.e., a greater

change in K/S values) after 400 hours of exposure than did the madder-

dyed samples (see Figure 7). This effect was expected since mordanted

dyes generally exhibit less color loss during light exposure than more

fugitive and unmordanted dyes.

Among the three light sources, the differences in K/S values for

the incandescent lamps were not unlike those which were recorded for
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Effect of Light Exposure on K/S Value Differences
of Undyed Cotton Samples
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Table 10,. Analysis of Variance (Anova) for K/S Value Differences
for Dyed Samplles

Source of Degrees of Sum of
Variation Freedom Squares F PR>F*

D 2 3.27970436 1811.79 0.0001*

L 2 0.02032353 11.23 0.0018*

F 1 0.03129168 34.57 0.0001*

E 3 0.79718515 293.23 0.0001*

D X L 4 0.04781139 13.23 0.0002*

D X F 2 0.00243503 1.35 0.2971

D X E 6 0.39434697 72.62 0.0001*

L X F 2 0.00078419 0.43 0.6582

L X E 6 0.09152847 15.85 0.0001*

F X E 3 0.00296560 1.09 0.3899

D X L X F 4 0.00369122 1.02 0.4359

D X L X E 12 0.09942328 9.15 0.0003*

D X F X E 6 0.00447319 0.82 0.5729

L X F X E 6 0.01193936 2.20 0.1157

Error 12 0.0108612

Total 71 4.79886465

*Signi ficant groups at the 0.05 level of confidence are marked
with an asterisk.
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Table 11. Duncan's Multiple Range Test for K/S Value Difference
of Dye Type Associated with Dyed Samples.

Dye Mean Grouping*

Turmeric 0.390917 B

Madder 0.035417 C

Indigo 0.545125 A

*Non-significant groupings at the 0.05 level of confidence are
marked with the same letter.
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Effect of Light Exposure on K/S Values of the Undyed
and Dyed Cotton Samples.
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fluorescent lamps, whereas the mean differences in K/S values for the

quartz lamp was significantly different from both the incandescent and

fluorescent lamps (see Table 12). The quartz lighting/filter systems

caused the least amount of color change and incandescent caused the

greatest.

According to Duncan's Multiple Range Test applied to the mean

differences in K/S values for the unfiltered and filtered lighting sys-

tems, the filters significantly reduced the extent of color change in

the dyed cotton samples during light exposure (see Table 13 and Figure

8). Thus, the filters reduced the amount of harmful radiation reaching

the dyed samples and the extent of fading.

A significant increase was observed in mean K/S value differ-

ences after 100, 200, 300, and 400 hours of exposure (see Table 14),

thus a significant change in color occurred after each exposure level.

Though the change from 200 to 300 exposure hours was unexpectedly large,

the general trend indicates a reduction in fading rate from 100 to 200,

and 300 to 400 exposure hours. This trend was expected since most dyes

show a reduction in rate of fade throughout exposure (59, 76). The

small amount of change from 300 to 400 hours may indicate that the dye

had reached approximately 50 percent fade after 50,000 footcandle expo-

sure hours, as predicted fay Berger and Brackes (59), after which rate of

fade generally decreases.

The significant second order interaction of light source X dye

type (see Table 15) indicated that turmeric samples faded least under

incandescent light and most under fluorescent. Madder and indigo sam-

ples faded most under incandescent lamps, madder fading least under
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Table 12. Duncan's Multiple Range Test for K/S Value Difference
for Light Source Associated with Dyed Samples.

Grouping* Mean Light

0.343667

0.302583

0.325208

Incandescent

Quartz

Fluorescent

*Non-significant groupings at the 0.05 level of confidence are
marked with the same letter.

Table 13. Duncan's Multiple Ranae Test for K/S Value Difference
for Filter Type Associated with Dyed Samples.

Grouping* Mean Filter

0.344667

0.302972

Unfiltered

Filtered

*Non-significant groupings at the 0.05 level of confidence are
marked with the same letter.
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Table 14. Duncan's Multiple Range Test for K/S Value Difference
for Exposure Time Associated with Dyed Samples.

Grouping* Mean Exposure Time

A 0.438278 400 Hours

B 0.409500 300 Hours

C 0.267444 200 Hours

D 0.180056 100 Hours

*Non-significant groupings at the 0.05 level of confidence are
marked with the same letter.
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Table 15. K/S Value Differences for Light Source and Dye Type
Associated with Dyed Samples.

Light Source

Dye Type Incandescent Quartz Flourescent

Turmeric 0.36837500 0.38725000 0.41712500

Madder 0.07037500 0.02962500 0.006250000

Indigo 0.59225000 0.49087500 0.552250000

Ranking Mean

Indigo under Incandescent
Indigo under Fluorescent
Indigo under Quartz

0.5923
0.5523
0.4909

Turmeric under Fluorescent
Turmeric under Quartz
Turmeric under Incandescent

0.4171

0.3873
0.3684

Madder under Incandescent
Madder under Quartz
Madder under Fluorescent

0.0704
0.0296
0.0063



104

fluorescent and indigo fading least under quartz. The fast dye, madder,

was expected to fade most under light sources containing high energy

Invisible radiation, since fast dyes often do not respond to low energy

invisible radiation as readily as do fugitive dyes (195). In this

respect, the results of this study did not reveal trends published in

the current literature. Incandescent lamps, showing greatest K/S value

differences in Table 12, caused greatest amount of color change for two

dyes in Table 15, whereas quartz, showing least K/S value difference in

Table 12, caused greatest amount of color change for no dyes in Table 15.

Each dye showed progressively greater total color change from

100 to 400 hours (see Table 16); indigo and turmeric, the most fugitive

dyes in this study, showed greater K/S value difference after 100, 200,

and 300 hours of exposure than the least fugitive dye, madder.

K/S value differences for exposure time X light source (see Table

17) showed greatest total color change for all light sources after 400

hours of exposure, except for quartz which showed greater total change

after 300 hours. The incandescent lighting/filter treatments caused

greatest increments of color change at 100 and 400 hours of exposure, with

fluorescent showing greatest change at 200 hours, and quartz greatest

change at 300 hours. Quartz showed least K/S value difference after

100, 200, and 400 hours of exposure.

Figure 9 shows actual K/S means for each light source, filtered

and unfiltered, plotted against exposure time. The reversal of curves (i.e

quartz and incandescent showing least color change at 100 and 200 hours

of exposure and fluorescent showing least change at 400 hours) may indi-

cate the reason for the non-significance of light source X filter type X
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Table 16. K/S Value Difference for Exposure Time and Dye Type
Associated with Dyed Samples.

Exposure Time

Dye Type 100 Hours 200 Hours 300 Hours 400 Hours

Turmeric 0.

Madder 0.

Indigo 0.

24933333

01450000

27633333

0.35000000

0.01800000

0.43433333

0.

0.

0.

,45016667

,04966667

,72866667

0.51416667

0.05950000

0.74116667

Ranking Mean

Indigo, 400 Hours
Indigo, 300 Hours
Turmeric, 400 Hours
Turmeric, 300 Hours
Indigo, 200 Hours
Turmeric, 200 Hours
Indigo, 100 Hours
Turmeric, 100 Hours
Madder, 400 Hours
Madder, 300 Hours
Madder, 200 Hours
Madder, 100 Hours

0.7412
0.7287
0.5142
0.4502
0.4343
0.3500
0.2763
0.2493
0.0595
0.0497
0.0180
0.0145
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Table 17. K/S Value Difference for Exposure Time and Light
Source Associated with Dyed Samples.

Exposure Time

Light Source 100 Hours

Incandescent 0.17683333

Quartz 0.14100000

Fluorescent 0.22233333

Ranking

Incandescent, 400 Hours
Quartz, 300 Hours
Quartz, 400 Hours
Incandescent, 300 Hours
Fluorescent, 400 Hours
Fluorescent, 300 Hours
Fluorescent, 200 Hours
Incandescent, 200 Hours
Fluorescent, 100 Hours
Quartz, 200 Hours
Incandescent, 100 Hours
Quartz, 100 Hours

Mean

0.4888
0.4385
0.4358
0.4175
0.3902
0.3725
0.3158
0.2915
0.2223
0.1950
0.1768
0.1410

200 Hours 300 Hours 400 Hou

0.29150000 0.41750000 0.48883333

0.19500000 0.43850000 0.43583333

0.31583333 0.37250000 0.39016667
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exposure time and light source X filter type.

The ANOVA for K/S value differences of the undyed samples indi-

cated that light source was a non-significant independent variable at

the 0.05 level of confidence. Therefore, null hypothesis 1 was accepted.

Since filter type and exposure time caused significant color change,

null hypotheses 2 and 3 were rejected. Unfiltered systems caused great-

er color change than filtered systems, indicating that the filters were

effective in blocking spectral radiations which can cause a decrease in

K/S value (increase in color or yellowing) of undyed cotton samples.

Exposure time results showed the greatest amount of change in K/S

values from to 100 and from 300 to 400 clock hours of exposure.

The second ANOVA (K/S value differences for dyed samples) indi-

cated that all four independent variables (i.e., light source, filter

type, exposure time, and dye type) were significant; null hypotheses 4,

5, 6, and 7 were rejected. Light source was a significant variable, with

incandescent and fluorescent causing significantly greater color change

than quartz. Filtered systems caused significantly less color change

than unfiltered systems, indicating the effectiveness of the filters

used in this study. Exposure time was a significant independent varia-

ble, each level (100, 200, 300, and 400 clock hours) causing a signifi-

cant and progressive decrease in color. Each dye type was significantly

different from the others, indigo fading most and madder least.

Evaluation of Copper Number

Main sources of variation for copper number were dye type (four

levels: undyed, turmeric, madder, and indigo), light source (three
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Table 18. Differences in Copper Number Values of Dyed and
Undyed Samples after Light Expo;sure.

Coppler Number

DifferenceInitial After 400
Hours in Copper

Dye Light Filter Initial Exposure Number Values

Undyed Incan- Unfiltered 0.0904 0.2210 0.1306
descent Filtered 0.2010 0.1106

Quartz Unfiltered 0.3015 0.2111
Filtered 0.2412 0.1508

Fluores- Unfiltered 0.3417 0.2513
cent Filtered 0.2613 0.1709

Turmeric Incan- Unfiltered 0.1005 0.2210 0.1205
descent Filtered 0.2110 0.1105

Quartz Unfiltered 0.3115 0.2110
Filtered 0.2412 0.1407

Fluores- Unfiltered 0.3718 0.2713
cent Filtered 0.2713 0.1708

Madder Incan- Unfiltered 0.1206 0.2412 0.1206
descent Filtered 0.2311 0.1105

Quartz Unfiltered 0.3216 0.2010
Filtered 0.2512 0.1306

Fluores- Unfiltered 0.4120 0.2914
cent Filtered 0.3115 0.1909

Indigo Incan- Unfiltered 0.1105 0.2311 0.1206
descent Filtered 0.2210 0.1105

Quartz Unfiltered 0.3115 0.2010
Filtered 0.2512 0.1407

Fluores- Unfiltered 0.3920 0.2815
cent Filtered 0.3015 0.1910
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Table 19. Analysis of Variance (Anova) for Copper Number Dif-
ferences for Dyed and Undyed Samples.

Source of
Variation

Degrees of
Freedom

Sum of
Squares F PR>F*

D 3 0.00006736 0.85 0.5163

L 2 0.04892697 923.61 0.0001*

F 1 0.01945982 734.70 0.0001*

D X L 5 0.00137246 8.64 0.0095*

D X F 3 0.00006734 0.85 0.5164

L X F 2 0.00667860 126.07 0.0001*

Error 6 0.00015892

Total 23 0.07673147

*Significant groups at the 0.05 level of confidence are marked
with an asterisk.
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levels: incandescent, quartz, and fluorescent), filter type (two

levels: unfiltered and filtered, and exposure time (two levels: and

400 hours).

The actual copper number data and copper number differences for

the six lighting/filter systems and after and 400 hours of exposure

for the dyed and undyed cotton samples are presented in Table 18. Ana-

lysis of variance for the copper number difference data (see Table 19)

showed light source and filter type as the significant independent

variables. Dye type X light source and light source X filter type were

the significant second order interactions. All other independent vari-

ables and second order interactions were non-significant at the 0.05

level of confidence.

Differences in copper number values for light source are pre-

sented in Table 20 and show that all three light sources showed signifi-

cant change. Fluorescent systems showed greatest difference and incan-

descent least. Though this ranking is opposite to the K/S value differ-

ence ranking for light source, the fluorescent and quartz lamp/filter

systems were expected to produce greater deterioration than incandescent

due to presence of high energy invisible radiation.

Filter type also was a significant independent variable, as

presented in Table 21. Unfiltered lighting/filter systems caused great-

er change in copper number than filtered systems, indicating the filters

were effective in blocking harmful invisible radiation from the samples,

as was expected.

The second order interaction of light source X dye type (see

Table 22) was significant and showed all dyes suffering greatest change
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Table 20. Duncan's Multiple Range Test for Copper Number
Difference for Light Source Associated with Undyed and Dyed Samples.

Light Mean Grouping*

Incandescent 0.116800 A

Quartz 0.173362 B

Fluorescent 0.227387 C

*Non-significant groupings at the 0.05 level of confidence are
marked with the same letter.

Table 21. Duncan's Multiple Range Test for Copper Number
Difference for Filter Type Associated with Dyed and Undyed Samples.

I^ilter Mean Grouping*

Filtered 0.144042

Unfiltered 0.200992

*Non-significant groupings at the 0.05 level of confidence are
marked with the same letter.
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Table 22. Duncan's Multiple Range Test for Copper Number
Difference for Light Source and Dye Type Associated with Dyed and
Undyed Samples.

Dye Type

Undyed

Turmeric

Madder

Indigo

Ranking

Light Source

Incandescent Quartz

0.12060000

0.11550000

0.11555000

0.11555000

0.18095000

0.17585000

0.16580000

0.17085000

Mean

Madder under Fluorescent
Indigo under Fluorescent
Turmeric under Fluorescent
Undyed under Fluorescent
Undyed under Quartz
Turmeric under Quartz
Indigo under Quartz
Madder under Quartz
Undyed under Incandescent
Madder under Incandescent
Indigo under Incandescent
Turmeric under Incandescent

0.2412
0.2363
0.2211

0.2111

0.1810
0.1759
0.1709
0.1658
0.1206
0.1156
0.1156
0.1155

Fluorescent

0.21110000

0.22105000

0.24115000

0.23625000
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in deterioration under fluorescent lighting systems and least under in-

candescent systems. For dyed samples, the madder deteriorated most and

the turmeric least under fluorescent lighting systems. Since fast dyes

generally respond less to low energy radiation than do fugitive dyes,

and since fluorescent lighting exhibits minimal low energy infrared but

considerable high energy ultraviolet radiation, this result was expected.

Samples exposed to incandescent lamps showed only minute variance in

copper number differences, undyed samples exhibiting greatest deteriora-

tion. Undyed samples also showed greatest difference in copper number

for quartz lighting systems. Perhaps the masking effect of the dyes

protected the dyed samples to some extent, allowing greater substrate

damage to the undyed samples; the amount of energy expended to cause

color change in the dyes could not be used to deteriorate the substrate.

Light source X filter type was another significant second order

interaction (see Table 23). Unfiltered systems for incandescent, quartz,

and fluorescent lamps showed greater change in copper number differences

than the three filtered systems. Fluorescent, unfiltered, showed great-

est deterioration and incandescent, unfiltered, least (see Figure 10).

These results were anticipated, since lamps with harmful invisible

radiation removed should produce less deterioration on objects than

lamps with infrared or ultraviolet rays present.

The third ANOVA, copper number differences for dyed and undyed

samples, revealed light source and filter type as significant indepen-

dent variables, therefore, null hypotheses 8 and 9 were rejected. Since

light source was a significant independent variable, copper number

showed significant differences in the third Anova among incandescent.
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Table 23. Duncan's Multiple Range Test for Copper Number
Difference for Light Source and Filter Type Associated with Dyed and
Undyed Samples.

Filter Type

Light Source

Incandescent Quartz Fluorescent

Unfiltered

Filtered

Ranking

0.12307500

0.11052500

0.20602500 0.27387500

0.14070000 0.18090000

Mean

Fluorescent, Unfiltered
Quartz, Unfiltered
Fluorescent, Filtered
Quartz, Filtered
Incandescent, Unfiltered
Incandescent, Filtered

0.2739
0.2060
0.1809
0.1407
0.1231
0.1105
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fluorescent, and quartz lighting/filter systems. Fluorescent systems

produced greatest deterioration and incandescent least.

All unfiltered systems caused greater deterioration on dyed and

undyed samples than filtered systems, indicating filter effectiveness in

blocking harmful invisible radiations. Null hypothesis 10 was rejected

since there was a significant difference in deterioration from to 400

exposure hours. Since dye type was a non-significant independent vari-

able, null hypothesis 11 was accepted; no dye deteriorated significantly

more than any other.
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Figure 10

Effect of Light Exposure on Copper Number of
Undyed and Dyed Cotton Samples Exposed to

the Six Lighting/Filter Systems.



SUMMARY AND CONCLUSIONS

Evaluated in this study were the effects of six lighting/filter

systems on the colorfastness and deterioration of cotton fabrics dyed

with turmeric, madder, and indigo. A survey sent to museums aided in the

selection of lighting systems that are currently being used or are being

considered for use in museum environments. Undyed and dyed cotton samples

were exposed for 0, 100, 200, 300, and 400 clock hours and evaluated for

color loss by calculating differences in K/S values. Chemical deteriora-

tion was assessed by the copper number test.

Results showed that the filtered lighting/filter systems caused more

color loss and deterioration than the unfiltered systems. These results

indicate that the amount of harmful, invisible infrared and ultraviolet

radiation can be reduced by the use of specially-designed lamps and filters,

reducing color loss and deterioration of textile objects.

All independent variables (i.e., dye type, light source, filter type,

and exposure time) produced results anticipated, but light source variation

indicated incandescent and fluorescent systems caused greatest color change

with quartz causing the least amount of change. Incandescent systems

were expected to cause the least color loss since the only invisible

radiation produced by these light sources was low energy infrared.

Light source X filter type was a non-significant interaction for K/S

value differences, therefore no conclusions could be drawn concerning

the desirability of one filtered lighting system over another.
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Light source also had a significant effect on the extent of deteriora-

tion in the dyed and undyed cotton samples, with fluorescent lighting

causing the greatest deterioration and incandescent the least. The light

source X filter interaction was significant, indicating unfiltered fluores-

cent and unfiltered quartz systems caused greater deterioration than

filtered fluorescent and filtered quartz systems. Incandescent, filtered

and unfiltered, caused the least deterioration, with filtered incandescent

causing less than unfiltered.

K/S values and copper number differences for the independent

variable light source revealed different rankings. Incandescent systems

caused the greatest amount of color change and quartz caused the least,

whereas fluorescent systems caused greatest deterioration and incandescent

caused the least. Literature in the field of textile conservation generally

indicates a direct proportion between deterioration and color change.



RECOMMENDATIONS

Much of the research regarding the effectJof radiant energy on

dyed textiles has been performed under accelerated conditions. Tests

performed under "normal" museum conditions, though necessarily time-

consuming, would perhaps be more accurate in establishing fading/deteri-

oration rates and relative hazards under varying conditions (98, 182).

Because quartz lighting is being included in some museum lighting design,

its exact and relative long-term effects should be evaluated.

Further research is needed to compile accurate and complete lists

of relative susceptibilities of materials and expected color change and

deterioration rates of specific dye-fiber systems under various lighting

and atmospheric conditions. This information might provide a practical

guide for determining optimum exposure and display conditions of arti-

facts (101).

The exact relationship between fading and deterioration is in-

fluenced by many conditions. Research leading to the estimation of

deterioration rate by fading rate for specific dye-fiber-environment

systems may, however, provide a practical document for museum personnel.
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List of Contacts for Questionnaire

Eva Burnham Staehli
Royal Ontario Museum
100 Queen's Park Crescent
Toronto, Ontario, Canada M55 206 *

Ruth M. Boyer
Lowie Museum of Anthropology
171 Crest View Drive
Orinda, California 94553 * by Geoffrey I. Brown

Karen Clark
Department of Conservation
New York State Historical Association
Cooperstown, New York 13325 *

Paul A. Clifford
Duke University Museum of Art
6877 College Station
Durham, North Carolina 27708 *

Elizabeth Ann Coleman
Brooklyn Institute of Arts and Sciences
The Brooklyn Museum
188 Eastern Parkway
Brooklynn, New York 11238 *

Joseph V. Columbus
National Gallery of Art
5th and Constitution Avenue, N. W.

Washington, D. C. 20550 * by Edwin K. Robinson (Engineer) National
Museum of History and Technology

Barbara Conklin
American Museum of Natural History
Central Park West at 79th Street
New York, New York 10024 * by Lisa Whittall (Textile Projects Director)

Vera B. Craig, Curator
Textiles and Costumes
National Park Service
Harper's Ferry, West Virginia 25245

Phyllis Dill ion

Metropolitan Museum of Art
Fifth Avenue at 82nd Street
New York, New York 10028

Response received.
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Irene Emery
The Textile Museum
2320 South Street, N. W.

Washington, D. C. 20008

Margaret Fikioris
The H. F. DuPont Winterthur Museum
Winterthur, Delaware 19735 *

Peggy Gilfoy
Indianapolis Museum of Art
1200 West 38th Street
Indianapolis, Indiana 46208

Amy Harvey
Science Department
Stevens College
Columbia, Missouri 65201

Mary Hunt Kahlenberg
Los Angeles County Museum of Art
5905 Wilshire Boulevard
Los Angeles, California 90036

Dena S. Katzenberg
Baltimore Museum of Art
Art Museum Drive
Baltimore, Maryland 21218 *

Mary Elizabeth King
The Museum of Texas Tech University
P.O. Box 4499
Lubbock, Texas 79409

Ernst Kitzinger
Busch-Rei singer Museum
Harvard University
Cambridge, Massachusetts 02138

Christa Mayer-Thurman
The Art Institute of Chicago
Michigan Avenue at Adams Street
Chicago, Illinois 60603

Ann Van Rosevelt
Kelsey Museum of Medieval and Classical Archaeology
434 South State Street
Ann Arbor, Michigan 48104 *

Terry Salmon, Curator Textile Division
Museum of Fine Arts
Boston, Massachusetts 02115 *
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Milton F. Sonday
Cooper-Hewitt Museum of Decorative Arts
9 East 90th Street
New York, New York 10028 *

Lynn Springer
The St. Louis Art Museum
Forest Park
St. Louis, Missouri 53110 *

Dorothy G. Shepherd
Cleveland Museum of Art
11150 East Boulevard
Cleveland. Ohio 44106 * by Anne E. Wardwell, Assoc. Cur.

Joanne Olian, Costume Curator
Museum of the City of New York
Fifth Avenue at 103rd Street
New York, New York 10029 *

Richard E. Ahlborn
Curator, Division of Ethnic and Western Cultural History
Museum of History and Technology
Washington, D. C. 20550 * by Edwin K. Robinson

J. Herbert Cal lister
Wadsworth Atheneum
600 Main Street
Hartford, Connecticut 05103 *

Peter W. Cook, Chief Curator
Bennington Museum, Inc.

Bennington, Vermont 05201 *

Abbott Cummings
Society for the Preservation of New England Antiquities
141 Cambridge Street
Boston, Massachusetts 02114 * by Richard Nylander

Sandra Oownie
Pennsylvania Historical and Museum Commission
Box 1026
Harrisburg, Pennsylvania 17120

Aileen Ryan Earnest
George Walter Vincent Smith Art Museum
222 State Street
Springfield, Massachusetts 01103
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Conover Hung, Director/Curator
DAR Museum
1776 D Street, N. W.

Washington, D. C. 20006 *

Elizabeth Jachimowicz
Chicago Historical Society
Clark Street and N. Avenue
Chicago, Illinois 60614

Katherine R. Koob
Asst. Curator of Textiles
Merrimack Valley Textile Museum
800 Massachusetts Avenue
North Andover, Massachusetts 01845

Mildred B. Lanier
Colonial Williamsburg Foundation
Williamsburg, Virginia 23185 *

Jill McAllister
Minneapolis Institute of Arts
2400 Third Avenue, South
Minneapolis, Minnesota 55404

Rachel Maines
Center for the History of American Needlework
5660 Beacon Street
Pittsburgh, Pennsylvania 15217

Christine Meadows
Mount Vernon
Mount Vernon, Virginia 22122

Gillian Moss
Pascack Historical Society
Park Ridge, N. J.

Mary K. Wool ever
Henry Ford Museum
Dearborn, Michigan 48121 * by Pat Tice, Curatorial Ass't.

Sandra Shaffer Tinkham
Library of Congress
101 8th Street, S. E.

Washington, D. C. 20003

Richard H. Randall, Director
Walters Art Gallery
600 North Charles Street
Baltimore, Maryland 21201 *
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Mary Riordan
Cranbrook
500 Lone Pine Road
Bloomfield Hills, Michigan 48103

Seymour Slive, Director
Fogg Art Museum
Harvard University
Quincy Street
Cambridge, Massachusetts 02138 * by M. B. Cohn

Joanne S. Brandford
Curator of Textiles
Peabody Museum
Harvard University
11 Divinity Avenue
Cambridge, Massachusetts 02138 *

James W. Van Stone
Tield Museum
Roosevelt Road at Lake Shore Drive
Chicago, Illinois 60605

Minor W. Thomas, Jr., Chief Curator
Farmer's Museum and Fenimore House
Cooperstown, New York 13326

Imelda G. DeGraw, Textiles Curator
Art Museum
100 West 14th Avenue Parkway
Denver, Colorado 80204

Franny Golden, Textiles Conservator
Institute of Art
5200 Woodward Avenue
Detroit, Michigan 48202 *

Jane Terry Bailey, Curator
Dennison Museum
Dennison University
Granville, Ohio 43023 *

Ross El Taggart, Senior Curator
Nelson Gallery of Art
4525 Oak Street
Kansas City, Missouri 54111

Lea Rosson, Ass't. Curator
Kansas University Museum
Kansas University
Lawrence, Kansas 56045 * by Helen Foresman Spencer Museum, KU
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Phillip Curtis, Curator
Newark Museum
43-49 Washington Street
Newark, New Jersey 07101

Alan Shestack, Director
Yale Art Gallery
Till Chapel Street
Box 2005 Yale Station
New Haven, Connecticut 06532

Vladimir Haustov
Artweave Textile Gallery
924 Madison Avenue
New York, New York 10021

Dorothy Tricarico
Design Lab, Fashion Institute of Technology
27th Street and 7th Avenue
New York, New York 10001 * by Marty Bronson

Florence L. May, Curator of Textiles
Hispanic Society
615 West 155th Street
New York, New York 10032 *

Frederick J. Dockstader, Director
Museum of the American Indian
Broadway at 155th Street
New York, New York 10032 * by William F. Stiles, Senior Curator

Paul J. Smith, Director
Museum of Contemporary Crafts
29 West 53rd Street
New York, New York 10019

Arthur Drexler, Director, Architecture and Design
Museum of Modern Art
11 West 53rd Street
New York, New York 10019

Douglas Newton, Director
Museum of Primitive Art
15 West 54th Street
New York, New York 10019

Cathryn J. McElroy
Flagler Museum
Whitehall Way
Palm Beach, Florida 33480 * by Charles B. Simmons, Executive Director
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Claudia N. Medoff
University Museum
33rd and Spruce Street
Philadelphia, Pennsylvania 19174 *

Eleanor Fayerweather, Curator of Textiles
Rhode Island School of Design/Museum
224 Benefit Street
Providence, Rhode Island 02903

Mildred J. Davis, Curator of Textiles
Valentine Museum
1015 East Clay Street
Richmond, Virginia 23219

D. Graeme Keith, Curator
De Young Memorial Museum
Golden Gate Park
San Francisco, California 94118 * by Anna Bennett

Bertha P. Dutton, Director
Museum of Navajo Ceremonial Art
704 Camino Lejo
Santa Fe, New Mexico 87501 * by Nora Fisher, Museum of International

Folk Art

Stewart Peckham, Curator-in-Charge
Museum of New Mexico
P.O. Box 2087
Santa Fe, New Mexico 87501

Willis F. Woods, Director
Art Museum
Volunteer Park
Seattle, Washington 98112 *

Virginia I. Harvey, Curator
Costume/Textile Study Center
University of Washington
Seattle, Washington 98195 *

Sterling D. Emerson, Director
Shelburne Museum U.S. Route 7

Shelburne, Vermont 05842 * by Kenneth E. Wheeling, Director

Jane C. Nylander
Old Sturbridge Village
Sturbridge, Massachusetts 01566 * by D. L. Colglazier, Conservator
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Elizabeth P. Benson
Center for Pre-Columbian Studies

Dumbarton Oaks
1703 32nd Street, N. W.

Washington, D. C. 20007 *

Richard C. Nylander, Curator
SPNEA-Harrison Gray Otis House

141 Cambridge Street
Boston, Massachusetts 02114 *

Joseph Peter Spang III, Curator
Historic Deerfield, Inc.

Route 5

Deerfield, Massachusetts 01342

Elsie McGarvey, Curator of Textiles
Phildadelphia Museum of Art
Parkway at 26th Street
Box 7646
Philadelphia, Pennsylvania 19101 *

Eva Burnham, Chief, Textiles Division, Conservation Services
National Museums of Canada
Canadian Conservation Institute
1030 Innes Road
Ottawa, Ontario, Canada KIA 0M8 *
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Suppliers for Material:; Used

Rohm and Haas ultraviolet filter UF3: Rohm and Haas Distributor
Westlake Plastics Company
West Lenni Road
Lenni, Pennsylvania 19052

Corning infrared filter Noviol 0: Corning Distributor
Fred S. Hickey
9601 River Street
Schiller Park, Illinois
60176

Sylvania incandescent and quartz lamps and
incandescent fixtures: Sylvania Distributor

Endacott Lighting
309 Moro

Manhattan, Kansas 66502

Verilux fluorescent lamps: Verilux
35 Mason Street
Greenwich, Connecticut
06830

Quartz fixtures: Bill Scaletty Lighting
Associates

4102 Truman Road
Kansas City, Kansas 64055

Dyes: Straw into Gold
5509 College Avenue
P. 0. Box 2904
Oakland, California 94618

Fabric: Testfabrics, Inc.

P. 0. Drawer
200 Blackford Avenue
Middlesex, New Jersey
08846
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Light sources used by museums for the display of textile artifacts

must be chosen judiciously to reduce fading and deterioration by ultra-

violet, infrared, and visible radiation during light exposure. Two

light sources used by museums are incandescent and fluorescent lamps.

Incandescent lamps emit high levels of infrared radiation in addition

to visible radiation; fluorescent lamps generally emit substantial

quantities of ultraviolet radiation. Quartz lamps, which are used by

museums to a lesser extent, emit high levels of infrared and a substan-

tial amount of ultraviolet radiation.

This study assessed the effects of six lighting/filter systems

on the color change and deterioration of undyed cotton and cotton dyed

with three natural, vegetable dyestuffs (i.e., turmeric, madder, and

indigo), commonly found on historic textiles. The lighting/filter

systems evaluated were unfiltered incandescent, low infrared (dichroic

reflector) incandescent with an infrared filter, unfiltered quartz,

quartz with infrared and ultraviolet filters, unfiltered fluorescent,

and fluorescent with an ultraviolet filter.

Color change was determined by calculating differences in K/S

values from reflectance spectra after 0, 100, 200, 300, and 400 clock

hours of light exposure. Deterioration of the cotton substrate was

evaluated by the copper number test.

The filtered lighting systems produced significantly less color

change and fiber deterioration than did the filtered lighting systems.

The incandescent and fluorescent lighting/filter systems produced

significantly greater color change than did the quartz lighting/filter



systems.

Results from the copper number test showed significant differences

among the six lighting/filter systems in the extent of deterioration

on the undyed and dyed cotton fabrics, with fluorescent causing the

greatest amount of deterioration and incandescent the least. The light

source by filter interaction was significant for copper number as evidenced

by the unfiltered fluorescent and unfiltered quartz lighting systems

causing greater deterioration than did the filtered fluorescent and

filtered quartz lighting systems. In addition, unfiltered and filtered

incandescent lighting systems caused the least amount of deterioration,

with filtered incandescent cuasing less than the unfiltered.


