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CHAPTER I
INTRODUCTION

1.1. Bayes Theorem

Given a set of elements that can be categorized according to two
different criteria, say sample outcomes Aj on one hand, and states of

nature (hypothesis or parameter values) Bi on the other hand.

It is assumed that an event A, may occur as a result of any of the

J
states described by the Bi hypotheses. The prior probability of these
K
B. states are P(B,) (i = 1, ..., K) and their sum X P(B,) =1, i.e.
i i 1=1 i

the states {Bi} are mutually exclusive and exhaustive.
We assume that the conditional probabilities are known, that is,
the probability that an event A, occurs, given that the hypothesis Bi

3

is true, is called the conditional probability
P(Aj]Bi) i=1, ..., K.

We are interested in knowing: How does the probability of state
Bi change when the additional information is available that the event
Aj has actually happened? Bayes Theorem will provide an answer to this
gquestion.

The problem is to find the conditional (posterior) probability
P(Bi|Aj).

The joint probability of the compound event (Aj’ Bi) is

P(Aj’Bi) = P(8)) P(Alei)’ or

(1.1)

= P(Aj) P(Bi[Aj),



the right hand side being a consequence of the multiplicative law of
probabilities.

Using the second form we have the alternative form

P(A.,Bi)

(1.2)
P(Aj)

P(BilAj) =

The decomposition rule for compound events allows the denominator

to be expressed in the form

K
P(a;) = kz P(A;,B,), (1.3)

1

and using the first expression of (1.1) in equations (1.2) and (1.3) we

have
P(B,|4,) = Tyt B L U 1Y (1.4)
3 K K Marginal
kzl P(Bk)P(Aj]Bk) kzl P(B)P(A;[B)
Formula (1.4) is known as Bayes Theorem.
To summarize:
P(Bi) = Prior probability of the hypothesis Bi before
experimentation
P(Alei) = Conditional probability for a given sample re-
sult Aj under the specified hypothesis Bi
P(Bi]Aj) = Posterior probability of the hypothesis Ei after

the outcome Aj has been cbserved.



In the literature most often the Aj represents a sample datum and

the Bi a hypothesis to be tested, or a parameter to be estimated.

1.2. The Bayesian Procedure

The Bayesian procedure is based on formula (l.4), where the prior
probability P(Bi) assocliated with the hypothesis Bi represents the experi-
menter's preconceptions about the population being studied, and the
probability P(Aj{Bi) associated with the event Aj is the conditional
probability.

The posterior distribution obtained by this method is used to
estimate some parameter of interest or to decide which hypothesis Bi to
accept.

The procedure of focusing the attention on the posterior distribution
has the following advantages:

1) Allows the experimenter to introduce any preconceptions he may
have about the population in study. These preconceptions may be the re-
sults of past experience or the conclusion of a theoretical study.

2) This approach agrees with the human mind becauserP(Bi) = 0 leads
to P(BiIAj) = 0. In words, if a person does not give any credence to the
fact that state Bi may obtain, no matter what the sample outcome may be.
the posterior probability of that particular state always will be zero.
This fact can be proved by Equation (1.4). Similarly P(Bi) = 1 leads
to P(B1|Aj) = 1. That is, if a person feels himself with a wvery strong
idea about the absolute validity of a particular state and does not

accept any argument in favor of other states, the posterior probability



of that particular state will be always total and equal to one what-
ever the experiment's outcomes are.

To prove this results, remember that states {Bi} are mutually

exclusive and exhaustive. Then in Equation (1.%4) we have

P(B,)P(A |B.) P(B,)P(A,|B.)
_ i i - i i i _
P(B[4p) = %ﬂ l P IP(A[TB)) =
P(B, )P(A,|B,)
Mk e Ly

because P(Bk) =1if k=1
= 0 otherwise.

4) For some distributions it is possible to include the classical
procedures as a special case.

The principal disadvantages of Bayes analysis are:

1) The estimates are often biased

2) Sometimes it is hard to quantify our preconceptions in the

form of a prior distribution.

1.3. Overview of the Problem

Dr. Doris Grosh in [1,2,3] follows the Bayesian Procedure to solve
the stratified allocation problem where she assumed the following con-
ditions:

1) We have a finite stratified population of size N consisting of
K strata.

2) The K strata are considered independent of each other; con-
sequently if they are priorly ind2pendeit they also are posteriorly

independent of each other.



3) The population in the ith stratum is finite and has Ni elements.

Of these, Mi are classed as "defective" and the remainder (Ni - Hi) are

classed as "good".
Let

i
be defined as the fraction defective in the ith stratum.

We are interested in making inferences about the Pi and linear
functions of the Pi' To this end, we proceed with a sampling procedure,
We decide to take in each stratum a sample (withoﬁt replacement) of size

n,; of these, x, are classed as "defective'. So we are dealing in each

stratum with a hypergeometric distribution given by

Hi} Ni-Mi]
X, |{n,-x
i/ V4 9
fH(xi|Mi,Ni,ni) = —--[-ﬁ—i-]——-— » X =0,1,2, .., m (1.5)
oy
with a mean value
-~ Mi
E(xi) = niPi =n, ﬁ; (1.6)
and variance
- Ni—ni :
V(xi) = niPi(l—Pi) ﬁi-l (1.7

4) When the Bayesian Procedure is applied, the prior distribution
should be chosen in such a way that it meets the conditions for being

the natural conjugate of the conditional distribution, (in the sense



explained by Raiffa and Schlaifer in [3]).
Grosh concluded that the natural conjugate of the hypergeometric
distribution is the Beta-Binomial distribution (see [1,2]) with prob-

ability function of the form

N] B(Hi-a, N-Mtb) M=0,1, ..., N. (1.8)

fBB(H|N,a,b) = [M 5(3.0)

It can be proved that this distribution has moments

E(M|N,a,b) = N - _ ' (1.9)

and

N a b2(3+b+ﬂl (1.10)
(atb)” (at+b+1)

Var(ﬁ|H,a,b) =

Fig. 1.1 and 1.2 show the wide variety of shapes of this rich
family for selected values of parameters a and b,

5) Grosh applied the Bayes Procedure to the set of distributions
formed by the hypergeometric as conditional distribution with the Beta-
Binomial as prior distribution and found the following posterior dis-

tribution

X <M < N-nx (1.11)

N-n| B{(Mta, N-Mt+b)
M=-x

*
fBB(H|x;N.asb:n) = [ B(xta, n-x+b)’

which also is a Beta-Binomial distribution.
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The two posterior moments are given by

{=tx) (N-n) (1.12)

E(M|x;N,a,b,n) = x + (atbtn)

Var(M|x;N,a,b,n) = Var(M-x|x,N,a,b,n) =

_ (N-n) (a+bH) (atx) (n+b-x) (1.13)
2 ' '
(atb+n)“ (atb4n+l)

1.4. Theoretical Procedure

The theoretical procedure we followed in the present work was de-
veloped by Dr. Doris Grosh in [1,2,3] along the lines laid out by Zacks [6].

For the reader's benefit we summarize here their work.

Problem definition:

Given a finite, stratified and dichotomous population with
a) K strata priorly independent of each other,
M,

b) Pi’ the fraction defective of the ith stratum,Pi = Ei
i

c) li, a factor representing the weight or importance the

experimenter assigns to the ith stratum.
We are interested in finding the optimum allocation of stratum

sample sizes for estimating

i
B = AP (1.14)
i=1 i'i

subject to the budgetary restriction expressed by
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b

(1.15)

Il &~
0
d
A
(@]

where c; is the cost of making one observation in the ith stratum

n, is the number of observations made in the ith stratum
(sample size)
C is the total budget for sampling alone. Set up costs are

not included.

A time honored criterion for rating the desirability of an estimator
for a statistical variable is its sampling variability, as measured by
the mean square error. Smaller square error means higher desirability.

With this idea in mind they introduced a squared loss function of

the form
1(6,68) = (6-8)2 . ' (1.16)

where 8 is defined by- Eq. (1.14) and 6 is an estimator of 6 based on
the sample outcomes. Its structure will be defined below.

In order to avoid a possible source of confusion due to the large
number of parameters in the distributions under discussion we will use
the following vector notation instead of using a full listing of all of

them.

N (Nl’NZ’ S NK) represents the stratum sizes.

M (MI’MZ’ vy Mk) represents the number of total defective

units in thz2 strata.
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c= (cl,cz, saay cK) represents the unit cost of sampling in the
different strata.

n= (ﬁl,nz,l..., nK) represents the sample size of the sampling
procedure.

X= (xl,xz, . xK) represente the number of defective units we

got from an actual sampling procedure.
Note that in the present work, the letter x stands for the random vari-

able, whereas x stands for an observation or realization of X.

Single stage scheme:

In our assumptions we said that the prior distributions as well as

the sampling procedures are independent by strata. Consequently the

joint conditional probability of the sample outcomes i = (il,iz, id 3y xn)

is given by the product over all K's of the hypergeometric distribution

K
£X[M,n) = T £(x; [N M 0 ). (1.17)
i=1 .

In the same way the joint prior probability of the stratum defectiwve

totals M = (ﬁl’ﬁﬁ’ § Soioy Mk) is also given by the product over all K's

of the Beta-Binomial distributions

K

£QM) = 121 By (4, [N ,a;,b.). (1.18)

The factorability of the previous probabilities assures us of the

same property of the marginal and the poaisterior probabilities.
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Now with the loss function defined as in Equation (1.16)

L(6,8) = (6-8)2,

A

the estimator & based on the sample outcome (X) is given by
) (1.19)

where M, = Mi(g) is a function of the cbservations and is an estimate
of M. From Equation (1.12)

(Ni_ni)(ai+xi)

+ »
(ai+bi+ni)

This is so because under squared error function the Bayes estimator is
the posterior mean.
The posterior risk or Bayes risk assoclated with this estimator

is given by its posterior variance

R(9,8|n) = Var (8]X) = Var (M%) (1. 20}

Il T~1%%

i=1

= | o>
(TR Y SR

Substituting Mi in Equation (1.19) we have

(Ni—ni)(ai+xi)]

A, [(xi+ai)(ai+bi+ﬂi)
(ai+bi+ni)

K
Sy ot .
=1 Ny U (a;¥byin)

and substituting Var (MiLg) in Equation (1.20) we have
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2 .
. K A (N.-n,) (a.+x, ) (n,.+b,-x.) (a.+b . +N.)
R(G:BIB) _ Z _% i i i i . i 171 i i i (1.22)
i=1 Ni (ai+bi+ni) (ai+bi+ni+l)

This is the quantity to be minimized by suitable choice of n, but this
equation can not be used to determine the allocation n, since it is a
function of X and by the time X is known, is too late to determine the
optimal allocation. Thus, in order to solve this problem we p;oceed to
average the risk over all possible future outcomes before taking any sample.

To do so we use the joint marginal probability function given by

~

£(X) = izl fon (xi[ai,bi,ni). (1.23)

The resulting expected value is the prior risk

2
[t} = ? ii (Ni-ni)(ai+bi+Ni) aibi 2
SN Ni (a;+#b +n,) (a;+b, ) (a;+b +1)

A more attractive form of Equation (1.24) is

K
p@ = ] vy (o

where

2

Ay (agtb W) gyby ‘.06

Yi - . (1.26)
Ni (ai+bi)(ai+bi+l)
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Now our problem is to minimize p(n), subject to the budgetary

constraint given by

K
121 em, £ C (1.15)
To get the minimum value of Equation (1.25) Grosh used the technique
~of Lagrangian multipliers. Of course she obtained an approximate solution
that must be rounded to obtain infeger values for all the n, .

That solution is given by the following equation

K

c+ jzl (a#b.) c,

K
I e
=1

n =

-1
1 Y8 ~ (ai+bi) (1.27)

33

It is possible that for some strata the above equation may give
some negative allocations. In those cases we set the corresponding
n, = 0 and resolve Equation (1.27) leaving out those strata,

For convenience she defined an indicator funetion as follow:

J, =1 if the jth stratum is to be sampled
{ J (1.28)

= 0 otherwise.

Letting

K
C* = C + jzl Jj (aj+bj)cj

' and substituting into {(1.27) yields the optimum allocation in the ith

stratum



ﬂ -1
*
o _ g Tici

K
—
RO

- (a;+b,) 1=1,2,..., K. (1.29)

After substituting (1.29) into (1.25) we obtain the minimum risk

for the optimal allocation

K 2 K N.y
1 — Y4 i
p(a°) = —[I J YC-] I Yo, T Z (a+b)(aj+bj+Nj)

(1.30)

Restricted saﬁpligg cases:

Sﬁmetimes an experimenter may find himself in the situation that
for economic reasons (set up costs, say) he can not sample all the strata
given by the solutions of Equation (1.29). Those economic reasons are

assumed to be independent of the one already mentioned where we require

K
only that Z e ny < C.
i=1 K
1f we study Equation (1.29) a little deeper we note that [ J J the
j=1

number of strata to be sampled, is obviously a function of the total
budget available C. Tﬁus, larger values of C will result in fewer

zero values for the J,'s. Now if we assume for the moment that C is

3
(o

a variable, there will be some least wvalue of C, say C , for which all

the strata could be sampled. (Note that the superscript is an indicator

(0)

of how many strata are excluded for economic reasoms). To find that C



value, set n§0) >0 for all i = '.,2, ..., K and solve for C

C(O) + % (a.+b,) ¢

= e B O

, > —e i=1,2, ..., K. (1.31)
1 e ¢

3=1 J1

It is convenient to let

C.
i .
D, = (ai*'bi)\,ﬁ i=1,2, ..., K €132

and reorder the strata, if necessary, so that

DK < DK—l < see < D2 < Dl < i

Then all the stréta may be sampled if C is large enough that

K
c .+b
% e \
g(l)(C) = K - Dlo (1-33/
vy, ¢
je1 3 3
More generally Grosh defined
K
c+ : +
1.Zm 5 (aj bj)
g, (C) =% (1.34)
LMye

j=m

It is possible to obtain a sequence of "cut off" cost walues for
‘determining the number of strata to be sampled for every nossible budget,

by the relationship

16



¢® . m%“ {Clgm(c) > Dm} : (1.35)

in other words, as the solution of

K
cC+ jzm cj(aj+bj) )
% = Dm' (1.36)
L AT

J=m

The sequence {C(P)} is monotone non-increasing.

The values of Di obtained from Equation (1.32) represent an im-
portance relationship among the strata. It is a function of all the
stratum parameters and is uséd to determine the order in which the strata
are going to be arranged for our sampliag procedure or excluded from it

in the necessary cases.

Do not Sample Exclude Sample

sample only one the least all

at all stratum important stratum

stratum
K- . s
o(B-1) | &2 D) (@
C

} + 4 t ; =
8 D D D

. D(Krl)." . X



18

Double stage scheme:

In general the use of multiple stage processes is more efficient
than the single stage. The information obtained in the earlier stages
is used by the experimenter in deciding how to proceed with the future
stages in order to reduce the variance of his estimator.

Grosh approached and develoyed the solution for finding the optimal
allocation in a two-stage procedire for the problem already stated.

As explained in [1,3] for easy progfamming there was no attempt to
establish the optimal partitioning between the two stages, of the total
budget of C dollars. Insteady, she assumed various vaiues of C1 dollars
for the first stage and C2 dollars for the second stage which are
arbitrarily fixed and subject to Cl + C2 = C.

The solution of the problem of determining the optimal split of
the total budget is given by the combination of Cl1 and C2 that provides
the smallest risk for the optimal first stage allocation after a trial
and error process.

With the same assumptions as before the following procedure was
developed. In the ith stratum draw a first stage sample of n.; %i

.th
of which are classed as "defective'. As a consequence the i stratum

now consist of

N, - n, individuals,

M, - %, of them defectives, and

i

Ni—ni-Mi+;:i non defectives.
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A second stage sample of size my is drawn of which ;ri are found
to be defectives. The conditional probability of }i based on the stratum
structure between the two samples processes is (suppressing subscripts)
the hypergeometric distribution

H—x] (N-n—l\ﬂx] x=0,1, ..., n

£,(y| M-n) ,(4-%) ,m) = [ e y

- xty = 0,1, ..., M

Bedly wasy £1.37)

The joint probability of x and y is given by the TWO-STAGE

HYPERGEOMETRIC probability defined by

M| (N-M M-x| {N-n-M+x
£ (%57 - LJ[n-] (y]( m—y] y=0,1,...,m .
TSH N,M,n,m) = N . e (1,58
[mJ [ m x< M
y < Mx

After re-arrangement of the factors she obtained

M) [N-M {M—y] [N-—M—m-l—y
m-y) 1 x n-x

] X = O,l,oo-,n
fTSH(x,y|H,M,n,m) = N [N_mJ

y=0,1,...,n (1.39)

m n

xty < M

On the right hand side the first factor is the marginal probability of

Y and the second factor is the conditional probability of X given vy.

Let z = xty; then y = z-x and substitute into Equation (1.39).
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We get

' M|({ N-M z| (Mm-z 5 i iy 2
m_ - i Bt | L |
f(z,yIN,H,n,m) = AE N Z X M+2 X (1.40)
oo a Z = O,l, ey min.

As before, a Beta-Binomial prior distribution with parameters a and
b is assigned to 1:.[.

The joint probability of z and M is given by

z=0,1, ..., mn

(z,M|N,n,m,a,b) = [ﬂ[%EIJ {1:{] 3(*;?;1;1:)’!”3)

(1.41)

and leads to the following posterior distribution of M given z,N,n,m,a,b

_ {N=n-m] __B(M+a,N-M+b)
fBB(H|z,...,b) (M_z ) BT g (1.42)

M=z, z+1, ..., N-n-mtz ,

with the posterior mean of M given z equal to

(N-w-n) (atxty)
a+b+n+m

E(M|z,...,b) = xty + (1.43)
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Recalling that P = M/N, after some re-arrangement of term we have

that the Bayes estimate of P is given by

e mfay o Xty atbN _ a
P = P(z) s B 2 (1.44)
and the posterior variance (or Bayes risk) after two stages of
sampling in any stratum is
~  (N-m-n) (atbHl) (a+x+y) (b+min-x-y)
Var (P) = (1.45)

N2 (atbintm) 2 (atbintmtl)

- K - N
Since 6 = z Ai-Pi the posterior variance of 8, based on the
i=1

sampling outcomes in all the strata, is

2 -~ ~ ~ ~
Aj (Nymmy-ny ) (a b 4N, ) (ag+x,+y, ) (by+m +n -, -y )

R(X,¥|m,n) =

| I~

=1 W% (a+b +mn ) (a byt 4t
(1.46)
In order to obtain the optimal two-stage allocation we need to
complete the following steps.
a) Find the expected value of Equation 1.46 with respect to the
joint marginal distribution of the y's given the x's.
b) Optimize the second stage allocation m as function of the x's
in the same form as in the single stage explained before,
c) Evaluate the expected value with respect to the joint marginal
distribution of the x's,

d) Optimize the first stage allocation n.
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The first step depends on the relationship

(at+x) (btn—x) (a+b+n+m) (at+b+n+urtl)
(a+b+n) (at+bin+l)

E(atx+y) (b+min-x-y) = (1.47)

developed in Appendix E of [1].

Grosh defined the term INTERMEDIATE RISK to indicate the risk which
is prior to the second stage but posterior to the first stage and desig-
nated it as R(_}ilg_,g).

Combining (1.46) and (1.47) yields

. K A% (9, -m o) (a+b 4N, (2, +b,) (bm, k)
1 my
R(X|n,m) = 5 =
1=1 N (a;+b 4 +m.) (a,+b +n, ) (ay+b +n, +1)
(1.48)
2) - 1 1
= Z Y( %) ¢ - )
a ¥ Fntm | a b N
where yj(z)(il) = eiz) (;ci)(ai+bi+ﬂi) 1 =P e & [1:49)
2y - Maghb D) (aphx,) (bt oK)
and 8, (xi) = 2 i=1,2,..., X (1.50)
a N;(a;+b+n ) (a +b +n +1)

Following the technique used in the single stage sampling, the
optimal second stage allocation was obtained by the method cof Lagrangian

multipliers.
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The result is

K

c2+ )} ¢
P i

K
Z u (2)(}: ) C.

+b . +n,
(a:l J)L

m, = mg(g;n) = max 10,

3 R
v Yi?') (xi)cil-(ai+bi+ni)

i=1,2, ..., K (1.51)

where the L, is an indicator function defined as

3

1 if the jth stratum is sampled

=
I

(1.51a)

0 otherwise

Note that it is very important to keep in mind that Lj is an implicit

function of i and n but for convenience we use Lj instead the full form

Eu i;n .
J(___)
Defining
K
C* = C2 + L.(a,+b,+n)ec,. (1.52)
j§1 - (e e e e

and substituting from (1.51) and (1.52) into (1.48), she found that

the intermediate risk corresponding to the allocation Eﬁ is

2 K K
= (2 (2] =
R(X;n,n°(X;n)) = %*—le Ly 85 (xy) + jgl (1-L,) 8,77 (x,) 'gj?:“:;

(1.53)
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where

Q = Z LJ 2}(x)c . (1.54)

In order to continue with the minimization process it is necessary
to average (1.53) with respect to the joint marginal probability
function of the x's.

Due to the radical in (1.54) which is part of Equation (1.53) the
latter does not lend itself algebraically to the averaging process and
numerical methods must be:applied.

In order to begin the numerical process a trial first stage al-
location (gﬁl)) is chosen and optimization is achieved through a searching
procedure.

Poor choice of Eﬁl) only increase:; the number of iterations needed
to obtain that optimum.

Grosh sugests some methods for choosing the first trial first stage
allocation:

a) Classical: stratum sample size proportional ﬁo stratum sizey

b) The single stage optimum allocation given in equation (1.29)

based on budget Cl;

¢} Using the approximation

Y
n(1) i i

i E \[—T:—;—
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where Yy is defined in Equation (1.26);:; and

d) Axbitrary_gcl)-

For the chosen initial first stage allocation an average must be
obtained over every possible resulting vector g' using the joint marginal
probability function of the x's shown in Equation (1.48).

The obtained result is the prior risk

o@D, o° (5(1))) = E{R(i, a D, m°(n(1)))}, (1.55)

where the expectation is taken using the multivariate probability

function

£imh = § 1) Blag+x,,byin,—x,) (1.56)
= , X, B(a; ,b.) '
i=1 i/ i’i

1.5 The Searching Frocedure

Definition: i(m} is the index of the stratum when the strata have been
ranked according to the size of the importance numbers Dm defined in
Equation (1.32).

The procedure is:

(1)

a) Determine n as you prefer,

(1) , o (11.(1)

b) Compute p[n m )] and save this value.

¢} Construct a second first stage allocation 5(2) as follows:

Using the Di values as stratum importance indices (remember smaller

Di values means more important stratum), keep fixed all the components
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(1)

of n except the most important and the least important.

Increase by one unit the sample size in the most important stratum

i and modify the least important stratum i,,.(if n, ¥ 0, otherwise
®) (1) 5

go to strata 1(2), etc) reducing its sample size until the cost constraint
is satisfied. |

d) Compute p*= 9[2‘2)’ m° (E(Z))]. If this p* value is smaller than
the previous p value save it and 5(2). Repeat the process from c) but
using these new values as comparison base. If this p#* value is larger,

(1)

save the original p and n values and repeat the process from c), but

now trying to increase the sample size of the next most important stratum
k-1

- e) Once the point is reached where no improvement can be achieved
by the process explained in d), we proceed as follows:

Beginning in the next most important stratum, call it i(K—q)’ that
stratum where the sample size was last increased, decrease the sample size
of this stratum by one and make the proper adjustment increasing the sample
size of the next most important stratum i(K—q-l) say, in order to meet the
cost comnstraint.

(2) \ mo (E(Z))]-

If this p* value is smaller

@)

£) Evaluate p* = p[n

than the previous saved p value, save the new p* and n Repeat the

process from b) using the new values as comparison base and using as the

most important stratum, that cne given by i(K)'

If this p* value is larger than the saved one, keep the saved p

(1)

value as well as the n and repeat the process from e) but now trying

to decrease by one unit the sample size of the stratum next in dimportance,
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say i( to that in which we just intended to reduce its sample size.

K-q-1)
g) The searching procedure terminates when the optimal allocation

is reached, that is when p (m, gf (n)) increases for any change in any

component n, (L= 1,2, esey K)o
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CHAPTER 2

ANALYSIS OF THE PROBLEM

2.1. Introduction

The motivation for the present work was founded upon some work by
Grosh [3]. A number of unanswered questions arose with this work and are
summarized below:

1) The prior variance of Pi in the two cases showed is small;

2) In the two cases used as examples the ratio c2/cl = 13

3) The author tried the very special cases in which both strata

are identical except for the importance rating Ai;

4) The author did not mention any kind of practical application

to justify the prior expectations and the strata sizes used

in her studies (see [1], [31).

A propos the last observation, it should be pointed out here that the
present work is oriented basically to some kind of quality control situ-
ation, hence the range of values given to the parameter a, and bi in the
present work.,

With them are obtained expected percent defective values between
1 and 10, common values in that kind of work.

However, the same procedure can be used for other purposes, as those
mentioned by Grosh in [1]; for instance to establish the viewpoint (ac-
cept or reject) of several communities (strata) on some social or po-

licial issue. In this example the expected percent 'defective'" can be as
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large as necessary for the particular problem.

At Ehe same time, there is a question of the large value of Ni
compared with (ai+bi). At this point we want to say that in general
when we decide ﬁo try some kind of multiple stage sampling scheme it
is because the population in hand is large; otherwise we would probably

prefer a simple sample procedure; see [4].

2.2, The Prior Variance of Pi

The suggested question of examining some cases when the prior variance
for the fraction defective of each stratum is large, was attempted.

This prior variance is given by

a,+b, a, b,

1+ 1 4 i i
N. a.+b a,+b,
i i1 i

i (ai+bi+1)

v = f(ai,bi), say.

Since f(ai,bi) is continuous and has continuous partial derivatives
with respect to a; and bi, we could find a value for a, and bi’ which

would maximize f(ai,bi) by solving the simultanecus equations

da, - Q
1
(2.2)
Bf(ai,bi) 6
b, oo
1

An equivalent representation of Vi which 1is easier to work at this

time is (suppressing the subscripts for convenience),



i_(a+b+N)ab _ (2.3)
N (at)? (abeD)

3v 1 [(a+b+N)b+ab](a+b)_(a+b+!) - (a+b+N)__[(a+b) +2ia+b+1L(a+b;l
. (atb)? (atbt1)?

(2.4)

BV _ 1 [(atb+N)atab] (atb)? (a+b+1)=(atb+N) ab[ (a+h) +2(atb+l) (atb) ]
g

L (a+b)’ (atb+1)?
(2.5)

As can be seen, the pbtained equations, when set equal to zero,

are equations of high degrees in a; and bi which are not easily solved.
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Rather than use the analytical method we will appeal to the following

intuitive procedure.

The term (—— )( ) can be proved to have a maximum equal to (.25

atb
when a = b.

I1f we substitute this part of the V equation for its maximum pos-

sible value of 0.25 we get

(1 + a+b]

V<V*=i N | _ 1 (atb+N) (2.6)
- 4 (atb+l) 4N (atb+l) A
JV* _ 1 (atbtl) - (atbtN) _ 1-N 2.7
da 4N -

(atb+1) 2 AN(atb+1)
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VA _ 1 (atbtl) - (atbH0) _ _ 1N | (2.8)
3 4N ladbhiy AN(atb+l) 2

If we solve this system of equations (when the derivatives are set equal
to zero), we obtain the result that the maximum V* is obtained when N = 1,
no matter what the valﬁes of a and b are.

Now, putting this two facts together, N =1 and a = b, we get

Max V = (1+2a) _ 1

4(2a+l) &4 °

That means that the question of having very large prior variances

for Pi is not possible.

The other observations will be studied in the next chapters of the

present work,

2.3 Computivg program problems

The original program that wes used for Grosh's work (see [1],
appendix F) was found to have sorz problems connected with it. The
most important are:

1) The program is very slow. Consequently it consumed too much

computer time and was toc expensive.

2) The progrém only worked for integer a, and bi and the special

case when the sampling cost c is the same for all strata.

We effected a revision of the program and made the feollowing changes in

order to speed up the program and make it more general.
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A) The subroutine RISK was changed as follows:

1) Instead of evaluating the prbbability of all the possibles
(2)

outcomes of a given sample size, as well as the corresponding Y5
value, the present program evaluates those values up to the point in
which the remaining {right hand tail) probabilities add to less than or
equal to 1 x 10-6.

2) When the allocation of the second stage occurs, the strata that
had been eliminated because their initial allocation was negative, are
no longer reactivated, as was erroneously done in the original program,
according to equation (1.27) and the following explanation.

3) A modification was introduced that allows us to use the same
program for single stage sampling schemes, skipping the unnecessary part
of the program for this particular case in which C2 = 0.0

B) In the ALLOCN subroutine a modification was introduced similar
to the second one done in the RISK subroutine but now for the first stage
allocation. In addition, a modification was made in the last part of
ALLOCN in order to allow us to work properly when the sample costs in
the strata are different.

C) The VALUE subroutine was left unmodified.

D) The INDEX subroutine was completely re-done in order to improve
the search procedure as will be explained below.

We also include in the new INDEX subroutine the necessary steps for
allowing us to use the program when the sampling costs c; among the

strata are not equal.
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The search procedure was mocified by introducing a directional device
for proceding in the risk-minimizing direction once it was found.

In the original program it was true only if the improvement was
achieved by increasing the allocation in the most important stratum.
Otherwise, the searching procedure was done in such a way that it pro—-
ceded forward and backward, repeating the full'evaluation of possible
solutions which had already been improved.

E) The MAIN PROGRAM was modified és follows:

1) We introduce a device that allows us to choose the type of
initial first stage allocation instead of the usual one (which is ob-
tained by default and given by the ALLOCN subroutine). fhese "forced
starting values' are read in as data.

2) The search procedure part of this section of the program was mod-
ified in such a way to complement the new INDEX subroutine.

In general the program as in its present form, is capable of working
with up to K = 9 strata. However, it will be easy to modify, for larger
K, by changing the proper "INTEGER" and "REAL" statements at the beginning
of each subroutine and main program, plus making the proper modifications
in the set of nested "do loops" and statements to set up the "POINTER
VECTOR" in the RISK subroutine.

Finally, the whole program was modified to allow the use of non-
integer values for the parameters a, and bi and to work with different
stratum sampling costs cy- The entire revised program is listed in
Appendix A. 1In Appendix B we give some selected examples of the pro-

gram output.



2.4, Conclusions About the Computer Problem

1) It was found that with all these modifications, the program runs
satisfactorily in all the two strata cases tested, as well as some iso-
lated cases using up to four strata with different values for all the
parameters.

2) It was noted that prior expected fraction defectives are very
closely related to the computer time needed to solve a particular case.

Each case is defined by the strata constants a,, bi’ ;s Ai’ Ni

and the values we arbitrarily choose for Cl and C2.
a

i
ai+bi

When the prior expected fraction defective of a stratum is

increased the computer time needed to solve the case is also increased.

3) A comparison was made using the strata from Table 8.3 of [1] with
the original and revised program. The computer time to complete the
same table was reduced by 50%.

In page 139 of [1] a trial case with three strata is reported.

Dr. Grosh said that after 10.19 minutes working, the computer completed
only three output lines.

With the revised program we ran ten cases of a four strata problem
in only 7.14 minutes. That is, we solved the total problem determining
how we should split our total budget in the two stage sampling in order
to get the minimum risk. (The results of this problem are given in
Table 4.6). This gives us an idea about the time improvement obtained
with the revised program

4) When Tables 8.3 page 146 of [1] (shown here as Table 2.1)

and Table 2.2, which is the same problem but solved by the revised



program, are compared, we found that we obtained the same optimal first
stage allocation and the difference in the risk function is not larger than
four units in the fourth significant digit, which for practical purposes

is assumed acceptable.

2.5 Notation used in the risk tables

Cl or Cl = Total budget to be used in the first stage.

5(0) = Allocation vector. The vector gives us the sample size of
each stratum. Thus E? = (25,20) means that the experimenter
is to make 25 observations in the first stratum and 20 ob-
servations in the second stratum.

Risk = Risk value we obtained for the given allocatiom.

Ni or NSi Stratum size.
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CHAPTER 3

MAIN RESULTS

3.1. Introduction

In the present chapter we are going to answer the remaining
questions. What is the behavior of the two stage sampling procedure
when the sampling costs are not necessarily the same for all the
strata?

In order to study this part of the problem we chose five dif-
ferent strata which, in addition to the two strata studied by Grosh
in {1], are summarized in Table 3.1.

As can be seen, the stratum size was maintained constant and equal
to 200; this was done only for simplicity; in the general case they
need not be the same.

In the present work it is assumed that the stratum sizes do not
influence the final results, but only the total number of possible out-

comes to be taken into account in each stratum in order to reach the

38

pre-established value for the curulative probability of defective units.

This assumption is based on the relatively small wvalue of the

a y
ratios ;IF in each stratum. Besides when we reduce the stratum sizes

we accelerate the process of building up the cumulative probability of

defective units and at the same time we answer one of the questions which

were raised.

At this time it is suitable to reflect upon the reasons for choosing

the stratum constants ai and bi'
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The combination of a;, bi ard Ni giving us a Beta-Binomial prob-
ability function for which the probability does not decrease monotonically
after reaching some maximum value as we move to the right (see examples
marked with * in Figures 1.1 and 1.2) were ruled out. They have no prac-
tical application in the present problem.

Our concept about the stratum fraction defective is given by the
a,

i
a.+b
8 ¢

ratio = E(Pi).

i

This E(Pi) value along with the stratum size give us the expected

mean value for the stratum

a
= _ i
E(MiINi’ai’bi) = ai+b1 Ni (See Equation 1.9)

In the same vay we can introduce our idea about the dispersion
around the expected stratum mean, which is determined by the values of

a and b the by the relationship

Ni ay bi (ai+bi+Ni)

2
(ai+bi) (ai+bi+1)

Var(I-li[Ni,ai,bi) = (See Equation 1.10)
For instance, see Table 3.1l. Strata N, Q and S have the same E(Pi)
value, but the variance of each is different.

For a expected given fraction defective E%E higher values of a
and b are indication of smaller stratum variance, and indication of

stronger prior belief.

3.2 The studied cases

Once the modifications in the compﬁter program were done and tested

'Y we

with the results cobtained by Grosh {as it was shown in Chapter 2



proceeded as follow:

1) It was decided to continue the study with only two étrata,
for economic reasons.

2) It was considered that the number of cases studied for dif-
ferent values of the ratio Azlkl when all the other constant values
were maintained, should be reduced from 6 to 4 in order to save money
and computer time.

3) 1t also was decided to study the cases of three different
values for the ratio c2/cl when all the remaining constant values are
maintained.

4) In order to maintain a éomparable set of solutions in the pre-
liminary studies we decided to keep the same Cl set of values studied by
Grosh in [1], and the total budget Cl + C2 = 100.

5) Finally we studied several cases with more than two strata.

In these cases we were interested in knowing how to split our full

budget in a two stage sampling scheme in order to obtain the minimum

risk. Note that in these cases all the stratum constants were already
fixed. Our decision variable was the Cl value with the proper combination
of C2 in order to maintain our budget limitation. The obtained results

of one of these problem is shown in Table 4.6.

In the two strata cases used as preliminary studies, the chosen values
for the ratio Azlkl were 1.,1.5,2. and 3. In all the cases for simplicity,
Al was maintained equal to 1.

The chosen values for the ratio c2/cl were i.,1.5 and 2.5. Again

for simplicity ey = I,



These values for Ai and c;, as well as those of a; bi and Ni were
chosen arbitrarily assuming that in general they represent some of the
practical real life situations. At the same time, they could show us
what is the tendency when the A's and c's ratio varies. The obtained

results are summarized in Tables 3.2 to 3.10.

3.3 .Explanation of the tables

Each table has three principal parts. At the top is shown the
obtained optimal first stage allocations and the corresponding risk.

In the middle of the table is shown the initial first stage allo-
cations and their correspoﬁding risk. This allocation is obtained from
a direct application of the Equation (1.29) followed by a rounding off
in detriment of the least importaat strata or stratum, when it was nec-
essary in order to meet the budgetary constraint.

At the bottom is shown the "sseudo-optimal' allocation and corres-
ponding risk.

Definition: Pseudo-optimal allocation is the allocation which would be
optimal if there were a single stage problem with a total budget equal
to Cl. These values were obtained when we set C2 = 0.0 in each case.
This is the type of solution that could be used by the investigator
who does not have computing facilities, and must procede only on the
basis of single stage formulae.

In these tables is interesting to note the following facts.

A) 1In general there is a difference between the risk values of the
initial and the optimal first stage allocation. Optimal risk is less

than or equal to initial risk. Consequently a person who does not have

42
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access to a computer may use for the first stage sampling vector that
initial first stage allocation, knowing that the resulting risk value
represents an upper bound.

B) In general the pseudo-optimal allocation is very close to the
initial first stage allocation. The former starts with Equation (1.29)
and then-averages over all possible first stage outcomes. The latter
also starts with Equation (1.29) and merely makes whatever adjustments
need to be made to give integer value for the n, without violating the
cost constraint.

C) The risk values of the lowest and the upper two parts of the
table are not comparable. The initial as well as the optimal allocations
take in account for their risk evaluation the expected outcomes of the
second stage. The pseudo-optimal by definition does not have a second
stage. This conceptual difference is the explanation for the unequal
behavior of the risk values between the bottom part of the table (where
the risk decreases monotonically) and the other two parts (where
the risk function is convex). It should be pointed out at this time in
order to avoid misunderstanding that Grosh in her work at the bottom of

her Table 8.3 (reproduced here as Table 2.1), used the term pseudo-optimal

to designate the initial allocation, on the assumption that they were the

same.
The current investigation has shown that this is not true in the

more general cases treated here.

3.4 Ratio comparison studies

There we have two different problems to study. How do the risk
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and the optimal allocation change for different values of the ratio

?
Azlkl.

cases the remaining parameter values were maintained constant.

And how do they change when the ratio czlcl changes? In both

The influence of different Azfll ratio values on the risk can be
seen in Tables 3.2 to 3.10. |

On the other hand we concluded that it was going to be more in-
formative to the reader to show the influence of different c2/c1 ratio
values on the risk in the same graph. A selection of them is shown

in Figures 3.1 to 3.5.

3.5 Special Case Study

Due to_the une:pected result of very small or no improvement at
all when the single and double sampling schemes were compared when
put together strata P and Q as they are defined in table 3.1 we decided
to do a very brief comparison study when we combine other selected
strata. The study was done only for the case when czlcl = 1 and for
Ag/A; = 1 and 3.
We noted that in all the three cases in which we obtained such
curious results, the {a+b) value of each stratum for each of the strata
were equal. Besides, we noted that in the two examples worked by Grosh
in [1] the expected fraction defective were equal for each stratum of
the sget.

In order to look a little bit more for the possible causes of

those results we studied the pair of strata L and S, with the same

(ai+bi) value but different E(Pi) value. On the other hand we studied



the pair of strata Q and S which represent the case of equal E(Pi) value
with different (ai+bi) value. The obtained results are summarized in

Tables 3.11 and 3.12.

45



ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



46

A0T3 [UPWCUT-R A 318 FueiIRindoy Loy Eauayag
Quppdues snotaey 1o} nc. X N[ S0ALY QoYL Z2°§ AtdeL

SOTS'L (611} | 0979°T  (5i%01) st (e 9se8°t  (£9'8) tr50°z (59' L) erivt (55%5) ize6'z (v's) stoc  (6e'v) | zwouw  for'e) | seocte  (orfal | ¢
rowt (e | eszet (49'en) £p66  (99°01) 800"t (0y'st) Fost (s g1 S198°T (4p°11) 0620°1 (zr'8) pssect (sevs) | mwestr (eet2) | esssw (ozto) | 2
sens”  (£0'52) greet (19°r0) (311 R T 1] eEe (85'0:) 0o6es (15'cn) sEE6t (5k'5T) EETLCY (98 71) 1esc 1 (1e°6) sruect (se's) ooez-z  (e1eey st
ssegt (§8°60) voor:  (Z8°§8} gazer (ov'18) assEt (9r'62) tvipt (gv'et) FLFLA (TR ) Teses  (2e'en) oogwt (oz'rD) f50t (12'6) EITTES T ANV S ¢
[0'0 = Z0) NOLLVOUIIV IVEL Ld6-Ga0 Lid 11L1M
L B seztp (aitin ¥so1 sy = 5 . Sy i ¥ ot i
i e e vegrtr (el o1y (29 nEeIT (10'2) PaRnt (€58) LzR0tt (2p'D) weoue1 Gegtn) S ortn ceert i
[ i orga” 'y su99c (n41) : ¥ . . " 5 : 7
“ G Herd cros A : vt (potor) czset (09'sr) SRER (L5'En) cnat (getn Ly6s (ze'y) 20t fae*g) orpe (s2n) ropa- tor o) :
s 4TAT - LR TS /0r° (19%37) P s CORES PR i . i . 5
! i _.. vopr (g5'cz) voips (88 aLzyt (rster) sitet (sp'£1) dgor (egf2rn) sior e Vilp® (52°5) sy (') | 5°1
o'y zEorT (55'8x) BIGI*  (23'56) g i s e 2 vk i ¥
< 33 TR (T 3] veezs (9r'er 1997 (gy'Le!} crext (9o Giezt  (zefsr) sopze (92'¥1) ozse- f1z'6) 1592+ [51'5) 1
i I S—
(*001 = D » 13) ROLLVOUTTVY 19V Lanld I¥ILIND I
5 egten ITRT T (fute) 66hI'T  (Ge'e)
veret (9L'e) £Rea'r  (ze'g) 6v30°1 (29'%) 62201 (85'2) szenTr (8p'2) s160°1  (ee'e) ety (') ey ety £
(aeree 089" (ri'or) 9072 (zL'En) .
0 eare (69'11) Brzot (99'6) sgou (zu'e) fe6st  (reto) 9E65"  (pr'9) gues®  (ps'9) 6909°  (v2'9) aszer  (sr's)| 1
fie'ee £09r:  (L9's2) rioeT  (59'07)
vive (29'81) orgrt (09's0) et (L3'g1) keuet (05°01) ofay:  (or'or) solp* (ez'w) 9Ly (g1 | <4
(o woss  (9s*pg) L1 CT AN (T AR T3 i
oaz- (z5'e2) 1zt (ov'or) Lvizt [iv'ie) gzt (16l GLrz* (gf'el) npe” 42°ST) o5zt (sr'zn eyt tre'el {
i o e o b " 15T o AL o AEHI o i & i o 1 T} o . RARL o
Y —e] T, - -
(*00T = g3 + 12) HOILYIUTIV GIOVIS 1SU14 VL1240 M1
00l H}Eil 06 = 1) 58 =10 ) og = 12 §¢ = 13 0L = 19 08 = 19 05 =10 ar = 19 of = 13 ot = 11
pefs geala rroate
.—..au m.mn._n o= le
Nz = Y5y pue [ o= _4 £2EMD [T U] SUOFINGTAINTQ :



foge'z (vs'a) szep'z  (2s'a) B209°7 (05°9) Bera'z (9p'9) 0690°%  (Fb'y) £098°¢  (9E'Q) vooz'r  (zo'y) veg's  (o2'1) HES B (AT FRTSL N (3 O I _
UL LR L L eoee'y Lor'rn) | eoes't (zv'En) OE9'T fav'an) | zoue't Ge'e) | ooz {op'm) S£69'Z  (or') | @t (u'e) wral oz
i
GALALALLLE B LG vese (zran) | £010°T {optsr) weo'T (o5 o) | ceaecy (eetrn) | gseer (er'e) et fzziad | oewazy o 191%) S R
' [} v -, t
L g (artaz) 0009*  (pe'e2) Bure’ LzE'zz) | eEve (Bzen) teest {p2'en) NUSLIL (oztond §  EnEr fmfa) LRL L
T
(0°G = 22) KURIVDIYIIY WELLIG-0ONISE 1118 q
G100 (uatan) 1rantr Ity LEGR'T (g57L) wadtt (er'n) [CT S S C TR oHER‘T  (£K"Y) — Gl (HetE) seer°y (2€'z) L (92t sits't (o) L3140 B A £
LI ¢ WLEITT (05's1) orrec T {Le'er) fred L (se'zn} Twee (zv'z1) ceoat  (opton) 6706 (¥i'0) z095*  (62'6) 1996° (vz'e) $696° tar'n) VL0 I H
2 B (VRN AR F 9089°  (fpin2) 1799 (te'91) £189"  (6E'91) erget (o 9i) grrat Leg'zn) onzet  (Lz'a) [JACH (:z's) 959 (41'r) Stiag”
S (65 1¢) Mnors (eef6z) steg- (55747 e (e2's?) 1zee (1e'gz) Llest (£2'61) 15687 (£2's1) st (61011} Zwog" (31"0) e 1
(r001 = 20 + TO) KOLLYIOTIV 30VIS LSWL4 TVILIND 40N ; )
G
Tty (edtord for6' L (99'n) SLUT T (v5'e) bRt (i502) SERETL LK) | et (o) oveR L (29'g) sTve't Lze'e) gteect (') 1174 S Y 1) | s
(3s'a1) b U S (A (ar'st) 5E66" (043 tote”  (vr'o) et Lrrter 0gsd  {ugte) 496" (og's) £996° (vz'v) 40Tk (ueta) LA zr'n b4
bt LR Y {retar) tase {Iv'en) nes (zv'znd 8050 {¥E'g1) £z (ze'en BSI'  (B2'®) paret (zete) Rttty (3% 51
grir’ (or'ar) (95°52) gevs’ (9z'of) 6Lt (ve'e2) os9e*  (ze'ze) gest  {gr gr) 1zZ9e’ (ve'rr) 1788t (oz'or) Lngt 7 M
BT Y5 py i w81y e.a %S|y om Y51y ol ST o8 STy o LY o aih i o g
(*001 = 72 + 13) NOLIVIOTIV TVIS LSWI4 'IWILJO HLIN )
Gt = (3 04 = t) %8 = 10 ! o8 »qy 5L 19 LD mTa 09 =y 08 =1y oy = 10 08 = 12 (S b
, st gpafq orroat
ety graaly ponal : .
00z = Tgx pim ¢ o« Ty saswa rpe up csuopinevaasg

Juyalunry

20714 Teindig-rioy H31s sunyiendog a0y sauoipg

Tpany Aoy ¢

01 X 481y sadeg aopag £°¢ Uy



Lhg

gorers  (ve'9) osto'r  (28'5) SEu'y (00’8} covste  (R2'6) 0zvety  (02'9) _ gy (v2'o) ganitg  (0z'0) navs'L (91w} mirte  (grro) ezt (p'0)| ¢
tovatr  (zefon) w0z (eg'or) vet'z (Az'on epzez (oz'o1) arge g (e2e01) ety (22'9) 9T92°F  (B1'S) ®29°8  (Sr'E) gy L21'D) toce's  (w'ar| 2
sp9ztt log’sn) gigery (92's0) go0v 1 {9z's1) zee 1 (pz'en) sta6't {vz'ot) ceng r (oz'on 1o’z {ot'an} 098¢ [w1'sg) 6666°r  (01°5) L9rLt (e'0) | €'
vooer (nz'ee) seplt (ve'szd a4t {rztor) vign' {zz'o2) oant (or'of) aziety (ar'sn 0911 {p1°s8r} raEtt ferton) svie'l n1'g) 602 (5's) t
£0°0 = 23] NULLYXIY ILILIL-DIN 1SS HLIN

Tonee vl (r5's) ossz'g  {rg'sy ekt (089 61z g a2'2) ettt {2zte) Asz'E (ge'z) rrtz'e  (oz'a) ity (m'n) oseLt  (2r'e} ees 4
08821 (ugton) vogatt  (1g'zn) 99r9*1  (05'01) 65 TG T TR sl (sl et Ler'e) argecT (87'S) 20t (510 pE9'r (21'0) £E99° ?
Gl LCIELES B UL R S THE Y £t0°1 (92°sn) srz0°t (52°en) geto0 tezezn | oweeer (nztond o001 (£1°4) toe'r {15} | greocr dn') | gsco- $1
et (e s009°  (57°42) LLAL I (2 4 1] sLis (£2'22) 0998"  (12't2) 555" (vz'oz) Lo rten 088" (51°21) 9955 (21'01) az5s" (6"2) 6595° 1

('001 = 22 * 1) KOLLVHITIV TIOVIS LSwid IVILIND HITY

S—-— |

foets) B (c'0) [ eoze luste) sleree (25'0) ¥sct'e (0£'0) rent-y {nz'o) rzoz's (e2'nd perzer {ozod sesz'e (ov'ed | ogerw fev'o) | eser't te'od| g
tretse voea't (exton) 8I9°L (21'5)) 0509'1 (0£'%) rsasr (82') onezrr (gz'0) RSTL (22'S) Gras 1 (R1'S) 6AL L [p1'5) osze*t  (ut's) seso'r (a'e)|
o (zg'on) o490t {og*s1) ey (of'on) vora T (2ot oaooy  (8z's) wiht {42'€) grass  (zz's) wsea (ur's) R 1TTAS SEEEY IS 30°t (01°5) §RL0° (5'c) | 81
tarstn (R2'00 BLGST (oztszl (o ogt (92'02) yanst  (yeroz) wsser (vetsl) ivis tzz'sn | wsrst (aitsn prisT o101 WS dzven [ eesst (o' | oessst (ovs)|
Yy i i g 1518 o ot o 1sh U Wi o A RuY o3 481y wid o &

(1001 » £2 + 12) WOLIVOGTIV TOVLS 1Suld VILILdO H1in

oot = o 06 = 1 50 = 1D 08 = 13 TR 0L =n 09 = 19 s =1 Oy » 12 0g = 15 or =13
$'L = L5 a'p - w.. 1o« o
._-“u n.n..;._.c..;
002 = TSN pur { = Ty sosua [pe u] cuoyingyIyEYg

d0tdy pefmoulg-239 YiTm sudfieindoy 1oy Eawoyag .
fuytdweg eneyawy 10) g0 ¥ ASTu sodrg JoTid pog ATQEL



49

ovo0'z  (69'12) oEenz (v9t6r) sorrr (evel) sz (9'st) 166z'e (es'en) seor'e (z5'e) Lo {oe'y) oE8 ' (or'0) 96r0'e  (0f'0) sttt {orto) | ¢
afr'r (v'os) | 06LetT (98°en) [ pogyer [sesk) orzett (e5'7r) 152571 Cos'or) | 61E9° T f9z'eg) 1wt (1z'an) ozee'r (9r'sz) | woo'r (rtten) st () |z
rzuetr (6r'1e) ©ee'r (ir'ed) 95£0°1 (51°59) zoiet (g1'en) £0ST°1 (11'6%) gzezt (2'rg) ozt (c'ew) AT+ o'or) azs 1 (o'or) FiSOt (0%0z) [s1
osnt (0'00) 0Lt (0'se) 99" (0'0%) LT TR U T oy (0*0e) osept (nvo3) ¥RS6T (005) 6v50°t (o'er) | osertt (ofo6) of6r't (0031 | 1
(0°0 = 22) NOILVIO1IY IVHILAU-OUNHSA HLIM
FRE sEse leotta) | uekRtt (s0'an) eratt (g9'er) PIva T (00°51) LosAU etz | goestT (29'A) R vir't (or'od | sose't  Cor'od | wese'r loz'ed | ¢
Pt fseres) LR (0t0s) )RRt (BETLE) | g foreey U1 (6500 ozzet (ortosd | ezt {92 e6) orEz* (12 6z) LLEZTY (91742) orzt ('et) | eerr letsn) | o
ess6' (vz*ae) L ) sezst (cve) owzoe (s175u) s fir'ze) 9ueGT (11°6s) onse* (z'ss) RIgET (240 vegnt  Cotor) vise®  [0°0f) | freet foted) beey
20t ntoay erz9”  fo'on) | cezot (a%sR) 0529 (o'0d) a5 (0'se) asza'  (0'0) | oszor  (o'o9) 1529°  (0'0s) w9 (oer) | ozszet fo'op) | zseer (otond [ ot
(7000 = 124 13) KULLVIOTIY 49VLS LSHIJ IVILINI DLIH

E1i't (5500 g (12'cn) vg't (seir) S ‘ - % . " . .
. ﬂ : ; Lrvatt (99 ecge 1 (¥9'11) opga’r  (zo'y) tese-t (0s'o) ROPR'T  (05'0} v548:0  (ap'o) soce T (or'o) vose't  for'e) | ¢

B AR AL FLEZ'T (1e'np) ez T (6C%op) i . i ' . . .
o : PIRTTY (8T YD [4Ex S WCIS Y] 908Z'T (90" ) 20827 (se'82) | ozt (88’50 atgz't  (or'v) ogrct1  tog'o) szt Gosod | e

Litur oy F{ 40 or'os) £876°  (G1'99) fep ' . . . ‘7 . % 2
. oiI0 (91'e9) zerot (91°es) zize' (w1'zs) rezat (pT'i) seze'  (g1'ze) ohzér  (ar'zz) eeze' (o1 11) opcn e1'n) | g1

0*6o1) Grz9* (0*06) Grr9” (0'58) o ' . - i . g int . .
0589 (v'us) use9 (0'5¢2) oszy (0'0c) 0529 {n'09) 1529 (0'08) 529" (0'or 529" (0*og) (0'02) 1
i ¥y o o K G _— ys 5 ol AupH o asTY ol ATy o LU ot
(001 = 23 + 1) NOLLYIOTIY 30¥15 1SMI4 YWILAD ILLIN
00f = 13 o = 1) 57 = 12 09 = 12 SL 1D 9 =12 9 =1 of = 12 oz = 13
. g =
‘tata vagnlqy w01 e
002 = Ysy pue 1 = 1y wosuo ppn u[  ‘BUOTINILISTQ

J014g [UTHGUIR-RION Y3TH sudyarindog 10§ Gounyag
Tuypduvg snojavp doj ¢OT X AeTH $240( 10§Xd g g eRADYL




50

998'E (vr'vi) azse's {ev'z2) sa6r‘t (or'0Z) %957 (31'81) L6592 (p1°91) onRL'r (2521} #opa’z (0z*11) s1TE  (7T') 956zt (81°f) wert  (71'0) f
095y 1 {0z*09) s86v'T (or*ss) 00¥5° 1 (81°€5) 624S'1 (91'15) 1L29*1 (v1'6y) ooz 1 (or'sv) T01R'1  (9'19) 1S26' T (r'ee) tag07z {00t} g1’y [o'0?) r
SEE0' T (p'p8) 6890°t  (p'6e) orr (24 £2€1'1 (0'se) 0991°1  (0'0L) Legtt  (n'o9) tszetr  (n'05) aret 1o'or) e4zitt  fo'or) rise1  (o'oz) {5y
o8t  (0'06) s90L"  (0'sy) 9Lt (0%08) sH9Lt {o's¢) tzog:  {o"ned 6987 (0°09} #ate’  (0'08) GE50°1 (0'0%) esat-t (0%ot) of6z 1 (0'0z) 1
(00 = z3) SULLVLOTTY TWILIO-00NTS ILLTM
] L) B LS T PP perees 8382 {e8%6) tepn dsed) |omrez onten) | dwzze tarto) | wzze (ez'e) | ootz fer'm | eeerz tgvo) | g
HETOTEN wwert re et sl aner v | osier v | G0t 0re | e s | swen sron peEt (6§0) | ewetr (0'08) | oseser (o%or) | ¢
waeT v naan fv 1l SIPGT tgag) cTas (r'eg) et (0'se) e totor) s6e6°  (0%09) oo (oo oo (a'on) pesat  (o'of) soget  (o*on)
TRy dotonny et ftee)y zoeet )| agme g Tt (0'se) ot (o'os) | 25zt (0'oa) rs9c (0°08) zsze w'8n) | zszer w0fon) | omsoyt Gotond | a
(F00% = 77 + 12) NOLIVDOTIV UDVLS LSHTA IVILIND HLIM
722 (ab'ge . . i
ez (&e'gz) SOITE lewtead | esizz (ev'en) (| gerper quptns) 03ZE°E (859 Vezez {os'en) | trzzte dzgtan Torz e (9z"11) otzzrz (zz'a) | ooszez (AU'9) | grrr (vn | s
s tyed .
SI4ETL [42'p9) 98871 (02°09) ILE L (02'59) CriY (an'es) acLEtT (3115 Lot (b1tep) veiE'T (ot'se) GRLEY (0'1p) fReET [9E) ehETT o'og) scarr (0ol oz
£ags  (R*pg) 866" (p'pe) L6t (p'6z) 996" {z'ut) 16L6°  (0'9c) Toee"  {o'os) Boies  (0'49) zora  (0'0s) ooe6”  (0'o¥) goz6’  (0*0%) 6086'  (0%0) |5y
z529* (0'0o1) 529’ (0*06) 579 (0°55) rszet (0'0s) 7529°  (0'6z) z5z0'  (0toL) z5¢9°  fn'09) tsz9*  (0%0%) 289" (o‘or) zsey’ (n'es) 529" [GR9] 1
w0 v wRo§ v A s i W B B o wa A g I
(oot = 20 » KOLIVIU'Y Guvis LSUTS TWWLLAD [LIM
oot = 12 ng = 13 59 = 1 08 = 19 5L e g TR ] ve =13 03 =13 oF = 13 0% = 13 oz =13
g . g = Bq vz e o
rwla g5ty g ale
ouz = Tgn pue 1w Ty wosna rre v -suoyinqyIasia i .

Anfay 1UWOMYA-TI00 Y1fs FusTInIndog loy somoydg
furpdues snotivy 403 ha_ # Y61y sodog lovl4 9°gelqel




51

ooz = Tsi pum [« Ty sasu3 i ug

“FLULA ] ILTa

I0pdd [9HOUT]-Ei0g Y1TA suoTaeqndoy any @fuagag

Buypdues snofavp J4ap ns % %Sy sadnqg Aotag o og WyQEL

. . . '
szt (20} awetr (050 | g e AT (L1°75) aseez (sr'ze) | 420 wzttas) sar-e for'se) | geere (et | trees Gfond | owasw (st o
" ' . !
apstr (tomd)nes't (FTU) D g ey pT (1728 piuoct C0%0sd | Rema'l (w0l ceta't W'os) | rezetr (o'os) | ewsotr  (o'os) | eswmrr totord | ¢
. : P !
srro‘t  {0'o6) roco't  lo'sk) soor'y lotom) crer'r (0'sed an91°1 [0%04) 62t {6409) et (0'09) AT (a'ok) s 1 {0'of) vatart  oto) | s
. . . L
099 tooad ] sa0s (n* 58 sogLr (ntagl vogr  lo'se) 1zagt  fo'ord | 658t (0f0) vase'  (n'os) 6v50°T  (o'os) | oosor'r  fo'os) | ster't (o) ] v
(0°0 » 20) NOLLYIOVIV TVLLLAO-DGNISE HLIY
08I (r2'04) 0 s ' H
Btz Qi Ge'z (0r's| perger (e rzeoz (¢1721) GrE9°7 (51°18) nve'z (21°82) 962972 (01" p2) str9°z ESERCE lMarl | wdvr (st g
peartr (1'e) gapt (p* .
LmerttT o (r'e) (eeng) BLEE T (rope) orge't l1°zed comv't do'ced £18p'1 (p'09) ozert  (0'os) foarct eyt (v'ex) [ECLS SRR A1 0 B 4
ot {o'oor? . [ , .
Lt f 4696 {a'na 1696 {o'syj 1o o) g6de’  (0'SL) vow6t  {o'oc) st {o'os) 9GRG*  (0'08) 1596 686" (0fag) 1e86" {o'oe) | 51
AT R (VR TT] 529" -
. n 24 zsTy {1 tu*oxn} z5tyt (e'sd) zezet  (o'ud) zseet (0'09) 579t (0'0%) z59° 579" {0"08) 529" (0" 0z) 1
faanT = gy o+ 130 NOLIVDOTTY AOVLE T334 S¥1LRD HLTY
S -
T ety () dere‘y  (oz'sy) i
rreRTT (o'73) It 64107z (8e'55) zreatr (L1'eg) zizee (s1°er) 00z°Z (z1'08) 1Zz9°z (01's2) FAT4 M A VA £3] poza'r  (¥'0r) tgez  (z'sty | ¢
4 GRLETY »'08) L3112 B (V]
o i) e (etnn oerr (') fose° 1. (0%0l) 518E°1  (p'o9) ozey'1  (o*os) o't (o‘op) wer'y  (o'of) Tear 1 (0'02) 4
000 LT (o*ng LHR6" (n'sg)
510t (0'0uT) gonnt  (otuy) ngust T0'se) et (il 1wes:  (0'09) 9498  (0%0%) 1686° fo‘or) 1686 " (o'ag) 1688 (0*02)
s oGt 579t (0" 06) z529" {n'ge ,
) szt (gto) e (0's2) 529 Lotn) 2520°  [o'09) zszet  (o'ns) z579* (u‘av) me {atur) tse9”  {a'er) 14
ST ol ASTY A ¥y B AT & A= o A= AL ot 120 o A6y o8 L] ol LU ] Al
(*00T = z3 + [7) NOLLVOUTIV JOVIS JSRId WhIldO iiw
Wt =1 ma.S 58 = 17 [TERE} 5L =19 0L = 2 09 = {4 08 = [0 oF = 12 0of = 11 ot = 13
szats gefa zele
ta's sggeTa vor="Te .




52

onsz'e  (ie't) 55007 (v'n) usee (og'0) wste {sL°0) Lottt (0'0) sozo's (09'0) ¥ive'c fos°0) gete  (04'0) sty (ot'od eeca (o0z'o) T
0809°1  {£9'52) 099t (s9'o0r) sevd'n (£9'Ln) ogee't (19'eld 97061 (65'11) a5:0'7  (59'S) TeLetr (0s'o) avgs'r  (or'o) gorg't  {os'o) L1es's  (or'o) 4
16271 (15" 0g) oTpET (2515} oooe 1 (15°62) | orop't (s el orset (Be'Ea) #9971 (re'or) szzet1 (te'e) wnett  (es' ey zrsz'e  (0g'o) s665'7  (o2'o) |s't1
FanRt (BECS) 010t (9¢'6p) pLs0'L (56'se) S90T'T {1118 PASTUT £'eg) s1ez't (¥r'er) s86€°1 (B2'22) szes't (e2f el ot (keted cLes't  (o2'o) T
(070 » 27 N0 LVIUTIV IWHLLIO-CONISS TLIR
it (zetad CRALIR NS U500 2 B 3 1A0 O € A §) z806° 1 (08'0) ase' 1 (5470 tevgv (oz'0) | zuigtt (oota) wos'1 (05’0} goset  (ov'o) | sose't  (oeto) | ezesty  foz'od | €
arge’t (retaz) SRIP'T (Le'sg) vIGe'T  (59'0z) azettr (£9721) TSHETT L19'E1) aszetl (6s'e1) | eEoztv (95'S) FLLTAS O 1)) sqsz'1  (op'o) ezt logtm (L1440 SR {TALA T I
ORI (L8'er) ST (et o8) ortrty leg'ee) 9560°T (15°62) z6e0°t (69*92) 6990°1 (Rb'22) £eV0°1 (1pfON) o'y (1p'6) 8101 (85°2) vozot  (us'o) gm0t (uzto) |s°t
LLE A Bt (ae) | osret (oston) szzet (s8'gw) anvg (hE'TH) foon- (ev°ce) | gsocr (1e'ez) | ommec (ezeze) ssaec (oz'vr) | somet  fgrta) | szee foz'od | v
{7008 = ;o * 1) NOLLYIINTY HOVIS LSNT4 TVLLIND MLIA y
T (Zety 6 : 6 '
: ) CIEATE Ltoeh) Ferett s’y I806° 1 Llog‘o) 9sLEtt (5L'0) wra'r  (04'o) sty (ov'o) 1gog'T (0s'0) gose't  (orol onsg' 1T fog'o) 606t (ool | %
" ‘e | . .
LR Lo (stse) LeeETT (29°52) zvog°1 (65'12) £1rr° (os'er) ROZE" L (ps'91) £i82'1 [os'01) oz’ (Lb'E) sss2'1  lop'o) veztr (050 (1750 (7o S
Uit g it . : . ,
v esien) LU LISty ) L600t e | pgigeg (syen | 282071 Cev'zE) sso-r (ie'ez) | zisocr (ee'zE) | owzo't fee'em wie'r  (se's) | sozo't  Cos'o) | savorr  foeve
Thiy *0s wsrg . . . [
i Wyion) ket Gyres) | sezet  (re'rs) big (os'en) || o (820 zooE* (Bz°ze) | sonit (92°be) o0z (92'r0) e tsztsv | asec tse's) | ezt Gered| v
AERH i W % ' - - = - - -
a* T oM W o s M1y ol Fa w5 J o ¥s1H i 1y ] TR o I
+
(7001 = 23 + [3) NOLLVDOTIY 4OVIE LSNIJ TVN1LA0 HLIA
oar = 13 06 = [ 58 = [ of 4 17 §L s 12 0L = g 09 = 10 0§ = 13 o = 19 | 4z w12
e W |
=% gogalg rrule
tafs ps="q grelu
ooz = fsn pun 1 = by wesma yiw ur swopanqrraeyg

dopdg |UUOUED-NIaR YIFM BUOTIVIAdO4 dn] Soudlsg
Burqduey snotiny 103 qa- X A&7y sodvy 2098 B'E Ofquw)




53

10714 TEIWORIg-mIag Y3TA suotioyndog
Fuvpdung wnoniey aoj ¢

103 SPUIYIG

01 X YT $241Y d0fad §°F 91401

sozo's  (g9'o} s (as'g 1o£s  (£5°0) pive's  (05'0) 0zg9c  (ov'n) Loty fov'n) rono'y  dre'm) o9eE's (92’1} 1eagte  (02°0) et (1ol | €
%010y (05's1) 29802 {Br €L 6991°T (9p 11} zesz'z (or'9) sover  (er'y) evis 'z (0v'0) g3t {ae'y! azre (oz*1) FATL A S UL oty (£1'0) r
Sipstt (ov'os) z609'1  (or' 5z, 1Ze0°1 (9€°£2) ool T (061 se1e 1 (91’91} 7505°1  (p5'4) rsgrr fof'od wie'z  (2'N) gees 'z (oz'0) aLe0cE fg1o) 201
BGor . (82'8y) st (ae'sy 8s0z°1 {9z* 18} oesz 1 (9z'08) e (vt es) Logk' T (22°42) LE9g T [or'oz) 9s1L°1 (oz'or} gomg't  (a1'$) ez (21D 1
1070 = 20) NOLLVIOTTV TVELLJO- 0N ISd HLIN
i . 7
toyte (me'n) . ' . . . i
(s R I L Leve°z (43'n) fsrz (0570 mosz (') | owssez (0stn) wee'z (') opperz  (oz't) | oesvz  torred | retez (sr'o) | €
£RORT1 (2§ E . ; | : ;
ik SOIRTT (orton | zmet e oy (e feze' 1 (se'o) ofg't (w's) | 859°1 (ov'a) 00p0'1 (e£'0) | georr  (ez't) | eveect loz‘m) | smezew rirto) | 2
LHEETL (70t ex) T ' . ; ’ 5
! T s |t o) | ey et ozze-t (ve' 1z} g605°T (s6%en) | seseer (56'on) g0r°1  (orvg) gosc°t  (ge'r} | oosz'y foz'o) | songcr  (51'0) s
HeInfT digtss . . . . F . 5
Frets oLl Rt awso (92'1w) o156 (52ex) viger (vz'es) fze'12) natgt  (o2'ez) weet (er'tnd zeer (4r'w) ozve (s1'oy |t
(Ut = 20 + 1D) KOLLYIUTTY 2VLS 1SYI4 WVILINI HLIw
st (astn) . el ; 7 N : :
" Mo o uostz tos'n o'z (£5'0) 19'c fog'ol 2905°7  (op'1) 96S'E  d0pte) wis'z  (§£'0) oprd'z  (9z'1) oseetz  (o2'0) uwr  (sr'od f
4871 (Is'2e) 25n0 1g o = . )
¢ s eeten ety fevfsn) sers1 (op' 1D trzLt (ov'e) 9569° 1 (rp'y) 8591 (or') setr (25'2) sre0°y (v gogatr  (oz'ol sizer 'm| ot
Lyir't (Te'sf -0y ' , -
e feviond (TR RS | ey e | erzect (ortie) reoe't (ogony | evezcr §v02°1  (02'5) gosz1 (ae'n) | oomzt fozod b osergn ter'od e
870071 (ug'sg ' . . . , . .
uEsl (sz'an) Bt foz'ey) onge  (oz'1p) 0s6°  (9z°95) o560 (vz'es) | esze 9616°  (0z'0%) et tozran) | et Cers) | oseser tzvzy| ot
- = - i E - T
e ot b o hidt o i 1y 8 sty Pt AT o 461y o¥ ¥s1y off A1 ol AR 2" !
(00T = 23 * 13) NOLIVIUTIV JUVIS 1ULd TVILIAO HIIN
oat = 08 = 13 58 = 13 08 = 1D EETRR G 0L 1 09 = T2 05 = 12 o s 13 05 = 12 0z = 12
g1=% gg=fq gnt
: t=f ogele npal
00z » Ton puE 7 = Ty seena preoul CsuoTINATIISYG




Zojry (eiuoufg-riag yifa svojivindog Koy sowayag
Buyrdung enoties Jop 0T ¥ AS7y £ofvg dofdd 01 ATQUL

sy (oc'0) a«__....- {re'0) CROLy  {2e'm) cerety  (0g'0) revts (920} thoo s [v2'0) Teeste  (0z'0) ez e (91'0) (nese  (21'o) octetor (8'0) | ¢
8759 (pr's)} eeee (') LISTA BN § )] 696t (0c'o) foc0'c  (pz'o) L1740 L188°¢  (oz*0) orace (91'0) ety (Z1%0) (724941 [s*0) H
z956°1  (92'02) #610'z  (92'02) vego 2 (9z'51) gvatz (p*sn) aLez ¢ (ez"or (1% 4 s665°t  (or'n) 19eecz  (ar'o) st (21to) 37 15 SN B I 4
vEZET1  (81'5p) slLEt (st'or} Gvzet (9175g) gELy'1 (21°6€) 09c5*t (9108} 90991 {v1'52) TOOR'Y (pt'cp) tsgecr (Fton) 0att'r  (z1°0) ey [4309] t
(070 = 23} KULLVWTIV TVRILJO-0GIEISd HLIK

totocy for'o) rse't (o) | goze't  (ke'o) YTI6'E (2800} w06’ (0£40) et (sz'od | zzese (se'od sis6°%  Loz'n) vozg'g  (91'0) | tzoovw (2o | wzzove T
LIRSS S{AN 1} (3138 T 3 )] ey ety st (1g'e) ge1ete (og'o) R#062°2  (92'0) piz'z (¥2'o) LRz g (oz'0) szree (91'0) ez (21'0) 988°7 H
90zE°1 (RE01) Autr ') | oezee't (ovtor) oueLTT 182U Ln) chagtr (v2'S1) #e99tt (g2'zn) sese 1 (er's) see T (orte) seon'y  tortod [ oseory  (:p'a) reet £
96z T (02'0%) GREL'L (R17450) seertr (urfor) SOL°T (21'28) errer (o1'se) utrr't [o1tos) son1-1 (rr'sz) STET'T {e1°21) tezrer (2r'oen) ess1c1 (' GE51°T 1

(7000 = 22 + 12) NOLLVIOTIV S0VIE 18u14 TVELINT 1IN
_1|._=_.e F o nrtod nwse'r  (oste) | goze'e veiets lz5'os yot6°r  (0£'0) SeI6°E (82'0) | zzve'r (#2'0) ors6'c (oz'n) ¥ee6't  (91'0) | sfeoo'y  (zr'o) oy 0| ¢
kAsETL (92701 onor*d  (¥r*s) Legtr foete) et (25'0) teicee (og'o) w67z fg7'g) toicte (pzt0) gy (oz'o) 6LIS (st'o it o [S1 HaH (s'c) 4
9090 (82 ) 6oLt (8z'02) ave't (w'er BeLtt (azeEn) oLt T (ez'st) 95801 (12'01) ety (zz's) 1599°1  {oz'0) $£99°1  (9170) 9539t (21%0) ozt (0 | s
9ess L (0etes) GGRT'T  (91'<r) L{7A 8 IS TR 1)) LI R O R 4] L6911 {91'88) otkr L (91ng) 205071 (#1782} sezr T (p1'ag) vozt't  (v1°5) SOEL'T  (z1'0) 6ss1°1 (B'0) |t
FTE™ & 11 U 181y o w0 s U ASTH Em o L P o 1w ou L33! RLA o Ty

(00T = 23 + T2} NULLVDUTIV 30VIS LK1 IWNLLIO LN

oot = 15 08 = 13 g8 = 12 0% = 13 SLm 12 0L 12 091 0s = 12 ov ey [T ats 1
Vieor g = g e
§¢="a AEwCY £ oatw
el ygely orale
oot = Tgypue | o : Bovdd 1{? U] CEUCTINGILIETO




55

¥as0' 1 (oot'o)

gzv0tt  (o6'0)

z6£0°y  (sa'0)

850" 1 (on'o0} vogo'y (se'o) oty (o040l a5v0° Y 03'a)

norG "1 (05*0)

1wse'r {or'o)

19s0‘r  (o1'n)

501 (0z'0)

S Awew) | ogast Gten) | osaree (ewoz) | (e9tn) | oseeet lee'sy | rert s'en) | e tis h.l_.l._waﬂ A T T erGrt  foc'o) | stogt  (oz'n)
L A8TY ol (O ot AT o As Y ] LU A Lt ol NETH oV AsT ot ¥y g ) T
o
('001 » 23 + 1) MOLIYOOTIV HOVLS LSS TYKILIO ILLIA
TIRE) o1 =1 o =1 SL 1) 6 =1 0% » 13 03 812 or =13 of =12 0z = 13
.“unu g6 = gz =lo
o 15 T Tq 'z - L

00z = _r.z puv [ = : S0SEd [P U] sUOYINQIaIERq
d0Jdy TUIUOUTH-T13§ yIja suaivindoy 1oy souaydg
Buprdueg snojavpy zoj nan ¥ Y$[Y Sodvg 10Td4 Z1°Falqul

596570 [Lp'sS) voiEr  (ertow) £9EC'y  (0r'sy) L851'r (8E'¢) Legotr  Lugteg) L6rocr  (ve” aroo'y  (2e'87) | zwes's  (TE'GYY 1oy (15°6) o'y (of'o) oL’y (oz'0)
GE6RTT ARt tsom1  (grfgs) LRt (krne) BTLLT (£1'40) 1o9L° T (§1'20) oLt (e1748) 41 Thd BENC 4 &) SE9L° T (g1'LK) oroLt T (E1'Lz) BPOLUL (£1°¢1) 00927y [£1'2)
iy AT J "IN em NETY cﬁ &Y o sty a._u_ I3Y] o8 L ..ﬂ. nayy i PTIT T a8y T
°
a
("001 = 22 + 10) NOLLYIOTIY WOVLS L54Id TYILAO MLIN
001 = 12 06 = 1 59 = 10 W1 Qi1 09 = 12 03 = 13 0 .12 Eon 5
tels ggalq o

B T VR PO

0oz = «nz pur t o« Ty sosen 1qe RUCIRLE FEL T
J0Td [RTWOUTE-RI0G Y2 TA SUOLINIndDg J0§ Sdwayag
Jurrdurg snojaes Jo0) naﬁ X ASTH soAng 10YV1d [T'§oryny




56

Strata Combination: e

1. and c, = 1.

Stratum M with Al 1

Risk

2 =1 and cz

N with A

0.6

0.5 4

0.4 4

0.3 4

0.2 +

'l
0.1 i ; ; : : : e ; -

20 30 40 50 60 70 80 80 100 cl

Figure 3.1 Risk x 103 as function of the budget partitioning
for a fixed budget. Data from Tables 3.2,3.3 and 3.4.
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Strata Combination: -

L]
ju

Stratum M with Al 1. and ¢y

Risk N with A,

[
w

and ¢, = 1.,1.5,2.5

3-5"

3.071
2.5"'

2.0¢ |
e —— ‘/= 1.5 .
— = 2

1.54¢

1.04

& i I i N
LJ v v T

20 30 40 50 60 70 80 90 100 c1

Figure 3.2. Risk x 103 as function of the budget partitioning
for a fixed budget. Data from Tables 3.2,3.3,3.4.



Strata Combination:

Stratum P with Al =1, and cl = 1.

Q with 12 = 1. (at the top);c2 = 1.,1.5,2.5
Risk with Az = 3, (at the bottom)
¢, = 1.,1.5,2.5
" ) ) i )l T, = 25
2.5 r 2
o . @ © - e S R o0
c2 = 1.5
2, 4
B - > - ngpemage o r.)
c2 = 1.0
1.5 4
0.65
- - - c, = 2.5
: c, = 1.5
0.6+ 2 .
cz = 1.0

20 30 40 50 60 70 80 90 100 c1

Figure 3.3. Risk x 103 as function of the budget partitioning
for a fixed budget. Data from Tables 3.5,3.6,3.7.
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Strata Combination:

Stratum P with Al = 1. and Cl = 1.

S with A = 1.,1.5,2.5

[]
£
8
[a N
(2]

(oo

2

Risk;

1.2 4

1.1 4

10 +

09 +

08 <+

07 t + t ’ # } .- . N
20 30 40 50 60 70 80 90 100 Ccl

Figure 3.4. Risk x 103 as function of the budget partitioning
for a fixed total budget. Data from Tables 3.8,
3.9,3.10
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Strata Combination:
Stratum P with Al = 1, and cl

n
[

S with Az = 3, and c2 = 1., 1.5, Z.5
4 + N__ ° — " -)/cz = 2.5
3.51-
3 4
\ /z = L3
2.5 1
. C2 = 1.0
.\ _
‘ ) —
1.5 4
1 + - # $ + # + - -
20 30 40 50 60 70 80 Q0 100 C1

Figure 3.5. Risk x lO3 as function of the budget partitioniﬁg
for a fixed total budget. Data from Table 3.8,
3.9, 3.10
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CHAPTER 4

CONCLUSIONS

1) Clearly it is impossible to proceed with an exhaustive study
of the present problem, since the number of possible stratum definition
is infinite, as is the set of possible lamda's, stratum sizes, and
stratum unit costs. Furthermore, we can have problems with a wide
range in the number of strat involved.

Consequently our results are based only on the cases we studied,
assuming that they can be projected to a generalization. But the real
behavior of a given problem is very closely related with the structure
of the strata in the set and an answer can not always be anticipated.

2) Due to the form of the risk function (See Equations 1.25 and
1.48) the risk curve is convex (except for round-off "ripples') so
the program yields a solution in which the risk is minimum. The degree
of the convexity depend on the strata combination for a particular
problem.

3) Working with two-strata problems and holding all the stratum
constants fixed except the Value of the ratio Azlkl it was noted that
in general:

A) The value of Cl, the budget for the optimal first stage sampling,
increases when Azikl increases. That is, the minimum point in the risk
curve moves to the right when the ratio Azlll increases (see Fig. 3.1
to 3.5), |

B) When the ratio lzfll increases the risk also increases (see

Tables 3.2 to 3.10).



62

4) Working with two-strata problems and helding all the strata con-
stants fixed except the value of the ratio c2/cl, it was found that the
risk curves are very similar in shape to each other but the risk curve
as a whole is shifted to a higher value for larger values of c2/cl (see
Figures 3.1 to 3.5).

This result was expected and is explained by the fact that the total
allocation should decrease when the individual sample cost increases,
since we are subject to the same total cost constraint.

5) It was found in some special two strata cases that the risk
curves do not follow the general behavior explained above. (See Figure
3.3). 1In these cases the convexity radius is very large so that for
practical purposes the curves are flat. It was believed that the fol-
lowing factors cause this behavior:

a) Our preconceptions about both strata (as reflected in the
choice of a; and bi) are similar. Those are the two cases studied by
Grosh in [1,3].

b) Our preconceptions about both strata are strong, regardless
the difference in the expected fraction defective value. This fact is
represented by high values of (ai + bi)' This case is typified by the
combination we did of strata P and Q.

c) It was thought at first that one reason for that flat risk
curve might be the fact that the term (ai + bi) was the same for both

strata, and the fact that the two of them had the same expected fraction
a

Pyt The last two mentioned causes were withdrawn
L i

defective value,
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in light of the results obtained in the brief study summarized in
Tables 3.11 and 3.12. There we see the usual convex behavior of the
risk function.

6) It was recognized that the search procedure used in each case
is not unique and/or exhaustive, due to the fact that we are dealing
with a combinatorial problem in wthich the number of possible first étage
allocations may increase to some very large value. However we believe
that our results are very close to the right ones. It is possible that
they may be improved in the future with the use of some different and
more sophisticated searching technique.

7) Defining improvement as follows:

Risk of Optimal Single Plan - Risk of Best Optimal Double Plan
Risk of Optimal Single Plan ?

we conclude that, in general, two stage sampling is better than single
stage sampling (see Tables 4.1 t¢ 4.6). Of course there exist some
special cases in which this is nct true. For instance, the cases worked
by Grosh (see Tables 8.8 and 8.9 in [1]) and the case worked here with
strata P and Q (see Table 4.2). Again, we repeat, the behavior of a
given problem, in general can not be forecasted, due to the influence
of many factors in the final results.

8) In general, as it was intuitivaly expected, the inclusion of
a particular stratum as well as i:s participation in thé allocation
are influenced by the different stratum constants as follows:

Larger values of Ai tend to increa:e the stratum participation.
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Larger values of ¢y tend to prevent that participation

Weak prior knowledge about the stratum, which is represented by
smaller values of (ai + bi)(fcr a given E(Pi) value) tend to increase

the number of units to be sampled in that particular stratum.

9) We leave for future investigation to study the cases in which

the set up costs are included in the total disposable budget C.
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Table 4.1

Minimal Prior Bayes Risk x 103 for Single Sampling vs, Best Double Sampling
for the Set Formed by Stratum M and Stratum N.

From Table 3.2 ll =1, ¢y = 1. cy = i i
12 OPTIMAL OPTIMAL BEST OPTIMAL %
SINGLE PLAN Cl1(*) DOUBLE 2LAN DIFFERENCE IMPROVEMENT
1 .3315 50 2479 0.0836 25.21
1.5 . 5269 50 .4030 0.1239 23.51
2 . 7550 50 .5936 0.1614 21.37
3 1.3095 60 1.0779 0.2316 22,27
From Table 3.3 A, = 1. ¢y = 1. 02 = 1,5,
1 L4448 40 « 3521 0.0927 20. 84
1.5 7499 50 6153 0.1341 17.88
2 1.1248 60 .9530 0.1718 15.27
3 2.0715 70 1.8195 0.2520 12,16
From Table 3.4 X, =1, cl =1, c2 = 2,5
1 .6371 50 .5344 0.1027 16.11
1.5 1.1387 50 .9923 0.1459 12.81
2 1.7748 70 1.5900 0.1848 10.41
3 3.4525 75 3.1793 0.2727 7.89

*
IN CASE OF A TIE THE SMALLER ONE WAS CHOSEN AS OPTIMAL.
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Table 4.2

Minimal Prior Bayes Risk x 103 for Single Sampling vs. Best Double Sampling
for the Set Formed by Stratum P and Stratum Q.

From Table 3.5 ll = 1. ¢y = 1. cz = 1.
,\2 OPTIMAL OPTIMAL BEST OPTIMAL %
SINGLE PLAN Cl(%) DOUBLE PLAN DIFFERENCE IMPROVEMENT
1 .6252 85 .6249 0.0003 0.04
1.5 .9357 70 .9272 0.0085 0.90
2 1.2475 60 1.2305 0.0189 1.35
3 - 1.8713 60 1.8371 0.0342 1.82
From Table 3.6 ll = 1. cll= 1. c, = 1.5
1 .6252 20 .6252 0.0 0.0
1.5 . 9803 75 .9791 0.0012 0.12
2 1.3805 70 1.3727 0.0078 0.56
3 2.2433 70 2.2211 0.0222 0.98
From Table 3.7 Al =1, c, = 1. c, = 2.5
1 .6252 20 - .6252 0.0 0.0
1.5 9891 75 . 9890 0.0001 0.01
2 1.4834 90 1.4789 0.0045 0.30
3 2.6230 85 2.6139 0.0091 0.34

%
IN CASE OF A TIE THE SMALLER ONE WAS CHOSEN AS OPTIMAL.
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Table 4.3

Minimal Prior Risk x 103 for Single Sampling vs. Best Double Sampling for
the Set Formed by Stratum P and Stratum §

From Table 3.8 ll = 1. ¢, = 1. c, = 1.

12 OPTIMAL OPTIMAL BEST OPTIMAL ; %
SINGLE PLAN C1(*) DOUBLE PLAN DIFFERENCE IMPROVEMENT

1 . 8841 30 . 7850 0.0991 11.20

1.5 1.1830 40 1.0171 0.1659 14.02

2 1.4818 40 1.2555 0.2263 15.27

3 2.0795 50 1.8081 0.2714 13.05

From Table 3.9 A, = 1. ¢, = 1. c, = 1.5.

1
1 1.0228 40 .9172 0.1056 10.32
1.5 1.4347 40 1.2568 0.1779 12.39
2 1.8683 50 1.6457 0.2226 11.91
3 2,8012 60 2.5946 0.2066 7.37

From Table 3.10 A, = 1. cl =1, cz = 2.5

1
1 1.2296 40 1.1204 0.1092 8.88
1.5 1.8266 50 ) 1.6453 0.1813 9.92
2 2.4884 60 2.2724 0.2160 8.68
3 4.0307 75 3.9104 0.1203 2.98

* : )
IN CASE OF A TIE THE SMALLER WAS CHOSEN AS OPTIMAL.
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Table 4.4

Minimal Prior Bayes Risk x 103 for Single Sampling vs. Best Double Sampling
for the Set Formed by Stratum L and Stratum S.

From Table 3.11 A, = 1.

1 cg =cy = L
by 2 OPTIMAL OPTIMAL BEST OPTIMAL %
SINGLE PLAN Ccl DOUBLE PLAN DIFFERENCE IMPROVEMENT
1 1.8936 60 1.7632 .1304 6.88
3 4.5985 50 3.9982 .6003 13.05
Table 4.5

Minimal Prior Bayes Risk x 103 for Single Sampling vs. Best Double Sampling
for the Set Formed by Stratum Q and Stratum S

From Table 3.12 Al =1, cl =c, = 1.

2
AZ OPTIMAL OPTIMAL BEST OPTIMAL %
SINGLE PLAN C1 DOUBLE PLAN DIFFERENCE IMPROVEMENT
1 .3413 40 : .2897 0.0516 15.11

3 1.0564 80 1.0381 0.0183 1.73



Table 4.6

Prior Bayes Risk x 102 for Double Sampling Allocation of the Fol-
lowing Four Strata Combination:

Stratum 2 c,
i i
P 1.35 1.10
S 1.00 0.95
N 3.00 2.00
M 1.20 1.55
Cl n(o) Rigk
10 (0,0,5,0) . 6490
20 (0,2,9,0) .6285
30 (0,2,14,0) .6146
40 (0,2,19,0) .6047
50 (0,4,23,0) .5977
60 (0,5,26,2) .5974%
70 (0,8,31,0) .6095
80 (0,11,33,2) ,6210
90 (0,12,36,4) .6436
100 (0,14,40,4) .6792%%

*
Optimal double sampling scheme

ke
Optimal single sampling scheme

6792 - .5974
.6792

IMPROVEMENT = = 0.1204 = 12.04%
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Strata Combination:

Stratum A . c,

£ i
P 1.35 1.10
S 1.00 0.95
N 3.00 2.00
Risk M 1.20 1.55
7.5¢4
7.04
6.5¢
600"' -
5.5+
10 20 30 40 50 60 70 80 90 100 C1

Figure 4.1 Risk x 103 as function of the budget partitioning
for a fixed total budget. Data from Table 4.6.
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APPENDIX A

THE COMPUTER PROGRAM

12



Definition of notation to be used in the present program.

A(I) and R(I)
B(I) and S(I)
Cc(I)

Cl

c2

CIM and CIN
ClA

CUMF

DELTA

DNOM
ERN
F(JPOS)
G(I)

H(JPOS)

TACTL

ICON

INALOC

ITEST

%y

by

Cys Unit sampling cost in the ith stratum

Total budget to be used in the first stage allocation
Total budget to be used in the second stage allocation
Tentatives total allocation costs

Total cost of a particular allocation

Cumulative probability of F(JPOS)

Introduced modificati>n in the allocation of some
particular stratum du-ing the searching procedure.

Numerator for the evaluation of Equation (1.29)
Denominator for the evaluation of Equation (1.29)
Expected Risk

Probability associated with the number of defective

Yy value, as defined by Equation (1.26)

yiz) value, as defined by Equation (1.49)

Index in which the strata were feeded-in

Actual value of index I

Signal used in the se:rching procedure

Signal used to indicate the type of initial allocation

desired

INALOC Normal procedure using ALLOCN subroutine

=0
#0 Forced in values to read as data

Signal used to indicate whether or not you want some
intermediate results
ITEST = 0 NOT DESIRED

> 0 DESIRED
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Iy

IX(1)

J(1)
JPOS

JTEST

JUG
K
KEY
L(I)

LTEST

LAMDA(T)
(LEAST)
M(I)
N(I)
NCASE
NMAX (1)
NOP (I)
(NLS)
NS(I)
NTRY
NXTRA
P(I,J)

TRY

74

Number of defective unit in the sample

Index for stratum order after they had been reorder
according with the D, index defined in Equation (1.386)

Jj value defined by Equation (1.28)
Position index on the P matrix

Signal to indicate when is necessary to recompute the
initial first allocation

Allocation adjustment during the searching procedure
Number of strata studied in the present case

Signal used in the searching procedure

Lj value defined by (1.51a)

fignal to indicate when is necessary to recompute the
initial second stage allocation

A,, Weight factor for the ith stratum

i*
Index to indicate the least important stratum
Second stage sample size for the ith stratum
First stage sample size for the ith stratum
Number of cases to be run

Maximum possible sample size in the 1" stratum
Optimal sample size in the T stratum

Index for next least important stratum

Ni, stratum size

Tenfative new allocation for a particular stratum
Next important stratum

P matrix, used to save F(JP0OS) and H{JPOS)
Tentative budget for the new allocation in study.
Minimum risk wvalue

1 Importance ranking Index as defined by Equation [1.348)

Ii,
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SUBRCUTIME RISKI[L+8,CenshS,LAMDA,KsC24ERN, Xy ITEST)

INTEGER PUZ9F) 9o MIG) e LET) eTI()oNIS)sNSIT)HIX(T)

REAL LAMPATK)2CUK I ALK),8IK)

DOUBLE PPREZLISTICON R(3145{G)1sFI530)+HISCI)4RSK,PROByERNy WA WB
DO 40 [=1,.K

RID)=A(I}

S{Iy=8(1)

INITYALIZE F(!PASY AND HI{JPCS)

DO 1 KQ=1,500
FIKQ)=1a
FIKQ)=0,

CALCULATE ANL SAVE GAMMA VALUE FOR SAMPLE SIZE aAMD NUMBER OF
DEFECTIVE UNITS EQUAL TC Z=RG

Pllsl)=1

DO 3 I=1,.K

JPOS=P (1,1}

WA ={LAMDA(I)}==Z )= ({RIT}I+SITI+NSTII)I*>2)+R{II={S(TI)+N{])]
WB= NSIT)FFZ=(RII}+SEIINC(II)F(R{TI+S{TII+NITII+1)

H{JPOS )=FA/WB

ISIZE=NI(T)

IFIISIZIC«ECe<)1GO TO 303

CALCULATEZ ANC SAVE THZ PRCHABILITY ASSCCEIATED wITH
NO CFFECTIVE UNITS AND SAMPLE SIZE NOT EQUAL TO ZEROD

DO & IK=1,ISIZE
FOJIPOS)I=F(JPUSIFLS{I}+IK-1)/{R(I)+S(I)}+IK-1)
CUFF=F(JPOS) '

KOUNT=0

CALCULATE ANC SAVE THES PROBABILITY AND GAMMA VCCTORS ASSOCIA-
TED WITH 1Y PDEFECTIVE UNITS .AND SAMPLE SIZE NOT cCUAL TO
ZERQ

DO 5 1Y=1,1SiZt
FIJPOS+LY=F(JPOSIF (AL II+IY—L )= (NCI)=IY 23/ (Iv=iB1I)+N(T)=-2Y))
HIJPOS+ 1 =H{JPOS)F{A(I)+IY)}*{BII}+NIT)=-IYIFULALI)+FY-1)Y%(B{I)+NII)
X=I¥Y+1))

JPOS=JPCE+1

CUMF=CU¥F+FLJPOS)

KOUNT=KOtNT+1

CHECY¥ FOR CUFULATIVE PRCBABILITY CF DEFECTIVE UNITS

IF{CUMF.CEaDe9995591G0 TO 361
CONTINUE

GO TO 331

-KOUMT=)

P{Z:1}=P(1,1)+KQURNT
P{ly1+1)=P{241)+1 7

CONTINUE

KBAL=K+1 ' i
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o000

32

FILL OUT THE BALANCEZ GF THE

0O A J=KPAL.9
P{leJd}=Pla,Jd-11+1
Pl2sJ)=Pl1lyJd]
IF(ITESTeECe-) GO TO 32
WRITZ(3,29) (FIKQ)4KC=1,1P)
WRITE(3,°9) (HIKCI,KQ=1,1P)
FORMAT(* *,6G2l.132)

SET P ITERATION LIMITS

118=P(1,1)
12B=P(1,2)
I3B=P(1,2)
14P=P(1,4¢)
I5B=P(1+5}
16B=P(1,¢)
ITE=P (1,7}
188=P(1:P)
[98=P{1,°)
I1E=P(2,1)
12E=P(2:2)
I13E=P(242)
[145=P(2,2)
ISE=P(2,%)
I162=P{24+¢)
17z=P12,7)
19E=P(2,F)
I192=P{Z,°)
ERN=De

DO 2.0 IK=1,K
M{IK)=C

SET UP POINTZR VECTGR

DO 11 19=19B,19c
14{9)=1%
D3O 11 IE=IBBsIBE
1Ji(B)=]8
BC 11 I7=17B,IT7E
13H7)=17
CO 11 16=16BsI6E
1Jis)=16
DO 11 IZ=I5B,IS5E
1J(5)=15
DB 11 T4=148,14E
[Jig)=14
DO 11 I3=13B.1I3E
1J(32)=13
DO 11 I2=12B.12E
[1Ji2)=12
DO 11 I1=11B,I1E
IJi1)=I1

PCSITICNS IN THE P MATHIX
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ALLCOCATE TO S=COND STAGE

(aNaNel

IF(C245Cele 150 TC 29
1C=
DO 21 I=1,K
21 Lits=1
27 1C=1C+1
IF{IC.GTaK) GO TC 25
CSTAR=C2
GCL=Y4
DC 23 I=1,K
IF(L{I).FCa2)GD TO 23
CSTAR=CSTAR+CIIIFLITI={A(T)+B(I)+NITN)
Y=H{IJ(I)1*C(I)
GCL=GCL4L (1)1#SQRTIY)
23 CONTINUE
LTEST=0
00 24 I=1,K
IFILIT)aTCal) GO TO 24
AY=H(TJ(T))/C(T)
AM=CSTAR®SCRTIAY)/GCL-{ALIV+3(I14NII)])
IF(AMeGTel) AM=AM4,5002
M{1)=AM
CIF(M(I)e1E+3) GO TO 25
IF(M(1)eGTo(C2/CLTI))) NM(I)=C2/CKT)
IF(MII)oGTallS(II=N(I})) M{E)=NS(TI=NII)

M
Ny

GG TO 24
25 MII}=23
L(I}=9
LTEST=1
24 CONT INUE
c
C CHECK FOK THE LTEST VALLE,wWHEN EQUAL TC ONE RECOMPUTATION CF
c SECOMD STAGc ALLOCATION IS NECESSARY
C
IF(LTESTeECe1) GC TO 27
C
C ADJUST LZAST IMPORTANT STRATUM TO MAINTAIN C2
c
KM=K
43 KK=KM=-1
TRY=3e -
DC 34 [=1,4KK
34 TRY=TRY+MUIX(I)})*C{IX(L})

1.1 MUIXIKM))={C2-TRY}/CLIXIKM})
IF(M{IXtKkM)}.GEa.) GO TC 292
MUOIX{KM))=D
KM=K P=1 _

IF(KMeGTL1) GO TC 33

CALCVLATE THE RISK GIVEN AN ALLOCATION VECTOR

MO D

S RSK=12,
107 D00 3% I=1,K
5 RSK=RSKAP(IS(INI* (Lo 2/ (RETI+SUIIN{II+MIT) )=1o 0/ (RITI#SITI+NSTITI)

joY]
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CALCULATE THE PROEBABILITY OF THE RISK
PROB=1.
DO 31 I=1,K .
1 PROB=PRCF2F(IJIIT)}

CALCULAT: CXPECTATION

[l N W Y]

ERN=ERN+ RSK=PR(OE

IF(TITESTecle) GC TG 11

HRITE(3+°8) (LJUI)9I=133)sROKyPRCE,ERNSIMII), I=1,K}
GE FORMATI(" '"33[4432C23.13,914)
11 CONTINUE

RETURN

END

SUBROUTIME ALLOCN{AL,BsCeCeCleNsKeJyIXsNS]
INTEGER MIS) JIKIIX(K)4&KS{K]
REAL C{K)sGIK)pALK)»B(K)

PROCFED wWITH INITIAL FIRST ALLOCATION ACCORDING TO EQUe 1029

OO0

DO 5 I=1.K
5 4{1)=1

12 DNuM=C1
DNUM=G.
CO 1 I=14K
IFLJUIl.FGQaIGO TC 1
DNUM=DMUM+J(T)=C{T)={A{L)+B{I)}
DNOM=DNOY+J (1) *SCRTIG(L}*C(I) )

1 CONTINUE
JTEST=2
DO 2 I=1,K
IF{J{T).FQaT) GO 70O 2
&V =OMNUMESGQRTIG(IN/C(T) ) /DNOM—{A(TI)I+B{ED)
IF{AMSGTaL) aM=AN+,5L05030
N{I)=AM .
IF(N{Ile1EsT) GO TOD 3
IF(N{TII-CT«(CL/ACCI))) NUTY=CL/CH{L}
IFMMTIINaCGTaNS(I)Y) N{II=RS(1)
G0 YO 2

3 NiI)=2D
JID) =0
JTEST=1

2 CONTINUE

CHEC¥F FOR THE JTEST VALLEsWHEEN EQUAL TC ONE RECOMPUTATION OF
INITTAL FIRST STAGE ALLGCATION IS NECZSSARY

lsEaXake

IF(JTESTL.EC.i) GC TO 19
KM=K
33 KK=KM~-1



PROCTED wWITH THE MNECESSARY MCLDIFICATIONS [N THE ALLOCATION IN
JRDEP TO MEET THE (LGST LCONSTRAINT -

[sEaEakal

TRY=?-
00 32 I=1,KK

32 TEY=TRY+M{IX(E})*COIX(I}:
IFITRY=GTLC11GO TC 34
NMOIX{KMYY={C1=-TRY)}/CLIX(XN}}
IFMNIIX(¥M)}aGELZ) RETURN

34 NIIX{KM))=.

K=K M—1
IFIKM.GTe1) GO TC 33
RETURN
END

SUBROUTIME VALUE(A+ByCs®oMyANoNS+CCST,ERNyLAMDA,CyEsCLl,C24L o IX,ITES
XT}

INTEGER MK ) o NIK)+NSIKISLIK) IX{K)

REAL C{K),LANMUOA(K)GIK)oE(K)9AIKI$B(K)

DOUBLE PFECISION ERN

C
C EVALUATE THE ACTUAL ALLOCATION COST
C -
Cla=C,
00 7 I=14K
1 ClA=CYIA+M{I}I=CI{I)
CALL RISF(AsBsCoNsNSeLANCAKoCZ22ERNIXLITEST)
87 FORMAT (2t ,Gl3,7+" 1 "4FEa25915)
WRITE(3+FT] ERNsClALINII)sI=14K)
RETURN
END
SURROUTIME INDEXAIX+NoNCPNFAXCoCIMKyDELTAILICONSCL)
INTEGZR TX{K)4NIK) NOP(K ) NMAX{K),DELTA
REAL CIK)
IF(I.LTe¥) GO 7O 10C
1CON=Z
RETURN
1745 ICON=C
DO 131 IK=1,¥
171 NUIK)I=NCPIIK)
IFIDELTALLEs ) GC TO 5Ca
C : .
C FOR POSITIVE DELTA VALUE INCREASE THE MOST IMPORTANT STRATUM
c - ALLCCATECGN
5
J=K
MOST=1IXI{T1)

MIMOST }=MCP{MOST ) 4+DELTA
C1N=C1M+C{#OSTISDELTA
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OO

OO0

OO0

OO0

157

2.0

21r

227
230
235

240
245

257

57

517

80

MCDIFY THES LeAST IMPCRTAIT STHRATUM IN ORLeR TO MEET THE FIRST
STAGF BULGET COKSTRAINT

DIFER=C1-C1N

LrAST=1IX{J)

IF (DIF=F.GE«DIGL TO 230
JUG=-aGS+LIFcR/CILEAST)
GO TO 21"
JUG=DIFcFP/C{LEAST)
FAITRY=N{LFAST ) +JUG

CHECKF FOR THE VALIDITY CF THE NcwWw ALLOCATION SIZES

IF(NTRY.LT.")G0 TO 23¢
IF{NTRY.1ELNMAX(LEAST)) €0 TO 22¢
IF{NILEAST).EQ.NMAX(LEAST)IGO TC 235
HILZAST)=NMAX{LEAST)

G0 TO 23¢

MILEAST)=NTRY

2ZTURN ‘
IFINILEAST)eEQe1CO TO 245
NILEAST)=3

CIN=3

DD 247 L=1,K

C1N=CIN+CIL)ZN(L)

J=J-1

IF W®¥ TRY TO MODIFY IM TWQO DIFFERENT WAYS THE SAME STRATUM AT
THE €AME TIMc ScT7 ICCN GREATER THAN ZERO AND LEAVE THE ACTUAL
ALLOCATION

IF(J«GTeTi GG TG 150
J=Jd+1

DO 259 KJ=14K
M{KJ)=NOP(KJ)

[coN=2

RETURN

WHEN DELTA HAS A NzGATIVE VALUE REDUCE THE MOST IMPORTANT
STRATUM ALLOCATION

J=1+1

MOST=IX(T)
NIEDST)=MOP(MOST)I+DELTA
CIN=CLM+C (MOSTI*CELTA

MCDIFY THE NEXT LEAST IMPORTANT STRATUM ALLCCATION IN ORDER T0
MEET THE COST CCHNSTRAINT

DIFER=C1-C1N
LEAST=IX{J)
JUG=DIFZP/C(LEAST)
IFlJUG.cCer 1GO TC 559
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OO0

81

CHECK FOR THL VALICITY CF THE kew ALLCCATICHK STZES

52 NTRY=N(LFAST)+JUC

521 IF(NTRYIFT4MMAXILEAST}IGL TC 563
HILEASTI=NTRY
RETURN

IF SNME MONEY IS STELL Avaltadic TRY TC SPeEnD IT

550 IF{J.EQ.¥)GO TO 520
BC Tl NI=JeK
NLS=IX(NJ)
IF{DIFERLLTLCINLE))IGO TO TCC
NTRY=N{NLS}+LIFER/CINLS)
IFINTRY GCTa NMAXIRLS))IGE TC 710
N{NLSJI=NTRY
RZTURN

717 NINLS)I=NMAXINLS)
GO TO 56F

773 CONTINUE

GO TO s52r

567 N{LCAST)=NMAX{LE2ST)

565 C1lN={s
DO 5735 L=14K
573 CIN=CIN+C{L}=NI(L)
J=Jd+1 o
IF{JsLE-¥) GU TG 513
RETURN
END

INTEGER M{9)yNS(F)¥(9),L ()4 JUF),NOCP{F)4MOPISI,NMAXIT)4IXI(9)

RZAL C(9),LANDAIS) sGIS)+ZL1L)4ELS)+AIGILBIT)

DOUBLE PFECISION ERN+RMIN
79 FCRMATI(275)

RTAD(1,7°) HCASE,.ITEST

DO 94 ICPUNT=14NCASE
8.° FORMAT(IS,2F6e2412)
Bl FCRMAT(2F642515+F5.2sF6e4)
83 FORMAT ({*1K=7,13,5Xs* C1l=',F6a2s* (2=',F6s2,' INITIAL ALLOCATIO

XN TYPE',12)
84 FORMAT(SF I a(I)  BUI) NS{I} CCI) LAMDALI) GAMMA (L)

X Iy
85 FORMAT(Y '31642FT,2416:FTe24FSe2sF1i3.6,F106%)}

REAC DATA FCR THE CASE TO Bt WORKED OUT

READ(1,87) K43C1sC2, INALOC
READI1931) (A(I)4E{T)sNSIIN+CII},LAMBALL)+I=14K)
D3 3 I=1+K

EVALUATE GAMMA(LI)}y GII) » ACCORCING TO EQUATION 1.26 AND
THE YXPORTANCE FACTCR D(I)y  Z{I1) <ACCORDING TO EQUATION le36

GIII*(!L&“EA[I)*lA(II*BtIl+NS(!IJINS(I))**Z}*A(Ii*BIIlltIA!I}+Bill
XI#(A(II+P(I)+1))
3 Z{D)=0A{}+BLII*SQRTICIINAGLIN]



(aNal e

OO

OO ey

[uNaNal laNakal

CY &Yy

R6

10

14
15

12
11

37

17
18

WRITF THT PRELIMINARY DATA 0OF THE CASE

WRITE(3.,F3) KeCl.C2,INALCC

WRITE(34F4)

WRITE(2+F5) (1oATI) B30I NSTTI)ClI)oLAMDATTI}G(I)2{T1)el=14K)
WRITE{3.F6)

FORMAT "2 RISK',09X, STAGE " +2X,"COST 4 X %ALLCCATION")

RANK STRATA ACCORDING WITH THE Z{1) INCEX

Z{17)=385°9,

00 12 I=1,.K

IX(I)=14G

D0 11 I=1,K

00 12 1J=1,4K
TF(Z(I1aCZZ{IX{IJ)}) GO TO 12
KK=K~-1UJ

IF(K.EQa.IJ) GO TC 15
0O 14 JJ=1,4KK
IX(K+1-JJ)=IXI{K=-JJ}
IX(1Ji1=1

G0 TO 11

CONTINUE

CONTINUE

CHEC¥ FOR DESIRED INITIAL FIRST ALLOCATION TYPE

JFIINALOCLEQ.U)IGC TO 17

READ(LsB87H(N(I),sI=1,K}

FORMAT[915)

GO TO 1¢

CALL ALLCCN{AsBsCyGsCleNsKedyIX,NS}

CALL VALUZ(A+BoCoKeMyNagNSyCCSTHERNJLAMDAGyEsCLaC2,L,IX,ITEST)

SET V"PPER LIFMIT FGR Nil)}

DO 23 I=1,K

MMAX(TI)= C1/CHI)
IFINSI{I)eLToNMAX(I) )} NMAX{I)=NSII)
CONTINUE

BEGIM THE SEARCHING PROCEDURE INITIALIZE ALL THE SIGNALS

KIy=1
MEXTRA=L
IACTL=X

SAvI THE LOWEST RISK VALUE AND THE CORRESPCONDING ALLOCATION

1.“::;.!

L0 Z1 I71eK

CUM=CEiMeC(T)ENLI)

NOPLIYI=NAT)

RMIN=ERN

1CON=C

D032 1=1,K
TF(NCPIIX(1) ) aGTohMaX{IX{I}}} GG TO 31
IF({I.GE.TACTLIGO TO 35
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gReEaNe

[aE el

PROCF=D WITH SEARCHING PROCEQURE INCREMENT THE PARTICIPATICH
OF T+ KBUST IMPCRTANT STRATLM,CELTA=+1

CALL TINDFX{IXsWNoNCPsNMAX CyCLVMsKy+1l,14ICON,CL)
IFITLONSCTe }GO TO 35 -
CALL VALVUE(A,BoC oKy M NgNSyCOSToERNJLAMCAyGyEsCLyC24L, IX,ITEST)
IF(ERMe LTaRMINIGC TG 302
DO 35 KJI=1,K
3530 N(KJ}=NCP(KJ)
GO TO 32
3232 NYTRA=I+1
KEY=1
GO TO 22
31 Kd=Ixl1)
ClM=CIVM—INCPIKJI)-NMAX{KI})*C{KI)
NOP(KJ I =FMAXIKJI)
3C CONTINUE

PROCEED WITH SEARCHING PROCEDURE REDUCING THE PARTICIPATION OF
THE tOST IMPCRTANT STRATUM, CELTA=-1
35 IFINXTRALGESK) GO TD 433 -
IFIKEYLSRaZINXTRA=IACTL
DO 45 I=MXTRA»K
IFINOPLI¥(I))LEQ.Z) GO TG 45
CALL INDFEX{IXsNoRCPsNMAXCoCIMaKy=1,1,I1C0ON,C1L)}
IFLICONSCFeZ1GO TC 400
CALL VALUE(AsBCoKsMyNgNSeCCSTeERNtLAMOA GsE+C14L24LsIXITEST)

CHECK FOR THE LCWEST RISK VALUE BETWEEN THE SAVED AND THE NEW
ONE

IF{ERNLLTLRMIN)GD TO 48
DO 450 KJ=14K

450 N({KJ)=NCP{KJ)
GO TO 45

48 KI¥=2
IACTL=1
GO TQ 22

45 CONTINUE

407 CONTINUE

PRINT ANSWER

WRITE{3,95] RMIN
95 FORMAT {("CHMIN RISK=°,G13,71}

WRITE({3,2} CLIM, INOP(I},I=1,4K)
92 FORMAT (*C COST'o4X,*ALLOCATION'/' ":F6.2,+915)
34 CONTINUE

sToP

END



APPENDIX B

SAMPLE PRINT-OUTS
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K= 2 Cl= 30.00 C2= 73.25 INITIAL ALLOCATIOHY TYPE ©
I A(I)  3CI) NS(1) Ct{I) UAMDALI} GAMMALI)  DI{I)
1 3.07  Te0% 540 1,40 1uE0 Te1986Z1  22.4381
2 3,00  Te00 530 1499 3403 1.78759% 724794

RISK STAGE COST ALLOC ATIGH

3,22504410-01 1 314 60 2 28

0.2250935D-01 1 39,00 1 2?9

2,2250012D0-01 1 30,00 3 27

©e2249675D-C1 1 3C TS 4 76

2.2249334D-01 1 3430 5 25

742249555001 1 32,00 6 24

742248821D-91 1 33.00 7 23

e2248613D-01 1 30,00 8 22

5.2248434D-01 1 3C.00 9 1

J42248293D-01 1 30,60 10 22

3.2248166D-01 1 30,06 11 19

Te2248104D-01 1 3c.50 12 18

Se2248023D-01 1 Ce0C 13 17

Ce2248076D-01 1 33,60 14 16

MIN RISK=2,2248223D-01

caosT ALLOCATION
3500 i3 17



K= 2 Cl= 75.722
I AL B{I)
1 D.10 93U
2 Feld 4493
RISK STAGE
0.5660523D0-03 1
L«5601955D0-03 1
2.5600337D-03 1
25552642003 1
2e5589566D~-33 1

c2=
NS(ID
256G
205
CosT
T4 50
7507
T4e 52
15. 50

T&.5C

MIN RISK=7.55526420-03

cast
75,00 15

ALLGCATION
24

25427

ClI) LAMDALT)
leud ledd
2+50G 1aT03
ALLOCATIGN
22 71
273 22
i7 23
15 24
iz 25

GAMMA(T )
Je . 79922
Je 17160

TNITIAL ALLOCATION TYPE &

DIiI)
12043869
6223502
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K= 2 Cl= 22253 C2= B87.22 THITIAL ALLUCATION TYPE 1

I ALI} 3(I) NS(I) ClIV LAHRDALIL) GAMHA(T) D(I}
1 ) B la 02 532 1,00 1au? Haib68BCL2 48795
2 LeGu  Tu 5335 1a7:) Qe 23D 13,038212 Je3422
RISK STAGE COST ALLOCATION

~wl342828 1 2039 15 15

}s13379G2 1 2703 9 11

Ye133468C 1 FASPRLLY 8 12

121332794 1 2302 7 13

2e1331939 1 2ueld & 14

Jel332061 1L 2030 5 15

MIN RISK=C,1331909

CCS7T ALLOCATION
- 23403 6 14



K= 2 Cl= 5:.04 C2=
I 211) BUI) NS(I)

1 Sava 95233 530

2 5.0+ 95euU BINE

RISK STAGE COST
5eTRT2826D~0D3 1 500
"o TDTT512D-03 1 49,75
1« 7098379D0-G3 1 49420

MIN RISK=T,.7.728260-33

cesT ALLOCATION ~
53.00 33 16

5% 0 TAITIAL ALLOCATION TYPz U
ClI) taxpail) GaMMall) ctrn
LG 103 Jesb6TTe3 3B4.2068
1.25 ledik Je .6TT23 429.6233
ALLOCATION

33 16

31 15

23 16

a8



K= & Cl= 63.00 C2= 40,72

TNITIAL ALLOCATICON TYPE U

I ACI}  B(I) NS(I} CAT) LAMDALT)
2 .23 9,80 200 M,95 1e355
3 0.1l3  4e90 200 2,32 3,03
4 .13  9.93 203 1455 120
RISK STAGE COST ALLCCATION
C.68043730-22 1 59.25 5 6 26
5.60117290-02 1 59,70 " 6 27
1. 6046241D-02 1 58465 2 7 26
31.6024396D-02 1 59,15 I 8 25
1.59741140-02 1 59,85 0 5 26
I.6063828D-02 1 58,75 5 s 21
$e5593526D0-52 1 67400 1 4 26
Je6022369D-02 1 59240 1 5 26
MIN RISK=",5974114D-32
cesT ALLOCATION
59,85 G 5 28 2

%)

9

<N

GAMMA(TY) DI}
Ge365452 1T73.5u46
G2 19645 69,5417
Ge 154442 17.9932
Ueult2BB 1.4.1536
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Abstract

Given a finite, stratified and dichotomous population with K strata
independents of each other, a fraction defective Pi and a importance
factor Ai for each stratum. Sampling is carried out independently in
each of the K strata for estimating the linear function

K

5 = iél A, P,

A Bayesian procedure is used to determine the optimal two-stage allocation
subject to a budgetary constraint that does not include the set wp cost.

It was found that the final solution as well as behavior of the
prior Bayes risk function versus the first-stage total cost is very closely
related with the stratum composition of a particular set. As expected,
the participation of a particular stratum is also a function of its
proper set of constants and the relative value of them with respect to
the constants of other stratum.

It also was determined that the two-stage scheme is better than
single-stage scheme in the general cases. However in some cases no
improvement was achieved.

In order to obtain our results we must appeal to the numerical
solution rather than the analytical procedure, using to that end a
computer program written in FORTRAN IV level H to be run primarily in

a IBM 360/50 computer mcchine.



