A MICROCOMPUTER GRAPHICS PACKAGE
FOR USE WITH A HIGH-RESOLUTION RASTER-SCAN DOT-MATRIX PRINTER

by
EARL F. GLYNN IT

B.S., Kansas State University, 1975

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

A%j or Professor



SFPEC
¢ oL L
LD
bbb Y

19€ -
G-59 1.
.o

2.

3.

4.

IA]:]:EI]E 303015
TABLE OF CONTENTS

Introduction
1.1 Purpose, Motivation and (bjectives

1.2 Background
1.3 Software Overview

A Graphics Tutorial

2.1 Interactive Versus Passive Camputer Graphics
2.2 Vector Versus Raster Display

2.3 Two-Dimensional Picture Definition

2.3.1 world Coordinates and Windows
2.3.2 Points and Lines
2.3.3 Clipping
2.3.4 Viewports
2.4 Matrix Transformations
2.4.1 Homogeneous Coordinates
2.4.2 Translation
2.4.3 Scaling
2.4.4 PRotation
2.4.5 Change in Coordinate Systeams
2.4.6 Concatentation of Simple Transformations

2.5 Extension to Three-Dimensional Graphics
Hamogeneous Coordinates
Transformations

View Transformation

Projections

Clipping

Examples and Discussion
3.1 Two-Dimensional Graphics
3.1.1 Cartography: Map of Kansas
3.1.2 Orthographic View of a Football Field
3.2 Three-Dimensional Graphics
3.2.1 Perspective Views of a Football Field
3.2.2 Surface Graphics: =z = f(x,y)
3.2.3 surface Graphics: Pressure Map of Well Field

NN!\JNN
U'lU'IEﬂU'!U‘I
Lo o=

Design Philosophy and Implementation Strategy
4,1 System Limitations
4.1.1 Hardware Configuration
4.1.2 Operating System/Programming Language
4,2 Primitives
4.3 Logical Screens and Plot Files
4,3.1 World and Screen Coordinate Systems
4,3.2 Paging System
4.4 Feasibility Studies
4.4,1 Hardware/Software Harmony
4.4.2 Random I/0 in UCSD Pascal
4.4.3 Mapping Pixels to Bits
4.4.4 Processor Speed

15

26



6.

c.

E.

U W
L

Annotation Text and Symbols

Hidden Line/Surface Removal
Color Graphics

Conclusions

References

APPENDICES

aphy
B.2 Football Field
B.3 z = £(x,y)
B.4 Pressure Map of Injection/Production Well Field

stem Guide

1 Introduction to Pascal UNITs
2 "glabal" UNIT

3 "dotplotter" UNIT

.4 "matrixops" UNIT
5

6

7

2

"ids560" UNIT
File Structure
Paging System

§
:

Sample Setup
Messages and Errors

oopoag OS’)OOOOO

.
W N =

"hexdump® Utility PROGRAM

EXHIBITS

Cartography Examples
Orthographic View of Football Field

Perspective Views of Football Field
The Surface z(x,y)
Pressure Map of Area with Injection/Production Wells

5.1
542
5.3 Graphic Elements including CAICOMP-like Plotting Package
5.4
5.5

31

33
35

37

66

84

100

111

19
20
21-22
23-24
25



l. Introduction 1
1. Introduction
1.1 Purpose, Motivation and Objectives

A general purpose graphics software package was developed for use
with a low-cost "personal" microcomputer system without the use of any
special purpose hardware. This project was motivated by the acquisition
of a graphics printer without adequate software to control its many
features.

Software was developed to provide a mechanism to define a picture in
terms of a logical screen — which may or may not correspond to a video
display screen — which could be mapped to a graphics printer. Ideally,
the logical screen would be mapped to either a video display terminal or
a hard copy device.

| fThe initial implementation supports only "black" and "white" pixels
but the software was designed to support a more complex pixel definition.
Two—- and three-dimensional graphic primitives support user picture
definition. Various vector/matrix operations support mathematical
transformation of the picture. While the software package was developed
for one particular graphics printer, other printers could be used by
changing some internal constants and variable definitions and
recampiling, Output to a video display terminal is also possible but is
not included in this initial implementation.

In this report we assume the reader is either knowledgeable about
camputer graphics or has access to various textbooks on the subject.
Detailed explanations of graphic operations are not included in this
report. [NEWM79] and [FOLEB2] are excellent references. The following
are helpful and interesting: [ANGES1, GILO78, POSD77, ROGE76, SCOTS82,

WHIT82].



1.2 Introduction Background 2
1.2 Background

In the last few years dot-matrix printers have been introduced for
high-quality word processing and graphics applications. These printers
have a variety of dot resolutions such as 74-by-72 (Centronics 739) 72-
by-60/120 (HP 82905), and 84-by-84 (Integral Data Systems 460 or 560)
dots per inch (DPI) for print areas as wide as 13.2 inches. 1In the last
year new "quad density” printers have been announced. The NEC 8023 has
144-by-60 DPI resolution; the C. ITCH 8510 has 144~by-144 DPI; the Axiom
IMP-4 has 19008 dots/square inch; and an upgrade to the Digital IA 120
offers 165 DPI resolution. These printers and others are currently
éellhg from about $350 to $1500. In early 1982 Integral Data Systems
announced a four-color ribbon with its high resolution "Prism" printer
[UMLOB2] . Mixing allows eight possible colors. The printer sells for
about $2000. Higher resolutions and greater color capabilities will
probably be developed in the near future.

These dot matrix printers have resolutions that favorably compare to
the resolution available on video display terminals currently available.
These printers are cheaper than the display terminals and provide hard
copy output directly, however, these printers are much slower than
display terminals,

1.3 Software Overview

The user defines a picture using world coordinates -- any convenient
coordinate system. If desired these world coordinates can be manipulated
mathematically using translations, rotations or scaling before they are
converted to screen coordinates. The logical screen is defined to be a
matrix of picture elements —- pixels. Each pixel is small enough (about
0.01 inch by 0.01 inch) that a circular dot represents what is actually a



1.3 Introduction Software Overview 3
rectangular area.

The screen coordinates of points and lines are defined by a set of
pixels. Clipping may be necessary to eliminate points or lines which
extend outside the logical screen pixel matrix,

The user defines the actual physical size of the logical screen and,
therefore, implicitly defines the maximm sive of the plot fils. The
maximm width of the picture is limited horizontally by the printer line
length (in practice but not in theory) but vertically only by available
diskette storage. Since the number of pixels in the matrix could reach
two million or more, and each pixel requires at least one bit of storage,
the entire pixel matrix requires perhaps 250 Kbytes of storage. This
amount of memory is not generally available on most micros (but probably
will be in a few years). To accammodate a potentially very large pixel
matrix on existing micros, a demand paging system was developed so that
as many pixels as possible can remain in memory for manipulaticn.
Diskettes for micros typically hold 92-256 Kbytes but hard disks with
capacities of 5 Mbytes or more are entering the microcamputer market.
Efficient diskette storage and in-memory data structures allow some data
compression and creation of some pictures which otherwise would exceed

available diskette storage.

2. A Graphics Tutorial

Computer graphics is the creation, storage and manipulation of
models of odbjects and their pictures via a digital computer. Computer
graphics is used in such diverse areas as mathematics, medicine,
architecture, engineering, chemistry, cartography, business, word

processing, art, animation and entertainment. Computer graphics is



2. A Graphics Tutorial 4
becoming the preferred interface between humans and computers instead of
being considered a special form of communication requiring special I/0
software and hardware. Data presented pictorially can be perceived and
processed by humans more rapidly and efficiently than textual data.
Graphics systems will be more widely available as microcomputer hardware
costs continue to tumble. One is prampted to look for computer graphics
in unexpected places within the home, office and laboratory in the next
few years.

2.1 Interactive Versus Passive Computer Graphics

Interactive computer graphics allows a user to dynamically control a
picture's context, format, size or color by means of interaction devices
such as a keyboard, lever or joystick. Video displays such as CRTs and
TV sets are used to show the picture dynamics. Points and lines must be
contimiously updated to add a dimension of time to the display.
Applications of interactive graphics include flight training simulation,
camputer-aided design and video games.

Passive computer graphics is involved when using an impact printer
or a drum or flatbed plotter. The user controls the picture creation but
does not have real-time, dynamic options. Passive graphics is easier to
implement than interactive since event handling is not necessary.
Processor speed for passive graphics is not as critical since points and
lines are not continuously updated. Passive graphics is all that is
required in many applications, e.g., graphs, pie charts, histograms,
flowcharts, architectural diagrams and circuit schematics.

The remainder of this tutorial emphasizes subject areas used in both
interactive and passive graphics. Certain areas of interest only to

interactive graphics (e.g., event handling) are not addressed since the



2.1 A Graphics Tutorial Interactive Vs. Passive 5
software system was developed to operate as a passive camputer graphics
package.

2.2 Vector Versus Raster Display

The term "vector" is not used strictly in the mathematical sense of
an n-tuple of location coordinates. Graphics literature uses "vector" to
describe a line segment or the process of drawing a segment.

Pictures can be created by a vector system with a random-scan —
segments are displayed in any order. A pen plotter in which a pen can be
moved in any direction over a piece of paper is a random-scan vector
device.

In a raster-scan system a drawing is divided into horizontal lines.
Each raster scan traces out a small strip of a picture. U.S. TV sets,
for example, have 525 lines and most CRT raster systems use between 256
and 1024 lines. The more lines, the higher the picture quality.

With a black-and-white CRT raster device, a raster scan is a left~
to-right sweep of the electron beam which is modulated to create
different shades of gray. There is a one-to-one mapping of a memory
location to each small segment of the raster scan. Each of these small
segments is called a "pixel" — a picture element. A picture is
therefore a matrix of pixels. See [NEWM79, Chapters 15-19] or [FOLES2,
Chapters 10-12] for details of raster graphics.

Dot-matrix impact printers are also raster devices. Each pass of
the print head traces out typically 7 to 9 rows of dots to form text
characters, In the last few years microprocessor-controlled, dot-
addressable, impact printers have been introduced as graphics devices.

The IDS 560 printer has a graphics resolution of 84 dots per inch

both vertically and horizontally. Dots are formed by print head wires 14



2,2 A Graphics Tutorial Vector Vs. Raster 6
mils in diameter; the printed dot is anywhere between 15 and 17 mils in
diameter due to inherent wvariations in paper hardness, humidity and
ribbon wear. Dots are printed on 1/84th-inch centers, about 12 mils
apart. (A mil is 0,001 inch).

In graphics mode each pass of the IDS 560 prints 7 rows of dots.
Each column of 7 dots within each row is mapped fram a byte of memory.
Given a byte with bits 7 to 0 (bit 7 the most significant and bit 0 the
least significant), bit 0 is mapped to the top row of the raster scan
while bit 6 is mapped to the bottom row of the scan. Bits 1 through 5
are mapped in between. Bit 7 (typically the parity bit) is ignored.
Other details of the IDS 560 graphics mode can be found in [IDS81].

While the IDS 560 prints 7 rows of dots per raster scan, the
microcomputer graphics package was developed to operate as a random-scan
vector system,

2.3 Two-Dimensional Picture Definition

Output from graphics systems is in a two-dimensional form whether on
a CRT screen, a drum or bed plotter, or an impact printer. This section
will introduce concepts and algorithms used in two-dimensional graphics.
Three-dimensional graphics involves projections into two dimensions and
will be discussed in Section 2.5.

2.3.1 World Coordinates and Windows

The term "world coordinates" is used to describe the Cartesian
coordinate system used by a user. The units of the world coordinates can
be anything appropriate for a problem definition, e.g., inches, meters,
gallons, liters, pounds, newtons, etc. A user should concentrate on the
definition of the entities to be plotted and should not be overly
concerned about conversions which are autamatically performed by a



2,3.1 A Graphics Tutorial World Coordinates and Windows 7
graphics package.

Many graphics systems require the user to specify coordinates in a
device space —- the coordinates needed by the display hardware. The
user's data is rarely within the same range as needed by the display
hardware and mist be mathematically manipulated to fall within the
desired range.

The rectangular area bounding the extents of a wuser's world
coordinates which defines the desired picture is called the "window".
(Points outside the "window" cannot be "seen" by the graphics software,
i.e., they are ignored.) Without an appropriate transformation, the
default "positive" direction of the coordinate axes is left-to-right for
the "x" axis and bottom—to-top for the "y" axis. A canonical space
ranging from 0.0 to 1.0 in both the "x" and "y" Cartesian dimensions is
an appropriate default window. However, a user can specify any window by
setting the desired minimum and maximm values of the "x" and "y"
2,3.2 Points and Lines

The entities described by a user in world coordinates consist of a
set of points and lines. A point in world coordinates is mapped into a
point in device space. If the dimensions of device space do not
correspond to world coordinates, then a simple translation and/or scaling
operation will allow world coordinates to be mapped to device space.

A line segment consists of two endpoints and all the oollinear
points in between. Transforming a line segment from world coordinates to
device space is simple: The endpoints of the segment in world
coordinates are each mapped to device space. The segment in device space
consists of these transformed endpoints and all the collinear points in



2.3.2 A Graphics Tutorial Points and Lines 8
between.

When using a random—scan vector device, the points or line segments
in device space can be directly plotted. No calculations are necessary
to define intermediate segment points. This is not true when using a
raster-scan device with a picture consisting of a matrix of pixels. The
transformed segment endpoints map directly to specific pixels but all the
intermediate pixels between the endpoints must be individually selected.
2.3.3 Clipping

Unless a user is extremely careful lines may extend outside the
defined window area. The portion of the line ocutside the window must be
clipped. A common method used for line clipping is the Cohen-Sutherland
algorithm. See [NEWM79, pp. 65-67] or [FOLES82, pp. 146-149] for a
detailed description of this algorithm. (The Pascal programs in both
texts are essentially the same. [FOLES2] "fixes" the single "goto" of
[NEWM79].) A brief description follows.

This algorithm first considers the regions in which the line
endpoints lie. These regions classically have been assigned binary codes
as shown in both [NEWM79] and [FOLE82]. The binary codes seem to
conplicate the discussion. In this report we replace a set of region
codes with a set of directions as if the window were a map surrounded by
regions. For example, the window '0000' becomes []1, '0010' becames
[east], '0110' becames ([south east], '0100' becomes [south], etc.
Consider the rectangular window and the sets of regions shown in the
diagram below:



2.3.3 A Graphics Tutorial Clipping 9

[north west] | [north] | [north east]
west] | @1 | [east]
[south west] i [south] 5 [south east]

If the set of regions a point lies in is the empty set [], the point is
contained within the window. If the set of regions is non-empty, the
point lies outside the window. If the union of regions from both
endpoints of a line is the empty set, the segment is entirely visible.
If the intersection of regions from two points is not the empty set, the
segment must lie entirely outside the window and is invisible. Thus,
lines which are entirely visible or invisible are quickly processed.

If the line is partially visible, the point of intersection with one
edge of the window is found and the segment that lies outside the window
is discarded. The algorithm then repeats: The initial visibility test
is then applied to the remaining segment and further subdivisions are
made until only the visible part of the segment remains.

2.3.4 Viewports

A "window" is a logical (or wvirtual) screen and is mapped to a
physical (or real) screen or a portion of a physical screen. This area
of the physical screen onto which a window is mapped is termed a
"viewport" or "view". Often the window fills the whole physical screen
and the window and viewport have similar definitions. Sometimes many
viewports fill a single physical screen.

Since the microcomputer system used in developing this software
package did not support a graphics CRT but rather a graphics printer, a
"wiewport" is defined slightly differently for this package. A
"viewport" is treated as a rectangular subset of a "window". The "view"



2.3.4 A Graphics Tutorial Viewports 10
is used by the clipping modules instead of the "window". This allows a
user to define one logical screen containing any number of other logical
screens. The intent was to allow a user to restrict graphic operations
to only a portion of the window. Many diagrams could be included in one
final hard copy plot.
2,4 Matrix Transformations
2.4.1 Homogeneous Coordinates

The representation of an n-component position vector by an (n+l)-
carmponent vector 1s called homogensous coordinate representation
[ROGE76]. In homogeneous coordinate representation the transformation of
n-dimensional vectors is performed in (n+l)-dimensional space and the
transformed n-dimensional results are obtained by projection back into
the particular n-dimensional space of interest. Thus, in two dimensions
the position wvector [x y] is represented by the three-camponent vector
[hx hy h]. There is no unique homogeneous coordinate representation of a
point in two-dimensional space. For ease of calculation and simplicity
[x ¥ 1] is used to represent a nontransformed point in two—dimensiocnal
homogenous coordinates.

The advantage of introducing homogenecus coordinates occurs in the

general 3 x 3 transformation matrix

SavU

x'y'hl = [x y 1]

nao

IEOQJI

where terms a, b, ¢ and d produce scaling, shearing and rotation, m and n
produce translation, and p and g produce a projection. The element s

produces overall scaling.



2.4.2 A Graphics Tutorial Translation 11
2.4,2 Translation

Translation is the uniform motion of an object along a straight
line. A translation could not occur with a transformation matrix without
the use of homogeneous coordinates. Given the translation vector T with
translation components Tx and Ty, the matrix transformation for

translation is

x'y'1l = [x y 1]

OO

'gon-
g o

2.4.3 Scaling

A scaling operation can represent a change in units, or an
enlargement or shrinking of the dimensions of an cbject. Negative
scaling values can be wused for mirror image "reflections". Given the
scaling vector S with scaling components Sx and Sy, the matrix
transformation for scaling is

x'y'11 = [x y 11i

2.4.4 Rotation

Rotation means that each point of an object moves in a circular path
around the center of rotation. A rotation transformation matrix can be
derived from simple geometry. The transformation matrix to rotate point
(x,y) through a clockwise angle @ about the origin of the coordinate

system is

I cos® -sin@ 0
x'y'1ll = [x ¥y 1]| sin® cos® 0
i 0 01

This transformation matrix can only be used for a rotation about the



2.4.4 A Graphics Tutorial Rotation 12
origin,
2.4,5 Change in Coordinate Systems

In the above transformations the coordinate system stays unaltered
and the dbject is transformed with respect to the origin. An alternate
but equivalent way of thinking of a transformation is a change in
coordinate systems. This view is useful when mltiple objects, each
defined in its own local coordinate system, are combined into a single,
global coordinate system.

A translation T of a point is a translation -T of the coordinate
system. A rotation angle @ of a point is a rotation angle —¢ of the
coordinate system.

2.4.6 Concatenation of Simple Transformations

Transformations can be combined by matrix multiplication of simple
transformation matrices. The order of transformations must be preserved
since matrix maltiplication is not cammtative.

To demonstrate concatenation of transformations consider the
rotation about an arbitrary point instead of the origin. Given point
(x,y) to be rotated by an angle @ about the point (Rx,Ry). This can be
accomplished by translating the origin to the point (Rx,Ry), performing
the rotation, and then restoring the original origin:

cos P =-sin
]

[x'y' 1]l = [x y 1] sin cos
0

==
o|w
oo
_—F-—_—l
?OI—‘
F o
oo

1 0
0 1
~Rsr —'RY

2.5 Extension to Three-Dimensional Graphics

Many two-dimensional operations can simply be generalized to produce
three-dimensional operations. Some three-dimensional operations do not
have two-dimensional analogs, however.



2.5.1 A Graphics Tutorial Homogeneous Coordinates 13
2.5.1 Homogeneous Coordinates

In three dimensions the position vector [x y z] is wusually
represented by the four-caomponent homogeneocus coordinates [x y z 1].
This row vector can be transformed by a general 4 x 4 matrix,
2.5.2 Transformations

Translation and scaling transformations can be easily generalized
fram two to three dimensions. The translation vector T consists of three
components Tx, Ty and Tz. The 3D translation matrix is

ﬁl—'DO
(ol = = ]

0
i
0
Ty

?OO!—'

Given the scaling vector S with scaling components Sx, Sy and Sz, the 3D
scaling matrix is

OOO?
OO@O
onoo
—OOO

Rotations in two—-dimensions are assumed to be about the z-axis which
is perpendicular to the x-y plane. With three dimensions, rotations can
be about any one of the three axes in the plane formed by the other two
axes. Positive rotation angles are measured in the clockwise sense when
locking along an axis in the direction of the origin. Rotation about the
z axis through an angle @ is achieved with the transformation:

i cos P -sin@® 0 0 |
| sing cosp 0 o}
I o 0 1 0]
L o o 0 1]

Rotation about the y axis is given by:



2.5.2 A Graphics Tutorial 3D Transformations 14

i cos® 0 sing Oi
| 0 1 0 0I
I-Sil‘l@ 0 cos @ Ol
i 0 0 0 1]
Rotation about the x axis is given by:
} 10 0 0 i
| 0 cos® =-sin@® O I
l 0 sin® cos® 0 |
;i 00 0 0

Permuting the axes in a cyclic fashion vyields the expressions for
rotation about the x and y axes from the z-axis rotation matrix.
2.5.3 View Transform

Objects are described in world coordinates. For 3D graphics these
world coordinates usually must be converted to "eye coordinates" which
have the location of the viewer's eye as the origin. A view transform
matrix, composed of the concatenation of 5 simple transformation
matrices, performs this change in coordinate systems. See procedure
"view transform matrix" in Appendix Section A.3 "matrixops UNIT". Other
details can be found in [NEWM79, Chapter 22] or [FOLES2, Chapter 8].
2.5.4 Projections

Perhaps the simplest projection from three- to two—dimensions is the
"orthographic" projection. With this projection the z-coordinate is
ignored and the (x,y) coordinates are used without modification. While
this projection is simple it is not appropriate for many 3D applications.

A perspective view can be generated by projecting each point of an
object onto the plane of the display screen. The view transform
described in Section 2.5.3 is necessary to convert from world coordinates

to eye coordinates.



2.5.4 A Graphics Tutorial Projections 15

The perspective transformation is different than previous
transformations in that it requires dividing the the x and y wvalues (in
eye coordinates) by the z value (in eye coordinates). The earlier
transformations only involved multiplications and additions. Generating
a true perspective image requires dividing by the depth of each point.
2.5.5 Clipping

Clipping of three-dimensional segments can occur after the
conversion from world coordinates to eye coordinates but it must be
performed before the division by the depth of each point described in the
previous section. The clipping operation simply cannot operate on
projected line segments. Objects behind the eye can be projected onto
the screen, The viewing "window" of 2D clipping is replaced by a
"pyramid®” in 3D clipping. The algorithm described in 2.3.3 can be used
except line intersections with lines are replaced by line intersections
with planes., Once 3D segments are clipped and projected they can be
displayed.

3. Examples and Discussion

The microcomputer graphics package produced Exhibits 1 through 5.
(The programs which produced these Exhibits are in Appendix B.) Most of
these programs were originally developed as test cases while developing
the various UNITs and PROCEDURES.
3.1 Two-Dimensional Graphics
3.1.1 Cartography: Map of Kansas

Drawing straight lines is the simplest task performed using 2D
graphics. Internally several special cases exist for drawing lines:
single point, horizontal, vertical, slope >= 1, slope < 1. The points



3.1 Examples Two-Dimensional Graphics 16
for drawing the outline of the State of Kansas by county were cbtained
several years ago from a U.S. Department of Transportation tape. Since
the map involves over 600 segments it was chosen for an initial thorough
test of drawing simple lines of various slopes. Errors could be easily
spotted. Exhibit 1.1 shows the whole state by county.

The plotting of straight lines was a major milestone in the program
development — further development cbviously would have been senseless if
simple line segments could not be handled. Memory was still available
for user programs after they referenced the bulk of the library
procedures. Processing time was slow, but tolerable. A large mumber of
memory frames was available for the paging activity. (About 50 frames
were initially available. Future additions have reduced that number to
10-20 with some programs now). All I/0 and paging problems were ironed
out in this first stage. Problems in mapping pixels to bits were also
resolved,

Most of the vector and matrix mathematical operations were
implemented in anticipation of 2D transformations. The 2D scaling,
rotation and translation matrix operations were implemented and tested
using the Kansas map data. Exhibit 1.1 shows scaling and translation
while Exhibit 1.3 shows these operations as well as rotation about the
"z" axis.

Initially, clipping was performed very crudely to avoid potential
subscript range problems. Each pixel was checked to see if it was
outside the "view" area. This crude clipping was initially implemented
by a single IF statement but was very inefficient. 2D clipping was later
"correctly" implemented wusing the Cohen-Sutherland algorithm from
[NEWM79] .



3.1 Examples Two-Dimensional Graphics 17

Exhibit 1.3 demonstrates intentional distortion to show what could
happen with an inappropriate transformation matrix. For "fun" the black
and white colors were inverted in this Exhibit.
3.1.2 oOrthographic View of a Football Field

Exhibit 2 shows a 2D representation of the KSU football field -- an
orthographic 3D view. This example was prepared to test 3D
transformations and clipping.
3.2 Three-Dimensional Graphics

Once 2D graphic primitives were successfully implemented, work was
begun on 3D graphics. When campiler symbol table space became more and
more scarce it became apparent that many changes were necessary. Two-
and three-dimensional primitives were cambined into single PROCEDURES.
Conbining the clipping operations was the most difficult change.
3.2.1 Perspective Views of a Football Field

Exhibits 3.1 through 3.4 show various perspective views of the KSU
football field. Choice of a football field was made while attending a
game last fall. A change in seats from the 50-yard line at one game to
the endzone at another game gave me the idea. The field is useful for
demonstrating perspective transformations since most people can visualize
being in different seats and having the various views. These three pages
of Exhibits take about 6.5 hours to plot fram beginning to end. If
processing time were faster, a movie composed of many still frames
showing the aerial view flying around the stadium would have been
considered.
3.2.2 Surface Graphics: z = f(x,y)

One of the original reasons for developing this graphics package was

to plot perspective views of surfaces similar to the Surface II Graphics



3.2 Examples Three-Dimensional Graphics 18
System [SAMP75]. Exhibits 4.1 through 4.4 show various perspective views
of the same surface but without hidden lines removed. One method of
removing hidden lines for such surfaces of functional form is given in
reference [KUBE68]. To date this hidden line removal algorithm has only
been partially implemented.
3.2.3 surface Graphics: Pressure Map of Well Field

Exhibits 5.1 and 5.2 show a practical application for surface
graphics. This surface described by a 16-by-16 grid is the solution of
256 simultaneous equations solved iteratively as the numerical solution

of a partial differential equation.



Exrhibit 1. Cartography Ezamples

1.1 State of Kansas
Demonstrates plotting of unmodified line segments

~ ‘“u.g

§

o e o e,
]
3
L,
-

fzg
[

L]
qr

I

nug

1|

H_L._f_ . .k“

[7]
al
-

1 Local Counties: Rilev, Pottawatomie., et ai
Demonstrates symmetrical scalinmg, transiatiom and clinping of iline segments

! !
J

]

M/ma

|
>
“%
A

g

]
|
.

>

—

!
]

1.3 "Creative Cartographv"”

Demonstrates asymmetrical sealimg, rotatiom, tramsiatiem amd clipping
of line segments; color imversien

19



20

Freld

Orthographic View of KSU Football

Ezhibit 2.

o e —— e g b R - ——
.F a 3 agj= ale Ok s dlk dlE aje an
PLUITHLEITR AT _g-_ COETERRET T e e e g ensten o _Lﬁ_ PEATERLETH T LI i
.-\\\
<[
~
PEVRRT VR AL L i Lt i _.ﬁ_ PELLEERIE R I e i i IREEEILEEERL v n
\ /
\ /
K 1o aia 3|0 -0 S0 40 30O 2|0 1o
|||||||| 2 B maenn Srmemen S amm——"" I.ll.ril.lll.l.ll%.|.||....r..l.||-|7. - A PR rlllL.I.l.l.l;..||.llrllln_.l-.llil.lll ki s K s




Exzhibit 3. Perspective Views of KSU Football

3.1

Side View (from the east side)

Azinuth = 9§ degrees, Elevation = 30 dearees, Distance =

3.12 Proper perspective when viewed J inches trom eve

JZ’-’(;’ /" [T

'ff7:0!r4|a-r Mx]!--rsf--s!-l-l{-se

/)

"

1

§
f;;J{{:: ) :J;Lj:afs Pl it iaL¥silsLauaiLaaxxiax\fL\xx
% kY
L

b

N
kY N T

N
N

'

3.1b Proper perspective when viewed 4 inches rrem eve

,‘rf.fr

I-”"f} JP‘/.H‘!&I/(

//, // "/

fl‘"?flf LR

i
1
.
L
| i i
Lol

Ja;fr.ffgf‘a.’.ll‘f}J(’;lfi’t.f.iipn.rnllﬁl

\
VAV AN BN I

\ B

l\‘#\\\*\\ *\\\h\\\h\\\k\\\k\\
N M W

!

]

]
5

vidina \ (LELTETEL CRARLEELENE

\

k

k.
NN

‘&'.

A\

A
hY

A T

5

3.1¢ Proper perspective when viewed 3 inches from eve

:’/}“7 AR RN

m,fn.dt,. ,..J..,T,..f.....-...l-..\.\.“..},-.. wudun i dmes Seva s B0, TR
L NN NN NI
’{ J 1 | 1 . NONON N S —
f / I TN N \ A T S
{ ] i b ‘\ .S . T W
'] { | | E. L1 '4.\ N \\ ~ ~ ~
n’ fLers 7312 1] et LY LY \‘ ALTECEERALEEASREY \\\\ B T
reders ; reafronefirnide Ji'"“'l'“'d‘i‘ R AETRLE \\
Ir x 4 LY L hY ~
1 A L 4, A
f { } ) § \ kY Y ~ ~
it elg X edn A R f S N

Field

100 feet from center of freld

21



Exhibit 3. Perspective Views of K8SU Football Freld

3.2 Corner View (from the southeast corner)
Azinuth = 15 degrees, Elevation = 30 deorees. Distamce = 730 feet from center of fieid

e e ]
Lz Ll e, ST
3

Endzone View (from the south endzone)

.3

Atisuth = 0 degrees, Elevation = 30 degrees, Distamee = 300 feet from cemter of field
w = = =
= = )

3.4 Aerial View
Agimuth = 43 dearees, Elevation = 75 dearees, Distamce = 1§0¢ feet from center of fielo

,ffgig\ qyﬁ%
e
\ 3:’(5?"

3\ O\ N \
ARt
% =

%
LY Y W
B N T
SRR
A\ \\\\\:\ \‘\ gﬂ#{?ﬁ\\ %

s

wh, WY




Exhibit 4.

4.

“Hidden" lines are not removed. E=-2..+2; v==1.

Asimuth = 45 degrees, Elevation = 3¢ degrees, Distance = 15 untts

Atimuth = 45 degrees, Elevation = 30 dearees, Distamce = 5 unmits
A %E!

8 500X
0735

SIS NN Fl
S \\H>\‘></\,:;ﬁ
NIRRT
\ \\\x N DR \(%/f s f x‘“}
\:\\ \\ N\\ % N\ \ T >\ fh 'l

AL RSN RN \:‘\ X \)’\/ h 4 /J\\{’
VAL TR TR NN S

b v, ==

The BSurface Z{(X.Y¥) = XV(x2_v2);,(x2,v2,

Y

23



Exhibit 4. The Surface Z(X.,Y)

"Hidden"” lines are not removed.

= XY(X2_y%Z,,¢(x%2.v%),

X¥=-2..+%; v=-2. 4%

9.z Azimuth = 45 dearees, Elevation = 0 dearees, Distance = 15 wmits
E
I
oygs
+ f1ne
4. ¢ Asimuth = 45 degrees, Elevation = 90 deqrees. Distance = 13 units

RS

XX
AR SRR
Pate ot et ety _.1’?.#% &
SRRy

2o SN R RN I0

(R RRRIAAIAXRS

{/

&,

e S
ELRRRIAKHK
. P P i S R
R AT I e e e S T St e e T
CARRR%

Hﬁgﬁﬁéﬁﬂaﬁh
e

S
éhgﬂﬁﬁﬂﬂﬁﬁhﬁwﬁﬁﬁﬁﬂvégga:#

: ot
SO &5 RS ‘
e T
; *.**W
SELRBEIRR PRSNTRA
R S

%
v,
"5&4’*1’1

24



25

Exrhibit 5. Pressure Map of Area with Jniection/Production Welis
Partial Differential Eguation: t‘ulI + k'uy! = ¢i(B.7)
k =2, k?=1, clg,y)= constant flow rate ’
5. Atimath = 0 deorees, Elevation = 3¢ deorees, Distance = éf units

I P

3.2 Asrmuth = 270 degrees, Elevation = 30 degrees, Distance = &0 units




4, Design Philosophy and Implementation Strategy 26
4, Design Philosophy and Implementation Strategy

Software design on large mainframe camputers often is not seriocusly
restricted by memory, disk space or processor speed. Operating systems,
programming languages and support libraries on large mainframes provide
great flexibility not only in design but implementation. The
rm.crocarplter program designer is not always so fortunate. Memory,
diskette space and processor speed can be major design factors — but
such factors will be less binding as microprocessor technology advances.
Microcomputer operating systems and programming languages do not provide
many features available on minis or mainframes. Support libraries and
utility programs on micros are minimal or non-existent and the programmer
must often improvise.
4.1 System Limitations

The software was designed to be as general as possible but
generality was compramised to resolve certain problems created by
hardware or software limitations.
4.1.1 Hardware Configuration

The graphics package is nearly independent of the type of processor
but somewhat dependent on the particular graphics printer. The software
was developed on a Heath/Zenith H/7Z-89 Z-80 microcamputer system with a
2.048 MHz clock, 25-line by 80-colum CRT, 64 Kbyte memory, three 102.4
Koyte diskette drives, and the Integral Data Systems "Paper Tiger" 560
printer. The maximum printer width is 13.2 inches. High quality
characters are formed with the 24-by-9 dot matrix. The printer's
graphics mode provides 84 by 84 overlapping dots per inch. The printer
speed is about 110 characters per second in mono-spaced mode,
approximately half that speed in double width or graphics mode.



4,1 Design/Implementation System Limitations 27
4.1.2 Operating System/Programming Language

The UCSD Pascal p-System (Version II.0) was used for software
development [UCSD80]. This original implementation is strictly in Pascal
even though certam operations could be enhanced dramatically by recoding
them in Z-80 assembler language. UNITs were used to provide a library
mechanism. The "include" file mechanism of the campiler was used since
certain source programs were too large to edit as a single file.
Campiler symbol table space was an overriding constraint during
compilations of UNITs. A single UNIT was not possible and several UNITS
were found to be necessary to camwpile all modules. Procedures were
sametimes modularized more than desired due to compiler restrictions on
their length. Single procedures were sametimes subdivided into several
local internal procedures to appease the compiler yet restrict variable
access. The use of glabal variables was kept to a minimum.

Features of UCSD Pascal that are non-standard Pascal (e.g., randam
I/0) were used only when necessary. System intrinsics were avoided but
certain ones (e.g., MOVELEFT) still had to be used. Free union variant
records -- variants without tag fields — were used as necessary to
facilitate overlaying different data types even though they are usually
considered "dangerous" because of their flexibility.
4,2 Primitives

Standards in the area of computer graphics have been investigated
for many years [GUED76], but as in many areas of camputer science today,
only "tendencies" exist. The primitives used in this project were
modeled after those found in [NEWM79] and are similar to those in
[FOLES2] . [NEMM79] uses the same names for two— and three-dimensicnal

primitives of different dimensionality, e.g., "moveto (x,y)" and "moveto



4.2 Design/Implementation Primitives 28
(x,v,2)". Instead of separate two- and three-dimensional primitives, and
because of limited symbol table space in compiling UCSD UNITs, an attempt
was made to integrate two- and three-dimensional primitives. For
example, instead of "moveto 2D (x,y)" and "moveto 3D (x,y,z)", a single
"moveto (u)" was implemented where "u" is of the TYPE "wvector" which
holds either a two—- or three—dimensicnal point. This integration does
require the use of separate PROCEDUREs to define the vectors of different
dimensionality: "define 2D vector (x,y,u)" and "define 3D vector
(x,¥,z,)".
4,3 lLogical Screen and Plot Files

Two alternatives were initially considered for the data structure
containing the picture definition. One alternative was a somewhat
complex data structure containing line segments which would be searched
during each raster scan to determine if any part of the segment was
contained in the scan. Several methods of this type are discussed in
[FRAN79]. Unfortunately, the size of the data structure would be
samewhat proportional to the complexity of the picture. A second
approach is wvery simple in concept: a huge matrix of pixels would be
maintained in memory or on disk in a "plot file". The size of the matrix
would be proportional to the size of the physical screen but independent
of the camplexity of the picture. The decision to use this second method
was made somewhat arbitrarily.
4.3.1 World and Screen Coordinate Systems

A logical screen is an abstraction of a real video display screen
which may or may not correspond to an actual screen, or multiple logical
screens might be mapped to a single physical screen. While a logical

screen could take on any shape, only rectangular areas were used in this



4.3 Design/Implementation Logical Screens 29
project.

The coordinates of a logical screen (called a "window") are defined
in terms of world coordinates instead of the absolute addressing often
required by the hardware of most physical screens. The software
automatically converts world units to the physical units describing the
location of a given point on a logical screen.

4.3.2 Paging System

A rather large matrix of pixels cannot be held in only 64K of
memory. A paging system was implemented to facilitate picture definition
for a physical screen of any dimension which could be stored on existing
or future disk space. This paging system is invisible to the user.

4.4 Feasibility Studies

All problems cannot be anticipated but certain potential problems
were investigated which could have prevented successful completion of
this project. Certain parts of the graphics package were developed in a
"bottam-up" approach.

4.4.1 Hardware/Software Harmony

The UCSD p-system happened to be compatible with the hardware
requirements of the IDS 560 printer. The UCSD Supplemental Users'
Document for using the H89 did not indicate any printer restrictions, but
the menu from the configuration program gave only three possible printers
to choose from —- none of which were an IDS 560 or a "generic" printer.
Problems were known to exist in graphics mode when the IDS 560 printer
was used with the Heath HDOS operating system., HDOS uses a device driver
which intercepts certain special codes and imposes limits on characters
per line and lines per page which cannot be completely disabled (easily).

UCSD could have had similar problems but did not.



4.4 Design/Implementation Feasibility Studies 30

One problem did develop which could have ruined most pictures on the
IDS 560. The UCSD p-system, for same unknown reason, intercepts the
control character hexadecimal '10' — a fact that did not surprise
Softech personnel when phoned about the problem. Without that character
non-vertical and most non-horizontal lines would have breaks. Certain
horizontal lines would even completely disappear. The IDS people
anticipated such problems by recognizing only seven of the eight bits of
a byte in graphics mode. The remaining bit could be '0' or '1'. By or-
ing hex '80' with '10', the printer correctly treated '90' as a
substitute for '10'.
4.4.2 Random I/0 in UCSD Pascal

Standard Pascal does not support random files. UCSD supports random
file access by means of the intrinsic SEEK and the GET and PUT
procedures. This method of random file access only works for typed
files, however. The system intrinsics UNITREAD/UNITWRITE and
BLOCKREAD/BLOCKWRITE support random file access for untyped files but may
be dangerous intrinsics to use (the manual says so). Whether or not the
use of a typed file was necessary was unclear initially. Several
alternatives were investigated. One big problem centered around whether
or not the sequential parameter prefix file (see System Guide) had to be
a separate file. Because of operating system fragmentation of disk
space, it was desirable to incorporate the prefix with the rest of the
random file containing blocks of pixels., This problem was resolved by
introducing free union variant records and tolerating some extra move
operations.
4.4.3 Mapping Pixels to Bits

The exact mapping of a pixel to one or more bits in UCSD PACKED



4.4 Design/Implementation Feasibility Studies 31
ARRAYs was not well understood. Each pixel could have required a two-
byte word for storage and only very small pictures would be possible.
This was not the case and it was possible to map 8 bits into each byte of
physical storage. However, one small snafu still was present. A PACKED
ARRAY of bits was found not to be stored contiguously in physical memory.
The order is: bits 7-0 in byte 1, bits 15-8 in byte 2, and so on.
4.4.4 Processor Speed

Interpreting p—code on the UCSD system adds considerable overhead to
run time compared with assembler code or even native code generated by a
compiler. Optimization of execution time was not a primary goal of this
project, but if execution times would have been much slower,
implementation of this graphics package would have been too impractical
for the microcomputer being used. The concern that same processes might
take several hours was realized when mapping the plot file to the printer

in graphics mode.

5. Future Extensions and Other Applications

Future work on this particular graphics package could address many
current deficiencies that time did not permit to be considered in this
first implementation. Some of these areas are discussed below.
5.1 Performance Enhancements

Fram a run time standpoint, this graphics package executes
satisfactorily except for the mapping of the plot file to the graphics
printer. That process literally takes hours — eight hours or more for
same large plots. The time involved in the mapping process must be
decreased by as much as an order of magnitude for practical operation.

According to Softech and Heath sources interviewed by phone, UCSD



5. Future Extensions and Other Applications 32
Pascal Version IV will be available in August or September 1982 for the
H/Z-89. That version should provide a native code generator which should
speed the mapping process considerably. Re-writing certain sections of
code in Z-80 assembler language will also be considered. The mapping
process could be sped up considerably if bytes are addressed instead of
the individual bits representing each pixel.
5.2 Annotation Text and Symbols

[MACE82] demonstrates several character sets and special symbols
whose coordinates are defined by [WOLC76]. Amnotation text and symbols
are very necessary for a complete graphics package.
5.3 Graphic Elements including CALCOMP-like Plotting Package

The only two graphic primitives in this graphics package are
"moveto"” and "lineto". These primitives could be combined to form
graphic elements which define more complex operations. For compatibility
with existing graphics packages on many mainframe camputers, a CALCOMP-
like library of graphic elements should be developed,
5.4 Hidden Line/Surface Removal

Several references have been investigated to review existing hidden
line and surface removal algorithms: [GRIF78a, GRIF78b, KUBE68, SUTH74
and WILL72], The [KUBE68] reference seemed particular easy for z =
f(x,y) functional surfaces or for those which are already defined by a
grid of points where interpolation is possible between grid points. No
decision has been reached about which algorithm would be relatively
quick, use little memory and use little compiler symbol table space.
5.5 Color Graphics

Microcomputer magazines reported last year that Integral Data

Systems intended to announce a color printer this year. In Jammary 1982



5. Future Extensions and Other Applications 33
IDS amnounced their "Prism" printer which has a four-color ribbon.
Mixing allows another four colors. This graphics package was designed to
accommodate a multi-color pixel TYPE definition with this new product in
mind. The driver which controls the transfer of the plot file to the
graphics printer would have to be modified to accommodate the new color
printer. Certain other changes in the definition of blocks and memory

frames would also be necessary.

6. Conclusions

This microcomputer graphics package demonstrates that a general
purpose package can not only be used on a "personal" camputer but can be
developed on one. This same software system on a future, more powerful
microcamputer with nearly unlimited memory and disk space will give a
user a very powerful graphics tool.

This project was undertaken in Fall 1981 as an academic endeavor but
also as a recreational exercise on a personal computer. Many areas would
not have been explored as thoroughly, and many tangents would not have
been partially pursued, if the primary intent of this project was to
develop and market a new software package. An outline of the chronology
of this project is approximately as follows:

September 1981 — 25 hours

- reviewed operation of IDS 560 printer

- reviewed operation of UCSD Pascal System

- ran benchmark tests comparing UCSD Pascal with Microsoft FORTRAN

campiler and Microsoft BASIC interpreter

- started literature search
October 1981 -- 25 hours

- continued literature search

- investigated UCSD random I/0

- investigated interactive prampts for file names
- studied I/0 errors related with the above



6. Conclusions

November 1981 — 40 hours
- developed "hexdump" PROGRAM as debugging tool
- studied use of variant records to overlay different data types
- "parm" and "plot" files were first created
- framework of paging system was developed
- pixel setting for line segments developed

December 1981 —— 40 hours
- integrated "pam" file with "plot" file
- driver written to map pixel matrix to printer
- the initial structure of the "dotplotter" UNIT established
- initial 2D operations: simple line segments drawn

January 1982 -- 40 hours
- matrix operations/transformations implemented
- 2D tests and examples
- integration of 2D and 3D procedures

2D clipping

February 1982 — 30 hours
- view transform matrix procedure developed
- 3D clipping
3D tests and examples
literature investigation of hidden line/surface removal

March 1982 —— 30 hours

- hidden line/surface investigation continued

- outlines of Report, System and User Guide developed
April 1982 —- 40 hours

- last 3D example developed
- Report, System and User Guides written

34



ANGES1

FOLE82

FRAN79

GILO78

35
REFERENCES

Angell, Ian O., A Practical Introduction to Computer Graphics,
1981, John Wiley & Sons

Foley, James D. and Andries Van Dam, Fundamentals of Interactive
Camputer Graphics, 1982, Addison-Wesley Publishing Company

Franklin, W. Randolph, "Evaluation of Algorithms to Display
Vector Plots on Raster Devices", Computer Graphics and Image
Processing, Vol. 11, 1979, pp. 377-397

Giloi, Wolgang K., Interactive Computer Graphics, 1978, Prentice-
Hall

GRIF78a Griffiths, J. B., "A surface display algorithm", Computer-Aided

Design, Volume 10, Number 1, January 1978, pp. 65-73

GRIF78b Griffiths, J. B., "Bibliography of hidden-line and hidden-surface

GUED76

IDS81

KUBEGS

MACEB2

NEWM79

POSD77

ROGE76

SAMP75

SCors2

algorithms"”, Computer-Aided Design, Volume 10, Number 3, May
1978, pp. 203-206

Guedj, Richard A. and Hugh A. Tucker (editors), IFIP Workshop on

Methodology in Computer Graphics, Seillac, France, 1976, North-
Holland Publishing Company

IDS 560 "Paper Tiger" Impact Printer Owner's Manual, Integral
Data Systems, Inc., 1981

Kubert, B., J. Szabo and S. Giulieri, "The Perspective
Representation of Functions of Two Variables", Journal of the
Association for Computing Machinery, Vol. 15, No. 2, April 1968,
pp. 193-204

Macero, Daniel, et al, "Graphics II by Selanar", BYTE, Vol. 7,
No. 3, March 1982, pp. 172-196

Newman, William M. and Rcbert F. Sproull, Principles of
Interactive Graphics (Second Edition), 1979, McGraw-Hill

Posdamer, Jeffrey L., "A Vector Development of the Fundamentals
of Computational Gecmetry", Computer Graphics and Image
Processing, Vol. 6, 1977, pp. 382-393

Rogers, David F. and J. Alan Adams, Mathematical Elements for
Camputer Graphics, 1976, McGraw-Hill

Sampson, Robert J., Surface II Graphics System, 1975, Kansas
Geological Survey, University of Kansas

Scott, Joan E, Introduction to Interactive Computer Graphics,
1982, John Wiley & Sons




SUTH74

UCsD80

UMLO82

WHIT82

WILL72

WOLC76

References (continued) 36
Sutherland, Ivan E., Robert F. Sproull and Robert A. Schumacker,
"A Characterization of Ten Hidden-Surface Algorithms", Computing
Surveys, Vol 6. No. 1, March 1974, pp. 1-55

UCSD Pascal Users Manual, Softech Microsystems, Inc., 1980

Umlor, E4, "Integeral Data Systems' Prism Printer", BYTE, Vol. 7,
No. 3, Ma.rch 1982, pp. 44-49

Whitted, Turrer, "Some Recent Advances in Computer Graphics"”,
Science, Vol. 215, No. 4534, 12 February 1982, pp. 767-774

Williamson, Hugh, "Algorithm 420: Hidden-Line Plotting Program",
Comumnications of the ACM, Vol. 15, No. 2, February 1972, pp.
100-103

Wolcott, N. M. and J. Hilsenrath, "A Contribution to Computer
Typesetting Techniques: Tables of Coordinates from Hershey's

Repertory of Occidental Type Fonts and Graphic Symbols", National
Bureau of Standards Special Publication No. 424, U.S. Department
of Commerce, U.S. Govermment Printing Office, 1976 (out of print)



Appendixz A.

o
B LI gy

Source Listings of Pascal UNITs

“global" UNIT
“"dotplotter™” UNIT
“matrizops® UNIT
"ids360" UNIT

37



A

1

Bl ey ey B pn e g, T, e
D i B e U g G D s @B ol G ) B LA S AT A

i S o D e
N i AP B e

UNIT listings glebal UNIT

{¢L- PRINTER:}

{55+ Put compiler in swapping mede.l
{$R+ Turn range checking en.}

UNIT global; {UCSD Pasecal, Versiom I1.)

{5C Copyright (C) 1982 by Earl F. Glymn, Manhattam, KS.})
{Uritten in January 1982; last modified on 15 February 1962 .}

{The “global®™ UNIT is used to mimimize sharing between the “dotplotter”
and other UNITs to provide more symbol table space for compilation

of the “dotplatter” UNIT. The TYPE definitions are used extensively in
other UNITs and user PROGRANs .|

INTERFACE
CONST
radians_per_deqree = 1.745329E-2; (3.1415%.../180)
TIPL
inder = 1.4 {used for "matris® and "vector® TYPEs]
dimension = (two_D,three_D}; (two- or three-dimenmsienzl TIPL)
matrix = {transformation “"matriz®}
RECORD
gize : index;
Ei;trl : MRRAYIindex.indexl OF REAL
'lﬂll; z {"vector® TYPE used to definme points}
RECORD
size : index;
vetr : ARRAY[indezl OF REAL
END;
ViR
prt : TEIT; {"prt"® is defined here so a UNIT which USES ...}

{another UNIT can compile and reference a commen TEIT FILE.]

FUNCTION defuss(z: REAL): REAL;

PROCEDURE define_2D_vector (1,y: REAL; VAR u: vestor);
PROLEDURE defime_3D_vector (x,y,z: REAL; VAR u: vector);
PROCEDURE tramsform (u: vwector; a: wmatriz; VAR v: vecter);

IMPLEMENTATION

CONST
fozg = 1.0E-¢;

FUNCTION defuss {PUBLIC(x: REAL): REAL];
(*defuss” is used for comparisons and to avoid propagation of "fussy®
B!ggitl'."" values. REAL calculations oftenm resuit im "fuszy® values.)
1f  ABS(1) { fuse
THEN defuis := 0.0
ELSE defuzs := x
EMD {defusz);

PROCEDURE define_2D_vector {PUBLIC(xz,y: REAL; VAR u: vecter)};
{This procedare defines two-dimensional homogemeous coordinates {(z,y,1}
as a single ®vector® data element "u®. The "size” of a two-dimensional
homogenous vector is 3.1
BEGIN
u.site = §;
u.vetrii} :s x;
w.vetrlll := y;
a.vetr(3] := 1.0
ERD (define_2D _vecter);

PROCEDURE define_3D_vecter {PUBLIC(x,y,2: REAL; VAR uw: vector));
{This procedure defines three-dimensional homogeneous coordinates (z,y,1,1)
as a single "vector® data element "u”. The "sise” of a three-dimensionmal
homogenons vector is 4.}

BEGIN
u.size := §
u.vetrlll := x;

38



A.l

100

e
HE

UNIT listings global UNIT 3¢9

s.vekel2] = y;
a.vetrldl := 3;
o.veir[d] := 1.4

END (define_3D_vectorl;

PROCEDURE transform {PUBLIC(u: wvector; a: matriz; VAR v: vector)};
{"transforn® multiplies a row "vector® by a transformationm "matriz®
resulting in a new row “"vector”. The "sise” of the "vectoer® and "matriz®
most agree (if mot, the transformed vector is givem a “size™ of 1 but mone
of the components are defimed).)

i,k : indes;
temp: REAL;
BEGIN

v.sige = a.size;
IF a.size = u.size

THEN BIGIN
FOR i := 1 TO a.size-1 DO BEGIN
temp := 0;

FORk := 1 TO a.sise DO
tesp := temp + u.vetrlklta . mtrslk,il;
temp := defurs(temp);
v.eetelil := temp
END;
a.vetrla.sizel = 1

END
ELSE BIGIN
WRITELN ('GLBO1:');
WRITELK ('Igmoring attempt to multiply a vector of dimenmsion ',
u.sise,' by a square matriz of dimemsion ',a.size,’.');
:.v.lin := 1 {signal error by setting dimension of "v" to 1}

END (transform};
END (glebal UNITI.



A.2

P am el s N i D B b

UNIT

[$L-
[§5¢
{60+
{§1-

listings dotplotter UNIT 40

PRINTER :}

Pat compiler in swapping mode.)

Turn range checking en ]

The compiler will not gemerate 1/0 checking code.}

UNIT dotplotter; (UCSD Pascal, Versiom II.}

(5C Copyright 1982 by Earl F. Glynn, Manhattam, K5.1
[Writtem in Nov 1981 - Jam 1982; last medified on § Apr 1982.]

{The "dotplotter” unit, under user program comtrol, creates {or coverlays)
2 logical screen defined as a matrin of dots (pizels). This pizel matris
is stored in a diskette file and blocks of it are paged iz and ocut of
memory as needed. Parameters defiming the logical screem are comtained
in 3 file prefiz. The structure of the file follows:

-

Parameter Prefis

Pizel
Hatrix

—— - S g e S e mi
[ Y T

User access to the parameters is restricted to procedure calls. The
paging system usad to access differeat blocks of the pizel matrixz is
eatirely transparent to the wser. The user comtrols the mazimam site

of the pizel matriz by defining the maxzinum sise of the logical screen.
The actoal size of the file changes: blocks are dymamically allocated

{by the operating system from the pool of disk space) when they are

first accessed. A part of the parameter prefisz comtains index information
used by the paging system.

The size of 2 memory frame was chosen to correspond to a physical block
to facilitate ramdom 1/0. The dimensions of the frames and I/D blecks
were paraseterised to facilitate implementation on other systems. Ia
fact, all constants that possibly could change from ome implementation
to another are treated as UNIT parameters. For example, to change from
2 dot resolution of 84-by-84/inch to 75-by-72/imech, only the comstants
"i_density™ and "j_density” meed to be changed.

The "put_plot" procedure is very device dependent and in the current
inplemeatation supports the high resolution Imtegral Data Systems
"Paper Tiger"™ 340 raster graphics primter.

The pizels in the current implementation may only be "black® or “white".
The "pinel” TYPE can be redefined to be any set of colors but certais
restrictions apply {since pizels are mapped to memery frames which

in turn are mapped to disk blocks). Using more colors either increases
the amount of needed disk space for a given size of picture, or reduces
the mazinum sise of a pictare given a fized amount of disk spice.

Te use the 1DS "Prisma” printer the "pixzel™ TYPE must be changed as well
as the "put_plot"® procedure. Most other procedure will require little
or no change fer coler graphies.

With only 64K of memory, the "dot_plotter® UNIT must be divided into
sections simce it is too large to edit as a simgle file. The ®include"
mechanisn is used to put the UNIT together at compile time. Symbol
t:blluig;ez is also tight with the given 64K of memory when compiling
this .

INTERIACE
USES global;

bloek_size = 512; {UCSD disk blocks are 512 bytes long)

TIPL

dispesition = (keep,delete);



A.2 UNIT listings

113
14
117
8
119
{10
121
|13
113
124
15
f2é
127
128
119
130
131
132
133
i34
135
e
137
138
13
140
1
142
143
144
143
14¢
"7
148
“uy
150

dotplotter UNIT 41

pizel = {white,black); {each pizel requires only ome bit)
projection = {orthographic,perspective);

(ldeally, access to these VARiables would be made omiy by procedure
calls, but limited compiler symbol table space does mot allow suck

2 luzery.)
close_printer:
Rin_space
plt
plt_mode
plt_name

BODLEAN; (close/paginate om exiting graphics model)
INTEGER; {space reserved by calling progeami

FILE OF PACKED ARRAY(1. .block size] OF CHAR;
(undefined,either create, ovarlay);

STRINGL23];

PROCEDURE begin_dot_plotter_unit;

PROCEDURE end_dot_plotter_ usit;

PROCEDURE sise (x_lem,y_lea: REAL);

PROCEDURE dot_color (celor: pixel);

PROCEDURE £ill_celor (color: pizel);

PROCEDURE window (x_min,3_maz,y min,y_msx: RELL);
PROCEDURE view (a_min,z_max,y_min,y_max: REAL);
PROCEDURE open_plot;

PROCEDURE close_plot (disp: dispesition);

PROCEDURE moveto (u: vecter);

PROCEDURE limete (u: vectoer);

PROCEDURE clear_transform {d: dimemsiem);

PROCEDURE set_transform (a: matriz):

PROCEDURE get_transform (d: dimension; VAR a: matrisz);
PROCEDURE clipping (flag: BOOLEAN);

PROCEDURE praject {u: wveckor; VAR v: vecter);
PROCEDURE set_projection_type (pri_type: prejection);
PROCEDURE put_plot (3,y: REAL; copies: INTEGER; border: INTEGER);

IMPLEMENTATION

CONST
§lack_byte
file_tag
i_density
i_frame_size
j_densi ty
i_frame_size
six_frames
mag_i_blks
san_j_blks
spacedefault
white_byte

a3 _bliks
maz_i_dots
mag_j_dots
pre_size

TIFE
Blk_ne
frame_no
i_blk_no
i_dot_mo
i_frame_po
i_blk_no
i_dot_ne
i_frame_no
semory_frame

VAR
B1k_indesx
frame_i_blk
frame_j_blk
frame_ptr
frames_alloc
frames_inuse
heay
i_save
j_save
next_out

255; {hexm 'FF'}
‘DOTplot '; {tag ensures user does mot use mom-plot filel
H

(dots per inch horizomtallyl {PFT 5401
§3; (pizels (0..43) horizontally in block frimel
84; {dotls per imch vertically) (PT 540}

63; d{pizels (0..43) vertically in block frame)
40; {max sumber (1..40) of memory frames!
17; {maz colwmms (0..17) in block matrix)
i1; {maz rows (0..21) in block matrin)
1024; {reserve IK byte of memory for use by user pregraaml
§; (hex '08°)
{derived constants:}
3%6; ((max_i_blksel)®(max_j_blks+1)}
11531; ((i_frame_size+!)®(max_ji_blks+1) - 1l
1407; {(j_frame_sise+1)®(max_j_Bblks+1) - 1)
1024; ({size of parm prefiz to plot file; n * bleck_sizel

..mag_blks;

..mag_frames;

..max_i_blks;

.max_i_dets;

..i_frame_sige;

.maz_j_blks;

..max_j_dots;

..i_lrame_sise;

ACKED ARRAYLi_frame_no,j_frame_mol of pimel;

gD e D o O g et
. 5

ARRAYIframe_nmo) OF blk_nmo;

ARRAY( frame_nol OF i_blk_mo;

ARRAY[frame_po) OF j_blk_nmo;

ARRAY[frame_no] OF Amemory_frame;

0..max_frames; (memory frames allocated: (0.frame_us}}
0. .max_frames; imemory Erames inm use: {0, frame_so)}
AINTEGER; {pointer for MARK/RELEASE)

INTECER;

INTEGER;

frame_po;



A.2

151
152
133
151
153
154
157
158
139
160
161
142
143
164
163
164
147
188
149
170
171
172
173
14
173
176
{77
178
{7y
180
(13!
181
HE
184
{85
184
W0
183
iy
194
i
191
193

14
193
19é
"
ivd
19
0
0t
01
03
104
05
1

e
iy
10
il
i1l
i
L]
i3
i1
i7?
118
iy
i
it
12

UNIT listings dotplotter UNIT 42

plt _open_flag : BOOLEAN;

pra
PACKED l}:wﬂ
CASE INTEGER OF
6: (prm_char : PACKED ARRAYIL..prm size] OF CHAR);
1: dplifi)e . PACEED ARRAY(1..81 OF CHAR; ({'DOTPLOT ")
1k_table : ARRAYIi Blk_no,j_hlk_mol of INTEGER;

i_biks : i_blk_me; {columas used im block mitrizl
i_length : i_dot_mo; {dots herizomtally)
i_blks : j_blk_mo; {rows used im block mtrin
i_length : j_dot_me; d{dots vertically)
n_blks : blk_no; {number of blocks in filel
oL, vey REAL; 13D projection center-size viewport parms)
vse.vsy : RIAL;
x_dots : REAL; {dots per world mit herizentally)
1_east : REAL; {"EAST" clipping value on z-axis |
I _first : REAL; {logical origin coordinate [world mnitsl)
x_last : RIAL;
1_length : REAL; (mazinum size of plot horizontaily [inchesl)
x_west : REAL; {"VEST" clipping value on x-axis |
y_dots : REAL;
y_first : REAL;
_last : REAL;

y_length : REAL;
y_morth : REAL; {"NORTH" clipping value on y-azis !}
y_soutk : REAL; {"SOUTR" clipping valewe on y-azis |
sferm 20 : matriz; {ID transformatiom matrixz}
zform 3D : wmatriz; (3D transformatiom mitrizl
dot_color : pizel;
£51T color: white_byte..black byte;
prictatype: projection;
clip_flag : BOSLEAN:
END {pr=m RECORD};
u_sive : veglor;

{6l 4:DOT1.TEIT)
{§]1 4:DOT2.TEIT)
{51 4:DOT3.TEIT)
END {dot_plotter UNITI.

.- e e 8 0 0meomeomemeEm wmeomeomeo=®  oaaememeomeeam  omom o= owm om

{EILE: 4:DOT1.TEITI

PROCEDUEE clear_transform {PUBLIC(d: dimension));
{"clear tuuiun' sets the "size™ of the “two_D® or “three D"
transforsation matrixz in the parameter prefix Te 1. When the "size” of the
satriz is !, it is not automatically used when "moveto” or "lineto® i
inveked. “clear_tramsform” removes the spifect of the "set_transforn®
matriz.l
BEGIN
CASE ¢ OF
two D : pru.zform_iD0.size := 1;
three D: pra.sform_3D.sise := |1
END
END {clear_transforml;

PROCEDURE set_transform {PUBLIC(s: matrizl};
["set_transforn” establishes a default “two_D" or “three_D® tramsformatios
satriz vhich is gsed every time “"moveto® or "linete” is imvoked. The
transformation matriz cam be chamged any number of times. “clear_tramsfern’
removes the effect of the matriz. Altermately, am identity tramsformation
matrix could be specified.}
BEGIN
CASE a.sigze OF
3: pra.zform 2D :s a;
§: prm.xfers_3D = i

END
END {set_transirom);
PROCEDURE get_transform {PUBLIC(d: dimension; VAR a: matrig)l;



A.2

UNIT listings dotplotter UNIT -- dott 43

{The default “two_D" or “three_D® transformation matriz cam be retreived
using "get_transform" for imspection or further medification using ether
maltriz operations.})
BEGIN
CASE ¢ OF
twoD : a := pra.zfers_2D;
three D: 1 := pra.xfora 3
END

END (get_transiorm);

PROCEDURE clipping {PUBLIC(flag: BOOLEAN));
{This procedure seis the clipping flag to a specified value. Vhen TRUE
isl:ptfifill. the "clip® procedure will be used following any “lineto”®
calis.

BEGIN
pra.clip_flag := flag

END [eclippizgl;

;Ell:.mm set_projection_type [PUBLIC(prj_type: preojection));
pra.prictatyp = pri_type
{set_projection_type);

PROCEDURE project {PUBLIC(u: vector; VAR v: vector});
{A three-dimensional vector is projected into twe dimensions with this
procedure. Orthograpic or perspective projections can be specified with
the “set_projection_type" precedure.}

BEGIN
IF  wu.size () ¢ {3D vector)
THEN BIGIN
WRITELH ('non-30 vector passed to "project®.');
v.size = ¢

END
ELSE VITH pra DO BEGIN
CASE pra_prictntype OF
orthographic: v :=u;
perspective:
BEGIN

v.vetel1] := vex + vsatu.veteli}/u.vetrildl;
gui.letrlll ;= vey + vsytu vetel2l/u. vetel 3}
END {CASE};
v.size := 3; {now a 2D vector}
v.vetri3] := 1.0 {last component of homogencus coordimates)

END (preject);

PROCEDURE io_check (proc: STRING; op_type: STRING);
":"iu_eluk' is invoked after I/0 calls to trap umezpected disk /0 errors.)
re: INTEGER;
BEGIN
re := [ORESULT;
IF e OO0
THEN BIGIH
VRITELN (°'DOTO1:*);
WVRITE ('Unexpected /0 errer *'*,re,'** in remtime ''*,preoc,''' while ');
WRITELN ('performing a *,op_type,’ operation.');
EXIT (PROGRAN)
END
END {io_check);

FROCEDURE write_parms;
{"write_paras® copies the in-memory parameters to the distette file.]

§1k: blk_ne;
BIGIN
FOR blk := 0 TO pra_size DIV block_size - | DO BEGIN
SEEK (plt,blk);
MOVELEFT (prm.pra_charll¢block_sise®hlkl,plta,block_size);
PUT (pit);
io_check (‘'write_parms','write")

END {write_paras};



A.2

UNIT listings dotplotter UNIT -- dotl

PROCEDURE read_parms;
{"read_parms® reads the parameter file prefiz to define the in-memery
"{u’mlus.l

bik: BbIk_mo;
BEGIN
POR bik := § TD prm_size DIV block_sise - 1 DD BEGIN
SEEK (pit,blk);
GET (plt);
io_check ('read_parms','read’);
n':“lll‘m.!!"l' {plta,pra.pra_char[1+block_size?blkl,block_size)
If prm.pltfile {) file_tag
THEN BIGIN
VRITELN ('DOT0Z:');
VAITELN (‘Terminal Error: File ''‘,plt_mame,’'*'’ is mot a plot file.');
EXIT (PROGRAM}

IND
{read_parss);
PROCEDURE ww_parm_error (title: STRING; s_min,z_mas,y_min,y_sax: REAL);

{This proceduse reports definition errors inm setting the ®"view” or
"window®.}

BIGH
VRITELN (title);
VRITELIN (* z_pin =',x_min:7:2,', z_max =',3_man:7:3,

', y_min ',y min:7:2,', y_max =',y_max:7:1);
END {vw_parm_ecrorl;

PROCEDURE wimdow {PUBLIC(z min,z_max,y_min,y_maz: REAL));
{This procedure defines the physical mininom and mavimem of the logical
screen in world coordinates. Certain imternal comstants are defined as
a result of defining the logical sereen.)
BEGIN
IF  (x_max ( z_ain) OR (y_max { y_min)
THEN BICIN
VRITELN ('DOT03:');
v_para_error ('Window parameter errer(s):',s_min,x_max,y_mia,y_miz);
E1IT (window}

END;
VITH prm DQ BEGIK
a_first := s_min;
g_last := 1_mx;
y_first := y_min;
y_last := y_max;
z_dots := i_densitys_length / (z_max - x_min); {dotslworld wuit)
y_dots := j_demsityly_leagth / (y_mazs - y_min);
view {z_min,x_maz,y_min,y_man) {set clipping parameters}
{WITHI
ENB {window};

PROCEDURE view {PUBLIC(2 min,x_maz,y_min,y_maz: REAL));
{The ®view® is intended to be a subset of the "window". This subset is
esed for clu;ing. This definition of a "view" is not the same as used
by Newman and Spreuil.}
BECIN
IF  (x_miz ( pra.z_first) OR
(z_max ) prm.z_last) OF
(y_min { pra.y_first) OR
(y_maz } prm.y_last) O
(x_sax { z_min)} OR (y_maz ( y _min}
THEN BICIN
WRITELN (*DOT04:');
vw_para_ersor ('View pazameter erroris):*,z_min,.z_maz,y_min,y_mas);
VITH pra DO ww_parm_error ('Vindow parameters:',
g_first,z_last,y_first,y_last);
EIIT (window}

END;
VITH pra DO BEGIN
s_west = z_minm; {set clipping parameters)

s_past = _max;

y_seuth := y_min;

y_north := !_Ill}

vex (= D.5 * (z_east + z_west ); (3D projectien parameters}
vey := 8.3 t (y_sorth ¢+ y_sesuth);

419



A.2 UNIT listings dotplotter UNIT -- dotl

in vs: ;= 0.5 t (x_east - 1_west );
174 vsy := 0.5 * (y_morth - y_south)
375 END [VITHI
76 END (view);

n

§78 PROCEDURE size (PUBLIC(z_len,y_lem: REAL));

i:l. l:'lil!' defines the physical size of the legical sereen in inthes.]
L}

1 errer: BOOLEAN;
38l temp : INTECER;
83 BECIN

3 error := FALSE;
3 VITH grm DO BEGIN

abé temp := ROUND(i_densitytx_len);

7 IF  temp ) maz_i_dots

E[]] THEN BEGIN

0y WRITELN ('DOT0S:°);

#o WRITE (‘Horizomtal dimensiom (',z_lem:4:1,' inches) tos large: ');
1 VRITELN (temp,' ) *,maz_i_dots,' dots.');
2 errer := TRUE

E} ENE

" ELSE i_length := temp;

395 temp := (j_densityty_len);

1”6 IF  temp ) maz_j_dots

n THEN BEGIX

s VRITELN ('DOTOS:');

"y WRITE ('Vertical dimemsion (',y_len:6:1,' inches) too large: ');
400 VRITELN (temp,' } ',maz_j_dots,® dots.');
01 error := TRUE

401 ENE

03 ELSE ji_length := temp;

104 1T errer

#0s THEN EXIT(PROGRAN);

404 z_length := z_lew;

07 y_length := y_len;

408 i_blks := i_length DIV (i_frame_size + 1);
W0e j_blks := j_length DIV (i_frame_size + 1)

i END (VITH);
i window (0.6,1.0, 0.0,1.8
412 END {sige});

i3
44 PROCEDURE dot_celor (PUBLIC(color: pizel)};
:ll: agg;:ﬂ_nlu' sets the color of subsequent pizels traced by “limete®.}

7 pra.dot_color := colos
418 EKD (dot_coler);

{20 PROCEDURE Eill_color {PUBLIC(color: pimel}};

421 {Diskette blocks are mapped to the logical screem but are net allpcated
1 until actually referemnced. The virtual pimels represented by the

423 unallocated (undefimed) blocks are assigned a “fill_color® value whes
14 they are referenced om output to the primter. That "fill_color® is
423 defined by this procedure which should only be called once for a gives
24 logical screen.)

427 BIcIN

7] ] CASE coler OF

L 11 white: pra.fill_color := white_byte;

10 black: pra.fill_color := Black_byte

431 4]

li; ENB {fill_color);

43

434 PROCEDURE begin_dot_plotter_umit {PUBLIC};

435 {This procedure is used to guarantee certain VARizbies at least have

¢ acceptable default values before they are referemced. A sestion of code
437 using the “"dot_plotter® UNIT must be enclosed with “begin_dot_plotter_umit*®
138 and "end_det_plotter_mmit® procedure calls.}

437 BIEH

4o IF  SIZEOE(memory_frame) () block_size {ideally this check would bel
LL}] THEN BEGIN {made by the compiler]

2 VRITELN (‘DOT04:*);

3 VRITELN ('ERROR: Frames must be the same sise as I/0 blocks.');

444 VRITELN ('A Frame is ', l+i_frame_size,' 3 ',14j_frame_sise,’ bits = ',
s SIZECF (memory_frame),' bytes.');

444 VRITELN ('A Block contains *,block_size,' bytes.');

u7 EX1T (PROGRAM)



A.2

189
490
1
L11]
3
494
L]
9
7
i
#9
300
501
01
03
H{ 1]
05
304
07
s08
09
3o
il
il
13
i14
31s
4
i?
i8
i
10
i1
L1

UNIT listings dotplotter UNIT -- dotl 44

IF  SIZEOF(prm) () prm_size {this check should be made by the compiler!
THEN BEGIR
WVRITELN ('DOTO7:');
VRITELN (‘Pile parameter prefir is ', SIZEOF(prm),' bytes lonmg.');
VRITELN ('Intermal variable “prm_size® currently has the valwe *'°,
pra_size,' and should be adjusted to a maltiple of ');
VRITELN (*“block_sise™ (curremtly ‘,block_sise,') greater tham or °,
'equal to the size of the parameter prefix.');
EXIT (PROGRAM)

&

FILLCHAR ¢prm.prm_char,pra_size,l}; {zero parameter record)
close_printer := TRUE: {closelipaginate when exiting graphics medel
nin_space := spacedefault;
pit_mode := undefined;
pit_open_flag := FALSE;
clipping (TREE);
clear_transform (two_D);
clear_transforn (three D);
dot_color {(black);
£ill_color (white);
set_projection_type (perspective);
size (5.0,5.0)
REVRITE (prt,'PRINTER:')
(begin_dot_plotter_unit};

PROCEDURE end_dot_plotter_wmit (PUBLIC);

{This procedure ends a block of code started with the
B:El;lqil_nt_alauu_nit'. Bee comments with that procedure.l
IF  plt_open_fig
THEN close_plot {keep);

IF  c¢lose_printer
THEN BEGIH

PAGE (prt);
CLOSE (priti

END
ENE {end_dot_plotter_mmitl;

PROCEDURE allocate_frames (max: [INTEGER);
{"allocate_frames® allocates as many memory frames as possible fron
avajlable memory. These frames are used to hold as many diskette blocks
in memory as possibie for subsequent mamipulation. The user can defim
the variable "min_space® to reserve memory for other purposes. The
default fer "min_space® is set in "begin_dot_plotter_umit® by the comstanmt
w‘;;.nccdclult' defined in the implementation sectiom of this mmit.)
HARK (heap); (set heap poimter to later deallocate frames)
frames_alioc := 0;
VHILE (2*MEMAVAIL ) min_space+block_sise) AND
(frames_alloc { maxz) DO BIGIN
frames _allee := SOLCitrames_alloc);

NEV(frame ptriirames_allecl}
END;
IF  frames_allec = §
THEN BEGIN

VRITELN ('DOTB:');
WVRITELN ('Terminal Error: MNo memory frames allocated.');
EXIT (PROGEAM:

llli_l!t H I H
frames_inuse := 0 {frames_inuse (= frames_allec {= max}
{allocate_frames);

PROCEDURE open_plot {PUBLIC);

{"open_plot" could be incorporated as part of the "begin_dot_plotter_umit"
but it is possible to createfoverlay a plot file many times in the

same begin..end_dot_plotter_uwait sectiom of code amd this procedure is
needed to contrel sueh file accesses.

The variable "plt_mode" determimes whether this procedure prompts the
user for a file name or if it wses ome directly supplied by the user.



A_.Z VUNIT listings dotplotter UNIT -- dot1i

323 The default valee for "plt_mode” is “undefined®. The user canm specify
§14 3 "plt_mode” of "create® or “overlay” and specify a “"plt_name® to aveid
1} the inferactive prompt.

27 This procedure initializes the parameter prefiz (if "create®) ot
b1 ) reads the nistill prefiz (if “overlay®). Memory frames are allecateéd
]

g: and seme introductery informational messages are displayed.}
31 ﬂnﬂllll! init_plet; {LOCAL to open_plot]

331 {"open_plot" is toe large to compile by itself..
333 i : i blk_mo; {...lerrer 133) but it will compile with ...}
334 i: i_bli_so; [...'ilit__plot' a5 2 loecal PROCEDUEE .}

133 re: INTEGER;

334 BEGIN

37 CASE pit_mode OF

538 uwndefined, either:

39 REPEAT

540 IF plt_mode = wndefined

i THEN BECIN

2 VRITELN ( 'DOT09:*);

3 VRITE ('Enmter plot file mame ([disk:lname.extension) '};
54U WRITELN (‘or '‘EXIT'":%);

tLE) READLN {plt_name);

4 113 (plt name = 'EXIT') OR (plt_mame = ‘exit’}

47 THEN EIIT (PROGRAM);

8 ND;

L} plt_mode := undefined;

550 RESET (plt,plt_name);

51 re := JORESULT;

52 IF tc=t4

$53 THEN plt_mode := overlay

354 ELS§

555 If re =10 {no sach file on volumel

§34 THEN BIGH

§57 REWRITE (plt,plt_name);

358 re := [ORESULT;

59 IF re=14@

560 THEN plt_mode := create

1 END;

362 IF e OO 4

%3 THEN WRITELN ('DOTi0: Errer ''°,re.''' in opening gplot file '*',
564 plt_name,*'".'}

543 UNTIL plt_mode () udn!iul.

1Y) ereate:

%7 BEGIN

568 REWRITE (pIt,plt_name);

#e tc := IORESULT;

570 IE te OO0

71 THEN BEGIN

in VRITELN ¢ 'DOT1D:');

73 VRITELN (‘Errer '*‘,ze,''' in opening plot file '*',plt_mame,'''.');
574 EIIT (PROGRAM)

73 END

57 END {create CASE);

7 overlay:

578 BIGIN

Yy RESET (plt,plt_name);

4111 re = 10RESUT;

i IF {2

502 THEN BEGIN

3 VRITELN ('DOT10:');

#14 VRITELN ('Error *'',re.''" in opening plot file ''',plt_pame,'''.');
583 Ill‘l‘ (PROGRAM}

e

587 END l"ulu CiSEl

5!:: END (CASE plt_mode};

e CASE plt_made OF

i create:

91 BEGIN

i3 pra.plifile := Eile_lag:

4 pra.n_blks := pra_sise DIV block_site;

1 H write_parms;

wé FOR i := 0 TO max_i_blks DO {zero all blocks, imcluding those...)

"W FOR j := 0 TO maz_j_Bblks DO {...which will mot be needed!



A.2 VUNIT listings dotplotter UNIT -- dotl

b3 ] pra.blk_tableli, i} := 0;
§99 WRITELN ('DOTi1:');
(11] WRITE ('Creating’)
1 {ereate CASEY;

1] overlay:

03 BEGIN

{1} read_pams;

{05 WRITELN ('DOT1i:');
§04 WRITE {'Overlayging'}
7 END {overlay CASE}
(1]} END (CASE plt_medel

:l“! END (imit_plot};

d11 BEGIN (open_plot)

612 IF  plt_spen_£lag

i3 THEN VRITELN ('DOTi%: Request igmored to open already opem plot file.')
614 ELSE BIciN

(1] init_plot; {procedure divided -- too big for compilerl

414 VRITELN ({Creating/Overlayingl® plot file '*',plit_mame,"'". '}

i7 VITH pra DO

il VRITELN (°The plot will be *,3x_length:5:2,' inches (',i_length+l:4,
§19 * dots) wide by '.y_length:5:2,' inches (', j_leagths+i: 4,

{0 ' dots) high.');

621 allocate_frames (maz_frames);

i1 VRITELN ('There will be ', frames_allec:3,' in-memory block frames.');
613 plt_open_flag := TRUL

24 END (ELSE)
413 END {open_plet);

" =-ae = - - - - - - - m eamw wmemeeemm % o= s & =

43¢ (FILE: 4:DOTL.TEITI

7
§28 PROCEDURE close_plot {PUBLIC(disp: dispesition)};
Y1) {"close_plot® is called to force all in-memory frames to be written to

30 disk and to update the parameter prefiz. After closing the plot file
631 either "open_plot® or "end_dot_plotter_unit"” shosld follow. This
431 " Jnuiuu releases the memory used by the in-memory frames.)

434 _true: frame_no;

635 i : i_blk_ne;
1) i ;o j_Blk_no;
437 BIGIN

30 IF  plt_open_flag
639 THEN BICHN

1] IF  frames_inuse = §

1 THEN VRITELN ('DOT13: Varming: No frames used.'’

i ELSE

3 FOR frame := 1 TO frames_inuse DO BEGIN {write in-memery frames to disk}
(1L} SEEK (plt,blk_indexiframel);

5 MOVELEFT (frame_ptriframela,plta,block_sizel;

546 T (plt);

u7 io_check {'clese_plot",'write');

1] VITE prm DO {remove frame referemce from blk_tablel

"y bik_tablelframe_i_blk{framel, frame_j_bik[framel] := blk_indexi{framel;
[$1] fFoR};

51 write_parms;

452 RELEASE (heap);

53 CASE disp OF

654 keep : CLOSE (plt,LOLK);

[+1] delete: CLOSE (plt,PURGE)

§56 END;

is? plt_open_[lag := FALSE

§58 {TEEM
69 ELSE VRITELN ('DOT14: Request ignored to close plet file which is mot open.')
60 END (close_plet);

i1

7 PROCEDURE get_blk (i_blEk: i_blk_mo;

663 j_blk: j_bik_mo;

“we VAR frame: frame_po);

11 {This procedure guarantees a2 needed diskette block is in memory for

ihé gpize]l mamipulation. {(However, this procedure should not be called for a
647 block which already ezists in memory.} GCiven a wirtual block address as

13] 3 (i_blk,i_blk) pair, "get_bIk® returns the “"frame" number where the
113 block was placed. FIFO block replacement is used to guarantee the file



A.

2

70
i1

UNIT listings

dotplotter UNIT -- dot2

is initially sequentially created. The file must be created sequentially
or system problems will occur. After creatiom, however, random 1/0 could
be wsed to read/write any blocks. But since the file could he extended at
any time and the blocks must be added sequentially, FIFO replacement is
ssed in all cases.)

VAR

iit_l-iu: blk_no;

IF  frames_inuse { frames_alloc
THEN BIGIH
frames_isuse := SUCC(frames_inuse);
frame := [rames_imuss

ELSE BICIR
frame := next_out;
next_out := BUCC(mext_out MOD frames_zllec);
SEEK (pit,blk_indezlframel);
MOVELEFT (frame_ptr{framela,plta, block_size);
PUT (plt);
io_check (‘get_blk',‘write’);
VITE pra DO
blk_tablelframe_i_blk{framel, frame_j_blk(frame]] := blk_indexlframel

END;

Blk_nwmber := pra.blk_tableli_blk,j_blkl;

If  blk_amber = §

THEN BEGIN
EILLCHAR (frame ptrlframelA,block_size,pra.£ill_color);
blk_indes[frame] := pra.n_blks;
pra.n_blks := SUCC(prm.n_Blks)

END
ELSE BEGIN
SEEK (plt,blk_number);
GET (pit);
io_cheeck ('get _blk','read’);
MOVELEET (plta,frame_ptriframela,block_sise);
blk_indes[frame] := bik_susbet

END;

pro.blk_tableli_bIk,j_blk] := -frame;
frame_i_biklframel := i_blk;

frame_j _Bik(framel) := j_blk

END {get_bik);
PROCEDURE dot_tag (i: i_dot_mo; j: j_dot_me);

{®dot_tag" assigns a pizel its color (and possibly any other desired
attributes). This procedures first calculates the virteal address of
the block which should contain the pizel. [f the block is not in memery,
"get_blk" is called. Them the address of the pizel within the block is

n:alelltlu and the desired "pizel® is assigned the desired attributes.]

frame: frame_nmo;
i_det: 0..i_frame size;
i_blk: i_BIE_mo;
j_dot: 0..j_frame_size;

i_blk: i_blk_me;
BEcTH

VITH prm DO BEGIN

i_blk := i DIV (i_frame_sizeel);

i_blk := j DIV (j_frame_sige+l);

IF  blk_tableli_Blk,j_bikl ¢ 4

THEN frame := -blk_tableli_blk,i_blk]

ELSE get_blk (i_BbIk,j_bIEk,frame);

i_dot := i MOD (i_frame_sises+1);

i_dot := j MOD {j_frame_sise+l);

frame_ptrlframelali_dot,j_dotl := dot_color;
END {VITH}

ENR (dot);
PROCEDURE dot_seg (il: i_dot_mo; jl: j_det_no;

il: i_dot_mo; j2: §_dot_mo);
{Given the end points of a line segment in terms of dot imdices, this
procedure defines all the intermediate segment pizels. This procedure
recognizes the following special cases: 4 single peint, horsomtal or
vertical segments, segements with slope (= 1.0 and segments with slepe
} 1.0. No code optimisation has been attempted in this first release.
Special line-drawing algerithms should evemtually be implemented (see

49



A.2 UNIT listings dotplotter UNIT -- dot2

745 Newsan and Sproull, "Principles of Interactive Computer Graphics®,
Hé Second Edition, pp. 20-14))

7147 V&
148 i : i_dot_no;
749 j_det_no;

i :
50 st : -1..1;
75 slope: REAL;
152 BEGIN
753 IF it =i
54 THEN IF  j1 = il

75§ THEN dot_tag (il,il) {single poinil

134 ELSE BEGIN [vertical segment)
757 joi=jl;

158 IF 3141

350 THEN step := 1

%0 ELSE step := -1;

761 REPEAT

142 dot_tag (il,j};

743 j =13 ¢ step

7%4 UNTIL {j = il1);

765 dot_tag (il,il}

164

%7 ELSE IF il = j2 {horisontal segment]
740 THEN BICIN

%) i:=il;

m IF it il

71 THEN step := 1

171 ELSE step := -1;

m”3 REPEAT

m dot_tag (i,i1);

173 i =1 ¢ step;

7 UNTIL (i = i2);

177 dot_tag (i2,i2)

7 END

7y ELSE BEGIN {non-vertical, nom-horisomtal segment}
780 dot_tag (i1,j1); {first dotl

M1 slope := (j2-i1)I(il-i1);

782 IF ABS(slepe} {= 1.0€

03 THEN BEGIN

™ IF i) it

i3 THEN step := 1

704 ELSE step := -1i;

7 i =il + step;

708 WHILE i (> i2 DO BICIN

e i := il + ROUND((i-it)05lope);

7 dot_tag (i,i); (middle dotis), if any, siope (= 1.00]
71 i:=i+ step

72 END

"3

(Al ELSE BEGIR

ns slope := §.0/slope;

7% IF i1t

w? THEN step := 1

1 ELSE step := -1;

e i:= il + step;

800 VHIEE 3 () j2 DO BIGHN

1 i := il + ROUND((j-jl)tslope);

802 dot_tag (i, i); (middle dot(s), if amy, slepe ) 1.00)
H3 i:=i+step

804 END

s END;

0 dot_tag (i2,i2) {last dot in segment)
L1 END

'l:'l END {dot_segl;

10 PROCEDURE world_to_det (u: wector; VAR i: INTEGER; VAR j: INTEGER);
11§} {This procedure converts a “vector® into dot indices. A three-

i dimensional vector is projected into two dimensions automatically.
L 1§ The user-defined world coordinates are used in specifying the ®vecter®.
:i: “:h det indices are determined by the definition of the legical sereem.)
f1é v: weecter;

BIGIN

fi8 IF wu.size = &
i THEN project (u,u);



A.2Z UNIT listings dotplotter UNIT -- dot2 51

820 VITH pra DO BIGIN

i1 i := ROUND{x_dots ? (w.vetr[1] - x_first));
82 j := ROUND(y_dots * (w.vetril]l - y_first))
13 END

814 END {world_to_det);

131

24 PROCEDURE clip (uwl,ul: wector);

817 {"clip" iategrates both two- and three-dimemsional clipping into 2

11 single procedure. The input parameters are of the type "vector® amd

(11 internaily have their dimensionality defimed. These clippling algorithms
0 were adapted from Newman and Sproull, “Principles of Interactive

LE Computer Graphies®, Second Editionm, pp. 66-47 for 1D and p. 345 for 3D.
a1 The Newman and Sproull intermal “code® procedure was replaced by a

833 "region” procedure for better clarity. For ezample, their code 1801
i34 is replaced by a set of regions [morth west]l. See diagram below.

134 This "clip” procedure had intermal procedures "region”, "clip_ID" amd
837 "¢lip_3D" in addition to the code for its definitien.

1y The clipping bowmdary is defined by the “view" procedure. After a
L L] line segment has been clipped, it is displayed by procedure *dot_seg®
#1 ngtoutiull].l

§43 tegions = (north,south,east,west);
844 region_set = SET OF regions;
VAR

i delta_x,.delta_y: BREAL;
847 it,il,il.j2 : INTEGER;
(1] reg,regl,req2 : region_set;

B4 visible :  BOOLEAN;

650 ] . veetor;

85t

52 PROCEDURE region (u: vector; VAR reg: regiom_set);

853 {This procedure is intermal to “clip®. “region® defines the regiens
64 2 givea point is in. If the set of regioms is the mull set (], them
LFH the point is in the viewing area. 1{ the umion of regioms frea Both
54 poists is the empty set, the segment is emtirely visible. If the

57 interseciion of regions from two different points is mot the empty

(£ ] set, the segment must lie entirely off the screenm.}

859 BEGIN

(1Y} reg := [1;

1 CASE u.size OF {Picture and surrounding regioms:}

842 3: VITH pra DO BECIN

3 IF  a.vetril] ( z_west ({north westl | ([morth] ! [morth eastl)
Béd THEN reg := [west] R $emsccmanaan O 1
(T3] ELSE { [west] | [1 I [east] 1
Béé IF  w.vetrli] ) 3_east fecoccccccmac e pamcacce o)
%7 THEN reg := [east]; {[soutk west] ! (south] ! [south eastl)
(11 IF  w.vetr[1] { y_seutd

[} THEN reg := reg + [soumth]

870 ELSE

1 IF  w.vetell] ) y_porth

822 THEN reg := reg + [northl

1”3 EMD (3};

B € BIGIE

"3 1P w.vetrl1] { -uw.vetrlll]

874 THEN reg := [westl

"7 ELSE

78 IF  w.vetrl1] ) uw.wetrl3)

7 THIN reg := feast}h;

(1] IF  w.vetrl?) ( -u.vetrl3l

1} THEN reg := reg + [south]

12 ELSE

883 If w.veltrfld ) w.vetrldl

4 THEN reg := reg + [northl

885 END (&1

Bé END (CASE)

L1 END {regien);

ne

0y PROCEDURE elip_20;

‘l;lﬂ wmu code is used only for clipping two-dimensional vecters.)

92 delta_x, delta_y: REAL;

83 BEGIK

L] delta_s := ul votrlll-ul_wetrll]; {22 -111}



A.2 UNIT listings dotplotter UNIT -- dot2 52

895 delta_y := ul.vetrl2l-ul.vetril); {y2-411

0 VITH prm DO BEGIN

8? IF  west IN reg fcrosses west edgel

e THER define_2D_vector

i3] (x_west, {x-component}
900 ul.vetel2) + delta_y?(x_west-ul.vetrlil}/delta_z, {y-compenent!
01 u) {vectorl
702 ELSE

103 1P east IN reg {crosses east edgel

904 THEN define_ID_vector

L (z_east,

e ol .vetr(2] + delta_y®(x_east-ul.vetrlil)/delta_ g,

%07 1]

0o ELSE

0y IF south IN reg {crosses south edge)

10 THEN define_2D_vector

1 (ol.vekrll] + delta_zt(y_south-ul.vets[2])/delta_y,
2 y_south,

13 L}

714 ELSE

s IF  nmorth IN reg {crosses morth edgel

i THEN define_1D_vector

"7 (ul.votrll] + delta_st(y_nocth-ul.vetr{21)/delta_y,
18 y_sotth,

e u);

710 END {VITHI

11 END {elip_1D)1;

921

13 PROCEDURE clip_3D;

’!;; "lmu code is used only for clipping three-dimensional vectors.)
14é t,s: REAL;

yi? BEGIN

128 IF  west IN reg {crosses west edgel

99 THEN BEGIN

130 t o= (ul.vetriddenl.vetrlil)/

93t ({ul.vctrill-ud vetrl11)-(u2 vetr{3)-of. vetrl3D));

131 g ;= te{ud. vetrfdl-ul.vetrl3))+nl. vetrldl;

133 define_3D_vector(-z, {1-component}

134 te{ud.vole(2]-ul vetrl2))+ul.vetrl2], (y-component!}

933 1, {z-component!}

13é ul {vectorl

937 END

138 ELSE

119 1F  east IN reg {crosses east edgel

40 THEN BEGIN

$41 t := (ul.vetrl3]-ul.vetrf11))

42 ((u2.vetzlll-ul.vetri1])-(u2.vetrl3)-ul.vetri3l));

3 g = te(uld.velrld)-ul.vetr[3))+ul vetr(3];

44 define_3D_vecter (z,t®(ul.votri2i-ul.vetel[21)eul. vetri2],s, ul
5 END

944 LS

"7 IF south IN reg ferosses south edgel

44 THEN BICIH

" t := (ul.vetr(3leul.vetrl21)/

$50 ({ul.vete(2)-ud votrl2))-Cud.vetridl-ul.vetzl3l));

61 g = tt{u2.vetrl3l-ul. vebrl3]ieul.vetel3l;

75 define_30_vector (t(ul.vetrlil-ul.vetell))eul.vetrild, -5, 3,
153 END

bEL] ELSE

121 IF  smorth IN reg {crosses north edgel

954 THEN BIGIX

157 t := (ul.vetr(dl-ul.vetcl2]}/

958 ({ul.vetrl2)-ul.vetr[2])-(u2.vetrfdl-ul.vetz[31));
159 g .= tt{ud.vote(3]-ul vetri3dleul. vetrld];

'!:'1 m;liill_ﬂ_ueur (t2{u2.vetrill-ul.vetrfi))sul. vetelll, 5,2, ul
161 END {elip_3d);

13

144 BECIN {elip)

945 region (ul,regl);

the region (al,req2);

967 visible := regltregl = [];

168 VHILE {((regl () [1) OR (reg2 () [))) AND visible DO BEGIN
1) reg := regl;



A.2

LA

7

1000
1081
1002
1003
1004
1003
1004
1007
1001
1009
(LBE]
1011
1wl
1013
1014
101§
11
1017
101
1019
it
1681
1421
1023
1124
1085
1024
011
1028
1028
1438
1031
1031
1033
1034
1033
1034
1037
1031
1839
10w
1041
1042

UNIT listings dotplotter UNIT -- dot2

IF reg = II
THEN reg := regl;
CASE ul.size OF
3: elip_iD;
{: elip 30
END;
IF  reg = regl
THEE BEGIN
ol = w;
region (u,reql)
END

ELSE BEGIN
ol = W
region (u,reql)

visible := regltreql = []

END {WHILE};

IF visible

THEN BEGIN {showlinel
world_to_det (ul, il,jl);
world_to_dot (ul, ii.jl);
dot_seq (il,i1, il,iD)

END {showlinel

END {elip);

PROCEDURE veetor_tramsform (VAR uw: vector);
{"vector_transform® is used by “moveto” and “linete”™ to automatically
sultiply @ “vector® by a2 default transformation matriz if ome has
been defined.]

3: IF opra.zferm_1D.site = 3
THEN tramsform {(u.prm.xfors_2D, u);
¢: IF opra.xform_3D.size = 4
THEN tramsform (u,pra.zform_3D, wu
EMD [CASE}
END [vector_transfom};

PROCEDURE moveto (PUBLIC(w: wector));
{"moveto” sets the curreat screem position. This position is defined
in user-defined world units. Transformatiom of the poinmt automatically
occurs if a tramsformation matriz was defined for the dimensiomality
("two_DB" or “three_DB®) of the peint.]

BIGCIN
vector_tramsform (u);
IF  pra.elip_flag
THEN u_save = 9
ELSE world_to_dot (uw, i_save,j_save)

END (moveto);

PROCEDURE limeto (PUBLIC(uw: vwector));
{"lineto® draws a straight line from the curszent screen position ie
2 new point and resets the carrent screem position. Tramsformation
of the poimt can automatically occur (see mote for “moveto® abowe).
Pizels traced over by the line segement are antomalically selected.
Clipping of the line segment to the view boundary can also awtomatically
oceur. }
ViR
i,i: INTEGER;
BIGIN
vector_transform (u);
IF pmm.elip_flag
THEN BEGIN
clip (u_save,u);
6_sive = 1
ENd
ELSE BEGIN
world_te_det {uw, i,j};
dot_seq (i_save,i_save, i,i);
i_save := i;
j_save := §
END
EMD {lineto};

S3



A.2

1043
1044
1043
1044
1847
1041
104%
1054
1031
851
1033
1054
18353
1054
1037
15
1059
1064
1041
18l
1043
1éd
1045
1044
1061
1048
10461
0
1471
1
UFE]
1M
10735
N
H Tk
wn
1879
thae
1081
1081
1083
1034
HIH
H 1
1687
e
189
e
1091
{49
1093
1M
1095
1
1497
(3]
1899
um
1ot
101
1103
104
1103
1o
e
1108
38} ]
1118
1
1112
11}
1114
1115
1116
117

UNIT listings dotplotter UNIT -- dot3 34

{FILE: 4:DOT3.TELIT)
{§R- Turn ramge checking off to speed up execution.})

PROCEDURE put_plot (PUBLIC{s,y: REAL; copies: [NTEGER; border: INTEGER));

{This "put_plot" procedure was written specifically fer the Istegral
Data Systems "Paper Tiger®" 540 printer. it is very device dapendent.
This procedure takes the logical screen defimed as a diskette file

and transfers it to the 540 printer in graphics mode. For efficiemcy
this procedure must evemtually be written in assembler Ianguage or
cempiled wilth a native code geperator whem UCSD Pascal Versiom IV
becomes available. The execution of this procedure is very slow and it
literally takes hours for plets as large as B-imches by 8-imches.

The (2,7} parameters to this procedure define the positiom right of

the Ieft margin (the z-coordinate) and down frem the top margin (the
y-coardinate} where the upper-left corner of the plat will be positioned
en 2 page. Amy number of copies of a plot can automatically be requested.
Any number of border dots can be specified to form a pictere "frame®.

This procedure has the following imtermal procedmres: “pge®.
*dot_value®, and “first_ ", "middie_ " and "last_printer_scan®.

The " _printer_scan" procedures seem to be comsiderable overhead for
implementation of the border dets.

This procedure must be re-writtenm to allow pizels defined to have
more than twe colers.

The "ids5é8" UNIT which controls certain functions of the IDS 54d
printer could not be used in this procedure due ko symbol table
space limitations.)

bits_per_stan = §;
ese = 27; {escape ASCII conirol character}
(13 ]

= 3; {enter graphiecs mode; graphics escape character]
£f = 11; U[fora feed}
alf = 14; {graphics line feedl
stz = 1; {enter sormal printer model

ViR

bosder_bottom : INTEGER;
border_sise : [INTEGER;

border_top :  INTEGER;
cal : i_dot_no;
COpY - INTEGER;
e :  CHAR;
j : j_dot_mo;
BiX_scin : j_det_mo;
plothyte !

PACKED RECORD

CASE INTEGER OF

§: (byte: CHIR);
1: bits: PACEED ARRAYE0..71 OF pisel)

END;
prior_mulls : [INTEGER;
tow ;-1 .max_j_dots;
scan : j_det_mo;
temp :  INTEGER;

PROCEDURE pge (c: CHAR);
{"pge® (Put Graphics Character) is loecal to "put_plot". It checks for
the graphic escape characiar and eliminates the cutput of biask
graphic lines -- egcept for the line return. WVARNING: UCSD Pasecal
will not allow hezadecimal I'10* to reach primter.}
CONST
etzl = 131; (I'80° + elx)
aal = O; {graphies spacel
pui? = 138; (I'86' + mul)
VM
ordc : INTIGER;
BEGIN
orde := ORB(¢);
IFE  {orde = mul) OR {orde = nul2}
E}.EEKB riln_ulls ;= BUCC{prior_nulls} (buffer nulls, elimimate blank lines]
VBILE prior_nulls } 8 DO BEGIN



A.2

1118
1
1128
13
1122
1113
1124
1123
1124
1127
f128
i1
1130
i
1131
1133
113
1133
1138
1137
1138
1130
1140
1
1141
114
1144
1145
1144
4
1148
(Y81
1150
1151
1152
11§
1134
1158
1154
137
1158
1135t
1140
fél
i1él
1163
1144
1143
184
1147
1148
1é
1
1
in
iin
1EYA]
117
1174
inn
1178
it
1168
1181
1181
1183
1184
1183
118¢
187
1188
118%
1198
119
1

UNIT listings dotplotter UNIT -- dot3

WRITE (prt,CHR(pul));
prier_salls := PRED{prior_auils}

IF ' {orde = etz) OR (orde = etxl}
THEN WRITE (prt,c,c) (put ety as graphical escipe characler)
ELSE VAITE (prt,e) {put any other character)

ENE
END {pge);

FUNCTION dot_value (i: i_dot mo; i: j_dot_no): pizel;
VAR {LOCAL to "pat_plet®]
frame: frame_nmo;
i_bik: i_blk_nmo;
i_dot: 0..i _frame size;
ji_blk: j_MHkng
jdot: 0..3_frame_sige;
BIGIE
VITH pra DO BEGIN
i blk := i DIV {i_frame size ¢+ 1);
§_Blk := j DIV (j_frame_sise + 1);
IF  blk_tableli_blk,j_blkl=t
THEN

CASE fill_color OF
white_byte: dot_value := white;
black_kyte: dot_valwe := blact

END

ELSE BIGIN
1F  bIk_tableli_blk,j_bIk] ¢ 0
THER frame := -BIk_table[i_blk,j_klk}
ELSE get b1k (i_blk,j_blk,frame);
i_dot := 1 MOD (i_frame_size+i);
j_dot := § MOD (j_frame_size+l);
dot_value := frame_ptriframelali_det,j_dot]

END {ELSE}

END {VITH)
END {dot_value};

g&og;m first_printer_scan; {LOCAL to "pui_plot")

white _byte = 128; (X'80'; global valme is X'00')
BEGIK

ge := CHR(black_byte);

IF  border_top ) bils_per_scas

THEN BEGIN

FOR col := 0 TO pra.i_leagth + 2%border_size DO
pgs {qc);
ﬂisrier_tep :2 border_top ~ bits_per_sean - 1

ELSE BEGIN

EOR col := 1 TO border_size D0 {"left® window borderl
pge {gc);

plotbyte.byte := CHE(white_byte);

FOR j := 0 TO border_top-t D@
plotbyte. bitsij] := black;

gc = plethpte. byte;

TOR col := 0 TO prm.i_leagth DD BECIN
plotbyte.byte := g¢;
FOR j := 0 TO bits_per_scan - border_top DO

plotbyte.bitstborder_top+il := dot_value (col,row-j);

pgc (pletbyte.byte) {"top” border; if possible, first dot rows)

ge := CHR(Black_byte);
EOR col := | TOD border_size DD (“right" window Berder!
pge (ge);
ToW = [ow - bits_per_secam - | & border_top;
nublndu_top =

(first_printer_secan};

PROCEDURE middle_primter_scan; {LOCAL to "put_plet®}
white_byte = 128; (Z*60°; gqlobal value is X'00'}

BEG IR

ge := CHR(black_bytel);
FOR c¢ol := 1 TO border_sise D

SS



A.2

1193
1M
1193
1
1197
i1
119
1208
1281
1101
1183
1204
1203
1304
1207
204
120¢
i
1211
11l
1213
1114
1113
i1
1217
1114
1219
nu
1111
1212
1223
1124
1115
1224
1227
112}
1229
1238
1231
i3
1233
113%
1238
1
1137
1138
1139
1144
1241
1141
1243
1144
1245
1244
147
i1
114
1250
1151
1252
1333
1234
1255
1254
1157
1250
1138
1140
1244
1342
1243
1264
1245
1244
1247

UNIT listings dotplotter UNIT -- dot3 56

pace (gc);
FOR cel := 0 TO pra.i_length DD BEGIN
plotbyte.byte := CHR{white_Byte);
FOR j := 0 TO bits_per_scan DD
plathyte.bitsfj) := dot_value (col,row-j);

BII“ (plotbyte.byte}

gc := CHR(black_byte);
FOR col := 1 70 border_sise D¢
pge (ge);
row := few - bits_per scan -
END {middle_printer_scanl;
PROCEDURE last_primter_scan; {LOCAL to “put_plot®)
CONST

":hitl_byte = 118; (I'80'; global valume is X'00')

k ;i _dot_me;
BEGIN
plotbyte.byte := CHR{white_byte};
IFT row =}
THEN BEGIN

b ;= Bits_per_scan - row;

IF k) border_bottom

THEN t := border_bottom;

FOR j := 0 TO row + £ DO
plotbyte . bits[i]l := Black;

FOR col := | TO border_sise DD
E" (plothyte.byte);

FOR j := 8 TO row DO
plothyte . bits[i] := white;

ge := plotbyie. byte;

FOR col := 0 TO prm.i_length DO BIGIX
plotbyte. byte := ge;
FOR j := 0 TO rov D0

plotbyte. bits[jl := dot_value {ecol,row-i);

pge (plotbyte.byte)

FORf :=0 T0 rovw DO
plotbyte.bits[§]l := black;
FOR cel := | TO border_size D0
pge [plotbyte.byte);
border_botton := border_bottem - k;
tow = -1
D
ELSE BEGIN
FOR j := 0 TO border_bottom-1 DO
plotbyte.Bits{jl := black;
gc = plethyte. byte;
FOR col := 0 to prm.i_leagth + 2®barder_size DO
pge fgel
END

{lasi_printer_scanl;

BEGIN ("put_plot" divided imto "first_", "middle_ and “"last_scan® to compile)

IF  MNOT pit_epen_flag
THEN BEGIN
RESET (plt,plit_szame);
temp := IORESULT;
1P temp O3
THEN BEGIN
VRITELN ('DOTI0:');
WRITELN ('Brror '*°,temp,''' inm opening plot file ''',pli_name,'*’'.");
EXIT (PROGRAM}

END;
read_parms;
Iﬂ;lloeate_fralﬁs (2t(max_ji_blks+1))
1F ' border { @ {ensure border_sise mom-negativel

THEN border_sisze := §

ELSE border_size := border;

maz_scan := (prm.j_lemgth + 2%border_size) DIV (bits_per_seam + 1};
tll;zts ROUND(1202x); {left margim in 1/120-inch incremeamts)

WRITE {pct,CHRIese),'d, " temp,', %), {resst jeft marginl

temp := ROUND(48%y); {top margim in 1/48-inch imerements)



A.2

1168
1249
1171
nn
1172
11
1174
nn
1274
iun
1178
G
1280
1381
1282
128
{184
1203
128¢
1287
1]
1289
134
1191
119
1293
29

UNIT listings dotplotter UNIT -- dot3

FOR copy := 1 TO copies DD BECIN;
border_bottom := border_sise;
border_top := border_size;
VRITE (prt,CHR(esc),'H, ', temp,",%'}; {set top margin}
row := pra.j_length;
VRITE {(prt,CHR{ety)); {ID5 Paper Tiger 540 graphics mode entry}
FOR scan :s= & TO wax_secan DO BEGIN
prior_mulls := @;
IF  border_tep ) &
THEN first_printer_scan
ELSE
IF sow ) bits_per_scan
THEN siddle_prister_scas
ELSE last_prinmter_scan;
WRITE (prt,CHR{ets) CHR(glf)} {fgraphics lime feed: 1/12th inch}
END {FOR scam);
VRITE (prt,CHR{etz),CHRIst2)); {exit graphics model
IF  copy {} copies
THEN PAGE (prt)
END {FOR copyl;
WRITE (prt,CHR(esc),'d,8,4"); {reset Ieft margin to zero}
IF  NOT plt_epen_flag :
THEN BEGIN
RELEASE (heap);
CLOSE (plt}

ENB
ERD fput_plet);

57



A.3 UNIT listings matrirops UNIT

[§L- PRINTIR:!

{$5+ Pat compiler in swapping mede.)

{$R+ Turn rasge checking ¢n.}

UNIT matrizops; ({UC5D Pascal, Versiom II.)

{6C Copyright (C) 1982 by Earl F. Glynn, Manhattas, K5}
{Written in Janmary-February 1982; last modified 7 April §982.}

A el i B i AR pen e

{The "matrizops® UNIT contains vector/matrix manipulations for two-
10 and three-dimensional geometric tramsformatioms of points er limes for
i sebsequent graphical display. This UNIT manipulates omly "vector®

12 and "matriz® TYPEs as defined in the “"global® UNIT. To use thess

{3 procedures with 2 more gemeral matrix TYPE, certain dimensioning amd
14 indexing variables must be modified.
15

t# The procedure “transform® in the “global® UNIT showld Se im this UNIT
17 but compiler symbol table space would be exceeded in the “dotplotter®
] UNIT which uses “transform” but %o other matriz operations. The “tramsfora®

I: procedure is a vector-matrix product which is a mew vecter.!}
i

il

it INTERFACE

13 USES global;

i

5 TH

% atis = {(2_atis,y_axis,z_azis);

i? ccordinates = (cartesian, polar);

lg retation = (ew,cew); lew = clockwise, cew = counterclockwisel
2

# WR

33; indent: [INTEGER;

§3 TROCEDURE matriz_identity {d: dimension; VAR a: matrix);

3% PROCEDURE matris_inverse (a: mairiz; VAR b: wmatriz; VAR determimamt: EEML);
§ MO(EDURE matriz multiply fa,b: matrix; VAR ¢: matriz);

34 PROCEDURE primt_matriz (title: STRING; a: matriz);

§? TROLEDURE primt_vector (title: STRIKG; u: veeoter);

38 PROCEDURE rotate_matriz (d: dimemsiom; zys: axis; amgle: RIAL;

kL) direction: rotatiom; VAR a: matriz);

40 PROCEDURE seale_matriz (u: vector; VAR a: matriz);

44 PROCEDURE tramslate_matriz {m: vector; VAR a: matriz);

41 PROCEDURE view_transform matriz (viewtype: coordimales;

L] asimuth, elevation, distance: REAL;

LL] sereen_3, sereen_y, screenm_distamce: REAL;
L] VAR 3: wmatrix);

L[}

:: IMPLENENTATION

¢ PROCEDURE matriz_identity (PUBLIC{d: dimemsion; VAR a: mafrisi};

56 {"matriz_identity" ereates an idenilty matriz for the specified dimession-

i ality. Vhile this procedure can be accessed by 2 nwser program, its

Ss§ “%II.')GSI was to initialise matrices used by other procedures in this UNIT.}
5 i,j,n: index;

¥ BEGHN

56 CASE ¢ OF

1] twe_D: e = J;

] three D: a = {

5 END;

&0 FORi =170 a D&

él FOR j :=1T0 D0

(¥ IE i=i

e} THEN a.mtrzli,j] := 1

(1] ELSE a.mtrxli,jl := 8;

& &.5ite ;= 1

:,6 {matriz_identify);

&8  PROCEDURE matriz_imverse

i {PUBLIC{a: matriz; VAR b: wmatriz; VAR determimant: REAL));
70 {This procedure inverts i gemeral tramsformation matriz. The user need

f net form am inverse geometric fransformation by keeping a product of

n the inverses of simple geometric transfermations: tramslatioms, retatieas
73 and sczling. A delerminant of sero jndicates 3o inverse was possible for

74 & singular matriz.}
VAR



A.

3

141

144
145
e
147
148
149
50

UNIT listings

matrizops UNIT

i,i_pivot: index;
i_flag : PACKED ARRAY[index] OF BOOLEAN;
i.i_l}iut: index;
j_flag : PACKED ARRAY[index] OF BOOLEAN;
modules : RIAL;
n : indes;
pivet : ;
pivot_col: PACKED ARRAY{indexl OF index;
pivot_row: PACKED ARRAY[indes] OF index;
temporary: BREAL;
EGIN {The matrixz imversiom algorithm used here)

VITH a DO BEGIN {is similar to the "mazimum pivot strategy”l
FOR i := 1 TO size DD BEGIN (described in "Applied Numerical Methods®}
i_flagfil := TRUE; {by Carmaban, Luther and Wilkes, pp. 281-284.)
j_flaglil := TRUE {The particular algorithe used here was)
END; {presented by the instructor of the Cale II1}
modules := 1.0; {class {Summer 1977 at E-5tate) whose nmame)
FOR n := 1 TO size DD BEGIN (I cammot remember.]
ivet := 0.0;
P ABS(modules) ) 0.
THEN BEGIN
FOR i := 1 TD size DO (This algorithm is particelarly well)
IF  i_flaglil {suited for "hand calculations®.})
THEN (If the oeriginal matriz elements arel

FOR j := 1 TO size DO (integers, they remain integers thougheut)
1P j_tlaglil {subsequent calculations watil the last)
THEN fstep -- division by the determinmant.}

IF  ABS(mtrzli,jl) ) ABS{pivet)

THEN BIGIN
pivot := mtrali,jl; {largest value on which to pivet)
i_pivot := i; (indices of pivot elemsnt)
j_pivet := j
END;
IF  defuss(pivet) = 0 {1f pivot is too small, comsider)
THEN modulus := 0 fthe matriz to be sisguian
ELSE BEGIN

pivet_rowlnl := i_pivot;
pivet_collnl := j_pivot;
i_flagli_pivot] := FALSE;
j_flagli_pivet] := FALSE;
FOR i := 1 TO size DO

IFE i) i_pivot

THER

FOR i := | TO size DO (pivot column wmchanged}
[E §{) j_pivet (for elements mot in pivet row or columa ...}
THEN mtesli, i1 := (mtrali,jltmtrzli_pivet,i_pivet) -
ntezli_pivet,jltmtexli,i_pivet]!

| modulus; {122 minor 7/ modulus)
FOR j := § TO sise IO
IE j () i_pivet {chinge signs of elements in pivol row)
THEN mtrafi_pivot,j] := -mtrxli_pivet,j);
temporary := modalus; {exchange pivet element and modulas)

modulus := strali_pivet,j_pivetl;
Iﬁtn[i_pint,i_ﬂuu :s temporary

END
{FOR n}
END {VITH};
determinant := defuis{modules);
IF  determimant () §
TREN BECIN
b.sise := 3.sisge; {The matriz inverse mgst be unscrambled]
FOR i := 170 a.sizse DO (it piveting was not along main diagenal .}
FOR j := 1 TO a.size DO
- b.mtralpivet_rowlil,pivet_collj1] :s defuss(a.mtrxli,j)/determinant)

END {matriz_inversel;

PROCEDURE satriz_multiply (PUBLIC(a,b: matrix; VAR ¢: matrim);
tCompound geometric tramsformation matrices can be formed by multiplying
simgle transformation matrices. This procedure only multipiies together
matrices for two- or three-dimemnsional transformations, i.e., 313 eor &3¢
“lut:icu. The multiplier and multiplicand must be of the same dimemsion.}
i,i,k: indes;

59



A.3

13t
152
133
{54
1535
156
157
158
159
160
161
142
163
e
163
e
147

169
17
im
11
173
174
173
174
177
178
17
180
181
182
183
4
183
[11)
187
18
189
190
it
92
"3
I
93
194
7
19
e
100

i
3
L
s
104
H Y

109
10
i
i
113
i
113
14
i1
HIE
ue
10
i1
12
113
124
13

UNIT listings matrizops UNIT 60

temp : REAL;
BECIN )

c.sige 1= a.size;

I[F  a.size = b.size

THEX

FOR i :=1 T0 a.size DO
FOR i := 1 TD a.size
BEGIN
s 0;

temp
FOR k := 1 TO a.size DO

temp := temp + a.mtrzli,kl®h.mtralk,j);
e.atreli,jl := defuss(temp)

IND
ELSE BEGIN
VRITELN ('HAT#1:');
WVRITELN ('lIgnoring attempt to multiply square matrices of ',
‘different dimensions: °',a.size, ' amd ',b.sige,'.');
¢.g5ite := | {sigmal error by settimg dimensiom of "c¢" to 11

E
END {matriz_smultiply);

PROCEDURE print_matriz {PUBLIC(title: STRING; a: matriz));
{"print_matriz" cam be uwsed to print a tramsformation matriz with a title.}
{Be sure that the variable "indent® declared in the INTERFACE of this
procedure has been defined before uwsing either “print_matrixz® or
“print_vector®.]

i, j; indes;
E : [INTEGER;
BEGIN

VRITEIN (pzt);
VRITELN (prt,title);
FOR i :=1T0 a.sizse DO
BEGIN
FOR k := 1 TO indent D0
WRITE (prt,' *);
FOR j :=1 T a.size DO
VRITE (prt,a.mtrali,jl1:12:%);
WVRITELN (prt}

END
fprint_matriz);
PROCEDURE primt_vector {PUBLIC(title: STRING; u: wector)};

{"priat_vector® lists a 2D or 3D vector (point) alomg with a title.l
VAl

j: index;
k: INTEGER;
BEGIR

VRITELN (prt);

VRITELN (pri,title);

FOR k := 1 TO indent DO
WVRITE {prt,' *);

TOR j := 1 TO u.size DO
WRITE (prt,uw.vetrlil:12:3);

VRITELN (prt)

END {print_vectorl;

PROCEDURE rotate matrix (PUBLIC(d: dimension; (® two_D or three D t)

2§z agis; (% g_amis, y_axis or 1_azis %}

angle : REAL; {® degrees ®)

direction: rotation (% cw er cow *}

VAR a: matrin));
{This procedure defines a matriz for a two- or three-dimemsional rotation.
To aveid possible confusiom in the semse of the rotatiom, "ew® for
clockwise or "cew® for counter-clockwise must always be specified along
with the azis of rotation. Two-dimemsional rotatioms are issumed to
be about the g-azis in the x-y plame.

A rotation about an arbitrary azis can be performed with the following
steps:
(1) Tramslate the object into a mew coordinate system where (x,y,2)
maps into the origin (§,0,0).
(1) Perform appropriate rotations about the z and y azes of the
coordinate system wo that the wnit vector (a,b,c) is mapped inte
the mnit vector along the 5 azis.



A.3 UNIT listings matrizops UNIT

226 (3} Perform the desired rotation about the 5-azis of the nw
127 coordinate system.

228 (4) Apply the inverse of step (2).

119 () Apply the inverse of step (1).)

13 v

131 cosz : REAL;

232 radiams: RIAL;

133 sing : REAL;

23¢ BICIN

135 radians := radians_per_degree t amgle {degrees);
236 IF  direction = cow {cow is -cwl

137 THEN radiass := -radianms;

i3 cosy = defusx( COS(radiams) );

1y sing = defuszl SIN(radiams) );

140 CASE ¢ OF

1 two D:

142 BIGIN

143 matriz_identity (two_D,a);

44 CASE xyz OF

us p_axis,y_azis:

e VRITELN ('MATO2Z: FOR 2D rotatiem im -y plane, specify "s_azis"');
147 g_agis:

FLE] BEGIN { z=angle of rotatien )
249 a.mtrall, 1) = cosx; [ cos(z) -sin(z) B}
150 a.mtrel2,2] :s cosk; { sin(z) cos(z) D)
251 a.mtexl2,1) = sing; (] 11
152 a.mtreli, 1] := -sing

153 END

134

153 END;

i5é three D:

57 BICTR

158 matriz_identity (three_D,a);

239 CASE zys OF

140 ¥_31is:

1 BEG I

%2 a.atrel2,1] := coss; {18 [ 01
263 a.atrel3,3] := cos:; {0 cos(z) -sinlz) 01
id a.mtrel2,3) := -sing; {0 sintz) cos(z) &1}
245 a.mtrald,?] := sing o ] 11
e END;

247 y_agis:

s BEGIN

%y a.mtrsll,1] := coss:; { cos{x) @ sin(z) 0}
in a.mbral3,3) := coss; i 10 (B8]
1 a.mtral3, 1] := -sing; {-sin(z) 0 cosiz) 0}
i1 a.mtral1,3] := simnx 1 ] L I | 11
173 END;

i t_agis:

173 BEGIN

17¢ a.mtrall, 1] ;= cos:; { cos(y) -sin(z) B 0]
n a.mtral2, 2] := cosy; f sin{z) cos(z) 8 0
i8 a.mtrell,1) := sinz; it ] 1 0]
7 a.atral!,?] := -sing (o | ¢ P 1
180 END

181 ENB

12

283 END

::; END frotate_matriz);

186 PROCEDURE scale_matrix (PUBLIC(u: vector; VAR a: wmatrim)};
87 {"scale_matriz™ accepts a "vector” conmtaining the scalimg factors for

18 each of the dimemsions and creates a sealing matriz. The size
189 of the vector dictates the size of the resulting matriz.)

0 var

i d: dimeasion;

iv2 i: isdes;

13 BEGIN {10:) { 30: }

4 CASE u.size OF {80 0) (Sz ¢ 0 8
s 3 d = twe D; {8 Sy {0 Syd a1}
% §: ¢ := three D fe o1 {0 ¢ Sz
197 £ND; {8 00 11

b3 ] matriz_identity (d,a);
199 FOR i := 1 TO w.size-1 DO
aoe a.mbrali,il := wowetrfil;



A.3

EL 3
i1

UNIT listings

matrixops UNIT

a.atralu.size,u.sised ;=1 ¢

END f{scale_matrix};
PROCEDURE translate matriz {PUBLIC{u: wvector; VAR a: matrim));

{"translate_matrix® defimes a translation transformation matriz. The

";n-alutl of the vector "u” determime the translation compoments.)

4: dimension;

i: index;
BEGIN {2: ) {3D: 3
CASE u.sigze Of (10 8) i1 80 2
: d = twe D; {e110) {0108
§: d := three D [TaTy1] (08101
END; {TaTyTe 1}

matriz_idenmtity (d.a);
FOR i :=1 70 u.size-1 DO
a.mtrzle.size, il := w.vetilil

END {translate_matriszl;

FROCEDURE view_transform_matriz {PUBLIC(viewtype: coordinates;

asimuth (tor zt}, slevaliom (%or yt}, distamee {Ror g*}: REAL;

soreen_3, soreen_y, screen_distance: REAL;

VAR a: matrin};
{"view_transform matriz" creates a transfermation matriz for changing
from world coordinates te eye coordinates. The location of the "eye®
from the “ebject® is given in polar {asimuth,elevation,distance)
coordinates or (z,y.5) cartesian coordinates. The sise of the screen
is "sereen_g” wmits horizontally and "sereen_y" wnits vertically. The
eye is "screen_distance® units from the viewing screem. A large ratie
“sereen_distance/screen_z (or sereem_y)® specifies a marrow aperature
-- a telephoto view. Conversely, a small fatio specifies a large aperature
-- 3 wide-angle viw. This view transform matriz is very useful as the
default three-dimensional tramsformation matriz. Once set, all points

.:u automatically transformed.}

] : matrin;

cosR : REAL; {C05(-anglel}
hypotenuse REAL;

rad_azisuth REAL;

rad_elevation: REAL;

simm : H {EIN{-aagie}}
temporary REAL;

u : weelor;

LT 8 : REML;

BICIN

CASE viewtype OF
cartesian:
BEGIN
£ = azimuth;
¥ := elevation;
g = distance;
define_3D_vector (-x,-y,-5, u}
END;
polar:
BEGIN
rad_asimuth  := radiass_per_degree * (azimuth - 90.0);
rad_elevation := radiams_per_degree * elevation;
temporary := -distamce * COS(rad_elevation);
define_3D_vector (temporary t COS(rad_asimuth},
temsporary ®* SIN(rad_azimuth),
-distance * SIN(gad_elevation}, u);

{The parameters are renamed to aveid confusion.)

END
{CASE);
translate_matriz (u, 2); {traasiate origin to “eye")
rotate_matriz (three D,x_azis, .8, cw, b);
matriz_multiply (a,b, a);
CASE viewtype OF
cartesian:
BEGIE
temporary := SO0R{x) + SOR(y);
bypotenuse := SO0ET(tesperary);
cosm := -y/hypotenuse;
gim s uig{otmue;
matriz_identity (three_D,b);
b.mtrxll ] := 5w

62



A.

3

UNIT listings matrigops UNIT

b.mtrxl3.3] = ceswm;
b.atrzld, 1] = -simm;
b.mtrell,3] := sinm;
satriz_smaltiply (a,b, 3);
cosB := bypotenese;
hypotenuse := SORT(temporary + SOR(s));
cosa := cosn/hypotenese;
simm := -zlhypotenuse;
satriz_identity {(three_D,b);
b.strail,2] := cosm;
b.mtzx(3,3] := cesm;
b.atral2,3} := -simm;
b.mtral3,1} ;= sim

Hil

polar:

BEGIN
rotate_matriz (three_D,y_azis,-asimuth,cew, B);
matriz_meltiply {a,b, 2);
rotate_matriz (three_D.z_azis,elevation,cow, B);

END {CASE);
matriz_multipiy (3.b, a);
define_3D_vector (screem_distance/(D.5%screen_3),
screen_gistancel(0.3tscreen_y),-1.1, u);
scale_matrixz (u, b}; {reverse semse of 3-axis; screem tramsformation}
satrix_muitiply (a,d, a}
END (view_transform_matriz);

END {matriz_ops UNIT).

63



A.4

s b g, Bl e
i @A O pos 5D D @B cl O 40 on D pa bam

UNIT listings ids560 UNIT 64

[$L- PRINTIR:)
{58+ Put compiler in swapping mode.)
UNIT idsSé8; (UCSD Pascal, Versiom II)

{$C Copyright (C) 1782 by Earl F. Glynn, Manhattanm, K5.)
fUrittem in Jamwary 1982; last modified om 3 April 1982.}

{The "ids540" UNIT provides control of the Imteqral Data Systems "Paper
Tiger® 560. The 1D5 540 has other hardware features which are not
controlled by procedares in this UNIT.}

INTERFACE
USES global; {for definition of "prt® TEIT FILE)

TIPL
control_char = (nuil,enhanced_mode.normal_mode,graphics_mode,

just_on,just_off, (®justify”)
fized_spacing,
ht, LE,. vt if,c1,
propertiomal _spacing,
select _print,deselect_printer,
subseript,superseript,
pitehld,pitchil, pitehis);

FROCEDURE forms (lemgth,skip: REAL);
PROCEDURE comtrol (code: contrel_char);
PROCEDURE lime (n: INTEGER);

PROCEDURE margins (left,right: ZREAL);
PROCEDURE pesitiom (z,y: REAL);
PROCEDURE tab (n: INTEGER);

IHPLEMENTATION
CONST esc = 27;

PROCEDURE forms (PUBLIC(lenmgth.skip: REAL));

{"forms® defines the length in inches of the forms being used. 1 skip
space must also be specified which is greater thas gero bat less than
the size of the forms. A sero skip space is treated as 1/48-th imch.
l:'ninll;. the skip space is 6.5 or 1.0 inech.)

v

i,5: [INTEGER;
BEGIN

1 :s ROUND(48.0%length);

s := ROUND{(48.0tskip);

If si{=10

THEN s := |;

“ln ‘prt|m(.le)l|l|"l!.l‘ll-’lll")
{foras};

FROCEDURE control (PUBLIC(code: control_charll;
{The IDS 560 recogmnizes many special comtrol characters which can be
s“;lllliull; selected with this “comtrol® procedure.}

BIC
CASE code OF
null : VRITE (prt,CHR(OG));
enhazced_mode - WRITE (pri CHR(D1});
normal_mode : WRITE (prt,CHR(DZ));
graphics_mode : WRITE (prt.CHR(OD));
just_om : VRITE (prt, CHR(04}); (justify on)
fust_off : WRITE (pri,CHR(0S))}; {justify of £}
fized_spacing : VRITE (prt,CHR(D4});
it : WRITE (prt,CHR(9%)); (horizomtal tabl
1f : WRITE (prt, CHR(10)); {line feed]
vt : VRITE (prt,CHR(11}); (vertical tahl
it : WRITE (prt,CHR(11)); (form feed)
cr VRITE (prt,CHR(13)); {casriage returnl

preportional_spacing: WRITE (pri,CHR(14));

select_printer : WRITE (prt,CHR(1D));

deselect_priater: WRITE (pct, LRRILD));

subseript : VRITE (prt,CHR(28));

superseript : WRITE (pri,CHR(25));

pitehil : WRITE (prt,CHR{2%)); (10 charactersiiachi



A.4

1
78
L1
1]
1]
B

L 1]
91
13

11
1]

1o
01
1
103
104
03
104
17
108
109
e
11
111
i3
4

UNIT listings ids540 UNIT 65
pitchll : WRITE (prt,CER(303}; {12 characters/isch]
EJitchll : WRITE {prt,CHR{31)); (1.8 characters/imch)

END {comtrol};

PROCEDURE [ine (PUBLIC(m: INTEGER)};
[°1ine” places the print head at Iine "n" from the top of the ferm. The
top lime is line 0. Reverse paper feeding will occur if necessary.)
BEG1¥
WRITE lgrt.ﬂll(uc).'ll.',n,',l')
END (lime);

PROCEDURE margins (PUBLIC(1eft.right: REAL));
{"margins" sets the left and right margins of the forms being used.
mmmu margins at power up are 0.0 te 13.1 inches.}

i |
WRITE (prt,CHR(esc),'J.' ROUND(120. 0%left},',"  ROUND(120.0%cight),".4"}
ENG (margiasl;

PROCEDURE positiom {PUBLIC(xz,y: REAL});
{"position” print head "x" inches right of the left margin and "y°
inches down from the top of the corremt form setting. Reverse paper
feeding can occcur and care should be taken to avoid binding or jamming
of paper.}
EGHE
VRITE {(prt,CHR(ese),'G, ', ROUND(120.0%z),*,$', {horizomtal settingl
CHR(esc),'H, ' ,ROUND(4B D2y),*,4')  (vertical seiting)
END [position);

PROCEDURE tab {PUBLIC(n: INTEGER));
[*tab" does mot use the herizontal tab programming available om the
IDS 540 but rather absolute column positionming. “"tab" advances the
print head to the n-th cclemn given the current margins aed pitch
“;f}: print head can move left or right to the a-th column.]
VRITE (prt,CHR(ese),'N,",n,",§"')
END {tab);

END (idsSé8 UNIT).



Appendiz B. Source Listings of Sample User PROGRAMs

1
2
.3
q

Cartography

Football Field

r = f(x.v}

Pressure Map of Injection/Production Weil Fieid

66



B.1

- R w3 e N e A e

Sample PROGRAM Cartography

{sL-
{45+

PRINTIR :
Pat compiler in swapping model

PROCRAX sap;
{"map® produces several maps of the State of Kamsas. This prograa
demonstrates the wse of two-dimemsiomal primitives. Writtea is
January 1982; last medified om § April 1982.1

USES global, matrizops, ids540, dotpletter:

VMl

loop :
start:

INTEGER;
REAL;

PROCEDURE read_map;:
ViR

igt:
R

|
BEGIN

TEIT;
INTEGER;
vector;
REAL;
REAL;

RESET {ipt,'8:kansas.map.test’);

n={;

READ (ipt.,sz,¥):

define_1D_vector (2,5, w);

meveto (u);

READ (ipt,x.y);

WHILE IDT EO!(:pt) DO BEGIN
define_1D_vector (z,§, u);
lingto (u);

n := SUCC(n);

IF

THEN READLNCipt);
WVRITELN (‘Point ',n:4);
READ (ipt,z,¥}
END;
CLOSE (ipt!
END (read_mapl;

PROCEDURE setup_case (i: INTEGER):

Vil

BEGIN

matriz;
veclor;

position (1.50,start);
control (pitchild);
CASE i OF
§: BIGIX
VRITELN (prt,'1.1 State of Kamsas');
position (2.00,starts+0.135);
control (pitchid);
:“:IlTlll {prt,'Demonstrates plotting of unmodified line segmenmts')
1: BEGIN
VRITELN (prt,'1.1 Local Counties: Riley, Pottawatemie, ot al*);
position (2.00,start+0.125);
contrel (pitehid);
WRITELN (prt,'Demonstrates symmetrical scaling, tramsiation *,
‘and clipping of lime segments');
define_2D_vector (4.0,4.0, u);
scale_matrixz (u, 2);
define_2D_vector (-21000.0,-10000.0, u);
translate_matriz (s, §);
matriz_maltiply (a,b, a);
set_transform (a}
END;
i: BEGIM

WRITELN (prt,'1.3 “Creative Cartography®‘);

pesition (2.00,starke0.125);

contrel (pitehié);

WRITELN (prt,‘'Demonstrates asymmetrical scaling, rotation, *,
‘translation and clipping');

position (2.00,start+0.250);

VRITELN (prt,'of line segments; color imversion');

define_2D_vector (0.75,1.25, u);

scale_matriz (s, a);

&7



B.1 Sample PROGRAM Cartography

76 rotate matriz (two_D, z_azis, 45.00, ew, b);
7 satriz_multiply (a,b, 2);

78 define_2D_vector (100.0,4000.0, u);
kil translate_matriz {u, b};

1] matriz_multiply (a.b, 2);

i set_transfora (a);

82 dot_coler (white);

K] fill_celor {(black)

1] ENB

[ H] END;

:; END {setup_case);

§8  BEGIN {map)
8 begin_dot_plotter_umit;

1] forms (11.0,0.0);

1 PAGE (prt);

12 min_space := 4096 {bytes); ({stack overflow probably caused by precedure}
93 plt_mode := create; {calls to "setup_case” and "read map”l
H plt_name := "§:KANSAS.DOTS';

3 size (4.004,2.383);

% window (0,8300, 0,5000);

17 position (1.23,8.38);

e control (pitchid);

44l contrel (emhanced_mode);

e WRITE (prt,'Exhibit 1. Cartography Ezamples'};

101 contrel (normal_mode);

101 FOR loop := 0 TO 2 DO BEGIN (three maps!

103 start := 0.80 + 3.10%0o0p;

{1} setup_case (loop};

105 open_pleot;

106 read_map;

W07 pat_plot (2.00,started. 40, 1 {copy), 2 {border dotsl);
108 close_plot {delate}

109 END;

110 ead_dot_plotter_mit

11 END (map).

837 751 041 1113 070 1238 110 1957 149 1972 142 1457 150 254% 178 3048
£83 3181 125 3704 111 3800 242 4400 939 4353 909 3757 935 3754 49¢ 3150
797 31FL 747 2340 470 2544 634 1933 640 1929 434 1336 440 1334 €37 1209
§0% 723 5§75 727 9§41 181 1074 151 1103 494 1080 698 1110 1174 1113 13M4
§092 1310 1131 1911 1105 1908 1135 2321 1486 2583 1511 3117 1411 3108 1439 3116
1623 3718 1449 4312 2217 4181 2209 3686 2221 3487 2201 3084 2181 2443 2082 2447
1044 1859 2058 1500 2052 1374 2043 1245 2045 1257 2040 761 2145 751 2159 439
RLTE 434 2149 100 2233 094 2731 073 3754 SB% 1740 594 2743 719 1743 1087
2768 1212 2758 1217 2740 1345 2769 1587 3005 1573 3004 1439 3356 1449 3006 1459
3005 1573 1749 1587 1786 1820 2770 1832 1775 1940 1708 2427 177§ 1431 1795 3093
1013 3453 2792 3457 1004 4259 2007 4155 3292 4134 3394 4237 3383 3628 3404 362é
2391 3027 3374 2411 3361 1923 3343 1804 3484 1798 3477 1441 3356 1449 3356 1IN
3353 1061 3336 698 3331 570 3315 050 3836 041 4047 033 4060 540 3NI7T NS
3937 680 3947 1050 3932 1178 3944 1441 3967 1788 3954 1780 3943 2150 31974 2300
3941 2400 3943 2433 3974 3000 3979 3120 3991 3400 4579 3584 3991 3408 3978 3407
3902 €223 4225 4214 4379 4214 4583 34997 3175 3491 4503 3499 4579 3584 4573 3it¢
€570 3107 4543 2737 4540 2432 4541 2159 4556 2137 4549 1647 4789 1438 4783 117¢
4774 1031 4645 1026 4453 459 4450 544 4643 020 5018 017 5340 008 5350 447
S340 1247 5363 1505 §364 1432 5134 1439 5132 2241 S157 2627 5139 2426 5130 2443
S139 2441 S15& 2724 145 2949 5148 3208 5175 3344 5603 3562 5173 3344 5179 34M
SI79 4195 3471 4192 5747 4193 S745 3545 6020 3548 4014 3344 5977 3532 5954 3518
$943 3484 3870 3438 SO40 3400 SBB4 3312 5942 3244 3944 3190 3948 3170 4003 3143
6013 3109 4042 3094 6053 3071 6020 3044 4034 3024 4054 3038 £115 3014 6154 3039
€191 3020 4215 3010 4210 2847 6093 2042 (070 2594 €0BS 2534 €210 2528 €212 2413
6243 2409 6242 2107 4231 1433 6130 1497 4047 1491 4045 B30 4044 446 6043 K06
4037 DO &410 014 4449 023 6651 409 4656 344 4456 B21 £441 1014 6445 1444
4644 1616 6662 1908 4449 2408 4472 2481 €479 2940 4582 2942 4577 3095 7054 3093
§377 3099 4587 3561 4378 3364 6378 3584 4377 4183 4599 4185 6837 4189 4845 3497
G840 3363 6587 3541 4040 3563 4845 3497 7072 3703 7049 3373 7054 3093 7043 2920
705 2891 7103 2899 7127 1092 7143 2885 7141 2609 7143 2424 7139 2004 7139 1944
7141 1759 7136 1754 7127 1449 7125 1024 7128 547 7437 028 7257 421 7424 024
1610 488 7604 5S40 7601 944 7682 1030 7407 1447 7613 1953 7412 2432 7407 2748
7591 1745 7382 2751 7954 2740 7519 2757 7482 1758 7481 1851 7471 3375 7731 3388
1471 3375 7049 3373 7072 3703 7314 3705 7354 3704 7314 370§ 7303 4204 7324 4111
7357 €199 7411 4144 7439 4103 7491 4046 7540 4014 7620 4027 7450 4057 7476 4043
7698 4087 7730 4013 7788 4005 7798 3956 7789 3904 7753 3894 7817 3849 7774 38Q0



B.1

7700
1548
1889
111
8101
613
"y
4443
114

01
1563
33U
4043
Hi
s044
1354
1602

178
1593
F
S13¢
73
§132
Hii
§243
W
3941
13
1311
4563
5473
4288
4474
8"
708
1718
7554
nu
6377
Tit
iun
§148
1813

123
1804
£117
7303

Sample PROGRAM

3
3545
e
3097
874
f21
fae
0t
100
i3
667
(3]
LI
28
(10
1194
152
1138
1890
1788
1639
113
1433
1471
2409
1513
1400
51
i
1737
159
03
L EL
174
nn
1783
740
189
3093
3067
i
2K
3433
37846
4239
1204
204

7701 3788 7439 3730

7615 3493
7785 N
937 3073
8101 2587
#1115 332
6041 024
431¢ 024
1543 123

17 152
1575 781
3937 480
6651 409
14 959
3350 447
3353 1041
1589 1284

110 1957
2064 1859
avi4 1481
5364 1432
§731 1897
6290 1437
11 1495
6242 1107
5434 2516
3376 2411
747 2540
1611 3108
4 272
§070 2594
4310 3027
4498 3042
§672 2401
7874 2883
608 2177
51 287
7149 2902
6387 3541
§718 1018
5843 2094
4373 314
1792 357
311 3808

7784
7969
8108
0114
(111
47
1587

I
L]
3937
4454
7661
3340
1743
1579

434
nn
4115
33463
i1y
4314
B114
$733
s630
17

478
1201
3165
§093
4325
§308
7141
7830
7480
iz
14
§378
3822
012
4570
1111

161

1984
3053
143

493

023

133

4éd

72

761

345

4

944
1247
1087
1281
1933
1831
1660
1503
1888
1623
1959
13
1231
1N
54
KLLL]
1949
asél
3013
040
2409
1893
1781
1758
1085
3544
1904
1904
3107
1487
4400

1007 4253 3191 4234
SI7% 4193 5672 4192 §747 4193

7618 3480
7700 3444 7731 3388

nn
8024
1oy
11
661t
838
1543

11
]
4040
11id
1
1783
1768
1591

§60
1773
4224
3492
371
43461
7613
3634
132

1980
3048
un
187
01é
04t
113
713
73
360
547
1630
12746
1212
13
1919
17460
1437
1502
1714
1421
1953
167
1241

1775 U2

130
179%
3598
6110
6344
§356
T
7814
7459
(L1
1117

1549
3033
1962
84
ot
1
241¢
i
780
1851
n

6378 3544

§843

5718 1910

7

nn

2209 3884

939
3%

4353
1237

Cartography

7601
748
7
8071
8114
Bi1Y
4039
332§
1213
1080
1743
§650
1]
7115
714
738
1373
110§
EETY]
4301
1
702
(113
713
5630
4541
i

178
EELS|
3599
§213
6359
4339
7611
7881
Té34
743t
1103
§020
L
18
3991
1439
1034
3749
6141

3533
33i0
1814
K E |
1954
033
ooy
058
143
§90
1
L]
340
1024
1031
1217
782
1708
1913
1437
1713
1713
1614
1944
uin
1153
2443
3048
nze
1731
a1
3057
3003
1431
1N
1744
1858
e
3548
1898
087
Jé0s
3714
434
4213
4184

7334 3704 7601 3433 TS
779% 3336 7794 3241 7833
7771 1980 7784 2984 7783
8108 2019 B12% 3010 M17

i
171
t1 11
817
1074
1103
i
4433
18
(113}
LULH

1495 8112
028 7424
f02 5340
Béy 2731
151 541
694 1543
94 1754
639 3350
484 8114

1014 6456

1026 3949

1472 8114
024 7157
G0s 5818
078 113
187 037
467 1387
54y 3131
447 044
493 8115
821 60435

1050 3952

1740 1345 2052 1374 2058

1591
113
3343
430t
L]
5692
§463
1ny
HH
4554
2081

183
kLA
3418
249
¢408
4539
6108
78
7807
7384
7037
3763
3881
S404
778
1423
1620

1150 1110
1911 1393
1804 3484
1648 4549
1714 5719
1302 4043
4y 117
2004 §ésl
1314 3472
1137 343
1447 1419
3181 797
3060 3943
1743 3441
1994 €170
3039 €423
1997 6537
1438 §102
1014 7738
i748 7571
10446 7389
1891 7043
3563 3403
1877 L0187
3088 3598
3607 3404
ane 3%
4319 1449

1176 437
1890 1419
1798 3954
1447 4789
1888 5731
1492 £230
1849 7409
1788 4449
231§ 3413
1130 3N
2493 1484
3151 89y
1633 4360
1730 344
1994 ¢182
3041 4454
1984 é382
3387 8101
1787 713%
1745 7382
1850 7290
10 M1
3362 3404
1877 3461
1962 5143
3424 3388
EEETIR L))
4112 1229

3981 4213 4225 4214 4579
6372 4183 6599 4183 837

s
3181
30
i

159

a2

07

131

e

468

70

848

132

830
1178
1500
1309
49
1780
1438
1897
1497
1447
1400
5%
139
2503
130
2432
1399
3018
3043
N2
1%
1802
1731
1178
3093
aese
un
99
3518
ant
4281
44
1189

9



B.2

- g =d e L g AR Pl e

Sample PROGRAM Football Field 70

[4L- PRINTER:I

{45+ Put compiler in swapping mode.}

PROGRAM ksu_feotball_field;
{This program produces severil views -- orthographic and perspective --
of the K-Btate football field. The field is spproxzimated mathematically
as a flat plame -- the actual crown of the field is ignored. The
asymmetrical endzone annotations provide a direction reference. “K-STATE®
fills the morth endszone; “WILDCATS" fills the south endsome. The crigin
(0,0,8) is at the southwest cormer of the scuth emdzome. Al points are
on the z=0 plane, except for the goal pests. Writtem in January 1%82;
last modified 7 April 1981.1

USES global, matrizops, idsSé@, dotplotter;

VAR
&b : matrix;
border: INTEGER;
left : REAL;
loop : INTEGER;
tep : REAL;
u . weglor;

PROCEDURE seg (xl,y1, z2,yd: REAL);
VAR u: vwvegctor;
BEGIN
define_30_vector (xl,y1,0.0, u);
sovete (o);
define_3D_vector (2l,vy2.0.0, ©);
lineto (ui
END {seq);

;lmog.wu endsone_annetation;
seg ( 3, §, I, 35); {"south" endzone amnotation: WILDCATS]
seq ( 28, 5§, 120, i5); [apside-dowz "5}
seg ( 20, 15, §, 13}
seg { 5, 13, 5, 3§);
seg { 5, 23§, 126, 15%;

seg ( 25, §, 4B, §); {upside-down "T")
seg (32.5, 5, 81.§,23);

seg ( 45, 15, §2.5, §5); fupside-down "A"}
seq (52.5, 5, 40, 1%);
seg ( 49, 15, 54, 15);

seg ( 65, §, 80, 5); {upside-down “C")
seg { 88, 5, 80, 13);
seg ( B0, 25, 43, 15);

seg ( 85, 10, %0, §); {upside-dowm “D“)
seg ( 90, 3, 100, 3);
seg (180, 3§, 108, 15);
seq (1060, 13, %0, 23);
seg ( %0, 13, 8§, 0},
seg { B3, 28, 85, 19);

seg (195, 25, 128, 15); {opside-dowm "L°}
seg (120, 23, 120, 3§);

seg (117.5,5, 117.5,25); {*1"}

seg (135, 3§, 140, 23); {upside-down "V")
seg (140, 25, 143, 13);
seg (143, 13, 150, 25);

seg { 4,333, 4,333), {*north® emdzome amnotation: E-STATE)
seg { 4,343, 15,359); 1

seg ( 10,345, 123,338);

seq ( 16,343, 31,343); {=-"1

seg ( 39,335, 350,335); {*s"1
seq ( 58,335, §8,343);
seg ( 58,343, 39,345);



.2

130
131
132
133
i34
133
134
3
130
134
40
141
141
143
t44
145
jLY]
147
148
149
150

Sample PROGRAM

seq ( 39,345, 139,35%);
seg { 39,355, 354,333):

seg ( 43,335, 81,333);
seg (72.5,33§,72.5,3%5);

seg { 87,335, 96.5,333);
seg (65,355, 104,335);
seg ( 92,345, 101,349);

seg (111,355, 130,339);
seg (120.5,358, 138,536

seg (135,335, 154,335);
seg (135,335, 135,35%);
seg (135,345, 150,345);
seg (135,333, 15¢,355)
END {endsome_annotation};

Football Field

™

{*a"}

(°T")

{"E")

PROCEDURE nuamber (m: INTEGER; uz,y,size: REAL);

::ECEBUI! nomber_yard_lines;
i,J : [INTEGER;
feet: REAL;
Vit
half: REAL;
BEGIK
half := 0.50 * sige;
CASE = OF
0: BEGIN
seq (1, \
seg (x+size,y,
seq (zesize, yesize,
seq (1, yésize,
1 seg (&, L1
i. BEIN
seq (x, T
seg (&, yesize,
seg {g+half,yesise,
seg (x+half.y.
seq (z+size, v,
3. BEGIN
seg (x B L
seg (x ¥
seq (z+half,y,
seq (z+size.v,
4: BEGIE
seg (1, 1
seg (x+half,y,
seq {g+half. yesize,
3: BEGIN
seq (1, T
seg (1, L
seg (x+half,y,
seq (x+half,yesise,
seg (g+size,yesize,
END
END (numberl;
BEGIN
feet := £0;
FOR i := 1 TO ¥ DD BEGIN
IF i) §
THEN § := 10-i
ELSE § := i;

sumber (j, 10,feet+d,+3);
number (0, 10,feet-§,+3);
number (j,150,feet-2,-3);
number (0,150 ,feet+§,-3);
feet := feet+3D

g+sige.yi;
gesige,yesite);
2, yesize);
| 9 yi

1+s5ige,y);

1, yesize);
a+half,yesise);
1+haltl,y);
xisise,y);
1+5ige, y+site)

L. yesize);
Tesite,f);
z+half, yesize);
tesize, yesisel

z+sisze,y};
a+half,yesine);
z+5ize, yesite)

1, yesized;
x+half,g);
T+half, yesize);
1¢size,yasised;
gsisze, v}

71



B.2

131
151
153
54
153
i34
137
58
59
148
1)
142
63
164
113
164
167
68
189
74
171
172
173
74
178
74
171
{78
{79
188
181
182
183
B4
183
184
187
B8
18¢
198
191
192
193
174
193
194
197
198
199
e
1131
i
1 H
itd
103
104
07
1]
111}
it
it
i12
13
i14
113
i1é
1?7
il
9
28
i
i21
i
i24
1]

Sample PROGRAM Football Field

END

END (number_yard_lines);

PROCEDURE field_defimition;

VAL
i, : INTEGER;
feet: REAL;

BEGIN
seq (0,0, 168,0); ("south® endzome boundary!
feet := 30;

FOR i := @ TO 19 DO BEGIN
seg (8, feet, 140,feet); {yard linel}
IF 1 {) 0 THEN BEGIN {®vertical” hash limesl
seg { 43, feet-1.5, 45, feetel . 5); {"west®}
seg (115, feet-1.5,115, feets1.5); {Measi®}

END;
FOR i := 1 TO 4 DO BEGIN ("horizontal™ hash lines between yard linmes)

feet := feet + 3;
seg ( 435,feet, 48,feet); {"west"}
seq (115,feet, 112, feet) {"east™}]
Ieti = feet ¢+ ¥
END;
seg ( 8,330, 140,330); {"north” goa! linel
seqg ( 0,360, 148,340); {"morth" endzome bouadary!
seg { 8, 0., 0,340); {"west" sidelinel
seg (140, B, 14D,340); {®east" sidelise)
seq ( 77,311, 83,311); {"north® PAT hash lime)
seg ( 77, 39, B3, 3%); ["south® PAT hash line!

endzone_annotation;
nomber_yard_lines

END {field_definition);
PROCEDURE goal_posts;
VAR

i . INTEGER;
t.1,5: REAL;
[ . veeter;
BEGIN
FOR i := 1 TO 2 DO BEGIN
CASE i Of
1: {south goal post!
BEGIN

1 := B80.D;
y = 0.0;
t ;= 5.0
END;
2: {nerth goal post}
BEGIN
1 := §0.D;
¥ = 360.0;
t ;= 5.0
ENB
END {CASE};
define_3D _wector (x,y+t,0.%, u);
moveto {u);
define_3D_vector (x,y+i, 108, 9);
lineto {u);
definme_3D_vector (3,y,10.8, u);
linete (%);
define_3D_vector {z-10.0,y,18.8, u);
soveto {(u};
define_3D_vecter (z-18.0,y,10.§, u);
lineto (u};
define_3D_vector {3:§0.0,y,10.6, u);
lineto {9);
define_3D_vector (3+10.0,y,38.4, n);
lineto (¥}
IND {FOR!}

72



B.2

114
i17
118
129
130
31
FEH
133
i34
133
134
137
138
130
48
111
141
143
144
145
244
ia7
14t
14
i3
i51
152
153
134
153
54
57
158
i3y
i
61
161
163
164
185
FLY]
147
(3]
249
{78
i71
71
i73
i
173
176
in
178
179
80
i1
i1
83
i34
i85
186
187
8
189
17t
191
Fi b
193
194
193
1%
97
it
139
06

Sample PROGRAM Football Field

{geal_pests);

PROCEDURE case_0;
BEGIN
PAGE (prt);
top := 0.85;
feft := 2.00;
gositiom (1.25,top-0.19);
contral (pitedid);
contrel {(emhanced_mode);
VRITE (prt,'Exhibit 2. Orthographic View of KSU Feotball Field');
control (mormal_mode);
border := §;
sizge (4.80,9.123);
window (0,160.0, -5.0,365.00);
clipping (FALSE);
set_projection_type (orthographic)
END {case 0);

FROCEDURE case_1;
VAR
screen_distance: REAL;
BIGIE
top := -0.43 + 2.0%000p;
IF loep=1
THEN BEGIN
left := 1.56;
PAGE (prb);
position (1.35,tep-0.85);
contrel (pitchid);
control {emhanced_mode);
VRITE (pet, 'Eshibit 3. Perspective Views of KSU Football Field');
comtrol (mormsl_mode);
pasition (1.50,top-0.35);
control {pitehid);
VRITELN {prt,'3.1 Side View (from the east side)');
position (2.080,t0p-0.425);
contrel (pitchld);
VEITELN (prt,‘'Asimuth = 90 degrees, Elevation = 30 degrees, ',
'Distance = 200 feet from center of field');
border := i;

sise {5.80,1.50);
elipping (TRUE);
set_projection_type (perspectivel

END;

define_3D_vector (-80.0,-186.0,0.0, w);

transiate_matrix (w, a); ([transiate origin to cemter of fieldl

screen_distance := (.0 - loop;

position (2.00,tep-0.175);

VRITE (prit,'3.1°,CHR{ORD('a‘')-1+l00p),
' Proper perspective when viewed ', ROUND{(screen_distance),
' inches from eye');

view_transform matriz (polar, 90.0,30.0,200.0, 5.00,1.50,screen_distance, b};

matriz _multiply (2., 1);

set_transform (a)

END {case_1);

FROCEDURE case_1;
BEGIN
left := 1.50;
top := 1.1§;
PAGE (prt);
position (1.23,top-0.60);
contrel (pitehid);
control (emhanced mode);
VRITE (prt,'Exhibit 3. Perspective Views of KSU Footdall Field');
control (mormal_mode);
posi tion (1.50,tep-0.30);
control {(pitshid);
VRITELN (prt,'3.17 Cormer View (from the southeast cormer}');
position (2.00,t0p-0.173);
comtrol (pitehid);
WRITEIN (prt,'Asinath = 25 degrees, Elevation = 30 degrees, °,
‘Distance = 750 feet from cemter of field');
size (5.00,1.530);

73



.2

i
01
3
i0d
305
04
307
f08
0
ild
i
il
i3
34
i3
i
7
8
3y
1]
3
{21
313
24
315
i
i
i3
32
134
3
132
§33
XL
335
334
37
33
139
L]
41
ELFS
43
4
43
344
7
348
14y
350
51
351
53
3
853
354
57
58
339
168
3461
i62

Sample PROGRAM Football Field

define_3D_vector (-80.0,-188.0,0.0, o);
traasiate_matriz (u, a); {tramslate origin to ceater of field}
view_transform_matrix (polar, 25.0,30.0,750.9, 5.00,2.50,12.4, b);
natriz_maltiply (a,b, a);
set_transform (a}

END {case_l};

PROCEDURE case_3;

BEGIN
top := 4. 10,
position (1.30,tep-4.30);
control (pitehll);
VRITELN (prt,'3.3 Endsome View (from the south endzome)');
position (2.00,t08-0.173);
contrel (pitehld);
VRITELN (pct,'Aginuth = 0 degrees, Elevation = 30 degrees, ',

'Distance = 300 feet from center of field');

define_3D_vector (-80.0,-188.0,0.0, u);
tramslate_matriz {u, a); ({translate origin to cemter of field)
view_transform matrix (polar, 0.6,30.0,300.0, §.00,2.50,12.8, b);
matriz_multiply (2.5, 3);
set_transfern (3)

END {case 3);

PROCEDURE case_4;
BEGIN
tep := 7.10;
position (1.30,top-0.30);
control {pitehid);
VRITELN (prt,'3.4 Aerial View');
position (2.00,top-0.175);
comtrel (pitehld);
VRITELN (prt,'Azimuth = 45 degrees, Elevation = 75 degrees, ',
‘Distance = 1500 feet from center of field');
define_3D_vector (-80.0,-188.0,0.0, u);
translate_matriz (w, a); {tramslate origin to center of field]
view_transfora_matriz (polar, 45.0,75.0,1500.0, 5.00,2.50,12.6, b);
matriz_multiply (2,8, 2);
set_transfora (2)
END {case 43,

BECIE
begin_dot_plotter_umit;
forms (11.0,0.8);
plt_mode := create;
plt_name := ‘4:foothall . dots’;

FOR loop := @ TO 7 DO BEGIN

CASE leop OF
0: ecase d; {Five separate procedures are used to circumvent)
1,2,3,4: case_l; {the UCSD Pascal Error 233 -- "Procedure Too Long")
$: case_d; {received when case 0..case_4d are placed in a)
6: case_3; {single "setup_case” procedure.}
7: ecase_d

END {CASE};

apen_plot;

field_definition;

goeal_pests;

put_plot (left,top, 1 [copy), border {dots));
close_plot (delete);
END {FORI;
end_dot_plotter_mit
END {ksu_football_field).

74



B.3 Sample PROGRAM z = f{(x,y? Surface

1 {$L- PRINTER:]

1 {45+ Put compiler swapping mode)

3 PROGREM surfase;

§ {"surface® produces several perspective plots of a surface described
5 mathematically as 1 = f(x,y). Hidden lines are not removed.
i Written in Febrorary 1982; 1last modified on 8 April 1982}

: USES global, matrizops, dotplotter, idsSé0;

¢ Cmst

it 1 = 4f; (lines 0..n}

11 sfirst = -2.0;

12 zfast = 1.0;

13 ffirst = -1.0;

14 vlast = 1.0;

15

i6 VAR

i7 agimath : REAL;

it H . matrix;

1y i, N 8
] denca . REAL;

il distance : REAL;
22 elevation: RIAL;

13 leog : INTEGER;
iU top : REAL;

15 U : weeter;
18 1.7 : REAL;

i7 zing,yine: REAL;
(1] 15q,y5¢ : REAL;
I : ARRAYLO..n,2..n) OF REAL;

i1  PROCEDURE title;

i BEEIX

K} FAGE (prt);

i position 11.23,tep-8.70);
k4] centrol (pitechld);

34 control (emhanced_mode);
7 WRITE (prt,'Exhibit 4. The Surface (X, Y) = IV(E*);
k] ] contrel (superseript);

i WVRITE (prt.'2");

L1} centrol (subseript);

# VRITE {prt,'-1');

42 control (superscript);

# WITE (prt,'1");

(1] sentrol (subscrigt);

B WRITE (prt,"INX");

4 control f{swperscript);

& WRITE (prt,'2');

1) control (subseript);

¥ WRITE {prt,'+1");

50 control (swperseript);

i WRITE (prt.’2');

32 control (subsecript);

13 VRITE (prt,*)');

| control (mormal_wmode);

5 control (pitehl2);

H 3 position (2.0¢,tep-4.40);
§7 WRITELN (prt,'"Hidden" lines are not removed. z=-2..+4); y=-2..42.")
58 END (title);

9

@ PROCEDURE sarface_points;

é1 BEGIN

i2 zine := (xlast-zfirst)/n;

63 yine := (ylast-yfirst)in;

1] {title; (* printing of data matriz suppressed t)
&3 control (pitehil);

13 VRITELN (prt);

&7 VRITELN (prt," 1\ I');
i8 VRITELN (prt,’ ')
6y WRITE (prt,’ Y\ ');
0 fOR i := D TO n DD BECIN

" x := xfirst + xineti;
;§ WRITE (prt,z:0:2);

BiD;
L] YRITELN (prt); WRITELN (prt);}



B.3

23
14

127
128
2%
131
131
131
133
13
133
134
137
138
139
140
141
142
143
144
143
14
i47
148
{49
130

Eample PROGRAM z = fi=z,y) Surface

denom := ESQ+YSY;

IF  defuss(densn) = §.§

THEN =(i,5] = 0.0 {the limit valuel
ELSE gli,j] := xtyt{zsg-ysq) /denom;

{VRITE (prt,zli,j):8:4))

END;
{WRITELN (prt)}
IND (;urfaan_pniltsl;

FROCEDURE surface_dots;
BEGIE
FIR i := @ T0 a DO BEGIN
1 := first ¢ zimeti;
FOR j := ¢ TO n DO BEGIN
y := ylirst + yineti;
define_3D_vector (z.y,sli, i), a);
IT j=1%
THEN movetc {(u)
ELSE lineto (ul
END
END;

fOR j := 0 TO n DO BEGIN

v = plirst ¢ yingrj;

POR i := 0 TO n DO BEGIN
1 .= sfirst + zineri;
define_3D_vecter (13,y,sli,il. u);
IE i=#
THEEN moveto (u)
ELSE lineto (u}

END

ERD;
END {surface_dots};

BEGIN
begin_dot_plotter_umit;
min_space := 48%4;
foras (11.0,0.0);
surface_points;
plt_mode := create;
pli_mame := 'é:surface dots’;
size (4.0,4.0);
FOR loop := 0 TO 3 DO BEGIK
open_plot;
CASE leop Of
0: BEGIN
azimuth := 45.0;
elevation := 30.0;
distange := 15.6;
top := 1.20;
tifla
END;
{: BEGIN
atimuth = 45.0;
elevation := 36.0;
distanee := 5.0;
top ;= top + €.5

i: BEGIN

asimuth := €5.0;
elevation ;= 0. 0;
distance := 15.0;
tep := §.10;
title

END;

BEGIN
azimuth := 45.0;

74



3

151
152
153
54
153
36
137
(58
139
160
161
161
143
164
143
14¢
147
168
169
170
n

Sample PROGRAM z = fig,y) Surface

elevation := 8. 0;

distance := 15.90;

top := top + 4.5
END

IND;
viev_transform _matrix (pelar, azimuth,elevation,distance,
4.0,4.0.108, a);

set_transform (al;

surface_dets;

pesitiom (1.38,tep-0.2);

centzol {pitehil);

WRITE (prt,'4.',loopel,' ');

centrol (pitehid);

WRITELN (prt,'Azimuth = ' ,ROUND(asimuth),’ degrees, ',
*Elevation = ', ROUND(elevation),' degrees, °,
‘Distamee = ',ROUND(distance),' wmnits');

put_plet (2.00,top, I (copy}, 2 {border dets));

close_plot (delete)

IND;
end_dot_plotter_mit

717



B.4

PROGRAM Injection/Production Well Pressure Map

{$L- PRINTIR:]
{65+ Put compiler in swapping mode}
PROCRAN pde;
["pde" solves the partial diiferential equationm:
kx ® Uzz ¢ ky * Upy = elu,y!}
where “"kxz® and °ky" acre constants, "Usz® and "Uyy" are the second partial
derivatives with respect to the spatial coordimates "x* amd ®y*, and
“elx,y)" is sero except for a few specific (m,y) points. The differential
equation approximates the pressure map of a system of injection/production
wells. The nom-sere c(3,y) values represent the flow rates at the imjection
and production wells. The pressure swrface is approzimated by a 16-by-1¢
grid. The solution involves 256 equations with each unkmown representing
the pressure at a specific (z,y) point. The difference equation used te
approximate the differential equatiom at an arbitrary (z,y) point at
grid pesition (i,3) is
ksl Culi-1,7) - Juli,j} + wlief,i)] / SOR(delta 2)] ¢
kyl Tuli,j-1) - 2uli,i) + uli,jel}] /7 BOR(delta y)] = clx,y}
With "delta 3" = "delts y*, the difference equation reduces to
~kxluli-1,3) + ulisl,i}] & 2(kmekyltuli, i) - kyludi,i-1) + oli, je1)d
= els, 1)
Tie difference equations for boundary points is slightly differenmt.
Given the different "u" terms, the following shows the ceefficients

for the boundary equations:
boundary uli,i-t) sli-1,§) uli, i) ulisd, ) oli,jsld
i=l ] -kx kaeky) -kx -1ky
i=18 -2ky -kx T(kxeky) -kx [
j=1 -Iy 0 2(kz+ky) -1z -ky
i=1é -ky -1kz 2(kgeky} ] -ky

Cormer points are yet a more special case. For (i,j)={1,1), the
equation would be: 2{kz+ky)tuli,j) - Zkztulisl, i) - 2kyruli,j+l) = oix.f).
The other corners have similar equatioas.

This program solves the PDE and writes the grid matriz to a diskette

file for plotting by "pdel®. WVith é4K memory, both operations coulé

nat be performed in 2 single program. Certain variables were dymamically
allocated in this program in am unsuccessful attempt to accomod te

beth ogerationms.

This program was written on 9 April 1981 but was adapted from i homework
assignment completed in the Fall 1975 Numerical Selutions of PDE course.}

USES global, idsSél;
CONST
n = 146;
nsq = 156;
TIPE

diagl = ARRAY[!. .n.l..nsql OF REAL;
node_type = (gauss_seidel,optimal_point_ser);

vector_matriz =
RE(DB
CASE INTEGER OF
0: {wets: ARRAT(1. msq} OF REALY;

1: ({mtrz: ARRAY(1..n.1..m] OF REAL)
(vector_matriz RECORD];

str_diagld = Adiagh;
ptr_vector_matriz = Avector_matrix;
VAR

a: ptr_diagy; {System of equations: az = b}
x: pir_vector_matrix;

B: ptr_vecter_matrix;

epsilon REAL;

heap AINTEGER;

i © INTEGER;

iterations: INTEGER;

seln : TEIT;

PROCEDURE setsp _matriz (kxz,ky: REAL);
{This procedure defimes the matrjx "a" and the column vecters “1” ani
Vl;in after allocation in the main section of code.l}

78



B.4

7
7
78

8
i

(]
i

L1
&
1]

90
fl
§1
13
4

9
7
bl ]
4]
100
131
102
103
104
i3
10d
07
108
{09
i1
{11
111
113
114
{13
114
{7
13
iy
izo
121
122
123
124
123
124
127
i
12t
130
i
131
133
134
133
134
137
138
13%
140
141
141
{43
14
143
144
147
148
4y
50

PROGRAM

i,J.k: INTEGER;

BEGIN
b = 1.0;
bk = LD;

FOR §{ := 1 T0O n DE
FOR j := 17D n DO BEGIN
k= {i-lingj;
aAll k3 := -ky;
aAll, kY := -kx;
anld k] := 2. 0%(kneky);
arfd.kl ;= -kx;
aAls k] (= ~Iy;
A vetrikl = £.0;
bA.vebrlk) := 0.0;
IF i=t
THEN BEGIN
anll, k] = LO;
arl§, k] = -21.0%ky

END

ELSE
IF ise
THER BEGIN

aAll k] := -2.0%y;
aAls, k]l = 8.0

IT j=1

THEN BEGIN
arl2,kl := 0.0;
arld k] = 1.8tk

END
ISt
IFE j=n
THEN BEG1E
aafl k) := -2.0%n;
anld k] =01
END
E¥D (FOR);
ba.mtrel 3, 3] := -1.00; {vetr{ 351}
ba mirxl 4,11 := -0.46; {vetrl &0}
A mtrel 7, 71 := 1.83; {vetr{1371}
ba.strzlid, 31 := -0.50; fwetri2111}
A mtral14,14] := 0.17 {vetr{li2l}
END (setup_matrizl;

PROCEDURE sorS (n,nsq: INTEGER;

a: ptr_diagi; VAR x: ptr_vector_matriz; b: ptr_vector_matrix;

mode: mode_type;

VAR iteratioms: INTEGER; VAR epsilon: REAL};
{The system of equations to be solved can be represented simply by am=h.
*sor3® solves this system of "nsq” equatioms with a special "a° matrix
containing only five non-zero elements. ®3" has 2 tridiagenal strecture
but also has elements "n" positions left and right of the main diagomal.
The structure of a full “a° matriz is

eft¢ . 1
fef1s 3
tfef
t3fe
. fefg
. s fef
3 13fe

wvhere each of the "e","f" and "s" elements are matrices of site *n".
The "1" matrix comtains all zerc elements., For the problem beimg soived,
the structure of each matrixz "e" is

2{Ka+ky) -2x ]

-Xx UKnky) Kz b

[ -Kx 2{Xz+dy) Xz

[ | -Xx 1{Ez+ly}

) . : J2Kx 3 (Eaeky}

and the structure of each matriz "f" is an idemtity matriz maoltipiied by -Ky

Injection/Production Well Pressure Map

79



B.4

151
152
153
154
153
154
157
158
159
e
141
181
183
164
163
16
167
168
149
i78
im
171
173
174
173
174
177
78
1
(11
181
L}
183
184
83
184
87
188
189
178
171
91
193
194
193
194
19?
98
19y
104
101
117
03
04
03
H
07
108
9
e
i1
112
113
14
1ns
14
17
id
i1y

i1
121
113
124
125

PROGRAM Injection/Production Well Pressure Map

-y (] :
] -Ky i
' ' ? Xy
Note: Coefficients in the “f° matriz for cormer grid points are -2Ky
instead of -Ky.

The selution "mode™ can be either "gauss_seidel®™ or “optimal_peint_sor®.
On entry “iterations® contains the maximom number of iteratioss allowed;
"epsilon” contains the desired criteria for the mazimum residgal. Om exit

"iterations” contains the actual number of loops and “epsilon™ coatains

the mazinum residval.}
17}

i . INTEGER;

left ¢ REAL;

loop : INTEGER;

magz_residual: REAL;

asqan :  INTEGER:

asqui : INTEGER;

apl :  INTEGER:

eld_z : RIAL;

eld_ri_mora : REAL;

residual : REAL;

right : REAL;

r_norm : REAL;

r2_norm : REAL;

temp : RIAL;

o : REAL; {overrelazation parameter}
BIGIN

v := 1.00;

naz_residual := 1 QEW0; {just to get WHILE started}

leop := 0;

ESQER := nSq - N;

nsqal := ns§ - 1;

apl = mel;

VHILE (maz_residual ') epsilon) AND {loop { iterations} DO BEGIN

iF Iu%!llin =
THEN VRITELN (prt,'loop = ',loop:3,', mazimum residual = *,maz_residoal,
‘W=t
loop := SUCC(locp);
maz_resideal := 0.0;
r_nern ;= 0.0;
FOR i := | TO nsg DO BEGIN
old_x := zA wetelil;
IF i=1 ({first equation}
THEN za.vetrlil := (ba.vetrli] - aald,iltzA vetrliel]
- - aAl§, iltga wetelnpl]) | aald, il

IF i = nsq (last equation)
THEN A webelid := (ba.vetrlil - aAll,il®3A vetrissqun!
- aAld,ilogA vekrlnsqmil) 1 aall, il
!L?E ll‘il? {all equations but first or last!
a

THEN left := zA.veteli-nl
ELSE left := 0.8;
IF i {= nsgms
THEN right := zA.vetrlienl
ELSE right := 8.0;
gA vetrlil := (BA.wetrlil - anll,ileleft
- anf2,ilegA wetrli-11
- anld,ilvan vetelivl]
- aAlS,idtright) 1 aa[d. i}
END;
residual := gA.vetriil - old_x;
IF  ABS{residual) ¢ 1.4E-§

THEN residual := 0.§; ["defuzs® to avoid underflows)
IF  mode = optimal_point_sor
THEN BEGIN

zA vetrli) := old_z + w¥residul;
r_porm ;= r_norm + SOR{residual)}

113 ' ABS(residual) ) max_residual
THEN max_residual := ABS{residual);

80



BE.4

116
127
118
129
130
131
131
31
FEL
133
3
137
138
139
4
141
142
143
1414
1{H
144
FLy
144
4%
138
51
181
133
154
253
196
157
i5e
5

e
21
161
143
164
265
164
167
Y
(13
i

ir1
in
173
74
173
4
an

i78
17y

180
181

2
183
84
835
184
187

8
189
{70
i

i1
93

194
295

194
197

ive

PROGRAM Injection/Production Well Pressure Map

END {FOR};
{F mode = optimal_point_ser
THEN BIGIN
ri_mors := SORT(r_morm);
IF loep = 1
THEN old_r2_norm := rl_gorm;
IF loop MOD 18 = § {Update "w" only every 10 iteratiens]
THEN BEGIN (because of the considerable overhead!

temp .= r2_norn / old_rl_norn; {and to help nomerical stabilityl
w:= 2.0/ (1.0 +« 5ORT{ ABS{1.0 - SOR(tempsw-1.0)/{temptSQR{w}) ) } );

]
old_rl_norm := ri_pora
ENE
END {WHILE];
iterations := loop;
epsilon := maz_residual

END (s015);

PROCEDURE put_solution (u: vector matris);
v.;'pll.iﬁllﬁﬁl' prints the pressure map but also writes it to a disk file.}

i,j: INTEGER;

BEGIN

REWRITE (solam,'8:PDEDATA.TEIT');
VRITELN (soln,3);
coatrel (pitchll);
YRITELN (pet,'Iterations = *,iterations:3,’ Mazimum Residmal = ',
epsilen);
WRITELN (prt);
control (pitechid);
YRITELN (prt.' \ i');
VRITELN (prt,* 1');
WRITE (pet,* iV '),
FOR i =1 TO s Db
WRITE (prt,i: 8);
VRITEIN (prt);
VRITELN (prt);
FOR j := n DOWNTO ! DO BEGIN
VRITE (prt.j:6,' ');
FOR i := 1 TO a DO BEGIN
WRITE (prt ,u.mtrsli,il:8:0);
WRITE (solm,u.mtrali,jl:8:4);

END;
VRITELR (prt); WRITELK (soln)
CLOSE {sola,LOCK)

END {put_selutioen};

PROCEDURE memory (title: STRING);
BEGIN

VRITEIN (prt.title,' Memory Available = ', 2%MEMAVAIL,' bytes.')

END (memoryl;
BEGIN (pdel

REVRITE (prt,'PRINTER:");

PAGE {prt);

control (pitchld),

aemory ('Begimming. b H

NEV (x);

MART (heap);

NEV {(a);

NEV (b);

setop matriz (2.00.1.00); {system of equations: az=h}

memory ('After setmp. ');

iterations := 100;

epsifon := 1.0E-6;
{The "a®, "z" and "b" pointers must be passed to "sor5". There is not
enough memory to pass the arrays as "aA", "pA® and *ba® .}

sors (n,nsq, a,z.b, optimal_point_sor, iterations.epsilonm;

RELEASE (Rheap}; {release "a® and "b" but not the solutien vector "1l

semory ('After release.');

put_selution {(zA}

- - - - - - - 2 ® = - - - o - - - - . = - - o om o=

81



B.4

19

0o
3

i2
ELE]

04
308
04
307

ine
<1 1]

i
3

i12
33

i
s

He
7
e
iy
10
i1
121
313

124
23
124
1

28
iy
130
3

133
333
134
333

§36
EEY]

138
33
LT
FL}
EL}]
43
344
45
344
47
34
a9
350
$1
351

853
354

453
£ )
57
358
EEY)
e
181
$62
343
64
363
i
367
8
359
i70
n
72
m

PROGRAM

{$L- PRINTIR:}

{55+ Put compiler in swapping mode}

PEOGRAM piel;
{"pdel® is a contineation of the program "pde”. Memory restrictions
dictated a two-step solution. Writtem on 10 April 1982.]

USES global, matrizops, idsSéd, dotplotter;

VAR
a,b : matrig;
loop: INTEGER;
n : [INTEGER;
top : REAL;
g vecter;
2 DMARRAYCY..14,1..16] OF REAL;
azimuth : REAL:
distance : REAL;
elevation: REAL;

PROCEDURE read_data;

ViR
i,i : INTEGER;
sola: TEIT:
BEGIN

RESET (sola, 'B:PDEDATA.TEIT");
READIX (soin,m);
FOR j := n DOWNTO ! DO BEGIN
FORi =1 T0sD0
READ (solm,sfi,il};
READIN (selm)

END;
CLOSE (selnd
END {read_datal;

PROCEDVRE title:;
BEGIN
PAGE (prt);
position (1.25,tep-0.70);
control (pitchld);
control (emhanced_mode);
VRITE (prt,'Eshibit 5. ');
contrel (normal_sode);
contral {pitechil);
VRITELN (prt,'Pressere Map of Area with Injection/Praduction Wells');
position (2.00, tep-1.55);
WRITE (prt,'Partial Differential Equatiom: [');
control (swbscript); WRITE (prt,'s');
contrel {(superseript); WRITE (prt,'V'};
contrel (subseript); WRITE {prt,'z1');
control {supersoript); WRITE (prt,' + k');
control (swbseript}; WRITE (prt,'y");
control (superseript); WRITE (prt,'U'};
control (subscript); WRITE (prt,'yy');
contrel (seperseript); WRITELN (prt.' = ¢lz,y)');
position (2.00,tep-8.40);
VRITE (prt,'Lk");
control (subseriptd; WRITE (prt,’'s');
contrel (seperseript); WRITE {prt,'=2, k');
control (subscript); WRITE (prt,'y');
contrel (superseript); WRITELN (prt,"=1, oi{x,y)= constant flow rate');
END (title);

PROCEDURE surface_dots;

Vi
i.i: INTEGER;
v : vecter;
BEGIN

FOR i :=1TOn DO
FOR § := { TO n DO BEGIN
define_3D0 vector (i+d.0,7¢0.0,31i,31, u);
T i=1
THEN moveto (u}
ELSE linete (uw)

END;
EOR j := 1 TG a DO
FOR i := 1 TO n DO BEGIX

Injection/Production Well Pressure Map

82



B.4

n
§73
374
7
i
79
st
il
k] T
83
11
3
386
87
Jue
8y
i
1
391
93
3
95
e
7
KL
9
400
01!
102
03
L]
{03
§04
107
L[]
109
10
11
411
i3
414
i3
414
1
418
i
20
21
{12
23
424

PROGRAM Injection/Production Well Pressure

define_3D_vector (i+0.0,7¢0.0,20i,31, a);
IFE 1i=1

THEN moveto (u)

ELSE lineta (u)

END;
END {surface_dotsl;

BEGIN
read_data;

in_det_slotter_umit;

be
!OIIS {11.0,0.8);

plt_mode := create;
plt_name := 'd:pde.dots’;
sigse (4.8,4.0);

elevation := 3. 8;

distance := 60.0;

FOR loop := 0 TO 1 DO BEGIN

open_plot;
CASE loop O
B: BEGIN
asimuth := 0.0;
tep := 1.10;
title
END;
1: BEGIN

asimuth := 270.0;
top = top + &.§
NL

END
END;

define _3D_vector (1.0,1.0,5.0, u); {enbance 1 values!

scale_smatriz {u, 2);

define_3B_vector (-§.8,-0.8,0.0, 0);

translate_matriz {u.b);

mtriz_saltiply (a,b, a);

view_transform_matriz (polar, azimuth,elevation,distance,

§.0,4.0,12.0, b);

matriz_multiply fa.b, 2);

set_transform (a);

surface_dets;

position (1.50,t0p-0.2);

centrol {pitchid);

VRITE (prt,'S.", loop+sl," ');

control (pitchid);

WRITELN (prt,'Azimuth = ' ROUND{(azimuth},' deqrees, ',
‘Elevation = ', ROUND{elevation),' degrees, ',
'‘Distance = ',ROUND(distance),’ mmits'});

put_plot (2.08,tep, 1 fcopy), I thorder dets});

close_plot (delete);

END (FR);
end_dot_plotter_umit

Map

83



Appendiz C.

OaMatan
O A D W R e

System Guide

Introduction to Pascal UNITs
“"global" UNIT

"dotplotter® UNIT
"matrizops” UNIT

"1dsS40" UNIT

File Structure

Pzging Systen



c System Guide Pascal UNITs BS
€. System Guide
€.1 Introduction to Pascal UNITs

A UCSD Pascal UNIT 1s a gqgroup of i1nterdependent PROCEDUHEs,
FUNCTIONs and associated data structures (CONSTants, TYPEs and VARiabies)
which perform a2 specialized task. A UNIT can be compiled separately from
& yser program. The LIBRARIAN utility allows the user to ilink separately
compiled UNITS into a library file. Whenever a useér program needs a
UNIT, the program indicates that it USES the UNIT. When the compiler
encounters the USES statement it essentially re-compiles the INTERFACE
part of the UNIT which is stored 1n the library file.

A UNIT consists of two sections, the INTFRFACE and the
IMPLEMENTATION. The INTERFACE declares CONBTants, TYPEs, VARiabies,
PROCEDUREs and FUNCTIONs that are public and c¢an be used by a host
program. The IMPLEMENTATION declares CONSTants, TYPEs, VARiablies,
PROCEDUREs and FUNCTIONs that are private and used oniy by the UNIT as
well as the body of the FUNCTIONS and PROCEDUREs defined 1im the
INTERFACE. These private variables. etc. wused by the UNIT are not
available to the host program. The INTERFACE defines how the Dprogram
will communicate with the UNIT while the IMPLEMENTATION defines how the
UNIT will accomplish its task. A UNIT can access another UNIT but the
USES must appear in the INTERFACE section.

A sample structure of 2 UNIT is oiven below:

UNIT unit_name;

INTERFACE
CONST ... ; (public constants, types and variables}
TYPE ... ;
VAR

PROCEDﬁﬁE publ:c one (parms...
{other public PROCEDUREs or PUNCTIDHB}

[IMPLEMENTATION
CONST ... ; ({local constants, types and variables}
TYPE ... i
VAR .
PROCEDURE lncal _ome (parms... );
BEGIN
{body of "local_one"}
END {(locai_omne};
PROCEDURE public_one; (no parameters here)
BEGIN
local_one (parms...);:
{body of “public_one"}
END (public_one};
{other iocal or public PROCEDUREs or FUNCTIONs}
END (unitl.

A UNIT is compiled like a regular Pascal program. The file
LIBRARY CODE contains the utility pregram which can be egecuted to add
the UNIT to the SYSTEM.LIBRARY file. Once this 1s done, a uUser program



C.1 System Guide Pascal UNITs 8é
USES the UNIT:
PROGRAM program_name,;
USES unit_name;
{other declarations}
BEGIN
public_one {(parms ...);
(body of program}
END.

Ideaily, a2 single UNIT wouid contain all graphie primitives and the
supporting routines and data structures. But symbol tabie space 1is
limited with only 64K of total memory and several UNITs were found to be
necessary. A minimum set of entities was placed in a “giobal” UNIT to be
used by all other UNITs. The remaining UNITs, “"dotplotter”, “matrizops”
and "ids360", perform operations which are logically retated within each
UNIT. The "dotplotter*” UNIT contains the bulk of the graphic primitives
and the underlying memory management routines to suppoct wvirtwal screen
definition. The "matrizops” UNIT contains various matri® operations for

manjpulating two- and three-dimensional opoints. The "idsds0" UNIT

supports control of the Integral Data Systems 560 printer.
€.2 "global" UNIT

The "global® UNIT defines the following public entities:

CON5Tant: radians_per_degree

TYPEs : dimension., indes, matrix, vector
VARiable: prt

FUNCTION: defussz

PROCEDUREs: define_2D_vector. define_3D_vector, transform
The CONSTant is self-explanatory. The VARiable "prt" defines the prinmt
file (to be uysed as the dot matrixz graphics printer) so that it can be
used by the various UNITs which access this "global" UNIT. The function
“defuzz{x)” returns the value 0.0 for “g" ( "fugg", *“x" otherwise.
"defves” is wused for REAL comparisons and to reduce the possibility ot
numerical instability by preventing propagation of smali vajues which
should be true zeros. "fusz" is internally set to 1 .0E-4. The TYFEs and
PROCEDUREs require detailed explanation.

This graphics package attempts ¢to integrate two- and three-
dimensional points and operations into a single framework. For example,
instead of separate “moveto_2D (x,y)" and "moveto_3D (x,y,2)" primitives,
2 single "moveto {(u)" primitive is used where "u" is of the TYPE "vector"
which can be either two- or three-dimensional. (This integration was not
caused by insight but rather was an alternative in reducing the required

symbol table space given only 64K total memory).



€C.1 System Guide global UNIT 87

The "indez", "vector" and "matriz® TYPEs are defined as follows:

TYPE
index = 1..4;
matriz=
RECORD
Sizge: index;
mtrx: ARRAY(Cindex,indexl OF REAL
END;
vectors=
RECORD
sige: index;
vetr: ARRAY[indexl OF REAL
END;
Now given
VAR
a : matrix;
u,v : vector;

2:¥.%: REAL;
the PROCEDURE “define_2D_veector (2,y, ul}"” defines a row vec¢tor containing
homogenous coordinates (8,y,1). 1In algebraic notation, uw = [z y 1Li.
Likewise, "define_3D_vector (z,y,s, u)"” defines a row vector containing
homogenous coordinates (x,y,5,1). 1In algebraic notation, v = Ix y = 11
“sige" is 3 for a two-dimensional vector; 4 for a three-dimensional
vector. A "matriz" must be the same "size" as vectors of corresponding
dimensionality. The vector-matriz product v = ua is performed by &
FROCEDURE call “"transform (u,a,v)". ("transforn" logically beiongs 1in
the ‘“"matrimops® UNIT but it is in "global™ sinece it is needed by
"dotplotter”"). The “transform" PROCEDURE obtains "size" information itrom
the parameters and performs the appropriate multiplication. Certartn
operations {(e.g., "rotate_matriz® in “matrizops") cannot implicitly
determine whether an operation is to be two- or three-dimens:ional from
the "size” of the parameters. A parameter of TYPE "dimension™ is used to
convey whether *“twoe_D" or “three_D" is intended ("2D" and "“3D" are

invalid Pascal symbhols).

€C.3 =“dotplotter® UNIT

The "dotplotter™ UNIT contains the control and graphic primitives.
The plot tile and paging system are hidden trom the user but are
contained in this UNIT. This section will explain the symbols wused for
definition of PROCEDUREs, TYPEs and VARiablies in the INTERFACE. The
local IMPLEMENTATION symbols are discussed primarily in sections C.4 and
C.7 which address the file structure and paging system.

The control VARiabies are:



€C.3 System Guide dotplotter UNIT 88

close_printer
min_space

plt

plt_mode

plt_name

Even though the wuser can access any of these VARiables., the “plt™
FILE variable should NEVER be accessed by a user program. Due to a UCSD
Pascal limitation, FILEs must be placed in the INTERFACE or a compiler
error will occur. The user will jeopardigzse the integrity of the oplot
file by accessing "plt”.

"min_space” reserves a specified number of bytes of memory for use
by the UCSD p-system during rum time. "min_space” has a default wvatiue
defined by the “spacedefault" CONSTant in the IMPLEMENTATION but
sometimes additional stack space is necessary. (For example. nested
PROCEDURE calls sometimes require additional memory.} The user can
assign a larger value to "min_space” if the *“"stack overflow" error is
received from the p-system. Reserving too much memory, however, couid
degrade the performance of the paging svstem and cause thrashing.

The “"close_printer” variable is of TYPE BOOLEAN and has a defauit
TRUE value. The “dotplotter™ UNIT operforms a page eject when the

graphics mode is exited if "close_printer” is TRUE. (This var:iahle 15

somewhat misnamed and may be changed in future versions).

The “plt_mode” and "plt_name” variables are somewhat related.
"plt_mode™ c¢an have values of “undefined”, ™“either"”, “create" or
“overlay”" ("undefined” is the defavlt). Any user program assignaed value

of "plt_name" is ignored if "pit_mode"” is “undefined”. The user will be
interactively prompted for a name for the plot file at run time if
"plt_mode" is "undefined”. The plot file will be areated 1f the file
does not exist; if it already exists it will be overlayed by subsequent
graphic primitives. The user can assign the "plt_name” for a plat file
inside a program if "plt_mode” 1is assigned a value of "create" or

“overlay". The file will be created, or re-created if it already exists

when “create" is specified. “overlay" requires that the fi1le must
already ezist from a previous task -- an error will be disptayed it the
file cannot be found. If the user for some reason does not care whether

"create” or "overlay"” is used, then “either® can be specified.

This first version of "dotplotter” has five control PROCEDUREs:



€.3 BSystem Guide dotplotter UNIT 8y

begin_dot_plotter_unit

epen_plot

close_plot

put_plot

end_dot_plotter_unit

The "begin_dot_plotter_unit® PROCEDURE ensures that all necessary
variables are assigned an appropriate default value. “dotpiotter" cannot
function without these initialigations. The user can modify most of the
default values but such statements must follow the
“"begin_dot_plotter_unit" call. Future versions may incorporate
"open_plot® into the "begin_dot_plotter_unit" but tor now the two are
separate. "open_plot" initializes the parameter prefiz if the "plt_mode"
is ‘“greate" or reads the prefiz from disk if "averlay"” 15 specified.
“open_plot" also initialises all variables needed by the paging system.
The “close_plot”, "put_plot” and “end_dot_plotter_unit® FROUEDURESs

are related and they may be eventually incorporated inte a singile
PROCEDURE. "“close_plot" flushes out the paging system by tforcing 1in-
memory frames to be written to disk. A parameter of TYPE "disposition”
must be passed to “close_plot" to "keep" or "delete" the plot fiie. A
¢all to ““put_plot” may precede or follow a "close_plot" call and causes
the plot file to be mapped to the graphics printer. Severzl options must
be specified with "put_plot” to control the putput process. "put_plot”
can be called at any time to output a copy of the current logical screen,
er need mnot be referenced at all if the plot file is being set up for
subsequent overlays. “close_plot" actually need not be called since the
“end_dot_plotter_unit" performs final cleanup including closing the
paging system if necessary. The reason the two procedures are split 1is
that it is possible to perform several "open_plot” and “close_plot" calls
inside the same “"begin_dot_plotter_unit® and ™end_dot_piotter_unit"
section of code. Whether this is realily a desired feature 15 unclear at
this time. The options may prove too contusing to a user.

The only two graphic primitives are

moveto

lineto
Both "moveto" and "lineto" accept a single parameter of TYPE “"vector”. A
“vector" internally has a “"sige"” variable to indicate whether it is two-
¢r three-dimensional. ‘“moveto" sets the cursor (or pen) to a specified
position but does not draw a lime. "lineto" moves the cursor (or pemn)

from its current position to a new position while drawing a Iline.



€C.3 System Guide dotplotter UNIT 90
“lineto" also resets the cursor‘'s {(or pen's) current position to the new
location. With a CRT graphics device "lineto" would trace through the
pizels and sets their values to the current default. Witn a pen plotter
"lineto" simply draws a straight line segment having a specified color.
Either interpretation of "lineto" can be used to explain its tunction in
"dotplotter” but the CRT analogy is perhaps most appropriate.

The "moveto® and “"line" primitives are easily understood for itwo-
dimensional graphics. An implied projection from three to two dimensions
is involved for three-dimensional vectors. Projections ana vector
transformations will be discussed after pizels are introduced below.

The following TYPE and PROCEDURES involve pizel definition:

TYPE: pizel

PROCEDUREs: dot_color
fill_color

Fizels <c¢an have only “black" and “white" ocolors in this first
implementation. The "dot_color"” PROCEDURE sets the “pizel® color used by
the "lineto™ PROCEDURE. The “"dot_color” can be changed any number of
times. The "fill_color” defines the deiault pisture color and tor now
should only be defined once -- when the picture is initially ereated.
The disk blocks which are mapped onto the picture do not emist untii at
least one pizel within a block is referenced. Until a bloek is created
all the virtual pizels are treated by “put_plot" as if they have the
“fill_color®. When the block is created 11t is initialigzed with the
current value of the "fill_color*. Future versions may allow several
fitl colors but permit virtual pimeis to exist until they are explicitly
defined.

The vectors passed to the “moveto” or “lineto® primitives can
represent either iwo- or three-dimensional points. Many times the raw
data points must be transformed in some way before they shonid be
plotted. To =allow an automatic transtormation of all points, default
transformation matrices are separately stored in the plot file prefie.
These default transformation matrices can be manipulated with the
following PROCEDUREs:

clear_transform

set_transform

get_transtorm
The "begin_dot_plotter_unit” calls “clear_transform” for both the two-
and three-dimensional transformation matrices. The detault action of

“dotplotter” is to plot points unmodified by any transformation process.



€C.3 System Guide dotplotter UNIT 91
"clear_transform” simply sets the internal “size™ of the transformation
matrices to 1 (recall a ZD matrix has a "size” of 3: a 3D matrix has srze
4) and they are not used. “set_transform™ saves a matriz to be used as a
default transformation. A transformation matriz is typically created by
the PROCEDURES in the “matrizops"” UNIT as a produet of translatien,
totation and scaling matrices. (A particularly wuseful transformation
matriz for three-dimensional abjects is defined by
“view_transform_matriz” as a product of five matrices: one translation,
three rotations and a scaling matrix.) A transtormation matri® can be
tetrieved from the parameter pretizx file with ~get_transform". The
fetrieved matriz can then be printed or modified 2and re-saved.

Three-dimensional vectors after any necessary transformations stil]
must be projected onto a two-dimensional surftace tor plotting. The
following TYPE and PROCEDUREs control such projections:

TYPE: projection

PROCEDUREs: oproject
set_projection_type

A variable ot “projection TYPFE can have values of “ortnographic" or
“perspective”. An “orthographic” projection involves simply 1gnoring the
*z" component and plotting the "z" and "y* wvector components. A
“perspective™ projection can be performed eas:ly but usuzally requires the
appropriate "view_transform_matriz" (see "matrizops® UNIT) be defined and
saved with "set_transform”. Subsequent "moveto” and “Jineto" operations
will avtomatically perform the “perspective” projections.

A user can control the oprojectton process using the “project”
PROCEDURE. “project d{u,v)" projects the three-dimensional “u" vector
into a two-dimensional "v" vector using the current “projection" TYPE.
Subsequent “moveto™ or "lineto” operations using "v” would involve oniy
two-dimensional operations. Caution: A projected vector would still bpe
atfected by any two-dimensional transformation matrixz.

Two PROCEDUREs define the relationship between the logical world
coordinates and the physical screen coordinates:

size
window

“size"” defines the dimensions of the physical screen. The detault “sigze"
defined by "“begin_dot_plotter_unit" is a S-inch by S-inch sguare area.
"size" internally defines some variables which are used by "put_plot”.

"size" also calls "window" in case the user does not. For two-



€C.3 System Guide dotplotter UNIT 91
dimensional graphics, the "window" defines the logi1cal screen using world
coordinate system. The default world coordinates are simpiy 0.0 to 1 0
for both "x" and "y” dimensions. The "window" simply defines the minimunm
and magimum values which will be allowed in the "zx" and "y" dimenstons.
These world coordinates are then mapped onto the physical rectangular
screen defined by "size"”. Distortions can occur it the aspesct ratio (the
tatio of the “x” and “y" dimensions) of the screen is not the same as the
window. Such distortions may be desirtable. For three-dimensional
graphics the window definition is usually not important since a scene can
be projected onto a logical screen of any site. The screen coordinate
system is independent of the eye coordinate system.

Many times line segments extend outside the area ot the logicai

screen and must be clipped. The PROCEDUREs

view

clipping
control the clipping process. "view" defines a logical subset of the
"window". (This is NOT the "viewport" of Newman and Sprouli). A catl to

"window" automatically sets the "view” to be the same as the “window”.
The ‘“clipping" parameter must be of TYPE BOOLEAN specitying whether or
not clipping should be performed -- clipping does invoive <considerable
overhead. When "clipping" is TRUE lines segments will be clipped to the
rectangular "view" area. At present the "eclip" PROCEDURE is part of the
IMPLEMENTATION and is hidden from user access.

While clipping does invoive considerable overhead, failure to clip a
line will potentially result in a run time error. Subscripts for eacn
pi%el are calculated and failure to clip a line will result in an ocut-of-
range subscript. Clipping should only be disabled for re-runs or when 1t
is absolutely unnecessary.

The vectors passed to "moveto” and “lineto" are first transformed if
so specified by the default transformation for the given dimensionality.
Clipping then occurs only during a "moveto" operation. Once transformed
and clipped, a three-dimensional vector is then projected oante the

logical screen.

The “put_plet" PROCEDURE deserves further discussion. “put_plot"
internally has PROCEDUREs "pgec", “first_printer_scan",
“middle_printer_scan", and "last_printer_scan” as well as FUNCTION
"dot_value”. The "_printer_scan PROCEDUREs snow the considevable

overhead necessary to implement a dot border around a picture. The "pgc”



€C.3 Bystem Guide dotplotter UNIT ¥3
PROCEDURE 'puts' a graphics character on the printer. “"pgec" bufters nult
characters and traps the agraphics escape character recognized by the
printer. The "ids540" UNIT could not be used to contrel the 1DS 540
printer because of symbol table space limitations. The FUNCTION
“dot_value” returns the characteristics of 2 given "pizel". "dot_wvalue®
traps references to virtual pizxels defined oniy by the “fiil_color" value

and pages other disk blocks to acocess the defined pizels.

€C.14 "matrizops™ UNIT

The matrizx operations for transformations of two- and three-
dimensional vectors are contained in the "matrizops” UNIT. The TYPEs zna
PROCEDUREs defined by this UNIT are

TYPEs: agis
coordinates
rotation
PROCEDUREs: matriz_identity
matrixz_inverse
matriz _multiply
print_matrix
print_vector
rotate_matrix
scale_matrix
translate_matrizx
view_transform_matriz
The "transform” PROCEDURE in the "global™ UNIT logically beiongs in th1is
UNIT. It was placed in “"global"” because of compile-time symhol table
space limitations.

The TYPEs are used to define certain parameters for the PRULCEDUREs.
An "axis" may be "x_azis", “y_axis" or "z_axis".  “coordinates® wmay be
either “cartesian” or "polar". A "rotation" may be e1ther “cw" for
clockwise or “cow" for counter-clockwise.

The sense of rotation around one of the "axis"” TYPEs is defined ta
be clockwise when an observer is along the axis Llooking toward thne
erigin. (The sense would be <counter-ciockwise from the origin's
standpoint). Use of “"cw" and “ccw"” is intended to clarity the direction
of a positive rotation from the standpoint of an observer. Different
textbook authors use different conventions and the "cocw"” and "cew" TYPE 1s
intended to mix both conventions.

The PROCEDURE "matrix_identity” defines an i1dentity matrizx and 1s
used for initializing matrices by many of tne other PROCEDUREs.

“matrix_inverse"” finds the inverse of a given matrig while

"matriz_multiply" performs the standard multipiication of two matrices.



C.4 System Guide matrizops UNIT 94
(Remember: Matriz multiplication is NOT commutative.) The
"print_matrix" and “print_vector" procedures can be used for aguick output
of a transformation wmatriz or a frow vector. Before wusing ei1ther
“print_matriz® or "print_vector" the variazble "indent” must be defined to
be the number of indentation spaces used to set the numbers apart from
the heading margin.

The “rotate_matriz", "scale_matriz” and “translate_matrix"
PROCEDUREs define the various operations which can be perfocmed on 2 row
vector representing a point in space. Multiplication of sueh a vector by
a transformation matrix is pertormed by the "transtorm” PROCEDURE in tne
“global" UNIT.

“scale_matriz" and “translate_matriz" reguire amn 1input vector
defining the scaling or translation componants for eacn of the
dimensions. The dimensionality of the output matriz is determined
implicitly from the "sige” of the input “vector".

The "sige" of a rotationmal transformation matrix cannot be
determined implicitly but must be explicitly specified by a parameter.
“rotate_matrizx” alsoe requires specification of the amis. the angle, and
the sense ("cw" or “ocow") of rotation. See the comments in the pragram
listing for a rotationmn about an arbitrary amis. For two-dimensional
rotations, only the “"x_amis" should be specified since ail points are
assymed to be in the -y plane.

The “visw_transform_matriz” PROCEDURE combines several
transformations to convert from world coordinates to eye coordinates.
Also, screen specifications are made since eye coordinates and screen
coordinates are independent of each other. The position of the eyep is
defined in polar (azimuth,elevation,distance) coordinates or cartesian
(2,y,5) coordinates. The size of the logical screen and the distance
from which it will be viewed by the eye define whether the view will be
telephoto or wide-angle. The "view_transtorm_matriz” is extremeiy useful
as the default three-dimensional transformation matrix passed to

"set_transtorm”.
€C.53 =idsS540" UNIT

Most of the wutility of this UNIT is provided by the TYPE
“"control_char" and the PROCEDURE “"contrel®. Passing a "control_char" to

the PROCEDURE permits the user to symbolically use the control characters



£.5 BSystem Guide ids540 UNIT 93

that the 1IDS8 560 recognizes. The control characters inciude "null",
“enhanced_mode"” (double width characters), "normal_mode” (normal width
characters), “graphics_mode", “just_on" (justification on), "just_off"
(justification off), "fized_spacing”, “propertional_spacing”, TR
(horizontal tab), "1f* (line tfeed), ™“vit" d{vertical tab), "ft” (foram
feed), “ecr" (carriage return), “select_printer”, “deselect_printer”,
"subscript"”, “superscript”, “pitchid” (10 characters/incn horzeantally),

“pitchi2" and "pitchlé" (146.8).
Other IDS 560 features can be used with escape sequences. The
following PROCEDUREs use such sequences:
forms
line
margins
position
tab
"forms" defines the physical page size in inches of the forms being
used. Since the IDS 560 uses a vertical increment of 1/48-th 1nch,
conversions are Internally made. A "skip space"” can be specified to
avoid printing on the perforation of continuous forms. "margins" sets
the physical left and right margins in i1nches. Since the J1D5 540 uses a
horizontal increment of 1/120-th inch, conversions are made internally.
"position”, “tab” and "line” are used to position the print head to
@ specific locatiom.  “positiomn™ is much like the “"dotplotter” “"moveto"
PROCEDURE ezcept the parameters specify distance from tep of page and
distance from left margin (i.e., upper left corner of page is originj.
“tab" moves the print head to a specific c¢olumn and “line® moves the
print head to a specific line. Caution must be used with "positian” and
“line" that reverse paper feeding does not cause a paper jam. The 1DS
360 does not have a reverse tractor feed mechanism.
Other printer features which are not yet 1n "1ds540" 1nclude
vettical advance programming, vertical and horizontal tab programming,

and intercharacter spacing programming.

€. File Structure

The structure of the plot file is completely hidden from 2 user’'s
direct access. A user can directly define the name of the fite but oniy
indirectly define its sigze. A user can control the name of the file by
specifying "plt_name” and a “plt_mode™ other than “undefined”. The

absolute maEimum size of the file 15 defined by "max_hlks"” which is a



C.6 System Guide File Structure 96
CONSTant in the "dotplotter™” IMPLEMENTATION. The "size” PROCEDURE defines
the physical dimensions of the logical screen and tmplicitly defines the
number of disk blocks needed to contain the whoie piot file. A matriz ot
disk blocks 1s mapped onto the logical screen; PROCEDURE "sigze" defines
VARiables "i_blks” and “j_blks" which are the dimensions of that matriz.
Since "i_blks" and "j_blks" are defined with & zero or:oin, the product
"{i_blks+1){ji_blks+1)" must not ezceed "max_blks”. Since a bhlock does
not ezist wuntil it is actually needed, "max_blks” of disk storage need
not necessarily be availabie.

Parameters required to define the iogical screen and sther
operations (e.g., defaunlt transformation matrices) are stored in the fiie
prefix. That is, the first few blocks of a plot f1le simply contain
various parameters -- the file prefix. The remaining blocks containing
pizels are dynamically added as necessary. The parameters are always
kept in memory during operation of the “"dotplotter® UNIT hut are written
to disk by IMPLEMENTATION PROCEDURE “"write_parms" called by “close_plot".
If a plot file is subsequently overlayed, the parameter prefix 1s read
from disk before any other operations are performed.

The VARiables in the pretizx are shown in the "dotplotter™ listing in
Section A.2Z.  "prtfile” i1s a3 character string 'DOTplot* wuvsed to ensure
that an overlay operation will access only a valid plot file.

The "blk_table” ARRAY represents the mapping of the logical sereen
to disk blocks. Each matriz element of "blk_table” is a pointer to a
disk block containing a rectanguiar array of pizels for a corresponding
area of the picture. 5ince block 0 is the first biock ot a file and at
least the first two bloocks of a plot file are used for the pretiz, the
tirst block of pizels is block 2. Eliements of "blk_table” with positive
values less than 2, i.e., 0 aAand 1, are used to indicate fi1]Jl colors
"white"” and "black"” instead of actually pointing to a disk block. At
present multipie fill colors are not implemented. When a "blk_tabie”
element points to blooks 0 or 1 "fill_color” (see below) 1s used.
(Negative elements shouid never appear n the disk file. Negative
elements are used in memory as special flags but should be removed by
“elose_plot™. See ezplanation of Paging System.) The "1_bliks” and
"j_blks" variables define the size of “blk_table" whicn 1s currentiy
being used to contain a picture of size "x_length" by “y_length" composed

of a pizel matriz of sizxe “i_length” by "i_length". Toa reduce



€C.& System Guide File Structure 27
computations the variables “x_dots” and “y_dots" define the number of
dots per world coordinate unit in the horizontal and vertical divtections.
"g_dots" and “"y_dots" ate defined in the "window” PROCEDURE based on the
IMPLEMENTATION CONSTants “i_density” and "y_density” which define the dot
density for the graphics printer (84 dots/inch for IDS S&0). The “plt*®
FILE contains "n_blks” at any given time.

The "window" parameters "xz_first"”, “x_last", "y_£f1rst" and “y_last”
are kept 1n the parameter prefizx as well as the "view" clipning
parameters "x_west", “zx_east", "y_south” and “y_north®. The "view"
parameters are also converted to c¢entet-site variables ‘“vex", “vsx”,
“voy" and “vsy" to aid in perspective projection of three-dimensional
vectors.

The variables “zform_2D" and “zform_3D" contain the default two- and
three- dimensional transtormation matrices. The wvariabie ™"prjctntype®
defines whether projections will be “orthographic" or "perspective”.
"elip_flag"” dictates whether clipping of lines segments will occur. The
current default pizel definition 1s contained 1mn "dot_color”. The
"fill_color"” variable determines the fill coloer of a mnewly allocated
block of pizels or virtual pizels never explicitly defined.

The "prm® PACKED RECORD 1is a ‘'free wuniom' -- a variant record
without a tag field. The "prm_char" PACKED ARRAY OF CHAR variant is used
only to move a block of the parameter file to (from) a memory frame
before it is written to (read from) disk. The other variant defines the

variables discussed above.
€C.7 Paging System

A logical screen is a rectangular area represented by a matrieg of
pizels. This pizel matriz is subdivided into smallier rectanguiat
matrices each of which requires a single block of disk storage. Since
memory for the pizxel matrix easily ezceeds that which 1s availabie, a
demand paging system was developed to maintain as many blocks of pigeis
as possible in memory frames for manipulation. The “bik_table"” ARRAY
described in Section C.4 contains one element for each possible disk
block. The element contains a pointer to the disk block or a
"fill_color" valve.

The "begin_dot_plotter_unit” assigns default values for the

dimensions of the legical screen. A user can change these defaults by



C.7 System Guide Paging System 98
subsequent "size", "window” or "view" calls. Wwhen "open_plot” 1s called,
all dimensional values are known and the "blk_table" 1s initializea with
the "“fill_color”. The intermal "allocate_frames" PROCEDURE ailocates as
many variables of TYPE "memory_£rame"” as possible -- all trames are
allocated at one time -- and initializes the FIFO replacement control
variables. The "frame_ptr"” ARRAY contains pointers to the “"memory_frame"
variables.

Subsequent “linetoe” «calls first may involve transformations,
projection and clipping but wultimately the IMPLEMENTATION PHOCEDURE
"world_to_dot" is called to convert the segment endpoints 1into 1iogical
pizel addresses. These endpoint addresses are passed to the
IMPLEMENTATION PROCEDURE "“dot_seg" which selects al]l the prizels between
the endpoints. "dot_seg"” <calls “dot_tag" as it selects each pizel.
"dot_seg” first calculates the logical block address of the pizel. This
block address consists of am (i_bik,j_blk) subscript pair for Ltookup 1n
the "blk_table” matrix. If the pointer from "blk_table"” is non-negative,
the PROCEDURE “get_blk" is called to bring the desired biock into memory.
The "get_blk" PROCEDURE returns the “memory_frame” address containing the
block. If the pointer from "blk_table” is negative, its absoilute value
is the frame number containing the block in memory. Once the block i1s
known to exist in memory, the offset address within the biock 158
calculated. This offset is in the form of a (i_dot,j_dot) subscript
pair. The pixel's attributes can then be easily assigned.

The operation of "get_blk" should be further explained. The first
check made by “get_blk" is to determine if an unused "memory_trame"
exists. If one exists it is selected to contain the required disk block.
If an unused “"memory_frame"” is not available, FIFO replacement seleacts
the "oldest" block for replacement. (FIFO replacement 1s vsed to ensure
the direct access Pascal file 1s ocreated in a sequential tasnton.)
Replacement involves transferring the block from the “"memory_frame" to
the I1/0 butfer followed by a SEEK and a PUT.

Three ARRAYs store information about a block when 1t is stored in a
"memory_frame": “"frame_i_blk", “frame_j_blk" and "blk_indez". The
(frame_i_blk,frame_j_blk) subscript pair indicates the logical block
address while "blk_index" is the pointer to the actual disk block. This
information is stored in these ARRAYs since once a block 1s in a memory

frame its normal disk block pointer inm the "blk_table" is replaced by its



C.7 System Guide Paging System 99
frame number with a negative sign. When a block 15 written back to disk,
these ARRAYs are used to restore the "blk _table” pointer.

Once a "memory_frame” is available, z check 1s made to determine 1if
the referenced block ever existed on disk before. 1f this is the first
reference to the block, it is initialized with the “till_color" pizel
value. 1f the block already exists {(indicated by a "bik_table” value
1) a BSEEXK and GET are performed to bring the block into the memory
buifer. From the buffer it is transferred to the “"memory_frame".

In both the GET and PUT 1/0 operations the bloek was transferred
through an 1/0 buffer on its way to or from a "memory_irame”. The
MOVELEFT system intrinsic was used for the move since it did not mind the

difference in the definition of the "plt" FILE OF PACKED ARRAY OF CHAR

and the “memory_frame” PACKED ARRAY OF "pixelY -- both of which were
chosen to be exmactly *block_size" bytes long (512 in current
implementation). The UCSD system does not allow the user to directly

assign a value to a file pointer, “pltA" in this case, to avoid the move
operation. This GET-MOVE and MOVE-PUT file access was the only
alternative that,would allow a fized two-block parameter prefiz followed
by & random file accessed a bloeck at at time. A FILE of variant RECORDs
containing the two-block or more prefiz as one variant woulid not have
allowed random I/O of a single block as a2 second RECORD var:ant.

"close_plot" flushes the in-memory frames to aisk. The frame
pointers in the "blk_table" are replaced by the disk pointers before the
prefizx {file -- which contains the "blk_tabie"” directory of the plot file
-~ is re-written. The memory frames are them RELEASEd.

The "put_plot" PROCEDURE re-opens the piot file z2nd re-allocates
memory frames if “close_plot" has <closed the file and released the
frames. [f the file is not closed, "put_plot" will wuse tne existing
frames. The “dot_valua” FUNCTION (local to "put_plot”) returns the vatue
of a given pizel. "dot_value" also calis “get_bik" to periorm any
necessary paging of pigel blocks.  “put_plot" leaves the state of the
plot file and memory frames in the same state it found them. 1f the fite
was open and the frames allocated., they stay that way. If "put_plot"”
must open the file and aliocate frames, it closes the file and reieases

the frames on exit.



100

Appendizx D. User's Guide

D.f Frimitives
Z Sample Setup
3

D.
D. Messages and Errors



D. User's Guide Primitives 101
D. User's Guide
D.

1 Primitives

The definitions of the symbols in the "global", “"dotplotter®,
"matrizops"” and "ids540" UNITs which 2 user may access are Listed beiow.
Certain symbols which a user should not need or should never access are
not listed. The three-ietter comments “GLB", "DOT", "MTX* and "IDS®
refer to the UNIT which contains the entity. The USES statement
(discussed in Section D.2) must indicate which UNITs a2 user PRUGRAM neesds
to access. The TYPE definitions are necessary to discuss 1n detail the
parameters of the various PROCEDUREs. The VARiables and FUNCTION are
included primarily for completeness.

NOTE: Only the first eight characters are signifticant in UCSD Pascai
(Version I!1.0) symbols.

TYPE
axis = (2_azis,y_axils,z_axis); {MTX}
control_char (null,enhanced_mode.normal_mode,graphics_mode, (1DS8}
just_on,just_off,fixed_spacing,ht,1f, vt ff, cr,
proportional_spacing.,select_printer,
deselect_printer,subscript,superscript,
pitchl10,pitchil2,pitchlé);

coordinates = (ocartesian,polar); {MTX?
dimension = (two_D,three_D); {GLB}
disposition = (keep,delete); {DOT}
index = 1..4; (GLB}
matris = {GLB}
RECORD
size : index;
mtrx : ARRAY[ index,indexl OF REAL
END;
pixel : (white.,black); {DOT}
projection : J(orthographic.,pecrsepective); tnoty
rotation : {cw,cew); {MTX}
vector = {GLB}
RECORD
sige : index;
veotr : ARRAY[index]l OF REAL
END;
VAR
close_printer: BOOLEAN; {DOT)
indent :  INTEGER; {MTY)
min_space : INTEGER; (DOUT?
plt_mode g {undefined,either,create,overlay); ({DOT)
plt_name : STRINGL23]; (DOT}
prt : TEXT; (GLB)

FUNCTION defuzzi{z: REAL): REAL; (GLB}



D.i User®
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
FROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
FPROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE

These PROCEDUREs can be roughly divided into the following categories:

Gr
Control

- -

begin_dot_plotter_unit

clipping
close_plot
dot_color
end_dot_pl
fitl_coler
open_plot
put_plot
size

view
window

s Guide Graphiec Control Primitives 102
begin_dot_plotter_unit,; (haT)
clear_transform (d4: dimension); (HaT?}
clipping (flag: BOOLEAN); {DOT]
close_plot (disp: disposition); {DOT}
control (code: <control_char}; (ID5}
define_2D_vector (x,y: REAL; VAR u: vector): (GLEB}
detine_3D_vector (x,y,z: REAL; VAR u: vector); ({GLB)
define_3D_vector (u: wvector; a: matriz; VAR v: vector);(GLB}
dot_color (color: pizel): (DOT}
end_dot_plotter_unit; {DOT}
fill_color (color: pizel); (LoT)
forms (length,skip: REAL): {1Ds}
get_transform (d: dimension; VAR a: matriz); {DOT)
line (n: INTEGER]}; {1083
lineto {(u: wvector); {DOT}
margins (left,right: REAL); {1D85}
matriz_identity (d: dimension; VAR a: matriz); {MTX)
matrix_inverse (a: matrim; VAR b: matriz; VAR det: REALJ:(MTX]}
matrizx_multiply (a,b: matriz; VAR ¢: matciz); {MTZ)
moveto (u: vector); {DOT)
open_plot; {DOT)
position (r.y: REAL); {1DS}
print_matrix (title: BS8TRING; a: matriz); (MTX}
print_vector (title: STRING; a: vwvector); {MTX}
project (u: wvector; VAR v: vector); {vOTh
put_plot (x,y: REAL; copies: INTEGER; border: INTEGER);(DOT:
rotate_matrizx (d: dimension; ®yx: amis; angle: REAL; {MTX}
direction: —rotation; VAR a: matrix);

scale_matriz (u: vector; VAR a: matriz): (MTri)
set_projection_type (pri_type: proiection); (DOT}
set_transform (a: matriz); (00T}
size (z_len,y_len: REAL); (DOT}
tab (n: INTEGER): {1051}
transform (u: vector; a: matriz; VAR v: vector’; {GLR}
transiate _matriz (u: wvector; VAR 2a: matriz),; {MTZ}
view (E_Rin,E_mag,y_min,y_mas: REAL); (DOT}
view_transtorm_matriz (viewtype: coordinates; {MTX}

azimuth,elevation,distance: REAL; (or =.y,2- REAL}

screen_x,screen_y,screen_distance: REAL;

VAR a: matriz);
window (g_min,®_max,y_min,y_max: REAL); {(DOT?

Vector/Matrax
Primitives

clear_transform
define_2D_vector
define_3D_vector
get_transform
matrig_identity
matrixz_inverse
matriz_multiply
print_matrix
print_vector
project
rotate_matrix
scale_matrix
set_projection_tyne
set_tranmsform
transtorm
translate_matrig
view_transform_matrig

Graphic
Primitives
lineto
moveto

aphic
Primitives

otter_unit

Printer

Controi
coantroi
forms
iine
mMArgins
position
tab



D.1
D.1.1

User's Guide Graphic Control Primitives 103

Graphic Control Primitives

begin_dot_plotter_unit
open_plot

put_plot

close_piot
end_dot_plotter_unit

The “begin_dot_plotter_unit" and "end_dot_plotter_unit” should be
the first and last statements executed in defining a loaical screen.
Typically, the "open_plot” will follow “hegin_dot_plotter_unit" and
"close_plot" will precede "end_dot_plotter_unit”:

begin_dot_plotter_unit;
open_plot;

fuser program with other control, graphic or vector/matrig
primitives)

close_plot (keep);
end_dot_plotter_unit;

Notice that "close_plot" requires a2 single parameter of TYPE
“disposition”. A disposition of “keep" is used if the plot file 1s
to be sent to the printer by a separate task or 1f the plot fi1le is

to be overlayed by other programs. A disposition of “delete®
indicates the plot file's disk space can be released back to the
system. "put_plot" must precede “close_plot” if “"delete" 18
specified. If “delete* is not specified, the position of a
“put_plot” with respect to “close_plot" is not important.
“put_plot" statements can otherwise appear anywhere after the

“"begin_dot_plotter_unit™.

“put_plot"” requires four parameters. The “z» and "y" values give
the position of the upper 1left corner of the plot arez on the
printed page. The upper left corner of the plot will appear "g*»
inches from the left margin and "y" inches from the top to the page.
Care must be taken to avoid reverse paper feeding. (The IDS S5é0
needs a reverse paper tractor feed mechanism.) The ‘copies®
parameter of "put_plot" indicates how many copies of the plot are teo
be printed. Each copy auvtomatically starts on another panse. The
"border” parameter indicates the size of the border surrounding the
picture. The size is indicated in uwnits of dots. Typically, one to
%aroe drts provide 2 nice border but some applications regquire none.
e cal

[l'llt_,p!ot (1.50:225r1(2);
will start the picture 1.5 1itnches from the left margin and 2.25

inches from the top of the page; 2 singlie copy will be produced witn
two border dots.

dot_color
fill_color

"dot_color"” is wused to specify whether opizels traced over by
"lineto" should be "black" or ‘“white", i.e., "dot_color" is the
color of the lines. (Future versions for use with the D8 “Prism"”
printer hopefuliy will support eight colors.) The “fill_color* is
the default color of the picture. The "begin_dot_plotter_vunit" sets
initial values by issuing calls:

dot_color (black);
fill_color (white);

The user can freely change the "dot_color™. [f “black"” is to be the
fill color, "fill_color (black)" should be inciuded betore any
“lineto" operations are performed. Once set, “"fill_color” should
not be changed.

size

window

view

clipping

"size" defines the physical screen size in inches onto which the
logical screen is mapped. For example, "size (8.0,5.0)" defines



D.T User's Guide Graphic Control Primitives 104

that a plot will be 8.0 inches wide by 5.0 inches high. "window"
defines the size of the logical screen in warld coordinates. For
example, “window (1.0,9.0, 0.0,5.0)" indicates the plotting area
will have coordinates from 1.0 unit to 9.0 units atong the "z" axis,
and ©.0 uynits to 5.0 units along the "y" azis. The aspect ratio of
the physical screen and logical screen must be the same tor wmost
cases. Distortion of one dimension relative to the other occurs 1f
the aspect ratios are not the same. For the "size® and "window"®
examples above, the aspect ratio 1s the same (the ratio of “x" to
"y" dimension = 1.6).

When "sitge" is called a default “"window ¢0.0,1.0, 9.8,1.0)" is set.
"size” should only be called once, typically before the "open_plot".
The "window" specification could be changed if desired by the user.

The "clipping" PROCEDURE sets a flag to indicate whether or not
clipping should be performed. Unless absolutely sure that clipping
is not necessary, clipping should not be turned oft.
“begin_dot_plotter_unit" specifies "clipping (TRUE)" as the default.
Run time range errors can ocecur if clipping is necessaty but not
reguested.

"view" defines the «clipping area. (This is mnot the standard
definition of a “"viewport".) A ‘“view" is definea in wor (d
coordinates just like “window". If fact, the largest “view"
possible is specified by "window" without a separate call to "view",
i.e., a call to "window" sets an identical "view". For the "window"
ezample above, both “"view (1.0,9.0, 0.0,5.0)* and ‘“wview <(2.0,5.0,
2.0,5.0)" are valid but "view (0.0,310.0, 0.0,5.0)" is not since the
"view" cannot extend outside the "x" window dimension.

SBetting a "window"” or “view" for three-dimensional! graphics 1s
rarely necessary. Any three-dimensional picture can be projected
onto a logical screen of any size. Setting 2 different “view" for
3D graphics results in the whole picture being projected 1nto tne

"view" area instead of the original “window" area. Changing the
"window" has mno effect since the 'eye' coordinate system and tne
‘screen’ coordinate system are independent. The

"view_transform_matriz” really controls what the object wiil ioox
like and how much clipping will be necessary.

D.1.2 Graphic Primitives

lineto

moveto
The "moveto” primitive establishes the position of the logical
screen's cCcursor. A subsequent "lineto" call moves the cursor trom

its current position to the specified new position while tracing
over and setting pizels to the value established by "aot_coior".
The "lineto” position becomes the new position of the cursor.
Nearly aiways a call to "define_2ZD_vector” or “define_3D_vector®
prtecedes a call to either “"moveto" or *“lineto". The following
demonstrates usage of ‘“moveto" and "linete” to draw a line trom
point (0,0) to (t,1) to (1,-5):

VAR
u : vector;
z,y: REAL;

define_2D_vector (0.0,0.0, u);
moveto {(u);

define_2D_vector (1.0,1.0, u);
lineto (u);

define_2D_veector (1.0,-5.0, u);
lineto (u);

Three-dimensional graphics wuse similar sStatements. A three-
dimensional segment is automaticalliy projected into twe dimensions
depending on the “set_projection_type” of "orthographie” or
"perspective®. The following demonstrates wusage of "moveto" and
“lineto" to draw a line from the point {(0,0,0) to <¢1,3,1) to (1,-
1.5):



D.1 User's Guide Graphic Primitives 105

VAR
u 1 vector;
®,¥:3%: REAL;

define_3D_vector (0.0,0.0,0.0, u);
moveto (u);
define_3D_vector ¢(1.0,1.0,1.0, u);
lineto (u);
define_3D_vector (1.0,-1.0,5.0, u);
lineto (u);

The vector passed to "moveto” or "lineto"” will be multiplied by the
default transformation matrix for the appropriate dimensionality (1f
one ezists). "begin_dot_plotter_unat" clears both transform
matrices (ZD amnd 3D). The user must wuse “"set_transform” to
establish a default transformation matrixz.

D.1.3 Vector/Matriz Primitives

detine_2D_vector

define_3D_vector
Given the variables "u" and "v* of TYPE veoctor, and REAL “x", “g"
and "sg", “define_2D_vector «(x,y, u)" defines a two-dimensional
vector and "define_3D_vector (z,y,z, v)" defines a three-dimensional
vector. Assuming “v" is defined, the statement “"u := v" can be used
to assign values to vector variables. In an assignment statement,
not only are the vector components transferred, but the
dimensionality of the vector 15 also transferred. The user 1s
responsible not to mix vectors and matrices of ditferent
dimensionalities.

matriz_identity

matriz_inverse

matriz_multiply
Given "matriz" variable "a", "matrix_identity (two_D,a)" defines a 3
by 3 identify matriz for a 2D identity transtormation. Thtis
PROCEDURE is available to the wuser but is really intended faor
initialising matrices by other PROCEDUREs within the ‘“"matrixops®

UNIT.

Given “matriz® variables “a", "b", “¢" and REAL variadle “"det",
“matriz_inverse (a, b, det)” defines "b" to be the inverse of matriz
“a" with "det" the determinant value of "a*. If the determinant
value is sgero, the "b" matrix 1s wundefined and assigned 3

dimensionality inappropriate for future usage.

"matriz_multiply (a,b, ¢)" defines matrix “e¢" to be the oproduct ot
“a" and “b". Care must be taken that "a” and "b" have the same
dimensionality or "¢" is wundefined. The wuser is reminded that
matriz multiplication is not commutative. The product "ab" 1s very
different from "ba" (unless "a" or “"b“ is an jdentity matriz or a
teroc matriz). When creating a compiex transformation matrix, the
order of multiplication of the individual transtormation matrices is
very important.

rotate_matrizx

scale_matriz

translate_matrix

view_transform_matrizx
“rotate_matriz” defines a rotation transformation matriz. Consider
the following examples:

rotate _matriz (two_D,s_axis,d45 . 0,cw, a};
rotate_matrix (three_D,y_axis,22.0,ccw, b);

The first ezample is for two-dimensions. Since it assumed that the
E-y axis is used for two-dimensional plots, ali{ two-dimensionzl
trotations must be about the “z_amis”., The rotation 1s to be 45.0
degrees clockwise (“cw"). Rotations for three-dimensional plots may
be about any of the "z, "y" or “t” ames. The second ezampie shows
a 22.0 degree counterclockwise ("ccw") rotation about the "y_azis”.
The sense of the rotation ("ow" or “ceow") is from a view along the
"y_axis" looking toward the origin.



D.1 User's Guide Vector/Matrix Primitives 10é&

"scale_matriz” and "translate_matrix” require a vector contaiming
the scaling factor or translation component for each aimension. Thne
dimensionality of the resuwiting matrizx 15 the same as the
dimensionality of the vector. Consider these exzamples:

define_3D_vector (0.50,1.50,1.0, wu);
scale_matriz (u, a);

define_3D_vector (10.0,20.0.25.0, v);
translate_matriz (u, b);

matriz_multiply (a,b, ¢);

The (first two statements define a scaling matriz "2" 1n which the
"g" components will be scaled to be half as large as the orvriainal
values; "y* components will be scaled to be 1.50 times the original
values and "z" components are unchanged. The second two statements
define a translation matriz "b" in which 10.0 is added to each "u*
component, 20.0 is added to each “y" component, and 25 0 is zdded to
gach "s" component. A composite matrixz “c" contains both scaling
and translation transformations.

The "view_transform_matriz” PROCEDURE defines a special
transformation matrix as the product of scaling, trotation and
translation matrices. This matrix primitive oconverts worid

coordinates to eye coordinates. The eve's point of vision trom an
ebject can be specified in either polar coordinates or cartesian
coordinates. The eye's intended viewing distance from the screen on
which the projection will occur must be specified as well as the
size of the screen. If the ratio of the distance to the screen o
the sizxe of the screen is large, the view will be telephoto-like; if
the ratio is small the view will be a wide-angle view. The
following examples are equivalent:

view_transform_matriz (polar, 45.0,35.2644,1.7321, 4.0,4.0,10.0, aj:
view_transform_matriz (cartesian, 1.0,%.0,1.0, 4.0,4.0,10.0, a);

The center of the object being viewed is at the origim (0,0,0) and
the observer is at point (1,1,1) which is a 45.0 degree azimuth,
35.2644 degree elevation, 1.7321 world units from the origin. The
screen is 4 units wide by 4 units high; the screen is to be viewed
from 10 units away. The distance to size ratio of the screen is Z.3§
in both dimensions. The screen “z" and “y" points will be scaled by
2.5 before plotting. The view is therefore somewhat telenhoto-like.
The "view_transform_matriz" is often used as the default 3D
transformation matriz established using "set_transform™.

clear_transform

set_transform

get_transform

transform
Separate default transformation matrices are stored for oboth two-
and three-dimensional graphies. Once a transformation matriz “a" 1
created (by using "“"view_transform matrix” or a prodgct of other
transformation matrices), it is saved wusing "set_transtorm (a)".
All subsequent “moveto” and “lineto" vectors of the sanme
dimensionality will be multiplied by the transformation matrix.
"elear_transform (two_D)" or "clear_transform (three_D)" turns off
the use of 2 transformation matriz tor the given dimensionality.
The transformation matriz can be retrieved for display or additional
modification by wusing "get_transform (two_D, a)" ot "get_transform
(three_D, a)".

The "transform” PROCEDURE muiltiplies a row vector "u® by a square
matriz "a": “transform (w,a, v). The resuiting row vectar “v* 1s
transformed by whatever is dictated by the transformation matrix
ar. For most simple applications the user does not dirgctiy use
“transform". The automatio transformation provided by
"set_transform” performs this vector-matrix multiplication.

set_projection_type

projest
"orthograpic" and “"perspective” are the projection types that can be
passed to “"set_projection_type”. Normally, tnese projections occur



D.1 User's Guide Vector/Matriz Primitives 107

automatically when 3D vectors are passed to "lineto". “prozect (u,
v)" projects the 3D "u" vector into a ZD "v" using the current
projection type.

print_matrizx

print_vector
These PROCEDUREs were added to provide quick display of matrices or
vectors. The “ident" wvariable of the “matrizops" UNIT must be
assigned a value before call either PROCEDURE. Output 1s made to
the "prt" FILE defined in the "global" UNIT.

D.1.4 Printer Control

control

forms

line

margins

position

tab
“control" is used to mnemonically pass special control characters to
the 1DS 5é0 printer. ™“forms” defines the length of the torms being
used as well as a ‘'skip space' to prevent printing on the
perforation of continuous forms. "margins"” sets the left and right
margins in absolute terms [inches]. “line” and “"tah" oguickly move
the print head to any line on the page from the top of the torm or
any character position from the left margin. “poesition" is used to
move the print head to an absolute position on the page.

D.1.5 Miscellaneous

The user accessible UNIT variables and the "defuzz” FUNCTION need to
be ezplained for completeness.

"defusz" is used in "matrizops"” to remove the "fuzz"” present 1n REAL
calculations. The "fusz” value is set to 1.0E-é4. “defuzz" changes all
values less than "fusz® to sero. The FUNCTION is available to the wuser
but probably will be rarely needed.

The “prt® TEXT FILE is used for alil printed output -- normal and
graphics -- to the 1IDS 540. "prt" may be wused for WRITE/WRITELN
statements by the user at any time. Inside "put_plot" the graphics mode
is entered and ezited. From the user's standpoint, the IDS 540 is ailways
in normal mode.

The "plt_mode” and "plt_name"” VARiables are used to name the plot
disk file if the wuser does not want to be prompted ior a2 mame. The
default "plt_mode” value is "undefined” and the user is prompted for a
file name at the time the file is to be opened. 1If the user specities a
"plt_mode" of "gcreate", “overlay"” or "either”, the “plt_name" will be
used as the name of the plot file. “"create” will cause a new file to be
created regardless of whether the file already exzists. "overlay" will
overlay a plot tile which must already exist. “either"” will create tne
file if it does not exist, overlay the file if it does.

At the time the plot file is opened, almost all availablie memory 1s
allocated to memory frames. The "min_space™ variable controls the amount
of memory not allocated to storage frames. The default value at present
is 1024 bytes. It a stack overflow message is received, fewer frames
should be allocated by specifying a larger “min_space” value before thne
"open_plot” call.

WVhen “end_dot_plotter_unit" is issued, the system normaily performs
a8 "PAGE (prt)". If this is not desired, set “close_printer" to FALSE.
(This variable will be renamed in the future.)

Both "print_matriz" and “print_vector” print a titie line tollowed
by the matriz or vector of numbers indented under the title The number
of spaces of this indentation is set by the "indent” VARi1able Th1s
VARiable does NOT have a default value so one must be specified betore
"print_matriz" or "print_vector" is used.



D.2 User's Guide Sample Setup 108
D.2 Sample Setup

Appendix H "BSource Listings of Sample User PROGRAMs" should provide
invaluable documentation by ezample of how to use this software pacxage.
However, the following skeleton should prove helpful for most one-time

Tuns:

PROGRAM user_pgm;
USES global, matrizops, dotplotter, 1ds540;
CONST ...
TYPE
VAR
a: matrix;
u: vector;
BEGIN
REWRITE (prt,'PRINTER:'); (1f needed before "open_plot"” call}
begin_dot_plotter_unit;
plt_mode := ocreate;
plt_name := 'disk:name.extension’ ({temporary plot filel}
size (3_len {inches wide), y_1len {(inches highl};

window (x_min,2_max,y_min,y_max); {not usually needed for 3D}
open_plot;

ié;tinn transform matriz "a"}
set_transform (a);

moveto (u);

iiﬁoto {u);

b&i_plot (1.0,1.0, 1 (copy}, 2 {border dots});

close_plot (delete); f(or "keep")
end_dot_plotter_unit;

ENb-iusor_pg-}.



D.3 User's Guide Messages and Errors 109
D.3 HMessages and Errors

The following messages are listed in alphabetical order by code.
Each message code consists of a pretiz indicating which UNIT contains it
and a8 sequence code. DOT represents “dotplotter”, GLE represents
“"global" and MAT represents the "matrizops™ UNIT. The underscored fiejas
indicate where substitutions wiii occur. A brief ezpianation follows the
text of each message.

DOTO0Y! VUnezpected 1/0 error 'n" in routine 'ZEEXEXEX3' while periotming a
fread/writel operation.

Error 'n' is defined in the UCSD Usetrs' Guide, Table 2
“IORESULTS", p. 313. This message will occcur when an 1/O error
ecours paging a block of pizels to or from disk. For emample, n=8
for "No room, insufficient space".

DOTDO2 Terminal Error: File *disk:name.sgtension’ is not a plot fiie.

When a user is prompted for a2 file name in overlaying an existing
plot file, it is possible to respond with a valid file name which
is not a plot file. 1Internally, the first eight bytes of each
plot file is "DOTplot" to make this check.

DOT03 Window parameter error(s):
XE_min = A NN, ¥_Max = ANn.NNn, Y_Win = AR 0N, Y_WMaE = nn.7Nn

This error occurs when z_max ¢ x_min or y_maz ( y_min.

DOTD4 View parameter error(s):

E_Mmin = no_MA, X_Wax = RN . nOn, Y_Win = nn.mn, y_ma® = nn.nn
Vindow parameters:

E_min = RA_NR, Z_WaX = NR_NN, Y_Win = AN.NUD, y_M3® = nn. nn

This error occurs when z_max ¢( ZX_min or y_max ¢( Yy _min for the
view specification or if the "view" is outside the "window”.

DOTO0S ([Horjgonmtal/Verticall dimension (nnn.mn inches) too large-
nann ) mmm dots.

Internal limits are imposed on the mazimum number of pirxeis erther
horigzontally or vertically. The horizontal limit is based on the

width of the graphies printer. The vertical limit is based on
available disk space using the maximum horizontal limit.

DOT0é Error: Frames must be the same size as I/0 blocks.
A frame is nn z mm bits = kk bytes. A block contzins nnn bytes.

At present the memory frames must be the same site as the disk
storage units.

DOT0? File parameter prefiz Is npn bytes lomg. (iInternal varizbie
“prm_size" ourrently has the value nnn and should be adijusted io
be a multiple of "block_sige” (currently mmm) greater than or
equal to the size of the parameter prefix.

The current parameter file is two blocks long.

DOT08 Terminal Error: No memory frames allocated.

No space is available for even a single memory frame. Paging
block frames is not possible and the run must be aborted.

DOT0Y Enter plot file name ([disk:Iname.extension) or EXIT:

This prompt occurs if the user does not specify values for
"plt_mode™ and "plt_name®.

DOT10 Error 'm' in opening plot file 'disk:name.eztension'.
See IORESULTS in UCSD User's Guide for values of 'n'.



D.3 User's Guide Messages and Ertors 118

DOT11%

DoTi2

DOT13

DOT14

GLBO1

MATO!

MATO2

(Creating/Overlavingl file 'disk:name _ext'. The plot wiil be n._nn
inches (nnn dots) wide by n.nn inches (nnn dots) high. There will
be nAn in-memory block frames. :

These informational messages are displayed on the console screen
at the time the plot file is opened.

Request ignored to open already open plot file.

This message indicates a probable problem definition error.
Warning: No frames used.

This message occurs when a plot file is closed but no memory
frames were ever used in paging blocks to/from disk. No pixzeis
were ever defined. The picture is defined by virtual pizels with
the defauit £ill color. 1If a plot file was overiayea, no changes
were made.

Request ignored to close plot file which is not open.

This message indicates a2 probable problem definition error.

Ignoring attempt to multiply 3 vector of dimension n by a square
matriz of dimension m.

Two- and three-dimensional vectors and matrices cannot be
intermized. This message c¢an also occur if the veector or matriz
is undefined.

Ignoring attempt to multiply square matrices of different
dimensions: n and m.

Two- and three-dimensional transformation matrices cannot be
intermized. This message can aiso oceur it either of the matrices
is undefined.

For 2D rotation in g-y plane, specify "z_azis".
All two-dimensional rotations are assumed to be definea im the z-y

plane. 1If for some reason another plane must be used, use three-
dimensional vectors and matriz transformations.



111

Appendiz E. “hexdump™ Utility PROGRANM



Utility PROGRAM hezxdump 112

a3 @ G0 e GAB B P

{$L- PRINTER:}

{45+ Put compiler in swapping mode.]

{$1- The compiler will not gemerate I/0 checking code.!
PROCRAM hexdump; {UCSD Pascal. Versiom I1.]

{5C Copyright (C) 1981 by Earl F. Glyan, Mamhattan, K5.1
{Vritten in November 1981; last modified on 27 March §981.}

(®hexdump” prints the blocks of 3 file in both hezadecimal and ASCII

form (umprintable characters are changed to perieds). “hexdump” prinmts
characters in groups of four bytes similar to the format used on IBM
370-type machines when 2 memory dump is produced. However, “"hezdwmp®
allows 14, 32 or &4 bytes to be formatted onto lines which are 44, 114 or
110 characters long. Am Bb-character title is allowed escept for the
line which is enly 44 characters long. Block numbers and the address
offset are also printed. At presemt the wser is prompted fer the

current dale.

Given "2" is the number of 4-byte words (IBM 370 word size) to

be formatted per lime ("n" must be 4, § or 146 for 1é, 32 or &4
formatted bytes per lime), each formatted line contains the following
fields: 8 spaces for block number and offset address + 1 spaces +
9a-1 hex characters and blank spaces for visual breaks + 1 space

and 1 vertical bar + 4*n ASCII characters + 1 vertical bar.}

USES qlobal, idsSdd;

{The "global® UNIT defines a "pri® TEIT FILL.)

{The "comtrol® PROCEDURE in "idsS40" is used to set the horizemtal

pitch amd the vertical line spacing. The lime spacing must be 8 limes/inch
at preseat. For the 210-character lines, 14.8 pitch must be used; the
other lines can be printed at a user selected pitch of 10, 11 ot 160}

VAL

addr : INTEGER; (address relative to beginning of filel
blk_count : [INTEGER; {nomber of bleocks dumped!]

blk_number : INTEGER; {block number relative to beginning of file)
blocks_read: INTEGER; {blocks read by BLOCKREAD imtrinsicl

batffer : PACKED ARRAY(O..511) OF CHAR;

buf_ids : INIEGER;

chr_ids : INTEGER;

chr_string : PACKED ARRAY{O..433 OF CHAR;

date : STRINGLS); {mm/dd/yy}

dump : FILE;

file_in : STRINGL23]; {zEEEags:sEEgRIgxs. Fyazsx)

file_out : STRING[23];

i : INTEGER;

i . INTEGER;

n 018, {number of 4-byte words formatted per line)
eption : STRINGI4];

ordsx :  INTEGER; {ORD{x)}

out_type : CHAR;
page_number: INTEGER;
page_title : STRINELM];

piteh : contrel_char; ({TYPE "control_char” defimed in "idsS408°)
temp : INTEGER;
1 : CHAR;

TUNCTION hex digit(indes: INTEGER): CHAR;

{This function returns a hex character "0'..'%" or "A'..'["

le}vtn an integer 0..15; a '?' for integers outside the ..13 range.l

18 index IN [8..91

THEN hex_digit := CHR( index + ORD{'D‘) }

ELSE
IF  index IN {14..1§]
THEN hex_digit := CHE( index + ORD('A') - 10 }
ELSE hex_digit := '¥

END (hex_digit);
FROCEDURE hex_address (addr: INTEGER);

{Given an unsigned integer 0. .45335, this procedure prints the hes

equivalent *0000°'..°FEFE'.)
VAR

addr_temp: INTECER;



E. Utility PROGRAM hexdump

7% digit . INTECER;
7 divisor : INTECER;
i i : 1..4;

7% EEGIN

L] addr_tesp := adir;
# divisor := 409%;
B2 FOR i := 1 TO 4 DO BEGIR

[} digit := addr_temp DIV divisor;
1] IF  digit { ¢

1] THEN digit := digit + 14;

B¢ VRITE (prt hex_digit(digitl);
§? sddr_temp := addr_temp MOD divisor:
1]] divisor := divisor DIV 14

1" END

!': END (hes_address};

t2  PROCEDURE top_and_bottom_header;
93 WA

(1] i N Pt 1]

] offset: [INTEGER;

14 BEGIN

17 WRITE (prt.'BLK ADDR °);
58 FOR i := 0 TO n-1 DO BEGIX

19 offset := 4ti;

100 WVRITE (prt.hex_digit{offset DIV 18),

10t hex_digit{ofiset MOD 14),' ')
182 EiD;

103 VRITE (prt,' ')
104 FOR i := @ TO n-1 DO BECIN

10§ of fset := 42i;

10é WRITE (prt hes_digit{offset DIV 14),

07 hes_digit(effset MOD 14}, )
108 ERD;

1 VRITELN (prt}
110 END (top_and_bottem_header};

i1

t12 PROCEDURE inter_block_break;
113 VA&

14 i: 0..155;

115 BEGIK

131 FOR i := 1 TO 11+%%a DO
1? WRITE (prt,' ');

118 FOR i := 8 T0 n-1 DO

1 WRITE (prt,': ‘');

28 VRITELN (prt)
111 END {inter_block_breakl:

123 PROCEDURE space_fill {start,str_lemgth: INTEGER);

124 {Pad STRINGs on right with blanks on output instead of right
12§ justifying the STRING using 'string:lemgth' output format.}
124 VAR i: [INTEGIR;

127 BEGIN

128 i := SUCC(start);

{29 VHILE i {= str_length DO BEGIN

130 WRITE (prt,’ *);
{31 i := SDCC(i)
131 IND

133 END {space_filll;
134

135 PROCEDURE heading (blk_count: INTEGER);
13¢ VAR i: . .34;

137 BECIN

138 IF  blk_count MOD (a DIV Z) = 0 {change test if not & lines/inch)
139 THEN BIGIN

140 IF  blk_count )} @

iy THEN BEG1E

{41 iater_Block_break;

143 top_and_pottom header;

144 page_number := SUCC(page_number);

143 IF  out_type = 'A'

146 THEX PFAGE(prt)

147 END;

148 WVRITE (prt,'Hezadecinal/ASCII Dump of File *,file_in};

_£ill (LENGTH{file_in}, 13);

14¢ lF“l
I m= 1§

158



E. Utility PROGRAM hergdump

15 THEN BEGIN

152 FOR i := { TO 34 DO

153 WRITE (prt.’ '),

iS4 VRITE (prt.page_title):

155 space_fill (LEMGTH(page_title:.89);

154 FORi :=1 to 34 DO

157 VRITE (prt,’ *);

158 END

15¢% ELSE

160 IF n=1

61 THEN WRITE (prt,' ‘,page_title:40,' ');
162 WRITELN (prt,date:8,' Fage ' page_number:§};
163 WRITEIN (prt);

144 top_and_botton beader

16§ END;
164 inter_block_break
167 END (heading);

160

16% PROCEDURE prompts;

170 BEGIR

171 REFEAT

171 VRITELN ('Enter imput filename (or EXIIT): ');
173 READLN (fils_in);

174 IF  tile_in = "EXIT'

175 THEN EXIT (hezdump); {abort)
{74 RESET (dump,file_in);

m temp := IORISULT;

{78 IF temp 3 0

17¢% THER

18t BEGIN

181 WRITELN ('File '''.file_in,"'* mot found. RC=', temp,'.'};
182 WVEITELN

183 END

184 UNTIL temp=9;

183

184 eut_type := ' ';

187 REPEAT

188 VRITELN {‘Enter output type (a) PRINTER, (b) CONSOLE, (¢) disk: ',
189 ‘aldleiEIIT);

198 READLN (eptiom);

191 If  option = 'EXT

191 THEN EXIT (hezdump);

193 IF  {option="a') OR (option='A"})

74 THEN BEGIN

143 out_type := 'A';

194 file_out := *PRINTER:’

192 INB

198 ELSE

19t IF  {optiom="b') OR (option='B")

0 THEN BEGIN

i1 out_type := 'B';

0l file_out := 'CONSOLE:*

103 END

104 1811

103 IF  {option="c¢') OR (option='C'})

04 THEN BIGIE

7 out_type := 'C';

108 VRITELN ('Enter filename {or EZIT):");
i3 READLN (file_out);

110 If  file out s 'EIIT"

1t THEN EXIT (hesdump)

211 IND;

113 UNTIL out_type {3 ' *;

14

i3 If out_type = 'R’
F3Y THEN & = §
7 ELSE BEGIN

218 n:=0;

119 REPEAT

i2é VRITELN (‘Emter lime size (a) &4, (b) 114 or (¢} 220 characters:',
21 ' afbleEIIT);

121 READLN (option};

113 IF  option = 'EIIT

124 THEN EIIT (hezdump)

125 ELSE



Utility PROGRAM herdump

224 IF  {optiom='a’) OR (opticE="1'}
127 THEN n := 4

228 ILs

iz} IF  {option="bh') OR (option='R")
130 THEN ® := |}

i3l ELSE

1312 IF  {option="¢') OR (options'C'}
FEE] THEH n := {4

134 WTiLa) §;

133 BD;

134

137 IF  out_type = 'A'
238 THEN BIGIE

139 IF n=1lé {14 four-byte words per formatted limel
140 THEN piteh := pitchié {1é.8 gitchl

14t ELSE BEGIN

42 piteh := nuil;

143 BEPEAT

144 VRITELN {'Enter piteh (a} 10, (B) 12 or (c) 1&.8 charactersi/imch:’,
245 voalblelERITY;

144 READIN (option);

i IF  optien = 'EIIT*

148 THEN EXIT (hezdump)

11} ELST

158 IF  (optiom="a‘} OR (eption='A")
i3 TREN pitch := pitehit

i51 ELSE

153 If (optiom='Bb'} OR (option="E")
154 THEN piteh := pitechit

153 ELSE

156 1IF  (optiom="c'}) OE (optiom=‘C'}
157 THEN piteh := pitchid

158 UNTIL gpiteh () null

i3 END;

150 END;

168

141 IF n}d
143 THEN BEGIN

184 VRITELN {'Enter gage title [up to *,5tm,' characters} (or EXIT):');
265 IF  page_titie = ‘ENIT'

144 THEN BXIT (hezdumpl:

167 READLE (page_kitle!

168 END;

H3

i7¢ IF  out_type {} 'B'
i THEN BEGIN

172 VRITE ('Enter date [mmidd/yy] (or EIIT): ‘');
173 READLN (date);

i7d [F date = 'EIIT*

173 THEN EIIT (hesdwmpi

174 END

177 END {prompts};

i7¢

§7% BEGIN [hexdump}

111} prempts;

8l REVRITE (prt.file_out);

il IF  sut_type = *A°

183 THEN comtrel (pitchi;

184

185 addr := 0;

111} bik_comnt := 0;

187 bli_number := §;

108 page_number := 1;

i8¢ blocks_sead := BLOCKREAD(dump,buffer,1,blk_number);
it VHILE (IORESULT=0) AND (blocks_read=i) DD

iv1 BEGIN

12 If out_type = 'E’

193 THEN BEGIN

194 top_and_bottom header;

193 inter_block_break

294 £Nl

197 ELSE heading {blk_gount};

b31] buf_idz := @;

it FOR i :=0 TO (128 DIV n - 1) DD BEGIN ({4, 1é or 31 limes/Block)
ki1 ] IF i=¢



116

{16, 32 or &4 bytes/linel

{printable character]
{unprintable character)

[space avecry 4 bytesl

E. Utility PROGRAM hexdump
131 THEN VRITE (prt,blk_number:3,' '}
{01 ELSE WRITE (prt.* )i
303 hex_address (adde);
04 WRITE (prt.' '};
305 chr_idx := 0;
304 FOR j := 0 TO (4tn - 1) DO BEGIN
307 3 ;= bufferfbuf_idsl;
e ordz := ORD(x};
309 IF  ordr IK [32..1241]
ile THEN chr_string(echr_idz] := x
i ELSE chr_stringlehr_idx] := ' .°;
§11 IF jHEOD4=1
3 THEN WRITE (prt,' ');
EIR | VRITE (prt, hes_digit{ords DIV 14));
$5 WRITE (prt,hes_digit(ords MOD 14));
31é chr_idx := SUCC(chr_idz);
17 but_idz := SUCC(buf_ids)
Hi {FOR i};
iy WRITE (prt,' I°);
k¥ FOR j := 0 TO {4tn - 1) DO
$z! WRITE (prt,chr_stringljl);
1t VRITELN (prt,"i');
i3 addr := addr + 4tn;
34 IF  (out_type="B'} AND {(i+1) MOD 1é = 0}
§25 THEN BEGIN
EH ) inter_block_bresk;
3217 top_and_bottom_header;
74 ] WVRITELN (*Push "RETURN® to continmue; emter "EXIT" to termimate:');
319 READLN {optien);
$30 IF  option = 'EXIT'
i THEN EXIT (hezdmpi
§31 END
333 END {FOR i};
134 Blk_count := SUCC{bIk_count);
333 bI1k_number := SUCC(blk_nuaber);
136 blogks_read := BLOCKREAD{ dump, buffer,i,blk_nuaber)
337 END {WHILE);
138
3y IF  out_type {) 'B'
kL[] THEN BEGI¥
41 inter_bleck_break;
M2 top_and_botten_header
143 END;
344
43 IF  out_type = 'X’
kL1 THER BEGIX
41 comtrol (pitehll); (reset to user default pitchl
K11 PAGE (prt)
4y END;
g;l‘ CLOSE (prt,LOCK!

151 END {PROGRAN hexdomp).



E.

Utility PROGRAM hexdump

"hezdump® was written as a debugging tool to gmickly check the comtents
of disk files in both ASCI! and hexadecimal form. The program was quite
helpiul in debugging the creation of the “"para® and “plot® files.
EEIDUNP Prompt Sequenmce:
{1} Enter imput filename (or EXIT):
{2} GEnter output type (a) PRINTER, (b) CONSQLE, (c) disk: a/b/e/EXIT
(3) Enter lime sise (a) &4, (b) 116 or (e} 230 characters: aib/e/EIlT
{4) Enter piteh (a) 10, (b) 12 or (e¢) 14.8 charactersiimeh: al/bic/EIIT
(5) Enter page title [up to mm charactersl) (or IXIT):
(¢) Inter date [mm/dd/yy] (of EIIT):
Note: Optiom (4) omly applies if optien (1a) is selected. An additional
goapt for 2 filemame will pecur if optionm (2¢) is selected. If
(1b) is selected, prompt (3) will default automatically te (3).
Gptioa (S) only oceurs if (3B} or (3¢) is selected.
Sample output of “hexdump® showing 1é bytes (line size = é4) formatted per lime:

Eezadecimal/ASCI] Dump of File system.miscinfo 04703182 Page |

BLK ADDR €0 0 (1] ¢ 0 a4 08 €€
G 6000 OO0BSU210 BIOZZEAC OGGDTRAOT B20224Ad ..............
§018 (OOD7AACF BiOZ1EA& OGD7AROF ADOOOOGO !... ... ......... !
#0320 20D0C014 C1B17A00 1RAGO2CI 00140230 & ..... SR !
1030 20D00BOD C4B17ADD ZAASOCOO 00001R48 | . ... T P !
0040 4A4B4341 QDOAECAS DFOO1800 50004142 IJECA. .IE... P .AB!
§050 44€30304 O013003F 7F1B1BO3 ORL20F0C iDC... .. Yovsvames !
0060 4DAOCDOD 13B4G103 CDOOGIGBY 2BACA300 iM.......... .+.0.1
$078 S400B924 7FO10400 04000800 OAGO7COL IT..46.......... i
0080 GECO1D0D 13001400 16001800 1ADOICEO ¢.. ... ..........}
§090 97012000 210069901 OORIEICY ODAYEFRY 1. .*...... .. [..1
00R0 08603500 60010400 ODOAFED] O100%604 . .5.'..... ... .{
1080 E8041006 §004C204 ABOSACA7 38Q7DCA7 :.. .'....... 1. ..d
00CO DODOGOOC COGOODO0 OD0OGO0O odQOdBORO :................ !
t0D¢ 06200000 0000000 OOOOGOOAC oQoDooeEdd i................ i
COE0 Q000000C CocoeDoo 00dOBOGC O0OEGEO :................|
(0FS 088006000 00000000 COOODOC00 DOQGOQOE ... .. ... ... .. H
0100 00000000 COOOGO00 QOORODOO DOOGRBOO i................1
f110 DGED0000 GQ000000 0QOODDOG DOOOROOD :................ !
0120 00000000 00000000 QOAQEOQO 0OOOGOND §................1%
§130 00000G0G 00OCOOG0 0A000000 DOOOBROD :.............. .. :
0140 00000000 GponoEO00 €OGOGOO0 QEOEDERD i................ H
§15§ O000G0G0 QOO000GE 04000000 OOOODORO ... ......... ... H
6160 00000000 0DOOODOD DOAGEGOO GOQAOROO i........ ........i
§170 00000000 00000000 00000000 COO0OORD §................ ;
f180 Q0000000 G00DOOOO 0ODOOOOOO coOGOEO i................8
€19 00300000 S0000000 OOOOGOGO cOQDOGER i................ :
B1A0 00000000 GOOGQO00 ODODDOOD OOGRA000 i................ '
€180 0000CO0C 00000000 0000000 OOOOCONG i................ '
01C0 60000000 0OOGGO00 0OO0OOOO OGOOAGE0 !............. ... H
¢108 00800000 00000000 00000000 DOOOOGRD }..... .. ... SR
G1E0 00000000 0DODEOOD BO0GGOOO ocoAOOOD ................ :
{18 02000000 C0G00000 00GOCO0O COGOGOED !................ H

LK ADDR 00 T} T} [T B 04 98 oC



A MICROCOMPUTER GRAPHICS PACKAGE
FOR USE WITH A HIGH-RESOLUTION RASTER-SCAN DOT-MATRIX PRINTER

by

EARL F. GLYNN II

B.S5., Kansas State University, 1975

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982



A general purpose graphics software package was developed for use
with a "personal" camputer with a high-resolution raster-scan dot-matrix
printer. Primitives for both two- and three-dimensions were developed,
Only two—-color pixels were implemented in this first version.
Transformations by rotation, translation and scaling may be specified.
Clipping is performed. A user can specify the physical picture size as
well as the logical window dimensions. Several examples are explained.
Documentation includes source listings, a System Guide and a User's

Guide.



