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INTRODUCTION 

A large number of problems in production management 
are of the type where the question asked is, "how much?," 
"how many?," "when?," "how long?," "where?," and the like. 
Essentially the problem requires a single decision which 
often can be characterized by one number or a range of 
numbers. Such problems as those which involve inventory 
levels, scale of operations, number of maintenance per- 
sonnel, and equipment investment are of this type. Almost al- 
ways these problems involve some measure of uncertainty. (1) 

The topic of this paper is one such problem. Specifically, 

the subject discussed is the economic analysis of conveyor system 

design and operation through the derivation of a mathematical 

model. 

Conveyorization has received increased attention from indus- 

trial engineers and managers in recent years. As the marginal 

utility of improved methods of fabrication and processing materi- 

als gradually declines, it has become profitable to study the op- 

portunities for cost reduction through mechanization of materials 

handling, delivery, and storage. Mechanization of this function 

has often taken the form of elaborate and expensive conveyor sys- 

tems. 

Because of the inherent variability of loading and unloading 

a typical conveyor system, it is often difficult to specify opti- 

mum conveyor speeds, capacities and similar parameters. As a re- 

sult, many systems have been installed on the basis of such quali- 

tative measures as 

1. the achievements of competitors 

2. the recommendation of trusted equipment salesmen 
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3. the amount of capital investment which can be obtained 
from higher management. 

Recent advances in theories of operations research, coupled 

with the tremendous strides made in electronic digital computa- 

tion, have made an analytic solution possible for many previous- 

ly intractable conveyor analysis problems. 

In this paper the emphasis is on development of a mathemati- 

cal model to describe a random pattern of loading a conveyor from 

a series of independent stations. Analysis of this mathematical 

model helps in considering the effect of varying the capacity of 

the system, the arrangement and sequence of stations, the de- 

sirability of adopting various decision rules to cope with con- 

veyor congestion, and most important, the basic question of wheth- 

er the conveyor is to be installed at all. The primary empha- 

sis is on the economic aspect of the conveyor system; that is, 

how it relates to the cost and profit objectives of the firm, 

rather than on its physical characteristics. Further, attention 

is directed towards a broad, theoretical analysis, rather than 

the description of specific types of conveyor systems or specific 

installations. 

THE DEVELOPMENT OF CONVEYOR THEORY 

For many years conveyors have been installed and designed 

for specific applications without too much concern for any theo- 

retical concepts which might exist among them. However, begin- 

ning in about 1958, several engineers have started formulating 



general theories which unify the characteristics and problems 

that most conveyor systems have in common. 

Several of the aspects of conveyor system design now under 

investigation have been listed by Morris (11): 

1. Uses 

a. Delivery 

b. Storage and delivery 

2. Loading stations 

a. Single 

b. Multiple 

3. Unloading stations 

a. Single 

b. Multiple 

4. Loading schedule 

a. Continuous uninterrupted 

b. Discontinuous interrupted 

5. Unloading schedule 

a. Continuous uninterrupted 

b. Discontinuous interrupted 

6. Loading station inventory 

a. Unlimited 

b. Truncated 

7. Unloading station inventory 

a. Unlimited 

b. Truncated 
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8. Loading station arrival pattern 

a. Periodic 

b. Poisson 

c. Erlangian 

d. Batches 

Unloading station arrival pattern 

a. Periodic 

b. Poisson 

c. Erlangian 

d. Batches 

10. Carrier spaces 

a. Single 

b. Multiple. 

The one conveyor type which has received the most theoreti- 

cal attention has been the closed-loop, irreversible overhead 

trolley conveyor system. This is the type of conveyor system 

commonly found in plants manufacturing complex assemblies such 

as household appliances and automobiles. Properly designed and 

installed, it has proven to be an excellent investment. As op- 

posed to the open-loop or power-and-free system it is much simpler 

and lower in cost per unit capacity, but not nearly so flexible. 

Kwo (7) in 1958 analyzed many of the aspects of this closed- 

loop irreversible system. He formulated three basic principles 

which must be observed in order that such a conveyor function 

satisfactorily. They were entitled the Speed Rule, the Uni- 

formity Principle, and the Capacity Constraint. The Speed Rule 
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Is that every conveyor system has some maximum and minimum speed 

between which it must be operated. The Uniformity Principle is 

concerned primarily with conveyor systems which serve intermit- 

tently operated producing and receiving systems. In this case 

the conveyor performs a storage function as well as a delivery 

function. Violation of the Uniformity Principle has led to the 

anomaly of previously loaded carriers passing through the 1pading 

area at a time when empty carriers are desired; and empty carriers 

passing through the receiving area when parts are desired. By 

relating the periodic schedule of the loading and receiving areas 

with the total revolution time of the conveyor system, a fairly 

uniform distribution of parts on the conveyor system can be 

achieved. 

Because of its relationship to the analysis in this paper, 

the Capacity Constraint is presented as follows: 

mqv/L = mq/W = qv/s = K 

where: 

m = total number of carriers on the conveyor 

q = capacity of a carrier (number of parts one carrier can 
accommodate) 

v = speed of conveyor 

L = length of conveyor 

W = revolution time of conveyor 

s = spacing between carriers 

K = accommodations required per unit time; a constant de- 
termined by the revolution time of conveyor, the operat- 
ing capacity, and the total reserve capacity to be 
provided 
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Upon examination of this equation it can be seen that the 

heart of the problem is an accurate determination of K, the ac- 

commodations required per unit time. Kwo used a numerical method 

to determine the value K, which considered the requirements of 

reserve capacity, revolution time, loading rate, and unloading 

rate. However this method does not explicitly account for the 

independence of loading stations, which results in interference, 

and requires additional reserve capacity. 

The problem of interference between stations has been dealt 

with explicitly by Mayer (9) and Schneider (17). Mayer showed 

that, in general, the binomial probability distribution describes 

the manner in which parts are furnished to the conveyor. Among 

several restrictive assumptions made in (9) was the unrealistic 

one that in attempting to load output onto the conveyor a station 

would check one and only one loading space; and upon finding a 

loading space filled would set the unit of output aside for later 

rehandling. On this basis, he developed a criteria for comparing 

alternative proposals, called a "Measure-of-Demerit," which was 

the ratio of output refused by the conveyor to the total output 

of the series of loading stations. The model for the Measure- 

of-Demerit was: 

D = F N = 1 - H/N(1 - qn) 

where: 

D = Measure-of-Demerit 

F = number of units not loaded on the conveyor during a 
given time period 
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H = total number of hooks in a given time period 

N = total number of units produced during the same time period 

q = the probability that no attempt is made to load a hook 
at a given work station 

n = the number of stations through which the conveyor passes 

Mayer's Measure-of-Demerit was an average ratio for the 

entire system; however, as he pointed out, the quantity requir- 

ing rehandling at the last loading station would be "about" 

twice the average quantity. Actually, as will be shown later, 

it will be somewhat greater than twice the average, due to the 

accumulative effects of interference. 

While Mayer was the first to explicitly consider conveyor 

loading in a probabilistic concept, his study did little to 

aid the engineer in applying this theory to an actual operating 

situation. The problem of utilization of the theory was attacked 

by Schneider (17), who developed the concept of a "risk that K1 

or more stations would want to load the conveyor at any given 

time." He constructed Conveyor Decision Charts which compared 

the risk values of various numbers of work stations between 

5 and 100 with the probability that any one station would attempt 

to load a given hook. Reis and Schneider (15) extended this con- 

cept and pointed out some of the difficulties of which a po- 

tential user of Conveyor Decision Charts should be cognizant. 

There have been several interesting approaches to develop- 

ment of conveyor theory within the framework of queueing theory. 

1Not related to K developed by Kwo 



8 

For example, Richman and Elmaghraby (16) have developed a queue- 

ing model to determine the space to allow between successive opera- 

tions sharing a conveyor where it is desired that a bank be 

built up in front of each station, of such length that the 

variance in cycle time of the loading station and the receiving 

station will be absorbed by the bank. Their problem was two- 

fold: 

1. to determine what the average size of the bank (or 

length of a queue) should be to insure that a receiving station 

would very rarely be without any input, and 

2. what length of conveyor space should be allowed to 

accommodate this size bank to assure that a producing station 

would rarely be blocked by a full conveyor. 

The authors built their mathematical model on the assumption of 

a Poisson process, which lends itself well to queueing analysis. 

Morris (11) described a similar approach to this problem 

through the use of a truncated waiting line model, and extended 

the theory to the inclusion of a cost function, wherein he sought 

the minimum of the two costs of: 

1. lengthening the conveyor as opposed to 

2. permitting it to occasionally fill up and block the 

flow from the previous station. 

Morris observed that the minimization of the resulting cost 

function was not easily reached by analytic methods, and recom- 

mended direct calculation of the function to reveal the minimum 

cost conveyor length. 
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The interaction between a series of loading stations and 

unloading stations has been analyzed in a probabalistic frame- 

work by Morris (11), who has also presented perhaps the most 

complete picture of the many aspects of conveyor theory discussed 

here. 

A MATHEMATICAL CONVEYOR LOADING MODEL 

Statement of the Problem 

After a review of the work of pioneers in the field of 

conveyor theory, this writer and his colleagues felt that further 

work was justified in the analysis of random loading at indi- 

vidual stations. It was felt, too, that a useful broadening of 

the theory could be made by releasing the restrictive assumption 

that a station could attempt to load only one hook, or loading 

space, upon completion of a work cycle. In actuality, the op- 

posite extreme seemed at least as valid: a station could be in- 

structed to wait as long as necessary to load output, in which 

case some delay would be experienced. 

Assuming validity at these extremes, one should be interested 

in the range of possibilities existing between the extremes. 

It was felt that if a model could be written describing the delay 

and the output set aside under the various conditions, then it 

should be possible to optimize the length of delay which would 

be tolerated. 

In a like manner, it was observed that if successive sta- 
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tions face an ever-increasingly loaded conveyor there should be 

some point at which it would not be advisable to attempt to load 

the conveyor any further. This point would be reached at the 

load level which minimized the sum of the cost of providing re- 

serve, or unused, capacity on the conveyor and the cost of ex- 

periencing delay or rejected output due to congestion. 

In order to write mathematical expressions to describe the 

loading process, several definitions and assumptions are required. 

The full implications of the assumptions are discussed later. 

First, it is most important to assume that the loading 

attempts of individual work stations are independent of each 

other and of the status of the conveyor. That is, the time a 

station will attempt to load the conveyor cannot be predicted 

as a function of the attempts made or successes achieved by any 

other station, nor by the availability of or lack of loading 

space on the conveyor. An attempt to load is that action which 

takes place at the end of each production cycle as a station 

tries to place output onto the conveyor; and a success in load- 

ing is the actual placing of a unit of output onto the conveyor. 

While some variation between average cycle times of different 

stations is required in order to yield a random loading process, 

It is assumed that over a period of time, the cycle times of all 

stations can be averaged together to find an average cycle time 

which characterizes the entire system. This assumption may be 
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stated symbolically: 

171 (1) 

( 1/wi + 1/w2 + + l/wn ) 

where: 

7 = the average station cycle time for the entire system 

w1, w2, wn are the cycle times of n stations. 

n = the total number of stations. 

The following relationship between an attempt to load the 

conveyor and a success in loading the conveyor is assumed: a 

loading range is defined as the maximum number of loading spaces 

which a station is allowed to examine in an attempt to load. If 

an empty loading space passes the station during this loading 

range, a success in loading occurs; if not, the unit is set aside. 

The loading range may be infinite, in which case the output set 

aside, or "rejected output", is zero. On the other hand, a 

finite loading range may be specified, in which case it is assumed 

that the station can examine all spaces in the range immediately 

upon an attempt to load. In this case, each attempt to load 

results in either: 

1. a success in loading, and possible resultant delay in 

waiting for the selected loading space to pass, or 

2. a failure to load the conveyor, resulting in a unit of 

rejected output but in no delay. 

If a station is able to load the first space of a given 
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loading range zero delay is experienced. This assumes that at 

any time there is one (and only one) loading space within immedi- 

ate access. 

Finally, it is assumed that the conveyor is empty as it 

approaches the first station in the system. For specific appli- 

cations, this assumption can be relaxed, as will be shown later. 

The Fraction of Conveyor Capacity 
Removed by n Stations 

As loading spaces of the conveyor pass through successive 

loading stations, each occasionally attempting to load its output 

onto the conveyor, the loaded fraction of its capacity gradually 

increases, and in an identically equal manner, the probability 

that any one loading space is filled increases. As a signifi- 

cant fraction of conveyor capacity becomes loaded, later stations 

will experience delays in loading the conveyor, and if a finite 

loading range is established, these stations will be forced to 

set some of their output aside. This rejected output, while 

an undesirable result of congestion, will tend to alleviate the 

congestion to some extent, in that less than 100% of the output 

of a station with rejected output goes Onto the conveyor. It 

can be seen that in a like manner, the delay experienced by a 

station reduces its output exactly in proportion to the fraction 

of total time spent in delay. However, this fraction is always 

quite small in a realistic situation, and in this analysis it 

is assumed that a reasonable allowance for station delay has 
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been made in determining average cycle times. 

In order to quantify the conveyor loading process described 

above, the following relationship is established: 

P =L/ (2) 

where: 

L = the loading space time; the time elapsed during which 
successive loading spaces pass a given point 

7 = the average station cycle time 

P = the loading ratio. 

The use of the loading ratio as a fundamental parameter of the 

loading system frees the probabalistic analysis from concern 

with actual cycle times, conveyor speeds, and loading space den- 

sity. These deterministic relationships are fairly obvious and 

have been fully developed by other authors, in particular Kwo (7). 

They will be introduced into illustrations as required. 

It was observed that a finite loading range will result in 

the rejection of station output by the conveyor when it is con- 

gested, thus tending to reduce the fraction of capacity removed 

by later, stations. The following two equations were derived to 

describe explicitly this removal of capacity: 

and: 

fno. = P[1 - (Fn_i;A. (3) 

Pn;1 = 7n-1;1 fn;i 



where: 

= the loading range, i.e., the maximum number of loading 
spaces which a station Is allowed to examine in an at- 
tempt to load 

P = the loading ratio, i.e., the fraction of capacity re- 
moved by all the output of an average station 

f n;I = the fraction of capacity removed by the n th station, 
given a system loading range of i 

F n;I = the total fraction of capacity removed by n stations, 
given a system loading range of L. 

These two equations determine recursively the capacity re- 

moved by n stations; that is, the fraction removed by the first 

station is calculated, and this value is used to determine the 

fraction removed by the second station, which is then used in 

a like manner. During later work to derive a minimum cost func- 

tional equation, a series approximation method of determining 

F n;i was derived; this equation is shown in the appendix. 

Equation (3) can best be interpreted by describing the 

probabilities which arise as loading spaces travel through the 

loading system. As the conveyor approaches the first station, 

it is completely empty; thus fn_1./. = 0. The probability that 

station number 1 will attempt to load any given space is equal 

to P, the loading ratio. This fact depends upon the assumption 

made earlier that the loading process is a random one. There- 

fore, there is an equal chance that a station will attempt to 

load any given space. 

While station number 1 will always succeed in its attempts 

to load because the conveyor is empty, such is not the case with 
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succeeding stations. Each station after the first faces the pos- 

sibility that its loading range will be filled, and its output 

rejected. The probability that a given loading space is filled 

as it approaches a station is equal to the fraction of capacity 

removed by all previous stations. 

As a numerical illustration, assume ten stations have re- 

moved 0.15 of the capacity of the conveyor through their success- 

ful attempts to load. Station number 11 will face a constant 

probability of 0.15 that a given loading space is filled. How- 

ever, if the station has a loading range of greater than one, 

the attempt to load may be distributed over all loading spaces 

in the range. If the range is i = 3, then by the multiplica- 

tive law of probability of independent events, the probability 

that all three spaces in his loading range are filled is 

(.15)(.15)(.15) or 0.003375. 

The probability of success is equal to one minus the proba- 

bility of failure. It has been shown that the probability of 

failure of the nth station when attempting to load one of the 

spaces of a loading range of (1) is (Fn...1.0 Thus the proba- 

bility that an attempt will succeed is 1 - (Fn..1.01- The 

probability that an attempt will be made has been previously 

shown to be P. Thus the fraction of capacity actually removed 

by a station is a product of two probabilities: 

1. that the station will attempt to load a given range 

of spaces, and 
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2. that the station will succeed in the attempt. 

Equation (41 is a recursion statement of the fact that the 

total fraction of capacity removed by n stations is equal to the 

fraction removed by (n-1) stations plus the fraction removed by 

the nth statement. While these two equations could be com- 

bined into a more complex equation involving a summation, they 

are stated separately here to aid in their explanation, Com- 

puter programs were written to calculate these equations for 

values of P from 0.001 to 0.5, values of i from 1 to 16, and 

values of n from 1 to 100, and are illustrated in the appendix. 

Plates I through V show the effect of selected loading ranges 

on the fraction of capacity removed by n stations. 



EXPLANATION OF PLATE I 

F as a Function of P, n, and i 

These curves compare the effect of selected loading 

ranges, i = 1, 2, 4, and a), on the total fraction of 

conveyor capacity removed by selected numbers of sta- 

tions, n = 1, 5, 20, and 100, for loading ratio P 

ranging from 0.0015 to 0.5. 
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EXPLANATION OF PLATES II, III, IV, & V 

Plates II through V illustrate the effect of loading 

ranges 1, 2, 4, and 8 on the removal fraction for se- 

lected values of n. 
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Delay Experienced by nth Station 

All station delays could be avoided by the simple expedient 

of requiring that a station set its output aside if the first 

loading space it examines is filled. This, however, is undesirable 

for several reasons, and is unrealistic as well. The sole func- 

tion of the conveyor system is to remove output from the loading 

stations for either temporary storage or delivery to using 

stations. Any rejected output is, as Mayer (9) has aptly said, 

a "Measure-of-Demerit" against the effectiveness of the conveyor. 

The price of reducing rejected output is delay as the station 

waits for an empty loading space. Before it can be determined 

how much delay is acceptable in order to reduce rejected output, 

a precise method of measuring and predicting delay at any station 

of interest must be derived. 

In analyzing delay, it is recalled that an infinite loading 

range could be specified, in which each station would be instruct- 

ed to wait as long as necessary to load its output. The assump- 

tion is recalled that in the case of a finite loading range, 

the station may examine the entire loading range immediately 

upon the attempt to load, and thus, if the loading range is filled 

and the output is rejected, no delay is incurred. 

With this in mind, the following notation is adopted. Let 

dno_ be defined as the delay, as a proportion of loading space 

time, experienced by the n th station, given a system loading 

range of L. To simplify slightly the symbology, let Eno_ be 



the fraction of capacity remaining after n stations have re- 

moved the fraction Frio.. Symbolically: 

Eno. = (1 - Fno.) (5) 

It is now possible to write an equation for dn;i as a 

function of F, E, and 1.: 

10.) ;E u(PII-10.)u 
u=o 

(6) 
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In many cases it is necessary to express delay as a frac- 

tion of station cycle time, although in general it is measured 

in terms of loading space time. Let Dn;i be defined as the 

delay, expressed as a fraction of station cycle time, experienced 

by the nth station, given a system loading range of i. Because 

the relationship between station cycle time and loading space 

time is P, the loading ratio, it is seen that: 

Dno. = (P)(dno.) (7) 

Interpretation of equation (6), like that for equation 

(3) depends on the probability relationships it expresses. 

Upon completing a unit of output, a station attempts to load it. 

At this time there are (1. + 1) mutually exclusive events which 

may occur. For example, he may load the first loading space, 

and experience a delay of zero. The probability of this event 

is equal to En -1 ;i, the fraction of the conveyor empty as the 
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loading spaces approach station n. If the first loading space 

is filled, he may succeed in loading the second space. The 

probability that the first space is filled is Fn_l;i. The 

probability that he will be able to load the second space, given 

that he examines it at all, is the same as it was for the first 

space, since the loading pattern on the conveyor is randomly 

distributed. Loading the second space results in a delay of one 

loading space. The probability that both the first two spaces 

are filled and the third is examined is the product of the proba- 

bilities that each of them is filled, or (Fn_1.02 The proba- 

bility that the third hook is empty remains equal to (En_10.). 

The delay incurred in loading the third hook is 2 loading spaces. 

The above reasoning process can be continued until the maxi- 

mum permissible number of loading spaces has been examined with- 

out finding an empty one. The probability of such an event was 

described in the derivation of F114/, and is equal to (Fn..1.1.) I . 

The delay associated with this event is zero, not i, because by 

definition, a failure to load results in rejected output but no 

delay. 

The total expected delay is equal to the summation of each 

of the successive delays, multiplied by their probabilities of 

occurrence. Dropping the use of subscripts for simplicity: 

d = (E)(0) + (F)(E)(1) + (F)2(E)(2) + 

...(F)L-1(E)(I-1) + (F1)(0) 
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Combining these terms by the use of a summation, with u as the 

index of successive loading spaces examined, is the final step 

in the derivation of equation (6) as previously shown. 

A numerical example may clarify the above discussion. Let 

Fn_1;i be equal to 0.4 and i = 3. The delay experienced by sta- 

tion n can be computed as follows: 

Event X P(X) P(Y.X) P(Y) d(Y) E(d) 

Examine space 1 1 .6 .6 0 0 

Examine space 2 .4 .6 .24 1 .24 

Examine space 3 .16 .6 .096 2 .192 

Set unit aside .064 1.0 .064 0 0 

where: 

1.000 .432 

X = the event indicated 

P(S) = the probability of occurrence of event X 

P(Y;X) = the probability that event X, having occurred, termi- 
nates the loading attempt 

P(Y) = the probability that the load attempt is terminated 
by event X; =[P(X)1[P(Y;X)] 

d(Y) = delay associated with P(Y) 

E(d) = Expectation of delay; =1P(Y)].[dC6]. 

In this example there are four possible events: a success on 

loading space one; success on loading space two; success on. 

loading space three; and failure to load. The sum of these proba- 

bilities is shown to be equal to one, as it must for mutually 

exclusive events. The delays associated with these probabilities 
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are 0, 1, 2, and O. The expectation of delay is the product 

of each individual delay times its probability of occurrence, 

which is 0.432 as a fraction of loading space time. This figure 

would be multiplied by P to yield expected station delay as a 

fraction of station cycle time. 

Values of do as a function of Fn_i and I were calculated 

on a desk calculator and are plotted on Plate VI. Examination 

of Plate VI shows that when a conveyor is loaded to less than 

one half its capacity, station delay increases approximately 

linearly as a function of Fn_1. It also points up the fact that 

while increasing i lengthens delay, it does so at a decreasing 

rate. At the 0.6 level, average delay is 0.25 for i = 2, 

0.75 for I. = 4, and 1.12 for i = 6. But at i = 10 it has in- 

creased only to 1.31. Finally it is noted that for any finite 

loading range, a peak is reached where the effect of zero delay 

for rejected output begins to counteract the greater delays 

associated with successes in loading. 

Rejected Output Accumulated at the nth Station 

When the conveyor becomes congested, either a station is 

going to have to wait for a period of time in order to find an 

empty loading space or the output of the production cycle will 

not be placed on the conveyor, in which case it is said to be 

rejected. 

It has been stated as an assumption that if a station is 



EXPLANATION OF PLATE VI 

do as a function of F n-1 for various values of 1 

These curves compare the effect of loading ranges I. from 

1 to 10 on the delay experienced at a single station, ex- 

pressed as a proportion of loading space time and as a 

function of Fn_i 
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unable to load within a specific pre-determined number of load- 

ing spaces, its output will be rejected. The probability that a 

station will be unable to load on the first loading space is equal 

to the long run average fraction of capacity which has been re- 

moved by preceding stations, designated as F, or Fn_1, for the nth 

station. The probability that two successive loading spaces are 

not available is (F)(F), and the probability that 1 spaces are all 

filled is FL. Thus the desired expression is: 

R n;1 = F n-11 

where: 

(8) 

Rn.i = fraction of output of station n rejected due to 
conveyor congestion, given a system loading range 
of I. 

The rejected output, Rn.i was plotted as a function of Fn_l_ on 

Plate VII by copying values directly from Morse (12). 

ECONOMIC ANALYSIS OF THE MODEL 

The mathematician appreciates rigor and elegance in the 

derivation of his expressions and proofs. To the engineer, 

technical superiority is the sought-after goal. But the manager 

is more likely to be concerned with the profits of the enterprise, 

and the success of a conveyor system will be judged by manage- 

ment on how effectively it contributes to these profits. 

Because profits are of a transitory and sometimes illusory 

nature, and because such a myriad of factors goes into their 

eventual realization, it is usually a practical expedient to 



EXPLANATION OF PLATE VII 

n;L as a function of Fn_i for various values of i 

These curves compare the effect of loading ranges L from 

1 to 10 on the fraction of the n th station's output re- 

jected by the conveyor, Rno., as a function of Fn -1' 
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suboptimize to the extent of considering alternatives on the 

basis of minimization of cost, or on the maximization of the 

return on capital invested. At the engineering design level, 

cost minimization is the more logical measure of effectiveness, 

while at the capital budgeting or executive level, rate of return 

on investment is the more likely criteria (4). 

In comparing alternative methods of materials handling, 

it is probably safe to say that the alternative which performs 

the desired delivery of material at minimum total variable cost 

would also lead to the highest rate of return on investment, 

since all the alternatives would presumably fulfill the same 

function, though in different ways, and with different capital 

costs and operating costs. 

Attaining a functionally satisfactory design at minimum 

cost obviously involves many factors. Competing structural 

materials, power transmission devices, types of fixtures, and 

many other aspects of the conveyor would need to be evaluated 

in order to achieve the most suitable design at the lowest overall 

cost. Of particular interest in this discussion are those costs 

related to capacity, and some thought indicates that numerous 

costs are either directly or somewhat inversely related to 

capacity. 

The job of the analyst is to systematically determine these 

costs, to find out how they are related to capacity, and then 

to derive expressions which will minimize their total. This 

general procedure will be illustrated for the mathematical 
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conveyor loading model previously described. 

Measurement of Costs 

The accurate determination of costs in an industrial situa- 

tion is an extremely elusive task. Grant (14.) has observed, 

In most economy studies the calculations are much 
easier than the process by which the estimates used in 
the computations are obtained. Very frequently the in- 
ternal sources of data have been set up for other pur- 
poses and consequently do not have readily available the 
information in the desired form. The estimator must be 
cautious regarding the information that he uses to be 
sure that it is relevant to his problem. For example, 
the books of account are kept according to a set of 
accounting rules that have been agreed upon by the in- 
terested management personnel. Frequently arbitrary 
groupings or allocations are made so that the estimator 
cannot use the accounting data for an economy study without 
first determining how he can eliminate the nonrelevant 
information. 

The two most fundamental methods of collecting cost data 

have been called the "statistical approach" and the "engineer- 

ing approach" (1). An illustration of the statistical approach 

would be to examine all available data from a company's records, 

choose that data which appeared most pertinent; assign all 

relevant costs to their appropriate causes, determine the values 

of cost parameters by multiple regression analysis; and test 

the results by multiple correlation analysis. On the other 

hand, the engineering approach is an attempt to analytically 

or experimentally predict future events without the benefit of 

collecting data on past experience. 

These two methods are by no means mutually exclusive, and 
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it is likely that in analyzing the costs of a conveyor system, 

both would be used to advantage. Some costs related to the 

increase in conveyor capacity, such as the cost of higher power, 

can be measured statistically. Others, such as the increase 

in strength requirements of structural members can best be de- 

termined analytically. The cost of delay can probably be de- 

termined very closely on an historical basis. The cost of re- 

jected output will at best be a subjective figure, since so many 

intangibles enter into this cost. 

In the analysis of this model it is assumed that the costs 

of these three factors -- capacity, delay, and rejected output -- 

bear a linear relationship to their quantity. It is undoubtedly 

true that some costs will exhibit a sort of step function, re- 

maining constant over a given range and then increasing by some 

amount at a discrete point. Other costs might prove to be of a 

quadratic nature. However, in the absence of information to 

the contrary, linearity is a reasonable assumption, and it simpli- 

fies the analysis considerably. It should be mentioned, also, 

that only those costs which can be affected by the decision under 

consideration need be or should be considered in any given economy 

study. Authors on engineering economy (1)(4) have repeatedly 

cited examples of engineers including in their analysis'costs 

which could not possibly be altered by the decision, and such 

inclusion naturally tends to distort the results. 

For the purpose of the mathematical derivations to be made, 
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the following notation is introduced; Let Cc be the annual 

variable cost of additional capacity, measured in dollars per 

loading space per hour. This cost coefficient will be made up 

largely of an annual charge against the incremental capital costs 

of larger motors, more floor space, stronger structural members, 

and similar capital factors. Increased power and maintenance 

expense will also enter into the cost. Let CD be the annual 

cost of delay at an individual station, measured in dollars 

per station. In the typical case of an assembly worker at a 

loading station, this cost can probably be expressed as a direct 

function of the workerts hourly salary, taking into considera- 

tion fringe benefits, certain expenses allocated directly to 

hourly paid employees, such as the cost of operating tool cribs, 

cafeterias, dispensaries, the cost of safety equipment, and the 

like; and the number of hours per year which the station is 

expected to be used. Let CR be the variable annual cost of 

rejected output, measured in dollars per unit of output. As 

was stated previously, considerable judgment will be required 

to arrive at a meaningful cost coefficient. Such aspects as 

the cost of rehandling, the allowance of temporary storage space, 

possible delays in subsequent operations due to a lack of needed 

parts, possible spoilage, damage, or pilferage may have to be 

considered. It may sometimes be the case that there is no linear 

coefficient, and either no rejected output can be accepted or 

some specified limit can be reached but not exceeded. A mean- 
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ingful cost coefficient can best be assigned to rejected output 

when analyzing an existing system to aleviate the effects of 

congestion. 

An Optimum Loading Ratio for n Stations 

If there were perfect harmony in the loading pattern of all 

stations loading a conveyor system, the optimum loading ratio 

would be the inverse of the number of stations using the system. 

For instance, 25 stations with an average cycle time of three 

min-Aes would be able to fully utilize a conveyor which pro- 

vided 8.33 loading spaces per minute, since the total output would 

be (25 stations/3 minutes per unit of output/station) = 8.33. 

The loading ratio in this case would be P = 1/25 = 0.04 and the 

dynamic capacity could be obtained also from the relation K = 1/PU. 

As the conveyor approached the 25 
th station presumably every 

25th loading space would be empty and at the moment the station 

completed its output that one empty space would be approaching 

it. Then as the conveyor left the 25 
th station and the loading 

system itself, all spaces would be filled and the conveyor 

would be completely utilized. 

Because the loading attempts of stations within a loading 

system are often either partially or completely independent, it 

is useful to determine just how much this increases the desirable 

conveyor capacity. As before, complete randomness in loading 

attempts among stations is assumed. It is also assumed that 

in the design of a conveyor system it would not be desirable 
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to deliberately plan for rejected output to occur. This is 

accounted for by letting L = a). 

There are a number of approaches which might be taken Ln 

optimizing the conveyor capacity. One technique which has often 

been used is the direct calculation of a cost function through 

the range of possible values, and selection of the point yield- 

ing the lowest cost. A more general method, possible only when 

the mathematical model can be expressed as a continuous func- 

tion,is to set the first derivative equal to zero and solve for 

the variable of interest. The second derivative could be checked 

to assure that a minimum, rather than a maximum, has been found. 

In most cost minimization problems, however, the nature of the 

function makes it possible for the analyst to determine by in- 

spection that the extremal point is actually a minimum (4) 

For the purpose of this analysis let the total variable 

cost of constructing and operating a conveyor system with n 

loading stations be approximated by the following function: 

TVC = CDDn + CeEn (9) 

where: 

TVC = total annual variable cost 

CD = the annual cost of delay at station n 

Dn = the delay experienced at station n, as a fraction of 
station cycle time 

Cc = the annual variable cost of additional capacity 

En = the fraction of conveyor capacity empty as the con- 
veyor leaves station n. 
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Substituting the results of equations (5), (6), and (7) into 

equation (9) makes it possible to express the total variable cost 

as a function of the loading ratio and the number of stations: 

oo 

TVC = CD(PEn_i) u(Fn_i)u + Cc(1 - Fn) (10) 
u=0 

It was previously observed that when n stations load all 

their output onto the conveyor, the resulting fraction of capa- 

city removed is the product of the number of stations and the 

loading ratio. Thus: 

and 

F n-1 = P(n-1) 

F n = (P)(n) 

It is recalled from elementary algebra that: 

00 uFu F if F <1 
u=0 777-717 

(12) 

(13) 

Substituting equations (11)(12) and (13) into equation 

(10) and simplifying yields the total variable cost as a func- 

tion of the two parameters, P and n:1 

1 This derivation and the one to follow are shown in full 
in the appendix. 



CD(P 2 )(n-1) 
TVC + C,(1 - Pn) 

1 - P(n-1) 
(14) 

The first derivative of this function with respect to P is set 

equal to zero: 

d(TVC) = cn 2P(n-1)- 2(P)(n-1 )2 
dP (1 - P(n -1)2 

CEn = 0 (15) 

Solving equation (15) for P gives the following minimum cost 

function: 

1 =IFT1 
(co/CD):11 (16) 
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where: 

P* = the optimum value of P 

n = the number of stations 

Cc/CD = the ratio of the annual cost of additional capacity 
t2,the annual cost of delay, both considered at the 
n'" station. 

Values of this function were calculated on the IBM 1620 digital 

computer for values of the cost ratio Cc/CD ranging from 0.001 

to 10.0 and for n from 5 to 100 in increments of 5. The results 

of the calculation are plotted on Plate VIII. The computer pro- 

gram is shown in the appendix. 

To demonstrate the usage of equation (16) and Plate VIII, 

assume that the ABC Corporation is planning to install a conveyor 



EXPLANATION OF PLATE VIII 

The optimal value of P, Px, is plotted as a function 

of the cost ratio Cc /CD for a number of stations 

ranging from 5 to 100. 
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to serve a production line of 25 stations, all producing similar 

sized products with an overall average of 3 minutes per cycle. 

Management requests that an analyst determine the variable 

cost of capacity and the cost of station delay, and to specify 

an economical dynamic capacity. 

After studying methods of increasing capacity, such as higher 

speed, greater density of carriers, multiple parts carriers, 

and the like, the analyst decides that the dynamic capacity can, 

in general, be increased at a capital cost of $60.00 per space 

per minute. He is informed that projects of this type are sub- 

ject to a capital recovery factor of 0.25, which yields an annual 

capital cost of $15.00. There will be a moderate increase in 

the cost of power, maintenance, and repairs, amounting to $1.20 

per year. Thus Cc = $15.00 + $1.20 = $16.20. 

The annual cost of station delay is determined as a func- 

tion of the wages earned by the production workers. The average 

hourly wage is found to be $2.00 and the accounting department 

estimates that an additional 30% should be charged to account 

for fringe benefits and employee services. Since the produc- 

tion line is to be manned on one shift only, 50 weeks per year, 

40 hours per week, this figure is multiplied by 2000 to yield 

an annual cost of delay, CD = $5200. 

The cost ratio Cc/CD is 0.0312. Entering Plate VIII with 

this value and proceeding to the (N = 25) line, P* is found to 
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be 0.01. The dynamic capacity of the conveyor should be 

1/g7 = 1/(0.01)(3) = 33.3 spaces per minute. 

An Optimum Loading Range 

While a conveyor should be designed to obviate the need 

for rejected output, a conveyor already in operation may pre- 

sent a different problem. After completion it might prove highly 

impractical to change the loading ratio of the conveyor. If 

this already existing loading ratio is so large that a good deal 

of congestion results, a supervisor may be forced with one of 

several alternatives: to remove certain loading stations from 

the system entirely, and provide for the handling of their out- 

put by other means; to authorize delays greater than desired, 

or to permit only a certain level of delay to occur at each 

station, with resulting rejected output. For a given fraction 

of conveyor capacity removed, the average delay increases and the 

fraction of rejected output decreases as the loading range is 

increased. When cost coefficients are assigned to delay and 

rejected output in the manner previously described, the follow- 

ing total variable cost function results: 

TVC = CDD = CRR (17) 

where: 

TVC = the total variable cost of operation at a given station 

CD = the annual cost of delay at the station 
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D = the delay experienced at the station, as a fraction 
of cycle time 

CR = the cost of rejected output at the station 

R = the fraction of output rejected at the station. 

The use of subscripts and 
n-1 

can be dropped in this expres- 

sion, since all terms are based on the condition as the conveyor 

approaches the station. Substituting in the values of D and R 

derived in equations (6), (7), and (8): 

1-1 
TVC = CDPE Z. uFu + CRFi (18) 

u=0 

where: 

P = the loading ratio 

E = the fraction of conveyor capacity unused as it enters 
the station 

F = the fraction of conveyor capacity removed by previous 
stations 

= the loading range 

u = an index of summation. 

before this total variable cost function can be differentiated, 

an approximating substitution is necessary: 

L-1 
4-1 uFu 5uFu du 

u=0 0 

After the definite integral approximation is substituted for 

the summation, the following derivative is found and set equal 



to zero: 

d(TVi C) = C D PE(1-1)F1-1 + C R FtlnF = 0 d 

Solving this equation for I. yields 

CR ][-Flni 

[7 E 
(19) 

where: 

1* = the optimum value of I 

F = the fraction of conveyor capacity previously removed 

E = the fraction of conveyor capacity remaining 

CR = the cost of rejected output 

CD = the cost of delay 

P = the loading ratio. 

Interpreting equation (19) it is immediately apparent that as 

the ratio of cost of delay to cost of rejected output increases, 

CR/CD approaches zero and 1* approaches 1 as a limit. In simi- 

lar fashion, 1* increases as the relative cost of rejected output 

increases, as the loading ratio decreases, and as the function 

(-FlnF/E) increases. This function was computed on a desk cal- 

culator, and is plotted on Plate IX. Although not linear, it 

varies from 0 to 1 as F varies from 0 to 1. This result bolsters 

the intuitive feeling that as the conveyor becomes loaded to a 

higher level it is economical to permit a longer loading range. 



EXPLANATION OF PLATE IX 

-Fl.nF is plotted as a function of F 
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To illustrate the use of equation (19), assume the follOw- 

ing industrial situation: the coil winding department of the 

XYZ Company is composed of assembly workers who load their out- 

put onto a conveyor traveling to the chassis assembly department. 

The average time required to complete one assembly is six minutes 

and the conveyor has a dynamic capacity of ten loading spaces 

per minute. The loading ratio P is, therefore, (1) /(10)(6) = 

0.00167. The foreman of the department has suspectdd that his 

workers who earn $2.50 per hour may be losing too much time 

waiting for empty space on the conveyor. The conveyor is also 

loaded by a previous department, and a worker stationed where 

the conveyor comes into the coil winding department has noticed 

that it is about 25% loaded as it comes in. 

In an effort to determine the cost of rejected output the 

foreman first checks with the chassis assembly department, and 

finds that coils are not in short supply there; thus he assigns 

a zero cost for potential shortage. The coils have no value to 

any worker, and are not easily damaged by excessive handling, 

so he assigns a zero cost for pilferage, spoilage, and damage. 

However it would take about 20 minutes for a hand truck opera- 

tor to come through the department periodically and deliver 

rejected output to the chassis assembly department. It is 

estimated that he could carry about 250 coils per trip, and 

earns $4.00 per hour. 

The cost of delay at the first station is computed to be 
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1.4 times the cost of the worker1s wages. On a daily basis: 

OD = (1.4)(2.50(8) = $28.00 

The cost of rehandling output of the station is 1.4 times the 

hourly wages of the lift truck operator times the length of time 

spent by the lift truck operator in rehandling. Since the sta- 

tion produces one coil every six minutes, and the standards 

department estimates 450 productive minutes per day, the daily 

output of the station is 75 units. The cost of rehandling the 

entire output of the station is: 

n _ $2.50 per hour x 1.4. x 1/3 hour/trip x 75 parts/day 
'R 

250 parts/trip 

= $0.35 per station 

For the first station, i* can now be calculated: 

1 cR $0.35 

-7 E 
($28) (.00167) 

=4.42 

Similar calculations could be performed for other stations. 

This calculation leads to the conclusion that some delay 

at the first station is preferable to immediately setting output 

aside and then rehandling it. A practical interpretation of 

(i* = 4,42) would be an instruction from the foreman to the 

assembly worker: "If the first four or five spaces are filled, 
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set aside your output; otherwise wait for an empty space and 

load it onto the conveyor." Consulting Plates VI and VII, it 

can be found that the average delay as a proportion of loading 

space time is .3 loading spaces, and the average fraction of 

output rejected is 0.005. 

DISCUSSION 

The results of mathematical analysis depend for their 

validity upon the assumptions on which they are based. In 

operating situations, one or more of the assumptions made in this 

paper might not be valid, and would have to be modified by the 

analyst. As Morris (11) has stated, "Analytical models of the 

sort we have discussed are rarely presented in fready-to-wear' 

form. They must be tailored to fit specific situations." In 

a given application it might be felt that there was too much 

variability among the cycle times of loading stations to justify 

a weighted average. The model expressed in equations (3), (4), 

(6), and (8) can easily be modified to account for variable 

cycle times, and a comparison could be made to determine the 

added accuracy derived. However, it would be more difficult 

to optimize such a model. Possibly direct calculation, rather 

than taking the first derivative, would be the preferred method. 

As another example, it might be quite unrealistic to assume, 

as was done here, that all stations in a loading system would use 

the same loading range. Another, more complex, model could 
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probably be derived which would explicitly account for varying 

loading ranges. 

From a research point of view, there is no limit to the 

added number of variables which might be accounted for in con- 

structing a model. As a practical matter, however, a compromise 

must be made between the complexity of the real world and the 

simplicity of the model. No model will ever be absolutely 

"true." Thus, as Bowman and Fetter (1) have emphasized, the 

pragmatic criterion of usefulness should be the controlling one. 

A simplifying assumption of a different type was made where 

a definite integral was substituted for a summation to make it 

possible to differentiate equation (18). It can be shown mathe- 

matically that such a substitution is not strictly true. The 

important point, however, is whether the results of the substi- 

tution lead to reasonable and economical decisions. Hansmann (5) 

has pointed out that: 

As long as overall economics is a criterion, the cost 
of using sophisticated tools is as real as any other cost 
and must be considered in appraising the merit of such 
tools. For this reason, mathematical complexity often 
forbids itself, even when it is realistic. 

Thus it is felt that the value of the mathematical model 

can neither be established nor refuted by a purely mathematical 

approach. An important next step in the development of such a 

model as that one derived here would be the empirical valida- 

tion or modification of these results. An interesting study 

could be based on the observation of several actual conveyor 
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installations, using information collected by work sampling and 

study of production records to determine the average level of 

conveyor loading, the effect of congestion, and the apparent 

costs experienced in connection with these problems. 

Another interesting and useful subject for further analysis 

would be the sensitivity of the model. Grant (4) has commented 

on sensitivity: 

Sensitivity refers to the relative magnitude of the 
change in one or more elements of a problem that will reverse 
a decision among alternatives. Thus if one particular 
element can be varied over a wide range of values without 
effecting the decision, the decision is said not to be 
sensitive to uncertainties regarding that particular element. 

The sensitivity of any model can be roughly determined simply 

by solving the equations at various different points of possible 

interest. A thorough sensitivity analysis could be developed 

which would be much more revealing and also more efficient. 

SUMMARY 

A conveyor loading system of a series of stations inde- 

pendently placing their output onto the conveyor has been examined 

and modeled. The system has been characterized by three funda- 

mental parameters: 

1. A loading ratio, the relationship between the output of 

an average station and the capacity of the conveyor. 

2. A loading range, the maximum number of spaces which a 

station is permitted to examine in an attempt to load the con- 

veyor. 
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3. The number of stations in the system. 

Based on the probabalistic relationships which result from 

assumption of independence among stations, expressions have been 

derived which describe three important and heretofore unspeci- 

fied variables: 

1. The fraction of conveyor capacity removed by a series 

of stations, all using some specific loading range. 

2. The average delay which can be expected at any station, 

when a specific fraction of conveyor capacity has been removed 

by previous stations, and when that station consistently uses 

a given loading range. 

3. The fraction of output "rejected" by the conveyor at 

any given station, when a specific fraction of conveyor capacity 

has been removed by previous stations, and when that station 

consistently uses a given loading range. 

Emphasis has been placed on the economic analysis of the 

above model. A method of computing the cost of conveyor capacity, 

the cost of station delay, and the cost of station rejected out- 

put has been suggested. By using such a method to compute cost 

coefficients, it is possible to derive expressions to optimize, 

under certain limiting conditions, the three fundamental para- 

meters mentioned above. Two minimum cost equations were derived: 

1. An equation to minimize the sum of the costs of capacity 

and of station delay by choosing an optimum loading ratio. 

2. An equation to minimize the cost of station delay and 
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station rejected output by choosing an optimum loading range. 

In evaluating the model it was observed that it, like any 

mathematical formula, is completely dependent on the assumptions 

from which it is derived, and on the data which is collected by 

the analyst that uses it. Thus it should continually be borne 

in mind that use of the model does not solve any real problem, 

but only an artificial problem which, it is hoped, closely approxi- 

mates this real problem. The final value of the model is in its 

successful use in aiding the solution of real problems. 
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APPENDIX 

Glossary 

Special Terms. Some special terms discussed in this paper 

are defined as follows: 

Attempt to load. The action which occurs at the end of each 

production cycle as the station tries to load output 

onto the conveyor. 

Conveyor. A mechanism passing by a series of loading stations 

at a constant rate, designed specifically to carry 

away the output of these stations. 

Loading space. The amount of space occupied on the conveyor 

by one unit of output. 

Loading station. An integral producing entity within the load- 

ing system, which operates independently of other 

stations in the system. 

Success in loading. The actual placing of a unit of output 

onto the conveyor. 

Unit of output. The physical quantity resulting from one pro- 

duction cycle. 

Symbols. The algebraic symbols used in mathematical 

formulas are defined as follows: 

C 
c 

= cost coefficient of additional capacity 

CD = cost coefficient of delay 
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CR = cost coefficient of rejected output 

do = delay experienced by nth station, as a proportion of load- 
ing space time 

Dn = delay experienced by nth s4tion, as a fraction of pro- 
duction cycle time of the n'h station 

E n = fraction of conveyor capacity remaining after passing 
through n stations 

fn = fraction of conveyor capacity removed by the nth station 

Fn = fraction of conveyor capacity removed by n stations 

i = loading range, the maximum number of loading spaces which 
a station is permitted to examine in attempting to load 
a unit of output 

K = dynamic capacity, loading spaces per minute, = 1 

L = loading space time, minutes; the elapsed time which suc- 
cessive loading spaces pass a station. If two or more 
loading spaces pass a station simultaneously, as in the 
case of multiple baskets, it would be the time between 
successive spaces, divided by the number of simultaneous 
spaces. 

n = a station numbered in sequence from the start, which may 
or may not be the last station 

P = loading ratio, the reciprocal of the number of loading 
spaces passing through the system during the time span of 
an average production cycle 

R n = rejected outputpf the nth station, as a fraction of total 
output of the station 

wn = production cycle Chime of nth station, minutes; the time 
required at the n station to produce one unit of output; 
the time between successive attempts to load at the nt" 
station 

= average cycle time, minutes; the weighted average of the 
production cycle times of all stations under consideration 
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Computer Programs 

Several Fortransit IBM 650 programs were written to compute 

the fraction of capacity removed by n stations using a loading 

range of i and a loading ratio of P. At the outset of the 

research it was not known what ranges of values would be of the 

most interest, and as each program was run, possibilities for 

improvement of the program and for additional values of the 

variables appeared. The following program proved to be an 

efficient one for calculating the removal fraction. In this 

program, the letter M represented the loading range, N the sta- 

tion number and the letter J indexed the PUNCH statement to 

punch values for every tenth station. Statements 000080 and 

000090 in the program correspond to equations (3) and (Lb). 

Data cards with appropriate values of P were prepared to accom- 

pany this program. 

000010 READ P 

000020 M = 1 

000030 J = 1 

000050 N = 1 

000060 SIG = P 

000070 PUNCH, SIG, N, M, P 

000080 U = P*(1 - (SIG**M)) 

000090 SIG = SIG + U 

000100 IF (N-101) 11, 17, 17 

000110 N = N + 1 
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000120 J = J + 1 

000130 IF (J-10) 16, 14, 15 

000140 PUNCH, SIG, N, P 

000150 J = J - 10 

000160 GO TO 8 

000170 IF (M-10) 18, 20, 20 

000180 M = 2*M 

000190 GO TO 3 

000200 GO TO 1 

000210 END 

A computer program was written for the IBM 1620 Fortran 

system to determine the optimum values of P for n stations as 

Cc /CD ranged from 0.0001 to 40.0. The number of stations was 

taken in increments of five from five to 100 and the cost ratio 

was computed at points 0.0001, 0.0004; 0.001, 0.004, 0.01, 

0.04, 0.1, 0.4, 1, 4, 10, and 40. By the use of these points 

it was possible to fair smooth curves onto the semilogarithmic 

graph paper of Plate VIII. In the program shown, the letter S 

represented the number of stations, T the cost ratio, and P 

the optimum value of P. Statements number 000030 and 000040 

correspond to equation (16). 

000880 FORMAT (E10.4, F3.0) 

000990 FORMAT (E10.3) 

000010 T = .0001 

TYPE 99, T 
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000020 S = 5 

000030 U = SQRT (1. + T*S) 

000040 P = (1./(S-1.))*(1. - 1./U) 

000050 TYPE 88, P, S 

000060 IF (S - 100.) 7, 9, 9 

000070 S = s + 5. 

000080 GO TO 3 

000090 IF (T - 10.) 10, 12, 14 

000100 T = 10.*T 

TYPE 99, T 

000110 GO TO 2 

000120 T = .0004 

TYPE 99, T 

000130 GO TO 2 

000140 END 

A Series Approximation to F 

During the course of research to develop an expression for 

the optimum value of P, a series method of calculating F was 

developed. Although this approach was not used in any of the 

work shown here, it might be of value to others in the develop- 

ment of conveyor theory. 

If i = 1, 

(n)(n-1) 2 (n)(n-1)(n-2) 3 
F n;1 = nP 2 

P + P - + Pn 
1 
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where: 

n = the number of stations under consideration 

P = the system loadingratio 

This approximation was empirically tested and it was found to 

converge quite rapidly to the true value of F. Substituting 

in values of n= 10 and P = 0.05: 

F = 10(0.05) - 45(0.0025) 120(0.000125) - 210(0.00000625) 

+ 252(.0000003125) - 

The successive values of the approximation are, to four place 

accuracy, 

0.50000, 0.3875, 0.40250, 0.40120, 0.40128. 

The true value of F, calculated recursively as shown in equa- 

tions (3) and (4), is 0.4012631. Thus, four terms of the ap- 

proximation give results accurate enough for all practical 

purposes. Tests for other typical values yielded life results. 

Some work was done to generalize the series approximation 

to account for any loading range. Although results were not 

conclusive, it appeared that a series of summations would be 

required in such a case. 

Mathematical Derivations 

Equation (10) expressed the total variable cost at the 

n th station in terms of station delay and unused conveyor 

capacity: 



TVC = CDDn + CcEn (9) 
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By means of elementary algebra and a differentiation, this equa- 

tion was eventually transformed into a solution for the minimum- 

cost value of P. Although the key steps were shown in the text 

many algebraic steps were omitted. The complete derivation of 

the equations for TVC and P* follows. By substituting previously 

derived expressions for Dn and En: 

TVC = CD(PEn _1) 59 - - u(Fn_i)u + Cc(1 - Fn) (10) 
u=0 

00 

Substitute :E: uFu = F 
u=1 

T777 and E = 1 - F: 

TVC = CDP 441 + C (1-Fn) 

Substitute Fn...1 = P(n-1) and Fn = Pn: 

CDP2(n-1) 
TVC = + Cc(1-Pn) 

1-P(n-1) 

Substitute m = 

TVC = 
CDP2m 

+ Cc (1-Pm-P) 
1-Pm 

Take the first derivative: 

(14) 
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d(TVC) CD(1-Pm)(2Pm)-P2m(-m) 

dP (1-Pm)2 
Co(m + 1) 

Set the first derivative equal to zero: 

(1-Pm)(2Pm) + P2m2 Co 

(1 -Pm)2 

Let Co/CD = c: 

C D 
= 0 

(1 - Pm)(2Pm) + P2m2 - c(m + 1)(1 - Pm)2 = 0 

2Pm - 2P2m2 + P2m2 - c(m + 1)(1 - 2Pm + P2m2) = 0 

2P - P2m - c + 2cPm - eP2m - c/m + 2cP - cmP2 = 0 

(m + cm2 + cm) P2 - (2 + 2cm + 2c) P + c + c/m = 0 

Let 1 + cm + c = z: 

mzP2 - 2zP + c + c/m = 0 

p2_ (2/m)p - c + c/M 
mz 

P2 - (2/m)P + (1/m)2 = (1/m)2 - mz 

(P - 1 /m)2= 1 , z - me - 
me 

But m = n - land z = 1 + cm + c = 1 + en: 



1_+ 1 \,1 1 + cn -(n-l)c - c 

1 + cn 

Discard the extraneous root: 

P =r4r1 [ 1 - 147.71 

Thus P has been solved for the point at which the tangent to 

TVC as a function of P is zero. This value is normally sig- 

nified by P*. Substituting c = Cc/CD: 

P* 
=[-.1.r] [1 -1 
n-I vl + (Cc/CD)nj (16) 
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Industrial engineers have recently devoted increased at- 

tention to the theoretical analysis of conveyor systems. Al- 

though these systems have been successfully installed and operated 

repeatedly, the bases for many fundamental decisions in their 

design and operation have been experience, intuition, and amount 

of funding available. There has been a lack of accurate, reliable 

means of predicting the proper capacity of a conveyor and of 

specifying the type and level of loading restrictions that should 

be made. 

In this paper, one segment of the overall theory of con- 

veyors has been explored and developed. Specifically, a loading 

system composed of a series of independent loading stations in- 

dependently and successively placing their output onto the con- 

veyor has been examined and modeled. The system has been char- 

acterized by the following parameters: 

1. A loading ratio, the relationship between the output 

of an individual station and the capacity of the conveyor 

2. A loading range, which Ls the maximum number of spaces 

on the conveyor which any station is permitted to examine in 

an attempt to load a unit of output onto the conveyor 

3. The number of stations in the system. 

Based on the probabalistic relationships which result from 

the assumption of independence among stations, expressions have 

been derived which describe three important variables of the 

conveyor system: 
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1. The fraction of conveyor capacity removed by a series 

of stations, all using a given loading range 

2. The expected delay at any station facing a conveyor 

loaded to some specific capacity, when that station uses a 

given loading range 

3. The expected fraction of output of any station which 

will be "rejected" by the conveyor as a result of failure to 

load a unit of output, when that station is facing a conveyor 

loaded to some specific capacity and uses a given loading range. 

Emphasis has been placed on the economic analysis of the 

above model. A method of computing the cost of conveyor capacity, 

the cost of station delay, and the cost of station rejected out- 

put has been suggested. By using such a method to compute cost 

coefficients, it is possible to derive expressions to optimize, 

under certain limiting conditions, the three fundamental para- 

meters mentioned above. Two minimum cost equations were derived: 

1. An equation to minimize the sum of the costs of capacity 

and of station delay, assuming an infinite loading range, by 

choosing an optimal loading ratio 

2. An equation to minimize the sum of the costs of station 

delay and of station rejected output by choosing an optimal 

loading range. 

Consideration was given to the implications of the derived 

mathematical models in an actual situation. Means by which the 

results of this study could be applied were discussed, and the 

restrictions and limitations placed on the model by certain as- 

sumptions were analyzed. 
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A11 important equations presented were graphically illus- 

trated and, where appropriate, the IBM 650 and 1620 digital com- 

puter systems were programmed to aid in their solution. 


