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Abstract Suppose that the inverse scattering problem is understood as follows: given
fixed-energy phase shifts, corresponding to an unknown potential q = q(r) from a
certain class, for example, q ∈ L1,1, recover this potential. Then it is proved that the
Newton-Sabatier (NS) procedure does not solve the above problem. It is not a valid
inversion method, in the following sense: 1) it is not possible to carry this procedure
through for the phase shifts corresponding to a generic potential q ∈ L1,1, where

L1,1 := {q : q = q,
∫∞
0 r|q(r)|dr <∞} and recover the original potential: the

basic integral equation, introduced by R. Newton without derivation, in general, may
be not solvable for some r > 0, and if it is solvable for all r > 0, then the resulting
potential is not equal to the original generic q ∈ L1,1. Here a generic q is any q which

is not a restriction to (0,∞) of an analytic function. 2) the ansatz (∗)
K(r, s) =

∑∞
l=0 clϕl(r)ul(s), used by R. Newton, is incorrect: the transformation

operator I −K , corresponding to a generic q ∈ L1,1, does not have K of the form

(∗), and 3) the set of potentials q ∈ L1,1, that can possibly be obtained by NS
procedure, is not dense in the set of all L1,1 potentials in the norm of L1,1. Therefore
one cannot justify NS procedure even for approximate solution of the inverse scattering
problem with fixed-energy phase shifts as data. Thus, the NS procedure, if considered
as a method for solving the above inverse scattering problem, is based on an incorrect
ansatz, the basic integral equation of NS procedure is, in general, not solvable for some
r > 0, and in this case this procedure breaks down, and NS procedure is not an
inversion theory: it cannot recover generic potentials q ∈ L1,1 from their fixed-energy
phase shifts. Suppose now that one considers another problem: given fixed-energy
phase shifts, corresponding to some potential, find a potential which generates the
same phase shifts. Then NS procedure does not solve this problem either: the basic
integral equation, in general, may be not solvable for some r > 0, and then NS
procedure breaks down.
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1. Introduction and conclusions

The NS procedure is described in [4] and [2]. In the sixties P. Sabatier published several
papers concerning this procedure, and there are quite a few papers of several authors
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using this procedure and generalizing it. A vast bibliography of this topic is given in [2]
and [4], and by this reason we do not include references to many papers treating this
topic.

In our arguments below two cases are discussed. The first case deals with the inverse
scattering problem with fixed-energy phase shifts as the data. This problem is understood
as follows: an unknown spherically symmetric potential q from an a priori fixed class, say
L1,1, a standard scattering class, generates fixed-energy phase shifts δl, l = 0, 1, 2, . . . ,.
The inverse scattering problem consists of recovery of q from these data.

The second case deals with a different problem: given some numbers δl, l = 0, 1, 2, . . . ,,
which are assumed to be fixed-energy phase shifts of some potential q, from a class
not specified, find some potential q1, which generates fixed-energy phase shifts equal
to δl, l = 0, 1, 2, . . . ,. This potential q1 may have no physical interest because of its
non-physical” behavior at infinity or other undesirable properties.

We first discuss NS procedure assuming that it is intended to solve the inverse scat-
tering problem in case 1. Then we discuss NS procedure assuming that it is intended to
solve the problem in case 2.

Discussion of case 1:

In [5] and [4] a procedure was proposed by R. Newton for inverting fixed-energy phase
shifts δl, l = 0, 1, 2, . . . , corresponding to an unknown spherically symmetric potential
q(r). R. Newton did not specify the class of potentials for which he tried to develop
an inversion theory and did not formulate and proved any results which would justify
the inversion procedure he proposed (NS procedure). His arguments are based on the
following claim N1, which is implicit in his works, but crucial for the validity of NS
procedure:

Claim N1: the basic integral equation

(1.1) K(r, s) = f(r, s)−
∫ r

0

K(r, t)f(t, s)
dt

t2
, 0 ≤ s ≤ r <∞,

is uniquely solvable for all r > 0.
Here

(1.2) f(r, s) :=

∞∑
l=0

clul(r)ul(s), ul :=

√
πr

2
Jl+ 1

2
(r),

cl are real numbers, the energy k2 is fixed: k = 1 is taken without loss of generality,
Jl+ 1

2
(r) are the Bessel functions. If equation (1.1) is uniquely solvable for all r > 0, then

the potential q1, that NS procedure yields, is defined by the formula:

(1.3) q1(r) = −2

r

d

dr

K(r, r)

r
.

The R. Newton’s ansatz (1.1)-(1.2) for the transformation kernelK(r, s) of the Schroedinger
operator, corresponding to some q(r), namely, that K(r, s) is the unique solution to (1.1)-
(1.2), is not correct for a generic potential, as follows from our argument below (see the
justification of Conclusions).

If for some r > 0 equation (1.1) is not uniquely solvable, then NS procedure breaks
down: it leads to locally non-integrable potentials for which the scattering theory is, in
general, not available (see [9]and [1] for a proof of the above statement) .

In the original paper [5] and in his book [4] R. Newton did not study the question,
fundamental for any inversion theory: does the reconstructed potential q1 generate the
data from which it was reconstructed?
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In [2], p. 205, there are two claims:
i) that q1(r) generates the original shifts {δl} ”provided that {δl} are not ”excep-

tional””, and ii) that NS procedure ”yields one (only one) potential which decays faster

than r−
3
2 ” and generates the original phase shifts {δl}.

If one considers NS procedure as a solution to inverse scattering problem of finding
an unknown potential q from a certain class, for example q(r) ∈ L1,1 := {q : q =
q,
∫∞
0
r|q(r)|dr < ∞}, from the fixed-energy phase shifts, generated by this q, then the

proof, given in [2], of claim i) is not convincing: it is not clear why the potential q1,
obtained by NS procedure, has the transformation operator generated by the potential
corresponding to the original data, that is, to the given fixed-energy phase shifts. In fact,
as follows from Proposition 1 below, the potential q1 cannot generate the kernel K(r, s) of
the transformation operator corresponding to a generic original potential q(r) ∈ L1,1 :=
{q : q = q,

∫∞
0
r|q(r)|dr <∞}.

Claim ii) is incorrect because the original generic potential q(r) ∈ L1,1 generates the
phase shifts {δl}, and if q1(r), the potential obtained by NS procedure and therefore not
equal to q(r) by Proposition 1, generates the same phase shifts {δl}, then one has two

different potentials q(r) and q1(r), which both decay faster than r−
3
2 and both generate

the original phase shifts {δl}, contrary to claim ii).
The purpose of this paper is to formulate and justify the following

Conclusions:

Claim N1 and ansatz (1.1)-(1.2) are not proved by R.Newton and, in general, are wrong.
Moreover, one cannot approximate with a prescribed accuracy in the norm ||q|| : =∫∞
0
r|q(r)|dr a generic potential q(r) ∈ L1,1 by the potentials which might possibly be

obtained by the NS procedure. Therefore NS procedure cannot be justified even as an
approximate inversion procedure.

Let us justify these conclusions:

Claim N1, formulated above and basic for NS procedure, is wrong, in general, for the
following reason:

Given fixed-energy phase shifts, corresponding to a generic potential q ∈ L1,1, one
either cannot carry through NS procedure because:

a) the system (12.2.5a) in [2], which should determine numbers cl in formula (1.2),
given the phase shifts δl, may be not solvable, or

b) if the above system is solvable, equation (1.1) may be not (uniquely) solvable for
some r > 0, and in this case NS procedure breaks down since it yields a potential which
is not locally integrable (see [9] for a proof).

If equation (1.1) is solvable for all r > 0 and yields a potential q1 by formula (1.3),
then this potential is not equal to the original generic potential q ∈ L1,1, as follows from
Proposition 1, which is proved in [9] (see also [1]):

Proposition 1. If equation (1.1) is solvable for all r > 0 and yields a potential q1 by
formula (1.3), then this q1 is a restriction to (0,∞) of a function analytic in a neighbor-
hood of (0,∞).

Since a generic potential q ∈ L1,1 is not a restriction to (0,∞) of an analytic function,
one concludes that even if equation (1.1) is solvable for all r > 0, the potential q1, defined
by formula (1.3), is not equal to the original generic potential q ∈ L1,1 and therefore the
inverse scattering problem of finding an unknown q ∈ L1,1 from its fixed-energy phase
shifts is not solved by NS procedure.

The ansatz (1.1)-(1.2) for the transformation kernel is, in general, incorrect, as follows
also from Proposition 1.

Indeed, if the ansatz (1.1)-(1.2) would be true and formula (1.3) would yield the
original generic q, that is q1 = q, this would contradict Proposition 1. If formula (1.3)
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would yield a q1 which is different from the original generic q, then NS procedure does not
solve the inverse scattering problem formulated above. Note also that it is proved in [10]
that independent of the angular momenta l transformation operator, corresponding to a
generic q ∈ L1,1 does exist, is unique, and is defined by a kernel K(r, s) which cannot have
representation (1.2), since it yields by the formula similar to (1.3) the original generic
potential q, which is not a restriction of an analytic in a neighborhood of (0,∞) function
to (0,∞).

The conclusion, concerning impossibility of approximation of a generic q ∈ L1,1 by
potentials q1, which can possibly be obtained by NS procedure, is proved in section 2,
see proof of Claim 1 there.

Thus, our conclusions are justified. 2
Let us give some additional comments concerning NS procedure.
Uniqueness of the solution to the inverse problem in case 1 was first proved by

A.G.Ramm in 1987 (see [7] and references therein) for a class of compactly supported
potentials, while R. Newton’s procedure was published in [5], when no uniqueness results
for this inverse problem were known. It is still an open problem if for the standard in
scattering theory class of L1,1 potentials the uniqueness theorem for the solution of the
above inverse scattering problem holds.

We discuss the inverse scattering problem with fixed-energy phase shifts (as the data)
for potentials q ∈ L1,1, because only for this class of potentials a general theorem of
existence and uniqueness of the transformation operators, independent of the angular
momenta l, has been proved, see [10]. In [5], [4], and in [2] this result was not formu-
lated and proved, and it was not clear for what class of potentials the transformation
operators, independent of l, do exist. For slowly decaying potentials the existence of
the transformation operators, independent of l, is not established, in general, and the
potentials, discussed in [2] and [4] in connection with NS procedure, are slowly decaying.

Starting with [5], [4], and [2] claim N1 was not proved or the proofs given (see [3]
were incorrect (see [11]). This equation is uniquely solvable for sufficiently small r > 0,
but, in general, it may be not solvable for some r > 0, and if it is solvable for all r > 0,
then it yields by formula (1.3) a potential q1, which is not equal to the original generic
potential q ∈ L1,1, as follows from Proposition 1.

Existence of ”transparent” potentials is often cited in the literature. A ”transparent”
potential is a potential which is not equal to zero identically, but generates the fixed-
energy shifts which are all equal to zero.

In [2], p.207, there is a remark concerning the existence of ”transparent” potentials.
This remark is not justified because it is not proved that for the values cl, used in [2],
p.207, equation (1.1) is solvable for all r > 0. If it is not solvable even for one r > 0, then
NS procedure breaks down and the existence of transparent potentials is not established.

In the proof, given for the existence of the ”transparent” potentials in [2], p.197,
formula (12.3.5), is used. This formula involves a certain infinite matrix M . It is claimed
in [2], p.197, that this matrix M has the property MM = I, where I is the unit matrix,
and on p.198, formula (12.3.10), it is claimed that a vector v 6= 0 exists such that Mv = 0.
However, then MMv = 0 and at the same time MMv = v 6= 0, which is a contradiction.
The difficulties come from the claims about infinite matrices, which are not formulated
clearly: it is not clear in what space M , as an operator, acts, what is the domain of
definition of M , and on what set of vectors formula (12.3.5) holds.

The construction of the ”transparent” potential in [2] is based on the following logic:
take all the fixed-energy shifts equal to zero and find the corresponding cl from the infinite
linear algebraic system (12.2.7) in [2]; then construct the kernel f(r, s) by formula (1.2)
and solve equation (1.1) for all r > 0; finally construct the ”transparent” potential
by formula (1.3). As was noted above, it is not proved that equation (1.1) with the
constructed above kernel f(r, s) is solvable for all r > 0. Thefore the existence of the
”transparent” potentials is not established.
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The physicists have been using NS procedure without questioning its validity for
several decades. Apparently the physicists still believe that NS procedure is ”an analog
of the Gel’fand-Levitan method” for inverse scattering problem with fixed-energy phase
shifts as the data. In this paper the author explains why such a belief is not justified and
why NS procedure is not a valid inversion method. Since modifications of NS procedure
are still used by some physicists, who believe that this procedure is an inversion theory,
the author pointed out some questions concerning this procedure in [1] and [9] and wrote
this paper.

This concludes the discussion of case 1. 2

Discussion of case 2:

Suppose now that one wants just to construct a potential q1, which generates the phase
shifts corresponding to some q.

This problem is actually not an inverse scattering problem because one does not
recover an original potential from the scattering data, but rather wants to construct some
potential which generates these data and may have no physical meaning. Therefore this
problem is much less interesting practically than the inverse scattering problem.

However, NS procedure does not solve this problem either: there is no guarantee that
this procedure is applicable, that is, that the steps a) and b), described in the justification
of the conclusions, can be done, in particular, that equation (1.1) is uniquely solvable for
all r > 0.

If these steps can be done, then one needs to check that the potential q1, obtained by
formula (1.3), generates the original phase shifts. This was not done in [5] and [4].

This concludes the discussion of case 2. 2
The rest of the paper contains formulation and proof of Remark 1 and Claim 1.
It was mentioned in [6] that if Q :=

∫∞
0
rq(r)dr 6= 0, then the numbers cl in formula

(1.2) cannot satisfy the condition
∑∞

0 |cl| < ∞. This observation can be obtained also
from the following

Remark 1. For any potential q(r) ∈ L1,1 such that Q :=
∫∞
0
rq(r)dr 6= 0 the basic

equation (1.1) is not solvable for some r > 0 and any choice of cl such that
∑∞

l=0 |cl| <∞.
Since generically, for q ∈ L1,1, one has Q 6= 0, this gives an additional illustration to

the conclusion that equation (1.1), in general, is not solvable for some r > 0. Conditions∑∞
l=0 |cl| <∞ and Q 6= 0 are incompatible.
In [2], p. 196, a weaker condition

∑∞
l=0 l

−2|cl| <∞ is used, but in the examples ([2]
pp. 189-191), cl = 0 for all l ≥ l0 > 0, so that

∑∞
l=0 |cl| <∞ in all of these examples.

Claim 1. The set of the potentials v(r) ∈ L1,1, which can possibly be obtained by the
NS procedure, is not dense (in the norm ‖q‖ :=

∫∞
0
r|q(r)|dr) in the set L1,1.

In section 2 proofs are given.

2. Proofs

Proof of Remark 1.

Writing (1.3) as K(r, r) = − r
2

∫ r

0
sq1(s)ds and assuming Q 6= 0, one gets the following

relation:

(2.1) K(r, r) = −Qr
2

[1 + o(1)]→∞ as r →∞.

If (1.1) is solvable for all r > 0, then from (1.2) and (1.1) it follows that K(r, s) =∑∞
l=0 clϕl(r)ul(s), where ϕl(r) := ul(r)−

∫ r

0
K(r, t)ul(t)

dt
t2 , so that I−K is a transforma-
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tion operator, where K is the operator with kernel K(r, s), ϕ′′l +ϕl− l(l+1)
r2 ϕl−q(r)ϕl = 0,

q(r) is given by (1.4), ϕl = O(rl+1), as r → 0,

ul(r) ∼ sin

(
r − lπ

2

)
, ϕl(r) ∼ |Fl| sin

(
r − lπ

2
+ δl

)
as r →∞,

where δl are the phase shifts at k = 1 and Fl is the Jost function at k = 1. It can be
proved that supl |Fl| <∞. Thus, if

∑∞
l=0 |cl| <∞, then

(2.2) K(r, r) = O(1) as r →∞.

If Q 6= 0 then (2.2) contradicts (2.1). It follows that if Q 6= 0 then equation (1.1)
cannot be uniquely solvable for all r > 0, so that NS procedure cannot be carried through
if Q 6= 0 and

∑∞
l=0 |cl| <∞. This proves Remark 1. 2

Proof of Claim 1.

Suppose that v(r) ∈ L1,1 and Qv :=
∫∞
0
rv(r)dr = 0, because otherwise NS procedure

cannot be carried through as was proved in Remark 1.
If Qv = 0, then there is also no guarantee that NS procedure can be carried through.

However, we claim that if one assumes that it can be carried through, then the set of
potentials, which can possibly be obtained by NS procedure, is not dense in L1,1 in the
norm ‖q‖ :=

∫∞
0
r|q(r)|dr. In fact, any potential q such that Q :=

∫∞
0
rq(r)dr 6= 0, and

the set of such potentials is dense in L1,1, cannot be approximated with a prescribed
accuracy by the potentials which can be possibly obtained by the NS procedure.

Let us prove this. Suppose that q ∈ L1,1,

Qq :=

∫ ∞
0

rq(r)dr 6= 0, and ‖vn − q‖ → 0 as n→∞,

where the potentials vn ∈ L1,1 are obtained by the NS procedure, so that

Qn :=

∫ ∞
0

rvn(r)dr = 0.

We assume vn ∈ L1,1 because otherwise vn obviously cannot converge in the norm || · ||
to q ∈ L1,1. Define a linear bounded on L1,1 functional

f(q) :=

∫ ∞
0

rq(r)dr, |f(q)| ≤ ‖q‖,

where ‖q‖ :=
∫∞
0
r|q(r)|dr. The potentials v ∈ L1,1, which can possibly be obtained by

the NS procedure, belong to the null-space of f , that is f(v) = 0.
If limn→∞ ‖vn − q‖ = 0, then limn→∞ |f(q − vn)| ≤ limn→∞ ‖q − vn‖ = 0. Since f is

a linear bounded functional and f(vn) = 0, one gets: f(q − vn) = f(q) − f(vn) = f(q).
So if f(q) 6= 0 then

lim
n→∞

|f(q − vn)| = |f(q)| 6= 0.

Therefore, no potential q ∈ L1,1 with Qq 6= 0 can be approximated arbitrarily accurately
by a potential v(r) ∈ L1,1 which can possibly be obtained by the NS procedure. Claim 1
is proved. 2
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