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Abstract

If F : H → H is a map in a Hilbert space H, F ∈ C2
loc, and there exists a solution

y, possibly non-unique, such that F (y) = 0, F ′(y) 6= 0, then equation F (u) = 0 can
be solved by a DSM (Dynamical Systems Method) and the rate of convergence of the
DSM is given provided that a source-type assumption holds. A discrete version of the
DSM yields also a convergent iterative method for finding y. This method converges
at the rate of a geometric series. Stable approximation to a solution of the equation
F (u) = f is constructed by a DSM when f is unknown but the noisy data fδ are
known, where ||fδ − f || ≤ δ.

1 Introduction

In this paper a method for solving a general class of nonlinear operator equations F (u) = 0
in a Hilbert space is proposed, its convergence is proved, and an iterative method for solving
the above equation is constructed. Convergence of the iterative method is proved. These
results are based on the following assumptions: a) the above equation has a solution y,
possibly non-unique, b) F ∈ C2

loc , and c) F ′(y) 6= 0. The last condition means that there

exists a z such that F ′(y)z 6= 0. This is a very weak assumption. It allows the null-space
of the operator F ′(y) to be infinite-dimensional. No restrictions on the rate of growth of
nonlinearity are made. The literature on the methods for solving nonlinear equations is
large (see, e.g., [2] and references therein). Most of the known results are based on Newton-
type methods and their modifications. There is a well-developed theory for equations with
monotone operators and more general classes of operator equations ([4], [5]). The method
used in this paper is a version of the Dynamical Systems Method (DSM). The general
development of the DSM is presented in [3]– [8]. In this paper the ideas from [6] are
used. The general idea of the DSM is described briefly below. In [1] a Newton-type DSM
version is proposed under the assumption that the Fréchet derivative F ′ is a boundedly
invertible linear operator. Under this assumption many classical numerical methods for
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solving operator equations F (u) = 0 are shown in [4] to be various versions of the DSM.
These methods include Newton-type, modified Newton-type, Gauss-Newton-type, gradient
method, simple iterations method, etc. But the DSM allows one to treat the problems
in which F ′ is not boundedly invertible. In [5] the numerical efficiency of the DSM is
demonstrated by many examples.

Let F : H → H be a map in a Hilbert space. One can also consider the case when
F : H1 → H2, where H1 and H2 are Hilbert spaces, but for simplicity of notations we
restrict the presentation in this paper to the case of one Hilbert space H1 = H2 = H. The
results and proofs can be rewritten for the case when F : H1 → H2. Assume that equation

F (u) = 0 (1)

has a solution y, possibly non-unique, and

F ′(y) 6= 0, (2)

where F ′ is the Frèchet derivative of F . This assumption means that F ′(y) is not equal to
zero identically on H. Assume that F ∈ C2

loc, i.e.,

sup
u∈B(u0,R)

‖F (j)(u)‖ ≤Mj(R) 0 ≤ j ≤ 2, (3)

where u0 ∈ H is a given element, R > 0, and no restrictions on the growth of Mj(R)
as R grows are made. This means that the nonlinearity F can grow arbitrarily fast as
‖u − u0‖ grows. Under these assumptions equation (1) may have no solutions. Thus,
we have assumed that a solution y to (1) exists. There are many results giving sufficient
conditions for the existence of a solution to nonlinear equations, but we do not go into
detail since it is not the topic of our paper.

We do not assume that F ′(u) has a bounded inverse operator, so the standard Newton-
type methods are not applicable. The Dynamical Systems Method (DSM) consists of
finding an operator Φ such that the problem

u̇ = Φ(t, u), u(0) = u0, t ≥ 0, u̇ =
du

dt
, (4)

has a unique global solution u(t), (that is, the solution exists for allt ≥ 0), there exists
u(∞) := limt→∞ u(t), and F (u(∞)) = 0. To ensure the unique local solvability of (4) we
assume that

‖Φ(t, u)− Φ(t, v)‖ ≤ L(R)‖u− v‖ ∀u, v ∈ B(u0, R).

Then the global existence of the unique local solution holds if supt≥0 ‖u(t)‖ <∞.
The results of this paper are summarized in several theorems. Let us denote

A := F ′(u(t)), T := A∗A, Ta := T + aI; Ã := F ′(y), T̃ = Ã∗Ã. (5)

Assume that a(t) is a positive monotonically decaying function,

a(t) > 0, lim
t→∞

a(t) = 0, ȧ < 0,
|ȧ|
a
≤ 0.4. (6)
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Theorem 1. Assume that a solution to equation (1) exists, (possibly non-unique), that
assumptions (2) and (3) hold, and that

y − u0 = T̃ v, ‖v‖ ≤ (20M1M2)
−1, ‖y − u0‖ ≤ 5M1M

−1
2 . (7)

Let a(0) = (5M1)
2/3M

4/3
2 ‖y−u0‖4/3. Then there exists limt→∞ u(t) := u(∞) := y, F (y) = 0,

and

‖u(t)− y‖ ≤ CIa
1/2(t), CI :=

‖y − u0‖1/3

(5M1M2
2 )1/3

, (8)

where u(t) solves the DSM Cauchy problem:

u̇ = −T−1
a(t)[A

∗F (u(t)) + a(t)(u(t)− u(0))], u(0) = u0, (9)

the solution of which exists globally and is unique.

Theorem 2. Under the assumptions of Theorem 1, the iterative process

un+1 = un − hnT
−1
an

[A∗(un)F (un) + an(un − u(0))], u0 = u(0), (10)

where hn > 0 and an > 0 are suitably chosen, generates the sequence un converging to y.

Remark 1. The suitable choices of an and hn are made in the proof of Theorem 2.

Remark 2. Theorem 1 says that any solvable operator equation with C2
loc operator, satisfy-

ing weak assumptions, stated in Theorem 1, can be solved by the DSM (9). Condition (2)
means that the range of the linear operator F ′(y) contains at least one non-zero element.
This condition allows F ′(y) to have an infinite-dimensional null-space.

In Section 2 we prove Theorems 1 and 2. In Section 3 and Section 4 we study the
stability of the solution. In the proofs we use the following lemmas.

Lemma 1. Assume that g(t) ≥ 0 is a C1
loc([0,∞)) function satisfying the inequality

ġ(t) ≤ −γ(t)g + α(t)g2 + β(t), t ≥ 0, ġ :=
dg

dt
, (11)

where γ(t), α(t) and β(t) are nonnegative continuous functions defined on [0,∞). Assume
that there exists µ ∈ C1([0,∞)), µ > 0, such that

β(t) + α(t)µ−2 ≤ 1

µ(t)

(
γ(t)− µ̇(t)

µ(t)

)
, g(0)µ(0) ≤ 1. (12)

Then any non-negative solution g(t) to (11) exists globally, that is, on [0,∞), and

0 ≤ g(t) ≤ 1

µ(t)
, t ∈ [0,∞). (13)

A generalized version of Lemma 1 is proved in [7].
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Lemma 2. Let gn+1 ≤ γgn + pg2
n, g0 := m > 0, 0 < γ < 1, p > 0. If m < q−γ

p
, where

γ < q < 1, then limn→∞ gn = 0, and gn ≤ g0q
n.

Proof of Lemma 2. Estimate g1 ≤ γm + pm2 ≤ qm holds if m ≤ q−γ
p

, γ < q < 1.
Assume that gn ≤ g0q

n. Then

gn+1 ≤ γg0q
n + p(g0q

n)2 = g0q
n(γ + pg0q

n) < g0q
n+1,

because γ + pg0q
n < γ + pg0q ≤ γ + pm ≤ q. Lemma 2 is proved. 2

The following lemma is borrowed from [7].

Lemma 3. Assume that gn ≥ 0, α(n, gn) ≥ 0,

gn+1 ≤ (1− hnγn)gn + hnα(n, gn) + hnβn; hn > 0, 0 < hnγn < 1, (14)

and α(n, gn) ≥ α(n, pn) if gn ≥ pn. If there exists a sequence µn > 0 such that

α(n,
1

µn

) + βn ≤
1

µn

(γn −
µn+1 − µn

hnµn

), (15)

and

g0 ≤
1

µ0

, (16)

then

0 ≤ gn ≤
1

µn

, ∀n ≥ 0. (17)

Proof. For n = 0 inequality (17) holds because of (16). Assume that it holds for all n ≤ m
and let us check that then it holds for n = m + 1. If this is done, the lemma is proved.
Using the inductive assumption, one gets:

gm+1 ≤ (1− hmγm)
1

µm

+ hmα(m,
1

µm

) + hmβm.

This and inequality (15) imply:

gm+1 ≤ (1− hmγm)
1

µm

+ hm
1

µm

(γm −
µm+1 − µm

hmµm

)

= µ−1
m − µm+1 − µm

µ2
m

≤ µ−1
m+1.

The last inequality is obvious since it can be written as −(µm − µm+1)
2 ≤ 0. Lemma 3 is

proved. 2
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2 Proofs of Theorems 1 and 2

Proof of Theorem 1. Since T̃ 6= 0, for a suitable choice of u0 there exists a v such that
y − u(0) = T̃ v, and we assume that ‖v‖ ≤ c1 := (20M1M2)

−1. Let

u(t)− y := w(t), ‖w(t)‖ := g(t).

Write equation (9) as

ẇ = −T−1
a(t) [A∗(F (u)− F (y)) + a(t)w + a(t)(y − u(0))], (18)

and use the formula F (u)− F (y) = Aw +K, where ‖K‖ ≤ M2g2

2
. Then (18) yields

ẇ = −w − T−1
a(t) A

∗K − a(t)T−1
a(t)T̃ v. (19)

Multiply this equation by w in H and use the estimate ‖T−1
a A∗‖ ≤ 1

2
√

a
, a > 0, which

follows from the spectral theorem (see [4]), to get

gġ ≤ −g2 +
1

2
√
a(t)

M2g
3

2
+ a(t) ‖

(
T−1

a(t) − T̃−1
a(t) + T̃−1

a(t)

)
T̃‖‖v‖g.

If a > 0 then, by the spectral theorem, ‖(T̃a)
−1T̃‖ ≤ 1, a‖T−1

a ‖ ≤ 1, and

a‖(T−1
a − T̃−1

a )T̃‖ = a‖T−1
a (A∗A− Ã∗Ã)T̃−1

a T̃‖ ≤ 2M1M2g.

Here we have used estimate (3) and the estimate of the type ‖A∗[A(u)− Ã(y)]‖ ≤M1M2g.
Collecting the above estimates and the estimate ‖v‖ ≤ c1, one gets

ġ ≤ −9g

10
+

c0g
2√

a(t)
+ c1a(t), c0 :=

M2

4
, c1 := (20M1M2)

−1. (20)

Apply Lemma 1 to (20). Here γ = 9
10

, α(t) = c0√
a(t)

, β(t) = c1a(t). Choose

µ(t) =
λ√
a(t)

, λ = const > 0,
µ̇

µ
= 0.5

|ȧ(t)|
a(t)

≤ 0.4.

Conditions of Lemma 1 hold if

λa−0.5(t)[c0a
0.5(t)λ−2 + c1a(t)] ≤ (0.9− 0.4) = 0.5, (21)

and g(0)λ ≤ a0.5(0). Choose λ = a0.5(0)/g(0). Then (21) holds if

c0λ
−1 + c1a

0.5(0)λ ≤ 0.5. (22)

Consider the problem

m(s) := c0s
−1 + c1a

0.5(0)s = min := m,
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where the minimization is over s > 0. The minimum is attained at s = sm := ( c0
c1

)0.5a(0)−0.25

and m = 2(c0c1)
1/2a1/4(0). Note that 2(c0c1)

1/2 = (20M1)
−0.5. Thus, if λ = a0.5(0)/g(0) and

2(c0c1)
1/2a1/4(0) ≤ 0.5, that is, a(0) ≤ 25M2

1 , then, by Lemma 1, the solution to (9) exists
for all t ≥ 0 and

‖u(t)− y‖ ≤
√
a(t)‖u(0)− y‖
a0.5(0)

. (23)

In the proof of Theorem 1 we satisfied inequality (22) by taking a(0) ≤ 25M2
1 and λ =

a1/2(0)g−1(0) = ( c0
c1

)0.5a(0)−0.25. The last relation implies g(0) = a3/4(0)(5M1M
2
2 )−0.5.

Therefore, a0.5(0) = g2/3(0)(5M1M
2
2 )1/3. Consequently, the right-hand side of the estimate

(23) is CIa
1/2(t), where CI is defined in (8). Since a(0) ≤ 25M2

1 , it follows that g(0) ≤
5M1M

−1
2 . Thus, the initial approximation u0 should be not too far from the solution y,

namely, ‖y − u0‖ ≤ 5M1M
−1
2 , as in (7).

Theorem 1 is proved. 2

Proof of Theorem 2. Let wn := un − y, gn := ‖wn‖. We assume that 2M1M2‖v‖ ≤ 1
2

and
rewrite (10) as

wn+1 = wn − hn T
−1
an

[A∗(un)(F (un)− F (y)) + anwn + an(y − u0)], w0 = ‖u0 − y‖.

Using the Taylor formula F (un)− F (y) = A(un)wn +K(wn), ‖K‖ ≤ M2g2
n

2
, the estimate

‖T−1
an
A∗(un)‖ ≤ 1

2
√

an
, and the formula y − u0 = T̃ v, we get

wn+1 = (1− hn)wn − hnT
−1
an
A∗(un)K(wn)− hnanT

−1
an
T̃ v. (24)

Taking into account that ‖T̃−1
a T̃‖ ≤ 1, and a‖T−1

a ‖ ≤ 1 if a > 0, we obtain ‖T−1
an
T̃ v‖ ≤

‖(T−1
an
−T̃−1

an
)T̃‖‖v‖+‖v‖, and ‖(T−1

an
−T̃−1

an
)T̃‖ = ‖T−1

an
(T̃an−Tan)T̃−1

an
T̃‖ ≤ 2M1M2gn

an
:= C1gn

an
.

Let c0 := M2

4
. Then it follows from (24) that

gn+1 ≤ (1− hn)gn +
c0hng

2
n√

an

+ C1hn‖v‖gn + hnan‖v‖.

Let us assume that C1‖v‖ ≤ 1
2
. Then

gn+1 ≤ (1− hn

2
)gn +

c0hn√
an

g2
n + hnan‖v‖.

Choose an = 16c20g
2
n, so that c0gn√

an
= 1

4
, and get

gn+1 ≤ (1− hn

4
)gn + 16c20hn‖v‖g2

n, g0 = ‖u0 − y‖ ≤ R, (25)

where R > 0 is defined in (3). Take hn = h ∈ (0, 1) and choose g0 := m, where

m <
q + h

4
− 1

16c20h‖v‖
, q ∈ (0, 1), 1 > q > 1− h

4
> 0.

Then Lemma 2 with γ = 1− h
4

and p = 16c20h‖v‖ implies

‖un − y‖ ≤ g0q
n → 0 as n→∞.

Theorem 2 is proved.
2
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3 Stability of the solution

Assume that F (y) = f , where the exact data f are not known but the noisy data fδ are
given, ||fδ − f || ≤ δ. Then the DSM yields a stable approximation of the solution y if the
stopping time tδ is properly chosen. The DSM is similar to (9):

u̇δ(t) = −T−1
a(t)[A

∗(F (uδ(t))− fδ) + a(t)(uδ(t)− u0)], uδ(0) = u0, (26)

Let
wδ := uδ(t)− y, gδ(t) := ||wδ||.

As in the proof of Theorem 1 we derive the inequality similar to (14):

ġδ ≤ −
gδ

2
+

c0g
2
δ√

a(t)
+ a(t)‖v‖+

δ

2
√
a(t)

, c0 :=
M2

4
, (27)

and apply Lemma 1. Rather than to repeat the arguments, given in the proof of Theorem
1, we will use the results obtained in this proof. The constant c1 in Theorem 1 is now
replaced by cδ := c1 + 0.5δa−1.5(tδ). As in the proof of Theorem 1 one gets the estimate
‖uδ(t)− y‖ ≤ a0.5(t)λ−1, t ∈ [0, tδ]. Let us define the stopping time tδ from the equation

0.5δa−1.5(tδ) = c1. (28)

This equation has a unique solution tδ, because a(t) is decaying monotonically. Clearly,
limδ→0 tδ = ∞. Since limt→∞ a(t) = 0 and λ in our argument does not depend on tδ, the
estimate ‖uδ(tδ) − y‖ ≤ a0.5(tδ)λ

−1 shows that limδ→0 ‖uδ(tδ) − y‖ = 0. Thus, we have
proved the following theorem.

Theorem 3. Let uδ := uδ(tδ), where uδ(t) solves problem (27) and tδ is chosen in (28).
Then limδ→0 ||uδ − y|| = 0.

4 Stability of the iterative solution

Assume that the equation is F (u) = f , f is unknown, but the “noisy datum“ fδ is known,
such that ||fδ − f || ≤ δ. Consider the iterative process similar to (10):

vn+1 = vn − hnT
−1
an

[A∗(vn)(F (vn)− fδ) + an(vn − u0)], v0 = u0, (29)

Let
wn := vn − y, ||wn|| := ψn,

and choose hn = h independent of n, h ∈ (0, 1). A positive lower bound on h is imposed in
formula (35) below. An inequality similar to (25) takes the form:

ψn+1 ≤ γψn + pψ2
n +

hδ

2
√
an

, ψ0 = ||u0 − y||, (30)
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where

γ := 1− h

4
, p := 16c20||v||, an = 16c20ψ

2
n. (31)

We stop iterations in formula (29) when n = n(δ), where n(δ) is the largest integer for
which the inequality

hδ

2
√
an

≤ κγψn, κ ∈ (0,
1

3
), (32)

holds. One can use formula (31) for an and rewrite this inequality as

hδ

8c0κγ
≤ ψ2

n, κ ∈ (0,
1

3
). (33)

If (32) holds, then (30) implies:

ψn+1 ≤ (1 + κ)γψn + pψ2
n, (1 + κ)γ < 1, (34)

and the conditions

γ = 1− h

4
, 0 < κ <

1

3
, h ∈ (

4κ

1 + κ
, 1), (35)

imply that (1 + κ)γ < 1 and 4κ
1+κ

< 1. If

ψ0 <
q − (1 + κ)γ

p
, where (1 + κ)γ < q < 1, γ = 1− h

4
, (36)

then inequality (34) and Lemma 2 imply

ψn ≤ ψ0q
n, (37)

provided that

n < n(δ), (1 + κ)γ < q < 1, 0 < κ <
1

3
, (38)

where n(δ) is the largest integer for which inequality (32) holds. Clearly, limδ→0 n(δ) = ∞.
Thus

lim
δ→0

ψn(δ) = 0. (39)

We have proved the following result.
Theorem 4. Let the assumptions of Theorem 1 hold and (1 + κ)γ < 1. Assume that

conditions (35) and (36) hold, and ψn = ‖vn − y‖, where vn is defined by equation (29).
Then relations (37) and (39) hold, and limδ→0 ||vn(δ) − y|| = 0.

References

[1] Gavurin, M., Nonlinear functional equations and continuous analogues of iterative
methods, Izv. Vuzov. Ser.Matematika, 5, (1958), 18-31.

9



[2] Ortega, J., Rheinboldt, W., Iterative solution of nonlinear equations in several vari-
ables, SIAM, Philadelphia, 2000.

[3] Ramm, A. G. , Inverse problems, Springer, New York, 2005.

[4] Ramm, A. G. , Dynamical systems method for solving operator equations, Elsevier,
Amsterdam, 2007.

[5] Ramm, A. G. , Hoang, N.S., Dynamical Systems Method and Applications. Theo-
retical Developments and Numerical Examples, Wiley, Hoboken, 2012

[6] Ramm, A. G. , Dynamical Systems Method (DSM) for general nonlinear equations,
Nonlinear Analysis: Theory, Methods and Appl., 69, N7, (2008), 1934-1940.

[7] Ramm, A. G. , Stability of solutions to some evolution problems, Chaotic Modeling
and Simulation (CMSIM), 1, (2011), 17-27.

[8] Ramm, A. G. , How large is the class of operator equations solvable by a DSM
Newton-type method ? Appl. Math. Lett, 24, N6, (2011), 860-865.

10


	K-RExCoverPage - published manuscript.MASTER - Copy
	DSM for general - author's MS

