This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

A nonlinear inequality and evolution problems
A.G. Ramm

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:
Ramm, A.G. (2010). A nonlinear inequality and evolution problems. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Ramm, A.G. (2010). A nonlinear inequality and evolution problems. Journal of Inequalities and Special Functions, 1(1), 1-9.

Copyright: Copyright © 2010 Journal of Inequalities and Special Functions

Digital Object Identifier (DOI):

Publisher's Link: http://www.ilirias.com/

A NONLINEAR INEQUALITY AND EVOLUTION PROBLEMS

A.G. RAMM

Abstract. Assume that $g(t) \geq 0$, and

$$
\dot{g}(t) \leq-\gamma(t) g(t)+\alpha(t, g(t))+\beta(t), t \geq 0 ; \quad g(0)=g_{0} ; \quad \dot{g}:=\frac{d g}{d t}
$$

on any interval $[0, T)$ on which g exists and has bounded derivative from the right, $\dot{g}(t):=\lim _{s \rightarrow+0} \frac{g(t+s)-g(t)}{s}$. It is assumed that $\gamma(t)$, and $\beta(t)$ are nonnegative continuous functions of t defined on $\mathbb{R}_{+}:=[0, \infty)$, the function $\alpha(t, g)$ is defined for all $t \in \mathbb{R}_{+}$, locally Lipschitz with respect to g uniformly with respect to t on any compact subsets $[0, T], T<\infty$, and non-decreasing with respect to $g, \alpha\left(t, g_{1}\right) \geq \alpha\left(t, g_{2}\right)$ if $g_{1} \geq g_{2}$. If there exists a function $\mu(t)>0, \mu(t) \in C^{1}\left(\mathbb{R}_{+}\right)$, such that

$$
\alpha\left(t, \frac{1}{\mu(t)}\right)+\beta(t) \leq \frac{1}{\mu(t)}\left(\gamma(t)-\frac{\dot{\mu}(t)}{\mu(t)}\right), \quad \forall t \geq 0 ; \quad \mu(0) g(0) \leq 1
$$

then $g(t)$ exists on all of \mathbb{R}_{+}, that is $T=\infty$, and the following estimate holds:

$$
0 \leq g(t) \leq \frac{1}{\mu(t)}, \quad \forall t \geq 0
$$

If $\mu(0) g(0)<1$, then $0 \leq g(t)<\frac{1}{\mu(t)}, \quad \forall t \geq 0$.
A discrete version of this result is obtained.
The nonlinear inequality, obtained in this paper, is used in a study of the Lyapunov stability and asymptotic stability of solutions to differential equations in finite and infinite-dimensional spaces.

1. Introduction

The goal of this paper is to give a self-contained proof of an estimate for solutions of a nonlinear inequality

$$
\begin{equation*}
\dot{g}(t) \leq-\gamma(t) g(t)+\alpha(t, g(t))+\beta(t), t \geq 0 ; g(0)=g_{0} ; \dot{g}:=\frac{d g}{d t} \tag{1.1}
\end{equation*}
$$

and to demonstrate some of its many possible applications.
Denote $\mathbb{R}_{+}:=[0, \infty)$. It is not assumed a priori that solutions $g(t)$ to inequality (1.1) are defined on all of \mathbb{R}_{+}, that is, that these solutions exist globally. We give sufficient conditions for the global existence of $g(t)$. Moreover, under these conditions a bound on $g(t)$ is given, see estimate (1.5) in Theorem 1. This bound yields the relation $\lim _{t \rightarrow \infty} g(t)=0$ if $\lim _{t \rightarrow \infty} \mu(t)=\infty$ in (1.5).

[^0]Let us formulate our assumptions.
Assumption A). We assume that the function $g(t) \geq 0$ is defined on some interval $[0, T)$, has a bounded derivative $\dot{g}(t):=\lim _{s \rightarrow+0} \frac{g(t+s)-g(t)}{s}$ from the right at any point of this interval, and $g(t)$ satisfies inequality (1.1) at all t at which $g(t)$ is defined. The functions $\gamma(t)$, and $\beta(t)$, are continuous, non-negative, defined on all of \mathbb{R}_{+}. The function $\alpha(t, g) \geq 0$ is continuous on $\mathbb{R}_{+} \times \mathbb{R}_{+}$, nondecreasing with respect to g, and locally Lipschitz with respect to g. This means that $\alpha(t, g) \geq \alpha(t, h)$ if $g \geq h$, and

$$
\begin{equation*}
|\alpha(t, g)-\alpha(t, h)| \leq L(T, M)|g-h| \tag{1.2}
\end{equation*}
$$

if $t \in[0, T],|g| \leq M$ and $|h| \leq M, M=$ const >0, where $L(T, M)>0$ is a constant independent of g, h, and t.
Assumption B). There exists a $C^{1}\left(\mathbb{R}_{+}\right)$function $\mu(t)>0$, such that

$$
\begin{gather*}
\alpha\left(t, \frac{1}{\mu(t)}\right)+\beta(t) \leq \frac{1}{\mu(t)}\left(\gamma(t)-\frac{\dot{\mu}(t)}{\mu(t)}\right), \quad \forall t \geq 0 \tag{1.3}\\
\mu(0) g(0)<1 \tag{1.4}
\end{gather*}
$$

If $\mu(0) g(0) \leq 1$, then the inequality sign $<\frac{1}{\mu(t)}$ in Theorem 1 , in formula (1.5), is replaced by $\leq \frac{1}{\mu(t)}$.

Our results are formulated in Theorems 1 and 2, and Propositions 1,2. Proposition 1 is related to Example 1, and Proposition 2 is related to Example 2, see below.

Theorem 1. If Assumptions A) and B) hold, then any solution $g(t) \geq 0$ to inequality (1.1) exists on all of \mathbb{R}_{+}, i.e., $T=\infty$, and satisfies the following estimate:

$$
\begin{equation*}
0 \leq g(t)<\frac{1}{\mu(t)} \quad \forall t \in \mathbb{R}_{+} \tag{1.5}
\end{equation*}
$$

If $\mu(0) g(0) \leq 1$, then $0 \leq g(t) \leq \frac{1}{\mu(t)} \quad \forall t \in \mathbb{R}_{+}$.
Remark. If $\lim _{t \rightarrow \infty} \mu(t)=\infty$, then $\lim _{t \rightarrow \infty} g(t)=0$.
Let us explain how one applies estimate (1.5) in various problems (see also papers [3], [4], and the monograph [5] for other applications of differential inequalities which are particular cases of inequality (1.1)).
Example 1. Consider the problem

$$
\begin{equation*}
\dot{u}=A(t) u+B(t) u, \quad u(0):=u_{0} \tag{1.6}
\end{equation*}
$$

where $A(t)$ is a linear bounded operator in a Hilbert space H and $B(t)$ is a bounded linear operator such that

$$
\int_{0}^{\infty}\|B(t)\| d t:=C<\infty
$$

Assume that

$$
\begin{equation*}
\operatorname{Re}(A(t) u, u) \leq 0 \quad \forall u \in H, \quad \forall t \geq 0 \tag{1.7}
\end{equation*}
$$

Operators satisfying inequality (1.7) are called dissipative. They arise in many applications, for example in a study of passive linear and nonlinear networks (e.g., see [6], and [7], Chapter 3).

One may consider some classes of unbounded linear operator using the scheme developed in the proofs of Propositions 1,2. For example, in Proposition 1 the
operator $A(t)$ can be a generator of C_{0} semigroup $T(t)$ such that $\sup _{t \geq 0}\|T(t)\| \leq m$, where $m>0$ is a constant.

Let $A(t)$ be a linear closed, densely defined in H, dissipative operator, with domain of definition $D(A(t))$ independent of t, and I be the identity operator in H. Assume that the Cauchy problem

$$
\dot{U}(t)=A(t) U(t), \quad U(0)=I
$$

for the operator-valued function $U(t)$ has a unique global solution and

$$
\sup _{t \geq 0}\|U(t)\| \leq m
$$

where $m>0$ is a constant. Then such an unbounded operator $A(t)$ can be used in Example 1.
Proposition 1. If condition (1.7) holds and $C:=\int_{0}^{\infty}\|B(t)\| d t<\infty$, then the solution to problem (1.6) exists on \mathbb{R}_{+}, is unique, and satisfies the following inequality:

$$
\begin{equation*}
\sup _{t \geq 0}\|u(t)\| \leq e^{C}\left\|u_{0}\right\| \tag{1.8}
\end{equation*}
$$

Inequality (1.8) implies Lyapunov stability of the zero solution to equation (1.6).
Recall that the zero solution to equation (1.6) is called Lyapunov stable if for any $\epsilon>0$, however small, one can find a $\delta=\delta(\epsilon)>0$, such that if $\left\|u_{0}\right\| \leq \delta$, then the solution to Cauchy problem (1.6) satisfies the estimate $\sup _{t>0}\|u(t)\| \leq \epsilon$. If, in addition, $\lim _{t \rightarrow \infty}\|u(t)\|=0$, then the zero solution to equation (1.6) is called asymptotically stable in the Lyapunov sense.
Example 2. Consider an abstract nonlinear evolution problem

$$
\begin{equation*}
\dot{u}=A(t) u+F(t, u)+b(t), \quad u(0)=u_{0}, \tag{1.9}
\end{equation*}
$$

where $u(t)$ is a function with values in a Hilbert space $H, A(t)$ is a linear bounded operator in H which satisfies inequality

$$
\begin{equation*}
\operatorname{Re}(A u, u) \leq-\gamma(t)\|u\|^{2}, \quad t \geq 0 ; \quad \gamma=\frac{r}{1+t} \tag{1.10}
\end{equation*}
$$

$r>0$ is a constant, $F(t, u)$ is a nonlinear map in H, and the following estimates hold:

$$
\begin{equation*}
\|F(t, u)\| \leq \alpha(t, g), \quad g:=g(t):=\|u(t)\| ; \quad\|b(t)\| \leq \beta(t) \tag{1.11}
\end{equation*}
$$

where $\beta(t) \geq 0$ and $\alpha(t, g) \geq 0$ satisfy the conditions in Assumption A).
Let us assume that

$$
\begin{equation*}
\alpha(t, g) \leq c_{0} g^{p}, \quad p>1 ; \quad \beta(t) \leq \frac{c_{1}}{(1+t)^{\omega}} \tag{1.12}
\end{equation*}
$$

where c_{0}, p, ω and c_{1} are positive constants.
Proposition 2. If conditions (1.9)-(1.12) hold, and inequalities (2.7),(2.8) and (2.10) are satisfied (see these inequalities in the proof of Proposition 2), then the solution to the evolution problem (1.9) exists on all of \mathbb{R}_{+}and satisfies the following estimate:

$$
\begin{equation*}
0 \leq\|u(t)\| \leq \frac{1}{\lambda(1+t)^{q}}, \quad \forall t \geq 0 \tag{1.13}
\end{equation*}
$$

where λ and q are some positive constants the choice of which is specified by inequalities (2.7),(2.8) and (2.10).

The choice of λ and q is motivated and explained in the proof of Proposition 2 (see inequalities (2.7), (2.8) and (2.10) in Section 2).

Inequality (1.13) implies asymptotic stability of the solution to problem (1.9) in the sense of Lyapunov and, additionally, gives a rate of convergence of $\|u(t)\|$ to zero as $t \rightarrow \infty$.

The results in Examples 1,2 can be obtained in Banach space, but we do not go into detail.

Proofs of Theorem 1 and Propositions 1,2 are given in Section 2. Theorem 2, which is a discrete analog of Theorem 1, is formulated and proved in Section 3.

2. Proofs

Proof of Proposition 1. Local existence of the solution $u(t)$ to problem (1.6) is known (see, e.g., [1]). Uniqueness of this solution follows from the linearity of the problem and from estimate (1.8). Let us prove this estimate.

Multiply (1.6) by $u(t)$, let $g(t):=\|u(t)\|$, take real part, use (1.7), and get

$$
\frac{1}{2} \frac{d g^{2}(t)}{d t} \leq \operatorname{Re}(B(t) u(t), u(t)) \leq\|B(t)\| g^{2}(t)
$$

This implies $g^{2}(t) \leq g^{2}(0) e^{2 C}$, so (1.8) follows. Proposition 1 is proved.
Proof of Proposition 2. The local existence and uniqueness of the solution $u(t)$ to problem (1.9) follow from Assumption A (see, e.g., [1]). The existence of $u(t)$ for all $t \geq 0$, that is, the global existence of $u(t)$, follows from estimate (1.13) (see, e.g., [5], pp.167-168).

Let us derive estimate (1.13). Multiply (1.9) by $u(t)$, let $g(t):=\|u(t)\|$, take real part, use (1.10)-(1.12) and get

$$
\begin{equation*}
g \dot{g} \leq-\gamma(t) g^{2}(t)+\alpha(t, g(t)) g(t)+\beta(t) g(t), t \geq 0 \tag{2.1}
\end{equation*}
$$

Since $g \geq 0$, one obtains from this inequality inequality (1.1). However, first we would like to explain in detail the meaning of the derivative \dot{g} in our proof.

By \dot{g} the right derivatives is understood:

$$
\dot{g}(t):=\lim _{s \rightarrow+0} \frac{g(t+s)-g(t)}{s}
$$

If $g(t)=\|u(t)\|$ and $u(t)$ is continuously differentiable, then $(t):=g^{2}(t)=$ $(u(t), u(t))$ is continuously differentiable, and its derivative at the point t at which $g(t)>0$ can be computed by the formula:

$$
\dot{g}=\operatorname{Re}\left(\dot{u}(t), u^{0}(t)\right)
$$

where $u^{0}(t):=\frac{u(t)}{\|u(t)\|}$. Thus, the function $g(t)=\sqrt{(t)}$ is continuously differentiable at any point at which $g(t) \neq 0$. At a point t at which $g(t)=0$, the vector $u^{0}(t)$ is not defined, the derivative of $g(t)$ does not exist in the usual sense, but the right derivative of $g(t)$ still exists and can be calculated explicitly:

$$
\begin{aligned}
\dot{g}(t) & =\lim _{s \rightarrow+0} \frac{\|u(t+s)\|-\|u(t)\|}{s}=\lim _{s \rightarrow+0} \frac{\|u(t)+s \dot{u}(t)+o(s)\|}{s} \\
& =\lim _{s \rightarrow 0}\|\dot{u}(t)+o(1)\|=\|\dot{u}(t)\| .
\end{aligned}
$$

If $u(t)$ is continuously differentiable at some point t, and $u(t) \neq 0$, then

$$
\dot{g}=\|u(t)\|^{\cdot} \leq\|\dot{u}(t)\| .
$$

Indeed,

$$
2 g(t) \dot{g}(t)=(\dot{u}(t), u(t))+(u(t), \dot{u}(t)) \leq 2\|\dot{u}\|\|u\|=2\|\dot{u}(t)\| g(t)
$$

If $g(t) \neq 0$, then the above inequality implies $\dot{g}(t) \leq\|\dot{u}(t)\|$, as claimed. One can also derive this inequality from the formula $\dot{g}=\operatorname{Re}\left(\dot{u}(t), u^{0}(t)\right)$, since $\left|\operatorname{Re}\left(\dot{u}(t), u^{0}(t)\right)\right| \leq$ $\|\dot{u}(t)\|$.

If $g(t)>0$, then from (2.1) one obtains

$$
\begin{equation*}
\dot{g}(t) \leq-\gamma(t) g(t)+\alpha(t, g(t))+\beta(t), \quad t \geq 0 \tag{2.2}
\end{equation*}
$$

If $g(t)=0$ on an open set, then inequality (2.2) holds on this set also, because $\dot{g}=0$ on this set while the right-hand side of (2.2) is non-negative at $g=0$. If $g(t)=0$ at some point $t=t_{0}$, then (2.2) holds at $t=t_{0}$ because, as we have proved above, $\dot{g}\left(t_{0}\right)=0$, while the right-hand side of (2.2) is equal to $\beta(t) \geq 0$ if $g\left(t_{0}\right)=0$, and is, therefore, non-negative if $g\left(t_{0}\right)=0$.

If assumptions (1.12) hold, then inequality (2.2) can be rewritten as

$$
\begin{equation*}
\dot{g} \leq-\frac{1}{(1+t)^{\nu}} g+c_{0} g^{p}+\frac{c_{1}}{(1+t)^{\omega}}, \quad p>1 \tag{2.3}
\end{equation*}
$$

Let us look for $\mu(t)$ of the form

$$
\begin{equation*}
\mu(t)=\lambda(1+t)^{q}, \quad q=\text { const }>0, \quad \lambda=\text { const }>0 . \tag{2.4}
\end{equation*}
$$

Inequality (1.3) takes the form

$$
\begin{equation*}
\frac{c_{0}}{\left[\lambda(1+t)^{q}\right]^{p}}+\frac{c_{1}}{(1+t)^{\omega}} \leq \frac{1}{\lambda(1+t)^{q}}\left(\frac{r}{(1+t)^{\nu}}-\frac{q}{1+t}\right), \quad t>0 \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{c_{0}}{\lambda^{p-1}(1+t)^{q(p-1)}}+\frac{c_{1} \lambda}{(1+t)^{\omega-q}}+\frac{q}{1+t} \leq \frac{r}{(1+t)^{\nu}}, \quad t>0 \tag{2.6}
\end{equation*}
$$

Assume that the following inequalities (2.7)-(2.8) hold:

$$
\begin{equation*}
q(p-1) \geq \nu, \quad \omega-q \geq \nu, \quad 1 \geq \nu \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{c_{0}}{\lambda^{p-1}}+c_{1} \lambda+q \leq r \tag{2.8}
\end{equation*}
$$

Then inequality (2.6) holds, and Theorem 1 yields

$$
\begin{equation*}
g(t)=\|u(t)\|<\frac{1}{\lambda(1+t)^{q}}, \quad \forall t \geq 0 \tag{2.9}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\left\|u_{0}\right\|<\frac{1}{\lambda} \tag{2.10}
\end{equation*}
$$

Note that for any $\left\|u_{0}\right\|$ inequality (2.10) holds if λ is sufficiently large. For a fixed λ, however large, inequality (2.8) holds if r is sufficiently large.

Proposition 2 is proved.
The proof of Proposition 2 provides a flexible general scheme for obtaining estimates of the behavior of the solution to evolution problem (1.9) for $t \rightarrow \infty$.

Proof of Theorem 1. Let

$$
\begin{gather*}
g(t)=\frac{v(t)}{a(t)}, \quad a(t):=e^{\int_{0}^{t} \gamma(s) d s} \tag{2.11}\\
\eta(t):=\frac{a(t)}{\mu(t)}, \quad \eta(0)=\frac{1}{\mu(0)}>g(0) . \tag{2.12}
\end{gather*}
$$

Then inequality (1.1) reduces to

$$
\begin{equation*}
\dot{v}(t) \leq a(t) \alpha\left(t, \frac{v(t)}{a(t)}\right)+a(t) \beta(t), \quad t \geq 0 ; \quad v(0)=g(0) \tag{2.13}
\end{equation*}
$$

One has

$$
\begin{equation*}
\dot{\eta}(t)=\frac{\gamma(t) a(t)}{\mu(t)}-\frac{\dot{\mu}(t) a(t)}{\mu^{2}(t)}=\frac{a(t)}{\mu(t)}\left(\gamma(t)-\frac{\dot{\mu}(t)}{\mu(t)}\right) \tag{2.14}
\end{equation*}
$$

From (1.3), (2.11)-(2.14), one gets

$$
\begin{equation*}
v(0)<\eta(0), \quad \dot{v}(0) \leq \dot{\eta}(0) \tag{2.15}
\end{equation*}
$$

Therefore there exists a $T>0$ such that

$$
\begin{equation*}
0 \leq v(t)<\eta(t), \quad \forall t \in[0, T) \tag{2.16}
\end{equation*}
$$

Let us prove that $T=\infty$.
First, note that if inequality (2.16) holds for $t \in[0, T)$, or, equivalently, if

$$
\begin{equation*}
0 \leq g(t)<\frac{1}{\mu(t)}, \quad \forall t \in[0, T) \tag{2.17}
\end{equation*}
$$

then

$$
\begin{equation*}
\dot{v}(t) \leq \dot{\eta}(t), \quad \forall t \in[0, T) \tag{2.18}
\end{equation*}
$$

One can pass to the limit $t \rightarrow T-0$ in this inequality and get

$$
\begin{equation*}
\dot{v}(T) \leq \dot{\eta}(T) \tag{2.19}
\end{equation*}
$$

Indeed, from inequality (2.17) it follows that

$$
\alpha\left(t, \frac{v}{a}\right)+\beta=\alpha(t, g)+\beta \leq \alpha\left(t, \frac{1}{\mu}\right)+\beta
$$

because $\alpha(t, g) \leq \alpha\left(t, \frac{1}{\mu}\right)$.
Furthermore, from inequality (1.3) one derives:

$$
\alpha\left(t, \frac{1}{\mu}\right)+\beta \leq \frac{1}{\mu(t)}\left(\gamma(t)-\frac{\dot{\mu}(t)}{\mu(t)}\right) .
$$

Consequently, from inequalities (2.13)-(2.14) one obtains

$$
\dot{v}(t) \leq \frac{a(t)}{\mu(t)}\left(\gamma(t)-\frac{\dot{\mu}(t)}{\mu(t)}\right)=\dot{\eta}(t), \quad t \in[0, T)
$$

and inequality (2.18) is proved.
Let $t \rightarrow T-0$ in (2.18). The function $\eta(t)$ is defined for all $t \in \mathbb{R}_{+}$and $\dot{\eta}(t)$ is continuous on \mathbb{R}_{+}. Thus, there exists the limit

$$
\lim _{t \rightarrow T-0} \dot{\eta}(t)=\dot{\eta}(T)
$$

By $\dot{v}(T)$ in inequality (2.19) one may understand $\lim \sup _{t \rightarrow T-0} \dot{v}(t)$, which does exist because $\dot{v}(t)$ is bounded for all $t<T$ by a constant independent of $t \in[0, T]$, due to the estimate (2.18).

To prove that $T=\infty$ we prove that the "upper" solution $w(t)$ to the inequality (2.13) exists for all $t \in \mathbb{R}_{+}$.

Define $w(t)$ as the solution to the problem

$$
\begin{equation*}
\dot{w}(t)=a(t) \alpha\left(t, \frac{w(t)}{a(t)}\right)+a(t) \beta(t), \quad w(0)=v_{0} \tag{2.20}
\end{equation*}
$$

The unique solution to problem (2.20) exists locally, on $[0, T)$, because $\alpha(t, g)$ is assumed locally Lipschitz. On the interval $[0, T)$ one obtains inequality

$$
0 \leq v(t) \leq w(t), \quad t \in[0, T)
$$

by the standard comparison lemma (see, e.g., [5], p.99, or [2]). Thus, inequality

$$
\begin{equation*}
0 \leq v(t) \leq w(t) \leq \eta(t), \quad t \in[0, T) \tag{2.21}
\end{equation*}
$$

holds.
The desired conclusion $T=\infty$ one derives from the following result.
Proposition 3. The solution $w(t)$ to problem (2.20) exists on every interval $[0, T]$ on which it is a priori bounded by a constant depending only on T.

We prove this result later. Assuming that Proposition 3. is established, one concludes that $T=\infty$.

Let us finish the proof of Theorem 1 using Proposition 3. Since $\eta(t)$ is bounded on any interval $[0, T]$ (by a constant depending only on T) one concludes from Proposition 3 that $w(t)$ (and, therefore, $v(t)$) exists on all of \mathbb{R}_{+}. If $v(t) \leq \eta(t)$ $\forall t \in \mathbb{R}_{+}$, then inequality (1.5) holds (see (2.11) and (2.12)), and Theorem 1 is proved.

Let us prove Proposition 3.
Proof of Proposition 3. We prove a more general statement, namely, Proposition 4, from which Proposition 3 follows.

Proposition 4. Assume that

$$
\begin{equation*}
\dot{u}=f(t, u), \quad u(0)=u_{0} \tag{2.22}
\end{equation*}
$$

where $f(t, u)$ is an operator in a Banach space X, locally Lipschitz with respect to u for every t, i.e., $\|f(t, u)-f(t, v)\| \leq L(t, M)\|u-v\|, \forall v, v \in\{u:\|u\| \leq M\}$. The unique solution to problem (2.22) exists for all $t \geq 0$ if and only if

$$
\begin{equation*}
\|u(t)\| \leq c(t), \quad t \geq 0 \tag{2.23}
\end{equation*}
$$

where $c(t)$ is a continuous function defined for all $t \geq 0$, and inequality (2.23) holds for all t for which $u(t)$ exists.
Proof of Proposition 4. The necessity of condition (2.23) is obvious: one may take $c(t)=\|u(t)\|$.

To prove its sufficiency, recall a known local existence theorem, see, e.g., [1].
Proposition 5. If $\|f(t, u)\| \leq M_{1}$ and $\|f(t, u)-f(t, v)\| \leq L\|u-v\|, \forall t \in\left[t_{0}, t_{0}+\right.$ $\left.T_{1}\right],\left\|u-u_{0}\right\| \leq R, u_{0}=u\left(t_{0}\right)$, then there exists a $\delta>0, \delta=\min \left(\frac{R}{M_{1}}, \frac{1}{L}, T_{1}-T\right)$, such that for every $\tau_{0} \in\left[t_{0}, T\right], T<T_{1}$, there exists a unique solution to equation (2.22) in the interval $\left(\tau_{0}-\delta, \tau+\delta\right)$ and $\left\|u(t)-u\left(t_{0}\right)\right\| \leq R$.

Using Proposition 5, let us prove the sufficiency of the assumption (2.23) for the global existence of $u(t)$, i.e., for the existence of $u(t)$ for all $t \geq t_{0}$.

Assume that condition (2.23) holds and the solution to problem (2.22) exists on $\left[t_{0}, T\right)$ but does not exist on $\left[t_{0}, T_{1}\right)$ for any $T_{1}>T$. Let us derive a contradiction from this assumption.

Proposition 5 guarantees the existence and uniqueness of the solution to problem (2.22) with $t_{0}=T$ and the initial value $u_{0}=u(T-0)$. The value $u(T-0)$ exists if inequality (2.23) holds, as we prove below. The solution $u(t)$ exists on the interval $[T-\delta, T+\delta]$ and, by the uniqueness theorem, coincides with the solution $u(t)$ of the problem (2.22) on the interval $(T-\delta, T)$. Therefore, the solution to (2.22) can
be uniquely extended to the interval $[0, T+\delta)$, contrary to the assumption that it does not exist on the interval $\left[0, T_{1}\right)$ with any $T_{1}>T$. This contradiction proves that $T=\infty$, i.e., the solution to problem (2.22) exists for all $t \geq t_{0}$ if estimate (2.23) holds and $c(t)$ is defined and continuous $\forall t \geq t_{0}$.

Let us now prove the existence of the limit

$$
\lim _{t \rightarrow T-0} u(t):=u(T-0)
$$

Let $t_{n} \rightarrow T, t_{n}<T$. Then

$$
\left\|u\left(t_{n}\right)-u\left(t_{n+m}\right)\right\| \leq \int_{t_{n}}^{t_{n+m}}\|f(t, u(s))\| d s \leq\left(t_{n+m}-t_{n}\right) M_{1} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore, by the Cauchy criterion, there exists the limit

$$
\lim _{t_{n} \rightarrow T-0} u(t)=u(T-0)
$$

Estimate (2.23) guarantees the existence of the constant M_{1}.
Proposition 4 is proved
Therefore Proposition 3 is also proved and, consequently, the statement of Theorem 1, corresponding to the assumption (1.5), is proved. In our case $t_{0}=0$, but one may replace the initial moment $t_{0}=0$ in (1.1) by an arbitrary $t_{0} \in \mathbb{R}_{+}$.

Finally, if $g(0) \leq \frac{1}{\mu(0)}$, then one proves the inequality

$$
0 \leq g(t) \leq \frac{1}{\mu(t)}, \quad \forall t \in \mathbb{R}_{+}
$$

using the argument similar to the above. This argument is left to the reader.
Theorem 1 is proved.

3. Discrete version of Theorem 1

Theorem 2. Assume that $g_{n} \geq 0, \alpha\left(n, g_{n}\right) \geq 0$,

$$
\begin{equation*}
g_{n+1} \leq\left(1-h_{n} \gamma_{n}\right) g_{n}+h_{n} \alpha\left(n, g_{n}\right)+h_{n} \beta_{n}, \quad h_{n}>0,0<h_{n} \gamma_{n}<1 \tag{3.1}
\end{equation*}
$$

and $\alpha\left(n, g_{n}\right) \geq \alpha\left(n, q_{n}\right)$ if $g_{n} \geq q_{n}$. If there exists a sequence $\mu_{n}>0$ such that

$$
\begin{equation*}
\alpha\left(n, \frac{1}{\mu_{n}}\right)+\beta_{n} \leq \frac{1}{\mu_{n}}\left(\gamma_{n}-\frac{\mu_{n+1}-\mu_{n}}{h_{n} \mu_{n}}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{0} \leq \frac{1}{\mu_{0}} \tag{3.3}
\end{equation*}
$$

then

$$
\begin{equation*}
0 \leq g_{n} \leq \frac{1}{\mu_{n}} \quad \forall n \geq 0 \tag{3.4}
\end{equation*}
$$

Proof. For $n=0$ inequality (3.4) holds because of (3.3). Assume that it holds for all $n \leq m$ and let us check that then it holds for $n=m+1$. If this is done, Theorem 2 is proved. Using the inductive assumption, one gets:

$$
g_{m+1} \leq\left(1-h_{m} \gamma_{m}\right) \frac{1}{\mu_{m}}+h_{m} \alpha\left(m, \frac{1}{\mu_{m}}\right)+h_{m} \beta_{m} .
$$

This and inequality (3.2) imply:

$$
\begin{aligned}
g_{m+1} & \leq\left(1-h_{m} \gamma_{m}\right) \frac{1}{\mu_{m}}+h_{m} \frac{1}{\mu_{m}}\left(\gamma_{m}-\frac{\mu_{m+1}-\mu_{m}}{h_{m} \mu_{m}}\right) \\
& =\frac{\mu_{m} h_{m}-\mu_{m} h_{m}^{2} \gamma_{m}+h_{m}^{2} \gamma_{m} \mu_{m}-h_{m} \mu_{m+1}+h_{m} \mu_{m}}{\mu_{m}^{2} h_{m}} \\
& =\frac{2 \mu_{m} h_{m}-h_{m} \mu_{m+1}}{\mu_{m}^{2} h_{m}}=\frac{2 \mu_{m}-\mu_{m+1}}{\mu_{m}^{2}}=\frac{1}{\mu_{m+1}}+\frac{2 \mu_{m}-\mu_{m+1}}{\mu_{m}^{2}}-\frac{1}{\mu_{m+1}} .
\end{aligned}
$$

The proof is completed if one checks that

$$
\frac{2 \mu_{m}-\mu_{m+1}}{\mu_{m}^{2}} \leq \frac{1}{\mu_{m+1}}
$$

or, equivalently, that

$$
2 \mu_{m} \mu_{m+1}-\mu_{m+1}^{2}-\mu_{m}^{2} \leq 0
$$

The last inequality is obvious since it can be written as

$$
-\left(\mu_{m}-\mu_{m+1}\right)^{2} \leq 0
$$

Theorem 2 is proved.
Theorem 2 was formulated in [3] and proved in [4]. We included for completeness a proof, which is different from the one in [4] only slightly.

References

[1] Yu. L. Daleckii and M. G. Krein, Stability of solutions of differential equations in Banach spaces, Amer. Math. Soc., Providence, RI, (1974).
[2] P. Hartman, Ordinary differential equations, J. Wiley, New York, (1964).
[3] N.S. Hoang and A. G. Ramm, DSM of Newton-type for solving operator equations $F(u)=$ f with minimal smoothness assumptions on F, International Journ. Comp.Sci. and Math. (IJCSM), 3 N1/2 (2010), 3-55.
[4] N. S. Hoang and A. G. Ramm, A nonlinear inequality and applications, Nonlinear Analysis: Theory, Methods and Appl., 71 (2009) 2744-2752.
[5] A. G. Ramm, Dynamical systems method for solving operator equations, Elsevier, Amsterdam, (2007).
[6] A. G. Ramm, Stationary regimes in passive nonlinear networks, in the book Nonlinear Electromagnetics, Editor P. Uslenghi, Acad. Press, New York, (1980) 263-302.
[7] A. G. Ramm, Theory and applications of some new classes of integral equations, SpringerVerlag, New York, (1980).
A.G. Ramm

Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA
E-mail address: ramm@math.ksu.edu

[^0]: 2000 Mathematics Subject Classification. 26D10, 34G20, 37L05, 44J05, 47J35.
 Key words and phrases. nonlinear inequality; Lyapunov stability; evolution problems; differential equations.
 © 2010 Ilirias Publications, Prishtinë, Kosovë.
 Submitted August 12, 2010. Published September 15, 2010.

