
702 PHYTOPATHOLOGY 

Ecology and Epidemiology 

Predicting Fusarium Head Blight Epidemics  
with Boosted Regression Trees 

D. A. Shah, E. D. De Wolf, P. A. Paul, and L. V. Madden 

First and second authors: Department of Plant Pathology, Kansas State University, Manhattan 66506; and third and fourth authors: 
Department of Plant Pathology, The Ohio State University, Wooster 44691. 

Accepted for publication 16 January 2014. 

ABSTRACT 

Shah, D. A., De Wolf, E. D., Paul, P. A., and Madden, L. V. 2014. 
Predicting Fusarium head blight epidemics with boosted regression trees. 
Phytopathology 104:702-714. 

Predicting major Fusarium head blight (FHB) epidemics allows for the 
judicious use of fungicides in suppressing disease development. Our 
objectives were to investigate the utility of boosted regression trees 
(BRTs) for predictive modeling of FHB epidemics in the United States, 
and to compare the predictive performances of the BRT models with 
those of logistic regression models we had developed previously. The data 
included 527 FHB observations from 15 states over 26 years. BRTs were 
fit to a training data set of 369 FHB observations, in which FHB 
epidemics were classified as either major (severity ≥ 10%) or non-major 
(severity < 10%), linked to a predictor matrix consisting of 350 weather-
based variables and categorical variables for wheat type (spring or 

winter), presence or absence of corn residue, and cultivar resistance. 
Predictive performance was estimated on a test (holdout) data set con-
sisting of the remaining 158 observations. BRTs had a misclassification 
rate of 0.23 on the test data, which was 31% lower than the average 
misclassification rate over 15 logistic regression models we had presented 
earlier. The strongest predictors were generally one of mean daily relative 
humidity, mean daily temperature, and the number of hours in which the 
temperature was between 9 and 30°C and relative humidity ≥ 90% simul-
taneously. Moreover, the predicted risk of major epidemics increased 
substantially when mean daily relative humidity rose above 70%, which 
is a lower threshold than previously modeled for most plant pathosys-
tems. BRTs led to novel insights into the weather–epidemic relationship. 

Additional keywords: disease modeling, disease forecasting, machine 
learning, plant disease epidemiology, wheat scab. 

 
Major epidemics of Fusarium head blight (FHB), caused 

primarily by Fusarium graminearum sensu stricto (59) of the  
F. graminearum species complex (43,53), are a recurring obstacle 
to successful wheat (Triticum aestivum L. em. Thell) production 
worldwide. Epidemics are responsible for large direct (35,36) and 
indirect (42) economic losses. Foliar fungicide applications timed 
to coincide with anthesis, if the environment is conducive for 
FHB, are one component of an effective disease management 
strategy (56). Accurate forecasts help growers recognize when 
their wheat crops are at a high risk of a major FHB epidemic, and 
most likely to benefit from a fungicide. When the risk of a major 
epidemic is low, growers could forgo inessential fungicide 
applications. Management decisions (and, hence, forecasts) need 
to be made by anthesis so that producers have sufficient time to 
spray should they choose that option. 

The Fusarium Head Blight Risk Assessment Tool (http://www. 
wheatscab.psu.edu) is a publicly funded service that provides 
local-level, empirical FHB predictions across several of the 
wheat-growing regions of the United States which have histori-
cally experienced FHB epidemics (35). The forecasts are based on 
logistic regression models developed by De Wolf et al. (13), with 
subsequent revisions (37,38). We recently reexamined those 
models with more up-to-date data and analytical tools, in the 
process developing 15 new logistic regression models with im-
proved predictive performance on a test data set (51). That latter 

effort was not without some statistical challenges, however. There 
were high correlations among candidate predictors, which were 
mitigated by restricting modeling to within fixed-length windows. 
We used bootstrapping with a leaps-and-bounds subset selection 
algorithm to further deal with the predictor correlations and the 
tendency of the algorithms to select noise variables in some cases. 
Models were restricted to no more than four weather-based pre-
dictors. With logistic regression applied to a relatively large 
number of predictors, it was difficult to identify or consider inter-
actions. For some predictors, there was a nonlinear relationship 
with the response on the logit scale, which we accounted for with 
a generalized additive model basis. Although our models (51) 
offered a better sensitivity-specificity balance than currently de-
ployed models (13,37,38) on the test data set, we did question 
whether the improvements offered by the newer models were 
sufficient to justify replacing the current models used in the Risk 
Assessment Tool. 

Boosted regression trees (BRTs) is a classification algorithm 
which originated in the machine-learning community and was 
later shown to have a statistical interpretation (17). The boosting 
algorithm works by fitting individual regression trees in a for-
ward, additive manner, with each added tree focusing on the (re-
weighted) observations that are still misclassified (21). In this 
way, it combines many (up to thousands) individually weak clas-
sifiers to create an overall classifier with improved predictive 
performance. Some salient features of the algorithm (6,15,18,33) 
include the ability to handle any type of predictor (i.e., continuous, 
categorical, or binary), immunity to the effect of outliers, identi-
fication of important predictors, automatic modeling of com-
plexity in the data (interactions and nonlinear functions), and the 
ability to handle highly correlated predictors. For these reasons, 
BRTs have grown rapidly in popularity in the ecological sciences, 
providing not only predictive utility but also insights into 
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ecological relationships (1,24,40). However, despite the apparent 
exuberant embrace of BRTs in the ecological sciences, not all 
researchers are convinced by claims of their superior predictive 
performance over more traditional methods (4,16). Algorithmic 
performance is linked to the inherent properties of the data set 
being modeled (e.g., number of and correlations among con-
tinuous, ordinal and categorical response and predictor variables) 
and the skill of the modeler in “tuning” the algorithm (19), and 
one algorithm that performs “better” on a given data set may not 
do as well on another. In addition, Hand (19) cautioned that the 
more complex algorithms such as BRTs may be increasing 
predictive performance by only a very small amount over what 
can be achieved by more traditional methods. Nevertheless, even 
with these caveats in mind, the growing number of studies in 
ecology which have used BRTs does indicate that the method is 
proving itself useful. Within the field of plant pathology, BRTs 
are still a novelty because examples are sparse. Landschoot et al. 
(32) used a BRT algorithm as one modeling technique in their 
investigation of cross-validation strategies in the predictive 
modeling of FHB in Belgian winter wheat. Shah (50) used BRTs 
on a snap bean survey database to explore factors associated with 
white mold. 

In this article, we explored BRTs as a tool for predictive model-
ing of FHB in the United States. We investigated, for parsimony 
reasons, whether fitted BRTs could be simplified without loss of 
predictive performance, and whether model-averaging individual 
BRTs improved the predictive performance given by any one BRT 
model. We then compared their predictive performances with 
those of the logistic regression models developed earlier on the 
same data set (51). 

MATERIALS AND METHODS 

The data matrix. Details on the construction of the data set 
were given in a previous article (51). Briefly, there were 527 FHB 
severity observations, collected in 15 states over 26 years, linked 
to a matrix of 350 weather-based predictors summarizing condi-
tions in windows of 5, 7, 10, 14, or 15 days in length, either 
before anthesis (i.e., the pre-anthesis period) or after anthesis (i.e., 
the post-anthesis period); and to binary indicators for corn residue 
presence or absence (CORN), spring or winter wheat (TYPE), 
and an ordinal variable representing four cultivar resistance levels 
(RESIST). FHB severity (S), also called the FHB index (52), is 
the mean percentage of a wheat spike’s surface area with FHB 
symptoms, where the mean is estimated over all sampled spikes. 
The response variable of interest was a binary categorization of S 
(on a percentage scale): fhb௜ = ൜0	if	 ௜ܵ < 101	if	 ௜ܵ		 10  (1) 

where fhbi = 0 represented a non-major epidemic and fhbi = 1 a 
major epidemic of FHB, for all observations 1,…,N. Variable 
names are identical to those used by Shah et al. (51), with addi-
tional abbreviated acronyms (Table 1) used for simpler labeling in 
graphics presented later. There were six different weather-based 
predictor types summarizing (in some defined way) dew-point 
depression (DD), rainfall (R), relative humidity (RH), temperature 
(T), vapor pressure deficit (VPD), or simultaneous temperature 
and relative humidity conditions (TRH) within windows and pre- 
or post-anthesis periods. We define a predictor group as a set of 
predictors that varied only in the window and period for the 
conditions being summarized. For example, at the top of Table 1, 
group 1 consisted of any predictor which summarized the mean 
overnight VPD, where that summary could be made over a 5-, 7-, 
10-, 14-, or 15-day window in either one of the pre- or post-
anthesis periods. 

We were interested in correctly classifying the two classes of 
fhb from the available weather-based predictors plus the cate-

gorical predictors RESIST, CORN, and TYPE. Five imputed 
versions of the data matrix were available because of missing 
values for some predictors (51). Each imputed data set was 
divided into training (70%) and test (30%) sets by the same split 
used previously (51). Model building and validation were done 
with the training set. The test (holdout) set was not used in model 
development but was used in estimating the expected model error 
(rate at which a model misclassifies observations) (21). 

BRTs. Features of BRTs have been discussed sufficiently 
elsewhere and are only summarized here. For the applied prac-
titioner, Buston and Elith (6) and Leathwick et al. (33) provide 
good nontechnical explanations of the principles behind BRTs, 
while Elith et al. (15) give further details and practical examples 
of fitting BRTs to ecological data. The more mathematically 
inclined should consult Bühlmann and Hothorn (5), Friedman et 
al. (17), and Hastie et al. (21). A discussion of BRTs within the 
broader class of machine-learning algorithms is in Crisci et al. 
(11). The Appendix contains more information on the boosted 
regression model framework used in the current article. 

BRT models were fit to the set of predictors within each 
window; these models were termed individual-window BRT 
models (brti). There were 10 brti models, one for each of the five 
pre- and five post-anthesis windows. Each window contained 35 
weather-based predictors, plus the categorical predictors CORN, 
RESIST, and TYPE. Another BRT model was fit to the un-
restricted set of all 350 weather-based predictors plus the three 
categorical predictors (i.e., no subsetting of predictors by win-
dow). We called this model the unrestricted BRT model (brtu). 

Fitting BRTs requires tuning parameters for the total number of 
trees (nt), the tree complexity (tc), the learning rate (lr), and the 
bag fraction (η). At each iteration of the algorithm, a fraction η of 
the training data is sampled at random without replacement and 
used to grow the next tree in the sequence. However, the BRT 
algorithm can continue adding trees until the data are completely 
overfitted, which reduces a model’s ability to predict to new data 
(20,21). Therefore, some form of regularization is desirable, and 
is accomplished with BRTs by (i) limiting nt and (ii) down-
weighting (shrinking) the contribution of each successive tree 
added to the model, thereby slowing the rate at which the 
algorithms “learns” the data. The amount of shrinkage is con-
trolled by the lr parameter. The tc parameter controls the level of 
interaction allowed (tc = 1 no interactions [i.e., a strictly additive 
model], tc = 2 allows up to pairwise interactions, and so on). 
Suitable values for tc, lr, and η together determine nt. 

We used tc = 3 and η = 0.75 for all models; lr = 0.005 was used 
for the pre-anthesis brti models plus the brtu model and lr = 0.01 
was used for the post-anthesis brti models. These parameter 
settings consistently gave a minimum of 1,000 nt across all fitted 
models and were initially guided by practical suggestions for a 
binary response with a relatively small data set (15), followed by 
exploratory model fittings (data not shown). Model fitting was 
done with the dismo package (ver. 0.7-17) in R (64-bit version 
2.15.0; R Foundation for Statistical Computing, Vienna) on 
Windows 7 Professional ((Microsoft Corp., Redmond, WA). The 
model-fitting process was repeated with each of the five imputed 
training data sets. 

Model simplification. Our previous experience with this data 
set (51) was that not all predictors were likely to contribute to 
predictive performance. Also, with small data sets redundant, 
noninformative predictors can degrade model performance by 
increasing the variance (15,19). In the interest of parsimony, we 
investigated simplified brti models by dropping up to 33 pre-
dictors (one at a time) per model from the original 35 while, at the 
same time, always retaining RESIST as an epidemiologically 
meaningful predictor (14,56). The simplifications were handled 
with the gbm.simplify function in the dismo package. Ten-fold 
cross-validation was used to determine the sequence in which 
predictors could be removed from the model (starting with the 
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lowest contributing predictor), based on the change in model 
deviance relative to that of the full model. Note that, because of 
the stochasticity built into the algorithm (via η and cross-
validation), the set of predictors retained after each simplification 
is not necessarily the same across repeated runs of the algorithm 
or across the different imputed versions of the training data. We 
then refit BRTs to the sets of retained predictors (one predictor 
having been removed at a time) and recorded the cross-validated 
area under the receiver operating characteristic (ROC) curve (cv 
AUC score) and associated standard error for each refit model. 
The parameters tc, lr, and η were the same as above, and nt was 
still a minimum of 1,000 trees. 

A plot of the cv AUC score suggested that brti models could be 
simplified to six predictors without any loss in predictive perform-
ance (Fig. 1A). The visual impression was confirmed statistically 
by comparing the cv AUC scores of the full and simplified brti 
models by a Z test calculated under the conservative assumption 
of perfect correlation between the AUC estimates for ROC curves 
built from the same data (28). We also simplified the (unrestricted) 
brtu model down to 10 predictors (again with RESIST included in 
every model). In this latter case, the cv AUC scores indicated 
performance degradation with higher numbers of retained predic-

tors and an “optimal” number of predictors of 35 to 50 (Fig. 1B). 
There is the problem of additional stochasticity introduced by 

having five different imputed versions of the data set. Let mj 
represent a BRT model m fitted to the jth imputed version of the 
training data (j = 1,…,5). For a brti model fitted to predictors 
within a given window and period, we tabulated the frequencies 
of predictor occurrence when the mj were simplified to five 
weather predictors plus RESIST. For the brtu model, we tabulated 
the frequency of predictor occurrence when the mj were 
simplified to 49 weather-based predictors plus RESIST. Not all 
predictors were found at a frequency of five across imputations 
within simplified models, perhaps because of the built-in stochas-
ticity in the BRT algorithms introduced via η, the variability 
among imputations, and noise within the data. 

The brti models were then refitted to the subset of predictors 
which appeared more than once in the frequency tabulations 
described above, all the time retaining RESIST as a predictor. The 
brtu model was refit to the subset of predictors (including RESIST) 
with a frequency of five. The deliberate focus on “stronger” 
predictors should lead to more stable models (19). This last subset 
of predictors is shown in Table 1 and consisted of weather-based 
predictors only; TYPE and CORN were not among the predictors 

TABLE 1. Weather-based predictors in boosted regression tree models 

 
Predictor type, full acronyma 

 
Description 

Window  
(w) 

Abbreviated 
acronymb 

 
Groupc 

 
Modeld 

Vapor pressure deficit (VPD; kPa)      
VPD.A.w.12H Mean VPD per overnight period pre.7 vpd.4 1 brti 
  pre.15 vpd.13 1 brti 
  post.7 vpd.19 1 brti 
  post.14 vpd.25 1 brti 
VPD.L45.w.12H Number of h VPD ≤ 0.45 kPa overnight pre.5 vpd.3 3 brti 
  pre.7 vpd.6 3 brtu 
  post.15 vpd.30 3 brti 
      

Dew-point depression (DD; °C)      
DD.A.w.12H Mean DD per overnight period pre.5 dd.1 4 brti 
  pre.7 dd.3 4 brti 
  pre.10 dd.5 4 brti and brtu 
  pre.14 dd.7 4 brti 
  pre.15 dd.9 4 brti 
  post.10 dd.15 4 brti 
DD.L1.w.12H Number of h DD < 1°C overnight pre.14 dd.8 5 brti 
      

Relative humidity (RH; %)      
RH.A.w.12H Mean RH per overnight period pre.10 rh.21 6 brti 
  pre.15 rh.41 6 brti 
  post.5 rh.51 6 brti 
  post10 rh.71 6 brti 
RH.A.w.24H Mean RH per day pre.7 rh.12 7 brti and brtu 
  pre.10 rh.22 7 brti and brtu 
  pre.14 rh.32 7 brti and brtu 
  post.5 rh.52 7 brti and brtu 
  post.7 rh.62 7 brti 
RH.G80.w.12H Number of h RH ≥ 80% overnight pre.14 rh.33 8 brti and brtu 
  pre.15 rh.43 8 brti 
RH.MXRLG80.w.24H Maximum (run length [number of h RH ≥ 80%])e post.7 rh.67 12 brtu 
  post.10 rh.77 12 brtu 
  post.15 rh.97 12 brti 

   (continued on next page)
a Acronyms follow the naming convention a.b.w.c, where a indicates whether the variable is summarizing vapor pressure deficit (VPD; kPa), dew-point depression 

(DD; °C), relative humidity (RH; %), temperature (T; °C), rainfall (R; mm), or T and RH conditions being met simultaneously (TRH); b indicates the type of
summary measure (see the Description column), such as S for sum, A for average (mean), L for less than, and so on; w is a placeholder for one of 10 vectors of
hourly time series weather data (wpre.5, wpre.7, wpre.10, wpre.14, wpre.15, wpost.5, wpost.7, wpost.10, wpost.14, and wpost.15), where the subscript in the preceding list indicates 
if the weather data span 5, 7, 10, 14, or 15 days pre- or post-anthesis; c indicates a 24-h day (24H = 0800 h to 0800 h), or a 12-h overnight period (12H = 2000 h 
to 0800 h). These are the same acronyms used by Shah et al. (51).

b An abbreviated predictor name used for clarity in labeling Figures.
c Within groups, predictors vary only over the defining window. For example, group 1 contains predictors measuring mean VPD per day, with five in the pre-

anthesis period (5-, 7-, 10-, 14-, and 15-day windows) and five in the post-anthesis period (5-, 7-, 10-, 14-, and 15-day windows). The input predictor matrix had 
35 groups and 10 predictors per group (51). Note that not all 35 groups or predictors per group appeared in the final models; only those that do so are shown in 
the Table 1. See Shah et al. (51) for a full listing of predictor groups. 

d Abbreviations: brti = individual-window boosted regression tree model and brtu = boosted regression tree model built on the unrestricted set of predictors.
e The maximum run length of the number of consecutive hours in which RH ≥ 80%.
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retained during the simplification stages. There were five to nine 
weather-based predictors per brti model, and 18 such predictors 
for the brtu model. 

Model summaries. The simplified brti and brtu models were 
summarized by their cv AUC scores on the training data. The 
Youden index (YI), defined as the maximum difference between 
the true-positive and false-positive predictive rates (28), was used 
as an optimal cut-point in converting predicted probabilities to 
classifications as major or non-major FHB epidemics. We used 
bubble plots to succinctly summarize several model features, in-
cluding predictor type, group, the number of predictors per group, 
and the mean relative influence per group, where these measures 
were plotted separately for the pre- and post-anthesis periods. In 
BRTs, a predictor’s relative influence is a scaled measure of its 
contribution based on the number of times the predictor is 
selected as a criterion for splitting the data within a tree and the 
improvement in performance resulting from the split (18). Predic-
tors with stronger influence on the response variable have higher 
relative influences. All measures described above were means 
over the five mj for a given brti model or the brtu model. Mean 
predicted probabilities were calculated before estimating YI. For 
each model, we also plotted the partial-dependence plots and identi-
fied the main pairwise interactions (21). Partial-dependence plots 
are a graphical representation of the effect of a given predictor on 

the response function (logit in our case) after accounting for the 
average effects of all other predictors in the model. For pairwise 
interactions, the magnitude of the metric measuring the inter-
action increases (unbounded) with the size of the interaction; a 
value of zero indicates no interaction (15). The interaction metrics 
are relative, which allows one to rank the pairwise interactions 
within any given model. They should not be compared across 
different models, however. 

Model averaging. For each observation, the predicted prob-
abilities returned by the m = 1, 2,…,M brti models (M = 10 for the 
five window lengths in each of the pre- and post-anthesis periods) 
were averaged by estimating the weighted mean predicted 
probability, where the weights (w) were estimated from the model 
deviance (d):  

௠ݓ = ݁ି଴.ହௗ೘∑ ݁ି଴.ହௗ೔ெ௜ୀଵ  (2) 

YI was then estimated from the model-averaged predicted prob-
abilities, and the observations classified as major or non-major 
epidemics accordingly. 

Test performance. The predictive performances of the BRT 
models were evaluated on a holdout (test) data set of 158 ob-
servations not used in model development or validation, and 

TABLE 1. (continued from preceding page) 

 
Predictor type, full acronyma 

 
Description 

Window  
(w) 

Abbreviated 
acronymb 

 
Groupc 

 
Modeld 

Temperature (t; °C)      
T.A.w.24H Mean T per day pre.5 t.1 16 brti 
  pre.7 t.7 16 brti 
  pre.10 t.13 16 brti 
  pre.14 t.19 16 brti 
  pre.15 t.25 16 brti 
  post5 t.31 16 brti and brtu 
  post.7 t.37 16 brti and brtu 
  post.10 t.43 16 brti 
  post.14 t.49 16 brti 
T.15T30.w.24H Number of h (15°C ≤ T ≤ 30°C) post.7 t.39 18 brti and brtu 
  post.10 t.45 18 brti 
  post.14 t.51 18 brti 
T.L9.w.24H Number of h (T < 9°C) post.10 t.46 19 brti 
  post.14 t.52 19 brti 
T.L15.w.24H Number of h (T < 15°C) pre.10 t.17 20 brti 
T.G30.w.24H Number of h (T > 30°C) post.10 t.48 21 brtu 
      

Rainfall(R; mm)      
R.S.w.24H Total rainfall pre.5 r.2 23 brti 
  pre.14 r.23 23 brti 
  post.5 r.37 23 brti and brtu 
  post.7 r.44 23 brti 
R.AD.w.24H Mean rainfall per day pre.14 r.26 26 brti 
  pre.15 r.33 26 brti 
  post.14 r.61 26 brti 
  post.15 r.68 26 brti and brtu 
      

Simultaneous T and RH conditions      
TRH.9T30nRHG80.w.12H Number of h (9°C ≤ T ≤ 30°C & RH ≥ 80%) overnight pre.10 trh.9 29 brti 
  pre.14 trh.13 29 brti 
  post.15 trh.37 29 brti 
TRH.15T30nRHG80.w.12H Number of h (15°C ≤ T ≤ 30°C & RH ≥ 80%) overnight pre.7 trh.7 31 brti 
  post.5 trh.23 31 brti 
  post.10 trh.31 31 brti 
  post.14 trh.35 31 brti 
TRH.15T30nRHG90.w.12H Number of h (15°C ≤ T ≤ 30°C & RH ≥ 90%) overnight post.7 trh.28 32 brti 
  post.14 trh.36 32 brti 
TRH.9T30nRHG90.w.24H Number of h (9°C ≤ T ≤ 30°C & RH ≥ 90%) pre.14 trh.74 36 brti 
  pre.15 trh.78 36 brti and brtu 
TRH.15T30nRHG80.w.24H Number of h (15°C ≤ T ≤ 30°C & RH ≥ 80%) pre.5 trh.63 37 brti 
  pre.10 trh.71 37 brti 
  pre.15 trh.79 37 brtu 
  post.15 trh.99 37 brti and brtu 
TRH.15T30nRHG90.w.24H Number of h (15°C ≤ T ≤ 30°C & RH ≥ 90%) post.7 trh.88 38 brti 
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which were randomly selected from the original full data set. For 
each model, the following test performance measures were calcu-
lated: (i) AUC, (ii) the classification matrix resulting from using 
YI as the cut-point, (iii) sensitivity (the proportion of epidemics 
correctly classified), (iv) specificity (the proportion of non-epi-
demics correctly classified), (v) Kappa (a measure of the propor-
tion of correctly classified observations after accounting for the 
probability of chance correct classification), and (vi) the overall 
misclassification rate. 

Comparison with logistic regression models. We had previ-
ously developed additive logistic regression and classical logistic 
regression models on the same training and test data (51). Be-
cause the same test data set was used in the current and previous 
article, the predictive performances of the logistic and BRT model 
classes could be compared by a McNemar test (2). 

RESULTS 

Full BRT models. The cross-validated AUCs for the full (i.e., 
fit to all available predictors in a given window) brti models built 

on the training data were 0.82, 0.84, 0.84, 0.87, and 0.86 for the 
5-, 7-, 10-, 14-, and 15-day pre-anthesis windows, respectively. 
For the 5-, 7-, 10-, 14-, and 15-day post-anthesis windows, the 
cross-validated AUCs were 0.87, 0.88, 0.91, 0.87, and 0.87, 
respectively. Z tests comparing the AUCs of full and simplified 
brti models (28) indicated that the number of weather-based pre-
dictors could be dropped to five with no loss in predictive per-
formance. For the brtu model, predictive performance degraded 
when >50 predictors were retained in the model (Fig. 1B). 

Simplified BRT models. There were five to nine weather-
based predictors per simplified brti model (Table 1). Across all the 
pre-anthesis brti models, there were 33 weather-based predictors 
belonging to 15 predictor groups. Across the post-anthesis brti 
models, there were 30 weather-based predictors belonging to 16 
predictor groups. In all, 11 predictor groups (Table 1, groups 1, 3, 
4, 6, 7, 16, 23, 26, 29, 31, and 37) were common to both the pre- 
and post-anthesis periods. All six predictor types (DD, R, RH, T, 
TRH, and VPD) were represented in both the pre- and post-
anthesis brti models. 

The simplified brtu model (across all window lengths pre- and 
post-anthesis) had 18 weather-based predictors (Table 1), of which 
8 were from the pre-anthesis period and the remaining 10 from 
the post-anthesis period. These predictors belonged to 12 groups 
and all six predictor types were represented. In all, 13 of the 18 
weather-based predictors in the brtu model were in common with 
the brti models; 5 (vpd.6, rh.67, rh.77, t.48, and int.79) were 
present in the brtu model only (Fig. 2). 

Fig. 1. A, Generalization performance (estimated by the cross-validated 
receiver operating characteristic [ROC] score) when the number of predictors
in individual-window (of length 5, 7, 10, 14, or 15 days) boosted regression
tree (BRT) models is reduced from 38 per window to 6, with cultivar
resistance always being retained as a predictor. Each loess smooth represents 
mean model-fitted values over five imputed versions of the training data.
There are five curves each for the pre- and post-anthesis periods, corre-
sponding to the five windows. B, Generalization performance when the
number of predictors in a BRT model (given access to all available predictors)
is reduced from the full complement of 353 to a minimum of 10, with cultivar
resistance always being retained as a predictor. Points are the mean values
over five imputed versions of the training data. A loess smooth (solid black 
line) is shown. 

Fig. 2.  Venn diagram depictions of the sets of weather-based predictors in (i) 
15 logistic regression models (lr) (51), (ii) 10 boosted regression trees built on 
individual pre- and post-anthesis windows (brti), and (iii) a boosted regression 
tree model built by predictor selection from the unrestricted candidate set
(brtu). Predictors are graphed by type: VPD = vapor pressure deficit; DD = 
dew-point depression; RH = relative humidity; T = temperature; R = rainfall; 
TRH = simultaneous T and RH conditions. Number of predictors per type is
shown within the circles. Overlaps among circles indicate predictors common
to lr, brti, or brtu. 
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The cross-validated AUCs (and standard errors) on the training 
data for the 5-, 7-, 10-, 14-, and 15-day simplified pre-anthesis brti 
models were 0.802 (0.026), 0.832 (0.026), 0.843 (0.023), 0.875 
(0.015), and 0.872 (0.020), respectively. The corresponding 
numbers for the 5-, 7-, 10-, 14-, and 15-day simplified post-
anthesis brti models were 0.867 (0.020), 0.852 (0.022), 0.881 
(0.019), 0.851 (0.023), and 0.879 (0.018), respectively. For the 
simplified brtu model, the cross-validated AUC (plus standard 
error) on the training data was 0.908 (0.016). 

Model performance statistics on the test data are shown in 
Figure 3. The AUCs trended higher with increasing window 
length in both the pre- and post-anthesis periods. YI (optimized 
on the training data) was 0.32 to 0.45 for the brti models and, 
therefore, was higher than the naïve (unoptimized) probability 
estimate of 0.31 representing the observed proportion of major 
epidemics in the data set (51). With the YI (estimated from the 
fitted probabilities on the training data) serving as the classi-
fication cut-points on the test data, a trade-off between sensitivity 

and specificity was apparent; in that, for a given model, a higher 
sensitivity (compared with another model) was associated with a 
lower specificity. The brti models were overall similar in their 
misclassification rates. 

Predictor relative influences. We first described the full 
unrestricted BRT model fit to the complete predictor set (350 
weather-based plus TYPE, CORN, and RESIST). The three cate-
gorical predictors had a total combined relative influence of 
3.67%; CORN and TYPE together had a combined relative 
influence of 0.17%. CORN and TYPE were dropped from further 
consideration when simplifying the full BRT model but RESIST 
was retained because of its epidemiological relevance (56). Three 
predictor groups stood out from the rest in the full unrestricted 
BRT model: group 7 (mean RH per day), group 16 (mean T per 
day), and group 36 (number of hours 9°C ≤ T ≤ 30°C and RH ≥ 
90%). Predictors belonging to these three groups had total relative 
influences of 11.1, 9.7, and 8.6%, respectively, together account-
ing for 29.4% of the total relative influence 

The simplified BRT models. The influence of predictor groups 
7, 16, and 36 was also evident in the simplified brtu and brti 
models (Figs. 4 and 5). Figure 4 summarizes key features (pre-
dictor type and group, total number of predictors per group, and 
the mean relative influence per group), in which summaries were 

Fig. 3. Predictive performance statistics of fitted boosted regression tree
models on the test data set. Models were fitted to predictors within fixed-
length (5-, 7-, 10-, 14-, or 15-day) windows within the pre- and post-anthesis 
periods (i.e., 10 brti models); brtu = model fit to the unrestricted set of
predictors (i.e., no subsetting by window or period); ave(brti) = model-
averaged performance over the 10 brti models. Means over the brti, brtu, and 
ave(brti) models are indicated by the vertical gray lines. 

Fig. 4. Summary of weather-based predictors over 10 fitted brti models (five
each in the pre- and post-anthesis periods). Bubble size is proportional to the 
mean relative influence of predictors within a group (Table 1). Groups are
indicated by the numeric labels within the bubbles. Labels along the top 
border indicate predictor type (DD = dew-point depression, R = rainfall, RH = 
relative humidity, T = temperature, VPD = vapor pressure deficit, TRH =
simultaneous T and RH conditions). The y-axis shows the total number of 
predictors per group summed over the five individual models per period. 
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made over the five windows (i.e., five brti models) per period; 
data are presented separately for the pre- and post-anthesis 
periods. Figure 5 does the same for the simplified brtu model. 
Shifts in the mean relative influences of predictor types were 
apparent when transitioning from the pre- to post-anthesis period. 
Among the more noticeable shifts in mean relative influence were 
(i) a decrease for the moisture-summarizing predictor types DD, 
RH (particularly group 7), and VPD; and (ii) an increase for R 
(groups 23 and 26), T (particularly group 16), and TRH-type 
predictors (groups 29 and 31), the latter two groups representing 
relatively warm temperatures combined with high relative humid-
ity. For the brtu model, the total relative influence was 49.7% for 
the pre-anthesis weather-based predictors and 45.2% for the post-
anthesis weather-based predictors. The relative influence of 
RESIST was 5.1%. 

Partial-dependence plots. The interpretation of partial-depen-
dence plots is illustrated with the 7-day pre-anthesis brti model 
(Fig. 6). This particular model had six predictors. Smoothed rep-
resentations of the model-predicted values on the logit scale were 
nonlinear, also true of many predictors in the other fitted BRT 
models. The vertical lines in the panels for rh.12, t.7, and vpd.4 
indicate potential cut-points delineating predictor ranges associ-
ated with (substantially) reduced or increased risk of major FHB 

epidemics based on changes in the predicted values. The two 
vertical lines for t.7 (mean T per day), for example, draw attention 
to the range 14°C ≤ t.7 ≤ 22°C associated with an increased risk 
of major FHB epidemics compared with other values of t.7. There 
also appeared to be a quadratic effect of t.7 on the fitted logit. The 
risk of a major FHB epidemic increased sharply when the group 7 
predictor rh.12 (mean daily RH) was >70%. Partial-dependence 
plots for the remaining brti models and the brtu model also sup-
ported a 70% threshold for other group 7 pre-anthesis predictors 
(i.e., rh.22 and rh.32) (Table 1) (data not shown). However, there 
was no evident support for a 70% threshold among group 7 post-
anthesis predictors. The relative influence of mean daily RH 
(group 7) in the pre-anthesis period was higher than during the 
post-anthesis period (Figs. 4 and 5). The partial-dependence plots 
for the brtu model (data not shown) were consistent with those for 
the brti models. 

Pairwise interactions. Pairwise interactions among the pre-
dictors for each of the brti models are shown in Figure 7. Among 
the more prominent interactions in the pre-anthesis period are 
those between RESIST and moisture-based predictors (dd.1, 
rh.12, rh.22, and rh.32) (e.g., see the light-colored box for the 
combination of rh.12 and RESIST in the 7-day pre-anthesis case). 
An example of interaction effects on the fitted logit is depicted in 
Figure 8, which shows the mitigating effect of cultivar resistance 
on the risk of major FHB epidemics even when high RH would 
usually favor such epidemics. Group 16 predictors (t.1, t.7, t.13, 
t.25, t.31, t.37, t.43, and t.49; mean T per day) were involved in 
several of the strongest interactions in both pre- and post-anthesis 
periods (Fig. 7). The largest pairwise interactions for the brtu 
model were rh.22–RESIST, int.99–t.39, rh.32–rh.33, and rh.32–
RESIST (data not shown). 

Model averaging. The sensitivity of the model-averaged BRT 
on the test data was better than that of several of the brti models, 
with little change in specificity (ave[brti]) (Fig. 3) and with an 
overall lower misclassification rate. The P values of McNemar 
tests for all pairwise model comparisons are graphically depicted 
in Figure 9. Low P values (darker colors) indicate a bigger dif-
ference between two models in terms of the classification errors 
they make. In terms of discordant classification errors, the model-
averaged BRT was similar to and significantly better than two  
(5-day pre-anthesis and 10-day post-anthesis) of the brti models 
(Fig. 9). The performance of the model-averaged BRT on the test 
data was close to the performance of the brtu model in all metrics 
except specificity (Figs. 3 and 9). 

Comparison with logistic regression models. TYPE, CORN, 
and RESIST were core categorical predictors in the logistic 
regression models developed previously (51) from these same 
data but had a combined relative influence of 3.67% in the full 
unrestricted BRT model. DD, R, and VPD predictors, absent from 
the logistic regression models, were included in the simplified brti 
and brtu models (Fig. 2). Among the RH- and T-type predictors, 
there was partial overlap among the brti, brtu, and logistic regres-
sion models. The T-based predictors were more prominent in the 
brti models than in the logistic regression models. The TRH-type 
predictors (combinations of T and RH conditions) were more 
frequent in the brti models than in either the brtu or logistic 
regression models. 

There were 21 weather-based predictors over the 15 logistic 
regression models we had developed earlier (51); these same 21 
predictors had a total relative influence of 20.2% in the full 
unrestricted BRT model. By comparison, the top 21 weather-
based predictors in the full unrestricted BRT model had a total 
relative influence of 46.5%. 

The BRT models in general made fewer classification errors 
than the logistic regression models (Fig. 9). The two exceptions 
were the 5-day pre-anthesis brti model, which made, statistically, 
fewer classification errors than only three logistic regression 
models (ID 3, 11, and 14); and the 10-day post-anthesis brti 

Fig. 5. Summary of the simplified brtu model, where weather-based predictor 
selection was not restricted by window or period, in contrast to the brti
models, which were built from predictor sets restricted to individual pre- and 
post-anthesis windows. Data are presented by predictors in the pre- and post-
anthesis periods. Groups are indicated by the numeric labels within the
bubbles. Labels along the top border indicate predictor type (DD = dew-point 
depression, R = rainfall, RH = relative humidity, T = temperature, VPD =
vapor pressure deficit, TRH = simultaneous T and RH conditions). The y-axis 
shows the total number of predictors per group.  
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models, which made statistically fewer classification errors than 
logistic regression models 3, 10, 11, and 14 (Fig. 9). 

DISCUSSION 

An analysis based on BRTs deepened our general under-
standing of the relationship between weather-based predictors and 
major FHB epidemics in the United States. The BRT models 
suggested new weather-based predictor formulations which may 
be more strongly associated with FHB epidemics or which may 
have a higher signal-to-noise ratio. Averaging the brti-predicted 
probabilities resulted in a predictive performance that was 
superior to that of any of the brti models individually, and similar 
to that of the brtu BRT model. On average, the brti models had a 
31% lower misclassification rate than the 15 logistic regression 
models we had developed earlier (51). Logistic regression is a 
popular and useful analytical tool for fitting binary response 
models to data, and remains a cornerstone in predictive modeling. 
The model structure is relatively simple and linear, and (via odds 
ratios) the fitted model is often directly interpretable (21). Yet, 
logistic regression models are often too simplistic for the pre-
dictive modeling of complex data involving numerous inter-
correlated variables (15). BRTs can work with complex data and 
are capable of generating highly predictive yet interpretable 
models (15,21), although interpretation requires somewhat differ-
ent analytical and graphical tools compared with the approaches 
used for logistic or linear models. 

Results indicated that the BRT algorithm was more capable 
than subset selection in identifying which predictors in the 
candidate set were most associated with FHB epidemics (51). The 
21 weather-based predictors identified through the subset selec-
tion-logistic regression approach (51) had a combined relative 
influence that was some 56% lower than the combined relative 
influence of the top 21 weather-based predictors identified by a 
BRT model fit to the same training data. In comparison with some 
of the previously developed logistic regression models, the BRT 
approach did not require separate models or parameters for spring 
and winter wheat types or the presence or absence of corn residue 
(37,38,51). In the logistic regression models, we kept TYPE and 

CORN a priori as predictors, but it was not straightforward to 
gauge their influence on prediction. The BRT models showed that 
both TYPE and CORN had very low relative influence and, 
consequently, were dropped during model simplification, indi-
cating the overarching influence of weather on FHB epidemics 
regardless of spring or winter wheat or local inoculum pressure 
from infested crop debris. Although infested host crop residue in a 
field suggests a higher local risk of FHB epidemics (55), in 
general, our results and those of others (49) suggest that the 
residue effect is far less influential than weather effects on FHB 
risk. The regional atmospheric transport of Gibberella zeae asco-
spores (34) may be one reason that we were unable to detect a 
local effect of corn residue in our results. 

Fitted BRT models gave insights into the FHB–weather rela-
tionship not discernible with the linear regression methods 
typically used to model FHB epidemics (45). These insights were 
gained from the ability of BRTs to (i) automatically model non-
linear predictor functions, displayed via partial-dependence plots; 
(ii) automatically model predictor interactions; and (iii) estimate 
the contribution of predictors to the fitted model via relative 
influences. For example, when building logistic regression models 
(51), we had noticed that the pre-anthesis group 7 RH-type pre-
dictors (rh.12, rh.22, and rh.32; mean RH per day) were non-
linear-in-the-logit with respect to the response, and attempted to 
model the nonlinearity with a penalized spline approach (51). 
What became clearer with the BRT partial-dependence plots (and 
previously unnoticed) was the large jump in the risk of major 
FHB epidemics with mean RH ≥ 70% for these three group 7 pre-
anthesis predictors. In fact, most FHB predictive models to date 
have used RH-type predictors based on RH ≥ 80 to 85% 
(7,31,39,41,47,54) or RH ≥ 90% (13,23). Notable exceptions are 
the use of an RH > 75% criterion by Schaafsma and Hooker (48) 
in toxin prediction in winter wheat and an RH ≥ 70% criterion in 
toxin prediction in oat (57) and wheat (58) in Europe. In addition 
to this RH-specific example, the BRT models automatically 
handled several other nonlinear predictor functions. Several 
interactions were identified which, as Landschoot et al. (31) point 
out, is cumbersome to do with traditional linear regression 
applied to high-dimensional data. The interactions between culti- 

Fig. 6. Partial dependence plots for the 7-day pre-anthesis brti model. Plots are for the model built using imputed version 1 of the training data. Percentages 
following the predictor labels are the relative influences. Within panels, the gray vertical lines (where shown) are suggested cut-points for delineating predictor 
ranges associated with lower or higher risk of major Fusarium head blight epidemics. 
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Fig. 7. Pairwise interactions for the brti models fitted to the 5-, 7-, 10-, 14-, and 15-day windows in the pre- and post-anthesis periods. Within each model, the 
value of the metric quantifying the interaction increases linearly and unbounded with the size of the interaction, and zeroes indicate no interaction. Because the 
interaction metrics are relative, they allow the ranking of pairwise interactions within any given model but should not be compared across models. Plotted data are
the mean values for a specific model fitted to each of the five imputed versions of the training data. 
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var resistance (an ordinal variable) and moisture-based predictors 
(in particular, rh.12, rh.22, and rh.32) were noteworthy. Cultivar 
resistance mitigated the effect of RH on the risk of major FHB epi-
demics but only to a point; the risk of epidemics still dramatically 
increased once mean RH per day was >70%, though not as much 
for moderately susceptible and moderately resistant cultivars. 

A given weather-based predictor type did not necessarily have 
the same relative predictive importance across the pre- and post-
anthesis periods. Moisture-based variables (especially RH type), 
acting as surrogates for actual wetness were better predictors of 
the risk of FHB in the pre-anthesis period than in the post-anthesis 
period. In the post-anthesis period, predictors summarizing favor-
able temperature rose to prominence, as well as rainfall as a direct 
moisture indicator. One possible hypothesis is that free moisture 
as rain is more crucial in the post-anthesis period than in the pre-
anthesis period, and is supported by the empirical observations 
from experimental trials (9,10). The overall inclusion of R-based 
predictors by the BRT modeling algorithm contrasts with the lack 
of this predictor type in logistic regression models we presented 
earlier (51), where R-type predictors were dropped due to low 
selection frequency by the algorithms used. The majority of  
FHB models do, in fact, include rainfall-based predictors (7,12, 
13,23,25,29,31,39,41,47,54). Nevertheless, the strongest predic-
tors of FHB epidemics, based on the full brtu model, were, in 
general, from one of three groups: mean RH per 24-h day (group 
7), mean T per day (group 16), and the number of hours (24-h 
day) in which T was 9 to 30°C and RH ≥ 90% simultaneously 
(group 36). 

Model averaging is an area of active research from both the 
frequentist (8) and Bayesian (22) perspectives, and can result in 
better predictive performance than any single model. Model 
averaging did not improve accuracy with our logistic regression 
models because of dominance by two models (51). With the brti 
models in the current article, model averaging using a simple 
weighting based on model deviance resulted in a predictive 
performance that was better than each of the 10 brti models 
individually and comparable with that of the brtu model. In one 
sense, averaging the brti models represented an intermediary step 
on the way to the brtu model, which was developed using pre-
dictors across all windows. Although BRTs and model averaging 
were promising, we can surmise from the wider cumulative 
modeling efforts to date (12,13,25,30,39,47,48,54,58) that no one 
modeling algorithm is likely to suffice in describing or predicting 
the highly sporadic FHB epidemics (26). As more algorithms are 
considered, FHB researchers may do well to consider ensemble 

prediction methods which combine several algorithms into a 
single predictive algorithm (46). 

The BRT partial-dependence plots suggested new predictor 
formulations and, in the Supplementary file, we give one example 
where following those suggestions led to a simple logistic regres-
sion model that had a test data misclassification rate not much 
higher than the mean misclassification rate of the 15 (more com-
plex) logistic regression models built previously (51). Therefore, 
the BRT modeling effort can be used to inform novel predictor 
formulations for logistic regression models. In this sense, we do 
not regard BRTs and logistic regression as mutually exclusive 
efforts in FHB modeling. Many RH-based predictors are formu-
lated on a 80 to 90% threshold (7,12,13,23,27,31,39,41,47,54), 
after deliberating the empirical links between weather and FHB 
epidemics (44). However, our BRT results challenged that 
threshold assumption for the pre-anthesis period by showing that 
the risk of FHB epidemics rises most dramatically when mean 
RH is >70%, a lower threshold than previously considered (48,57, 

Fig. 8. Effect of the interaction between rh.22 and cultivar resistance level (0 =
very susceptible, 1 = susceptible, 2 = moderately susceptible, and 3 =
moderately resistant) on the fitted logit for the 10-day pre-anthesis brti model 
fit to imputed version 1 of the training data. 

Fig. 9. Matrix plots of McNemar test P values in pairwise comparisons of 15 
logistic regression models (lr prefix; suffix follows the ID enumeration in 
Table 2 of Shah et al. [51]) and boosted regression tree (brt prefix; see Figure
3 caption) model test error rates. A, Actual two-sided log10(P) value of the 
McNemar test. Darker squares represent lower P values. On the base 10 
logarithmic scale depicted, log10(P = 1) = 0, log10(P = 0.01) = –2, log10(P = 
0.001) = –3, and log10(P = 0.0001) = –4. B, Matrix plot in which the 
McNemar test P values have been dichotomized, where white squares 
correspond to P values ≥ 0.05 and gray squares to P values < 0.05. 
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58). Weather-based predictors based on a 70% RH threshold 
should be considered in future logistic regression modeling efforts. 
Turning to temperature, the BRT pre-anthesis partial-dependence 
plots indicated higher risks of major FHB epidemics when mean 
daily T was 14 to 22°C. The optimum temperature for FHB de-
velopment is ≈25°C (3). Of course, mean daily T does not reflect 
the diurnal fluctuations in T and, therefore, is not inconsistent 
with an optimum of ≈25°C. For the post-anthesis period, there 
was an approximately linear decrease in the logit with mean daily 
T of 14 to 25°C, suggesting that mean temperatures >25°C during 
the post-anthesis period are suboptimal (48). As with RH-based 
predictors, our results suggest that T-based logistic regression 
predictors should likewise be revisited and recast. 

New classification methods are in continual stages of develop-
ment in both the statistical and machine-learning communities in 
response to data-driven needs. Not all of these methods will 
necessarily be suitable for epidemiological applications. BRTs 
have been embraced by the ecological sciences because of their 
ability to model complex data sets and provide new insights 
(6,15,24). Our experience in using BRTs to model FHB epi-
demics has likewise been the same. The approach may prove 
useful to other pathosystems as well. 

The predictive performances of the brti models, seen as lower 
misclassification rates on the test data, were better than those of 
the logistic regression models (51). The brti models also offered a 
better sensitivity–specificity balance (optimized using the YI as 
the cut-point for classification). We are not claiming that the BRT 
methodology is superior to logistic regression, in general, but that, 
for this particular data set, the BRT approach was more appro-
priate for modeling given the data’s dimensionality. Additionally, 
the ability to handle those complexities led to new insights. The 
trade-off is computational time. Even though we simplified the 
input predictor set (without loss of predictive power), fitting BRT 
models is computationally much more expensive than fitting 
logistic regression models. There is the question of whether or not 
current computational resources can accommodate BRT models 
in a rapid-update online system such as the Risk Assessment Tool 
for FHB; although this is an important question, it is beyond the 
scope of this article. 

APPENDIX 

In this section, we provide additional details on BRTs within 
the context of this article, following the general notations by Elith 
et al. (15) and Hastie et al. (21). We are interested in modeling the 
probability of a major FHB epidemic given a set of predictor 
covariates, X: 

µ(X) = P(fhb = 1|X) (A1) 

where fhb = 1 represents a major epidemic and fhb = 0 a non-
major epidemic. The actual modeling is done on the logit scale, as 
with standard logistic regression: 

logit (µ) = log [µ/(1 – µ)] = f(X) (A2) 

We now look at the form of f(X). Consider a single binary 
classification tree, T(x;θ), which partitions the joint predictor 
values x into Rj (j = 1, 2,…,J) disjoint regions. Here, θ is a set of 
parameters determining the number of partition regions Rj and the 
rules for their creation. For example, we may have two partitions 
with rules R1:RH ≥ 80%  f(x) = y1; R2:RH < 80%  f(x) = y2 
(i.e., a single decision stump with two terminal nodes, where yi is 
a constant assigned to region Rj). The number of “levels” in a tree 
(tree depth) is controlled by the tc parameter, which the modeler 
is free to specify. With tc > 1, interactions are considered in the 
regression tree model. For example, the effect of a T-type pre-
dictor in the second tree level would depend on whether the 

higher level assignment was based on RH > 80% or RH < 80%. A 
BRT model is a sum of the individual trees: 

fA(x) = ΣA
a=1T(x;θa) (A3) 

Thus, logit (µ) = fA(x). 
Trees are added to the model in a forward stagewise manner. 

What this means is that if we have, for example, f2(x) = T(x;θ1) + 
T(x;θ2) then, in the next iteration of the algorithm, we will obtain 
f3(x) = T(x;θ1) + T(x;θ2) + T(x;θ3), where T(x;θ1) and T(x;θ2) 
remain unchanged from the previous iteration. Within the boosted 
logistic regression tree framework we used in this article, any new 
tree T(x;θi+1) added to the model is one that best reduces the 
binomial deviance. When considering a new tree T(x;θi+1) after 
the first, the algorithm does not work with the actual observations 
but focuses on the unexplained variation given by the residuals  
y – p for model fi(x), where p is the predicted probability given by 
the already fitted function fi(x). The tree to be added to the model 
next, T(x;θi+1), is the tree that best fits the residuals left after 
fitting fi(x) = Σi

a=1T(x;θa), with the fitted values then being added 
to the current logit(p). Therefore, the final fitted BRT model is a 
linear combination of many trees, analogous to the individual 
terms in a linear regression model except that, in the BRT case, 
each term is a tree. 

One can continue adding trees to the model until some stopping 
rule is reached. For example, the algorithm may be stopped after a 
fixed number of trees have been added. To determine the optimal 
nt, we used a stopping rule based on the estimated cross-validated 
residual deviance as a function of the number of trees in the 
model. The final model is more robust (better able to predict 
observations not used in the model development) if the con-
tribution of each new tree added to the model is shrunk by a 
certain amount, so that the learning proceeds at a slower pace. 
That is, θi+1 for each new tree is constrained in the estimation so 
that improvements in prediction accuracy are slow, which helps 
avoid overfitting of the model to the training data. The amount 
each newly added tree is allowed to contribute to the model is 
controlled by the learning rate (lr), which the modeler is free to 
specify, but should be low enough so that nt is large (at least 
1,000 in our case). 
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