Biogeochemical drivers of interspecies electron transfer between iron reducers and methanogens

by

Javil Hansen

B.S., Kansas State University, 2018

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Geology College of Arts and Sciences

KANSAS STATE UNIVERSITY Manhattan, Kansas

2021

Approved by:

Major Professor Matthew F. Kirk

Copyright

© Javil Hansen 2021.

Abstract

Iron reduction and methanogenesis help drive the carbon cycle and in doing so influence greenhouse gas emissions and water quality. Microorganisms that drive the reactions can compete for energy sources or engage in syntropy via interspecies electron transfer (IET), but it remains unclear how environments influence which of these interactions occur. This study uses culturing experiments containing Geobacter metallireducens and Methanosarcina barkeri to better understand how interactions between an iron reducer and a methanogen, respectively, change with conditions. We examined interactions in iron reduction and methanogenesis in batch reactors with varying ferric iron mineralogy (none, ferrihydrite, lepidocrocite, goethite, and hematite) and acetate concentration (3 and 30 mM) and in semi-continuous cultures with varying acetate (3 and 30 mM) and bicarbonate (24 and 48 mM) concentrations but no ferric iron mineral. Results of the batch experiments show that amounts of methanogenesis varied considerably with ferric iron mineralogy and acetate supply. Average CH₄ generation was higher in cultures with 30 mM acetate than those with 3 mM acetate and decreased in order of hematite >> no ferric mineral ~ goethite > ferrihydrite > lepidocrocite. By comparison, the amount of iron reduction varied relatively little with acetate concentration and was lowest in cultures with hematite. In the semi-continuous cultures, CH₄ concentrations increased over time and reached the highest values in cultures with the 30 mM acetate and 24 mM bicarbonate. Carbon stable isotope compositions (δ^{13} C) of CO₂ and CH₄ from both culturing experiments suggest that differences in CH₄ generation between cultures may in part reflect variation in the pathway of methanogenesis. Carbon isotopic compositions from cultures with hematite were consistent with CH₄ generation via acetoclastic methanogenesis. However, results from other cultures are more

indicative of methanogenesis by CO₂ reduction. No hydrogen sources were available in the reactor to drive CO₂ reduction. Therefore, the result suggests that IET fueled much of the methanogenesis in the cultures. Taken together, our results indicate that the occurrence of IET can be influenced by ferric iron mineralogy and concentration of acetate. Impacts of IET on carbon isotope systematics in methanogenic systems require more attention. In particular, we need a better understanding of differences in the δ^{13} C of CO₂ and CH₄ evolve as substrate consumption proceeds.

Table of Contents

List of Figures	vi
List of Tables	vii
Chapter 1 - Introduction	1
Chapter 2 - Methods	5
2.1 Aqueous Media	5
2.2 Microbes	6
2.3 Ferric Iron Mineral Experiments	7
2.4 Semi-Continuous Experiments	8
2.5 Methanogen Substrate Experiments	9
2.6 Chemical Analysis	9
2.7 Isotopic Analysis	11
2.8 Cell Counts	12
Chapter 3 - Results	13
3.1 Ferric Iron Mineral Experiments	13
3.2 Semi-Continuous Experiments	18
3.3 Methanogen Substrate Experiments	21
Chapter 4 - Discussion	23
4.1 Extents of Reactions	23
4.2 Pathway	25
4.3 Implications	26
Chapter 5 - Conclusion	28
References	29
Appendix A - Ferric Iron Mineral Experiments	35
Appendix B - Semi-Continuous Experiments	41
Appendix C - Methanogen Substrate Experiments	46

List of Figures

Figure 1 Variation with pH in the energy available (Δ Ga) to acetoclastic methanogenesis and	
ferric iron (Fe(III)) reduction. Sources of ferric iron considered are hematite (α -Fe ₂ O ₃),	
goethite (α -FeOOH), magnetite (Fe ₃ O ₄), and ferrihydrite (\sim Fe(OH) ₃). All reactions were	
written in terms of the oxidation of one mole of acetate. Values of Δ Ga were calculated	
from chemical activities generated from a sliding pH speciation model for a nominal	
geochemical environment at 25°C, following Bethke et al. (2011)	3
Figure 2 – (A) CH ₄ generation and (B) gas isotopic compositions $\Delta^{13}C$ CO ₂ -CH ₄ in the ferric	
iron mineral experiments relative to VSMOW	4
Figure 3 – Variation in (A) 0.5 N HCl extractable Fe(II) and (B) aqueous Fe(II) concentrations i	n
the ferric iron mineral experiments	5
Figure 4 – Variation in (A) G. metallireducens and (B) M. barkeri cell abundance in ferric iron	
mineral experiments at the end of the incubation	7
Figure 5 – Variation in pH with time in semi-continuous experiments	8
Figure 6 – Variation over time of (A) CH ₄ produced and (B) Δ^{13} C CO ₂ -CH ₄ in semi-continuous	
experiments	9
Figure 7 – Variation over time of (A) G. metallireducens and (B) M. barkeri cell abundance in	
semi-continuous experiments	0
Figure 8 – Variation in (Å) CH ₄ produced and (B) Δ^{13} C CO ₂ -CH ₄ in methanogen substrate	
experiments	2
-	

List of Tables

Table 1 – Aqueous media composition	5
Table 2 – Reactions for methanogenic pathways	22

Chapter 1 - Introduction

Microbial iron reduction and methanogenesis help drive organic matter oxidation in anoxic environments and in doing so, impact water quality and greenhouse gas emissions (Emerson et al., 2012; Melton et al., 2014; Thauer et al, 2008). Iron reduction traps carbon by generating carbonate alkalinity but degrades water quality by increasing concentrations of iron and trace elements (e.g., arsenic) (Kirk et al, 2013). Methanogenesis produces CH₄, which contributes significantly to energy resources (Milkov, 2011) but also strengthens the greenhouse effect by escaping to the atmosphere (Forster et al., 2017; Kirschke et al., 2013). Thus, impacts of iron reduction and methanogenesis can be beneficial or harmful, depending on the setting and proportions of the reactions relative to one another. By learning more about environmental controls on interactions between the microbes that catalyze the reactions, we will be better able to predict and manage these impacts.

Iron reducers and methanogens were previously thought to occupy separate zones defined by competition (Lovley and Goodwin, 1988; Achtnich, et al., 1995). This conceptual model followed the thermodynamic ladder in geomicrobiology, where anaerobic microorganisms arrange themselves into zones based on the quantity of energy they can capture from the environment (Bethke et al., 2011). According to the model, iron reduction is assumed to have a thermodynamic advantage over methanogenesis and thus, the microbial community would deplete ferric iron from an environment before significant methanogenesis occurred. However, the natural world is rarely at standard state, so this thermodynamic order cannot be assumed to always hold true. Moreover, interactions between microbial reaction do not depend entirely on thermodynamic controls. Kinetic controls are also play an important role (Bethke et al., 2008, 2011). Results from several studies underscore shortcoming of the traditional paradigm. Several studies have found evidence that iron reduction and methanogenesis can occur concurrently (Flynn et al., 2013; Herndon et al., 2015; Jakobsen and Postma, 1999; Küsel et al., 2018; Metje and Frenzel, 2007; Paul et al., 2006; Reiche et al., 2008). Moreover, interactions between iron reducers and methanogens are not only restricted to competition. These groups can also interact syntrophically via interspecies electron transfer (IET) (Rotaru et al., 2014a, 2014b;). During IET, iron reducers consume electron donor(s) and, rather than transfer the electrons to a source of ferric iron, they transfer them to methanogens, who use them to reduce CO₂ and generate CH₄ (Lovely, 2017). The interaction is said to be direct interspecies electron transfer (DIET) if the electrons are passed via direct connections rather than soluble electron shuttles.

Recent research suggests that pH and ferric iron mineralogy have the potential to influence how iron reducers and methanogens interact. Marquart et al. (2019) found evidence that pH may influence interactions by affecting the energy yield of iron reduction. In their experiments, as pH increased, methanogenesis increased relative to iron reduction and yet the relative abundance of iron reducing populations held steady. The authors suggested that they increasingly participated in methanogenesis via IET as pH increased and the energy yield of iron reductions by providing pathways for electron transfer (Liu et al., 2012).

These studies advance our understanding of controls on interactions of iron reduction and methanogenesis and yet many questions remain unresolved. Will we see greater occurrences of IET in systems with more stable ferric iron minerals? As iron mineral stability increases, the energy yield of iron reduction decreases (Fig. 1), potentially encouraging iron reducers to cooperate with methanogens rather than compete with them. How does variation in the

2

availability of electron donors affect interactions? Iron reducer enzymes have a higher affinity than methanogens for competitive substrates such as acetate and dihydrogen (Bethke et al., 2008). However, their ability to exploit this competitive advantage would decrease if electron donors are supplied at a rate that is high relative to the availability of ferric iron. Lastly, does the concentration of bicarbonate influence interactions? Bicarbonate is a product of iron reduction and acetoclastic methanogenesis, and thus decreases the energy yield of both reactions as its concentration increases. However, dissolved inorganic carbon species such as bicarbonate are reactants in methanogenesis via IET. Thus, we reason that increasing levels of bicarbonate have the potential to promote IET.

Figure 1 Variation with pH in the energy available (Δ Ga) to acetoclastic methanogenesis and ferric iron (Fe(III)) reduction. Sources of ferric iron considered are hematite (α -Fe₂O₃), goethite (α -FeOOH), magnetite (Fe₃O₄), and ferrihydrite (\sim Fe(OH)₃). All reactions were written in terms of the oxidation of one mole of acetate. Values of Δ Ga were calculated from chemical activities generated from a sliding pH speciation model for a nominal geochemical environment at 25°C, following Bethke et al. (2011).

We examined these questions using culturing experiments containing *Geobacter metallireducens* and *Methanosarcina barkeri*, an iron reducer and methanogen, respectively, that are known to be capable of IET (Rotaru et al., 2014a). We used a batch experiment to test variation in ferric iron mineralogy and electron donor concentration and we used a semicontinuous experiment to examine variation in interactions over time in systems with variable concentrations of acetate and bicarbonate. In addition, we carried out some control experiments containing only *M. barkeri* to evaluate how electron donor source affected the stable isotopes of carbon in CH₄ and CO₂, which we use as a tracer for the pathway of methanogenesis in our cultures.

Chapter 2 - Methods

2.1 Aqueous Media

We based the aqueous media for this experiment from a modified Rotaru et al. 2014 media based on personal correspondence with Amelia Rotaru. The base medium consisted of 2MΩ deionized water enriched with 0.35 g/L K₂HPO₄, 0.23 g/L KH₂PO₄, 0.5 g/L NH₄Cl, 2.3377 g/L NaCl, 1 ml of 0.516% FeSO₄, and 1 ml/L of ATTC trace mineral supplement. We added 90 ml of base medium into 160 ml serum bottles. Each bottle was sparged for 30 minutes with an 80:20 mix of N₂:CO₂ gas to remove trace oxygen and set the pH. We then sealed, crimped, sterilized by autoclaving at 121° C for 30 minutes, and allowed the bioreactors to cool. We placed the bioreactor bottles in an anaerobic chamber to aseptically add the following additions: 1 ml of filter sterilized vitamin supplement, 2.4 ml of 1M HCO₃, 1 ml of 3.66% MgCl₂, 1 ml of 1.887% CaCl₂, and 1 ml of 12.009 g/l NaS with 17.56 g/l cysteine. We sparged with N₂ gas for 30 minutes the MgCl₂, CaCl₂, acetate, and NaS with cysteine solutions. We sparged the HCO₃⁻ for 30 minutes with a 80% N₂ and 20% CO₂ gas mixture. Prior to addition, we sterilized all additions by autoclaving at 121° C for 30 minutes. We verified the final pH of the media was at the target pH of 7, and adjusted gas concentrations if needed. Final mM concentrations of the aqueous media are shown in Table 1. Acetate and HCO₃⁻ concentrations are two of the variables used in our experiments, and thus vary in some experiments.

Component	mM
K ₂ HPO ₄	2
KH ₂ PO ₄ ,	1.69

 Table 1 – Aqueous media composition

NH ₄ Cl	9.35
NaCl	40
FeSO ₄	.013
HCO ₃ -	2.4
Acetate	30
CaCl ₂	1.70
MgCl ₂	3.84
NaS	5.22
Cysteine	1.45

2.2 Microbes

Our experiments included *Geobacter metallireducens* (ATTC 53774) as the iron reducer and *Methanosarcina barkeri Schnellen* (ATTC 43241) as the methanogen. We selected these species because previous research demonstrated that they are both capable of interacting through IET. Moreover, both species are capable of consuming acetate, the electron donor provided in our aqueous medium (Rotaru et al., 2014a, 2014b;).

G. metallireducens is an obligate anaerobe, with a reported optimal pH range of 6.7 to 7 (Lovely et al., 1988). *G. metallireducens* is capable of utilizing a wide range of compounds as an electron donor source, including acetate, benzaldehyde, benzoate, benzylalcohol, butanol, butyrate, p-cresol, ethanol, p-hydroxybenzaldehyde, phydroxybenzoate, p-hydroxybenzylalcohol, isobutyrate, isovalerate, phenol, propionate, propanol, pyruvate, toluene and valerate (Lovely, 1991). However, acetate is expected to be the primary electron donor during iron reduction in aquatic sediments and subsurface environments (Lovely, 1995). *G.*

metallireducens has three pathways to consume acetate as an electron donor, making it well suited to metabolize acetate at low concentrations naturally found in the environment (Akular, et al., 2009).

M. barkeri Schnellen is an obligate anaerobe, with an optimal pH range of between 6.7 and 7.5 (Appels et al., 2008; Gujer and Zehdner, 1983). *M. barkeri* Schnellen has a higher growth rate (doubling times reported in the order of 1.0-1.2 days) and is more tolerant to sudden pH changes (can tolerate sudden pH changes of 0.8-1.0 units) than most methanogens (Conklin et al., 2006; Liu et al., 1985; Shin et al., 2011). *M. barkeri* Schnellen is able to utilize acetate, hydrogen, or methanol as an electron donor source (Thauer et al., 2008).

We grew the inoculum to late exponential/early stationary phase, as determined from lab experiments using ferrous iron and CH₄ concentrations as growth markers. This was approximately one week for *G. metallireducens* and 2 weeks for *M. barkeri*. We used 0.5 ml of *G. metallireducens* culture containing approximately 4.5 million cells/ml, for an initial cell abundance of 22,5000 cells/ml, and 1 ml of *M. barkeri* culture containing approximately 100,000 cells/ml as an inoculum creating an initial abundance of 1,000 cells/ml.

2.3 Ferric Iron Mineral Experiments

We used batch cultures to study effects on ferric iron mineral source on interactions between iron reducers and methanogens. We inoculated the batch bioreactors after setting up the bottles with 100 ml of media as described. We used 3 mM and 30 mM acetate concentrations and amended the bioreactors with 10 mM of goethite, lepidocrocite, hematite, ferrihydrite, or no mineral, for a total of ten conditions. We replicated the conditions in sets of triplicates with one sterile control. We incubated the bioreactors undisturbed, in the dark at 20° C for 42 days.

7

After the incubation time, we extracted samples for analyses. We measured the pressure of each bioreactor using a gas gauge. We removed 1 ml of gas from the headspace, which we ran through a gas chromatograph to obtain CH_4 concentrations. We removed liquid sample with a sterile syringe and filtered the samples through a 0.45 µm filters. We recorded pH values of the filtered samples immediately using a pH meter. We used the remaining aqueous sample volume for geochemical analyses and cell counts.

2.4 Semi-Continuous Experiments

We used semi-continuous cultures to examine changes over time with variations of HCO₃concentrations alongside variations of acetate concentrations. We set up each bioreactor using the same media and methods as described earlier, with the addition of a needle placed into the rubber stopper to allow sampling and feeding of the bioreactors. We tested two variables with the semi-continuous bioreactors: bicarbonate and acetate concentrations. We used 24 mM and 48 mM bicarbonate concentrations and 3 and 30 mM acetate concentration, for a total of four different conditions. We performed each set of bioreactor conditions in triplicate along with one sterile control.

Batch cultures incubated undisturbed, in the dark, at 20° C for seven-day intervals. Every seventh day, we removed the bioreactors for sampling and feeding. Sampling and feeding consisted of withdrawing 20 ml from the bioreactors and replacing with 20 ml of fresh, sterile medium. We sampled the bottles for a total of eight periods of seven days. Every 7 days, we took the pressure in PSI using a sterile syringe took out 1 ml of sample for GC analysis, and replaced with 1 ml of N₂ gas.

2.5 Methanogen Substrate Experiments

To evaluate isotopic signatures of methanogenic pathways, we made four triplicate sets of bioreactor experiments using the base media described earlier supplied with different electron donor sources. We amended the aqueous media of one bioreactor triplicate set with 30 mM acetate concentrations, and one set with 20 mM methanol. We supplied 450 µmol hydrogen to one set by sparging with a gas mixture of 60% N₂, 20% CO₂, and 20% H₂. We included one sterile control using the same conditions for each set of triplicates. We inoculated each bioreactor with 1 ml of *M. barkeri*. We incubated the cultures in the dark, undisturbed at 20° C for 42 days. We removed the cultures, withdrew 1 ml of headspace to obtain CH₄ concentrations using gas chromatography analysis.

2.6 Chemical Analysis

We extracted aqueous and gas samples weekly from semi-continuous experiments and took samples at the end of incubation for ferric iron mineral and methanogen substrate experiments. We used all aqueous samples to measure pH and concentrations of major cations (Na⁺, NH4⁺, K⁺, Mg²⁺, and Ca²⁺) and anions (CH₃COO⁻, Cl⁻, NO₃⁻, Br⁻, and PO₄²⁻). For semi-continuous experiments, we alternated weekly aqueous samples for alkalinity measurements or cell counts. We measured alkalinity and took cell counts at the end of incubation for ferric iron mineral experiments and methanogen substrate experiments. For experiments containing ferric iron, we measured aqueous Fe(II) and total Fe(II) using 0.5 N HCl extractions.

Before performing analysis, we filtered all aqueous samples using syringe filters with 0.45 µm filters. We measured the pH with an Oakton PC300 pH meter. For analysis of anion and cation samples, we used a Dionex ICS-1100 Ion Chromatograph. We calculated alkalinity using Gran alkalinity titrations with 0.02 N sulfuric acid titrant. For CH₄ analysis we used a GOW

MAC series 580 gas chromatograph equipped with a thermal conductivity detector. Before extracting gas samples, we measured the pressure each bioreactor using a low-pressure mechanical gauge.

We obtained aqueous ferrous iron concentrations by adding 1 ml of 0.45 μ m filtered, freshly removed bioreactor samples to 2.5 ml of 1g/L ferrozine and 46 mM HEPES reagent. If the samples appeared to be darker than our high standard of 10 mg/L ferrous iron, we diluted the samples with 18 M Ω deionized water. We shook the samples to mix them and recorded the ABS of each sample using a Thermo Scientific Genesys 10S UV-VIS spectrophotometer set at 562 nm (Stookley, 1970; Gibbs 1976). Using linear regression from standards prepared at our lab we recorded ferrous iron concentration and applied the dilution factor to obtain final ferrous iron concentrations.

We obtained total ferrous iron using 0.5 N HCl extractions. We vigorously shook the bioreactors by hand, opened them, and immediately placed 1 ml of sample in a test tube with 10 ml of 0.5 N HCl. We shook the tubes for 1 hour and then allowed the tubes to rest for 1 hour for solids to settle. We removed 1 ml of sample taken from the top of the solution and added the sample to 2.5 ml of 1 g/L ferrozine and 1 M HEPES reagent. We diluted the samples with 0.5 N HCl at twice the dilution factor that we applied to the aqueous ferrous iron samples. We allowed the samples to rest for 1 hour for color development. We obtained the ABS of each sample using a Thermo Scientific Genesys 10S UV-VIS spectrophotometer set at 562 nm. Using linear regression from standards prepared at our lab, we recorded the ferrous iron concentration. If diluted, we applied the dilution factor. We multiplied each value by eleven to account for the HCl to sample dilution to obtain final ferrous iron concentrations.

2.7 Isotopic Analysis

We collected gas samples from all experiments for partial pressures and stable carbon isotopic compositions of CH₄ and CO₂. We sampled our ferric iron mineral and methanogen substrate experiments at the end of the incubation time. We sampled our semi-continuous experiments on the 21st, 35th, and 57th day. Sampling consisted of aseptically withdrawing 5 ml of headspace, replacing the headspace with 5 ml of N₂ gas, and placing the sample into Cali-5-Bond gas bags along with 15 ml of N₂ gas for sample dilution. We mailed these gas bags to Isotech labs for isotopic analyses.

To analyze the samples, Isotech used online continuous-flow GC-IRMS. The data has a precision of +/-0.3 per mil (Isotech Laboratories, 2020). Isotope results are expressed in delta notation relative to Vienna Pee Dee Belemnite (VPDB).

We used these results to evaluate how much methanogenesis occurred in the cultures and the pathway of CH₄ formation. Carbon isotope signatures of CH₄ are a byproduct of kinetic fractionation during methanogenesis, as ¹²C-substrates are preferentially used over ¹³Csubstrates, leaving the unreacted substrate enriched in ¹³C (Whiticar et al. 1986; Blair et al., 1987; Blair and Carter, 1992' Whiticar, 1999; Conrad, 2005; Penger et al., 2012). Previous studies have shown that the difference in stable carbon isotope compositions between CO₂ and CH₄ (Δ^{13} C = δ^{13} C CO₂ - δ^{13} C CH₄) can be used as a tracer of the pathway of CH₄ formation (e.g., Smith and Pallasser, 1996; Strąpoć et al., 2007, 2011). Hydrogenotrophic (i.e., CO₂ reduction) and methylotrophic methanogenesis are thought to produce similar isotopic fractionations, which are larger than acetoclastic methanogenesis (Whiticar et al., 1999; Conrad, 2005; Penger et al., 2012). Acetate was the only electron donor supplied in our cultures. Therefore, isotopic compositions consistent with acetatoclastic methanogenesis are consistent with competition between *G. metallireducens* and *M. barkeri* whereas compositions indicative of hydrogenotrophic methanogenesis imply IET.

2.8 Cell Counts

Brett Nave performed at cell counts at Kansas State University. Brett placed 5 ml of freshly pulled sample into a 25 ml conical vial with a 1% formaldehyde solution and allowed to incubate at 37° for 3 hours. Next, he pipetted the solution onto a black 0.2 μ m filter by a vacuum microanalysis vacuum filter holder, rinsed with 10 ml of 18 M Ω DI water, and allowed the filter to dry. He applied a 6% solution of Syto-9 staining reagent to the filter, incubated for 3 minutes in the dark, and rinsed with 10 ml of 18 M Ω DI water, and allowed to dry. Brett placed the filter on glass slide with 100 μ l of 4:1 mix of mounting media (Citifluor AF-1:Vectashield), placed a 24 mm X 50 mm superslip over the filter, and sealed the edges with clear nail polish. He then placed the slide on a microscope, took a picture of each quadrant, and used image J to generate a cell count.

To obtain cell counts in units of cell/ml, Brett multiplied the by the filter area in μ m² divided by the field of view in by the filter area in μ m by the cell count number obtained from image J output. He then divided this number by the sample volume of 5 ml to obtain the final value in cell/ml.

Chapter 3 - Results

3.1 Ferric Iron Mineral Experiments

CH₄ generation in ferric iron mineral experiment reactors varied considerably with iron mineralogy and acetate concentration. Reactors with hematite had the highest CH₄ generation relative to acetate supply (Fig. 2A). An average of 242 and 2,051 μ mol of CH₄ formed in the 3 and 30 mM acetate cultures with hematite, respectively. CH₄ generation was similar in reactors with goethite, ferrihydrite, and no Fe mineral, with averages ranging from 0 to 74 μ mol in 3 mM acetate cultures and 341 to 817 μ mol in 30 mM acetate cultures. Reactors with lepidocrocite generated the lowest CH₄, averaging 2 and 94 μ mol for 3 and 30 mM acetate cultures, respectively.

Cultures with higher CH₄ generation tended to have lower Δ^{13} C CO₂-CH₄ values (Fig. 2B). Both conditions of hematite bioreactors produced the lowest Δ^{13} C CO₂-CH₄ values, averaging 32.3 and 25.7 ‰ at 3 and 30 mM acetate, respectively. Δ^{13} C CO₂-CH₄ values from goethite, ferrihydrite, and no mineral supplied reactors were relatively similar, with averages ranging from 36.1 to 43.2 ‰ with 3 mM acetate cultures and 34.7 to 40.8 ‰ in 30 mM acetate cultures. Lepidocrocite supplied bioreactors gave the highest Δ^{13} C CO₂-CH₄ values, averaging 46.3 and 45.1 ‰ for 3 and 30 mM acetate cultures, respectively. There was not enough CH₄ produced in sterile controls and the bioreactors supplied with ferrihydrite alongside 3 mM acetate to obtain Δ^{13} C CO₂-CH₄ values.

Concentrations of 0.5 N HCl extractable Fe(II) varied with iron mineralogy and acetate concentrations. Sterile controls had significantly less 0.5 N HCl extractable Fe(II) (Fig 3A). Goethite supplied bioreactors generated the most 0.5 N HCl extractable Fe(II), but were similar to ferrihydrite and lepidocrocite supplied bioreactors, with averages ranging from 255.7 to 211.0

13

 μ mol at 3 mM acetate and 204.7 to 243.1 μ mol at 30 mM acetate. Hematite supplied bioreactors had the lowest 0.5 N HCl extractable Fe(II), with averaging 134.4 and 146.5 μ mol at 3 and 30 mM acetate conditions.

Aqueous Fe(II) concentrations varied more strongly with mineralogy than acetate concentration (Fig 3B). Sterile controls had generally less aqueous Fe(II) than cultures with living cells. Lepidocrocite supplied bioreactors generated substantially more aqueous Fe(II) than other reactors, with averages of 33.0 and 3.15 µmol at 3 and 30 mM acetate conditions. Reactors

Figure 2 – (A) CH₄ generation and (B) gas isotopic compositions Δ^{13} C CO₂-CH₄ in the ferric iron mineral experiments relative to VSMOW.

with goethite, ferrihydrite, and hematite produced similar amounts of aqueous Fe(II), giving averages in the range of 3.3 to 7.6 µmol at 3 mM acetate and 5.3 to 9.6 µmol at 30 mM acetate conditions.

Figure 3 – Variation in (A) 0.5 N HCl extractable Fe(II) and (B) aqueous Fe(II) concentrations in the ferric iron mineral experiments.

The abundance of *G. metallireducens* cells varied with ferric iron mineralogy and acetate concentrations. Reactors given 30 mM acetate generally generated a higher abundance of *G. metallireducens* cells over bioreactors given 3 mM acetate (Fig 4A). Reactors supplied with goethite produced the highest abundance of *G. metallireducens* cells, with averages of 3,283,000 and 3,435,000 cells/ml at 3 and 30 mM acetate. Cell abundances varied widely among cultures without ferric minerals and those with ferrihydrite, lepidocrocite, and hematite, ranging from averages of 95,000 to 3,256,000 cells/ml with 3 mM acetate conditions and 1,177,000 to 3,123,000 cells/ml with 30 mM acetate. At 3 mM acetate conditions, ferrihydrite supplied reactors generated the lowest abundance of cells and at 30 mM acetate conditions hematite produced the lowest cell abundance

Compared to *G. metallireducens*, the abundance of *M. barkeri* varied more strongly with ferric iron mineralogy and acetate concentration. *M. barkeri* cells were more abundant when we supplied bioreactors with 30 mM acetate (Fig 4B). Hematite supplied reactors generated the highest abundance of *M. barkeri* with averages of 12,000 and 562,000 cells/ml at 3 and 30 mM acetate, respectively. Cell counts were similar among cultures without ferric minerals, and those with goethite, and ferrihydrite, with averages ranging from 14,000 to 18,000 cells/ml with 3 mM acetate and 68,000 to 120,000 cells/ml with 30 mM acetate conditions. Lepidocrocite supplied reactors produced the lowest abundance of *M. barkeri* cells, with averages of 0 and 6,000 cells/ml at 3 and 30 mM acetate, respectively.

Figure 4 – Variation in (A) G. *metallireducens* and (B) *M. barkeri* cell abundance in ferric iron mineral experiments at the end of the incubation.

3.2 Semi-Continuous Experiments

The final bioreactor pH remained relatively similar with bioreactors supplied 30 mM acetate, while pH of bioreactors supplied with 3 mM acetate dropped an average of approximately 0.1 units after 56 days incubation time (Fig. 5). The pH was consistently higher for bioreactors supplied with 48 mM HCO₃⁻ over bioreactors given 24 mM HCO₃⁻. Bioreactors supplied 48 mM HCO₃⁻ had starting pH averages of 7.14 and 7.13 at 3 and 30 mM acetate, respectively, and final pH averages of 7.05 and 7.13 with 3 and 30 mM acetate, respectively. Bioreactors given 24 mM HCO₃⁻ had starting pH averages of 6.97 and 6.96 at 3 and 30 mM acetate

Figure 5 – Variation in pH with time in semi-continuous experiments. conditions, respectively.

Bioreactor conditions of 24 mM HCO_3^- and 30 mM acetate generated the highest amount of CH₄ (Fig. 6A). Reactors given this condition were the sole ones to continue to generate CH₄ after our second gas sampling, and produced substantially more CH₄ than any other condition, with a final average of 741µmol of CH₄. The remaining three sets of conditions generated final CH₄ concentrations ranging from 13 to 84 μ mol of CH₄, with bioreactors supplied with 48 mM HCO₃⁻ and 3 mM acetate producing the least amount of CH₄.

The final Δ^{13} C CO₂-CH₄ values generally decreased with higher CH₄ production (Fig. 6B). Bioreactors supplied with 24 mM HCO₃⁻ and 30 mM acetate gave the highest initial average Δ^{13} C value of 38.1 ‰, and the lowest final Δ^{13} C CO₂-CH₄ value of 29.1‰. This was the sole condition that had a substantial decrease in Δ^{13} C values through time. The Δ^{13} C values of the

Figure 6 – Variation over time of (A) CH_4 produced and (B) $\Delta^{13}C$ CO₂-CH₄ in semi-continuous experiments

remaining three conditions behaved relatively similar with initial Δ^{13} C CO₂-CH₄ values ranging from 30.7 to 33.6 ‰ and final Δ^{13} C values ranging from 29.9 to 32.7 ‰.

The average abundance of *G. metallireducens* cells was initially relatively similar for all conditions, decreased at 28 days, then cultures supplied with 24 mM HCO_3^- increased *G. metallireducens* cell abundance while cultures supplied with 48 mM HCO_3^- continued to decrease *G. metallireducens* cell abundance (Fig 7A). Cell counts of *G. metallireducens* ranged

Figure 7 – Variation over time of (A) G. *metallireducens* and (B) *M. barkeri* cell abundance in semi-continuous experiments

from 4,029,000 to 4,724,000 cells/ml initially, from 28,000 to 2,917,000 cells/ml at our second counting event, and from 1,550,000 to 4,011,000 cells/ml at the end of incubation.

Oppositely of *G. metallireducen*s cell abundance, the average cell counts of *M. barkeri* cultures supplied with 24 mM HCO₃⁻ increased in abundance after 28 days, then decreased at 48 days (Fig 7B). At the end of incubation, cultures supplied with 24 mM HCO₃⁻ and 30 mM acetate had substantially more *M. barkeri* cells than other conditions, with 1,764,000 cells/ml, while other conditions ranged from 11,000 to 16,000 cells/ml. *M. barkeri* cell abundance in cultures supplied with 48 mM HCO₃⁻ steadily declined with time, giving initial ranges of 90,000 to 165,000 cells/ml and final cell counts of 12,000 to 16,000 cells/ml.

3.3 Methanogen Substrate Experiments

CH₄ generation varied with the pathway utilized. Reactors supplied with acetate yielded the highest CH₄ concentrations followed by methanol and H₂ (Fig. 8A). Stoichiometry of the reactions varied with the substrate (Table 2). Based on reaction stoichiometry, hydrogenotrophic methanogenesis was limited by hydrogen supply. The CH₄ produced (111 μ mol) would require virtually all of the hydrogen supplied. In contrast, only consumption of about 8 and 5% of the electron donor was necessary to produce the CH₄ in the acetate and methanol cultures, respectively.

Similar to the results obtained from ferric iron mineral experiments and semi-continuous experiments, $\Delta^{13}C$ CO₂-CH₄ values generally decreased with increasing CH₄ production (Fig 8B). The highest $\Delta^{13}C$ CO₂-CH₄ values came from bioreactors supplied with H₂ with a mean of 32.7 ‰, followed by methanol supplied bioreactors with a mean of 31.6 ‰, and acetate with the lowest $\Delta^{13}C$ values averaging 21.3 ‰.

21

Figure 8 – Variation in (A) CH₄ produced and (B) Δ^{13} C CO₂-CH₄ in methanogen substrate experiments.

Table 2 – Reactions for methanogenic pathways

Reaction	Equation
Acetoclastic methanogenesis	$CH_3COO^- + H^+ \rightarrow CO_2 + CH_4$
Hydrogentrophic methanogenesis	$H_2 + 0.25 \text{ CO}_2 \rightarrow 0.25 \text{ CH}_4 + 0.5 \text{ H}_2\text{O}$
Methylotrophic methanogenesis	CH ₃ OH → 0.75 CH ₄ + 0.25 CO ₂ + 0.5 H ₂ O

Chapter 4 - Discussion

4.1 Extents of Reactions

We evaluate the extent of iron reduction based on the extractable Fe, which includes dissolved Fe(II) as well as Fe(II) that is sorbed and any that may have precipitated with carbonate or phosphate (Heron et al. 1994). Bioreactors provided with goethite generated the most 0.5 N HCl extractable Fe(II) but with similar concentrations to ferrihydrite and lepidocrocite. Reactors with hematite supplied the least amount of 0.5 N HCL extractable Fe(II). Im et al. (2013) demonstrated that the presence of Fe³⁺ causes over-estimation in Fe²⁺ concentrations and this discrepancy increases linearly with incubation time. Thus, the total reduced iron values calculated for this experiment are likely overestimated.

Variation in the extent of iron reduction with culture mineralogy likely reflects differences in mineral stability. Poorly crystalline phases such as ferrihydrite (Fe(OH)₃) tend to have higher surface areas and solubilities than more stable phases, such as goethite (FeO(OH)) and hematite (Fe₂O₃). Iron reduction rates have been found to increase with (oxyhdr)oxide surface area and solubility (Larsen and Postma, 2001; Roden, 2003, 2006; Bonneville et al., 2004, 2009; Cutting et al., 2009). The amount of 0.5 N HCl Fe(II) generated corresponded with the energy available to G. *metallireducens* from the ferric iron mineral supplied (Fig 1). Hematite was the most stable ferric iron mineral used in our experiments and these cultures generated the least amount of 0.5 N HCl extractable Fe(II), with 134 µmol and 147 µmol at 3 and 30 mM acetate. The other ferric iron minerals in our experiments generated at least 205 µmol of 0.5 N HCl extractable Fe(II) under all conditions.

In contrast to iron reduction, the extent of methanogenesis was higher in cultures with more stable ferric minerals. Relative to CH₄ production in the absence of a ferric iron mineral, at 74

and 817 μ mol at 3 and 30 mM acetate, respectively, the presence of hematite increased CH₄ production, generating 242 and 2,051 μ mol of CH₄ with 3 and 30 mM acetate, while the presence of other ferric iron minerals suppressed CH₄ generation. This may reflect variation in the level of competition between *G. metallireducens* and *M. barkeri* but also the extent of cooperation between each species.

Our results suggest that G. *metallireducenss* and M. *barkeri* responded differently to variation in acetate supply. Although CH₄ generation increased considerably with acetate supply, the extent of iron reduction changed little. These results likely reflect differences in the enzyme kinetic properties between the two species. Methanogenic microorganisms typically have higher half-saturation constants than iron-reducing species (Bethke et al. 2008). As a result, methanogens require greater concentrations of substrate than iron reducers to run their metabolic reaction rapidly. Therefore, methanogenesis would have benefited more than iron reduction from higher acetate concentration, consistent with the results we observed.

Variation in CH₄ generation in the semi-continuous cultures may reflect differences in the role of bicarbonate in methanogenic pathways. As noted in the introduction, acetoclastic methanogenesis generates bicarbonate:

$$CH_3COO^- + H_2O \leftrightarrow HCO_3^- + CH_4(aq)$$

In contrast, hydrogenotophic methanogenesis consumes inorganic carbon, as shown in the following example reaction written in terms of bicarbonate:

$$H_2(aq) + 0.25 H^+ + 0.25 HCO_3^- \leftrightarrow 0.25 CH_4(aq) + 0.75 H_2O_3^-$$

Thus, added bicarbonate makes acetoclastic methanogenesis less favorable but increases the favorability of hydrogenotrophic methanogenesis. Given that IET, like hydrogenotrophic methanogenesis, consumes inorganic carbon, these relationships may explain why we see the

greatest CH₄ generation in cultures with the lowest bicarbonate (24 mM bicarbonate + 30 mM acetate). Those cultures also had the lowest Δ^{13} C CO₂-CH₄ values, consistent with the largest contribution from acetoclastic methanogenesis among semi-continuous cultures.

4.2 Pathway

In our methanogen substrate experiments, we saw distinct Δ^{13} C CO₂-CH₄ values for methanogenesis utilizing hydrogen or methanol as an elector donor compared to acetoclastic methanogenesis. The Δ^{13} C CO₂-CH₄ values from most of our coculture experiments points to CH₄ produced from hydrogentrophic methanogenesis. However, we did not supply H₂ and G. *barkeri* is not capable of producing H₂ from acetate. Hence, we propose these Δ^{13} C CO₂-CH₄ values originated from IET occurring.

Cell count data in coculture experiments without a ferric iron mineral present support the occurrence of IET. If competition was solely occurring in our bioreactors, G. *metallireducens* cells would be not have a pathway to grow in the absence of a ferric iron mineral. Ferric iron mineral experiments omitting a ferric iron mineral produced G. *metallireducens* average cell counts of 1,020,000 and 1,936,000 cells/ml in bioreactors given 3 and 30 mM acetate, respectively. This is a substantially higher abundance of cells relative to the initial abundance 22,5000 cells/ml and a higher cell count average than in bioreactors supplied with ferrihydrite, with 95,000 cells/ml and 1.42 million cells/ml at 3 and 30 mM acetate. Furthermore, our semi-continuous experiments did not contain a ferric iron mineral and G. *metallireducens* cell counts were above 4,000,000 cells/ml for all conditions for our cell count after 14 days of incubation.

In our ferric iron mineral experiments, hematite supplied cultures with 30 mM acetate gave Δ^{13} C CO₂-CH₄ values consistent with aectoclastic methanogenesis and generated substantially

25

more CH₄ and *M. barkeri* cells/ml than the cultures supplied with any other ferric mineral and cultures with no ferric mineral. Gas samples from the reactors with hematite and 30 mM acetate gave Δ^{13} C CO₂-CH₄ values averaging 25.7 ‰. This was the lowest Δ^{13} C CO₂-CH value from our ferric mineral experiments and closest value to our acetoclastic Δ^{13} C CO₂-CH value of 21.3 ‰ in our methanogen substrate experiments. Reactors with hematite and 30 mM acetate averaged 562,000 *M. barkeri* cells/ml compared to the next highest abundances of 120,000 cells/ml in ferrihydrite reactors and 95,000 cells/ml in reactors with no mineral present. CH₄ production was substantially higher with hematite and 30 mM acetate compared to other conditions. These reactors produced an average of 2,051 µmol of CH₄, with the next highest condition producing 817 µmol of CH₄. We propose acetoclastic methanogenesis was the dominant pathway utilized for these conditions resulting in CH₄ generation and M. barkeri growth to be the greatest when they didn't have to share some of the energy with G. metallireducences.

4.3 Implications

The environmental significance of IET is not well known. Results suggest IET may be very common, depending on the types of ferric iron minerals available. Environmental pH may also play an important role in determining which pathway iron reducers and methanogens utilize (Marquart et al. 2018). Our findings suggest that IET may be very common in the natural world and demonstrates that ferric iron mineralogy, electron donor concentrations, and alkalinity play a role in determining which metabolic pathway is utilized. Our findings may aid further development in stable isotope methods to better understand the occurrence of IET in methanogenic systems.

If our interpretation of stable isotope results is correct, it may shed light on a puzzling question: where does the acetate go in natural gas reservoirs? In many coal and shale-gas reservoirs, stable isotopes of the natural gas are consistent with CH₄ formed primarily by H₂ oxidation coupled with CO₂ reduction. However, organic matter degradation would be expected to produce acetate as well as H₂ as a terminal product (Conrad, 1999). Where has it gone? Our results suggest that it may have been funneled to methanogenesis via IET. As a result, the stable isotope compositions of the gas are consistent with CO₂ reduction (Vinson et al., 2017; Golding et al., 2013). If this is true, it would mean that IET is a major process linked to our energy supply and it implies a strong environmental relevance for IET.

Chapter 5 - Conclusion

Iron reduction and methanogenesis play a vital role in shaping the natural world. Their interactions can be complex and controls on these interactions are poorly understood. Our experiments show that ferric iron mineralogy, acetate, and HCO₃⁻ concentrations have a role in variations on these interactions. Carbon stable isotope compositions (δ^{13} C) of CO₂ and CH₄ from both culturing experiments suggest that differences in methane generation between cultures may in part reflect variation in the pathway of methanogenesis. Our results provide a possible explanation on acetate consumption in the natural world and why stable isotopes of CH₄ of coal and shale-gas reservoirs rarely point to acetoclastic methanogenesis.

These results provide compelling evidence that there was variation in the pathway of methanogenesis and that IET may have played a dominant role in CH₄ generation. However, our understanding of the stable isotope implications of IET are limited. There is uncertainty about how the isotope separation would change with substrate use and in response to inorganic carbon production by *G. metallireducens* and *M. barkeri*. More research is needed to identify impacts of IET on the carbon isotope systematics.

References

- Achtnich, C., Bak, F., & Conrad, R. (1995). Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils. 19, 65-72. <u>https://doi.org/10.1007/BF00336349</u>
- Aklujkar, M., Krushkal, J., DiBartolo, G., Lapidus, A., Land, M. L., & Lovley, D. R. (2009). The genome sequence of Geobacter metallireducens: Features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. *BMC Microbiology*, 9(1), 109. <u>https://doi.org/10.1186/1471-2180-9-109</u>
- Appels, L., Baeyens, J., Degreve, J., & Dewil, R., (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781.
- Bethke, C. M., & Johnson, T. M. (2008). Groundwater Age and Groundwater Age Dating. *Annual Review of Earth and Planetary Sciences*, *36*(1), 121–152. <u>https://doi.org/10.1146/annurev.earth.36.031207.124210</u>
- Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q., & Flynn, T. M. (2011). The thermodynamic ladder in geomicrobiology. American Journal of Science, 311(3), 183-210. <u>https://doi.org/10.2475/03.2011.01</u>
- Blair, N.E., Carter, W.D., (1992). The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment. Geochim. Cosmochim. Acta 56, 1247–1258.
- Blair, N., Martens, C., Des Marais, D., (1987). Natural abundances of carbon isotopes in acetate from a coastal marine sediment. Science 236:66–68. <u>http://doi.org/10.1126/science.11539717</u>
- Bonneville, S., Van Cappellen, P., & Behrends, T. (2004). Microbial reduction of iron(III) oxyhydroxides: Effects of mineral solubility and availability. *Chemical Geology*, 212 (3-4), 255–268. <u>https://doi.org/10.1016/j.chemgeo.2004.08.015</u>
- Bonneville, S., Behrends, T., & Van Cappellen, P. (2009). Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship. *Geochimica et Cosmochimica Acta*, 73(18), 5273–5282. <u>https://doi.org/10.1016/j.gca.2009.06.006</u>
- Conklin, A., Stensel, H. D., & Ferguson, J. (2006). Growth Kinetics and Competition Between Methanosarcina and Methanosaeta in Mesophilic Anaerobic Digestion. Water Environment Research, 78(5), 486–496. <u>https://doi.org/10.2175/106143006X95393</u>
- Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 10.

- Conrad, R., (2005). Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org. Geochem. 36:739–752. https://doi.org/10.1016/j.orggeochem.2004.09.006
- Cornell, R. M., Schwertmann, U. (2003). Iron oxides in the laboratory: Preparation and Characterization. New York, NY: Wiley-VCH. <u>https://doi.org/10.1002/3527602097</u>
- Cutting, R. S., Coker, V. S., Fellowes, J. W., Lloyd, J. R., & Vaughan, D. J. (2009). Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. *Geochimica et Cosmochimica Acta*, 73(14), 4004–4022. <u>https://doi.org/10.1016/j.gca.2009.04.009</u>
- Emerson, D., Roden, E., & Twining, B. S. (2012) The microbial ferrous wheel: Iron Cycling in terrestrial, freshwater and marine environments. Frontiers in Microbiology, 3, 383.
- Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Raga, G., Schulz, M., Dorland, R. V., Bodeker, G., Etheridge, D., Foukal, P., Fraser, P., Geller, M., Joos, F., Keeling, C. D., ... Dorland, R. V. (n.d.). Changes in Atmospheric Constituents and in Radiative Forcing. 106.
- Flynn, T. M., Sanford, R. A., Ryu, H., Bethke, C. M., Levine A. D., Ashbolt, N. J., & Santo Domingo J.W. (2013). Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiology. 13, 146. <u>https://doi.org.10.1186/1471-2180-13-146</u>
- Golding, S.D., Boreham, C.J., Esterle, J.S., (2013). Stable isotope geochemistry of coal bed and shale gas and related production waters: a review. Int. J. Coal Geol. 120:24–40. https://doi.org/10.1016/j.coal.2013.09.001
- Gujer, W., & Zehnder, A. J. B. (1983). Conversion Processes in Anaerobic Digestion. Water Science and Technology, 15(8–9), 127–167. <u>https://doi.org/10.2166/wst.1983.0164</u>
- Hander, R. M., Beard, B. L., Johnson, C. M., & Schere, M. M. (2009). Atom exchange between aqueous Fe(II) and Goethite: An Fe isotope tracer study. Environmental Science and Technology, 43(4), 1102-1107. <u>https://doi.org.10.1021/es802402m</u>
- Herndon, E. M., Yang, Z. M., Bargar, J., Janot, N., Regier, T., Graham, D., Wullschleger, S. D., Gu, B., & Liang, L. Y. (2015). Geochemical drivers of organic matter decomposition in arctic tundra soils. Biogeochemistry, 126, 397-414. <u>https://doi.org/10.1007/s10533-015-01655</u>
- Heron, Gorm., Crouzet, Catherine., Bourg, A. C. M., & Christensen, T. H. (1994). Speciation of Fe(II) and Fe(III) in Contaminated Aquifer Sediments Using Chemical Extraction Techniques. *Environmental Science & Technology*, 28(9), 1698–1705. <u>https://doi.org/10.1021/es00058a023</u>

- Im, J., Lee, J., & Löffler, F. E. (2013). Interference of ferric ions with ferrous iron quantification using the ferrozine assay. Journal of Microbiological Methods, 95(3), 366–367. <u>https://doi.org/10.1016/j.mimet.2013.10.005</u>
- Isotech Laboratories, Inc. (2020). Analytical Services > View by Isotope > Carbon https://www.isotechlabs.com/analytical/isotope/carbon.html
- Jakobsen, R., & Postma, D. (1999). Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark. Geochimica et Cosmochimica Acta, 63, 137-151. <u>https://doi.org/10.1016/S00016-7037(98)00272-5</u>
- Jin, Q., & Kirk, M. F. (2018). pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science, 6, 1-15. <u>https://doi.org/10.3389/fenvs.2018.00021</u>.
- Kirk, M. F., Santillan, E. F. U., Sanford, R. A., & Altman S. J. (2013) CO₂ induced shift in microbial activity affects carbon trapping and water quality in anoxic bioreactors. Geochimica et Cosmochimica Acta, 122, 198–208. <u>https://doi.org/10.1016/j.gca.2013.08.018</u>
- Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., ... Zeng, G. (2013). Three decades of global methane sources and sinks. *Nature Geoscience*, 6(10), 813–823. <u>https://doi.org/10.1038/ngeo1955</u>
- Küsel, K., Blöthe, M., Shculz, D., Reiche, M., & Drake, H. L. (2008). Microbial reduction of iron and porewater biogeochemistry in acidic peatlands. Biogeosciences, 5. 1537-1549. <u>https://doi.org/10.5194/bg-5-1537-2008</u>
- Lareses-Casanova, P., Scherer M. M. (2007). Sorption on hematite: New insights based on spectroscopic measurements. Environmental Science and Technology. 41(2), 471-477. https://doi.org/10.1021/es0617035
- Larsen O, Postma D (2001) Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. *Geochimica Et Cosmochimica Acta* **65**, 1367–1379. <u>https://doi.org/10.1016/S0016-7037(00)00623-2</u>
- Liu, F.; Rotaru, A.-E.; Shrestha, P. M.; Malvankar, N. S.; Nevin, K. P.; Lovley, D. R. (2012). Promoting direct interspecies electron transfer with activated carbon. *Energy Env. Sci.*, 5 (10), 8982-8989 <u>https://doi.org/10.1073/pnas.1117592109</u>
- Liu, Y., Boone, D. R., Sleat, R., & Mah, R. A. (1985). Methanosarcina mazei LYC, a New Methanogenic Isolate Which Produces a Disaggregating Enzyme. Applied and Environmental Microbiology, 49(3), 608–613. <u>https://doi.org/10.1128/AEM.49.3.608-613.1985</u>

- Lovley, D.R. (1995). Deep Subsurface Microbial Processes. Reviews of Geophysics, 33(3), 365-381.
- Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) Reduction. MICROBIOL. REV., 55, 29.
- Lovley, D. R. (2017). Happy together: Microbial communities that hook up to swap electrons. ISME Journal, 11, 327-336. <u>https://doi.org/10.1038/ismej.2016.136</u>
- Lovley, D. R., & Goodwin, S. (1988). Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochimica et Cosmochimica Acta, 52, 2993-3003. <u>https://doe.org/10.1016/0016-7037(88)90163-9</u>
- Marquart K. A., Haller B. R., Paper J. M., et al. (2018). Influence of pH on the balance between methanogenesis and iron reduction. Geobmicrobiology. 2018;00:1-14. <u>https://doi.org/10.1111/gbi.12320</u>
- Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C., & Kapler, A. (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 12, 797-808. <u>https://doi.org/10.1038/nrmicro3347</u>
- Metje, M., & Frenzel, P. (2007). Methanogenesis and methanogenic pathways in a peat from subartic permafrost. Environmental Microbiology, 9, 954-964. <u>https://doi.org/10.1111/j.1462-2920.2006.01217.x</u>
- Milkov A. V. (2011). Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Organic Geochemistry, 42:2, 184-207, <u>https://doi.org/10.1016/j.orggeochem.2010.12.003</u>
- Paul S., Küsel, K., & Alewell, C. (2006). Reduction processes in forest wetlands: Tracking down heterogeneity of source/sink functions with a combination of methods. Soil Biology & Biochemistry, 38, 1028-1039. <u>https://doi.org/10.1016/j.soilbio.2005.09.001</u>
- Penger, J., Conrad, R., Blaser, M., (2012). Stable carbon isotope fractionation by methylotrophic methanogenic Archaea. Appl. Environ. Microbiol. 78:7596–7602. <u>https://doi.org/10.1128/AEM.01773-12</u>
- Reiche, M., Torburg, G., & Küsel, K. (2008). Competition of Fe(III) reduction and methanogenesis in an acidic fen. FEMS Microbiology Ecology, 65, 88-101. <u>https://doi.org/10.1111/j.1574-6941.2008.00523.x</u>
- Roden, E. E. (2003). Fe(III) Oxide Reactivity Toward Biological versus Chemical Reduction. *Environmental Science & Technology*, 37(7), 1319–1324. <u>https://doi.org/10.1021/es0260380</u>
- Roden, E. E. (2006). Geochemical and microbiological controls on dissimilatory iron reduction. *Comptes Rendus Geoscience*, 338(6–7), 456–467. <u>https://doi.org/10.1016/j.crte.2006.04.009</u>

- Rosso, K. M., Yanina, S. V., Gorski, C. A., Larese-Casanova, P., & Scherer, M. M. (2010).
 Connecting observations of hematite (α-Fe2O3) growith catalyzed by Fe(II).
 Environmental Science and Technology, 44(1), 61-67. <u>https://doi.org/10.1021/es901882a</u>
- Rotaru, A. E., Shrestha P.M., Liu F., Markovaite B., Chen, S., Nevin, K. P., & Lovley, D. R. (2014a). "Direct Interspecies Electron Transfer between Geobacter Metallireducens and Methanosarcina Barkeri." Edited by G. Voordouw. Applied and Environmental Microbiology 80 (15): 4599–4605. <u>https://doi.org/10.1128/AEM.00895-14</u>.
- Rotaru, A. E., Shrestha, P. M., Liu, F. H., Shrestha, M., Shrestha, D., Embree, M., Zengler K., Wardman, C., Nevin K. P. & Loveley, D. R. (2014b). A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methonsaeta from the reduction of carbon dioxide to methane. Energy & Environmental Science. 7. 408-415. <u>https://doi.org/10.1039/C3EE42189A</u>
- Shin, S. G., Zhou, B. W., Lee, S., Kim, W., & Hwang, S. (2011). Variations in methanogenic population structure under overloading of pre-acidified high-strength organic wastewaters. Process Biochemistry, 46(4), 1035–1038. <u>https://doi.org/10.1016/j.procbio.2011.01.009</u>
- Smith, J.W., Pallasser, R.J., (1996). Microbial origin of Australian coalbed methane. AAPG Bull. 80, 891–897.
- Stookey, L. L. (1970). Ferrozine—A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 779–781. <u>https://doi.org/10.1021/ac60289a016</u>
- Strąpoć, D., Mastalerz, M., Dawson, K., Macalady, J., Callaghan, A. V., Wawrik, B., Turich, C., & Ashby, M. (2011). Biogeochemistry of Microbial Coal-Bed Methane. *Annual Review* of Earth and Planetary Sciences, 39(1), 617–656. <u>https://doi.org/10.1146/annurev-earth-040610-133343</u>
- Strąpoć, D., Mastalerz, M., Eble, C., & Schimmelmann, A. (2007). Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios. *Organic Geochemistry*, 38(2), 267–287. <u>https://doi.org/10.1016/j.orggeochem.2006.09.005</u>
- Thauer R. K., Kaster A. K., Seedorf H., Buckel W., & Hedderich R. (2008) Methanogenic archae: Ecologically relevant differences in energy conservation. Nature Reviews Microbiology, 6, 579-591. <u>https://doi.org/10.1038/nrmicor1931</u>
- Vinson, D. S., Blair, N. E., Martini, A. M., Larter, S., Orem, W. H., & McIntosh, J. C. (2017). Microbial methane from in situ biodegradation of coal and shale: A review and reevaluation of hydrogen and carbon isotope signatures. Chemical Geology, 453, 128– 145. <u>https://doi.org/10.1016/j.chemgeo.2017.01.027</u>
- Weber, K. A., Achenbach, L. A., & Coates J. D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4:10, 752-764. <u>https://doi.org/10.1038/nrmicro1490</u>

- Whiticar, M.J., (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161:291–314. https://doi.org/10.1016/S00092541(99)00092-3
- Whiticar, M.J., Faber, E., (1986). Methane oxidation in sediment and water column environments—isotope evidence. Org. Geochem. 10:759–768. https://doi.org/10.1016/S0146-6380(86)80013-4
- Whitman W. B., Bowen T. L., & Boone D. R. (2006) The methanogenic bacteria, in The Prokaryotes, Dworkin M.; Falkow S.; Rosenberb E.; Schleifer K.; Stackebrandt, E., EDs. Springer: New York, NY, 2006; Vol. 3, pp 165-207.
- Williams, A. G., & Scherer, M. M. (2004). Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environmental Science and Technology, 38(18), 4782-4790. <u>https://doi.org/10.1021/es049373g</u>

Appendix A - Ferric Iron Mineral Experiments

Sample	Ferric iron	Live/	Acetate	pН	Fe(II)	Fe(II)	G.	М.
name	mineral	sterile	(mM)		(0.5 N	(aqueous)	metallire	barkeri
					HCl)	(µmol)	ducens	cell count
					(µmol)		cell count	
N30A	None	Live	30	7.15	-	-	2.34E+06	1.06E+05
N30B	None	Live	30	7.12	-	-	1.77E+06	8.27E+04
N30C	None	Live	30	6.97	-	-	1.71E+06	9.74E+04
N30S	None	Sterile	30	6.91	-	-	4.59E+05	0.00E+00
N3A	None	Live	3	6.94	-	-	1.43E+06	1.18E+04
N3B	None	Live	3	6.95	-	-	9.52E+05	1.18E+04
N3C	None	Live	3	6.95	-	-	6.73E+05	2.95E+04
N3S	None	Sterile	3	6.92	-	-	2.95E+04	5.90E+03
G30A	Goethite	Live	30	7.18	226.2	3.5	3.67E+06	1.06E+05
G30B	Goethite	Live	30	7.13	233.2	11.6	3.66E+06	5.90E+04
G30C	Goethite	Live	30	7.02	264.5	13.8	2.98E+06	3.84E+04
G30S	Goethite	Sterile	30	6.97	80.1	5.5	5.09E+05	0.00E+00
G3A	Goethite	Live	3	7.08	280.9	2.4	3.51E+06	2.66E+04
G3B	Goethite	Live	3	7.09	236.6	2.1	2.85E+06	1.18E+04
G3C	Goethite	Live	3	6.99	249.6	5.5	3.48E+06	1.18E+04
G3S	Goethite	Sterile	3	6.96	77.2	4.8	8.81E+05	0.00E+00
F30A	Ferrihydrite	Live	30	7.33	314.5	2.5	2.59E+06	1.98E+05
F30B	Ferrihydrite	Live	30	7.19	183.5	8.9	1.21E+05	4.13E+04
F30C	Ferrihydrite	Live	30	7.15	195.4	4.7	1.55E+06	0.00E+00
F30S	Ferrihydrite	Sterile	30	7.09	169.3	8.4	1.18E+04	0.00E+00
F3A	Ferrihydrite	Live	3	7.12	296.0	8.0	6.35E+04	5.90E+03
F3B	Ferrihydrite	Live	3	7.15	253.4	9.6	1.20E+05	2.95E+04
F3C	Ferrihydrite	Live	3	7.22	200.3	5.3	1.03E+05	5.90E+03
F3S	Ferrihydrite	Sterile	3	7.16	183.5	5.6	7.53E+04	0.00E+00
L30A	Lepidocrocite	Live	30	7.16	175.7	22.4	3.64E+06	5.90E+03
L30B	Lepidocrocite	Live	30	7.19	238.0	28.1	3.33E+06	0.00E+00
L30C	Lepidocrocite	Live	30	7.25	200.4	43.9	2.39E+06	0.00E+00
L30S	Lepidocrocite	Sterile	30	6.93	102.1	8.6	4.58E+04	0.00E+00
L3A	Lepidocrocite	Live	3	7.21	242.4	27.4	3.55E+06	0.00E+00
L3B	Lepidocrocite	Live	3	7.28	185.9	30.4	3.87E+06	0.00E+00
L3C	Lepidocrocite	Live	3	7.27	204.7	41.2	2.35E+06	0.00E+00
L3S	Lepidocrocite	Sterile	3	6.96	91.9	10.5	8.12E+04	0.00E+00
H30A	Hematite	Live	30	7.21	159.5	4.4	1.04E+06	9.45E+04
H30B	Hematite	Live	30	7.24	161.9	8.0	4.35E+05	2.95E+04
H30C	Hematite	Live	30	7.28	118.0	0.5	2.06E+06	1.56E+06
H30S	Hematite	Sterile	30	7.00	51.4	7.3	1.33E+04	0.00E+00
H3A	Hematite	Live	3	7.01	129.0	5.7	3.25E+04	8.86E+03
H3B	Hematite	Live	3	7.07	135.7	4.3	1.52E+06	2.07E+04

Sample name	Ferric iron mineral	Live/ sterile	Acetate (mM)	рН	Fe(II) (0.5 N HCl)	Fe(II) (aqueous) (µmol)	G. metallire ducens	<i>M.</i> <i>barkeri</i> cell count
					(µmol)		cell count	
H3C	Hematite	Live	3	7.01	138.3	8.6	1.73E+05	5.90E+03
H3S	Hematite	Sterile	3	6.98	45.6	7.4	2.95E+04	2.95E+03

Sample	Total	%CH4	CH ₄	CH ₄ total	$\Delta^{13}C$	Alkalinity	%CO ₂	CO ₂
name	pressure	(gas)	partial	(µmol)		(meq/l)		partial
	(kPa)		pressure					pressure
			(kPa)					(kPa)
N30A	132.4	30.75	40.7	946.5	31.7	52.1	12.6	16.7
N30B	142.7	30.0	42.8	995.5	33.1	-	12.5	17.8
N30C	142.7	15.4	21.9	509.4	39.3	-	13.8	19.7
N30S	118.6	0.0	-	0.6	-	40.9	15.9	18.8
N3A	116.8	3.8	4.4	102.3	41.8	30.9	16.2	18.9
N3B	116.8	3.0	3.6	82.6	43.0	-	16.5	19.3
N3C	115.1	1.4	1.6	36.9	44.7	-	16.8	19.3
N3S	111.7	0.0	-	0.3	-	29.9	16.4	18.4
G30A	149.6	22.4	33.9	787.9	38.9	51.5	13.0	19.4
G30B	156.5	31.0	48.4	1126.3	36.2	-	12.2	19.1
G30C	127.2	9.8	12.4	288.4	-	-	14.8	18.8
G30S	115.1	0.0	-	0.5	-	46.8	16.0	18.4
G3A	109.9	0.2	0.2	4.6	35.7	26.4	16.9	18.5
G3B	113.4	0.2	0.2	5.6	36.5	-	17.0	19.2
G3C	111.7	0.2	0.2	5.1	36	-	17.2	19.2
G3S	109.9	0.0	-	0.1	-	28.5	17.1	18.7
F30A	151.3	28.7	43.4	10008.1	37.1	55.4	10.3	15.5
F30B	111.7	0.6	0.7	15.7	44.7	-	11.9	13.3
F30C	111.7	0.0	0.0	0.3	-	-	12.9	14.3
F30S	120.3	0.0	-	0.2	-	46.8	14.0	16.8
F3A	108.2	0.0	0.0	0.2	-	31.1	13.3	14.4
F3B	108.2	0.0	0.0	0.2	-	-	12.8	13.9
F3C	108.2	0.0	0.0	0.2	-	-	13.2	14.3
F3S	108.2	0.0	-	0.1	-	29.5	12.6	13.6
L30A	111.7	2.4	2.7	63.4	45.6	47.0	11.2	12.5
L30B	120.3	7.5	9.0	208.4	43.3	-	10.9	13.1
L30C	108.2	0.4	0.5	11.1	46.4	-	10.3	11.1
L30S	115.1	0.0	-	0.1	-	46.7	16.8	19.3
L3A	122.0	0.2	0.2	4.6	46.3	31.5	11.6	14.1
L3B	101.3	0.0	0.0	0.2	-	-	10.3	10.4
L3C	104.8	0.0	0.0	0.1	-	-	10.0	10.4
L3S	115.1	0.0	-	0.1	-	28.3	16.0	18.4
H30A	194.4	44.6	86.6	2014.1	27.4	51.9	9.8	19.1
H30B	203.0	47.0	95.3	2216.7	24.7	-	9.4	19.0

Sample	Total	%CH ₄	С	H ₄	CH ₄ to		otal $\Delta^{13}C$			Alkalinity		%CC) ₂	CO ₂	
name	pressure	(headspa	ice p	artial		(µmol)				(meq/l)	2			partial	
	(kPa)	gas)	p	ressur	ire									pressure	Э
			()	(kPa)										(kPa)	
H30C	197.9	41.8	82	2.6		1921.0		25		-		9.4		18.5	
H30S	116.8	0.1	-			2.5		-		41.1		15.9		18.6	
H3A	123.7	9.1	1	1.3		261.8		31		32.2		15.4		19.0	
H3B	120.3	6.2	7.	.4		172.0		37.4		-		15.9		19.1	
H3C	125.5	10.1	12	2.6		293.2		28.6		-		15.7		19.7	
H3S	113.4	0.0	-			1.3		-		28.6		16.4		18.5	
G 1	Cl	D			<u>ac</u>	2-	ЪT -	+	T	r+	24	2+		2+	
Sample	$C\Gamma$	Br^{-}	NO_3^{-1}		SC ($)4^{2^{-1}}$	Na	/1)	K	.' 	Mg	~/1)	C	a^{2}	
name	(mg/1)	(mg/1)	(mg/l)) ((m)	(g/1)	(mg	<u>g/1)</u>	()	$\frac{mg}{1}$	(mg	<u>g/1)</u>	(1	ng/1)	
N30A N20D	1928.59	n.a.	0.892	8	b./	/80	196	64.04	2	01.28	10.	59	3	6.45	
N30B	1890.94	n.a.	0.747	8	7.1	149	198	35.26	1	85.77	26.	57	2	9.26	
N30C	1940.60	0.0795	0.953	6 (6.1	L48	188	38.46	1	97.88	30.	19	3	7.08	
N30S	1916.61	0.1124	7.957	94	4.6	560	204	17.58	2	08.19	28.	47	3	2.41	
N3A	1980.94	0.0841	8.062	.3 (6.6	500	148	38.42	2	09.61	27.	88	2	3.98	
N3B	1982.42	0.1085	8.309	4 (6.1	151	149	96.28	2	13.91	27.	00	2	7.49	
N3C	2032.23	0.0887	12.13	92	6.431		1472.72		2	06.76	32.17		2	6.65	
N3S	1942.03	0.1564	11.30	53 (6.078		1475.70		2	10.85	37.03		3	4.32	
G30A	1918.03	0.0490	0.747	8	7.6	503	1937.10		2	21.10	31.	22	3	4.08	
G30B	1831.10	n.a.	0.617	2	7.292		198	38.38	2	28.20	45.	88	5	2.42	
G30C	1866.51	0.0727	0.815	7	7.2	294	198	36.26	2	26.84	45.	32	1	6.92	
G30S	1926.04	0.0997	0.928	9 (6.9	996	193	36.82	2	24.48	41.	92	4	8.44	
G3A	2007.87	0.1324	1.081	.7	7.7	713	138	31.00	2	29.97	39.	73	4	5.24	
G3B	1896.32	0.0943	0.973	3	7.4	121	148	34.64	2	30.79	48.	45	5	8.28	
G3C	1880.34	0.0748	0.811	.3	7.6	574	155	54.40	2	26.06	46.	85	5	5.52	
G3S	2027.07	0.1116	1.022	2	7.2	219	146	54.81	2	36.90	40.	93	4	1.81	
F30A	2001.58	n.a.	5.040	3 4	4.3	324	194	1.62	2	00.42	25.	60	1	7.95	
F30B	1750.76	0.1015	1.017	94	4.4	172	195	51.23	1	98.09	29.	40	2	2.71	
F30C	1604.69	0.1096	1.081	.6 4	4.3	354	197	7.50	2	00.84	29.	66	2	3.89	
F30S	1716.50	0.0932	0.988	4 4	4.3	385	197	75.14	1	96.77	29.	00	3	5.54	
F3A	1878.22	0.0816	0.929	4 4	4.6	666	146	53.55	2	06.61	25.	56	1	7.88	
F3B	1992.16	0.0935	1.038	8 4	4.7	785	150)3.02	2	11.21	31.	74	3	0.99	
F3C	1989.24	0.0778	0.916	0 4	4.8	326	148	32.79	2	10.33	26.	81	3	2.26	
F3S	2001.73	0.0736	0.981	.6 4	4.6	554	146	54.84	2	10.53	28.	34	2	4.31	
L30A	1911.77	0.0947	0.858	6 4	4.7	776	199	91.00	2	23.02	30.	07	4	1.93	
L30B	1861.24	0.0736	0.804	.3 4	4.7	747	193	31.26	2	23.80	34.	13	5	7.44	
L30C	2003.81	0.0764	0.766	6	4.8	387	193	36.33	2	25.17	39.	06	6	8.99	
L30S	1855.00	0.1109	0.932		4.6	543	200)3.84	2	24.80	37.	35	5	1.16	
L3A	1972.99	0.0696	0.817	1 4	4.9	985	146	50.40	2	04.82	16.	05	2	1.91	
L3B	1998.60	0.0796	0.878	3 !	5.0)55	135	50.05	0.05 197.27		18.	51 3		2.79	

Sample	Cl	Br ⁻	NO ₃ -	SO4 ²⁻	Na ⁺	K^+	Mg^{2+}	Ca ²⁺
name	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
L3C	1963.47	0.0841	0.9022	5.092	1450.99	201.83	15.04	18.30
L3S	2030.23	0.1144	1.0519	4.706	1519.68	213.14	22.20	22.78
H30A	1912.98	n.a.	3.8471	6.826	1908.31	195.20	18.88	16.54
H30B	1910.22	n.a.	1.4151	6.610	1919.70	207.82	20.12	16.07
H30C	1881.35	n.a.	0.4717	6.632	1791.50	194.86	19.68	26.18
H30S	1903.42	0.1231	8.4853	5.723	1903.27	196.84	21.88	16.80
H3A	1912.98	0.0812	8.1254	6.892	1481.94	205.76	19.74	17.85
H3B	1910.22	0.0932	1.0906	6.824	1405.87	209.70	21.86	23.56
H3C	1881.35	0.0873	1.0477	7.087	1450.74	205.15	22.67	33.86
H3S	1903.42	0.1251	8.1029	5.915	1481.14	212.07	23.34	18.50

P values	L3A	L30A	G3A	G30A	F3A	F30A	H3A	H30A	N3A	N30A
from	μmol	μmol	μmol	μmol	μmol	μmol	μmol	μmol	μmol	μmol
T tests	CH ₄	CH_4	CH ₄	CH ₄	CH_4	CH ₄				
	produced	produced	produced	produced	produced	produced	produced	produced	produced	produced
L3A µmol	1	0.1916	0.0849	0.0396	0.3817	0.3658	0.0027	<0.0001	0.0204	0.0062
CH ₄										
produced										
L30A µmol	0.1916	1	0.2051	0.0630	0.1860	0.5060	0.0994	<0.0001	0.7596	0.0120
CH ₄										
produced										
G3A µmol	0.0849	0.2051	1	0.0401	<0.0001	0.3702	0.0028	<0.0001	0.0236	0.0063
CH ₄										
produced										
G30A	0.0396	0.0630	0.0401	1	0.0393	0.3952	0.1163	0.0070	0.0539	0.7879
µmol CH4										
produced										
F3A µmol	0.3817	0.1860	<0.0001	0.0393	1	0.3640	0.0026	<0.0001	0.0189	0.0061
CH ₄										
produced										
F30A µmol	0.3658	0.5060	0.3702	0.3952	0.3640	1	0.7825	0.0077	0.4681	0.2651
CH ₄										
produced										
H3A µmol	0.0027	0.0994		0.1163		0.7825	1	<0.0001	0.0149	0.0223
CH ₄			0.0028		0.0026					
produced										
H30A	<0.0001	<0.0001		0.0070	<0.0001	0.0077	<0.0001	1	<0.0001	0.0023
µmol CH4			<0.0001							
produced										
N3A µmol	0.0204	0.7596	0.0236	0.0539	0.0189	0.4681	0.0149	<0.0001	1	0.0088
CH ₄										
produced										
N30A	0.0062	0.0120	0.0063	0.7879	0.0061	0.2651	0.0223	0.0023	0.0088	1
µmol CH4										
produced										

P values	L3A µmol	L30A µmol	G3A µmol	G30A µmol	F3A µmol	F30A µmol	N3A µmol	N30A µmol
from	0.5 N HCl							
T tests	Fe(II)							
L3A µmol	1	0.8103	0.1025	0.2109	0.2946	0.6778	0.0104	0.0420
0.5 N HCl								
Fe(II)								
L30A µmol	0.8103	1	0.0849	0.1655	0.2436	0.5930	0.0185	0.0649
0.5 N HCl								
Fe(II)								
G3A µmol	0.1025	0.0849	1	0.4603	0.8591	0.6051	0.0008	0.0049
0.5 N HCl								
Fe(II)								
G30A µmol	0.2109	0.1655	0.4603	1	0.7892	0.8265	0.0009	0.0068
0.5 N HCl								
Fe(II)					-			
F3A µmol	0.2946	0.2436	0.8591	0.7892	1	0.7273	0.0142	0.0293
0.5 N HCI								
Fe(II)								0.0010
F30A µmol	0.6778	0.5930	0.6051	0.8265	0.7273	1	0.0821	0.0649
0.5 N HCI								
Fe(II)	0.0404	0.0405	0.0000	0.0000	0.0440	0.0004	1	0.4500
N3A μ mol	0.0104	0.0185	0.0008	0.0009	0.0142	0.0821	1	0.4503
0.5 N HCl								
Fe(II)	0.0400	0.0040	0.0040	0.0000	0.0000	0.0040	0.4500	1
N30A μ mol	0.0420	0.0649	0.0049	0.0068	0.0293	0.0649	0.4503	1
0.5 N HCI								
Fe(11)								

Sample name	Live/sterile	HCO ₃ ⁻ (mM)	Acetate (mM)
24-30-A	Live	24	30
24-30-В	Live	24	30
24-30-С	Live	24	30
24-30-S	Sterile	24	30
24-3-A	Live	24	3
24-3-В	Live	24	3
24-3-C	Live	24	3
24-3-S	Sterile	24	3
48-30-A	Live	48	30
48-30-В	Live	48	30
48-30-C	Live	48	30
48-30-S	Sterile	48	30
48-3-A	Live	48	3
48-3-B	Live	48	3
48-3-C	Live	48	3
48-3-S	Sterile	48	3

Appendix B - Semi-Continuous Experiments

Sample	7/10/20	7/17/20	7/24/20	7/31/20	8/7/20	8/14/20	8/21/20	8/29/20
name	pН	pН	pН	pН	pН	pН	pН	рН
24-30-A	7.02	6.91	6.95	6.88	6.96	6.99	6.91	6.90
24-30-В	6.93	6.88	6.94	6.91	6.97	6.96	6.98	7.04
24-30-С	6.92	6.89	6.89	6.89	6.97	6.96	6.94	6.98
24-30-S	7	6.96	9.98	6.92	6.92	7.06	6.90	6.86
24-3-A	6.93	6.89	6.93	6.90	7.00	6.98	6.93	6.91
24-3-В	6.98	6.89	6.98	6.94	6.95	6.91	6.89	6.89
24-3-C	6.91	6.89	6.94	6.89	6.99	6.93	6.91	6.89
24-3-S	6.97	6.94	6.97	6.94	6.97	7.01	6.95	6.89
48-30-A	7.13	7.26	7.28	7.06	7.16	7.09	7.06	7.13
48-30-В	7.15	7.21	7.38	7.26	7.12	7.26	7.07	7.13
48-30-C	7.12	7.09	7.09	7.02	7.08	7.04	7.06	7.12
48-30-S	7.12	7.12	7.12	7.12	7.15	7.17	7.04	7.02
48-3-A	7.16	7.14	7.10	7.14	7.14	7.11	7.09	7.05
48-3-B	7.14	7.12	7.11	7.11	7.14	7.07	7.04	7.09
48-3-C	7.12	7.09	7.08	7.14	7.09	7.05	7.03	7.00
48-3-S	7.14	7.10	7.08	7.22	7.15	7.05	7.05	7.04

Sample	7/10/20 G.	8/7/20 G.	8/21/20 G.	7/10/20	8/7/20	8/21/20
name	metallireducens	metallireducens	metallireducens	М.	М.	М.
	cell count	cell count	cell count	barkeri	barkeri	barkeri
				cell	cell	cell
				count	count	count
24-30-	4.03E+06	2.28E+05	3.09E+06	7.77E+04	5.09E+0	1.76E+06
А						
24-30-	1.53E+05	8.71E+04	9.60E+04	2.95E+03	7.32E+05	7.38E+03
S						
24-3-A	4.57E+06	2.46E+06	4.01E+06	3.25E+04	1.05E+06	1.13E+04
24-3-S	2.10E+05	1.20E+06	7.23E+04	1.30E+05	6.14E+05	0.00E+00
48-30-	4.72E+06	2.92E+06	1.95E+06	9.00E+04	1.62E+04	1.29E+04
Α						
48-30-	2.21E+05	2.45E+06	3.54E+04	1.09E+05	9.30E+04	0.00E+00
S						
48-3-A	4.40E+06	2.33E+06	1.55E+06	1.65E+05	1.48E+04	1.63E+04
48-3-S	1.36E+05	8.38E+05	2.14E+04	6.82E+05	1.62E+04	4.43E+03

Sample name	7/24/20 %CH ₄ (headspace gas)	7/24/20 CH ₄ partial pressure (kPa)	7/24/20 CH4 total (μmol)	$\frac{7/24/20}{\Delta^{13}C}$	7/24/20 %CO ₂	7/24/20 CO ₂ partial pressure (kPa)
24-30-A	.56	0.6	14.4	38.1	17.4	20.0
24-30-В	-	-	-	-	-	-
24-30-С	-	-	-	-	-	-
24-30-S	0.0	0.0	0.0	-	17.1	17.3
24-3-A	0.6	0.6	13.6	32.9	17.6	19.0
24-3-В	0.1	0.1	2.3	32.9	16.3	16.5
24-3-C	0.0	0.0	1.1	35.1	17.6	17.8
24-3-S	0.1	0.1	1.2	-	17.3	17.5
48-30-A	0.3	7.8	7.8	30.1	21.4	21.6
48-30-В	0.4	8.6	8.6	30.5	21.6	22.6
48-30-C	0.7	16.6	16.6	31.5	22.2	24.0
48-30-S	0.0	0.1	0.1	-	18.8	20.3
48-3-A	0.1	2.1	2.1	30.4	23.1	23.4
48-3-В	0.0	1.3	1.3	33.3	21.5	24.8
48-3-C	0.1	1.9	1.9	31.2	23.0	24.8
48-3-S	0.0	0.6	0.6	-	24.0	24.3

Sample	8/7/20 %CH4	8/7/20 CH ₄	8/7/20	8/7/20	8/7/20 %CO2	8/7/20 CO ₂
name	(headspace	partial	CH ₄ total	$\Delta^{13}C$		partial
	gas)	pressure (kPa)	(µmol)			pressure (kPa)
24-30-A	3.0	3 3	75.8	31.7	16.6	18.2
24-30-B	8.0	9.2	214.2	32.8	16.4	18.8
24-30-C	7.3	8.4	195.4	33.3	17.0	19.5
24-30-S	0.0	0.0	0.1	-	18.2	18.4
24-3-A	0.5	0.6	13.0	35.4	17.8	19.3
24-3-В	0.5	0.5	11.9	35.6	18.1	19.5
24-3-C	0.3	0.3	7.9	35.1	28.9	29.2
24-3-S	-	-	-	-	17.6	17.8
48-30-A	2.7	3.0	69.2	29.8	23.7	26.4
48-30-В	2.0	2.3	52.5	30.2	23.8	26.5
48-30-C	6.1	7.0	163.3	24.4	21.4	24.6
48-30-S	0.0	0.0	0.1	-	24.4	24.7
48-3-A	0.3	0.3	7.5	32.7	27.1	29.3
48-3-В	0.2	0.2	5.7	31.6	17.1	19.6
48-3-C	0.4	0.5	11.1	33.5	26.5	28.6
48-3-S	0.0	0.0	0.0	-	21.1	22.1
Sample	8/29/20	8/29/20 CH ₄	8/29/20	8/29/20	8/29/20	8/29/20 CO ₂
Sample name	8/29/20 %CH4	8/29/20 CH ₄ partial	8/29/20 CH4 total	$\frac{8/29/20}{\Delta^{13}C}$	8/29/20 %CO ₂	8/29/20 CO ₂ partial
Sample name	8/29/20 %CH ₄ (headspace gas)	8/29/20 CH ₄ partial pressure (kPa)	8/29/20 CH4 total (μmol)	8/29/20 Δ ¹³ C	8/29/20 %CO ₂	8/29/20 CO ₂ partial pressure (kPa)
Sample name	8/29/20 %CH ₄ (headspace gas) 4 1	8/29/20 CH ₄ partial pressure (kPa) 4 7	8/29/20 CH4 total (μmol)	8/29/20 Δ ¹³ C	8/29/20 %CO ₂	8/29/20 CO ₂ partial pressure (kPa)
Sample name 24-30-A 24-30-B	8/29/20 %CH ₄ (headspace gas) 4.1 32.9	8/29/20 CH ₄ partial pressure (kPa) 4.7 50 8	8/29/20 CH ₄ total (μmol) 108.8 1182.3	8/29/20 Δ ¹³ C 32.4 27	8/29/20 %CO ₂ 11.5 11.8	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2
Sample name 24-30-A 24-30-B 24-30-C	8/29/20 %CH ₄ (headspace gas) 4.1 32.9 28 1	8/29/20 CH4 partial pressure (kPa) 4.7 50.8 40 0	8/29/20 CH4 total (μmol) 108.8 1182.3 930.8	 8/29/20 Δ¹³C 32.4 27 27 9 	8/29/20 %CO ₂ 11.5 11.8 13.1	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7
Sample name 24-30-A 24-30-B 24-30-C 24-30-S	8/29/20 %CH4 (headspace gas) 4.1 32.9 28.1 0.0	8/29/20 CH ₄ partial pressure (kPa) 4.7 50.8 40.0 0.0	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6	8/29/20 Δ ¹³ C 32.4 27 27.9	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-A	8/29/20 %CH ₄ (headspace gas) 4.1 32.9 28.1 0.0 1.0	8/29/20 CH4 partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9	8/29/20 Δ ¹³ C 32.4 27 27.9 - 32.9	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-A 24-3-B	8/29/20 %CH4 (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9	8/29/20 CH ₄ partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4	8/29/20 Δ ¹³ C 32.4 27 27.9 - 32.9 33.3	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-A 24-3-A 24-3-B 24-3-C	8/29/20 %CH ₄ (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.9	8/29/20 CH ₄ partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 1.0	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9	$ \begin{array}{c} 8/29/20\\ \Delta^{13}C\\ 32.4\\ 27\\ 27.9\\ -\\ 32.9\\ 33.3\\ 31.0\\ \end{array} $	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6 13.7	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-S 24-3-A 24-3-B 24-3-C 24-3-S	8/29/20 %CH4 (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.9 0.9 0.0	8/29/20 CH4 partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 1.0 0.0	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9 0.0	8/29/20 Δ ¹³ C 32.4 27 27.9 - 32.9 33.3 31.0 -	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6 13.7 13.1	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8 13.3
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-A 24-3-B 24-3-C 24-3-S 48-30-A	8/29/20 %CH4 (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.9 0.0 4.0	8/29/20 CH ₄ partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 1.0 0.0 4.5	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9 0.0 105.7	$8/29/20 \\ \Delta^{13}C$ $32.4 \\ 27 \\ 27.9 \\ - \\ 32.9 \\ 33.3 \\ 31.0 \\ - \\ 30.1$	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6 13.7 13.1 22.4	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8 13.3 25.7
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-S 24-3-A 24-3-B 24-3-C 24-3-S 48-30-A 48-30-B	8/29/20 %CH ₄ (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.9 0.9 0.0 4.0 2.4	8/29/20 CH ₄ partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 1.0 0.0 4.5 2.7	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9 0.0 105.7 62.8	$\begin{array}{c} 8/29/20\\ \Delta^{13}C\\ \hline \\ 32.4\\ 27\\ 27.9\\ \hline \\ 32.9\\ \hline \\ 33.3\\ \hline \\ 31.0\\ \hline \\ -\\ \hline \\ 30.1\\ 29.7\\ \end{array}$	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6 13.7 13.1 22.4 22.6	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8 13.3 25.7 25.6
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-A 24-3-B 24-3-C 24-3-S 48-30-A 48-30-B 48-30-C	8/29/20 %CH ₄ (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.9 0.9 0.0 4.0 2.4 -	8/29/20 CH ₄ partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 1.0 0.0 4.5 2.7 -	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9 0.0 105.7 62.8 -	$8/29/20 \\ \Delta^{13}C$ $32.4 \\ 27 \\ 27.9 \\ - \\ 32.9 \\ 33.3 \\ 31.0 \\ - \\ 30.1 \\ 29.7 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6 13.7 13.1 22.4 22.6 -	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8 13.3 25.7 25.6 -
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-A 24-3-A 24-3-B 24-3-C 24-3-S 48-30-A 48-30-B 48-30-C 48-30-S	8/29/20 %CH4 (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.9 0.0 4.0 2.4 - 0.0	8/29/20 CH ₄ partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 1.0 0.0 4.5 2.7 - 0.0	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9 0.0 105.7 62.8 - 0.2	$8/29/20 \\ \Delta^{13}C$ $32.4 \\ 27 \\ 27.9 \\ - \\ 32.9 \\ 33.3 \\ 31.0 \\ - \\ 30.1 \\ 29.7 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6 13.7 13.1 22.4 22.6 - 23.0	8/29/20 CO ₂ partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8 13.3 25.7 25.6 - 24.8
Sample name 24-30-A 24-30-B 24-30-C 24-30-C 24-3-S 24-3-A 24-3-B 24-3-C 24-3-S 48-30-A 48-30-B 48-30-C 48-30-S 48-3-A	8/29/20 %CH4 (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.9 0.0 4.0 2.4 - 0.0 0.4	8/29/20 CH4 partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 1.0 0.0 4.5 2.7 - 0.0 0.4	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9 0.0 105.7 62.8 - 0.2 9.6	$8/29/20 \\ \Delta^{13}C$ $32.4 \\ 27 \\ 27.9 \\ - \\ 32.9 \\ 33.3 \\ 31.0 \\ - \\ 30.1 \\ 29.7 \\ - \\ - \\ 34.1 \\ - \\ 34.1$	8/29/20 %CO2 11.5 11.8 13,1 14.2 14.1 12.6 13.7 13.1 22.4 22.6 - 23.0 25.5	8/29/20 CO2 partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8 13.3 25.7 25.6 - 24.8 27.6
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-A 24-3-B 24-3-C 24-3-S 48-30-A 48-30-B 48-30-C 48-30-S 48-3-A 48-3-B	8/29/20 %CH4 (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.0 4.0 2.4 - 0.0 0.4 0.5	8/29/20 CH4 partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 0.0 4.5 2.7 - 0.0 0.4 0.6	8/29/20 CH ₄ total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9 0.0 105.7 62.8 - 0.2 9.6 13.2	$8/29/20 \\ \Delta^{13}C$ $32.4 \\ 27 \\ 27.9 \\ - \\ 32.9 \\ 33.3 \\ 31.0 \\ - \\ 30.1 \\ 29.7 \\ - \\ - \\ 34.1 \\ 32.0 \\$	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6 13.7 13.1 22.4 22.6 - 23.0 25.5 23.9	8/29/20 CO2 partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8 13.3 25.7 25.6 - 24.8 27.6 27.5
Sample name 24-30-A 24-30-B 24-30-C 24-30-S 24-3-A 24-3-B 24-3-C 24-3-S 48-30-A 48-30-B 48-30-S 48-30-S 48-3-A 48-3-B 48-3-C	8/29/20 %CH4 (headspace gas) 4.1 32.9 28.1 0.0 1.0 0.9 0.9 0.0 4.0 2.4 - 0.0 0.4 0.5 0.6	8/29/20 CH4 partial pressure (kPa) 4.7 50.8 40.0 0.0 1.1 1.0 1.0 0.0 4.5 2.7 - 0.0 0.4 0.6 0.7	8/29/20 CH4 total (μmol) 108.8 1182.3 930.8 0.6 25.9 23.4 22.9 0.0 105.7 62.8 - 0.2 9.6 13.2 16.0	$8/29/20 \\ \Delta^{13}C$ $32.4 \\ 27 \\ 27.9 \\ - \\ 32.9 \\ 33.3 \\ 31.0 \\ - \\ 30.1 \\ 29.7 \\ - \\ - \\ 34.1 \\ 32.0 \\ 32.0 \\ 32.0 \\ $	8/29/20 %CO ₂ 11.5 11.8 13,1 14.2 14.1 12.6 13.7 13.1 22.4 22.6 - 23.0 25.5 23.9 24.1	8/29/20 CO2 partial pressure (kPa) 13.2 18.2 18.7 14.8 15.3 13.6 14.8 13.3 25.7 25.6 - 24.8 27.6 29.3

Sample name	7/17/20	7/31/20	8/14/20	8/29/20
	Alkalinity	Alkalinity	Alkalinity	Alkalinity
	(meq/l)	(meq/l)	(meq/l)	(meq/l)
24-30-A	53.3	50.8	49.2	52.3
24-30-В	39.5	49.5	49.0	52.2
24-30-С	40.0	49.7	46.4	51.7
24-30-S	40.0	46.8	46.8	49.7
24-3-A	28.0	28.8	30.9	28.2
24-3-В	30.4	51.4	30.9	27.4
24-3-C	27.9	28.6	29.2	30.3
24-3-S	27.5	28.3	29.3	28.9
48-30-A	60.7	71.7	80.7	72.4
48-30-В	60.0	73.4	71.5	72.3
48-30-C	60.5	70.6	66.4	72.2
48-30-S	62.9	71.0	71.8	72.3
48-3-A	50.0	52.8	54.0	52.3
48-3-В	50.1	51.4	52.7	52.2
48-3-C	50.1	51.8	53.0	52.6
48-3-S	49.8	50.9	52.9	52.2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	P values	24-3	24-30	48-3	48-30	24-3	24-30	48-3	48-30	24-3	24-30	48-3	48-30
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	from	μmol	μmol	μmol	μmol	μmol	μmol	μmol	μmol	μmol	μmol	μmol	μmol
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T tests	CH4 at	CH ₄ at	CH4 at	CH4 at	CH4 at	CH ₄ at	CH ₄ at	CH ₄ at	CH ₄ at	CH4 at	CH ₄ at	CH ₄ at
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		21 days	21 days	21 days	21 days	35 days	35 days	35 days	35 days	56 days	56 days	56 days	56 days
$ \begin{array}{c} \mathrm{CH}_{4} \mathrm{at} 21\\ \mathrm{days}\\ 24.30 \ \mu\mathrm{mol}\\ \mathrm{CH}_{4} \mathrm{at} 21\\ \mathrm{days}\\ \mathrm{days}\\ \mathrm{48-3} \ \mu\mathrm{mol}\\ \mathrm{CH}_{3} \mathrm{at} 21\\ \mathrm{days}\\ \mathrm{48-3} \ \mu\mathrm{mol}\\ \mathrm{CH}_{3} \mathrm{at} 21\\ \mathrm{days}\\ \mathrm{days}\\ \mathrm{48-30 \ \mu\mathrm{mol}}\\ \mathrm{CH}_{4} \mathrm{at} 21\\ \mathrm{days}\\ \mathrm{days}\\ \mathrm{days}\\ \mathrm{48-30 \ \mu\mathrm{mol}}\\ \mathrm{CH}_{4} \mathrm{at} 21\\ \mathrm{days}\\ day$	24-3 µmol	1	0.0020	0.7782	0.0015	0.4609	0.0761	0.1274	0.1621	0.0049	0.1803	0.9470	0.0799
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH ₄ at 21												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	days												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24-30 umol	0.0020	1	0.0251	0.9659	0.0048	0.0210	0.0181	0.0539	< 0.0001	0.0848	0.0043	0.0142
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH ₄ at 21												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	days												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	48-3 umol	0.7782	0.0251	1	0.0247	0.8356	0.0259	0.3343	0.0736	0.0134	0.0877	0.7124	0.0215
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CH ₄ at 21											-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	davs												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	48-30 umol	0.0015	0.9659	0.0247	1	0.0044	0.0210	0.0170	0.0540	< 0.0001	0.0848	0.0041	0.0142
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH ₄ at 21												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	davs												
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{CH}_{4} \text{ at } 35 \\ \text{days} \end{array} & \begin{array}{c} \text{O} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	24-3 umol	0.4609	0.0048	0.8356	0.0044	1	0.0254	0.2729	0.0716	0.0019	0.0875	0.4484	0.0200
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH ₄ at 35		0.0010			-	0.020	0.2.20			0.000.0		0.0200
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	days												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24-30 umol	0.0761	0.0210	0.0259	0.0210	0.0254	1	0.0239	0.2942	0.0336	0.1514	0.0265	0.2748
days a	CH ₄ at 35						-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	davs												
CH ₄ at 35 days 0.0539 0.0736 0.0540 0.0716 0.2942 0.0656 1 0.1091 0.1187 0.0764 0.8351	48-3 umol	0.1274	0.0181	0.3343	0.0170	0.2729	0.0239	1	0.0656	0.0010	0.0867	0.1183	0.0181
days β β β β <td>CH₄ at 35</td> <td></td>	CH ₄ at 35												
48-30 μmol 0.1621 0.0539 0.0736 0.0540 0.0716 0.2942 0.0656 1 0.1091 0.1187 0.0764 0.8351	davs												
CHL + 25	48-30 umol	0.1621	0.0539	0.0736	0.0540	0.0716	0.2942	0.0656	1	0.1091	0.1187	0.0764	0.8351
	CH ₄ at 35												
davs	davs												
24-3 µmol 0.0049 <0.0001 0.0134 <0.0001 0.0019 0.0336 0.0010 0.1091 1 0.0916 0.0059 0.0332	24-3 umol	0.0049	<0.0001	0.0134	< 0.0001	0.0019	0.0336	0.0010	0.1091	1	0.0916	0.0059	0.0332
CH4 at 56	CH ₄ at 56									_			
davs	davs												
24-30 umol 0.1803 0.0848 0.0877 0.0848 0.0875 0.1514 0.0867 0.1187 0.0916 1 0.0881 0.2150	24-30 umol	0.1803	0.0848	0.0877	0.0848	0.0875	0.1514	0.0867	0.1187	0.0916	1	0.0881	0.2150
CH4 at 56	CH ₄ at 56										-		
davs	davs												
48-3 µmol 0.9470 0.0043 0.7124 0.0041 0.4484 0.0265 0.1183 0.0764 0.0059 0.0881 1 0.0217	48-3 µmol	0.9470	0.0043	0.7124	0.0041	0.4484	0.0265	0.1183	0.0764	0.0059	0.0881	1	0.0217
CH_4 at 56	CH ₄ at 56	0.0 11 0	0.0010	0.1.121	0.0011	0.1101	0.0200	011100	0.0101	0.0000	0.0001	1	0.0211
days	davs												
48-30 umol 0.0799 0.0142 0.0215 0.0142 0.0200 0.2748 0.0181 0.8351 0.0332 0.2150 0.0217 1	48-30 umol	0.0799	0.0142	0.0215	0.0142	0.0200	0.2748	0.0181	0.8351	0.0332	0.2150	0.0217	1
	CH ₄ at 56	0.0.00		0.0210	0.0112	0.0200					0.2100		1
days	davs												

Sample	Live/sterile	Substrate	Total	%CH4	CH ₄	CH ₄	$\Delta^{13}C$	%CO ₂	CO ₂
name			pressure	(headspace	partial	total			partial
			(kPa)	gas)	pressure	(µmol)			pressure
					(kPa)				(kPa)
HA	Live	H ₂	101.3	5.3	5.4	124.9	33.6	15.8	16.0
HB	Live	H ₂	101.3	4.7	4.8	111.5	32.3	15.6	15.8
НС	Live	H ₂	101.3	4.1	4.2	97.0	32.1	12.9	13.0
HS	Sterile	H ₂	109.9	-	-	-	-	-	-
MA	Live	Methanol	159.9	29.4	47.0	1093.5	31.9	15.5	24.7
MB	Live	Methanol	161.7	29.3	47,4	1101.5	31.3	15.8	25.5
MC	Live	Methanol	156.5	-	-	-	-	-	-
MS	Sterile	Methanol	111.7	-	-	-	-	-	-
AA	Live	Acetate	203.0	48.2	97,9	2275.7	22.2	9.8	19.9
AB	Live	Acetate	218.5	54.5	119.1	2769.8	18.3	9.1	19.8
AC	Live	Acetate	209.9	50.25	105.5	2453.1	23.2	9.3	19.4
AS	Sterile	Acetate	115.1	0.0	-	0.0	26.7	15.8	18.1

Appendix C - Methanogen Substrate Experiments

P values from T tests	H ₂ substrate Δ^{13} C	Acetate substrate Δ^{13} C	
H_2 substrate $\Delta^{13}C$	1	0.0019	
Acetate substrate Δ^{13} C	0.0019	1	
24-3 Δ^{13} C at 21 days	0.3294	0.0017	
24-30 Δ^{13} C at 21 days	0.0287	0.0300	
$48-3 \Delta^{13}C \text{ at } 21 \text{ days}$	0.3531	0.0038	
48-30 Δ^{13} C at 21 days	0.0351	0.0037	
24-3 Δ^{13} C at 35 days	0.0054	0.0007	
24-30 Δ^{13} C at 35 days	0.9252	0.0019	
48-3 Δ^{13} C at 35 days	0.9311	0.0020	
48-30 Δ^{13} C at 35 days	0.0784	0.0449	
24-3 Δ^{13} C at 56 days	0.7697	0.0025	
24-30 Δ^{13} C at 56 days	0.1090	0.0247	
48-3 Δ^{13} C at 56 days	0.9704	0.0023	
48-30 Δ^{13} C at 56 days	0.0214	0.0208	
$L3 \Delta^{13}C$	0.0047	0.0139	
L30 Δ^{13} C	0.0003	0.0002	
$G3 \Delta^{13}C$	0.0029	0.0006	
$G30 \Delta^{13}C$	0.0253	0.0049	
$F3 \Delta^{13}C$	No data	No data	
F30 Δ^{13} C	0.0655	0.0105	
$H3 \Delta^{13}C$	0.9066	0.0213	
H30 Δ^{13} C	0.0020	0.0604	_
$N3 \Delta^{13}C$	0.0004	0.0002	-
$N30 \Lambda^{13}C$	0.4414	0.0083	