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Abstract

Wall-crossing structure (WCS) is a formalism proposed and studied by M.Kontsevich
and Y.Soibelman that enables us to encode the Donaldson-Thomas (DT) invariants (BPS
degeneracies in physics) and to control their “jumps” when certain walls (walls of marginal
stability in physics) on the moduli space are being crossed. The celebrated Kontsevich-
Soibelman wall-crossing formulas (KSWCF) are the essential ingredients of WCS.

WCS formalism is well adapted to the data coming from the complex integrable sys-
tem. The famous Seiberg-Witten (SW) integrable system is an example. By considering
certain gradient flows on the base of the integrable system called the split attractor flows,
WCS can produce an algorithm for computing the DT-invariants inductively.

This dissertation is about applying the WCS to the SW integrable systems associated
to the pure SU(2) and SU(3) supersymmetric gauge theories. We will see that the results
via the WCS formalism match perfectly well with those obtained via physics approaches.
The main ingredients of this algorithm are the use of split attractor flows and KSWCEF.
Besides the known BPS spectrum in pure SU(3) case, we obtain new family of BPS states
with BPS-invariants equal to 2.
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Abstract

Wall-crossing structure ("WCS” for short) is a formalism proposed and studied by
M.Kontsevich and Y.Soibelman that enables us to encode the Donaldson-Thomas (DT)
invariants (BPS degeneracies in physics) and to control their ”jumps” when certain walls
(walls of marginal stability in physics) on the moduli space are being crossed. The
celebrated Kontsevich-Soibelman wall-crossing formulas ("KSWCFE” for short) are the
essential ingredient of WCS.

WCS formalism is well adapted to the data coming from the complex integrable sys-
tem. The famous Seiberg-Witten integrable system (“SW integrable system” for short)
is an example. By considering certain gradient flows on the base of the integrable system
called the split attractor flows, WCS can produce an algorithm for computing the corre-
sponding DT-invariants inductively.

This dissertation is about applying the WCS to the SW integrable systems associated
to the pure SU(2) and SU(3) supersymmetric gauge theories. We will see that the results
via the WCS formalism match perfectly well with those obtained via physics approaches.
The main ingredients of this algorithm are the use of split attractor flows and KSWCF.
Besides the known BPS spectrum in pure SU(3) case, we obtain new family of BPS states
with BPS-invariants equal to 2.
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Chapter 1

Introduction

1.1 Outline of the thesis

The study of BPS spectra in 4d N=2 Super-symmetric field theory is the central theme
in modern theoretical physics (see | | for a review). During the last decades, there
has been tremendous progress in understanding the spectra in a large class of N=2 the-
ories. The key in these developments lies in the gradual understanding of the so-called
wall-crossing phenomena for the BPS-invariants (corresponding to Donaldson-Thomas
invariants in mathematics) associated to the BPS-states. In particularly, the celebrated
Kontseivich-Soibelman Wall-Crossing Formula (see | ]) had been proved to be the
essential ingredients in understanding the structures of the BPS spectra. Moreover, it is
believed that the wall-crossing formula gives universal solutions for all problems involving
wall-crossing phenomena.

It is suspected that any N=2 theory would give rise to a complez integrable system (see
[ | for a short exposition). The famous Seiberg-Witten solution to the N = 2,d =4
super Yang-Mills theory is a particular example of this scheme (| ]), whence came
with the notion of Sieberg-Witten Integrable System that had been widely investigated
in various perspectives (see example | ] and | ] for the physics background and
[ | for a mathematical treatment). For any such a theory, we have a complex man-
ifold B, called the moduli space of vacua in the physics literature. Over B, it is endowed
with a local system of lattices I', which is called the charge lattice. Most importantly,
for the cases being considered in this thesis, we are given a central charge function Z,
which is simply a linear map from I" to Z (understood as constant local system Z over B).

Thus, it would be natrual and desirable to have a formalism encoding the wall-crossing
phenomena for Donaldson-Thomas invariants (DT invariants for short) that is compatible
with the data coming from complex integrable system. This is exactly the wall-crossing
structures (WCS for short) that had been established in | ] by Kontsevich and Soibel-
man. In fact, WCS generalizes the notion of stability data that had been thoroughly
treated in | ].

WCS formalism, when applied to the Seiberg-Witten integrable systems, will produce
an algorithm for computing the DT-invariants associated to the systems. The most im-
portant ingredients of the WCS are the celebrated Kontsevich-Soibelman Wall-Crossing
Formulas (KSWCF for short).



Roughly speaking, we will consider certain gradient flow lines associated to the central
charge function Z on the base B of the integrable system. Following the terminology of
physicists, we call these gradient flow lines the split attractor flows. The term “split” here
refers to the fact that these flow lines will split into several branches when hitting certain
co-dimensional one walls on the base B. These walls are called the walls of the first kind
(or walls of marginal stability in physics literature). After (possibly infinite many times
of) such splitting, the flow lines will form a rooted tree on the base. Then, we assign the
DT-invariants to the terminal points of the tree, called initial data of WCS, and move
toward to the root of the tree. Under the good condition that the number of attractor
trees is finite, we use the KSWCF at the split points. In this way, we will eventually
arrive at the value of DT-invariant at the root of the tree, as well as the charge vector
associated to the root.

This thesis is mainly about the application of the WCS formalism to the Seiberg-
Witten Integrable Systems (SW Integrable Systems for short) with pure gauge group
SU(3). Our results show that WCS formalism is proven to be a very effective way to
compute the DT-invariants (or BPS invariants in physics) algebraically. Not only the
large sector of the known BPS spectra existing in physics literature (see for examples:
[ I Il Il |) can be recovered in this way, but also certain BPS states
with invariants 2 could also be obtained as a by product.

The contents of this dissertation are outlined as bellow:

In chapter two, we will give a detailed exposition of the wall-crossing structure for-
malism following the original paper | | of Kontsevich and Soibelman.

In section 3.1 of the chapter three, we introduce the notion of complex integrable
systems including the construction of the action-angle coordinates and their relation to
the central charge. We will focus more on the geometry of the base of the integrable
system, and show that the base is naturally endowed with the S'-family of the integral
affine structures.

In section 3.2, we review the basics notion of split attractor flows, as well as the ax-
iomatic treatment by Kontsevich and Soibelman in | |. We will discuss its relation to
WCS in sub-section 3.2.3. At the end of the chapter three, we will display the relationship
between the attractor flows and the Hesse flows by performing the explicit computations
in the frame work of the special Kahler geometry, and we point out its relevance in Mirror
symmetry.

Chapter four is about the geometry of the Seiberg-Witten integrable system. We
collect many discussions and treatments scattered in the physics literature and rearrange
them in a consistent fashion. In particularly, we will show several equivalent descriptions
of the Seiberg-Witten integrable systems in terms of the so called Seiberg- Witten curves
in section 4.1. And in section 4.2, we study the vanishing cycles and the associated
monodromies of the SU(2) and SU(3) Seiberg-Witten integrable systems from various
points of views. These results will be used in chapter five to give the initial data of the
corresponding Wall-crossing structures. This section contains a lot of materials that are



irrelevant to the last chapter and the previous chapters, thus, except the results to be
cited for later use, this section is largely independent of the rest of the thesis.

Finally, in chapter five, we will construct the WCS for the Seiberg-Witten integrable
systems associated to SU(2) and SU(3) respectively. The ingredients for constructing
the WCS in SU(2) case are essentially known in physics literature, we just reformulate
them in the framework of the WCS formalism in section 5.1. This section can also be
viewed as a warm up excises for section 5.2 in which the WCS for the Seiberg-Witten
integrable system in SU(3) case was constructed. The WCS in this case was constructed
by reducing the situation to the SU(2) case that had already been constructed in 5.1.

There are two appendices intending to provide the readers with the necessary physics
backgrounds that are relevant to the main content of this dissertation. Appendix A
provides a short exposition of the notion of BPS states in 4d, N = 2 supersymmetric
Yang-Mills theories. In appendix B, we give some motivations for the introduction of the
split attractor flows in supergravity.



1.2 Summary of the main results

The most important result obtained in this these is the construction of the WCS for SW
integrable system with gauge group SU(3). This consists two parts: the WCS in strong
coupling region and WCS in weak coupling region. The WCS in strong coupling region
is discussed in section 5.2.4, while that in weak coupling region is investigated in section
5.2.5.

We showed in proposition 5.2.2 in section 5.2.5. that the walls of the first kind W},
when restricted to the plane H that cut the base B of the integrable system, is topolog-
ically homeomorphic to the circle S!, and plays the same role as the wall of stability in
SU(2) case (see figure 5.24 there for illustration).

Consequently, the construction of WCS in SU(3) case can be reduced to the similar
situation that had been constructed for the SU(2) case in section 5.1.

In particularly, in proposition 5.2.3, we will obtain easily by using the WCS formalism
the following three families of BPS states and the associated DT-invariants that match
those obtained through physics approach (see for example | D :

i+ -y, k=123 n=12--
vi 4, k=1,2,3;
(n—Vyf +nv,, k=123 n=----3-2—11.
All states with DT-invariants 2 = 1, except for the middle row states, which have

DT-invariants 2 = —2. The split attractor flows that “represent” these states are illus-
trated in Figure 5.26 and Figure 5.27.

Moreover, since in the weak coupling region, there exists another wall W Loy (Of the
first kind) that had been pointed in | | and | |, the attractor flows will split

when hitting this wall (see figure 5.28). By applying the WCS formalism to this situation,
we proved in proposition 5.2.6 that there exists new BPS states (denoted by 3 in the
below) with DT-invariants jumps from one to two when crossing this wall.

The relevant KSWCF to be used at the split point is given as below.
Using short notations:

7 = (a1, naq)
Y2 = (ag, (n — 1)az)
73 = (az, a1 + (n — 1)ag)

where a1, s and ag denote the three positive roots of the Lie algebra suz, we have
that the KSWCF at the split point is given by:

IC% ]C’Y3ICW2 == IC?/:;K—2 c IC%

2v3 —



where
o

Ef = H Kzt (n=1)(v1473) Koot (n=1) (1 +73) 47
n=1
1
== H Kn—1ytnntvs)+vs Kn-1ya4nn+vs)

We also pointed out in remark 5.2.6 that the jump of the DT-invariants 3 com-
puted above by using KSWCF is compatible with the so called “primitive wall-crossing

formula”:
AQrs = 71+ 72) = (=17 (31, 79)| Q1) Q32) = 1

e In section 5.1.4 and section 5.1.5, we reformulated the scattered facts in physics
literature in terms of the language of the WCS formalism, thus produced the WCS for
the SW integrable system with gauge group SU(2). The BPS states, as well as the
associated DT-invariants, produced by using WCS formalism, turns out to match the
results that had been obtained by physics approaches perfectly.



1.3 Summarize of miscellaneous results

e In proposition 2.2.1 of section 2.2.3, we displayed that the KSWCF can be formally
interpreted as the triviality of the monodromy around any small loop (already pointed
out in section 2.3 of | ]), i.e., for any short loop, the monodromy

O

7

where the product is taken in the increasing order of elements ¢;. And in lemma 2.3.5 of
section 2.3.3, we generalize it to the nilpotent case.

e In section 3.1.4, we introduced the holomorphic coordinates {z,- - , 29, } for the
complex integrable system that are the complex analogy of the action coordinates {I',--- ,i*"}
in the real case. In particular, we showed in proposition 3.1.21 the relation between these
holomorphic coordinates and the action-angle coordinates (I, 6;) reads as

Write w; = e* and suppose that dz; = «;, then we have that

I' = Re(logw;) = log|w;| 0; = Im(logw;).

e In the proof of the proposition 3.2.17 of section 3.2.3, we explicitly described
how the WCS on the base B of the integrable system gives rise to an local embedding
B° — Stab(gs) for each b € B°.

e In section 3.2.4, we introduced the notion of Hesse flow proposed in | |, and
compare it with the notion of split attractor flow. To this end, we also introduced the
notions of dual attractor flow and the dual Hesse flow, then we proved the following result:

Start with central charge function Z(7) associated to the charge ~y, and use the Z-affine
coordinates on B, we see that taking the real part of Z(v) gives us the Hesse flow

Re (e *Z(v)) = VF - v
while taking the imaginary part gives us the dual Hesse flow
Im(e™Z(v)) = VFT .y

Next, denote § = Arg (Z(~y)). We see that in the Z-affine structure By, the dual Hesse
flow specializes into the attractor flow; while in the Z-affine structure By z, the Hesse
flow becomes the dual attractor flow.

e In section 4.1.2, we displayed in the proof of the proposition 4.1.4 how to construct
the Seiberg- Witten differentials by using the Abelian differentials of the first kind (see for
example the book | D:

" kdy

Y

Wi = k:27...’n



on the Seiberg- Witten elliptic curves. In particular, by choosing suitable linear combina-
tion of the Abelian differentials of the first kind, we reproduced the following form of the

Seiberg-Witten differential as given in the physics papers (for example | Nl )):
0 d
Asw = constant - (awflnl(x,ui)) % (1.3.1)

up to an addition of exact form.

e In section 4.1.3, we represented the Seiberg-Witten curves as weight diagram fibra-
tions, and we showed in proposition 4.1.7 that in this case, the Seiberg-Witten differential
1.3.1 above reduces into the following form

d
Asw = —1 — (1.3.2)
z

e In proposition 4.1.11 of section 4.1.3, we showed that the monodromy around the
branch points zii is given by the fundamental Weyl reflection M, associated to the simple
roots «; of the gauge group SU(n).

e In section 4.1.4, we study the geometry of Seiberg-Witten systems in terms of the
K3-fibrations by lifting the weight diagram fibrations into higher dimension. We per-
formed explicit computations to show the compatibility of the two approaches, which can
be summarized as saying that the SW geometry, being encoded by the fibration of weight
diagram over S?, which is linearized by the local system of lattices Hy(.#,Z) over CP?,
can be obtained by the degeneration of the ALE space fibration over S? by letting y and
z equal to zero in the defining equation (in physics term, it is called integrate out the
variables) of the K3-fibration. In other words, the local system of lattices Hy(ALE,Z)
over CP! encodes the same information as that of Hy(.#,Z). The essential information
is the root lattice Ay of type A,,_1. Indeed, the intersection matrix of the vanishing cycles
in both cases equal to the negative of the Cartan matrix for SU(n).

Besides, in proposition 4.1.15, we computed that by integrating the unique (up to
scalar multiplication) holomorphic volume form

dz dz N\ dy

Q=-"A e H*(X,C
e N oW g € KO

over the vanishing 2-spheres S;;, we will produce essentially the Seiberg-Witten differ-
ential given by 1.3.2 above, namely we have that up to multiplication by some constant,

we have that p
z
Q= —ey.) —

//Sij (6)\1 6/\J) <

In proposition 4.1.18, we clarified the relation between the periods of the CY 3-
fold defined by the K3-fibrations and the periods of the Seiberg-Witten curves, i.e., for
v € H3(X,Z), we have the following identity

7Y = [ Q= Asw = Z
() / /M sw = 2(6(7))



where the map ¢ : H3(X,Z) — H;(C,Z) is the pushed forward map on the level of
homology.

e In the SU(2) case, the base of the integrable system can be identified with CP! = §2,
we endow the base with the metric given by

ds® = |hsw|? = goz dzdz = (2(2)/2) dzdz

Introducing the flat coordinate on the base given by z = [ “ Asw, then the geodesic
line equation in terms of the coordinate z reads

A2 0z(1)
Qu — 5 — — 122N 1.3.
u—z——2 o (1.3.3)

Then we have the the following observation given in proposition 4.1.19:

Let Z : Ty := H1(Cy,Z) — Z be the central charge function of the SW integrable
system. Consider the wall of second kind defined by

Im(Zy(y)) =0

for some charge v € I';,. If the above equation is viewed as defining a curve in the base
B of the SW integrable system, then it gives the attractor flow equation. However, if we
present the SW curve as the fibration of weight diagram over CP!, then in terms of the
base coordinate z, the wall equation above gives the geodesic line equation 1.3.3 on CP!.

e In section 4.1.5, we introduced the notion of spectral network, and compared it with
the notion of split attractor flow in SU(n) case when the base can be identified with CP?.
We argued in proposition 4.1.21, that the spectral network on the base contains the same
amount of information as that of the split attractor flows so long as the determination
of the BPS charges (states) are concerned. We also proved the balancing condition for
spectral network in proposition 4.1.22.

e In section 4.2.1, by using the expression of the one-loop prepotential function

Fldoop = 6L7r Z ulog ((ei = ej)2/A2)

1<j

we performed the explicit computation to verify the known semi-classical monodromies
in SU(3) case (] ]). See equation 4.2.12 and equation 4.2.16 in that section.

e In section 4.2.2, we gave very through treatment for the quantum monodromy for
the SU(2) case. For example, by using the Seiberg-Witten curve and Seiberg-Witten
differential in the form of weight diagram fibration (see equation 4.2.21 and equation
4.2.22), we reproduced the Semi-classical monodromy by using the prepotential function.
And we computed in the proof of the proposition 4.2.1 that the period integrals have
the desired semi-classical approximation. Further more, we also computed the vanishing
cycle v at oo of the curve analytically by comparing the two equivalent forms of the
Seiberg-Witten elliptic curve in SU(2) case.



e In section 4.2.2, we displayed the compatibility of the Picard-Lefschetz formula with
the monodromies computed in terms of the prepotential. See proposition 4.2.8 in that
section for more details. We also give two proofs of the fact that the monodromies asso-
ciated to two non-intersecting vanishing cycles commute with each other (see proposition
4.2.9), one by using Picard-Lefschetz formula directly, the other by manipulating alge-
braically the equations involving the tensor product of matrices.

e In section 4.2.3, we used the Zariski-Van Kampen theorem to compute the funda-
mental group of the complement of the cups curve (i.e., the discriminant locus) in C?
in proposition 4.2.21, which is used in section 4.2.4 to exhibit the relations among the
quantum monodromy matrices in SU(3) case, see equation 4.2.97 and remark 4.2.21 for
more details.



Chapter 2

Introducing Wall-Crossing
Structures

Wall-Crossing Structure (“WCS” for short), which had been proposed and studied by
Kontseivich and Soibelman in | |, arises in the study of N = 2 super-symmetric
quantum field theories in physics. On the mathematics side, it gives a natural framework
for dealing with the so-called Donaldson-Thomas invariants (“DT-invariants” for short),
which in the physics literature, corresponds to the BPS-invariants (see Appendix A for
more information).

This chapter is organized as below.

We begin by reviewing the concept of stability data of | | in section 2.1. This
serves to motivate the concept of wall-crossing structure, as well as to introduce the nec-
essary terminologies that will be used later. We will see how the celebrated Kontsevich-
Soibelman Wall-Crossing Formula (“KSWCE” for short) could be written down explicitly
in the formalism of WCS.

After this, we can generalize the concept of stability data to that of the Wall-crossing
structure in section 2.3, which would be our main concern in this thesis. Moreover, we
will see how KSWCF could be reinterpreted formally as kind of cocycle condition in the
WCS formalism. The description of WCS in terms of sheaves will be discussed in sec-
tion 2.4, which is useful when considering in section 2.5 WCS on general topological space.

Finally, in section 2.6, we give some examples of WCS.
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2.1 Stability data

Roughly speaking, a stability data on a graded Lie algebra g gives us a natural way to
encode the set of Donaldson-Thomas (DT) invariants, and the space of stability data
(called stability data on g) would enable us to describe how these invariants behave
(KSWCF) when the central charge is being varied. The treatment in this subsection
follows | ]

2.1.1 Donaldson-Thomas invariants

Fix a finite rank free abelian group I' =& Z®", called the charge lattice. We endow it
with a skew symmetric bilinear form

() I'xI'—2Z (2.1.1)
The BPS invariants (or BPS degeneracies in physics) will given a map between sets
Q:T—Q (2.1.2)

The central charge is a abelian group homomorphism
Z:I' —C (2.1.3)

which satisfies the following support properties:

Support property: By endowing a Euclidean norm |[|-|| on T'®z R, then there exists
a positive constant C such that for any v € I', with Q(v) # 0, we have that

1Z([>C -l (2.1.4)

Remark 2.1.1. From the support property, we can infer that in any bounded region of
the complex plane C = R?, there are only finitely many points of the form Z(v) with
v € I such that Q() # 0. In fact, we have the estimation of the number of such points
inside the disc of radius R as follows

#(Z2(v)n{z € C: |z < R}) = O(R").
Definition 2.1.1. The Donaldson-Thomas (DT) invariants of the “charge” vy is
defined via
Q(v/k
DT(y) = Y % €Q, (2.1.5)

E|y,k>1

Remark 2.1.2. By Mobius inversion, we see that BPS invariants can also be expressed
in terms of DT invariants as follows

2m = 3 "B priye (2.16)
K|y, k>1

where (k) is the Mébius function. So we see that the two invariants are given in terms
of each other. For this reason, we also call () the DT-invariants. These invariants are
congectured to be integer-valued.
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2.1.2 The torus Lie algebra g

Given the charge lattice I' & Z™, we consider the associated complexified algebraic torus

T = Tr.y := Homg (T',C*) = (C*)"

.

Choosing a set of basis {v;}I; of I" and the set of dual basis {7;} in the sense that
5i(7j) = 0i;. Let X, be the character associated to 7, i.e., the functions on I' through

Xy, Zek’yk > exp (Z 9k’%(’7k)>
k k

Then the coordinate ring (C['f‘] of T can be identified with the ring of Laurent poly-
nomials:

C[T] =C[X,,- -+, X ]

Y1?

T can be made into a symplectic manifold by endowing it with the following symplectic
form

1

YTa > (i) dlog(X,,) A dlog(X,) (2.1.7)
i#]

which induces the Poisson structure on T with Poisson bracket given as
{f.9} = w'(df.dg) for f,g € C[T|

We see that the bracket acts on the characters as
{ X5 X0y} = (i) X - X, (2.1.8)
Next, we consider the ’ﬁ‘—torsor, called the twisted torus given as

T:={o:T = C :0(y+7)=(-1)"" 0o(n)o(1)}
where T acts on it by
(h-0)(v) =p(y)-0(1) €CLpeT, 0T
Choosing a base point gy € T, we get the following identification between T and T
via _
Ao : T —=T [ —> - 0

By this identification, we can give T the structure of algebraic variety, which is inde-
pendent of the choice of the base point oy as the translation map is algebraic. Moreover,
since the Poisson structure (2.1.8) on T is invariant under translation, we transfer it to
the twisted torus T as follows

{6%,6%} = <7’L77]> * €y, 6’7]' - (_]‘)<%Nj> <’YZ77J> ’ e%;'i”‘/j (219)

The coordinate ring C[T], as a vector space, is spanned by the following set of twisted
characters defined as

12



ey, : T —C* ey, (o) ==0(y) € C

We see easily that these twisted characters satisfy

e, — (1)) e (2.1.10)

k3

"Cy

Further more, we can endow C[T| with the Lie algebra structure by defining the lie
bracket simply as [a, b] :== {a, b}, i.e.,

[erss €] = (1) (3, 95) - €94, (2.1.11)

We denote this Lie algebra by g = gr,..y := (C[T], [,-]), and call it the torus Lie
algebra associated to I'. This Lie algebra will be of central importance in formulating
the stability data and wall crossing structure later. From the definition, it is easy to see
that it admits the following decomposition

=P s, (2.1.12)

vyel

Remark 2.1.3. [t is pointed out in [ | that the Lie algebra g, when equipped with the
associative product defined by (2.1.10), becomes a commutative algebra, and its spectrum
15 the twisted torus T.

2.1.3 Kontseivich-Soibelman transformation

The torus Lie algebra g acts on the twisted torus T by Hamiltonian vector fields. For the
generator e,,, we see that {e,,, -} = [e,,, ] is a derivation by Jacobi identity, thus there
exists a vector field e,, € Vect (T), which acts as

€y, " Cy = {e%, e'y}

The time-1 Hamiltonian flow of the vector field e, gives a Poisson automorphism of
C[T]. More precisely, by identifying e,, with e.., we see that e,, € g acts on C[T] via the
Poisson derivation

€y " €y = {6%‘7 6’Yj}
We associate to v € ' a ray [, := Rso - Z(y) C R% Then, We attach to this ray a
formal sum of twisted characters

DT(l,)= Y DI(y)-e,€g (2.1.13)

~ET:Z(v)€ElL,

We view it as a formal function defined on the twisted torus T. The associated time-1
Hamiltonian flow gives us a formal Poisson automorphism

S(l,) € Aut(T) (2.1.14)
We call it the transformation associated to the ray [,.

Remark 2.1.4. We see that since the sum in (2.1.12) could be infinite, DT (l,) may
not be a well defined function on T, and the transformation S(l,) would cease to be well
defined. In the unpublished paper [ | by Kontsevich and Soibelman, technical works
had been down to make these automorphisms rigorously defined.
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For a ray [, that contains only a single element v € I with {(y) = 1, we check that

-y Eny Z = Lis(e,) (2.1.15)

n>1 n>1

where Lis(z) :== ), -, £, is the classical dilogarithm function. Indeed, by (2.1.12),
we have in this case that

Z DT (v ZDT ny) - €ny

el,y n>1
k n
-3 ¥ P e =300

n>1 k>1,kln n>1 n>1

Under the assumption that the associated time-1 Hamiltonian flow S(I,) is well defined
on some open subset of T, we compute formally as

S(1,)(ex) = exp {2 = } (er)

n>1

It follows that

log(S(1,)) ) = {Z o } () =Y el en)

n>1 n>1

- Z {enw 65} Z _n<77 > * €k

n>1 n>l

:<77’%>Z%'6H

n>1 n>1

= (v,k) log(l —e,) e, =log (1 — €v><w€> ce,

Consequently
S(L) (ex) = (1 —€,) e, (2.1.16)

The above automorphism, first observed by Kontsevich and Soibelman (see section 2.5
of | ]), is of central importance in encoding the wall-crossing phenomena in physics.
And it is called Kontseivich-Soibelman transformation (“KS transformations”) in
physics—a terminology we adopt here.

We use the symbol K, to denote the KS transformation. i.e.,

IC, :==exp {Lis (e,), o} (2.1.17)
which acts on the generator e, as

e — (1 —ey) 0 e, (2.1.18)

Remark 2.1.5. K, extends holomorphically to the Zariski open subset of T which is the
complement of the divisor {e, = 1}. Therefore, it defines a birational transformation of
the twisted torus T.
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For general ray [, again, under assumption that the automorphism S(/) is well defined
on a suitable open subset of T, we have the following

Proposition 2.1.1. Assuming that for the ray l,, there are only finitely many v € T
with integer-valued Q(y) # 0 such that Z(y) € L, then S(l,) extends to a birational
automorphism of T, with action on the generator e, given by

S(ly) (ex) = H (1- 67)9(7).@’&) " Cx (2.1.19)
Z(v)€ly
Proof.
logS(l,) (ex) = >, D N5 0 (en)
Z(v)ely n>1
- ¥ Y e = ¥ R RG
Z(y)€ly n>1 Z(y)€ly n>1
eTL
QD Tren= D (1m) Qn)log(l—ey) e
Z(v)€ly n>1 Z(y)el
Zlogl—e,y N e
Z(v)€ly
We see that when Q(v) are integers, S([,) is a birational automorphism. O

Before closing this section, we note that by using the KS-transformation K., we can
rewrite the transformation S(I,) more compactly as

H K90 =TS = T K (2.1.20)

(v)€ly ¥y Z(p)ely
m>1

where we have denoted by p the primitive charge vector of the ray [,. From the above
formula, we see that for the ray [, with () # 0, one has

log S(,) € EP oy (2.1.21)

oo

2.1.4 Factorization Property

In order to establish the celebrated Kontseivich-Soibelman Wall Crossing Formula (“KSWCFE”),
not only we need to associate transformation to [,, but also need to associate transfor-
mation to any strict sector A C C* 2 R? (i.e., less than 180°).

Consider the pronilpotent Lie algebra ga := Hwe AnM\{o} 8y 38 A is strict, there exists
¢ € I'y such that its restriction to A gives a proper map to R>q. Then for N > 0, consider
the quotient ga v = g/ga >n, where ga >y C ga is the ideal consisting of elements with
d(y) > N for v € ANT\{0}. We get ga = lim<-gay. Denote by Ga and G the
corresponding Lie groups.
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Given N > 0, let us consider the truncation

S(ly)<n = exp (DT (ly)<n) € Gan-

Assume that there are only finitely many rays in A that carry charge with ¢(v) < N,
we form the finite product

N
S(A)en = [] S(y)<n € Gaw. (2.1.22)

I,CA

where the right arrow above the product sign indicates that the product is taken over
all rays [, C A in the clockwise order.

Thus, by taking the limit as N — oo, we get a well-defined group element

_>
S(A) =[] s(,) € Ga (2.1.23)

NN

This will be the desired BPS automorphism attached to the strict sector A. Also
notice that the right hand side could possibly be an infinite product.

Observe that if Ay C Asg, then there is an embedding of the corresponding torus Lie
algebra ga, C ga,, which further induces the injective homomorphism on the correspond-
ing nilpotent Lie group level Ga, < Ga,.

Thus if an strict sector A can be decomposed into the disjoint union of two sub-
sectors in the clockwise order (where we assume that A_ proceeds A, in the clockwise
order), namely: A = A, LUA_, then on the Lie algebra level, this produces the following
decomposition: ga = ga, @ ga_, while on the Lie group level, we get: Ga = Ga, - Ga_.
Consequently, we have the following factorization property

S(A) =Sa, - Sa_ (2.1.24)
Proposition 2.1.2. The group element:
—
S(A) =[] s,) € Ga
I,CA
determines the invariants Q() for all v € ' with Z(vy) € A.

Proof. Recall that S(I,) encodes Q(v) for v € I' such that Z(y) € I'. Thus, we only need
to show that S(A) determines all S(/) for [ C A.

To this end, we want to decompose A into a finite many sub-sectors, each of which
contains only a single [, that carries charges ¢(v) < N. This is possible and is equivalent
to working in the group Ga y. In this group, we have a finite product and since this
decomposition is unique, we infer that S(A)y determines all S(I,)y for I, C A.

Since this holds for any N > 0, by taking the limit as N — oo, the desired result
follows. O
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2.1.5 KSWCF

Proposition 2.1.2 above tells us that the DT-invariants Q(~) with Z(y) € A are encoded
in the group element S(A) € Ga. In practice, we are concerned with how these invari-
ants change if we deform the central charge function Z. Indeed, as can be seen from the
definition of the group Ga, it depends highly non trivially on the central charge Z(7).
In particular, it will “jump” as the central charge being deformed such that Z() crosses
the boundary of A.

KSWCF gives an universal solution to this kind of wall crossing phenomena.

We will show that as Z varies, there exists a collection of hypersurfaces in I'g, such
that in side the chambers determined by the hypersurfaces, the wall crossing group Ga
stays constant, so are those DT-invariants €2(v). Therefor, we expect the jumps to occur
only when crossing these hypersurfaces. These hypersurfaces will be called walls associ-
ated to g, and we denote it by Wall,.

Note that every hypersurface in ' is associated to some class v € T, i.e., . and
call it the “wall associated with ~”. Thus

— €L
Wally, = U
countably many ~y

Further more, in view of the support property given in section 2.1.1, we require that
for an strict sector A, the following constraints are satisfied:

Z(y) e, ZI>C-hl

Consequently, in stead of working with the charge lattice I' directly, we can work
with the subset I'a ) of I' that consists of non-negative integral combinations of basis
elements satisfying the above two constraints coming from the central charge Z. It is easy
to see that I'(a ¢) is closed under addition, thus all previous constructions associated to
I' can be carried on for I'(a ¢). For example we have the Poisson subalgebra

Cao(T) = € C-e, cCalT]

Y€l a0

as well as the associated Lie algebra and the corresponding Lie group

exp : gia,c) — G

Again, all constructions and identities involving these objects in the last section still
hold in this setting. Thus, for given NV > 0, we work in the quotient algebra C(a ¢)[T]<n,
and the corresponding wall-crossing group Ga,cy<n depends only on the finite subset of
I', namely

Faoen ={yvel:veliae, Z(v) < N} (2.1.25)

It is easy to see then that when we deform Z inside the space I'*, as long as Z(y) does
not cross the boundary 0A of the sector, the above finite set would stay constant under
the deformation. Since G(a,c)<ny depends only on it, it also stays constant.
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In other words, when deforming Z, the wall crossing group G(ac)<y does not
change outside a finite collection of hypersurfaces. i.e.,

I\ Wall,

where each connected component of it is called a chamber.

Figure 2.1: Walls and chambers

Later, we will see that for each vy that define the boundary ray [, of an strict sector,
the wall v+ associated to it is the hypersurface of the following form

W2 =~t:={ZeTly: Im(Z(v)) =0} (2.1.26)

where I'm(Z (7)) denotes the imaginary part of Z(y). And we will call this the wall
of second kind associated to 7, and denote it by W,f

Note that different v can give the same wall, i.e.,

=7 =l

With the above preparation, we can state the KSWCF: Given any strict sector A,
the associated group element

—
S(A)en = H S(ly)<n € Gacy<n (2.1.27)
1,CA

remains constant as long as Z varies only inside a given chamber.

In other words, the group element above jumps only when Z crosses some wall. In
practice, the deformation of the central charge Z inside I'* is governed by certain param-
eter space B, which is usually a finite dimensional complex manifold. Physicists call such
space the moduli space of the theory. We will encounter such situation when we study
complex integrable system later.

Thus, suppose our moduli space is a complex manifold B, then for any b € B, we have
a charge lattice 'y, in general, we assume that the family of lattice form a local system
of abelian groups, denoted by I', with the intersection forms being covariantly constant
with respect to Gauss-Manin connection.
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We also assume that the central charge Z, depends on b holomorphically. Further
more, we impose the following uniform support property:

Fix a covariantly constant family of Euclidean norms
|- lo: Trp — Rso.
then for any compact subset K C B there exists a constant C' > 0 such that
Qy(y) # 0 for someb € K = |Zy(w)| > C - |||l

Under these assumptions, we give an equivalent formulation of KSWCF. Given a
contractible open subset U C B, a constant N > 0, as well as an strict sector A, assume
that we can trivialize the local system I', over U and hence identify I', with a fixed lattice
I'. Take C' > 0 as in above assumption and assume that the subset 2.1.25 as defined in
the last subsection is constant near b € B. Then the group element in the wall crossing

group R
S(A)en = HS(Z)<N < G(A,C)<N
IcA

stays constant as b varies in U.

Indeed, we see that the assumptions above ensure that when b varies in U, the central
charge Z,(y) stays inside the chamber specified by A, and by the uniform support prop-
erty, the constant C' can be chosen uniformally for b € U, while the constant N appearing
is already fixed before hand.

Remark 2.1.6. ' can always be trivialized by either passing to the universal cover of B,
or by restricting to a contractible open subset U C B.

Proposition 2.1.3. Under the assumption that the local system of charge lattices can be
trivilized, then for any fived charge with class v € ', there is a locally finite collection of
walls as codimension one real submanifolds, which divide B into connected components
as open submanifolds called chambers, such that the invariants Q(7y) stay constant inside
each chamber.

Proof. Locally near b € B, We consider the composition of maps
B - Homy (I, C) 2 C" -2 ¢* =5 R (2.1.28)

b Zy > Zy(7) = Im(Zy(7))

where the composition map Z o & defines an element in I';. From this one sees
easily that a locally finite collection of hypersurfaces in I'y pull back via the map 7 to
a collection of codimension one real submanifolds in B, which we also call walls. The
proposition then follows from KSWCEF. O
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B ;T

Figure 2.2: The induced walls and chambers on the manifold B.

2.1.6 Stability data on g

We now review the concept of stability data on a graded Lie algebra introduced by

Kontsevich and Soibelman (| |). As before, we associate to I' the torus Lie algebra
1=Do
vyel

For a charge v € I" with Q(y) # 0, the corresponding transformation S(l,) encodes
the invariants Q(v') for o/ || v. We see previously that ©() can be expressed in terms of
DT-invariants DT'(y) through the formula (2.1.4), while S(l,) is the time-1 Hamiltonian
flow associated to

DT(l,) = Z DT(y)-e, €9
(v)el

Thus, DT'(l,) is seen to be a collection of elements

a = {a(y)hyervioy == {DT() - ey € g4}

Denote by Supp a the set of all v € T'\{0} such that a(y) # 0. We see that Suppa is
the same as the support of g defined as

Suppg:={yel:g,#0}CTl (2.1.29)
By convention, g is set to be zero.

Definition 2.1.2. A stability data on g is a pair o = (Z,a), consisting of a central
charge and a collection of elements a(y) € g, which satisfies the support property.

We denote by Stab(g) the set of all stability data on g. We remark that the support
property is equivalent to the following condition:

There exists a quadratic form Q on I'g := I' ®z R such that
hd 1) Q|kerZ < 07
e 2) Suppa C {y € I'\{0}} : Q(v) = 0}

To see this, we just spell out that the relation between the quadratic form () and the
norm || e || on I'g is given by

Q) = ~II* + CilZ() P
for some sufficiently large constant C; > 0.
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Reformulation of the stability data

We work in the same setting as above, and denote by S the set of all strict sectors in
R2. Note that it may contains degenerate sectors, i.e., rays. Define another set Stab(g) as
the set of pairs (Z,S), where Z is a central charge function, and S a collection of elements
(Sa)aes, with elements S belonging to the wall crossing group Ga. Again, we impose
the support property.

We show that the set %b( g) (also called the stability data on g) is actually equivalent
to Stab(g).

Indeed, given a stability data (Z,a), we determine a pair (Z,S) as follows

Recall that for every [, C A, the transformation associated to it is given by

S(l,) == exp{DT(l,), ®} = exp Z DT(vy) ey, ®

Z(7)€ly

= €Xp Z a(V)? o

Z(v)€ly

and by the Factorization Property, we have that
—
s(A) =[] s,) € Ga
1,CA

Conversely, given a pair (Z,S), we take the same Z for Stab(g), and construct the
elements a(7) as follows:

Set a(vy) = 0 if Z(y) = 0. Let us assume that Z(vy) # 0. Consider the automorphism
S(I) associated to the ray
lw = ]R>0 ' Z(’}/)
Then recall that we have established (see equation 2.1.21) that
log S(I,) € @gw’

Yy

From it we denote by a(vy) the component of log S(/) which belongs to g,. And we
get the desired Lie algebra element.
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2.2 More on KSWCF

We introduce a topology on the space of stability data Stab(g) and discuss its relation
to KSWCF. Some explicit expressions of KSWCF will be given. The treatment in this
section is based on the paper | ].

2.2.1 Topology on Stab(g) and KSWCF
Define the forgetting map from the stability data to C" as follows

Stab(g) — Homg (I',C) = C"

(Z,a) — Z (2.2.1)

The central idea is that we can impose a topology on Stab(g) so to make the above
map a local homeomorphism. Consequently, the complex manifold structure on Stab(g)
can be obtained by pulling back the standard complex structure on C" to Stab(g).

More precisely, we impose the following topology by specifying the notion of a con-
tinuous family of points in Stab(g).

Definition 2.2.1. Let (Z,, ap(y)) be a family parametrized by b € B, and let by € B be
fized, this family of points in Stab(g) is said to be continuous at by if

e o) The forgetting map (2.2.1) is continuous at b = by.

e b) There exists open neighborhood Uy > b, such that the constant C > 0 in the
support property for Stab(g), for b € Uy can be chosen uniformally.

e ¢) Near by, we choose a constant C > 0 as in b), and give an closed strict sector
A C C* such that Z(Supp ay,) N OA =0, then the map

br— logS(A)y € gayp C H 9

yel

18 continuous at b = by. Here the vector space HWEF g+ is endowed with the product
topology of discrete sets, and S(A), € Gay is the group element associated with
(Zy, ap) as well as the sector A.

The relation between this topology and KSWCF can be summarized in the following
remark:

Remark 2.2.1. Note that the continuity of the map in c) means that the group element
log S(A)y does not depend on b € B as long as there is no element v € Supp ay, such that
Zy(7y) crosses the boundary OA, i.e., it is locally constant as a function in b near by. And
consequently, the invariants (%) is also a locally constant function in b, while the jumps
of these invariants are controlled by KSWCF given in the next subsection.

We remark without proving that that the topology imposed on Stab(g) is Hausdorff.
The proof can be found in | | (section 2.3. proposition 1 there).
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2.2.2 Crossing the wall of the 1% kind
For 71,72 € I'\{0}, two Q-linear independent elements, define the set

W’Yl,’yz = {b €B: R>O : Zb(’yl) = R>0 ’ Zb(ﬁ}/?)}

A
- {b €B:Im (—b(%)> = 0}
Zb('Y2
Then the wall of the first kind associated to v € I' is defined as
W= | Wi (2.2.2)

Y=71+72

We note that the condition is equivalent to the rays [,,,l,, are parallel to each other
at the wall. Also, the totality of all these walls will by denoted by

1% ::U Wi
v

and call it the set of wall of the first kind. When b, belongs to le, this corresponds
to that the strict sector A bounded by [,,, [, becomes degenerate. Thus, wee see that if
we consider a curve b(t) € B, 0 <t < 1 such that by corresponds to tg, then on the left
hand side of by, i.e., b_ < by, we have that [, < L, say L, proceeds [, in the clockwise
order. Similarly, on the right hand side of by where by > by, we have that [, > L.

[

Figure 2.3: Wall of the first kind W,, ,,

When t — ty, i.e., the two rays [,,, [, coalesce, and change the order after crossing the
wall. During this coalesce the rays and swapping the order process, the group element
S(A) stays constant by KSWCF. Thus, by taking the limit as b — by on both sides,
we are able to describe exactly how DT-invariants €2,(7) change when crossing the wall.
First recall that (see section 2.1.3)

— —
sa)=1Ist)=[Tew| > at

1,CA l,CA Z(y)€l,

and S(l,) can be further written as

S(l,) = H exp <Z a(n,u))
)ELy

pelPrim Z(u nzl
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where T'P"™ C T' denotes the set of primitive vectors. For ¢t € [0,1], we define the
limits
() = _lim a(7)

e—0,e>0

where for t = 0 or t = 1, only one sided limit is well defined.

Then part ¢) of definition 2.2.1, i.e., the continuity of S(A) near b implies the following
identity, which we call it the KS wall-crossing formula

[I oo (Zatmm): [T oo (Zaﬂmm)
(R)Ely,t V€Lt

pererim 7, n>1 perprim 7, (,, n>1

Or even more simply we can write it as

H exp (Z at(mu)> = H exp (Z at(mu)>
(n)€ly,t VELt

'uel"prim7Zt n>1 ,ueFP”'m,Zt(,u n>1

where the product on the left (right) hand side is taken in the clockwise (anti-
clockwise) order of the rays [, ;.

We remark that a; (y) = af (v) = ai(y) unless b(t) hits some wall W., i.e., there
exist two non-zero 7y, such that v = v, + 7, and b € Wvllm. Indeed, as in this case
the two rays [, and l,, would get swapped when crossing the wall, thus the order of
the products on both sides of the KSWCF also changes, which forces the DT-invariants
to change in order to make the identity still valid. To see this more clearly, let us use
KS-transformation introduced before to rewrite the above formula in which the change

of the invariants () become visible.

Remark 2.2.2. Informally speaking, the KSWCF says that for a very small strict sector
A containing the rays L, ;, the corresponding group element S(A), considered as function
of the parameter t, stays constant in a neighborhood of t.

By using (2.1.20), i.e.,
Q' m
Sty = J[ k20 =T[5 = T ke
Z(7)€ly Yl Z(p)€ly

m>1

where I, := exp (Liy (e,)) is the KS-transformation associated to y. We rewrite the
above KSWCFs as

— —
Q. (m Q+ m
1T Koy () = 11 ek ) (2.2.3)
HEDPTIm 2, (n)el. b HETPTIm, Z4 ()€l
— —
I1 JC i) — 1T JCye i) (2.2.4)
HETPTIM, Zy (1) Ely b HETPTIM, Zi (1) Ely st
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More specifically, we consider the case when by € W;mz? and denote by I'y C T" the
sub-lattice generated by positive cone spaned by ~; and v, as follows

Co=Z>0 1N D Lo 72 ={myn +ny2:m,n € Lo}

Denote by A, ., the acute sector bounded by the rays [,,,l,,. For a charge v =
my; + nys, identify it simply with (m,n), where m,n are integers, not both zero.

b < by by

by > bo

Figure 2.4: Hlustration of wall crossing and KSWCF.

From the above figure, we see that b_ is the point over which L, < [,,, i.e.,

ZMm)\ _ m )
m (F0) = tm(Z(0) - Z0)) > 0

and b4 is the point in B over which [, > [,,, i.e.,

Z(m)\ m _
Im (Z(%)) — Im(Z(m) - Z(7)) < 0

And at the point by, we have that

Zm)\ _ m . _
tm (25 = (2 Z6) =0

where the cone I'y degenerate in to a ray. The KSWCF in this case then specializes into
the following

II s)= I s (2.2.5)

b CAy7g b CA v

Or by using the KS-transformation, this reads as

= Qp._ (km,kn) = Qy, (km.kn)
b_ (RM,RN b m,Kn
H K(km,kn) = H K:(kr;,kn) (2.2.6)
m,n>0; (m,n)=1 m,n>0; (m,n)=1

which is equivalent to the following
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Q,_ (m,n) - Qb+ (m,n)
I Xew = 11 Kot (2.2.7)

m,n>0;m/n m,n>0;m/n\

where the product in the LHS is taken over all coprime m, n in the increasing order of
m/n € Q, while the product in the RHS is taken over all coprime m,n in the decreasing
order.

When trying to expand the above formulas, we find that it crucially depends on the
torus Lie group g associated to I'y, thus actually depends on the antisymmetric pairing
(,): N T = Z.

In the following, we give some special cases of the formula (2.2.7).

We work in the field Q, the field of rational numbers. This is sufficient for our purpose
as the DT-invariants () are a priori given as rational numbers (though conjectured to
be integers).

Now, suppose we are about to crossing a point by € lemw then the sublattice I'y C T’
sub-lattice generated by the positive cone Cy get mapped by Z;, into a line in C. We
denote by x the Lie algebra generator e.,, and y that of e,,. then the ring of the functions
on T, is given by

O(Tr,) = Ql[z, y]]

The antisymmetric pair on I'y is the one induced from that on I'. Denote by k its

value on 7,72, i.e., k = (71, 72), then it reads for general charges as

((z,y),(m,n)) :==k(xzn —ym) € Z
for (z,y) :=x-y14+y- -7 €Ly, and (m,n) :=m -y +n-vy € L.

Also denote by K., ,, the KS transformation associated to the charge (m,n), then we
claim that it specializes in this case into the following formula

Kot () o (2 (L— (~)F™amy )™y (1= ()P fm) | (22.8)

Proof. By the formula (2.1.16), the computation goes as follow

. (my1+ny2,71)
Kt ey = (1 = €mmytny) )

my1,n m n | —kn
= (1 - <_1)< ) € e'yz) "6y

= (1= (=)fmmen e )™ ey,

6’71

Similarly for the action on e,,, we have

. (my1+n72,72)
Kt €ys = (1 = €myytnv,) " Cyy

—(1— (_1)<m’Y1,n72> e . el

k
- 71 72) "

: 671
= (1= (D)Fmmem - en ) e,

Thus follows the formula (2.2.8). O
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Example 2.2.1: In the case when k£ = 1, the KSWCF (2.2.7) specializes into the
following pentagon identity

Ko Kio=Ki0K11 Ko (2.2.9)

This means that on the one side of the wall, we have two “states”, namely v, v9 with
DT-invariants Q(v;) = Q(y2) = 1. And after crossing the wall, these two “states” still
persist with the same DT-invariants, but a new state, namely the “bound” state v, +
with the DT-invariants Q(v; + 72) = 1 appears.

Nt

Figure 2.5: Illustration of the pentagon identity, after crossing the wall, the new “state”
Y1 + Y2 is created.

Example 2.2.2: In the case when k£ = 2, we have the following KSWCF
K1 Kop = (Kop Kog Ky - ) ’Cg_f) (- Ke—1 Kym1 Ko 1) (2.2.10)

which is equivalent to

K10, Koz = (’CO,Q KiaKsag - ) le% (++ K54 o0 ICLO) (2.2.11)

or more generally, we have

00 1
Koo Koy = (H Kn71+(n1)“/2> IC7_12+72 (H K(”D'ﬂﬂl’yz) (2.2.12)

n=1

The interesting aspect of this formula is that it displays that when crossing the wall
W,, ., there are infinitely many new states being created with DT-invariants all equal
to one except for the bound state v; 4+ 72, whose DT-invariant being —2.

As had been pointed out by Greg Moore and Frederik Denef, the factors in the formula
gives the BPS spectrum of N = 2, d = 4 Super Yang-Mills theory studied by Seiberg
and Witten in their seminar paper | ], we will come back to the formula later when
discussing the wall-crossing structure for Seiberg-Witten integrable systems.

The formula (2.2.9) can be checked by hand easily (see below), while the direct veri-
fication of 2.2.10 is much harder (see for example | D).

LHS of (2.2.9) acts on (z,y) as

Ko,1

(2,9) =% (2,9 (1—y))

<1—y?1—x)’y(1_x>)
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I

o (n=L)yitny
*

+

Y1+ 72

ny1+(n—1)72

I
I
|
I
|
I

| o0 1

—_— -2

Ky Ky = (H}C““ﬁ("l)‘u) K ( H ’C(nl)n+rt'~z)

| n=1 n=-—00

|

Figure 2.6: KSWCF in k = 2 case. After crossing the wall, there are infinitely many new
“states” being created

while the RHS of (2.2.9) acts on (z,y) as

_ x y(1—y+ay)
( )

A\l —y+ay 1—vy

K10 x y(1—y+zy) (1_ x ))
1—y+ay’ 1—y 1—y+axy

_( T y(l—y+xy)1—y+xy—x)
1—y(l—2a) 1—y 1—y+uay
B T y(l —y+zy — x)
-yl —=) 1—y

()
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2.2.3 Crossing the wall of the 2"? kind

In this subsection, we give a reformulation of the KSWCF in terms of the monodromy
of the wall-crossing group elements around small loops. This will motivate the abstract
formulation of the wall-crossing structure to be introduced in the next subsection.

First recall that the wall of second kind associated to a charge ~y is given as (2.1.26)

by the following
W2 =~t:={ZeTy: Im(Z(7)) =0}

A path 0 = (Z;)o<t<1 C I'* is said to be short if the convexhull of the set:

U Zi (Supp (a))

0<t<1
is a strict sector A, in C* (this definition is borrowed from | |, see section 3.4 there).
Then we can see that for a generic short path ¢ = (Z;)p<t<1, there exists no more

than countably many ¢; € [0, 1] and the corresponding primitive v; € I'\{0} such that
Zy, € W2
7 Vi

2
Zy, € W"h

Figure 2.7: The monodromy around a short loop
Proposition 2.2.1. For any short loop, the monodromy ﬁ S(L,,) = 1id, where the product
t;

1s taken in the increasing order of elements t;.

Proof. We consider an infinitesimal small short loop o. If it does not circle a point Z,
such that by € W(v1,72) for two Q-linearly independent charges v; and 7,, then clearly
the monodromy should be trivial, as can be seen from the case in which there were just
two walls of second kind corresponding to 71, 7, namely, W% and W%. The general case
can be seen similarly.

More concretely, we see that in this case the monodromy becomes

S(L,) S(h,) S7H(L,) S7H(Ly)

which is trivially the identity map.

Next, let us assume that it circles exactly one such Z;,. It is the intersection point of
infinitely many walls of second kind, namely

W2

mydnme 0T myn >0, m+n>1.
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Since the loop is infinitesimal, we can replace the lattice I' by I'y in the computation
(for example, we reduce the problem to rank 2 case), where at by, the sub-lattice 'y is
get mapped into a line, i.e., it degenerates into a line.

Thus, the computation of the monodromy is reduced to computing the product over
the collection of BPS rays lyy, +nv,-

By our assumption that the loop is short, we can assume that these rays fall into the
union of two opposite strict sectors

A, U(=A,) CC”

Then it is clear that as we take the product in the increasing ¢; order, we get that the
product over the rays belonging to the sector A, can be identified with the following

H S(lm'71+n’}’2)

m,n>0;m/n

while the product taken over the rays belonging to the opposite sector —A, becomes

H S_l(lm’h-i-nw)

m,n>0;m/n>N

Consequently the monodromy around o is then given by

H S<lm71+n’yz) H Sil(lm'yﬁrn’m)

m,n>0;m/n 2 m,n>0;m/nN
or by using KS transformation notation, it can be further written as
Qp_ (m,n) —Qp, (m,n)
| |
m,n>0;m/n m,n>0;m/nN

which is the identity, i.e., the triviality of the monodromy around the small loop o
under the assumption that the KSWCF (2.2.7) holds. O

Remark 2.2.3. In the case that the forgetting map:
7:B—T":=Homgz (I'C)=ZC", br— Z,

s a local 1somorphism, we can pull back various wall of second kind to the manifold B
which are hypersurfaces in B. Thus, by mimicking the above procedure, we can consider
the monodromy around short loops in B, and the triviality of monodromy result still holds
in this setting.
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2.3 Wall-crossing structure on a vector space

Now we have all that needed to formulate the notion of wall crossing structure (“WCS”
for short). It generalize the stability data on g discussed previously in the sense that the
central charge function does not appear explicitly in this structure. This is useful because
in practice, we have integrable systems without central charge, thus in order to deal with
wall crossing phenomena associated to it, we need to adopt this WCS formalism.

2.3.1 Summarizing the previous facts

Let us first summarize what we have established so far. Given a charge lattice I' & Z®"
endowed with an antisymmetric bilinear form (-,-) : A>T' — Z. Denote by I'g := T ®z R
its associated real vector space. Again, let g := @,Yer g, be the I'-graded Lie algebra
over Q, with Lie bracket on it given by

[6%, 6%‘] = (_1)<’Yi’w><7i>7j> * Crity;

We have seen that given a stability data (Z, a()) on g, the support of a(~), say Supp a
is the same as the support of g defined in (2.1.29), namely

Suppg:={y€l g, #0} CT

We make the assumption that it is finite and is contained in an open half-space in I'g.
In this case the Lie algebra g is nilpotent. Denote by G the corresponding nilpotent Lie
group, which, under the exponential map, is bijective with g, i.e.,

exp:g— G

Also recall that the wall (of second kind) associated to v is the hyerplanes v* C 'y
given as

W2 =~t:={Zely: Im(Z(v)) =0}

Denote by Wall, the collection of these hyperplanes. The complement of Wally in I'y
consists of a collection of connected components which are open convex domains in I'j,
called the chambers. These chambers are exactly open strata in the natural stratification
of '} associated with the collection of these hyperplanes (Y1), esuppg-

We know previously that the DT-invariants €2(7) are encoded in the group element
S(A) belonging to the wall crossing group Ga C G, where A is an strict sector in C*.
We allow it to degenerate into a ray [, in this case S(A) becomes S(I) (see section 2.1.2
for the terminologies and definitions there).

A ray [, is associated to a class v € I' with Q(vy) # 0, i.e., [, := Z() - Ry recall that
we have established (see equation (2.1.21)) that

log S(I,) € @gvf.

¥y

Those group elements stay constant if the central charge moves only inside a given
chamber.
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But upon deforming the central charge, such that a wall of first kind, say

W(y1,72) = {Z € Homyz (I',C)} : Im (Z(%) W) = 0}

is crossed, then those DT-invariants ©(y) would jump. And its jump is controlled by the
KSWCF (2.2.7), which is equivalent to the triviality of certain monodromy alone small
short loops in the moduli space of central charge (see proposition 2.2.1). More precisely,
if the loop is parametrized by the parameter ¢, and we have showed that it intersects at
t; with only countably many walls Wi of second kind associated to the charges ;, then
the monodromy around any small short loop o is trivial

O
I s, = id (2.3.1)

2.3.2 Nilpotent case
Now we can formally state the definition of WCS from | ]

Definition 2.3.1. A (global) wall-crossing structure (“(global) WCS” for short) for
g 1S an assignment
(y17 ?JQ) 7 Gy1,y2 eG

for any y1,y2 € Tp\Wally, which is locally constant in y1,y2. Further more, the
assignment satisfies the following cocycle condition

y1.y2 " Jy2,3 = Jy1,ys Vyi, 42, y3 € 'y — Wally (2.3.2)

such that in the case when the straight interval connecting y; and ys intersects only
with one wall W§ =y, then we have that

10g(gy17y2) € @gv’ (2'3'3)

7y

T3 \Wall,

Figure 2.8: Wall-crossing structure on g

We denote the space of all wall-crossing structures on g by WC'S;. We can deduce
some easy consequences from the above definition.

Lemma 2.3.1. If the the straight interval 71y2 does not intersect any walls in Wallg,
then gy, 4, =1id € G.

Proof. let us consider the situation when 1, and ¥y, are separated from y3 by a single way
v+ so that the straight intervals 775 ans %73 intersect only with the wall 7773, and ¥,
and g9 lie in the same chamber, thus by the locally constant nature of the assignment,
we see that gy, 4, = gy,.45- Consequently, by the cocycle condition (2.3.2), we must have
Gy1,yo = id. O
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Figure 2.9: Hlustration of the proof of the lemma 2.3.1 and lemma 2.3.2

Lemma 2.3.2. For any y1,y2 € [g\Wally, we have that gy, ,, = gy*217y1.

Proof. First note that if y; and ¥, lie in the same chamber, then the straight interval 7775
does not intersect any wall, so by lemma 2.3.1., we see that g,, ,, = ¢d, and the result is
trivially true in this case. Thus let us consider a configuration in which y; and y3, which
lie in the same chamber, are separated from 7, by a single wall v*. Since the straight
interval yy3 does not intersect any wall, by lemma 2.3.1 again, we have that g,, ,, = id.
Then in the cocycle condition

Gy1,y2 " Gy2.ys = Gy1,y3

Let y3 approaches to y;, we get that gy, 4, - Gy, = 2d. The result follows. O

Lemma 2.3.3. For any y1,y2,- - -, Yo € I'x\Wally, we have the following wall crossing
formula

Gy Gyos """ Gyn—1.9m * Jymn = 1 (2.3.4)

Proof. The n = 3 case follows from the lemma 2.3.2. Indeed, the right multiplication by
Gysan = gy_l{y3 on both sides of equation (2.3.2) gives us

Gyry2 " Gy2,u3 * Gysn = id
The general case follows by induction. O

We see from the above discussion that for any codimension one stratum 7, which is
an open domain in the hyperplane Wz = 1 for some v € Supp g, we can associate to it
a jump

9r = Gy1 0

where points y; and y, are separated by the wall v+ i.e.,

y1(7) >0, ya(y) <0

9r = Gy1.y0
y1(7) >0 (_j
yl i
Y
Y2
Yy2(7) <0

Figure 2.10: The jump associated to the wall
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A WCS is uniquely determined by the collection of all jumps (¢;)codimr=1, Which
satisfies the cocycle condition for each stratum of codimension 2.

More concretely, We can specialize these abstract (wall-crossing) group elements de-
fined above by what we had already known.

Here the jump ¢, = ¢y, 4, can be identified as the automorphism S(I,). And the
condition (2.3.3) in the definition of WCS becomes exactly (2.1.21) in section 2.1.3.
Besides, if the points y; and 3, separated by v+ can be realized in terms of two central
charges Z; and Z, (as two functionals I'm(Z;) and I'm(Z)) in such a way that

Im(Zy)(y) >0, Im(Z3)(v) <O0.

Then we can reinterpret the formula (2.3.4) as the KSWCF'.

Suppose that all the group elements appearing on the left hand side of 2.3.4 are non-
trivial (if some of them are identity element, the result still holds). Thus, the straight
intervals ;711 that connects y; and y;1; is assumed to intersect only with the wall v,
forv=1,2,--- ,n — 1. Here the straight intervals y,y; intersect only with another wall
7. Roughly, we may think that these straight intervals would patch together to form a
loop in I'g, namely the oriented loop o = m . Since the assignment is locally
constant, we can always move the points locally as long as they do not cross the wall,
so we can connect y; with 3,41 for ¢ =1,2,--- 'n — 1 and y,, with y;. Then the formula
(2.3.4) becomes

S(ly,)S(ly,) -+ -S(L,,) =id (2.3.5)

or more shortly
O

I s, = id (2.3.6)
i
This is exactly the KSWCF (2.3.1) in the case when there are only finitely many walls
in question (since we are dealing with nilpotent g here). In order to recover the general
KSWCF (2.3.1), we need to remove the restraints imposed on Supp g, this leads us to
deal with the pronilpotent Lie algebra case, which is reminiscent in our discussion of the
completion of Lie algebra in section 2.1.4.

Figure 2.11: KSWCF in terms of cocycle condition
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2.3.3 Pronilpotent case

Now we relax the restrictions on Supp g in the nilpotent case. In particularly, we do not
made the assumption that the support belongs to a half-space in I'g.

Let A be a strict e sector in ['g (later when we have central charge function, this can
be realized as the pull back of the acute sector in C*), we can consider as before (see
section 2.2.3.) the following constructions

gn = H 9y

~vEANT\{0}

which is an pronilpotent Lie algebra as we have an infinite product of Lie algebras.
Under the exponential map, we get the corresponding pronilpotent Lie group Ga. We
use without proof the following characterization of strict sectors.

Lemma 2.3.4. If A C ' is an strict sector, then there exists a functional ¢ € I'y such
that its restriction to A gives a proper map to Rxy.

Remark 2.3.1. In the special case of varing the stability data, ¢ here can be specified as
the imaginary part of the central charge Z.

Let us choose one such functional ¢. Then for any N > 0, we consider the ideal
ga>n C ga consisting of elements with ¢(y) < N for all v € supp(g). And we form the
quotient algebra

gaN = 0/9a>N
By taking the projective limit of the above system, we get the pronilpotent Lie algebra

ga = limga
N

And by exponentiating, we get the corresponding pronilpotent Lie group Ga. Then we
have the natural projection of the groups

pran : Ga = Gan (2.3.7)

Again, by the support property, wee see that for each N > 0, Supp ga is finite, and
by the assumption that A is chosen to be strict. It can be further made to lie in a half
space in I'g. Thus, the WCS is well defined on each ga n.

Roughly speaking, the WCS on general g to be defined later can be seen as the one
induced from that on each ga v, i.e., it should correspond to some sort of the “projective
limit” of the WCS’s on ga . Yet we cannot take this “projective limit” directly as the
primitive definition of WCS is not suitable for this purpose. So we will find equivalent
way of descriptions in the next subsection 2.4.

Anyway, let us assume that this can be done, so we have well defined WCS on the Lie
algebra g, then the number of points in Lemma 2.3.3. can be assumed to be countably
many, and for each N > 0, we can have a corresponding KSWCF (2.3.4). By taking the
limit as N — oo, we will obtain the KSWCF' in more general case, namely

35



Lemma 2.3.5. For any y1, Y2, ", Yn, - - - € I'g—Wally, we have the following wall crossing

formula
(H gyi7yi+1> " Jyooyn — id (238)
i=1

Or equivalently, suppose that the straight intervals y;y; 11 fori=1,2,--- 00 as well as
UooU1 together patch (by moving these points locally if necessary) to form a short oriented
loop 0 = Y1Y2 -~ Yn - Yool in Uk, and assume it intersects only with the walls v;-, for
i=1,2,--+,00, then we have the following KSWCF (2.5.1).

O
II s)=id (2.3.9)

1<i<o0

where the product is taken in increasing © order.
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2.4 Sheaf theoretic description

To begin with, let me make some heuristic remarks. Recall that a WCS on g is an assign-
ment for any pair y;,yo € I'f\Wally a group element g,, ,, € G, which in locally constant
and satisfies the cocycle condition (2.3.2). Now, instead of a pair of points, we want to
assign group element for any given point y € I'f\{0}. To this end, we need to consider
sort of limit of g, ,, as y1 — vo.

If y € T(\{0} stays in a chamber, then we choose a nearby point y; lying in the
same chamber, i.e., the straight interval yy; does not intersect any wall. We know that
in this case the group element g,,, = id. So we can define g, as the limit of g,,, as
approaches to y. Say

gy == lim g, ., =1id

On the other hand, if y € 4+ lies on a wall of second kind, in this case, in order to
define g,, we consider the following situation. Suppose that y is the intersection point of
the straight interval 7775 with only the wall v*. Then as Gy1.y» Stays constant if both
and 9, do not cross the wall 4+, so let 7, and 7, both approach to y individually within
its own chamber, we can define g, as the limit of g, ,,, which is the same since g, ,,
stays constant in this limiting process. Thus we define g, ,, in this case such that

log(g,) € @97/ for y € 4+
vy

So we now know how to assign group element g, for any y € I'y\{0}. Later we will
see that for y = 0, go need to be identified with the entire Lie algebra g.

In summary, for any y € I';\{0}, the group element g, is trivial unless y belongs to
some wall 41, i.e. there exists some v € T'\{0} such that y(v) = 0.

We want to have a sheaf on I'; such that its stalk over y € I'y equals to 0 if

y € I'x\Wally, but is a nontrivial element g, such that log(g,) € €., 9, When y
belongs to some wall.
It turned out that this can be done (| ]), for this we need some preparations.

2.4.1 Existence of the shealf of WCS

Given y € I'g, let us define subsets in I' as follows
Ay i={yel y(y) >0}

Ag:={yeTl:y(y)=0}
A_={yeT:y(y) <0}

Thus I' = A_ U Ay UA,, and we have the decomposition of the Lie algebra g as
follows

a=0" g &g
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where g(_y), g(_y) and gg_y) correspond to components g, such that v belongs to A_, A,

and A, respectively. On the Lie group level, this corresponds to the following decompo-
sition
G=GY <Gy xa¥
where G@, G[(Jy) and Gf) are the Lie groups corresponding to g(_y), géy) and gf)
respectively. Consequently, every element g € G can be decomposed uniquely as the

product

g=9" g ¢

Then we have the following canonical projection
7, G— GY = cY\G /GY
g— gV (2.4.1)

Recall from the discussion given in the beginning of this subsection, we know that for
any y € I'y, the group element g, associated to y is nontrivial only if y € v+, i.e.,

log (g,) € G

Gg!/)

Ix

Figure 2.12: Sheaf of wall crossing structures

Claim: There exists a sheaf WCS of sets on I'y with the stalk over y € I'y given by
G(()y), we call it the sheaf of wall crossing structure.

To show its existence, given a set S, recall that a sheaf of sets . over a topological
space M with stalk at m € M being a set S, is equivalent to a local homeomorphism
from its étalé space .7 consisting of pairs {(m,s) : m € M,s € S,,} to the base M
given by

S — M, (m,s) — m (2.4.2)

here the bases of the topology on étalé space .7 is given by the sets
Uy ={(m,s"): meU,s =mn,(s)}

where s runs through the set S and U runs through the set of open subsets on M, and
Tm 18 the surjection
T @ S — Sy,

We need the following well-known lemma presented in | .
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Lemma 2.4.1. If for any s1,s2 € S the set {m € M : m,(s1) = mn(s2)} is open in M,
then the projection (2.4.2) is a local homeomorphism.

Given this lemma, and apply it to the case when M =T1%,S =G, S, = Ggy), yeM
and the surjection map m,, given as above, then the existence of the sheaf of wall crossing
structure WCS,; amounts to verifying that for any g, g» € I'g, the following set

{lyelg: my(g1) = Wy(QQ)}

is open in I'g, but this is obvious since the projection map m,, to the double coset
is naturally continuous under the quotient topology. Later, we will show that space of
sections I'(I'y, WCS,) of the sheaf WCS, is isomorphic to the space of all wall-crossing
structures on I'y, namely the space WC'S,.

2.4.2 Equivalent descriptions of WCS

Given any open subset U € I'y, the space of section over U, denoted by I'(U, WCS,),
roughly speaking, can be identified as the set of locally constant maps from the set of
connected components of intersections of codimension one strata with U to the corre-
sponding subgroups of G, which satisfy the cocycle condition near points of strata of
codimension two.

More precisely, we defines the convex hull of U by A(U) C I'g, and denote by AL (U)
the subsectors generated by those v € I' such that +y, > 0 for all y € U. By our
assumptions on Suppg, all these sectors are strict, and we can associate it with the
corresponding nilpotent Lie groups as

G+(U) =exp @ g,

yeAL(U)

then we have that
D(UWCS,) = G_(U\G/G.(U)

Given a WCS, i.e., a collection of jumps (g,) for all codimension one strata 7, we
have already know how to associate it with a sheaf of wall crossing structure. Conversely,
given a section s € I'(I'y, WCS,), we want to associate it with an unique wall crossing
structure as follows

For any yi1, 92 € I'y, if the straight interval 7y, lies in the same chamber, then gy, ,,
is deemed to be the identity. On the other hand, if 7175 intersects only with the wall v+
at yo, then the transformation g,, ,, is given by s(yo) € G[()y‘)), which is non-trivial since

Yo(v) = 0.

We want to show that this assignment, which gives us a map from I'(I';, WCS,) to
WCS, is a well defined map.

Proposition 2.4.2. The above assignment (map) is well defined.

To proof this proposition, we need a lemma first.
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Lemma 2.4.3. I'y\Wall,; contains two components Uy characterized by that it consists
of all points y € I'y such that y(y) > 0 (resp.y(y) < 0) for all v € Suppg. Thus we can
associate with any WCS 0 = (gy,.4,) an group element g _ :==g,. ., € G, forys € Uy.

Then consider | C I'y is a straight line intersecting both U, and U_, endowed with the
direction from Uy to U_. Assume that it does not intersect strata of codimension > 2,
and intersects with walls at yy,- -+ ,y,, ordered according to the direction of . Then, we

have the following

a) the space of sections over | can be identified as

(1, WCS,) HG(% (2.4.3)

b) further more, we have the following bijection of Lie algebras

@gg ) g (2.4.4)
=1

c¢) and correspondingly a bijection among Lie groups
[[c8=a (2.4.5)

Thus, any element g € G can be written uniquely as the ordered product of elements

of G{.
d) As a consequence of ¢), the space of sections can be further identified as
L(LWESy) =G (2.4.6)
Proof. (of the lemma 2.4.3) a) is obvious. It suffices to prove b) as c).
Define the subsets A? C I'y fori=1,--- ,n as

AY = {v € Suppg : yi(y) =0}

then we show that we have the following decomposition

Te=| | A
i=1
Indeed, Vv € T'g\{0}, since the straight line [ goes through from U, to U_ with the
only intersection points with wall at yq,--- ,y,, wee see that the charge + can be annihi-

lated only at one of the above n points.

From the above the decomposition in a) follows, and b) also follows directly. O
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Figure 2.13: Illustration of the lemma 2.4.3

Proof. (of the proposition 2.4.2) We just need to check that the cocycle condition holds
for all strata of codimension 2, that is, we need to check the triviality of monodromy
around small loops. So let us consider such a strata x which is being realized as the
intersection of, say n hyperplanes ’yf for i = 1,2,--- ,n in general position, which are
ordered in the increasing ¢. Thus, locally around k, we have 2n codimension two open
strata separated by 2n codimension one strata. Denote by y. the point in I'; such that
y+(vi) = 0, for all : = 1,--- ;n. It is easy to see that these two points must lie in two
separate ones among these 2n open strata.

In order to show the monodromy is trivial, we consider the paths connecting the two
points going from y, to y_. Up to homotopy, near the strata «, there are two such paths,
each of which intersects at these walls v at exactly one point. Without loss of gener-
ality, let us assume that g, lies in the strata neighboured by the walls vi- and 3", and
y_ lies in the strata neighboured by the walls 7~ and 'Ykil for some k such that 1 < k < n.

Under these assumptions ,we see that the first path oy, which intersects with the
walls at the points ordered as y§ — --- — y2, while the second one oy intersects with
the walls at the points ordered as y{ — y2 — y%_; — -+ = yj;, where y? € ~; for each i.

Then by viewing these two special open strata which contains points y+ as Uy in
Lemma 2.4.3, we can infer from the lemma that the composition of jumps along the path

oy is given by

géyz)._ _géyk)

which equals to g, _ by lemma 2.4.3. And similarly the composition of jumps along the

path oy is given by
O\ e\ (e !
90 90 90

which also equals to g, _ by lemma 2.4.3. Thus we get that

-1 —1 —1
géw)__.g(()yk):(géyl)) <géyn>> __,<géyk+1>>

from which it follows that .
k
This completes our proof of the triviality of monodromy. O
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It is not so obvious to establish the equivalence between WC'S; and WCF directly,
for this reason, we prove the following more general result.

Proposition 2.4.4. We have the following canonical identification of sets
G=T(ITx, WCF,) =WCS,

Before proving the proposition, we give some explanations. The map from G to
(T, WCF,) is given by

¢: G — DTy, WCF,), g+ 6(g)(y) = m,(g) = g5 (2.4.7)

where the projection m, is given as in (2.4.1). We have already defined the map from
I'(Tg, WCF,) to WC'S,, and we denote this map by ¢. We can also define a map from

WCS; to G by
p:WCSy — G, o— g4 =94 _(0) (2.4.8)

here the group element g, _ is defined as in lemma 2.4.3. All maps are well defined. And
the proposition 2.4.4 is proved by the following three lemmas.

Lemma 2.4.5. The map ¢ is a bijection.

Proof. For any y, since every element g € GG can be decomposed uniquely as the product

g=9" g g
If ¢(9)(y) = g(()y) = 0, then g = 0, thus the map ¢ is injective. On the other hand, as
0 € I'; belongs to the closure of any stratum, therefore any section is uniquely determined
by its value at 0, this shows the map ¢ is surjective. O]

Lemma 2.4.6. The composition of maps popo¢: G — G is the identity map.

Proof. Consider the situation as in lemma 2.4.3, by the decomposition of Lie group G
(c.f., (2.4.5)), any g € G can be decomposed as the ordered product of g(()y"), but in this
case g = g+ . Thus the lemma follows. O

Lemma 2.4.7. The map i 1s an injection.

Proof. Recall that a WCS ¢ is determined by the jumps g(()y) for y € 4+ and some v € T.
We consider a straight line [ as in lemma 2.4.3, which intersects the walls at yq,--- , y,.
Without loss of generality, we can assume y = y; for 1 < k < n. Then by (2.4.4), we infer
that g, _ uniquely determines all jumps g(()yi). In particularly, the jump g(()y) = g(()y’“). As
this holds for all such y, we see that the WCS ¢ is uniquely determined by the element

g+ —. This finishes the proof of the lemma. O]
Finally, we can give a proof of the proposition 2.4.4 as follows:

Proof. (of the Proposition 2.4.4) First, by lemma 2.4.6, we see that for any g € G, we
have that

g=npovodg)=mpo(Yod(g))
thus p is an surjection. By combining it with the lemma 2.4.7, we conclude that p is a
bijection.

However, lemma 2.4.5 says that ¢ is also bijective, thus we have that the map ¢ =
ptogtis also a bijection. O
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2.4.3 WCS for general g and the support of the sections

We can use this sheaf theoretic description to define the WC'S; for g with general Supp g.
Fix an strict sector A € I'g, with the associated completed torus Lie algebra ga as before,
then the sheaf of wall crossing structure WCS,, is defined as the projective limit
of the sheaves WCS for N >0, i.e.

9ga,N

WCS,, = limWCS

N

ga,N

where we have used implicitly a map ¢ € I'y in order to obtain a filtration (this will
be assumed in the following discussion). More generally, the strict sector A may depends
on point y € I'y, in order to deal with such situation, we give the following definition.

Definition 2.4.1. (WCS for general g): The sheaf WCS, on Ty is described by the
space of sections I'(U, WCS,) over any open subset U C I'y, which consists of a family

of elements a(y,7y) € g, such that y € U,y € T'\{0} and y(v) = 0 which satisfies the
following conditions:

a) for any y € U, there exists a neighborhood U, and strict sector Ay, C I'r such
that for any y' € U, the element a(y',v) # 0 iff v # 0 and v € Ay y, .

b) For any N > 0, the image of the following projected elements (c.f., (2.3.7))

Pray g, N (exp (Z a(y’, 7)))

fory' € U,, belong to the space of sections I <Uy, WCSgAy " N).
Uy,

Proposition 2.4.8. Given a strict sector A C I'r\{0}, we assume that Suppg C A,
then we have the following one to one correspondence

r (FIE, WCSQ) +—— Ga

Proof. By projecting a global section o = (a(y,~)) of WCS, into the Lie subalgebra
gan C ga, the one to one correspondence follows from proposition 2.4.4, and by letting
N — 00, we get the desired correspondence. O

Definition 2.4.2. (support of a section) Given a section o € I'(U, WCS,) over an
open subset U C D'y, define its support, denoted by Suppo to be the minimal closed
subset of U x I'r such that it is conic in the direction of I'r and contains the set of pairs

(y,7v) € U x I'g, such that y(v) = 0 as well as log (géy)>V € g,\{0}.
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2.5 Wall-crossing structure on a topological space

Like in the case of continuous family of stability data, we would like the space of wall-
crossing structure WC'Sg, or equivalently the sheaf of wall crossing structure WCS; to be
parametrized by a topological manifold B. This is useful in dealing with the wall crossing
structures associated with complex integrable systems to be discussed in later chapters.
For this purpose, we need to introduce the notion of wall-crossing structure on B.

let us assume that B is a Hausdorff locally connected topological space endowed with
a local system of finitely generated free abelian groups of finite rank

m: I — B

Besides, we need a local system of I'—graded Lie algebras over B, i.e.,

=D

yel

defined over the field of rational numbers Q, i.e, g, = Q(e,), with e, the generator of the
Lie algebra. Under the assumption that the local system I is equipped with a covariatly
constant system of antisymmetric bilinear pairs (-, -),. Then the Lie bracket on g is in-
duced from (2.1.9). -

Now, given a homomorphism of sheaves of abelian groups
Y:I — 0(B)
where ¢'(B) denotes the sheaf of real valued continuous function on B.

Note that the above map is equivalent, under duality to the following map (also
denoted by Y), which is locally continuous

Y:B—T} (2.5.1)

Denote by WCS,y the sheaf on B defined as the pull back of the sheaf of wall-crossing
structure WCS, on I'g, i.e.,
WCS,y =Y "(WCS,) (2.5.2)

and we call this the sheaf of wall-crossing structure on B induced by the map Y, then we
can give the following definition.

Definition 2.5.1. (WCS on B): A (global) wall crossing structure on B is a global section
of the sheaf WCS,y .

Remark 2.5.1. Wee see that when our space B specializes into a single point {x}, then
the sheaf of WCS on {x} is nothing but the global WCS on I'y. Thus, we can view WCS,
as the special case of WCS,y .

In parallel with the definition 2.4.1 in the last section, we have the corresponding
description of the sheat WCS,y as follows:
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Definition 2.5.2. The sheaf WCS,y on B is described by the space of sections I'(U,WCS,y )
over any open subset U C B, which consists of a family of elements a(b,y) € g, such
that b € U,y € T)\{0} and Y (b)(v) = 0 that satisfies the following conditions:

a) for b € U, there exists a neighborhood U, and a strict sector Ay, C I'ry such that
for any b' € Uy the element a(t/,v) # 0 iff vy # 0 and v € Ay, .

b) For any N > 0, the image of the following projected elements (c.f., (2.3.7))

T2y, N (exp (Z a(l', 7)))

for b/ € Uy, belong to the space of sections T’ (Ub, WCS

gﬂb,Ub,N> )
Remark 2.5.2. Clearly, the pairs (b,y) € U x L'y in the above definition that satisfies
those constraints should be viewed as the support of the sections.

More precisely, we have the following definition.

Definition 2.5.3. (Support of a section) Given a WCS o on B, i.e., 0 € TWWCS,y),
we define its support Supp o to be a closed subset of of tot(L'y) i.e. the total space of the
sheaf L', whose fiber Suppy o over any point b € BB is given by an strict sector Ay, C L'y,
which equals to the support of the germ of WCSy, at the point Y(b) € Ly, associated
with the section o. B

By definition 2.4.2, we see that Supp o also admits the following concrete description.

Given a section o € I'(U, WCS,y) over an open subset U C B, Supp o is an minimal
closed subset of U x I'g, which is conic in the direction of I'g, and contains the set of

pairs (b,7y) € U x I'g, such that Y'(b)(y) = 0 and log (g(()y(b))> € g,\{0}.

Through the map Y in the definition, we can also define some hypersurfaces in the
topological space B, and we also call these the wall of the second kind. They are defined
as the pull back of the walls in I'j.

Definition 2.5.4. (walls of second kind in B) For every v € I'\{0}, the wall of
second kind associated to it is defined as

W2 =~t:={beB:Y(b)(y) =0} (2.5.3)
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2.6 Examples of wall crossing structures

Example a): Stab(g) recovered.

Suppose we are given a free abelian group of finite rank I' together with a I'-graded
Lie algebra g = ®76F g+, and a central charge function Z : I' — Z.

Given such data, we know how to define the notion of stability data on g. We now
show that Stab(g) can be recovered by considering the WCS on a circle.

Take B = Sy = R/277Z, and endow it with a local system of lattices I with fiber being
I'. Also, we equip it with a local system of I'-graded Lie algebra g. We then consider the
following map: B
Y : S@ — Fﬁ%

0 — Yo(7y) := Im(e ®Z(y)), ford € R/2nZ, v €T (2.6.1)

Proposition 2.6.1. The wall-crossing structure on R/277Z induced by the above map Y
is the same as a stability data: o = (Z,a(v)) € Stab(g).

Proof. Given a section s € '(WCF,y), we want to associate it to a stability data o =
(Z,a(y)) € Stab(g). The central charge function Z is the same. In order to define
a(y) € g,, we recall that the stalk of the wall-crossing sheaf on Sy at a point 6 € Sy is
given by the stalk of the wall-crossing structure sheaf on I'y at the point Y'(0), i.e.,

(Wesay ), = WCSa)yi

Thus, we see that if Y (6) belongs to some wall of the second kind v+, i.e., if Y(0)(y) =
0, then we can associate to it a “jump”: S(l,) € G such that

log S(1,) € EBEW

¥l
where S(1,) is the automorphism of the torus Lie algebra associated to the ray
L=2(7) Ry CC* =R’
which by the condition that Y (8)(y) = Im(e~*®Z()) = 0, can also be written as
L, = e R.y C~R? (2.6.2)

Then, the components of log S(/,) which belongs to g, are deemed as a(v) in the
stability data (Z,a(vy)). Apparently, this association is unique.

Conversely, given a stability data (Z, a(y)) € Stab(g), we can have the group element
g+— € G as defined in Lemma 2.4.3, then by the proposition 2.4.4, this determines
uniquely a section of WCSg, which after pulling back through the map Y, gives arise to
a section of WCS,y. This completes the proof. m
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Sy I'r

Figure 2.14: Stability data on g as WCS

From the above proof and the definition 2.5.4, we see that the walls in this case are
described as '
Wy =yt i={0 € Sp: Y(0)(7) = Im(e™"Z(y)) = 0}

—{0eSy: 0=argZ()}

Consider a collection of walls in Sy, namely 6,,--- ,6;,--- 6, such that
0; = arg Z(v;) for allé

We view the circle Sy as the unit circle in the plan R?, and identify each 6; as the ray
passing through the origin in the direction specified by the angle 6;, we note that this is
nothing but the ray [,, defined previously. Thus, given any loop o circling around the
origin, the triviality of monodromy in this case states

O
H S(Z’Yz) =1d
which is of course quite familiar to us. (c.f., proposition 2.2.1).

In order to recover Stab (g), the space of all stability conditions on g, we just need to
consider the WCS on the space B := Sy x Homgz(I',C), endowed with a local system of
charge lattice ' and a local system of I'-graded Lie algebra g.

The map Y in this case is given by
Y : Sy x Homy(T',C) — T';
(0,2) — Y (0, Z)(v) == Im(e™"Z(7)), Yy € T\{0}

Proposition 2.6.2. A section of the sheaf WCSyy on the space B is same as a family
of stability data on g.

Proof. It we fix Z € Homgy(T',C), i.e., we consider the sub space B; = Syx{Z} C g, then
by restricting the wall-crossing structure sheaf WCSy to this subspace, it is reduced to
the situation considered in the proposition 2.6.1 above. Hence, a stability data can be
associated. By moving Z in Homy(T', C) locally, we get a stability data for nearby central
charges. Since the circle Sy is compact, we get a germ of universal family of stability data
with central charges in a neighborhood of Z. O
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Example b): Continuous family of stability data recovered

In application, we usually use a complex manifold B to parametrize Stab (g), which
have already been discussed in details in previous sections. Here, we want to realize it
as the WCS on the space By := B x Sp. Again, we endow this complex manifold B with
a local system of charge lattice I and a local system of I'-graded Lie algebra g. And

consider the following map
Y:BxSy—TI}g (2.6.3)

(b,0) — Yy(b)(v) := Im(e™" Zy(7)) Yy € T\{0}

S

Figure 2.15: Continuous family of stability data on g

Assuming as before that the central charge function 7, depends holomorphically in b,
then we have the following

Proposition 2.6.3. A section of the wall-crossing sheaf WCS,yy on the product space
By is same as a WCS on the space B.

Proof. Fix by € B in (2.6.3), and consider the corresponding WCS, we will get a stability
data on g, by proposition 2.6.1. As b varies locally near by, the corresponding central
charges 7, also varies locally around 7, (since Z depends holomorphically on b). Thus
we can use proposition 2.6.2 to get a germ of universal family of stability data near by.
But this is the same as a germ of universal family of WCS near by. This finishes the proof
of the proposition. O

Given a WCS o on By, which is a section of the corresponding wall-crossing sheaf,
then by the above proposition, we can associate to it a locally constant map

a: tot (') — tot(g) (2.6.4)

(ba 7) L ab(,-)/) € EM

where ay(y) is the y-component of the corresponding section of WCSy (see the proof
of proposition 2.6.1). We see that a,(7y) is non-trivial only if there exists some 6 € Sy
such that

Yo(b)(7) =0
Thus we define a subset in tot (I') as
B':={(b,y) € tot (L) : 30 € Sp, Yy(b)(7) = 0} (2.6.5)

Then we see that a restricts to a map on B’, we know from before that this map
encodes the DT-invariants (7).
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Remark 2.6.1. Since the map a : B' — tot(g) is defined to depend only on the b-

component of By, so we will later just call a WCS on By as a wall-crossing structure on
B, with the role of the circle Sy being understood implicitly.

Recall from the definition 2.5.4, given v € I', the wall of second kind associated to it
as
WS =y = {(b,0) € By : Yp(b)(7) = 0}

{00 8 e =0)
= {(b,0) € By : arg(Zy(v)) = 0}

which is seen to be a hypersurface in By—the pull back of the wall of second kind
in I'y through the map Y. We can project this wall down to a hypersurface in B, also
denoted by Wg, ie.

W2 ={be B: F0(fixed) s.t. arg(Zy(y)) = 0} (2.6.6)

Remark 2.6.2. For a fived point b € B, and given any v € L'y, we can define the angle
0 = arg (Zy(7)), then we see that Im(e*Zy(y)) = 0. From this, we can view the wall
above as the rotated wall of second kind Wﬁ C I'y defined before. In particularly, there
are at most countably many

Vi € Supp ay == {7 € L,\{0}, ap(7;) # 0} = Suppg,

over a given point b € B. Thus, we can associate to it a collection of rays L, C R? as
before, and call these the rays associated to b € B, and denote this collection by rayy

By the above remark, we get a collection of rays in R? parametrized by points b € B.
From our discussion on KSWCF, we infer that the set ray, stays constant locally unless
b crosses the wall of first kind defined below.

Definition 2.6.1. Given two non-zero charges v1,v2 € L', define the wall of first kind
associated to it as the following set

Wi e = {b eB:Im (Zb(”yl) : Zb(72)> = 0} (2.6.7)
And the wall of first kind associted to v € I s then defined to be
W= | Wim (2.6.8)
Y=71+72

and these walls are locally finite hpersurfaces in B which hare locally a pull back of a
ZPL hypersurface in I'g.

We know that as b crosses the wall, say W,, .,, the order of the two rays [,, and [,, are
get swapped. Consequently the function a,(y) becomes discontinuous at such b € W}/,
and its “jump” is governed by KSWCF (2.2.7), which can be recasted in the setting
concerned here as follows:

The point b € W,, ,, at which the set of rays ray, collapse into a single ray, can be
viewed as the intersection of countably many walls of second kind, namely

W2

my1+ny for (m,n) € Zsy x Z>o and m +n > 0.
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Thus by considering a small short loop ¢ circling around the point b, KSWCF predicts
that the monodromy of the composite of the corresponding automorphisms along the loop
should be trivial, i.e.,

O
H S<lm’71+7W2) =1d
m/n

Or by using KS transformation notation, the above is equivalent to

H K:QIL (m,n) H KzfﬂbJr (m,n) —id

(m,n) (m,n)
m,n>0;m/n m,n>0;m/nN\

and consequently, we get the KSWCF (2.2.7) in this situation:
Qy (m,n) - Qb+ (m,n)
II Kew ™ = 11 Ko
m,n>0;m/n m,n>0;m/n\

From the above KSWCF, we can deduce in principle the jumps of invariants €2 (7)
when b crosses the first kind wall W..
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Chapter 3

Attractor flows, complex integrable
systems and WCS

From the discussion of example b) in section 2.6. we see that the WCS on a topological
space B, (or by considering implicitly the product with the circle Sy) enables us to study
the variation of stability data parametrized by a complex manifold B, i.e., by considering
family of stability data. As had been displayed in the last chapter, this construction gives
us a formalism to encode the DT-invariants Q,(7y) for b € B, as well as their “jumps”
when crossing the wall of the first kind )/Vv1

But the question still remains as how to construct these DT-invariants in the first
place. In this chapter, we will introduce necessary tools for dealing with this question.
Roughly speaking, we will consider certain flows on the manifold B, which for our pur-
poses, should be realized as the base manifold of some complex integrable system. The
combinatorial structures of the flow lines will give us an algorithm for computing the
invariants for various charges at various points of B. Consequently, we will produce by
this algorithm a WCS on B that encodes these invariants.

For those willing to know the physics motivation of the attractor flow, they are en-
couraged to consult the Appendix B for further information. Here, we will follow the
mathematical treatment of it as had been laid down in the foundational work [ | of
M.Kontsevich and Y.Soibelman.

We will begin this chapter by giving a detailed exposition of the complex integrable
system, then we will introduce the notion of (split) attractor flow and its connection to
the WCS.
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3.1 Geometry of complex integrable systems

In section 4 of | |, the concept of complex integrable systems was introduced and their
geometric properties were discussed. Here, we will give a more detailed review based on
the papers | |, [Brul,[Sepl,[ 1Ll | as well as the first chapter of the book

[BEO4).

3.1.1 Definition and preparation

Definition 3.1.1. A complex integrable system is a holomorphic surjective map
7 (X,w?%) — B with smooth fibers being holomorphic Lagrangian submanifolds. Here,
(X, w*Y) is a holomorphic symplectic manifold of complex dimension 2n, and B is a
complex manifold of dimension n.

Denote by B° C B the dense open subset over which the fibers of 7 being smooth,
and by B*"9 := B — BY the discriminant locus. Consider the fibration (still denoted by
) over B° by holomorphic Lagrangian submanifolds, i.e.,

7 (X% w?) — B (3.1.1)

In the following, we will discuss the geometry of the above complex integrable system
near the points of B, while the geometry near the discriminant locus B*"9 is much more
complicated and will be discussed later.

We make the assumption that the smooth fibres of 7 are compact, so that they are
actually holomorphic Lagrangian tori (will be proved later in section 3.1.2).

Figure 3.1: Complex integrable system as torus fibration

Symplectomorphism

To study the local geometry of the fibration 7 given by (3.1.1), we will consider certain
diffeomorphism of X induced by the differential one form on the base B°.
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Denote by Dif f(X°) the group of diffeomorphism of X°, then its Lie algebra Diff( X?)
can be identified with the Lie algebra of vector fields on X, denoted by Vect(X?). We
can use the symplectic two form to identify Vect(X?) with the space of differential one
form on X, denoted by Q!(X?), as follows:

Vect(X%) — QY(X9)

§— Lg w0

where ¢ w?? denotes the interior product of the vector field £ with the symplectic form
w?%. The isomorphism follows from the fact that the symplectic two form is non-
degenerate.

Recall that a symplectomorphism of X° is given by a diffeomorphism ¢ : X% — X°
such that it preserves the symplectic structure, i.e. ¢*(w??) = w?".

Suppose ¢ is such a symplectomorphism, with the associated vector field £, then the
condition that it is a symplectomorphism can be written as: % w*® = 0, where % is
the Lie derivative with respect to the vector field £. By the Cartan’s magic formula, we
have:

L w?? = d(1ew*°) + 1e(dw®?) = d(1ew®?) = 0

Thus, the corresponding one form tew?? of ¢ is closed.

Denote by Gymp(X°) C Diff(X°) the Lie algebra of symplectomorphism of X, then
we see from the above computation that it can be identified with the set of closed differ-
ential one form on X i.e., Symp(X?) ~ Z1(X7).

In particular, for a function f € C*°(X?%%), we have the associated Hamiltonian vector
field &f given as
ve, w0 = df (3.1.2)

The diffeomorphism corresponding to the one form ¢, w?Y is called Hamiltonian dif-

feomorphism, and denote the group formed by them by Ham(X° w?°?). Form the above
definition, we see that the corresponding Lie algebra $am(X° w?9) can be identified with
the set of exact one forms of XU, i.e.,

Ham(X? w*) ~ BHX?)

Consequently, Hin(X"), the first deRham cohomology of X, parametrizes the set of
infinitesimal symplectomorphism of X° modulo the action of infinitesimal Hamiltonian
deformation.
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Lie algebroids and Lie groupoids

We need the notion of Lie algebroid and the Lie groupoid to formalize the structures
that appears when studying the local geometry of complex integrable system to be dis-
cussed in the next section. Here, I will give a rather sketching review, for more details,
please see the references like | | and | .

Definition 3.1.2. Let M be a smooth manifold, a Lie algebroid over M is a vector bundle
V' — M such that the space T'(V') of smooth sections of V is endowed with the following
antisymmetric bi-linear bracket

[ ] D(V) x D(V) = I(V)
which satisfies the Jacobi-identity

(e, 81, 4] + [18,7], of + [[v, e, 5] = 0

Moreover, we have the anchor map p :' V. — T M, which is a bundle map between V and

the tangent bundle TM. This map induces, at the level of sections, a homomorphism
(still denoted by p) p: T(V) — I'(T'M) taht satisfies the following Leibniz rule:

[avfﬁ] = f[avﬁ] + (p<a) ’ f)ﬁ
where f is any smooth function on M.

Lie algebroid generates the infinitesimal action on a manifold. More precisely, we have
the following definition (see | ).

Definition 3.1.3. Given a Lie algebroid (V,p) over M, the infinitesimal action of this
Lie algebroid on a manifold X is defined to be a smooth map ¢ : X — M, together with
a linear map p: U(V) — I'(TX) such that

a) 1([X,Y]) = [u(X), (Y )], for XY € D(V);
b) u(fX) = (f 0 §)u(X), for X € D(V), f € C=(M),

¢) ¢ (u(X)(x)) = p(X)(¢(x)), for X € T(V), z € X.

We can easily generalize this definition to the case when X is given by a fibered
manifold p : E — M (the same base, we shall not give the definition for more general
base). We have the following definition (c.f | 1)

Definition 3.1.4. Given a Lie algebroid (V,p) over M, the infinitesimal action of this
Lie algebroid along p : E — M is given by linear map p: T'(V) — T'(TE) such that

a) w([X,Y]) = [p(X), p(Y)], for X, ¥V € D(V),
) (FX) = (f o p)u(X), for X € T(V), f € C(M),
c) For X € I(V), u(X) is projectable to p(X).
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It is clear from the definition of the Lie algebroid that a Lie algebra is a Lie algebroid
over a point. Besides, the tangent bundle T'M of a smooth manifold M is seen to be a Lie
algebroid by taking the bracket [-, -] the usual Lie bracket on the space of vector fields,
and p the identity map. More interesting Lie-algebroids are given by Poisson manifolds.

Definition 3.1.5. A Poisson structure on a manifold M is given by an antisymmetric,
bi-linear map (called Poisson bracket):

{}: CF(M) x CF(M) — C%(M)
which satisfies the Jacobi identity as well as the Leibniz rule, i.e,

{fg,h} = flg, b} +{f, h}g

A manifold equipped with a Poisson bracket is called a Potsson manifold. And a
smooth map between two Poisson manifolds is called a Potsson morphism if it pre-
serves the Poisson structures.

Note that any symplectic manifold (M, w) give rises to a Poisson manifold (M, {-,})
with the Poisson bracket given as

{f,9} =w'(df,dg) = (&, &)

Indeed, by the Leibniz rule, we see that {-,h} is a derivation on C*°(M), i.e., there
exists vector field (j, such that (,(f) = {f,h}. We call this vector field associated to h
the Hamiltonian vector field of h. We show that it actually coincide with &, defined before.

{f: 1} = Gu(f) = df (Cn) = vg; w(Gn) = w(&s,En)

From the last equality above, we infer that ¢, = §,. Thus, we we use the notation &
to denote the Hamiltonian vector field associated to the function f.

For the complex integrable system 7 : (X° w") — B°, by endowing B® with the trivial
Poisson structure 0, we have the following:

Proposition 3.1.1. 7 : (X% w%) — (B°,0) is a Poisson morphism.

The proof of this proposition can be found in | |]. We now state the connection
between Poisson structure and Lie algebroid.

Proposition 3.1.2. A Poisson structure on M s the same as a Lie algebroid structure
on the cotangent bundle T*M — M.

Proof. (sketchy): Given a Poisson structure on M, the anchor map p : T*(M) — TM
is the natural one given by associating to a differential one form df the corresponding
Hamiltonian vector field ;. Then the antisymmetric bi-linear bracket on I'(T™) is defined
as

[df, dg] := d{dg, p(df))

where (-, -) denotes the natural pairing between the one form and vector field. The Jacobi
identity and the Leibniz rule can then be easily verified.
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Conversely, given a Lie algebroid structure ([-, -], p) on T*M, one can associate the
Poisson bracket {-,-} on C*(M) as follows

{f, 9} = (dg, p(df)) = p(df)g

Then the antisymmetry of the bracket, Leibniz rule and Jacobi identity can be verified
(details can be found in | ). O

Roughly speaking, a Lie algebroid looks like Lie algebras in family.
Definition 3.1.6. A groupoid G consists of a set Gg, called the set of objects; and Gy,
the set of morphisms (arrows), equipped with the following maps

a) s,t: Gy = Gy, called the source and target map respectively.

b) m: Gis Xy Gy = G1(g,h) — gh, called the multiplication map that satisfies s(gh) =
s(h), t(gh) = t(g), and (gh)k = g(hk), where G15 x; Gy is defined to be the set {(g,h) €
G1 x Gy :s(g) =t(h)}.

c) e: Gy — Gy, called the identity section such that e(t(g))g = g = ge(s(g)).

1

d) i : Gy — Gy, called the inverse section, and denote i(g) by g~ such that g~'g =

e(s(g)), gg~" = e(tg).

Definition 3.1.7. A Lie groupoid is given by a groupoid G such that Gy and Gy are
smooth manifold, and all group operations are smooth, besides, s and t are submersion.

Again, a Lie group is just a Lie groupoid over a single point. i.e. Gy = {pt}.
If a Lie group H acts on a manifold X, we can form the so called action groupoid

by viewing Gy as X and G; as H x X. Then the source and target maps are given
respectively as

s(h,x)=h""-z, t(h,x) =2

and the multiplication is given as (h,z) - (k,h™! - x) = (hk,z), while the inverse and
identity maps are given respectively by

i(g,x) = (97" 97" - x), e(x) = (id, x).

Definition 3.1.8. A left action of a Lie groupoid G' on a manifold X consists of the
following

a) a smooth map 1 : X — G,

b) a smooth map Gq5 X, X = X, (g,x) — g-x where

Gis xu X = {(g,2) : s(9) = p(x)}

such that the following conditions are satisfied
1) :u(g ’ l’) = t(g>7 where (gam) € Gy, X;LX and
2)h-(g-x)=(h-g)-x, when s(h) =1t(g).
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Since for a Lie group, their is an associated Lie algebra, similarly, for a Lie groupoid,
there is a corresponding Lie algebroid. For a Lie groupoid G, we now sketch how to as-
sociate it with a Lie algebroid, for the detailed construction, see the section 1.4 of | ].

As in the case of constructing the Lie algebra from the corresponding Lie group, we
need to consider Left invariant vector fields on GG. To this end, we need to construct the
tangent space at unit of the group, but in our case, we have one unit for each point in
G, so we will get a family of tangent spaces parametrized by G,. Besides, since the left
multiplication is only defined on the fiber of the target map t : G; — G¢. Thus, we need
to look at the vector fields that is tangent to the fiber of ¢, i.e., we consider the space

T'G, := Ker(dt) C TG,

which is a vector bundle on G;. Under the identity map e : Go — G, Gy can be
identified with its image in G;. Denote by V' := Lie(G;) the restriction of the bundle
T'G; on Gy, we claim that the vector bundle V' carries the desired Lie algebroid structure
associted to the Lie groupoid G.

To see this, we show that the space ['(V') of sections of the bundle V' can be identified
with the space of Left invariant vector fields on Gy, denoted by Vectl,, (G1), which is
defined as

Vect!, (G1) == {X € T(T"(Gy)) : X,n = L,(X4), V(g,h) € Gis x; G1}

mu

where L, denotes the differential of left multiplication by g, i.e., L, : TfG1 — TgthGl.
Then, given a € I'(V'), we associate to it a vector field &, := Ly(as(), which is clearly
left invariant. Conversely, given a left invariant vector field X on Gy, it is determined by
its valued at points in Gy, i.e., for a point g : * — y in Gy, we have X, = L,(X,). Define
a:= X|g, € I'(v), then X = a.

In this way, we can establish the identification: T'(V) — Vect! (G), then the Lie
bracket on I'(V') is the one induced by the above identification from that on the space of
invariant vector fields, which can be easily seen to obey the Jacobi identity. The anchor
map p : ['(V) — TGy, in our case is defined to be the differential of the source map s

redistricted to V', i.e., p = ds|y, which can be verified to be obey the Lebniz rule.

Before closing this subsection, let us recall the definition of a torsor.

Definition 3.1.9. For a group G, a G-torsor (or a torsor over G), is a principal ho-
mogeneous G-space, i.e., a space P, together with an free and transitive G-action.

Remark 3.1.1. Fach choice of a point p € P gives rise to an isomorphism between G
and P, i.e., G is being identified with the orbit {G - p} of p. Thus, this isomorphism
1s not canonical. Morally speaking, a torsor is like a usual group that forges its identity
element, any choice of a point p € P serves as the identity, which makes it an actual

group.

Remark 3.1.2. We can easily generalize the above notion to the case when G is a Lie
groupoid due to that we have good notion of the action of Lie groupoid on a space (see
the definition 3.1.6).
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3.1.2 Local geometry near regular fibres and classification

Let us go back to the study of the complex integrable system near its regular fibers given
by 7 : (X% w*%) — BY The moral is that all that had been encoded in the geometry
of the base manifold B°, as we will see in the next section when discussion the notion of
special geometry.

As is well known, the cotangent bundle T*B° of the base of the integrable system is
naturally a symplectic manifold, endowed with the canonical symplectic form we,,. We
can endow the base B? with the trivial Poisson structure, and consider by proposition
3.1.2 the induced Lie algebroid structure on the cotangent bundle

pr: (T*B% wean) — B°

In this case, since the underlying Poisson structure is trivial, each fiber of the pr above
can be viewed as an trivial abelian Lie algebra.

The ideal to study the local geometry of 7 is that the Lie algegbroid T*B° generate
an infinitesimal diffeomorphism on X, and under certain assumption (to be discussed
momentarily), can be integrated into a Lie groupoid action on X°. The symmetry coming
from this action enables us to find local model of the complex integrable system 7 that
resembles to the cotangent bundle pr. In other words, we will show that pr is a good
local model for 7 near regular fibers. The exposition in this section is mainly based on
the papers [Sep] and [Bru]. We assume in the following the the fibers of 7 are connected
and 7 is a surjective submersion.

Let b € B, and choose an open neighbourhood U C B° around it, then we consider a
differential one form o defined locally on U, i.e., a local section of pr : T*B° — BY near
b € U. As in the definition of Hamiltonian vector field of a function (see definition 3.1.2),
we can associate to a a vector field &, as follows:

Le, Wean = T 1 (3.1.3)
This gives rise to the following map at the level of sections:
p:D(T*U) — T(TX ), a— &, (3.1.4)

In application, we usually consider the case of symplectomorphism of 7 induced from
the one form « through the map p. By the discussion in section 3.1.1, wee see that this
corresponds to the case when the one form « is being closed.

Roughly speaking, this means that given b € U, and for any point x € 7—1(b), at the
level of stalk, we get an infinitesimal action of T;B° (viwed as an abelian Lie algebra) on
X?°. By utilizing the concept of the action of Lie algebroid (see definition 3.1.4), this can
be formulated more elegantly as follows:

Proposition 3.1.3. Suppose that pr admits a global section, i.e., we can have globally
defined one form on B°, then the map u defined above can be extended to B to give rise to
an action of the Lie algebroid pr : T*B° — B along the fibred map m : X° — B°, where B°
s endowed with the trivial Poisson structure and the anchor map for the Lie algebroid is
given by the isomorphism p : T*B° — TB° induced by the canonical symplectic structure
Wean 0N the cotangent bundle.
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Proof. We need to verify the condition a), b) and c) in the definition 3.1.4 of the Lie
algebroid action. As the Poisson structure on B° is trivial, the bracket on I'(T*B)
vanishes identically, thus the condition a) of the definition becomes

(€ €s] =0 Va,B e D(T*B°%) (3.1.5)

where the bracket above is the usual one actiong on vector fields.

Condition b) of the definition specializes in our case into the following
(o =7 (f) &,  VaeD(T*B°), feC®(B) (3.1.6)
while the condition ¢) becomes the following
Va € T(T*BY) €a € Kerm, (3.1.7)

Now we verify these conditions by performing local computations.

By the definition of the Hamiltonian vector field (3.1.3), the condition (3.1.6) follows
straightforwardly. Near a point b € U, we give the local coordinate (¢, -+ ,¢") : U —
C". Write v = 37" a;dg’, and 3 = 37", B dg’, we first show that &, € Ker,, ie., &
is a vertical vector field. Since

= ZW*<O%') Eagt = ZW*(az‘)f
i=1 i=1

we just need to check the condition for &,i. Since ¢* are is function on B, it is constant
along the fiber of 7, thus we can consider it as the function 7 o ¢*. In particularly, for
and vertical vector field n € Ker 7, we have: n(r o ¢*) = 0, but

n(mo qi) = 7T*<dqi)<77) =l Wean () = Wcan(fqh n) =0

Since this holds for all n € Ker ., wee see that £, € (Kerm,)*, where “ L " denotes
the symplectic orthogonal with the canonical symplectic form w,,,. As 7 is a Lagrangian
fibration, we have that (Kerm,)t = (Kerm,), the desired result thus follows. Now we
prove (3.1.5):

50475,3 Z”T ; gqazﬂ 6] qu

:Z (Bi)Eqi> €] + (7 (i) )Eqs (77 (8))) s — (77 (85)) &g (7 (045))641)

n

= 3 ) el = D @) ),

i,7=1 2,7=1

The last identity holds since each ¢’ is constant along the fiber, and &, belongs to the
vertical tangent vector space, thus

0= fqi(qj) = dqj (gq") =l wwn(fqi) = Wcan(gq"a gqj) = {qia qj}'
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Now we “integrate” the above Lie algebroid action into a Lie groupoid action along ,
for this we make a further assumption that for any compactly supported one form o on
B°, the associated vector field &, is complete. Under the above assumption, we consider
the flow associated to the vector field &, as

$o 7 (U) = 77 (U)
Since this vector field is vertical, the flow preserves the fiber 77*(b) for every b € U. In
order to see this more clearly, let us choose any compactly supported on form « defined
over U such that a(b) = ay, then the induced diffeomorphism of the fiber is given as
L, i (D) = (D) (3.1.8)

We can formulate more concisely by using the language of Lie groupoid (see definition

3.1.7) and its action on manifold (see definition 3.1.8).

The Lie groupoid to be considered is given by T*B" = B°, with the source and target
maps being identical and are given by the projection map pr. By viewing the fiber as
vector space, the multiplication map is given by the fiber-wise addition of co-vectors. The
unit elements are realized by taking zero section of pr, while the inversion is given by
taking the negatives of covectors.

Proposition 3.1.4. The action of Lie algebroid pr : T*B° — B° along the fibred map 7 :
(X% w29 — B° as in proposition 3.1.5 “integrates” into a Lie groupoid pr : T*B° = B°
action along 7 : (X° w?%) — B° .

Proof. Consider the fibred product
TB° , < X = {(a,2) € T*B° x X° : pr(a) = 7(z)}
Then the desired Lie groupoid action (c.f., definition 3.1.8) is given by
T B, x, X0 — XY (a,2) = ¢l (7) (3.1.9)

where ¢! is the diffeomorphism induced by the time one flow of the vector field &,
(see equation (3.1.4)). O

Remark 3.1.3. As an abelian Lie group, Ty B° is isomorphic to C* = R?",

We will use the action p (see 3.1.9) to analyze the local structure of the integrable
system 7. First, notice that as the symplectic form w.,, is non degenerate, the map
in (3.1.4) is subjective, from which we infer that the action p is transitive along the
fiber 771(b) for any b € BY. Next, we compute the isotropy subgroup of the action
¢y w1 (b) = 7w 1(b). For z,y € 7 1(b), the corresponding isotropy subgroups H,, H,
are conjugate to each other, but as the groups in question are abelian (see the remark
above), they can be canonically identified. Thus, the isotropy subgroup at b € B’ can be
computed as

Hy={a, € T;B°: 3z € ' (b), s.t, ¢, () = x} (3.1.10)

It is clear that dim T} B° = dim 7—*(b), Vb € B°, consequently dim Hj, = 0.
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As a discrete subgroup in TyB? = C* = R?", H, must be isomorphic to Z* for some
k < 2n. In the following, we will use the notation A, to denote this lattice, and call it
the period lattice. Thus, the fiber 77!(b) is isomorphic to

TyBY /A, = C /78 = R*™/7F

The map 7 is assumed to be proper, so the fiber 771(b) is a compact Lagrangian tori
T?". In this case, k = 2n. This is the case to be considered now. By using the notion of
torsor (see definition 3.1.9), we can say that 7—!(b) is a torsor over the tori T**. We can
generalize this to the global case. To this end, define

A= ]| McTB
beBo

which is called the period net associated to the complex integrable system 7 : X° — B°.
Following remark 3.1.1, we say that 7 is a torsor over the Lie groupoid pr : T*BY/A =
B° (with the Lie groupoid structure induced from that on pr : T*B° = B°), which is
topologically a torus bundle over B°. Indeed, the Lie groupoid action is the one induced
from (3.1.9):

1T BY/A 5 xn X0 — X° ([a],2) — ¢ (2) (3.1.11)
where T*B°/A 5 x, X° — XY is the fiber product defined by
T*B°/Aj % X° := {([o],2) € T*B° x X° : pr([a]) = n(z)}
Here [a] denotes its image in the quotient.

Lemma 3.1.5. The Lagrangian sections of pr : T*B° — B° correspond to the closed on
forms on BC.

Proof. Denote the standard coordinate system on T*B° by (p1, - ,pn,q", -+ ,¢"). In
these coordinates, the canonical symplectic form can be written as

Wean = Z dpz A dqz
i=1
Then for a section n =Y midg" of pr, the restriction of we,, on 7 is given by
Wean|n = Zdni Adg' = dn
i=1
thus the Lagrangian condition is equivalent to the closedness of 7. O]

Proposition 3.1.6. The period net A is a Lagrangian submanifold of T*B°.

Proof. By the defining property of A, we see that it is an integral lattice locally spanned
by the locally closed one forms a3, and consequently, by the above lemma, we conclude
that A corresponds to Lagrangian sections. O]

A local section v of pr : T*B® — B° induces a transformation along the fiber of pr by
translation, i.e.,

B = T8, aye o+ (3.1.12)
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Lemma 3.1.7. The above action along the fibers of pr given by translation is symplectic
if and only if the section v is Lagrangian.

Proof. We see that we,, is preserved by the action (3.1.1) if and only if the one form = is
closed, which by lemma 3.1.5 corresponds to a Lagrangian section. O]

Proposition 3.1.8. The standard symplectic structure Weq, on T*B° induces a symplectic
structure on the Lagrangian tori bundle T*B°/A.

Proof. By the definition of A (see 3.1.10), wee see that T*B° is invariant under the
action of the period net A, thus by Lemma 3.1.7, this action is trivially symplectic, and
consequently the canonical symplectic structure we,, is preserved by the action of A. So
Wean descends to the quotient T*B°/A. O

The local structure of the complex integrable system 7 : (X° w*?) — B° can be
summarized into the following proposition, which roughly says that 7w looks locally like
(actually diffeomorphic to) the pr : T*BY/A — BY. Whether it is globally of such form or
not depends on further topological information to be discussed momentarily.

Given a local section o of the integrable system 7, i.e., 0 : U — 7~ *(U) for U C B°.
Then it induces the following map

U, :T°U — 7 (U) ar— ¢ (0 0pr(a)) (3.1.13)

It further induces the following map at the quotient level:

U, : T*U/Ny — 7 (U) [a] — ¢} (o 0 pr([a])) (3.1.14)

Proposition 3.1.9. The integrable system m can be locally trivialized by choosing local
sections o : U — X° over open U C B°, while the trivialization is given by ¥, defined
above.

Proof. We need to show that \TJU is a local bijective diffeomorphism, which is amount to
showing that the map W, is a local diffeomorphism, since the bijectivity would follow
from the dimension consideration.

As dimT*U = dimn ' (U), to show that ¥, is a diffeomorphism, by the implicit
function theorem, we need to show that it is injective, i.e.,

Ker DV, (a) #0, Ya € T*U

Consider now the map p in (3.1.4), which can be viewed as the derivative of the diffeo-
morphism ¢;. Its image is the space of vertical vector fields for =, i.e., Imu = Kerm,.
Thus DV, («)(X) = 0 if and only if X = 0 were X € TY""T*U, i.e., the vector field
that is tangent to the fiber of pr. Thus, if we assume that there exists X € T, T*U
such that DV, (a)(X) = 0, then, it must not belong to the vertical subspace Ty"* T*U.
Consequently,

Dpr(a)(X) = pro(a)(X) #0

As the local section o is a submersion, Do o Dpr(a)(X) # 0. Then we have that
DU, (a)(X) = DL o Do o Dpr(a)(X) = jro Dpr(a)(X) #0

as X does not belong to T2 T*U. This contradicts to our assumption. We conclude

that Ker DV, (a) # 0. O
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Invariants and classifications

By the proposition 3.1.9, we see that the complex integrable system 7 near regular
points looks like a cotangent bundle, and this has been realized through the trivializa-
tion map W, (see 3.1.14) induced by Local section ¢ of 7. Thus, in order to get global
information, i.e., the invariants, we need to glue these local pieces together.

Consider two open subsets U;, U; C B near the regular point b € BY with non-
empty overlapping U;; := U; N Uj, together with the local sections defined over them,
ie., 0, : U — 7 '(U;). Then we have the associated trivialization W,,, and over the
intersection U;;, and the following transition map

U, ' oW, : TyUs /Ay, — TyUy/Aly,

Suppose « € Ay, i.e., it represents the zero element in T,U;;/A|;;, then by the formula

K
(3.1.13), we see that under the above transitional map, it becomes the section \If;jl(ai o
pr(a)). By the transitivity of the Lie groupoid action ¢' as had been noted after remark

3.1.3, we see that there exists unique section puj; of pr : TyU;;/A v,; — Ui; such that

lltji (aj) = 0i.

Lemma 3.1.10. The transition map acts on [o] € T;U;; /A

u,; in the following way

U, " oW, ([a]) = [a] + ¥, (o7 0 p) ([a])

Ij

Proof. By the formula (3.1.12), we see that under the transition map, o gets mapped to
a + j;5. Besides, we have that

U, oW, (1)) = U, o ¢l (07) = 0, (o),

from which the desired identity follows. O]

Topological classification

From the above discussion, we see that u;; : Uy — T(U;;)/Ali; defines a Cech 1-
cocycle for the cohomology of BY with coefficients in the sheaf C*(T*B°/A) of smooth
sections of pr: T*B°/A — B i.e. p;; s give rise to a cohomology class

ue HY(B,C™(T"B°/A))
Then the class p is the obstruction for 7 : (X° w??) — BY to be globally diffeomor-
phic to the reference integrable system pr : T*B° — BY. The obstruction is measured by

the so- called Chern class to be defined below.

Denote by C*(A) the sheaf of smooth sections of A — B°, then we have the following
short exact sequence

0 — C%(A) — C=(T*B%) — C(T*B°/A) — 0

from which we have the induced long exact sequence at the cohomology level
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- — HY(B?,C>=(N)) — HY(B°,C>(T*B°)) — H(B°,C>(T*B"/A))

2y H2(B°, C%(A)) — HY(B°,C®(T*B%)) —> -+~
As C°(T*B) is a fine sheaf, H (B, C>(T*B°)) = 0 for i > 1, we have in particular
the following isomorphism

§: HY(B°,C=(T*B°/A)) — H*(B®,C>(A))
Define the Chern class of the complex integrable system 7 to be

1= 0(p)

Thus, we see that 7 = 0 if and only if 7 is diffeomorphic fibre-wisely to pr, which is
further equivalent to that 7 admits a global (smooth) section.

Symplectic classification

The trivialization map T, is only a diffeomorphism (see proposition 3.1.9). If it is
also a symplectomorphism, then the classification scheme in the smooth setting would
yield a symplectic classification as well. Thus, we need to discuss the conditions for the
trivialization maps to be symplectomorphism.

Proposition 3.1.11. The trivialization T, is a symplectomorphism if and only if the
local section o : U — nY(U) is a Lagrangian.

Proof. By proposition 3.1.9, U, is a local diffeomorphism from T*(Uij)/A
so it is sufficient to check the condition for the cotangent bundle.

Uij to ! (Uij>7

Given a section a = Y, a;dg’, by (3.1.12), we see that it acts on 8 =Y, 5 dq’ by
Bi = Bi + o

where we have endowed T*U;; with the standard coordinates: {q’, p;}, so that the canon-
ical symplectic form can be written as

Wean = Z dpl A dqz
i
Then we see that under the action, the symplectic form transforms according to

Wean = Z dp; A dg* — Z dp; A dg* + Z da; A dg'

from which we see that w.,, is being preserved if and only if da = 0. However, lemma
3.1.5 tells us that the closed one form corresponds to the Lagrangian section. O

Denote by £(M) the sheaf of Lagrangian sections of M — B°, then as in the smooth
case, we have the following short exact sequence

0— L(A) — L(T*B°) — L(T*B°/A) — 0
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from which the following long exact sequence being induced
oo — HY(B°, L(N)) — H'(B°, L(T*B°)) — H'(B%, L(T*B°/A))
25 HY(BY, L(A)) — HX(B%, L(T*B°)) — - -
Again, since the sheaf £(T*B°) is fine, we have the following isomorphism
§: HY(B, L(T*B°/A)) — H*(B°, L(A))
By proposition 3.1.11, we have that
HY (B, L(T*B°/A)) = H' (B, ZY(T*B°/\)
where Z'(T*B"/A) is the sheaf of closed one forms on T*B%/A.

As in the smooth case, a cohomology class u € H' (B, Z'(T*B°/A) is associated to
7, which is called the Lagrangian Chern class of 7. It is a symplectic invariant of the
complex integrable system .

And the Chern class 1 of 7 is defined to be the image §(u). It is the obstruction
for m: (X% w?%) — BY to be symplectomorphic fibre-wisely to the reference integrable
system pr : T*B° — B°, which is equivalent to the existence of a global Lagrangian
section of 7.
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3.1.3 Action-angle coordinates

In this subsection, let us endow the complex integrable system 7 : (X° w?*?) — B° with
the so-called action-angle coordinates. We first view the integrable system 7 as the real
one by considering on X the real symplectic form given by w := Re(w??). The following
exposition is based on the book] ].

The period net A C T*BY is a local system of lattice over B°, with the fiber at b € B°
being A, = Z?". Near b € B°, we choose an open neighbourhood U C B so small such
that it is simply connected, i.e., w1 (U) = 0. Then we can choose a local section a of
A — U, that is, a set of closed one forms (a',--- a®"), such that (a!(b),---,a*"(b))
form a Z-basis of Ay, i.e., a Z-basis for the first homology group:

HY(771(b),Z) = H Ty /Ny, Z) =2 Ny =2 77 (3.1.15)

As U is simply connected, these one forms are locally exact, i.e. there exists local
coordinate functions
(ut, -+, u®) : U — R*"

such that o® = du’. Since these coordinate functions are constant along the fiber of
we can view them as coordinates on X i.e., u’ o7 (we still denote these by u?).

Lemma 3.1.12. The coordinate functions u' are in involution, i.e.,
{uia uj} =0
Proof. See the last line in the proof of the proposition 3.1.3. n

We denote the Hamiltonian vector field associated to du® by &,. They are linearly
independent and generate the space of vertical vector fields Ker m,.

We know that the fiber 771(b) is a tori T?* = T;U/A, = C"/Z*".

Fix a reference point x € 7~1(b). Since the action of T}U = R?" on the fiber 7—1(b)
is transitive, for any point y € 7=1(b), there exists

2n
a:ZyiO/ e T,y/U
i=1

for (y1,- -+ ,v2n) € R?", such that ¢! (z) = y. Then we can define the angle coordinates
on the tori T?" as follows:

oi(y) :==y; (modZ), i=1,--- 2n. (3.1.16)
Remark 3.1.4. For the reference point x, there ezists a = Z?Zl kia®t € Ay for (ky, -+ kon) €

Z*" such that ¢}, = x, then we see from the above definition that the angle coordinates
for z is (0,---,0).

Together with (u',--- ,u?") on the base, (ul,---  u?" ¢y, -, $a,) gives a local coor-
dinate system on 7 : X° — B°.
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Next, we shall find more canonical form of the base coordinates so that the (real)
symplectic form on X° can be written in the form similar to that on the cotangent
bundle. The vector fields 6% generated by angle coordinates are vertical fields and can

be written in terms of {{,:} as
2n

0

k=1

Denote by w := Re(w*?) the real symplectic form on X and it can be expressed as
W = Za;duZ A d¢] + Zaij d¢l /\d¢j + Zb” duz A\ duj
i, i, Y]

As the fiber T?" is Lagrangian, the second term in the above expression for w vanishes,
consequently we have that

W= ch du’ A do, —|—me du® A du? (3.1.17)

2% (2%

Lemma 3.1.13. ¢;; = ¢;;.

Proof.

~ 0 (9 0
Cij = (aul a¢ (a 77 chkguk> = chjw (%751&)
= Zk;ckj (igukw) ((‘3u’) ch] du® ((9u’)

_chj—du <a?/f) = Cjj

Lemma 3.1.14. The coefficients b;; does not depend on the coordinates ¢;.

Proof. dw = 0 implies:
8bij o 8ij . (%ki

Jpr,  Out  Ow
The right hand side does not depend on the angle coordinates as ¢;; does not. Now

suppose that b;; depends on ¢;, then it must be periodic, thus the right hand side would
depend on ¢;, which is a contradiction. O

Now write w; = Zj Cij du’ and S = Zij bij du® A du’, they are forms on the base
manifold B°, then the formula (3.1.17) can be rewritten as

w=Y wAdg +p (3.1.18)

Lemma 3.1.15. The forms w; and 3 are closed.

Proof. dw =Y, dw; A d¢' +dB = 0, thus d = — Y, dw; A d¢'. As both dw; and df are
forms depending on u‘, the above identity between forms is possible only if both dw; and
df vanish. O
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Thus, near b € U, from our assumption that m (U) = 0, by using the Poincaré lemma,
we see that there exists a set of functions I and one form 7 defined locally near b such
that w; = dI* for i = 1,--- ,2n, and 8 = dn. Define the action one form a by

a=> I'dp;+1 (3.1.19)

Then it is clear that daw = w. We claim that (I',--- | I*") can serve as local coordinates
near b € U, called the action coordinates.

Lemma 3.1.16. The set of functions I' = I'(u', - -+ ,u*") are functionally independent.
Proof. The matrix representation 2 of the symplectic form w in (u', -+ u®® @1, , day)
is given by
0 Cij
—cij by
where by definition ‘
_or
“

from which we see that
det Q = (det C)* #£0

Consequently, the Jacobian of the transformation
I'(u', - u®™) = det (C) # 0
m

Write the one form n as n = >, g;dI’, for functions g; depending on I, i =1,--- , 2n.
Then define the new set of angle coordinates (which corresponds to a new choice of zero
section of the affine tori T?") by

O; = ¢ —gs(I', -, I*™),i=1,---,2n. (3.1.20)

Definition 3.1.10. The coordinate system (I',---  I*™ 01, 0y,) constructed above is
called the action-angle coordinates for the complex integrable system w : X° — B°.

Proposition 3.1.17. In the action-angle coordinates, the symplectic form w can be writ-
ten in the canonical form as

w=Y _dI'Adb; (3.1.21)

Proof. By the formula (3.1.19), we compute as below:

w=da=>Y " dI' Ndg+dn =Y dI' A(df; +dg;) + Y _ dg; Adl’

= dI'ndf;+ ) dI' Adg;— Y dI' Adg; = dI' A db;
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Remark 3.1.5. We can define a canonical one form
Qlegn = Zlidei

It can be viewed as the analogy of Liouville one form. It differs from « defined in (3.1.19)
by an exact one form. Indeed, we have that & = Qean + d(I'g;). Thus, they represent the
same class in the de Rham cohomology group Hin(B°,R) of the base manifold B°.

Remark 3.1.6. In terms of action-angle coordinate system, the fibration
(X% w) — B
18 given by the projection:
m (I TP 00, 0y) > (I - TP7),

Actually, this projection can be viewed as the moment map for the action of of the affine
tori (viewed as a torus Lie group) T*™ = T;B° /Ay, on the fiber 7=1(D).

Lemma 3.1.18. For b € B°, the first homology group H,(w=1(b),Z) can be identified
with the period lattice Ay.

Proof. By the isomorphism (3.1.15), A, & H'(7!(b), Z), which is isomorphic to Hy (7~ (b), Z).
More explicitly, the isomorphism can be realized as :

A Hy(n74(b),Z) — Ay YAy (3.1.22)

where A, is the one form defined through:
Ay (v) = ngw (3.1.23)
8!

where v € T,8°, and ¥ is its lifting to T'X°. O

By using the action-angle coordinates, we see that A, = Spang{dI',--- dI*"},
then under the above identification (3.1.22), there are corresponding basis elements
{71, ,72n} for the lattice H,(771(b),Z).

Lemma 3.1.19. The one cycles v; above satisfy the relation

i

(3

where 0;; denotes the Kronecker symbol, and 0;s the angle coordinates.

Proof. By definition, 7; is the one cycle dual to the one form dI‘, thus under the iso-
morphism (3.1.22), we have that \,, = dI*. Consequently from the formula (3.1.23), one
compute as follows:

6ij = dI'(p) =\, (015) :% Lé;‘w:j{ Ly, <Zdlk/\d9k) :7{ db;.
Vi Yi k Yi

3
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Lemma 3.1.20. The action coordinate I* can be written as

I'= ?f Qean (3.1.25)
Y

where Qegn = ) Itdf; is the canonical action one form defined in the remark 3.1.5.
Proof. By (3.1.24), we see that

f Qean = ]{ Zlkdek = Zlkém =

Yi Yi ok k
]

Remark 3.1.7. By remark 3.1.5, we know that the action one form « as defined in
(3.1.19) differs from aean by an exact one form, thus the action coordinate I' can also be
written as

I'= 7{ oY (3.1.26)
Vi

More generally, the ambiguity of the action one form tells us that the action coordi-
nates are defined only up to an additive constant.

Indeed, suppose a and o are two action forms, i.e. da = do/ = w, then we can write
a =o' +  such that dS = 0, but then we have

Ii’:]ioz’Z]i(&ﬂLﬁ):]iaJr}éﬂ:]“r?iB

Definition 3.1.11. We have a local system of lattice T over BY, with its “stalk” T, at
b € B being the first homology group Hy(mw=(b),Z). This lattice will be called the charge
lattice.

Actually, we see from the above discussion that the action coordinates {I'} extends
to a map from the local system of charge lattice I" to R. Indeed, the map I : ' — R is
defined through

I(7) = ?{oz (3.1.27)

which is easily seen to be an abelian group homomorphism as the integration is addi-
tive in its domain. In particularly, we have that I' = I(~;), and for arbitrary

y=Y kivi € Hi(z'(b),Z) =T,

we have that I(y) = >, k; I".

Remark 3.1.8. We will show in the next subsection that the natural analogy of the
functional I above in the complex case will be the central charge function of a complex
integrable system.
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3.1.4 Holomorphic coordinates and Central charge

Motivated by the construction of action-angle coordinate system as in the last subsection,
we want to find its complex analogy. This section is based largely on the papers | ]
and | .

Let us consider the complex integrable system 7 : (X° w?%) — B°. Similar to the
formula (3.1.23), by choosing a basis {71, -+, 72, } for the local system of lattice I' near
b € B°, we can define the following set of holomorphic one forms

o = f w0 i=1,--,2n. (3.1.28)
Vi

Clearly, they are closed one forms. Thus, there exist holomorphic functions z; defined
locally near b such that dz; = a; for 1 < ¢ < 2n. These functions are defined only up to
an additive constant.

The set of holomorphic functions {z1,-- - , 29, } are complex analogy of the action co-
ordinates {I',--- , I*"} in the real case.

Proposition 3.1.21. The holomorphic functions defined above are related to the action-
angle coordinates (see definition 3.1.10) in the following way: write w; = €% and suppose
that dz; = «;, then we have that

I' = Re(logw;) = log|w|, 6; = Im(logw;).
Proof. Let us consider instead the holomorphic change of coordinates:

z; =logw;, forl<i<2n

o 2,0
dz; = o = ]{ w
Vi

Since log w; = log |w;| + v/—10;, we have that

And assume that

dRe(logw;) = dlog |w;| = dRe(z;) = j{ Re(w*?) = dI'

’YI
and I'm(logw;) = 6;. O

In contrast with the action coordinates, z; s are not coordinates on the base B°, but
they define an holomorphic map

(21, , 200) : U —> C™" (3.1.29)

where U is an open neighborhood of b.
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Polarization

If the fibers of the complex integrable system are endowed with a covariantly constant
integer polarization, we call such an integral system the polarized complex integrable
system. Roughly speaking, a polarization gives rise to a covariantly constant skew-
symmetric symplectic bilinear form (which is callde the DSZ paring in physics literature)
on['®Q, ie.,

() NT — Zpo (3.1.30)

So the local system of charge lattices [ is actually a local system of symplectic lattices

over BY. Let w;; the value of (y;,7;), they form a matrix (w;;), and denote by (w”) its
inverse. Then we have the following

Proposition 3.1.22. a) 3, wdz; Adzj = 3, jwa; A =0,

b) \/—1Zwijdzi Ndz; = \/—120}”041- Aaj > 0.
(V] Y]

Proposition 3.1.23. The condition a) in the above proposition implies that the image
of the map (3.1.29) is a Lagrangian sub-manifold, while the condition b) implies that the
map 1S an 1MmMmersion.

Proof. Define the symplectic form on I'Y ® C = C>" by

0= Zwijdui A du?

i’j

where {u',--- u®"} are the chosen coordinates for C*", then a) translates into the fact
that the image of the holomorphic map (3.1.28) is Lagrangian w.r.t Q. As we have Ké&hler
metric space induced by the (1-1) form in b), thus the map in question can be viewed
locally as a map between metric spaces, which must be injective. Consequently, the map
is an Immersion. O

We denote by Z : U — C?" the map in (3.1.28), from the above proposition, we
conclude that it defines holomorphic Lagrangian embedding of U to I'Y ® C defined up
to a shift(as z' s are defined only up to an additive constant). More explicitly, we have

Z:U—=T"®C, dZ(y):= ]{wZ’O (3.1.31)
gl

where b € U and v € I, can be locally continued to nearby fibers continuously.

Remark 3.1.9. The above map is the complex version of the map I given in (5.1.27).
Consequently, it can be viewed as the complex analogy of the action coordinates.

The map Z is defined only locally. If such map is globally defined over B°, then we
call it the central charge of the complex integrable system, and denote it by Z. More
precisely, we have the following:

Definition 3.1.12. The collection of one forms «; defined in (3.1.27) give rise to an
element § € HY (B, LY @ C), if § is assumed to be zero, then there exists a section
Z € T(BY,I ® Opo), called the central charge of the integrable system, which satisfies
dZ(v;) = ay, for 1 <i < 2n.
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Remark 3.1.10. From the definition, we see that Z s an additive map from the local
system of charge lattice I to C.

Definition 3.1.13. If a complex integrable system 7 : (X° w?*Y) — B is endowed with
a central charge function Z, then 7 is called the integrable system of Seiberg- Witten
type (terminology borrowed from [ /).

Remark 3.1.11. In terms of central charge Z, the condition a) and b) in proposition
3.1.23 can be rewritten as

a) (dZ,dZ) =0 (transversality) (3.1.32)

b) V—=1{(dZ,dZ) > 0 (nondegeneracy) (3.1.33)

Holomorphic coordinates induced from the central charge 7

By using the polarization given by the symplectic form (3.1.30), we can choose sym-
plectic basis for {a’, 3;}, 1 < 4,7 < n for the charge lattice I near b € B° for every
b € B. Here by “symplectic”, we mean that the following relations among the basis
elements should be satisfied

(', ) = (B;, ;) =0, (o, B;) = 6. (3.1.34)

Accordingly, for the dual lattice ' such that I} = Homgz(L,,Z), we can choose the
basis {a;, 87} of it that are dual to {a’, 5;} in the following sense:

ai(B;) = (Bj, aq) = &%, B (a¥) == (au, B;) = 0]

where we have used the identification o — (-, ) from I" to I'V. Consequently, we
can choose o; := f3;, and 37 := —a’. Under this basis, we can write the central charge
function Z as

Z = Zn: a‘a; + zn: apif (3.1.35)
=1 1=1

where a', ap; € Opo are a set of local defined holomorphic functions (depending on
any given holomorphic coordinates {u’}1<;<, on B°) on the base B". Then we see that
the transversality condition (3.1.32) specializes into

d (Z ap.; dai) =0 (3.1.36)

while the nondegeneracy condition (3.1.33) becomes

Im (Z dap; A d(‘ﬁ) >0 (3.1.37)

From (3.1.36), we have that Y, ap; da’ = dF for some holomorphic function F, which
is called the prepotential. Thus, we have the following relation

. (3.1.38)

4D, oat’
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Besides, (3.1.37) implies that the two matrix <6i> and ( ) are invertible matrix,

oud uJ

thus both a’ and ap,; can be considered as giving holomorphic coordinates on BY. These
coordinates are called special coordinates (will be discussed in the next subsection),

and by (3.1.38), we can interpret ap; s as coordinates for B° dual to a’ s.
Kihler metric on B°

By (3.1.37), we see that B carries the Kéhler form

wBO =+v—-1Im <Zdapz/\da>

Denote by ggo the corresponding Kéihler metric on B, i.e.,

gpo = Im (Z dap; ddi>

By using (3.1.37) and dF =", ap,da’, it can be further written as

oOF , 0?F
g0 = Im (Z d (%) da2> =1Im ( Saidal daldaj>

Defining the matrix 7 = (7;;) by

8aD,i . 82f
dad datdal

Tij =
the Kahler metric above can be written more compactly as

gpo = Z Im(7;;) da'da’

2%
with the matrix Im(7;;) being positive definite by (3.1.36).

Remark 3.1.12. [t is clear that the Kahler potential for the metric is
K=1Im (Z ap; ai>

Angle coordinates more explicitly

which satisfies 00K = wB

(3.1.39)

(3.1.40)

(3.1.41)

(3.1.42)

(3.1.43)

Polarization would enable us to find more canonical description of the angle coordi-
nates (c.f., (3.1.16) and (3.1.20)). Inspired by lemma 3.1.19, we denote by 6;, 1 <i <n
the angle coordinates that satisfies the relations fai df; = (5;; and denote by §; 1 <i<n

those that satisfy: fﬁ_ d#? = 7. So, the class [df'] represents the coordinate 3, i.e., the
dual of 3;; and similarly, the class [df;] represents the coordinate ay, i.e., the dual of a’.
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Clearly, the class of >, df" A df; would represent the symplectic pairing (-, -), i.e., the
polarization.

As had been pointed out before that the analogy of the action coordinates I' in
complex case are given by the holomorphic function z;, which by the formula (3.1.35),
are realized in the symplectic basis as

Z(')=da  Z(B)=ap; 1<i<n. (3.1.44)

From the definition of canonical action one form ., = >, I' df; (also called Liouville
one form) (see (3.1.25)), we find its complex analogy

A Liouville -— Z Zi d@l = Z Z(Oél) d@l + Z Z(ﬁz) d@l

=> a'df;+ ) ap,db’ (3.1.45)
Since in the real case, we have that
dtean = w = Re(w*?)
while in the complex case, we have similarly that

w2’0 = daLioum’lle = Z dCLDJ' VAN d@z + Z dai A d@z (3146)

By the relation (3.1.41), the right hand side can be written as

> mpddd Adb+ ) da' Adb; = da’ A (dB; + Tiyd6?)
irj i irj
Note that in the above computation, we used the symmetric property of 7;, i.e.,
Ti]’ = Tji'

Thus we can introduce the canonical complex coordinates on the fiber of m defined as

w; = 0 + Z 73 07 (3.1.47)
J

Together with the holomorphic coordinates a; on the base, the holomorphic symplectic
two form can be written in canonical form as

W = Z da’ A dw; (3.1.48)

Remark 3.1.13. By using the complex coordinates w;, the form .. d0" A df; that repre-
sents the symplectic paring becomes

- g Z((ImT)_l)ijdwi A dib; (3.1.49)

which is manifestly negative definite (1-1)-form, defining the polarization. Thus the fiber
15 actually a principally polarized abelian variety, and our complex integrable system is
called principally polarized.
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Geometric interpretation of 7

Near b € B, let v = 35, o' + >, ¢'B; € I}, = Hi(n7'(),Z), where g',q; s are
integers, then by the formula , we have that the central charge of ~ is

Z(y) =Y dapi+ Y g (3.1.50)

¢ J

Now we want to give a geometric interpretation of the central charge function. To this
end, let us denote the above local system of lattices by I'*¥"*7 and by I the local system of
lattices with fiber at b € B° being the second relative homology group Hy((X°, 771(0)), Z).
Apparently, the boundary map

9 : Hy((X°, 771 (0)), Z) — H,(x~(b), Z)

is a surjection, with the kernel being the second homology group Hy(X?, Z). As b varies,
they form a local system of lattices denoted by I'). Consequently, we have the following
short exact sequence of local systems:

0—Ly—L[—I%"—0 (3.1.51)

Remark 3.1.14. The non-degenerate integer symplectic bilinear form (-,-) on the sym-
plectic lattice I'*Y™" can be extended to I" by

(01,09) := (Do, Dog)

for a1,09 € Hy((X°, w71(b),Z). It is clear that the extended pairing becomes degenerate
and the kernel of it is exactly I').

Proposition 3.1.24. The central charge Z can be realized as the abelian group homo-
morphism from I' to C given by

Zy(o) = ]{ w0 (3.1.52)

for each o0 € Hy((X°, 771(0),Z) =T,

Proof. First, we show that the above map is well defined. Suppose we have two cycles o,
o’ that represent the same class in Ho((X°, 771(b), Z), i.e.,

o—o en(b)

Consequently, we have that

j[wzo B 7{ W20 — j{ W20 — 0
o o/ o—o’

Note we have used the fact w*°| -1 = 0 as the fibers are Lagrangian submanifolds.
Recall that the formula says that

WQ’O = daLiouville - Z daD,i A d@z + Z dai A dez
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Thus, for any v € [}V = Hy (7 !(b), Z), since the boundary map 0 is surjective, we can
choose ¢ such that do = 7, then we have that

_ 2,0 _ _ _
Zb(a) - %w - fdaLiouville - f A Liouville = %O‘Liouville
o o do 0

:%ZGD,i/\dgi_FfZai/\d‘gi
R T

Write v = 37, ¢'8; + >, q;’ for ¢g' and g; s being integers. Recall further that
j{_dej:a; and ]{ g’ = o]

we conclude that

Zy(o) = ZgiaD,i + qu-ai = ZgiZb(ﬂi) + Z%Zb(ai)
=7 (Z 9'6i + qio/> = Zy(7)

Suppose that there is another choice ¢’ such that do’ = =, then it is obvious that
Zb(O') = Zb<0',). ]

Proposition 3.1.25. The central charge Z is a holomorphic function on B°.

Proof. Denote by J the complex structure on BY, i.e., a linear endomorphism J acting
on the tangent space T,8° for each point b € BY such that J?> = —id. Then the vectors
in 70'B% c TB are of the form v 4+ v/—1Jv for some v € TrB°. And by the formula ,
we compute as

(v 4+ V=1Jv)Z(y) = dZ(7)(v + V—1Jv) = ]{Lwﬁjv W =0

gl
since w?? is a (2,0)-form, while v ++/=1Jv is a (0,1)-tangent vector. Thus, 07, = 0, i.e.,
Z(7y) is holomorphic on B° for every ~. O
Proposition 3.1.26. For any b € B°, {dZy(7)},r, span Ty B°.

Proof. Indeed, by the formula (3.1.50), we see that let v runs through those “a”-cycles,

i.e., o s, then {dZy(v)} span Ty B® as Z,(a’/) = @’ and @ serves as local holomorphic
coordinates. 0
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3.1.5 Affine, special Kahler and HyperKahler structures
Z-affine structure (The main references are | i I ])

Definition 3.1.14. Recall that an n-dimensional topological manifold B is called an (in-
tegral) affine manifold if it is endowed with an (integral) affine structure that is given
by a mazimal atlas A = {U;, ®;} of coordinate charts such that the transition maps
®; 0 ®; ! belong to the group of (integrable) affine transformations of R™.

Remark 3.1.15. Denote by Af f(R™) := GL(n;R) x R" the group of affine trans-
formations of R", and by Aff7(R") := GL(n;Z) x R™ the group of integer affine

transformations of R™. We also use notation Z-affine for the term “integral affine”.

Definition 3.1.15. A map f : R" — R™ s called affine (Z-affine) if it belongs to
Hom(R", R™) x R™ (Hom(Z",Z™) x R™). In the case when n = m, we can speak about
affine (Z-affine) diffeomorphism were the inverse f~1 exists.

Definition 3.1.16. For two affine (Z-affine) manifolds B and B', a map f : B — B
between them is called affine (Z-affine) if it is locally affine (Z-affine),

Proposition 3.1.27. The base of the complex integrable system 7 : (X% w?%) — B is a
Z-affine manifold of (real) dimension 2n, where n = dimg¢ B°.

Proof. Cover B° by open subsets U; € B° such that the non empty intersections Uy, :=
U; N U; are connected and each U; s being simply connected, i.e., m(U;) = 0. We also
assume that above each U, the period net A is trivialized (this can always be made true

by shrinking U; s if necessary). Consequently, we have local sections {a},---,a?"} of
Aly,, such that for b € U, {a} (), ,ai"*(b)} gives a Z-basis for A,. Then over each U,
the basis {ag, - ,07"} and {aj,---,a3"} are related by a GL(2n,Z) transformation,

ie., 3 M = (my;) € GL(n,Z) such that
aj(b) = D my ai(b)
!

for b € U;;. Here as U;; are chosen to be connected, the smooth matrix M is a constant
matrix over each U;;. As m(U;) = 0 for each i, by Poincare lemma, locally there exist
smooth function {u},---  u?"}, such that duf = oF, for k =1,--- ,2n. Thus, we get the

relation
du? = ijl dué =d (Z mji uﬁ)
1 1

Consequently, there exists constant c;; € R such that uf =>,mj ul + ¢;;, which means
that the transition maps for local coordinates u* s are Z-affine. O
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Special Kahler structure

We now give an equivalent characterization of the affine (Z-affine) manifold, which
leads us to the notion of special geometry.

Proposition 3.1.28. Given an n-dimensional Z-affine manifold B, there is an torsion-
free flat connection ¥V on the (real) tangent bundle TgxB, together with a mazimal rank
V -covariant lattice TEB C TrB. And conversely, given such a connection and the lattice,
we can induce a Z-affine structure on B.

Proof. Suppose we have a Z-affine structure A = {(U;, ®;)} with Z-affine coordinate u},

then { 0 } is a local basis for TrU;, from which we see that it transforms as

8u;C
0 0
Bl = 2" i

(]

where my,; s are integers. Applying the differential d on both sides, we get that

0 0
() =S ()

from which we get a connection V on TgB given by d, ie., V 2 % = 0. Clearly, in
ou

this particular coordinates, the connection coefficients Ffj s vanish, and in particularly,
we have that Ffj = F?Z Consequently, this is a flat, torsion-less connection. Besides, the

full rank lattice TZB is spanned by { 2 }, and it is clearly V-covariant. Conversely, if

we are given a connection V and a full rank lattice TZB C TgB, then we have a local
system of lattice over B, which is equivalent to a flat connection V on Tr B by well-known
result. O

Motivated by the above proposition, we give the following definitions.(c.f., | il

Definition 3.1.17. A complex manifold (B, J) is called a special complex manifold
if B is endowed with a flat, torsionfree connection V on its real tangent bundle TxB such
that

dyJ =0 (3.1.53)

where J is the complex structure, and dy the covariant derivative associted to V. And by a
special symplectic manifold, we mean a special complex manifold (B, J,V) together
with V-parallel symplectic form w. Finally, a special Kahler manifold is a special
symplectic manifold (B, J,V,w) for which w is J-invariant, i.e., of type (1,1). Then
the induced metric g(-,-) = w(J-,) is called the special Kédhler metric of the special
Kihler manifold (B, J,V,w).

By the formula (3.1.42), we know that the base BY of the complex integrable system
7 (X% w?%) — B is a Kédhler manifold, and thus from proposition 3.1.28, we conclude
that BY is a special Kahler manifold.

Now we deduce some consequences from the definition of Special Kéhler manifold,

and compare them with the descriptions of the complex integrable system that had been
discussed in section 3.1.4.

79



Lemma 3.1.29. The torsionfree condition of V is equivalent to the following condition
dy(id) =0
where id € T'(T*BQTB) is the TB-valued one form taking any tangent vector X to itself.
Proof. By definition, we have that
dy(id)(X,Y) = (=1)""'Vxid(Y) + (=1)""*Vyid(X) + (—1)"*%d([X, Y))
=VxY —-VyX —[X,Y]
from which the lemma follows. O

Given a flat local framing {,} of B, denote by {n”} the corresponding dual coframe,
then the identity section is given by id = > _ &, ® n®, then we see that

dy(id) = dvla @1+ L0 ® dyn®

=2 Ve @0+ La@dyn =) G @don’
The last identity holds because for any £z, we have that

Véa(€s) = Ve, 5 =0

Thus, we have that dyn® = 0 Then by Poicaré lemma, there exists local coordinates u®
such that du® = n®. Moreover, these local coordinates satisfy the flat condition Vdu® = 0.
Such coordinates are therefore called flat coordinates, or by its connection to Z-affine
structure, they are also called affine coordinates.

Besides, the (real) symplectic form w is preserved by the connection V, i.e., Vw = 0,
thus, we can choose the local coordinates to be Darboux in the sense that there exists
a set of local coordinates z*,y; s, for 1 < 4,5 < n = dimeB, such that

w= Z dz" A dy; (3.1.54)

Remark 3.1.16. The above Darboux coordinates are affine since by construction that
the transition maps of these coordinates belong to sp(2n,R) x R?™,

Definition 3.1.18. Let (B,J,V,w) be a special Kdahler manifold. An affine local co-
ordinates (x',y;) is called real special coordinates if (3.1.54) holds. Holomorphic
coordinates {z;} is called special if its real part is real affine, i.e., VRe(dz') = 0. We
say that the special coordinates z; and the real special coordinates {z',y;} are adapted
if Re(z") = a'. Further more, two set of special coordinates {z'} and {w;} are said to
be conjugate if there exists real special coordinates {z',y;} such that Re(z') = x' and
Re(w;) = y;.

Next, we discuss the consequence of dyJ = 0 (3.1.53) in the definition of special
Kahler manifold.
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Denote by 7% € QM0(TeB) the (1,0)-form taking value in the complexified tangent
space Tt that projects X € T¢ into its (1,0)-component. Then the condition (3.1.53) is

equivalent to the condition
dvﬂ' Lo — 0

By Poincaré lemma again, there exists locally a vector field & € T up to a flat complex
vector field such that
VE =7t (3.1.55)

We then have the following proposition:

Proposition 3.1.30. Expressing the complex vector field & in the real special coordinates

{a*,y;} as ) )

for some complex functions {z'} and {w;}, then these are conjugate special coordinates
that are adapted to the real special coordinates {z*,vy;}.

Proof. As 7' is a form of type (1,0), we see that z, w; s are holomorphic, and we have

that 9 5
1,0 _ _ i L
™ —Vﬁ—zidz axi+;dw]ayj

Taking the real part of the above equation, then the left hand side is just the identity
map, i.e.,

| N 0
id = ;Re(dz )% + ;Re(dwj)a—yj
From which we deduce that Re(dz') = dz* and Re(dw;) = dy;. O

Proposition 3.1.31. Their exists a local holomorphic function §, determined up to a
constant, called the holomorphic prepotential, such that

08
Wi = G

(3.1.56)

Denote then by 1;; the quantity

ow; 0°F

0zt 0204
Then it determines a Kdahler potential is stmply given by

K = Im(w;z") (3.1.57)

while the corresponding Kahler form given through

2
whl = V=1900K = /—11Im 8' § ) dzt A dF
021027

=V —1Im(7;;)dz" N d7’ (3.1.58)
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Proof. We write the real symplectic form w in complex special coordinates as follows:
: dz' + dz' dw' + dw'
o=y =2 (T ) (B

= i D (d2' A dw; + d2' A di; + dF A dw; + dF A d;)

as w should be of type (1, 1), thus we have that
> dzt Ndw; =Y dz A d; =0
In particular, we have
Z <d2jZ A Z Tjid2j> =0
i J
from which we deduce that 7;; = 75, that is:

ow'  ow!
023 0z
Consequently, there must exit a holomorphic function § such that (3.1.56) is satisfied. [

With the above preparations, we see that the base B of the complex integrable system
7 (X9 w?%) — B is a special Kéihler manifold. Recall that the formula (3.1.42) gives
the Kihler metric of the base B° of the integrable system m, namely

PF
gm0 = I'm ( i. da%daﬂ> (3.1.59)
oy da'dal

for {a'} special coordinates on B°. We have that the dual coordinates ap; s are also
special, and it is related to a’ by (3.1.38), i.e., ap; = %. Then let

{xi := Re(a")

yj := Re(ap ;)

We claim that these are real special coordinates. Indeed, by the constructions of a’
and ap j, we see that as their real parts are Z-affine. To verify the condition (3.1.54),
we note that since {z,y;} are local real affine coordinates of B°, the (canonical) real
symplectic form w of the base B° is naturally given by

w:deiAdyi

Remark 3.1.17. Instead of the real part of the central charge Z, we can also use
{Ima',Imap;} as Z-affine coordinates on B°. These define the so called dual affine
structure on B. Roughly speaking, they differs from the adapted ones by a F-rotation of
the central charge Z. i.e., _

Re(e™ 2 Z(v;)) = Im Z ().

More generally, we can consider the rotated central charge e=Z.,, and consequently the
rotated holomorphic symplectic form e~ ?w®° by arbitrary angle 6 € R/7Z, which would
yield Z-affine coordinates { Re(e"Z(v;))} or {Im(e"*Z(v;))}.
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Figure 3.2: Affine structure and dual affine structure

We can also “rotate” the torsion-free, flat connection V in the following way: Given
0 € R/Z, and associate an endomorphism of tangent plane given by e’ = (cos6)Id +
(sin®).J, then define the rotated connection (c.f | ]) by

VX :=e!"V(e X) (3.1.60)
In particularly, for 6 = 7, we get the so called conjugate connection
V) =V:=V-JVJ (3.1.61)

It is clear from the definition of rotated connection that if the rotated coordinates
Re(e*Z(v;)) are real affine with respect to V, i.e., VRe(e~"dZ(v;)) = 0, then the coordi-
nates Re(Z(;)) are affine with respect to the rotated connection V| i.e., VO Re(dZ(v;)) =
0. It is proved in [ ] that if (B, J, V) is a special complex manifold, then (B, .J, V)
is a special complex manifold for any 6. And if (B, J, V,w) is a special Kéhler manifold,
then (B, J, VY w) is also a special Kéhler manifold for any 6.

Hyperkahler structure

Good references for hyperk ahler manifolds with connection to integrable system in-
cludes [ 1Ll 11 ][ 1Ll |, and our exposition is based on these ref-
erences. Recall that for a manifold X endowed with a linear connection V, then the
holonomoy of X at point z € X a representation

p:m(X,z) — GL(T,X)

given by sending a loop v to the parallel transport of a tangent vector along ~ induced
by V. The holonomy group H,(V) (based at x) is defined to be the image of p.

m p(v) € GL(T,X)

Figure 3.3: Holonomy group as representation of fundamental group on the tangent
bundle
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Definition 3.1.19. A complex manifold M of dimension 2n is hyperkdhler if its holon-
omy group can be reduced to Sp(n), which is the group of n X n quaternionic unitary
matrices.

As Sp(n) = U(2n) N Sp(2n, C), we see that hyperkéhler manifolds are automatically
Calabi-Yau, and admits a holomorphic symplectic form. Roughly speaking, hyperkahler
geometry is more or less holomorphic symplectic geometry. We have the following equiv-
alent definition of hyperkahler manifold:

Definition 3.1.20. A hyperkdihler manifold is a Riemannian manifold (M, g) endowed
with three complex structures Jy, Jo, J3 which satisfying: J1Jo = J3 (equivalent to quater-
nionic relations), and more over g is a Kdhler metric for each J;.

Denote by w; the Kéhler form corresponding t0 .J;, i.e., w;(+,+) = g(J;-,-). Then we
claim that w?? := w; + iwy is a holomorphic symplectic form with respect to the
complex structure J3. In the following, we denote by w the Kahler form ws.

Proof of the claim: By definition, for X, Y € T-M, we have the following:
WHX,Y) = (X,Y) +iwa(X,Y) = g(J1X,Y) +ig(J,X,Y)
Thus, we compute that
W (I3 X, Y) = g(J1JsX,Y) +ig(JoJs X, Y)

= —g(LX,Y) +ig(hX,Y)=i(g(iX,Y) +ig(1X,Y)) = iw* (SX,Y)

Similarly, we have w?%(X, J3Y) = 1w?%(X,Y). Consequently, we see that w?? is of
type (2,0) with respect to the complex structure J3. As w; s are closed, non-degenerate,
it follows that w?? is closed and non-degenerate, from which we infer that 0w?® = 0 by
its type. J

Besides, one can see easily that for any u = (a,b,c) € S* C R3, the endomorphism
Iy :=aly + bl + clj
of Ty defines a complex structure, with the corresponding Kahler form
Wy = awy + bws + cws

Consequently, we have a S? worth of complex structures on M.

Figure 3.4: S? worth of complex structures on M
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Identifying S? with the complex line CP' (usually called the twistor line), we get
the induced complex structure on S? with complex coordinate ¢ € CP'. Then, it can
be computed ([ ]) that the corresponding complex structure J: and holomorphic
symplectic form w;™ are given respectively by

i+ QN = (C+ O+ (1= (D) I
Je= 1+ |C]? (3.1.62)

w?’o = _;_me +w— %C@Q’O (3.1.63)

It is clear that for ( # 0,00, J. are all equivalent to J;, while for ¢ = 0,00, the
complex structure J3 will be recovered. Besides, wg’o is a holomorphic symplectic form in
the complex structure J¢. The hyperkahler structures discussed above can be encoded by
the so called twistor space defined as Z = M x S? = M x CP'. We have the following
result due to Hitchin (| 1Ll ).

Proposition 3.1.32. Given an hyperkdhler manifold (M, g), we have the following:
1. There exists a holomorphic fibration p : Z — CP such that the fiber M: =p~(¢)

is complex in J¢.

Z/Cp!
w2’0|M< is the holomorphic symplectic form on M.

2. There exits a holomorphic section w*° € T (QQ ® 6’(2)> such that wf_’o =

3. There exists a anti-holomorphic map o : Z — Z that covers the anti-involution

(— —% on the twistor line CP'.

4. VYm € M, there exits a holomorphic section s,, : CP* — Z with normal bundle
0(1)%%

Conwversely, we can construct a hyperkdhler manifold from a twistor space Z satisfying
the properties 1),2),3) and 4) above.

CP!

Figure 3.5: Hyperkahler manifold as twistor space
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Hyperkéahler rotation trick (c.f.| )

We assume that the north and south pole of CP' corresponds to the hyperkihler
structure (X, w,w??) and (X, —w,©*?) respectively. Then the hyperkéhler structures
corresponding to the equator {e?} are given by

wp = —Im(e ?w??) (3.1.64)
wp? = w — iRe(e w?0) (3.1.65)

Now, let us go back to the complex integrable system 7 : (X° w??) — B°. We
will show that X° is naturally a hyperkiahler manifold. Thus there exists Sj-family of
complex structures Jy, Kahler forms wy, and holomorphic symplectic forms wg,o on XY
And consequently, there would be Si-family of induced affine structures V? (see equation
(3.1.60)) on BY, we denote the corresponding Z-affine manifold by

B) = (B°, V) (3.1.66)

We now show that the induced affine coordinates coincide with the ones obtained
before (see the remark 3.1.17). Indeed, take the negative of imaginary part of wg’(]? we
get Re(e=®w??). Denote the corresponding affine coordinates by I, we then have

dl, = —jglm w;,o = %Re (e’www) =d (Re(e’ieZ,y))
vy v
Consequently, we have that

I, = Re (e’wZ(fy))

g

up to an addition of constant. Similarly, by rotating 5

coordinate

further, we would obtain the affine

L=1Im(e™Z(v)).

Proposition 3.1.33. For the complex integrable system 7 : (X% w?*?) — B° defined as
before, X° carries naturally a hyperkdhler structure.

Before giving the proof of this proposition, we give some preparations. As the base
of an integrable system, B is special Kihler, thus it is endowed with a flat, torsion-free
connection V on TrB°, which is also called the Gauss-Manin connection. Given a local
(Real) affine coordinate system {u'}, it is characterized by

0

V—

ou'

Recall (see definition 3.1.11) that the local system of charge lattice [ is defined to

be a locally constant shealf with stalk at b € B° given by H;(7~'(b),Z). Thus, the
dual local system 'V, as a locally constant sheaf, can be identified with the direct image

shealf R'7,Z. By lemma 3.1.7, we have an isomorphism \ from [, to the period lattice
Ay C TyB given as: for v € T, we associated to it the following locally closed one form

(see the formula (3.1.23))
Ay (v) = J(I{Lg w??
ol
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for v € T,B°. Consequently, we have the following isomorphism
TB’ =~ R'1,R ®g Cpo (3.1.67)

The special Kahler structure is given by specifying the full rank lattice T#?B° c TB°,
which is locally spanned by { a?n'}' As a sheaf, it can be identified with R'w,Z. By
the isomorphism (3.1.67), we see that the Gauss-Manin connection induces a connection
(also called the Gauss-Manin connection) on the local system R'm,R. In fact, through

this isomorphism, the Gauss-Manin connection on TBj can be given explicitly as

V=id®d
for

V:TB° - TB @ T7*B°

Consider the system 7 : (X% w?*?%) — B°. First note that the space of vertical tangent
vector fields on X°, denoted by Vert(T'X?), can be identified with 7*7*B° via the interior
product of a vector field with symplectic form.

Also, recall that a connection on X° would give a splitting of the following Atiyah
sequence
0— VertT X° — TX° — 7*TB" — 0

or equivalently, a splitting of the following sequence
0 — 7T*B° — TX? — 7*TB° — 0 (3.1.68)
We will need the following lemma proved in [Bru].

Lemma 3.1.34. Suppose that 7 : (X% w*?) — B has a section, then the Gauss-Manin
connection ¥V on the base B° induces a connection on X°.

Proof. Consider the projective pr : T*B° — B°, the Gauss-Manin connection V on B°
also induces a connection on T*B°, which provides a splitting of the following Atiyah

sequence
0 — VertTT*B° — TTB* — pr*TB" — 0

thus we have the isomorphism
TTB® =2 VertI'T*B° @ pr*17B°

As 7 has a section o : B — X° we have that X° = T*B°/A. By composing pr
with the section o, we get the induced map p : T*B° — X°. It is easy to see that
p*TX? = TT*B°, and pr* = p* o m*. Consequently, we have the following

pTX? = p*VertT X @ (p* o 7*)TB° =2 (p* o 7)T*B° @ (p* o 7*)TB’

where we have used the fact Vert(TX?) = 7*T*B. Thus, we have the desired splitting
of the sequence (3.1.68), which implies that there is a induced connection on X°. O
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Proof. (of the proposition 3.1.33), the proof presented here is largely due to Daniel S.
Freed | |, though we borrowed some ideas from | ]

As the Gauss-Manini connection gives a splitting of the sequence (3.1.68), we have
that
TX >~ 1B @ m*TB° (3.1.69)

We need to show that TX? is endowed with three complex structures I,.J and K
satisfying the quaternionic relations. Locally, the problem is reduced to the following
linear algebra question.

Given a Hermitian vector space V' endowed with the complex structure I, and the
Hermitian metric (-, -) determines a real metric and symplectic form on Vi through

(u,vy = g(u,v) + iw(u,v)

Consider W = V@V, we claim that it carries a constant hyperkéhler structure. First,
the complex structure I on V extends naturally to V @ V., then define the following
complex structure

J:VeV-sVeV

uPv— —vhu

Define K = IJ, then I, J, K satisfies the quaternionic relations.

Now, we apply the above construction to the (3.1.69) fiber wisely. we we get three
almost complex structures I, J and K, with the corresponding Kahler form being wy, w;
and wg. The integrability conditions for 7, J and K is equivalent to the closedness of the
corresponding Kahler forms.

Define the holomorphic symplectic form w?? := w; + iwg, which is holomorphic in 7,

then it can be shown that it coincides with the canonical form on W =V @V defined as
w2’0(U1 Dl 09 B la) = l1(ve) — la(vy), v1,v0 € V 1,y € VeV
Consequently, the closedness of w*? implies the closedness of w; and wy.

On X, we have the action angle coordinates {I*,6;} (see definition 3.1.10). By using
the symplectic basis of the charge lattice I', we can write I as {x%,y;}, and 6; as {q;,p'}.

Then the symplectic (Kéhler) form corresponding to I has the expression (see the
formula (3.1.21))

wr =Y dI'Ndf; = da' Adgi+ Y dy; Adp'.

which is a closed two form.
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3.1.6 Monodromy and the local model near discriminant

We have discussed in great details in previous sections the geometry of complex inte-
grable system 7 : (X% w??) — B away from the discriminant locus A = B\B°. Near
the discriminant locus, the Lagrangian fibration becomes degenerate, and some cycles,
called the vanishing cycles shrink to zero. As we will see that this corresponds to the
singularity of the Z-affine structure.

Definition 3.1.21. An Z-affine manifold with singularities is a triple (B, A, A) where
(B\A, A) is an Z-affine structure, and A C B is a set which is locally a finite union of
locally closed sub-manifolds of (real) codimension at least two.

Given a Z-affine structure with singularities on B, it defines a special Kahler structure
V on B° together with a local system of full rank lattice A in T*B°, which by the
isomorphism (3.1.15), is equivalent to the local system of charge lattices I', with fiber
being
L, = H(7"(b),Z)

By choosing a local basis {v;} of I near b, there is a set of induced affine coordinates
{u'}, which generates a local system of full rank lattice T2B° inside TB°, which is locally

i)

spanned by { 3

In the following, we follow mainly the exposition given in | 1Ll |. Recall that
a Z-affine structure gives rise to a representation of the fundamental group m(B°,b)
through the following

Monodromy representation

For the local system I' — B°, the monodromy representation of 1 (B°, b) into GL(H, (71 (b), Z))x
R*" = GL(2n,R) x R*" is given through the map:

p:m (B b) — GL(2n,R) x R*"

v — (1) (3.1.70)
where 7 is the lifting of the loop 7 based at b, i.e., v(0) = (1) = b.

Definition 3.1.22. The monodromy group based at b, denoted by M,(p), is defined
to be the image of the above representation p.

Proposition 3.1.35. The monodromy above coincides with the holonomy of the Gauss-
Manin connection V, i.e., My(p) = Hy(V).

Proof. The monodromy representation p determines a local system I" endowed with a flat
connection V, and the holonomy of this connection is the monodromy by construction.

[]
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Proposition 3.1.36. The monodromy representation p is equivalent to the following data
a) A local system over B°,
b) A cohomology class 6 € H'(B°, T2B° @7 R)

Proof. p gives us a local system endowed with a flat connection V, which by the above
proposition, is equivalent to the holonomy of the connection V. Denote by TVB° the
sheaf of flat sections with respect to V, they span the full rank lattice 7#B° inside TB°,
thus gives us a cohomology class

§€ HY(B", T*B°’ @, R) = H' (B, TVB")

where T?B° ®7 R is the abelian variety associated to the lattice T2B°. Also note that
the class § represents a torsor over the abelian variety T2B° ® R which is in agree with
our previous local construction of complex integrable system. O

Remark 3.1.18. Since we can rotate the Z-affine structure as in (3.1.60) or in (3.1.66),
which is equivalent to rotating the tori T*B° @R, which can be encoded by the cohomology
class in H*(B°, T?B° @ iR/Z). (c.f. | /).

Remark 3.1.19. Since the connection V is flat, and the lattice T2B° is locally constant,
the deRham representation of the cohomology class 0, still denoted by § should be the
identity section id € QY (B°, TBY), i.e., 6(v) = v for every v € TB°, more explicitly, we

have 5
RN
which is obviously closed by the torsion-freeness of V (see the lemma 3.1.29).

Geometry near the discriminant

We already know that for the full (polarized) complex integrable system 7 : X — B,
outside the discriminant locus A, i.e., singularities of Z-affine structure, we get a La-
grangian fibration 7 : X° — BY, with the fibers being the algebraic torus T?". Now, as
we follow certain paths to the discriminant A, the tori would degenerate (some cycles on
it shrink to zero), causing certain fibres to become singular over A. Roughly, we will get
pinched torus over A (see Figure 3.1 at the beginning of chapter 3).

The geometry of the singular fibration over A concerning us here is encoded in its
monodromy near the singular fibers. To this end, we need to make some assumptions on
the nature of singularities. First we show that locally, the situation can be reduced to
the real two dimension case. We know from (3.1.4) that the central charge Z defines a
local embedding of B° into 'V ®; C, with the corresponding map on the tangent space
level given by

dZy : TyB° — IV @, C (3.1.71)

By proposition 3.1.23, this induces an isomorphism

T,8° =TV @, C
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At b € A, we identify I', with the nearby non-degenerate ones (this is possible since B°
is dense in B). Then given a special direction specified by the co-vector u* € Ty near b
which is invariant under the monodromy around b, we have p € ', with (u*, 1) = 0, where
(+,-) denotes the canonical pairing between I'Y and . This means that we have special
direction specified by p* together with a hyperplane (specified by p) that is orthogonal
to u*. Thus we get a hypersurface that is foliated by lines in special directions.

H

Figure 3.6: foliation of hyperplane in the special direction

Suppose we have two hypersurfaces that intersect transversely, by what had been said
above, we should have uf € I}/, i = 1,2 and the corresponding orthogonal elements y; €
Iy, i = 1,2, such that (uj, 1) = (b, p2) = 0. Under the assumption that (3, u2) # 0
and (3, 1) # 0, we see that there is a splitting of the lattice [V ®7 R as

IV @, R2R? @R 2 (3.1.72)

where R? is spanned by p} and pj.

RZ

Figure 3.7: Reducing the the two dimension case

Above is the local picture for WCS to be considered later, we see that we can use the
above procedure to reduce to the real dimension two case. Consequently, we will make
the assumption that the singular affine structure in our situation corresponds to a
two dimensional singularity times R?"~2

Focus-focus singularity

We assume that the singularity in dimension two is the simplest possible case, namely
the so called A® singularity, or the focus-focus singularity, i.e., the singular fiber being the
pinched torus. It can be modelled by the following Ooguri-Vafa space (see for example
[ ). The base B is the disc {u € C : |u| < A} with a single singular point at
the origin A = {0}, thus, B° = B\A is the punctured disc. The local system of charge
lattices I is or rank two, and is spanned locally by sections {7, Ve}, with (Ve, ym) = 1.
Then the monodromy around the origin is given by

Ye(t) — ve(w)  m(u) — ym(w) +ve(u). (3.1.73)
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Equivalently, we say that the monodromy around the origin has matrix representation

<(1) D (3.1.74)

r

Figure 3.8: Ooguri-Vafa space

Proposition 3.1.37. The central charge function Z : B — 'Y ®; C for the Ooguri-Vafa
space can be realized as

1 U
Zu(’Ye) =u Zu(’Vm) - % <u lOgK - U) . (3175)

Proof. Since by definition, we see that Z is a homomorphism from I" to C, and from the
monodromy (3.1.73) above, we conclude that Z(7.) should stay the same after looping
around the origin, while Z(~,,) will be shifted as

Z(Ym) — Z(m) + Z(7e)

By proposition 3.1.26, we know that Z is holomorphic in u, thus we should find the
simplest holomorphic function in w that exhibits this monodromy property. We claim
that the form given in 3.1.75 satisfies our purpose.

As u +— e*™u, one easily sees that
Z(7e) = u s e¥™u=u = Z(7.)

while for Z(~,,) we have




Denote by © = Re(Z(vm)), y = Re(Z(7.)) the corresponding real affine coordinates,
we see that they transform in the same way as in (3.1.72). Thus, the singular affine
structure also has the monodromy (3.1.73).

More general type of singularities

More generally, we expect the following situation around the discriminant locus (see
for example | |). We won’t discuss the more complicated type of singularities, since
at one hand, for the most practical applications, the A'-case is already sufficient, and at
another hand, the more complicated situation is still being less understood.

We assume there there is a smooth component Ay C A, such that for b € Ay, there is
a primitive 7o € [';, i.e, {(70,7) = 1, for some 7. Suppose Z,(7y) — 0 as b approaches Ay,
i.e., 7p corresponds to a vanishing cycle. Then the monodromy of I around A, is given
by the Picard-Lefshetz type transformation

¥ 7+ (7, %) %- (3.1.76)

We see that Ooguri-Vafa space is a special case in which 7, is the vanishing cycle near
the origin such that it corresponds to the monodromy invariant direction. As (e, V) = 1,
the above formula implies the monodromy given in the formula (3.1.73).

Local model near the discriminant

With these preparation, we can state the local model near the discriminant, which is
essentially the Al-singularity assumption given in the section 4.5 of | |. We assume
that A = B\B° is an analytic divisor, and there exists an analytic divisor A’ C A such
that dimA' < dimB°® — 2, and the complement A® := A\A! is smooth, then we have the
following local model near A°:

1. There exist local coordinates {zy,- - , z,} near A° such that A° = {z; = 0}

2. The central charge map Z : B* — I'Y @, C = C?" is a multi-valued map given in
coordinates by

(217"' 7zn) — (Zla"' 7Zn781F07"' 78nFO) (3177)
where 0; := 8%_, and [y is given by
oY +G( ) (3.1.78)
0= 5279 0g 21 21, ) Zn -1

where GG is a holomorphic function. The function Fj is called the prepotential,
and satisfies the positivity condition

i(dZ,dZ) > 0 (3.1.79)

3. The monodromy of the local system [" about 4 is given by the Picard-Lefshetz
type formula

Y7+ (V%)% (3.1.80)
where v, is the vector such that (vg,-) € I'V is a primitive covector.

Remark 3.1.20. The Ooguri-Vafa space is easily seen to satisfy the Al-singularity as-
sumption above. Indeed, by integrating the second formula in (3.1.74), we get a potential
of the form given in (3.1.77).
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3.1.7 Semi-polarized case

Previously, we have discussed in great details the geometry on polarized complex inte-
grable system, now we can generalize the discussion to the semi-polarized case.

Definition 3.1.23. A semipolarized complex integrable system is given by a holo-
morphic fibration of a complex analytic symplectic manifold m : X° — B° with fibers being
the Lagrangian submanifolds which are semiabelian varieties (commutative group varieties
which are extension of abelian varieties by torus) with polarized abelian quotients.

Thus, we have on the local system of charge lattice I — B° an integer valued skew-
symmetric bilinear form (see the formula (3.1.30))

<'7 > : A2£ — ZBU

with the kernel I';. Denote by ['*¥""” the symplectic quotient, then we have the
following exact sequence of local systems

0 —I)—L[—I%"—0 (3.1.81)

By (3.1.71), we have local embedding Z : B® — I'Y ®z C. Composing it with the
natural map
[V®;C—Ly®,C (3.1.82)

gives us the following surjection
Z:B— Ty ®;,C (3.1.83)

with fibers being complex Lagrangian submanifolds corresponding to the symplectic
leaves in the Poisson manifold I'V ®7 C, i.e., they are affine symplectic spaces parallel to
the fibers of the map (3.1.22).

Remark 3.1.21. It can be shown (c.f lemma 4.4.1 in [ ]) that when the semipo-
larized complex integrable system is algebraic, the monodromy group G of L is finite.
Consequently, in this case, we actually have the local embedding

ps, : B — (Ly @2 C) /G (3.1.84)
Fiz a non-singular point Zy € (Ly ®7 C) /G, we let
M = BY, = pg, (Zo) (3.1.85)

then the local system L), when restricted to M, becomes trivial. Besides, M 1is embed-
ded as a symplectic leaf parallel to T3¥™ inside the Poisson manifold I'Y @z C.

Remark 3.1.22. Identify T @7 C with C™, then TV @7 C = C*"™™  while the symplectic
quotient TSY™P being identified with C**, then the local model for the map is given by
C2tm — C™ with fiber being C*".
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The local model near the discriminant for the polarized case can be easily generalized
to the semipolarized case.

Alsingularity assumption in the semipolarized case

We assume that A = B\BY is an analytic divisor, and there exists an analytic divisor
A' € A such that dimA! < dimB°® — 2, and the complement A° := A\A! is smooth,
then we have the following local model near A°:

1. There exist local coordinates {z1, - , zn, w1, -+ , Wy, } near A such that

A’ ={z =0}

2. The central charge map Z : B — I'¥ ®7 C = C?" is a multi-valued map given in
coordinates by

(217'“ 7271) — (217'“ aznaalF[)a'“ 7anF07w1a"' 7wm) (3186)

where 0; := %, and [y is given by

2

1 z
FO = %Ellogzl +G(Z1, Tty Rp, W, 7wm) (3187)

where G is a holomorphic function, and the function Fj is called the prepotential,
and satisfies the positivity condition

i(dZ,dZ) > 0 (3.1.88)
which is satisfied for the restriction of dZ to symplectic leaves

Seriem = {21, 0 s Zn, W1, 0 Wey) T Wy = ¢}

Besides, the Poisson structure on C?"*™ is specified by the Poisson bivector field

0 0
Z Ox; " Oy

1<i<n

3. The monodromy of the local system ' about 4, is given by the Picard-Lefshetz
type formula

Y7+ (7. 7%)% (3.1.89)

where v, is the vector such that (vg,-) € 'V is a primitive covector.
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3.2 Attractor flows

In this section, we will introduce certain flows, called the attractor flows on the base B°
of the polarized complex integrable system 7 : (X% w?%) — BY. These flows first ap-
peared in the study of N = 2, d = 4 supersymmetric gravity in superstring theory (see for
examples [ 1Ll ]). The interested readers are encouraged to see the appendix
B more information about the attractor flows on the physics side.

We will first introduce the concept of attractor flows from geometric point of view,
which is more pertain to its physics origin. We will then introduce the axiomatic treat-
ment by Kontsevich and Soibelman in | |. After this, we will see how to use these
flows to produce WCS in section 3.2.3.

3.2.1 Introducing the attractor flows

Recall that the base B° of the complex integrable system is a special Kéaher manifold (see
proposition 3.1.28). Choosing a symplectic basis (see (3.1.34)) {a*, 5}, 1 <i,j < n for
the charge lattice I’ near a point b € B°, and with the corresponding dual basis {«;, 37},
1 <'i,7 < n, then the central charge function can be written as (see (3.1.35))

Z = iaiai + iapﬂﬂi (3.2.1)
i=1 i=1

where a’, ap; are holomorphic functions on B°. And these functions are related by (see

(3.1.38))
OF

ap,; = Dai

where F is the prepotential, and a’,ap; s are the special coordinates. It is clear that

Z(a') =a' and Z(B;) = ap,.

We can take a’, 1 < i < n the holomorphic coordinates for B°, then the Kéahler metric
on B is given as (see (3.1.42) )

gpo = Z Im(r;;) da'da’ (3.2.2)
4,3
where 7 = 7;; is the period matrix defined by 7;; = % = %, with corresponding

Kahler potential given by
K =1Im (Z aD,iai) (3.2.3)

By remark 3.1.17, the Z- affine coordinates of the base B? can be chosen to be

y' = Im(a") y; = Im(ap,) (3.2.4)

Given v € I near by € B°, consider the function

£y (u) == Re(Zu(v))

for some complex coordinates u of B°. Then we have the following definition:
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Definition 3.2.1. The attractor flow associated to (by,v) € tot(L) is given as the
gradient flow of the function F,(u), namely

i+ VE,(u) =0 (3.2.5)

where 1 denotes the derivative with respect to the “time” parametert, and the gradient
is taken with respect to the Kahler metric (3.2.2), i.e., its i-th component V; is given by
>, 97 0;F,(u). Note that by writing the Kdhler metric tensor g; = Im(m;), then its

inverse is denoted by "

Remark 3.2.1. The attractor flow in its original form (] 1), is written as the gra-
dient flow associated to the function |Z,(u)|. Some authors ([ /) also considered the
function |Z, () to define the attractor flows. However, there is no essential difference
among these choices, as we will show that they give the same gradient lines.

The following is a basic result in complex analysis, and it generalizes easily to holo-
morphic functions in several variables.

Lemma 3.2.1. For a holomorphic function f = u + v, we have that Vu - Vv = 0.

From proposition 3.1.26, we know that Z(7) is a holomorphic function on B°. Apply-
ing the above lemma to the central charge function, we infer that

VRe(Z(v)) - VIm(Z(v)) =0
Consequently, we have the following
Proposition 3.2.2. Along the attractor flow defined by (3.2.5), Im(Z(7)) stays constant.

From the above proposition, we see that the flow lines are straight lines in the Z-affine
coordinates given by (3.2.4). More precisely, suppose

= 9B+ aqcd
for ¢°, ¢; € Z in symplectic basis, then we have that

Z(7) = Zgiam +gid’

Consequently, the attractor flow, in Z-affine coordinates, lies in the hyperplane in B°
given by
Zgi yi+qy =C, where C'is a constant (3.2.6)

Thus the solution to the attractor flow equation (3.2.5) can be written as

Zgi yi(t) + ¢; ' (t) = C, where t denotes the “time” parameter. (3.2.7)

Remark 3.2.2. The above discussion also implies that the flow lines of the attractor
flow, though defined by using the Kdihler metric on B°, turned out to be independent
of the choice of Kahler metric, and s thus completely determined by the central charge
function.
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Figure 3.9: Attractor flows on B? and Z-complex plane

As we have noted before (see (3.1.66)) that our base B° is endowed with a S'-family
of Z-affine structures. Given § € S*, the corresponding Z-affine manifold is denoted by
B, with the adapted affine coordinates given by Im (e7Z(v;)). Then we see easily that
in the affine structure corresponding to 0 = ArgZ,, (), the flow line (3.2.7) is an affine
line on By given by Im (Zyw)(7)) = Im (Zy, (7)), which is equivalent to

Im (e7* Zy (7)) =0 (3.2.8)

Thus in the Z-affine coordinates on B, the flow line (3.2.7) can be rewritten as
Zgi yi(t) + qiy'(t) =0 (3.2.9)

Proposition 3.2.3. The phase ArgZ(v) of is constant along the attractor flow.
Proof. This is a direct consequence of the equation (3.2.8). [
Proposition 3.2.4. The central function Z(vy) has no critical points.

Proof. Suppose to the contrary that b is a critical point of Z(), then dZ,(v) = 0, then
by (3.1.4), we see that for v € T,B°, we have that

AZ1)(0) = § 1520 =0

~

which is contradicts to the nondegeneracy of the holomorphic symplectic form w*°. Con-
sequently, the central function is free from critical points. O

Proposition 3.2.5. Away from the discriminant locus A, the function F,(u) is decreas-
ing along the flow line.

Proof. By using the special kiahler metric (see (3.2.2) above)

ds® = Z Im(7;) da'da’ = Z i da'da’
i,J ]

the attractor flow equation (3.2.5) becomes
u' =Y g"9;F,(u)
J
from this we see that

d ~d ij 3
- Fy(u) = Y oFmu =->g70,F,(u)d; F,(u) <0
7 ij

98



Definition 3.2.2. From the above proposition, the attractor flow would converge to the
local minimum of the function F.(u). These terminate points of the flow line will be
called the attractor points.

Remark 3.2.3. By the equation (5.2.8), we see that Im (e~ Z,(v)) vanishes identically
along the flow line, consequently we must have that

1 Zy(7)| = Re (e Zy(v))

This explains the rational of using |Z(vy)| to define the attractor flows. Besides, this
suggest that the attractor points would correspond to the minimum of the function |Z(v)|,
which has the meaning as “mass” for BPS particles in supersymmetric field theory (see the
appendiz A for further physics motivation). Thus, we also call the function Re (e*iga(v))
as the mass function.

Remark 3.2.4. Motivated by the above discussion, we can consider the attractor flow
associated to the function FY = Re (e7"Zy(v)), where 0 = Arg(Zy, (7)), for (b, ) € tot T
at the first place. This would be the case when we discuss its connection to the wall-
crossing structure in section 3.2.3. In this “rotated case”, the attractor line is seen to be
given directly by the equation (3.2.8).

The possible minimum of the mass function |Z(y)| are the zeros of the central charge.
In particular, we see that near the discriminant locus A, certain homology cyce v € Iy =
Hy(m71(b),Z) shrinks to the zero, which causes

Zp(y) =0 asb— A

Thus we expect the attractor points lie in the discriminant A. So, we need to study how
attractor flows behave near the discriminant.

Recall that from the Al-singularity assumption in section 3.1.6, we see that the dis-
criminant locus is given as A = {z; = 0}, where {z1, -, 2,} are local coordinates near
A. Reducing to the two real dimensional case, and denote by 7, the vanishing cycle,
and by v, the remaining basis element, we see from (3.1.78) that near the singularity of
Z-affine structure {u = 0}, the central charge is of the following form

1 u
Zu(0) = u, Zu(n) = 5 (u log u + 5) + 8,G(u)

Clearly, the cycle 7y, under the identification TB° = ', corresponds to the invariant
direction under the monodromy given by the Picard-Lefshetz formula (3.1.80).

Proposition 3.2.6. Under the A'-singularity assumption, the attractor flow line cor-
responding to the vanishing cycle vy near the singularity of the affine structure, namely
{u = 0}, terminates at this singularity which is thus an attractor point of the attractor
flow, while for the charges v other that the vanishing cycle, the attractor flow line can
avoid this singular point.

Proof. From the local expression of the central charge near singularity given above, we
see that when we approach to the origin, Z,(vy) = u goes to zero, which is the minimum
of Re(Z,(70)), thus by proposition 3.2.5 and the definition 3.2.2, we see that the flow
line in this case would terminate at the attractor point, namely the origin.
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On the other hand, if the attractor flow associated to Re (Z,(71)) terminates at the
origin, then by proposition 3.2.3, the phase of the central charge function would keep
constant value along the flow line, but this is impossible due to the particular form of
Zu(m) given above. O

Split attractor flows

In general, the flow line would not flow directly into the attractor points as it would
hit the walls on the base B°. Recall from the section 2.2.2, the wall of the first kind
W; associated to the charge v is defined as

Wi= |J Wun

Y=Y1+72

where W,, ., is the set defined as

W= {peBimm (Z0) —of

We want to understand what happens when the attractor flow lines hit this wall.
Suppose that the flow line associated to the charge 7, i.e., gradient flow associated to
the function F, = Re (e™Z(v)), hits the wall W,, ., at which the charge splits as
v = 1 + 72. By definition, at the point of intersection of the flow line with the wall, we
have the following condition

Arg(Z(v)) = Arg(Z(m)) = Arg(Z(2)) (3.2.10)

We know from proposition 3.2.3 that along the flow line Arg(Z(v)) stays constant,
consequently, at the intersection point, the flow line would split into two flow lines cor-
responding to Re(Z(v1)) and Re(Z(7,)) respectively. We denote by L, the flow line
corresponding the the charge ~, thus at the intersection point of the flow line with the
wall W, we have schematically

Ew = Ew + £72

which means that at this intersection point (called the splitting point), the flow line
L., splits into two flow lines, namely £, and L., respectively.

splitting point

B() W’H-‘)z ﬁ'“

Figure 3.10: Split attractor flow and splitting point

Apparently, this process could be iterated until the resulting split attractor flow ter-
minates at the attractor points. Namely, at certain stages, some charge, say ~; splits at
some wall into 7; + 7% such that 7; and 7, corresponds to the vanishing cycles. Then
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by proposition 3.2.6, the flow lines £, and L£,, would terminate at the corresponding
singularities at which the two cycles shrink to the zero. Clearly, this would give us a
tree on the base BY of the complex integrable system, we call it the attractor tree as-
sociated to the charge v. We expect that this process would stop at finitely many steps
and consequently the attractor tree would be finite. Since the mass function |Z,(7)]| is
decreasing along the flow trees, which also implies the following proposition:

Figure 3.11: Attractor tree

Proposition 3.2.7. The attractor trees associated to (b,~) € totL form an acyclic graph.

Proposition 3.2.8. The flow line equation (3.2.9) can also be written as follows
Zyy(7) = c(1 = ¢) (3.2.11)

where t is the real time parameter, and c s a complex constant depending on the initial
condition of the attractor flow.

Proof. From (3.2.8), we see that the attractor flow is the constant phase curve for
the central charge function, thus, it could be written in the form above. Suppose
Arg(Zy,(v)) = 0, then c is a complex number with phase #. When ¢ = 1, the end
point of the flow will land at the attractor point where the central charge vanishes. [

Proposition 3.2.9. There is another form of attractor follow equation

Oy Im(e ) = —v (3.2.12)

where « is the one form in defining the central charge (see definition 3.1.12, later will be
identified with the Seiberg- Witten differential). Consequently, it can be further integrated
into the following form

Im(e™®a) = —yt+ Im(e a)|—o (3.2.13)

Proof. For the physics derivation of the equation (3.2.12), the readers are referred to
section 3.4 of | ]. We present a mathematical proof here. First recall that the
central charge Z is defined through

Thus equation (3.2.8) becomes

Im(e™®{a,~)) = constant.
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Thus we have that A
o Im(e™{a,v)) =0

As the flow line equation is linear in affine coordinates, by (,v) = 0, the above equation
can be written further as '
O Im(e ) = —y

It is easy to see that this integrates into (3.2.13). O
Proposition 3.2.10. The attractor flow associated to the charge v can intersect with the
wall W’%sz where v = 1 + 2 at most once. In particular, the flow line intersects with

the wall transversely.

Proof. We denote by b, the intersection point with the corresponding time parameter
being t,, such that at b,, we have that

Zy, (7) = Zp. (1) + Zp. (72)
and
Arg(Zy. (7)) = Arg(Zp. (1)) = Arg(Z, (12)) = 0

Then applying the equation (3.2.13) in our case, and take the intersection with 7, then
we see that at the crossing point b,, we have that

Im (67iOZb* (’Yl)) = —(v,m)ts +1Im (eiiazbo (71))

The left hand side is seen to vanish, and under the assumption that (y;,72) # 0, we
see that the above equation has an unique solution t,, which completes the proof of the
proposition. Indeed, we can give the solution as

- Zng (1) + 2y (12)
. Im (6*19Zb0(71)> _ Im <m Zbo(71)>

* — =

<’72>71> <72a 71>

1 Im <Zbo(72)Zbo(’Yl)>
(V2 71) [ Zbe (1) + Ziby (72)]

From the computation done in the above proof, we can deduce that

1 Im (Zb(%)Zb(Vz)>
(V720 1Z6(1) + Z(72)]

thus the following proposition holds.

—(t—t) =

Proposition 3.2.11. Assuming (y1,72) > 0, then near the wall W}

V1,727

would flows from the region where Im (Zb("h)Zb(’}Q)) < 0, i.e., where Arg(Zy(71)) >

the attractor flow

Arg(Zy(7y2)) into the region where Im (Zb(’yl)Zb(’yQ)> > 0, i.e., where Arg(Zy(m)) <

Arg(Zy(72)) ;91X while at the intersection point, we have that Arg(Zy(71)) = Arg(Zy(72)),
which s compatible with the definition of the wall of the first kind.

Finally, we can prove the following
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Proposition 3.2.12. The length of attractor flow line connecting b ¢ Wi and b, 1s

bounded.

1,72

Proof. Suppose the point b corresponds to the parameter 0, then we calculate as follows

/ot* (%)2 ‘= /0 > g
B /ot* 2% (‘ g 6k|Z(’V>’> (- > " (W(v)l) dt

— [ " S @izol+aizod = - [ aze)>o

The last inequality holds because the mass function |Z()| is decreasing along the flow
line (see proposition 3.2.5). Thus we infer that

[ (%Y a= 1200~ 1700

= 12| = (126, (1) + 12, (2)]) < [Z6(7)| < 00
[l

Remark 3.2.5. The distance of attractor flow line between a point b ¢ W' and the at-
tractor point may not be finite in general. However, under the Al-singularity assumption,
we see that the distance is still finite since by the formula (3.1.87), we deduce easily that
in this case for v being a vanishing cycle, Zy(7y) has a removable singularity at the origin,
thus Zy(y) and dZy() extends to zero at the singularity.

3.2.2 Axiomatization

Motivated by the discussion of the attractor flow in previous subsection, we can now give
the axiomatic treatment following Kontsevich and Soibelman. (see section 3 of | ).

Over the base B°, we have the local system of lattices I, endowed with the antisym-
metric bilinear pairing (-,-) : A2’ — Z. Then this pairing gives rise to the following
map

1L — TV v {7, )

Denote by I, the kernel of ¢, i.e., the radical Ann(-,-) of the pairing, and by I'*¥"*”
the symplectic quotient of I' by I',.

Definition 3.2.3. The attractor flow on totI is defined to be
b=1uy) 4=0 (3.2.14)

Here we used the identification Tgo = T, and Im(v) is an affine space in TV parallel
to L%V™MP,

Remark 3.2.6. The above definition is motivated by the attractor flow equation (3.2.9).
The projection of the attractor flow (5.2.14) onto the base B would be the attractor flow
in the usual sense.
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Remark 3.2.7. The attractor flow can to extended to tot 'y in the obvious manner.

Recall that in the definition of the global wall-crossing structure on B° (see definition
2.5.1), we have the continuous map Y : B® — 'y, and the walls of the second kind W3
in B associated to 7 (see definition 2.5.4), namely

W3 =yt ={be B Y(b)(y) =0}
We consider the set
BY := {(b,v) € tot 'y : Y(b)(v) = 0}

and also its subset
BY :={(b,y) € totT : Y(b)(v) = 0}

Clearly, dim BY = dim B° — 1, and dim B” = dim B® + rk[" — 1.

Proposition 3.2.13. The sets BY and BY are preserved by the attractor flow defined by
equation (3.2.14).

Proof. From the definition, the attractor flow line is locally given by

t— bo + L("}/)t

from which we see that

Y(bo + ¢(7)dt) () = Y (bo) (7) + Y (bo)e(7) (7)0t = Y7(bo) (7,7}t = 0
O

Remark 3.2.8. The proposition above is motivated by proposition 3.2.2 where we showed
the the flow lines lie on the hypersurface that is defined by the constant phase condition
(see equation (3.2.8)). Consequently, the attractor flow is actually defined on the two sets
above.

Definition 3.2.4. The attractor flow (3.2.14) can be restricted to be a flow on BY, which
can be further restricted to BY and hence induces the “integer” attractor flow on it.

Using this new definition, we can prove the proposition 3.2.10 more straightforwardly
as follows. We want to show the attractor flow line intersects with the wall W’%mz
transversely.

Proof. Near the intersection point, we have the spliting: v = 7, + 72 such that
Y(b+ t(y)ot)(v) =0 i=1,2.

that is
Y(0) () + Y'(0)(y,%)6t =0 i=1,2.

Consequently, we have that

Y (0)(71) +Y'(D)(v2,71)(t —to) =0

which is easily seen to have an unique solution in ¢. O
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Remark 3.2.9. In the semipolarized case, i.e., L'y being nontrivial, we see from section
3.1.7 that BY is foliated by the fibers of the surjection

pwo 1 B — (I, ® R) /G

where G denotes the finite group of monodromy of I'y. We denote the symplectic leaf
passing through b € B by M := M,, which can be identified via Y with an affine space
over the vector space I'*Y"". We can restrict the flow further to the symplectic leaves,
which induces attractor flows on

M'":={(m,v) € totTy : Y(m)(v) = 0}
and the integer flows on
My, :={(m,v) € totL\totLy : Y (m)(y) = 0}

Attractor trees

The attractor flows split when crossing the wall of the first kind, thus generate the
trees on BY, called the attractor trees or split attractor flows. Now we cite its
definition | | (definition 3.2.1 there).

Definition 3.2.5. An attractor tree is a metrized rooted tree T endowed with a continuous
map f: T — M to aleaf M C B° and a lift f' : T — {vertices} — M},. We assume
that f" maps edges of T' to trajectories of the attractor flow, and the metric on each edge
of T is given by |dt|, where t is the time parameter for attractor flow on its lifting. We
assume that all tail edges are maximal positive trajectories of the corresponding internal
vertices of T. We also assume that the balancing condition

Dt = (3.2.15)

is satisfied at each internal vertex v. Here v is the speed of the f' lift of the only edge

incoming from v, and v are speeds of the f' lifts of all outgoing edges. Furthermore, we

assume that all ¥** are pairwise distinct and there exists iy, iy such that (47", o) # 0.

in

out

Vi

Figure 3.12: Balance condition

In the above definition, the term maximal positive trajectory means that for each
point (b,T') € BY, there exits maximal possible

tmaz == tmax(b,’y) € (07 +OO]
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such that the attractor flow trajectory exists. The trajectory corresponding to ¢t € [0, t,nqez)
is called the maximal positive trajectory of the point (b,7). The combinatorial type of
the attractor tree T" rooted at (b,) consists of the abstract rooted tree T~ corresponding
to T as well as a collection of velocities of all its edges, including its tails. The velocities
can be treated as elements of I via the parallel transport along the edges. Varying (b,7),
the combinatorial types form a local system over BY.

Motivated by proposition 3.2.12 in the last subsection, we infer that the inner edges of
the attractor tree have finite length, thus we have the collection {/.} of lengths of its inner
edges e. Then as the velocities is determined by the lengths and vice verse, we conclude
that the combinatorial type of the attractor tree T' at (b,7y) is uniquely determined by
{lc}. We have the following:

Proposition 3.2.14. The collection {l.} and the vector Y (b) € L'} satisfy the following
system of linear equations:

1. Y(f(v)(f'(u)) = 0, where v is a vertex and u is a point on an edge adjacent to v
and sufficiently close to v;

2. For an inner edge e connecting vertices vi and vy, we have that

Y(f(v2)) = Y(f(v1)) = o(f'(w)) Le
where u is any point of e.

Proof. The first part of the proposition follows directly from the remark 3.2.8, while for
2), we consider the attractor flow which gives the edge e, namely:

b=u(f'(u))

Suppose v; corresponds to t; respectively, ¢ = 1,2, then by integrating the attractor flow

equation, we get
to . to
/ bdt :/ o(f'(u))dt
t1 t1

Consequently, we get the desired identity. O]

Given an attractor tree T rooted at (b, y), consider the germ of the universal defor-
mation of 7', which consists of attractor trees with sufficiently close roots, combinatorial
type and edge lengths. From the above characterization, we can see this this germ of
universal deformation can be identified with an open domain in the vector subspace of
the vector space I'y 5 @ R™ cdges defined by the above systems of linear equations. In
particular, we see that the set of roots of attractor trees which are close to T" and have
the same combinatorial type is locally an open domain in a vector subspace of L'} g.

Definition 3.2.6. The attractor tree T is said to be locally planar if for each internal

vertez v, the corresponding vectors y?* span a two dimensional vector subspace in T @ R.

In | ] (proposition 3.2.3. contained therein), the following result was proved. We
cite it here with its proof being omitted.

Proposition 3.2.15. If T is locally planar, then the set of roots of all sufficiently close
attractor trees of the same combinatorial type has codimension > 1, and has codimension
> 2 were the tree is non-planar. Moreover in the formal case any sufficiently close
attractor tree is uniquely determined by its root.

106



3.2.3 Connection with WCS

In this subsection, we want to give a method about how to use the splitting attractor
flows to produce WCS on the base B° of the complex integrable system.

Suppose we have a closed subset CT C BY C tot I'y satisfying the following

1. Fibers of C" under the natural projection of tot 'y to B° are strict convex cones;

2. The set C* is preserved by the “inverse attractor flow”: b = —i(v) & = 0, for
veE LR

Remark 3.2.10. This set C* can usually be known by some apriori reason, and could
serve as “upper bound” for the support of WCS to be discussed below.

We define the tail set to be an open subset Ty C BY consisting of points (b, v) € CT

such that their maximal positive trajectories do not intersect the wall Wi, and belong to
C*. The same should hold for all nearby points (V/,7/).

Remainder on WCS

Given a local system of full rank lattice [ — B® over B°, and a local system of I'-
graded Lie algebra g = @Wer g, over BY. Moreover I is endowed with an integer valued
symplectic paring (-,-) such that if (y;,72) = 0, for v; € [, then the corresponding
components of g, satisfies [gy,, gp~,] = 0. We assume that for v € '), g, = 0.

We have a locally continuous map Y : BY — I's. Then the WCS on B in section 2.5
would give us a map a : tot I — g such that for b € B°, y € T, that satisfies Y'(b)(y) = 0,

we have the element a, () := a(b, ) € g, - It is related to the DT-invariants (thus the
invariants €2,(7y) through the formula (2.1.3)) in the following way

ap(y) = DT(v)-ey €9,

The above map a is a locally constant function on tot I' that becomes discontinuous at
those (b,7) such that v = v, + v, and the phase of Z,(7y,) and that of Z,(72) get aligned.
Clearly, the discontinuous variety projects to the wall of the first kind W}{ on BY, which
is a locally-finite hypersurfaces in B° pulled back through Y from a ZPL hypersurface
in I'y. Also recall (see definition 2.5.3) that the support of a wall crossing structure o,
denoted by Suppo is defined to be a minimal closed subset of tot 'y that is conic in the
direction of 'y such that it contains those points (b,v) € tot [y with Y (b)(y) = 0 and
ap(y) € gbﬂ\{O}, i.e., those (b,~) with nontrivial DT-invariants.

Finally, we recall that for each v € I'\{0}, we have the associated wall of second kind
(see definition 2.5.4)
W3 =7y :={beB :Y(b)(y) =0}

When the wall of the first kind Wi is being crossed, the elements (that encode DT-
invariants) a,(7y) would jump, and its jumps are governed by the KSWCF (2.2.5).
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The use of split attractor flows

The algorithm for using attractor flows to construct WCS as proposed by Kontsevich
and Soibelman in | | goes roughly like the following:

In order to produce a WCS on the base B of the full integrable system 7 : X — B,
namely, a collection of elements {%(7) € gbv} for (b,v) € totL that satisfies KSWCF,

we consider all attractor trees rooted at (b,7) with tail edges hitting the discriminant
locus A. Under certain conditions to be discussed momentarily, we expect that the num-
ber of such trees is finite. Then for every such tree we move from the tail vertices, i.e.,
attractor points which belong to A toward the root b, and apply the KSWCF at each
internal vertex b, lying on the wall of the first kind.

By assigning the “initial data” of WCS, i.e., the DT invariants at the discriminant
locus A, we can construct by induction the DT invariant a,(7).

Now we try to make the above algorithm more precise. Denote by g, ~the restriction
of g to the tail set 7;3%, then we define the initial data of a wall crossing structure as
follows

Definition 3.2.7. The initial data of a WCS bounded by C™ is given by the restriction
of the map a to 7232/.

Remark 3.2.11. From the A'-singularity assumption, we expect that for b € A, there is
only one special direction corresponding the the vanishing cycle over b,which is invariant
under the monodromy around b. Consequently, the DT invariants at b in non-trivial only
in this special direction, which means that the local system g, —is typically trivial of rank
one.

Since we expect that for generic (b,7), the attractor flow rooted at (b,~y) would ter-
minate at the attractor points, thus we impose the following tail assumption:

Tail Assumption Given any open subset U C BY, the subset of points (b,7) € U
such that their maximal positive trajectories intersect the tail set Tpo is dense in U.

For an attractor tree T', denote by TP the tree obtained by deleting all its tail edges,
then every edge of T is joined by two vertices.

Compactness Assumption There exists an open dense subset BY' C BY with the
property that for every (b,7) € BY’, there exists a compact subset K,y C BY and an
open neighborhood U of (b, ) such that for every attractor tree T' with the root and root

edge in U the corresponding tree T belongs to K ).
Mass Function Assumption There exists a function X : BY — R that is decreas-

ing along the attractor flow when restricted to C", and is strictly decreasing and strictly
positive on the set C*\tot L.

Remark 3.2.12. The mass function assumption is motivated by the function F.(b) =
Re(e=®Z,(v)) in the definition of the attractor tree.
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Consider the union of all attractor trees rooted at (b,~), which is a graph denoted by
G(b,~) for (b,v) € BY', then the Compactness assumption ensures that the graph G(b, )
is finite and the Mass function assumption implies that the graph is acyclic.

When the root b runs through the set of generic points, i.e., Y (b) falls into the comple-
ment of the locally finite union of codimension > 2 subspace in I'; such that Y (b)(y) = 0,
we infer from the proposition 3.2.15 that the graph G(b, ) is locally planar. Now we can
state the following proposition which falls into our expectation.

Proposition 3.2.16. The WCS with fized g and support belonging to C} := CtNBY is
uniquely determined by its initial data.

Proof. For a generic point (b,v) € C, the maximal acyclic graph G(b,~) above has all
its tails belonging to 72;2/ due to the tail assumption. Then the value of a,(y) can be
computed from the initial data by induction, namely, we have the value of DT-invariants
at the attractor points, and then move toward the root along the edges of the graph.
As the graph G is acyclic and locally planar, for any internal vertex (b.,V.), ap, (V%) is
determined by the KSWCF in 2-dimensional case (see formula (2.2.7)). We continue
moving until we meet the root (b,~y). By compactness assumption, there are only finitely
many KSWCFs to be used. Thus, a,(7y) can be computed in finitely many steps. n

WCS for integrable system

The WCS on the base B is defined through the map
Y:B =Ty b Y, =Im(e2,)

Recall that we have a local system of lattices I' — B°, the radical T; of [ is assumed
to have finite monodromy group G. We then have the submersion

Pnro : BO — FS,C/G

and the fiber M := B%O for non-singular point Z, € I'j /G is a symplectic leaf in B°
and can be identified via the map Y above with an affine symplectic leaf parallel to T'g"""".

We will consider the split attractor flows on B, i.e., the projection of the attractor
tree as defined in definition 3.2.5 onto the base. We can describe it by using the Z-affine
structure on B as follows:

Definition 3.2.8. The attractor tree (or tropical curve with stop, see [ 1)
on the affine manifold B® with singularities being the focus-focus type (A'-singularity
assumption) is given by a rooted tree on B with root b € B° such that its edges are given
by affine lines and each of its internal vertex is of valency at least two and the balancing
condition is being satisfied there, while the tail edges terminating at A and is in the
monodromy invariant direction.

Remark 3.2.13. We want the edges to be the affine line defined by the so called good
attractor tree to be defined below.

Definition 3.2.9. An attractor tree is called good if it is locally planar in a fiber M of
ppo such that its tail edges hit transversely the discriminant A, with the velocity of any tail
edge being proportional to the corresponding vector v (monodromy invariant direction).
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Remark 3.2.14. From section 3.2.2, we conclude that the function Re(e=*Z) in defining
the attractor flow can serve as a mass function. And the initial data is given by assigning
for b € A and the primitive vanishing cycle v the value

1
ap(ky) = 5k
for all k > 1, i.e., the DT-invariant Qp(y) = 1.

By the above remark, we can use the algorithm mentioned at the beginning to con-
struct a WCS for the complex integrable system. In particularly, we have the following
result due to Kontsevich and Soibelman (see section 2.7 of | 1)

Proposition 3.2.17. The WCS on the base B of the integrable system gives rise to an
local embedding B® — Stab(gy) for each b € B°.

Proof. As b varies, we get a family of stability data on the graded Lie algebra gy, recall
that in proposition 2.6.3, we have shown that this can be identified with the global WCS
on By := B x Sy via the map (see (2.6.3))

Y:Bx Sy —Tj
(b,8) = Yo(b)(7) := Im(e™ " Zy(7))
Given (b,7), we consider all good attractor trees rooted at (b,), i.e., the split attrac-
tor flow associated to the function Re(e=%Zy(7)), where 8 = ArgZ,(y). Since along the

flow lines, the phase of the central charge stays constant, we see that a or € : tot I’ — Q
restricts to BY := {(b,7) : Ya(b)(y) = 0}, which is compatible with the above Y.

At the discriminant locus A, motivated by remark 3.2.13, we assign the DT-invariant
Qy(y) = 1 for v corresponding to the monodromy invariant direction. As we moving
forward toward the root (b, ), the attractor flow lines lie on the co-dimensional one wall,
the wall of second kind

W2 = {b € B%:Yp(b = O}

And when the flow line hit the wall of first kind where Y=y + 72, ie.,

W, = {b e B®: Im(Zy(1) Zy(72)) = O}

the flow line £, associated to v will splits into two flow lines associated to the charge
~v1 and v, respectively i.e.,

Ly=Ly+ Ly,
and the flow lines £,, and L., sit inside the wall of second kind W2 and W2, respectively.

At each such splitting point, i.e., the intersection point of the flow line with the wall
of first kind, we apply the KSWCF in two dimension case. By this procedure, we will
finally compute €2,(7y) at finitely many steps of induction by our assumptions.

Thus, for each b inside B® and v € T}, let § = ArgZ,(y), we have obtained in this way
the collection of DT-invariants €2,(y) satisfying KSWCF. Note that the attractor trees
on B can be lifted to attractor trees on B x Sy in an obvious way.

We see in particularly that for each b € B°, we have a WCS on {b} x Sp = Sy, which

by proposition 2.6.1, is the same as a stability data on the torus Lie algebra g;,. we thus
get the desired embedding. O
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3.2.4 Attractor flows versus Hesse flows

We have already exhibited (see proposition 3.1.27) that the base B of a complex inte-
grable system is naturally endowed with a Z-affine structure with singularities at the
discriminant locus A. On the smooth part of the base B, it is endowed with a Kahler
metric (see formulas (3.1.41) and (3.1.42))

gpo = Z Gij dCLidC_Lj (3216)
ij

where the metric metrix is given via the prepotential F and the dual coordinates ap ;
through the following

4 *F
gij = Im(7;) = Im <Z dap; daz> = a0 (3.2.17)

and the Kéahler potential of the metric is given by

K=1Im (Z ap.; ai> (3.2.18)

Next we recall the following definition of Monge-Ampeér manifold(c.f.| ).

Definition 3.2.10. A Monge-Ampére manifold is a triple (X, g,V), where (X,g) is a
smooth Rieman manifold with metric g, and V a flat connection on the tangent bundle
TX such that

o V defines an affine structure on X.
e The metric g in local affine coordinates (x1,--+ ,x,) can be expressed as

o 0P?K
9ij = 82:1(9:1:]

(3.2.19)

for some smooth real valued (potential) function K.

o The following Monge-Ampeéere equation should be satisfied

PK
= : 2.2
det ( o 89@-) constant (3.2.20)

Obviously, the smooth part B® of the base is a Monge-Ampere manifold.

Definition 3.2.11. Let U C R™ be a convex open domain in R™ equipped with the stan-
dard affine coordinates xy,- -+ ,x,, and K : U — R a convex functions. Then the Legendre
transform of the function K is defined as

k(:yla tc 7yn) = MaZycy (Z TiYi — K(‘Th e wrn)) (3221)

1
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Remark 3.2.15. In classical physics, the Legendre transform relates the Lagrangian
formalism with the Hamiltonian formalism. Namely, given the Lagrangian L(q,q,t) for
the underlying dynamical system, we get the corresponding Hamiltonian H(p, q,t) through
the Legendre transform

H(p,q,t) = L = pq — L(g, ¢, 1)

where p s the variable conjugate to q, i.e.,

oL

"o

Since Legendre transform is an involution, 1.e., for a function K, we have that K=K.In
our case, this means that the Lagrangian can also be expressed as the Legendre transform
of the Hamiltonian, namely

L(q,4,t) =H =dp— H(p,q,1)

Then under the Legendre transform, the Lagrangian equations (of motion) in Lagrangian
formalism get transformed into the Hamiltonian equations (of motion), that is

oL . O . OH 0L

T’ T T P g

We have the following duality result for Monge-Ampere manifold (see c.f. lemma 1 in
[ | for a short elegant proof).

Proposition 3.2.18. If K : U — R is a convex functions satisfying the Monge-Ampere
equation,then its Legendre transform K also satisfies the Monge-Ampére manifold.

From the above proposition it follows that in the dual affine coordinates (y1, -+ ,yn)
on the base B°, we have another metric g;; (dual to g;;) that is given by

92K

G 2 2.22

Further more, we can state the following proposition which is given in | ).

Proposition 3.2.19. For a given Monge- Ampere mamfold (X,9,V) there is a canon-
zcally defined dual Monge-Ampére manifold (X g, V) such that (X, g) is identified with
(X g) as Riemann manifolds, and the local system (Tg,@) is naturally isomorphic to
the local system dual to (Tx,V). And if V defines an Z-affine structure on X, then v
defines an Z-affine structure on X.

Remark 3.2.16. For the relevance of the Monge-Ampere duality in dual torus fibration
and mirror symmetry, see [ | for more information.

Next, we will construct explicitly the dual Monge-Ampere manifold for the base
of the complex integrable system. This part is based on the paper of Dieter Van der
Bleeken]| .
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Recall that on the base B°, we have the (rotated) special coordinates {e~*a*} and
the dual coordinates {e’wap7l}. where 1 < k,l < n. Consider the adapted real spe-
cial affine coordinates (see definition 3.1.18 and remark 3.1.17 for the meaning of these
terminologies), i.e.,

e Pab =2 iyt e Pap; =2 + iy (3.2.23)

We want to find the exact relations between these affine coordinates.

Since the dual coordinate ap; = 0F/dd’ is defined through the prepotential F, and
F is a holomorphic function in a¥, we see that it can be viewed as a function in variables
{z* y*}. Consequently, we claim that

Proposition 3.2.20. The affine variables x; is conjugate to ', while y; is conjugate to

2!, in the sense that there exists some holomorphic function .# such that

L0707

= = 3.2.24
Z g Yi Ol ( )
Proof. We compute as follows:
o+iy=eVap;, =e "= =¢
LT b dal - oxk dal  Oyk da!
, 0 OF 0 OF 0 , 0 ,
__—10 —10 . —30 o —210 . —210
=€ (6 @—Ze a—yl>—%<€ F)-Za—yl(e F)
0 A A 0 A A
= 5.0 (Re (6_2’9}—) +1Im (6_2’9}")) —1 Ewl (Re (6_2’9]—") +1Im (6_2’9}"))
x Y
which by applying the Cauchy-Riemann equation for the holomorphic function e=2% F,
equals to
olm (6—22‘0}—) _0Im (6—2@'9}-)
2 +1
oy Ox!
By defining .# := 2Im (e 2F), the relations (3.2.24) then follows from the above
computations. ]

Since (2%, ;) is conjugate to the variables (yx,x!) by the above proposition, they are
naturally related to each other through the Legendre transform of .% with respect to the
conjugate pairs {z’,y;}, then the function .#, which is given ‘apriori ’ as a function in
the variables (z,"), now can be expressed as a function in the variables (y;,%") through
the Legendre transform with respect to the conjugate variables (x?,y;), namely

T yy') =Yyt — F (2, y) (3.2.25)
k
It is easy to see that
0.7Y oFY
=~ =" (3.2.26)
Oy’ Oy,

Thus the special coordinates {a*} as well as its dual {ap,;} can be expressed in terms
of the real affine coordinates (y¢,y;) as follows:

. . Moz
ak — ak(yi,yl) — ez@(xk —|—z'yk) — ez@ ( + Zyk>

Oy
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Similarly, we can transform .Z into a function in variables (z;, z*) as

@(zl,xl) = Zxkyk — F(2',y") (3.2.28)
k
It is easy to see that . .
oOF" oOF" &
= _ = 3.2.29
] W e =Y ( )

Thus, in terms of real affine coordinates (x;, %), we have the following expressions for
special coordinate and its dual

. . . 0.7
a = ak(xz-, x') = eze(xk + iyk) = ¢ (mk +1 )
@l’k

i i0 ~ i0 OF*
ap; = ap,(z;,z") =e“(x; +iy) =€ [z, — ¢ o (3.2.30)

Remark 3.2.17. We can Legendre transform the function .F as it is convex which follows
from the holomorphicity of .

The function .Z* and .Z¥ above are called the Hesse potentials, as the Kédhler met-
ric ds? (see (3.2.16)) on B° can be expressed in terms of the Hessian matrices of the two
potential functions.

To this end, let us first notice that the Kahler metric ggo can be written in the real
affine coordinates in the following form

gpo = Z gi;da’ da’ = Z Im(7ij) da'da’ = Z I'm (dap,, da")
ij k

ij
= Z Im (e"(dxy, +idyg) - e (da® — idy"))
k
— Z de* @ dyy, — dzy, @ dy* (3.2.31)
k

In terms of the Z-affine structure on BY given by the real affine coordinates (z;, x%),
we can express the Kahler metric as

gpo = Z de* @ dyy, — dxy, @ dy*
k

by (3.2.29) & PF* RF*
e d ——dx; — d ——Fd
T

= -9 | dxt .2.32
; 0k 0z, T @ dx (3.2.32)
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On the other hand, by utilizing another Hesse potential, we have the following

gpo = Z da* @ dyy, — dxy, ® dy*

k
by (3.2.26) O2.Fv
ZZ ayka dyz®dyk+zz ayiay W © 4"
826‘y .
=2 dys @ d 3.2.33
900 Y @ dy ( )

Naturally, we would like to view the affine coordinates (z;, z) and (y*,y;) as defining
two Z-affine structures on B° which are dual to each other, correspondingly, the two
metrics (3.2.32) and (3.2.33) above, can be viewed as dual to each other in the sense that
we ought to make it a little bit precise.

Denote by BY the affine manifold in the Z-affine structure with coordinates (x;, z'),
while by By the affine manifold in the Z-affine structure with coordinates (y;,4'). Then
by the above computation, we see that BY is endowed with Riemann metric Jpo given

by the Hessian of the function —253\55, while the metric g, on Bg is given through the

Hessian of the function 2.Z¥. We want to show that the metric Ggo 1s dual to g, in the
sense that their potentials are Legendre dual to each other. Indeed, we have the following
proposition.

Proposition 3.2.21. The two potential functions of the metric, namely, —OF and 2.FV
are Legendre transform of each other.

Proof.

—
—

ﬁ(yu y') = Z (z*yx + zpy®) — F*(xi,2")

k

= Z (l’kyk + fL’ky (Z oey* — Ly )>
k
=" dhy + F @l y) = “ T y)
k

Similarly, we have that

—

F(x;,2") = Z (Jckyk + xkyk) — /ﬁ\y(xz, ")
k

_ S (et ) (ZI - y>>

k

=3 myt + Flay) = Ty
k
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Consequently, we see that the dual affine structures induced by (z°,z;) and (y',v;),
together with the corresponding dual metrics g, and gy, make the base BY a Monge-
Ampere manifold in two ways which are dual to each other. This confirms the proposition
3.2.19 in our case.

Next, we rewrite the attractor flow equation introduced in section 3.2.1 in terms of
two Monge-Ampere structures discussed above. First, recall that for the charge vector ~
at by € B given by

(ar, 9 qua +ng5k ) € Hy(n7'(b),Z)

It has central charge

Zoy(v) =Y ara(u) + > grap(u)

k

The attractor flow line passing through by, in the direction + is given by (see formulae

(3.2.8) and (3.2.9))

Im( Zb(t) —IM(qu lek —i—Zg CLDk>—O

where § = Arg Z, (v). By using the real affine coordinates (y',y"), the attractor flow
equation can be rewritten as

> ar )+ gFu(t) =0 (3.2.34)

which by using the relation (3.2.29) is equivalent to the following

0.F% k 0.F%
E _ E = 2.
- e Oxy, . I ok 0 (3:2.35)

Definition 3.2.12. For a function f(z;,x") in affine structure given by (z;,x"), define
its gradient to be the following vector field

oo (9F _Of
Vfi= (&rk’ mk) (3.2.36)

Then the equation (3.2.35) above can be written as
VZF7 .y =0 (3.2.37)
Consequently, we have the following proposition:

Proposition 3.2.22. The attractor flow lines are equivalent to the flow lines on which
the gradient of the Hesse potential F#* vanishes.

Consider the dual of the attractor flow equation (3.2.27) above, namely

VFY -y =0 (3.2.38)
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By duality, this equation should be interpreted as certain attractor flow called the
dual attractor flow.

To this end, let us take the real part of the rotated central charge function e~ Zuwy(7),
which gives

Re (e_ieZu(t) (7)) = Re <Z q (e_ieak) + Z g (e_wapvk)>

k

=S a0+ ¢ anl)

By using the relations (3.2.26) and the definition 3.1.12., the right hand side of the
above equation can be expressed as

O.FY OFY
q — =: VY. 3.2.39

Consequently, we get the following relation between the central charge and Hesse
potential

Re (e Z(v)) = VIV -y (3.2.40)
Equation above defines the so-called Hesse flow in | |. However, as

Re (e Z(v)) = |Z(7)]

along the attractor flow line, it can not vanish identically. To make (3.2.40) compatible
with (3.2.38), we observe that

Re (e7"T2) Z(4)) =0
and this leads to the following
Proposition 3.2.23. The attractor flow on the Z-affine manifold By given by
VFe. v=0
corresponds to the dual attractor flow
V.F - vy=20
on the dual Z-affine manifold By z .
Similarly, we introduce the notion of the dual Hesse flow described by the following
equation:
Im (e7Z(7)) = V" -~ (3.2.41)
which is seen to be nothing but the attractor flow equation when
0= ArgZ(v)

Consequently, both the Hesse flow and its dual has very simple origin. Namely, by
taking the real and imaginary of the rotated central charge function e=*Z(v) (i.e., the
rotated special Kéahler coordinate on B), and then write them down by using the adapted
Z-affine coordinates on B, we will get the Hesse flow and dual Hesse flow respectively.
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3.2.5 Relation between the attractor flow and the Hesse flow

Motivated by the above discussion, we can treat both attractor flow and Hesse flow in
the same framework as below:

We start with central charge function Z(v) associated to the charge «, and use the
Z-affine coordinates on B, we see that taking the real part of the central charge function
gives us the Hesse flow

Re (e "Z(y)) = VFY -y (3.2.42)

while taking the imaginary part gives us the dual Hesse flow
Im (e ?Z(v)) = VF" -y (3.2.43)

Next, denote § = Arg (Z(~)). We see that in the Z-affine structure By, the dual Hesse
flow (3.2.43) specializes into the attractor flow (3.2.27); while in the Z-affine structure
By, =, the Hesse flow (3.2.42) becomes the dual attractor flow (3.2.43).

Remark 3.2.18. [t is known that the Z-affine structures By and Bpyz correspond, on the
mirror symmetry side, to the symplectic and complex affine structures respectively (for
example, see [ 1). And this duality, heuristically speaking, manifests in the context
of the above discussion as the operations of taking the imaginary and the real part, which,
intuitively speaking, further corresponds to the operations of separating the “vertical” and
the "horizontal” direction.
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Chapter 4

The (Geometry of the
Seiberg-Witten integrable system

The ideal of Seiberg-Witten integrable system (“SW integrable system” for short) first
appeared in their seminar paper | | by Seiberg and Witten in their efforts toward
producing the exact solution to the N = 2 supersymmetric gauge field theory with gauge
group SU(2) by using the so-called Seiberg-Witten (hyper) elliptic curves. There is a
short introduction in appendix A. The connection of Seiberg-Witten solution to the com-
plex integrable system was further explored by Donagi and Witten in | ].

In section 4.1, we will give a detailed mathematical exposition of the geometry of
SW integrable system with gauge group SU(n). We will see that it fits into the general
framework of complex integrable system as had been discussed in chapter 3. 1 will put
together many results that had been scattered in the physics literature and try to present
them in a mathematically self-contained manner. Occasionally, I also formulate certain
propositions and prove them to fill the details in the existing literature.

In particularly, in subsection 4.1.2, we will see how to associate certain hyper-elliptic
curves (the so called SW curves) with a complex integrable system. And in subsection
4.1.4, we will see that there is actually a high dimensional story lying behind, namely, the
Seiberg-Witten geometry could be obtained from certain limit of the Calabi-Yau geome-
try. This, on the physics side, sheds lights on the desired scenery that the natural habitat
of the Seiberg-Witten theory should be located in the 10 dim string theory scenery. Fi-
nally in subsection 4.1.5, we will view SW integrable system from more general Hitchin
system perspective. And from this perspective, the split attractor flows on the base of
the SW integrable system should correspond to the spectral networks living in the base
of the Hitchin system. We will discuss this relation.

Then in section 4.2, we will focus on the computation of the vanishing cycles and the
corresponding monodromies associated to the the discriminant locus of the base of the
SW integrable system. These information will be used in chapter five in connection with
the WCS for the SU(2) and SU(3) SW integrable system. Indeed, they will serve as the
initial data (definition 3.2.7) of the corresponding WCS.

The materials and the computations in this chapter are based on the results in physics.
The main references used in this chapter are | J[AF][ Il Il Il ].
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4.1 Geometry of SW integrable system for SU(n)

We review in this section the geometry of the SW integrable system for SU(n) case.
Along the way, we introduce the terminologies and the backgrounds for later use. Our
exposition follows closely | ]. For more details, the reader should consult the papers
[ 1Ll 11 I,[AF] and the references contained therein. The theory to be
discussed in this chapter applies for all A-D-E type simply laced group. However, for
simplicity and for the purpose of this thesis, we just review the A, _; case. For more
general cases, the readers are advised to read the listed references above for further
information.

4.1.1 Classical moduli space and A, ; simple singularities

Denote by su(n) the Lie algebra associated to SU(n), and by b,, the Cartan sub-algebra
of su(n).

Let {H;}?~ be the generators of the Cartan subalgebra b,. Also, denote by ® the
set of roots of SU(n), and by &y and &, the set of simple roots and positive roots of
SU(n) respectively.

Working in the fundamental matrix representation of SU(n), we have that the basis
for SU(n) is given by the matrices E;;, where its kj-th entry is given by

¥R
B = g5
Under this basis, a convenient choice of generators for Cartan-subalgebra is given by

H;,=E;; —Eiy1i01, 1=1---n—1

The dual basis H} is defined through the relation 7'r(HH;) = ¢;;, from which we
deduce that

Y\ L
7=1
where I denotes the identity n x n matrix.

The vectors o := diag(H;) form a basis for the root lattice Ag, while o := diag(H})
generate the weight lattice Ay .

Pick an element in b, given as follows

gb:a-H:: CLZ'HZ'

where a; s are complex numbers. Following | |, we will call them electric coordinates.
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Let ey, 7 = 1---n denote the eigenvalues of the matrix ¢, where \; labels the weights
of the n-dimensional fundamental representation.

The Weyl group W, of SU(n) is given by the symmetric group on n letters S,,, which
acts by permutation on the set of weights {\;}. Notice that the electric coordinates a;
are not invariant under the Weyl group action, so we need to construct out of them the
Weyl invariant Casimirs u;(a). The construction goes as follows:

Consider the characteristic polynomial

det(zl — ¢) = H(az —ey(a) =2" — Z_: Uppo(a) z" 27" (4.1.1)

Note that u; = 0 since uy = tr(¢) = 0 by su(n) condition.
We see that

Uk = (_1)]€+1 Z e)\jle)\jQ e eAjk (a)
NFEJeF#Fik

Tr(¢") + product of lower order (4.1.2)

| =

As wugs are symmetric polynomials, they are invariant under .S,,.

Definition 4.1.1. The electric charge vector q = (q1 -+ q,_1) € Z"! is defined to be
the vectors on the root lattice Ag, while the electric central charge function Z(q) is
defined by Z(q) = q-a, where a is the electric coordinate defined above. Then the electric
mass function for the charge vector q is defined through the relation: m?* = | Z|2.

Remark 4.1.1. As the root lattice Ap is spanned by o; = diag(H;), we see that q can
be written as linear combination of «;s, i.e., q = Z?;ll Qi ;.

Remark 4.1.2. Similar to the definition of electric charge vector, we can define mag-
netic charge vector g = (g'---g" ') € Z"! to be the vectors on the weight lattice

. _ n—1 4 %
A’w7 te., g - Zi:l g ai'

Definition 4.1.2. The Classical Moduli Space ./, associated to SU(n) is defined
to be the parameter space of the complexified Cartan sub-algebra modulo the Weyl group
action.

From the discussion above, we see that .#, parameterizes all possible eigenvalues
{ex, -+ -en, } of the matrices ¢ in the Cartan sub-algebra, since ) e,, = 0, we conclude
that

M. =C"/S,

with invariant coordinates (under the Weyl group action) given by {u}}_s.

By definition, we infer that Z(\)) = e,,, where A} is the root corresponding to the
weight \;. Uder the identification between roots and weights, we can simply write this
as:

Z(\,) = ey, (4.1.3)

]
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From this, we know that there exists root o, ; € Ar such that
Z(ij) = ex, — ey, (4.1.4)

for 7 # j. Apparently, o, ; is the root dual to \; — ;.

In terms of Z, and the equation 4.1.2, we get

1 2 _ 1,
us(a) = o > (Z()? = 2 Ca,, 2
acd
where C4, , is the Cartan matrix of SU(n). As well as the following

un(a) = (=1 T 20

fun.rep weights\

Some Examples

SU(2) case: In this case, the rank is one, the Cartan sub-algebra is generated by
H =E ;- Eoo = diag(l, —1)'

Thus, for ¢ = aH; = diag(a, —a), the eigenvalues are given by e; = a, e; = —a. From
this we see that the invariant coordinate (under Z, action which sends a to —a) is given

by

u=a’= %T?"(¢2) (4.1.5)

Besides, we have that Z(1) = e; =a and Z(—1) = €3 = —a.
We now proceed to the more involved SU(3) case.

In this case, the rank is two, and the Cartan sub-algebra is spanned by H;, and Hs

given as:
H, =E;; — Eyy = diag(1,-1,0)

H; =E,5 — E;3 = diag(0,1,—1)
Given ¢ = aiH; 4+ asHs = diag(ay, as — a1, —as), we can identify
€1 = ay, €y = —Qy, €3 = Gy — ] (4.1.6)
Through the formula 4.1.2, we compute that
u(ay, ay) = up = a3 + a5 — ajas

v(ay,as) = ug = araz(a; — as)

Remark 4.1.3. From the above equation, we can solve ay, ay in terms of u,v (| /)
Cll(U, U) = 5-‘1- + 5—
ay(u,v) = e~ 2m/0¢ | 4 e2mi/6¢_ (4.1.7)
where

4
= 271380+ 4 [0 — —ud
Ex(u,v) \/v v = o
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For the central charge function, we have the following
Z(l,O) = a; = €

Z(0,—1) = —ag = ey (4.1.8)
Z(—=1,1)=as —a; = e3
and
ZZW=7(2,-1)=2a; —ay = e; —e3
Zoy=7(—1,2) =2a3 —a; = ez — e (4.1.9)
Zs=Z(1,1)=a; +ay =e; — ey

Geometric Reformulation

Notice that the characteristic polynomial (4.1.1) is nothing but the simple singularity
associated to the group SU(n). The details of the theory relevent to this story can be
found in Arnold’classical book on singularity theory [ ].

Denote by
n—2

WAn—l (ZL‘, 11) =z — Z uk-‘rQ(u) xn—?—k
k=0
the equation of simple singularities associated with SU(n). And denote by .# the variety
associated to Wa,_,, then we see from (4.1.1) that the classical moduli space can be
described as

My =M )Sy = {z: Wa,  (z,0) =0} /S, = {ex,(0)} /S, = {u} (4.1.10)

Note that the classical moduli space .#, is singular precisely when two eigenvalues
collide each other, i.e., ey, = ey, for i # j. Consequently the singular locus (classical
discriminant locus) A, in .. can be encoded by the discriminant of the polynomial
Wa, _,. The discriminant is given by

n

dWa,_) =[] (ex) —ex,(w)* = [ (ealw))® (4.1.11)

1<j acd

Then the classical discriminant locus is given by A. = {uk :O(Wa, ) = O}, and
denote by
MY = M\ A, (4.1.12)

the smooth part of the classical moduli space.

Remark 4.1.4. In singularity theory, the discriminant locus A, is also called the bifur-
cation sets of the type A, _1 simple singularities.

Remark 4.1.5. The classical discriminant locus A, is given by the intersection of com-
plex codimension one hypersurfaces in M,. On each such hypersurface, Z(+a)) = 0, for
some pair of roots +a.
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In SU(2) case, 0, = 4a® = 4u, thus the discriminant locus is just a point {u = 0}.
For SU(3), by using the relation (4.1.6) and (4.1.7), we compute that
bc = (a1 + a2)*(2a1 — a2)* (a1 — 2a2)* = (a1 + a2)? [2(a] + a3) — 5a1a2}2
= (u+ 3a1a2)(2u — 3ayaz)* = 4u® + 27(ayaz)* — 27u(aras)?
= 40’ + 27(ara2)* (a2 — u) = 4° + 27(a1a2)? [araz — (af + a3 — ayas)]
= 4u® — 27(aya2)*(ay — ag)* = 4u® — 270?

So we get that
5 = 4u® — 2702 (4.1.13)

From it we see that the bifurcation set for Ay singularity is the complex version of
the cusp curve. See the picture below for the illustration of the classical moduli space in

SU(2) and SU(3) cases.

SU(2) o

M.(SU(2)) M.(SU(3))

Figure 4.1: Classical moduli space in SU(2) and SU(3) cases, figure taken from | ]

The space .# depends on {u;}, and it becomes singular at A, in the sense that certain
homology basis shrink to zero size as the moduli u approaches to the component of the

discriminant locus.

Indeed, by definition, we have .#Z = {e,,}, and A, describes the location where e),
collide with each other. In particularly, the basis {e A T 6N }Z <jiici vanish on A..

Denote by v, ; := {exi — e,\j}, i.e., the vanishing 0- cycle corresponding to the root

Q; j.
It is clear that these cycles form a basis of Hy(.#,7), which can be identified with
the root lattice Ag, i.e., Hy(A,7) = Ag.

Formula (4.1.4) implies that for u € A,
Z(Ozz"j) =€\ — 6)\j =0
from which we see that the mass of the root «;; vanishes (c.f., definition 4.1.1).

We also have the following
Ve,

1

o) Vozj = <O[z‘, O[j> (4114)
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' V(2,-1) /
A} ’
AY ’

A Y ’
Ay ’
AY ’
\ ’
V(-1.2)* ; V(=1.-1)
\‘ ’
\‘ ”
AY ’I
Y
€ €0,-1)

Figure 4.2: Weight diagram and vanishing cycles in SU(3) case, figure taken from | ]

where the left hand side is the intersection product of two vanishing cycle, while the
right hand side is the inner product between root vectors.

Besides, the monodromy associated to the vanishing cycle v is given by the Picard-
Lefschetz formula

My, v 7 — (70 Vay) Ve, (4.1.15)

which can also be expressed in terms of the matrix acting on the weight space as

Mai:id—ai®wi

P EPR DI (4.1.16)

(v, i)

where «; and w; are the simple roots and fundamental weights in the Dynkin basis.

Notice that (4.1.16) is nothing but the fundamental Weyl reflection associated with
the simple root a;.

Remark 4.1.6. In the next section, we will see that in the quantum case, the above

geometric picture is generalized to the case that the variety .# is replaced by certain
Riemann surface.
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4.1.2 Quantum moduli space and SW integrable system

In order to construct the Seiberg-Witten integrable system, we first introduce the follow-
ing curve associated to the group SU(n):

Co: 9P = Pu(a) = Wa,_,(z,u))° =A™, 2,y eC (4.1.17)

Here, A is understood as a positive real parameter.

Since the degree of P, () equals to 2n, which is larger or equal to 4 for n > 2, we see
that the curve C is an hyper elliptic curve with genus g =n — 1.

The curve C, is called the Seiberg-Witten curve (SW curve for short) associated

to SU(n).

Geometrically, the curve C, for each u € C*! can be described as a double covering
of the complex plane C, branched over the following discriminate locus Ay, which we
call it quantum discriminant locus ( in comparison with the classical discriminate locus
defined previously).

Rewrite the right hand side of equation (4.1.17) as

Py(z) = Pyi(2) X Py_(x) = Wa,_,(x,u) + A") x (Wa,_,(z,u) — A")

Denote by ej-t the roots of P,+ respectively, then

P,(x) = ﬁ(a:—ej) (m—e;)

=1

By the form of the polynomial Wy, , (see equation (4.1.1)), we see that
Py =Wa,  (z5ug, -+ tup_1,u, FA") (4.1.18)

Notice that P, (z) — P,_(x) = 2A™, and A # 0, we see that the roots e; can not
coincide with e; . As a consequence, the quantum determinant d, can be computed as
follows:

o =0 =[[(eF =) =] (et =) T (er =) TL (ef —¢;)°

1<J 1<J 1<j 1<J
= 8(Pos) (P ) [ (Pas(€))” = 6(Pos) (P (247"
Thus, we have
5p = 22"A?5(P,,) 6(P,_) (4.1.19)

From this, we see that the quantum discriminant locus Ay, defined as the zero locus
of the polynomial ¢y, is given by the union of two hyper-surfaces which are the varieties
associated to 0(P,+) respectively, i.e.,

Ap=A, UA_ (4.1.20)
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where AL denote the varieties associated to §(P,+) respectively.

Notice also that from equation (4.1.19), we have that
5(Pn:|:> = 6(WATL,1)(I7 U2, -+ Up—1,Un F An)
from which we conclude that A, looks like two copies of classical discriminant locus

shifted in the top Casimir variables wu,,.

Next, we compute the quantum discriminant for n = 2 and n = 3 case.
SU(2) case:

The SW curve is given by
C:y?=W3 —A'= (2> —u)’ - A" (4.1.21)
from which, as well as the formula (4.1.19), we get
Sa = 2 A%4(u — A?)4(u + A?) = 16°A3(u? — A?) (4.1.22)
Thus the discriminant locus in this case reads

Ap={u:6y =0} = {-A% +A%} (4.1.23)
SU(3) case:

The SW curve is given by
C:y?=W3, — A= (2" —uz —v)> = A° (4.1.24)
from which, as well as the expression of classical discriminant (4.1.13), we get
Sa = 20186 Wa,) (2, u, v + A*)S Wa,) (2, u,v — A?)
= 200" (40® — 27(v + A®)?) (4’ — 27(v — A%)?) (4.1.25)

It follows that the discriminant locus A, in this case is given by the union of two
(shifted in v variable) cusp singularity curves in C? with non trivial intersection (see the
figure 4.3 below for illustration).

Remark 4.1.7. We see that as A — 0, Ay degenerates into the classical discriminant
locus as defined in (4.1.13).

Definition 4.1.3. The quantum moduli space #, is defined to be the parameter space of
the family of hyperelliptic curves C, as given in (4.1.17).

Remark 4.1.8. Clearly, the quantum moduli space .#, has much more complicated struc-
ture than the classical moduli space M,. In physics, M, arises from the description of the
N = 2,d = 4 supersymmetric Yang-Mills theoy, while 4. emerges from the classical limit
of the theory. Indeed, as the parameter A (which controls the quantum effect) approaches
to zero, the curve C, degenerates from a double cover of the complex plane to a single
cover of it branched at the zeros of Wy, _, which can be characterized as the zero locus of
the polynomial itself modulo the action of symmetric group S,. This is nothing but the
description of classical moduli space M, (see (4.1.11)).
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SU(2) case SU(3) case
Figure 4.3: Quantum discriminant locus in SU(2) and SU(3) cases

Naively, as the parameters u € C"', .#, can be embedded into C"~!. When u
approaches to the component of the quantum discriminant locus Ay, certain roots of the
polynomial on the right hand of (4.1.17) coincide, and the curve C, becomes degenerate
in the sense that certain middle dimensional homology cycles (called the vanishing cy-
cles) on the curve shrinks to zero.

Thus, the points of A, should be thought of as the singular points of the quantum
moduli space. As will be shown, they play crucial role for the later discussion since they
will play the role in determining the initial data of the WCS associated with the SW
integrable system to be discussed in chapter five.

However, we will not concerned here with the structure of .Z, we just need to as-
sociate to it a complex integrable system—-the so called the Seiberg-Witten integrable
system, which will be used in producing the wall-crossing structure later.

SW integrable system associated to SU(n)

Recall from the definition 3.1.1, in order to specify a complex integrable system, we
need have a holomorphic subjective map 7 : (X,w*?) — B with generic fibers being
Lagrangian sub-manifolds of X.

We show that from the quantum moduli space .#, given in definition 4.1.2, we can
get a complex integrable system in the following manner.

Identifying the base B with C*~!. Then consider the torus fibration 7 : X — B with
fiber over b € B being the Jacobian Jac(Cp) of the curve C, (see formula (4.1.17)) sitting
over b with local holomorphic coordinate near b € B given by u. Recall that the Jacobian
of the curve Cp is defined as

Jac(Cy) := H°(Cy, U, )/ H1(Cy, Z) = C? /7% (4.1.26)

where g = n — 1 is the genus of the SW-curve C;, and H(Cy, €, ) is the space of
holomorphic one forms on the curve which is a g dimensional vector space.
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Remark 4.1.9. Note that the lattice T'y := Hy(Cy,Z) = 7% is embedded in H(Cy, Q)
via the Abel-Jacobi map
H\(Cy, Z) — H°(Cy, Q)" (4.1.27)

which through the identification (3.1.22) and the isomorphism given in (3.1.15), can be
identified with H'(m=1(b),Z). Following the terminologies given in section 3.1.2, we call
the lattice I' the period lattice and the local system L' formed by them the period net.

Definition 3.1.11 tells us that the local system of lattices I is also called the the local
system of charge lattice.

Clearly, the fibration 7 is singular at the quantum discriminant locus A, where the
Jacobian variety degenerates due to the presence of vanishing cycles in Hy(Cp, Z) (See
figure 4.4). Denote by B? := B/A, the smooth part of the base,and consider the smooth
torus fibration

7. X" — B

LN

Figure 4.4: Torus fibration m over the base B, torus fibers being degenerated over the
discriminant locus Ay

We now show that the torus fibration 7 defined above is a complex integrable system
of Seiberg-Witten type (see definition 3.1.13), which will be called the SW integrable
system associated to SU(n).

Let {w1, -+ ,w,} be a set of basis of the space H°(Cy, Q¢,) of holomorphic differen-
tial one forms on the curve 771(b) = C,. Choosing symplectic basis {a, 6j}1<i,j<g (see
(3.1.34)) for the charge lattice I'y = H,(7~'(b), Z), i.e., the matrix of intersection product
o of these basis is the following symplectic matrix

J— ( _OIg 16, ) (4.1.28)

Then the period matrix of the curve C, is the g x 2g matrix €2 defined as 2 = (A, B),
where A and B are g x g matrix with entries given respectively by

Aij = f@ Wy Bij = % Wy (4129)

The period matrix €2 satisfies the following Riemann bilinear relations(see for example

[Gri70]):
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Riemann 1% bilinear relation QJ'Q =0
Riemann 2" bilinear relation /—1QJ'Q > 0 (4.1.30)

which follows from the following identities
/ wi/\wj:O v—1 wi/\w_j>0 (4131)
Cb cb

Definition 4.1.4. Define the T-matriz to be
r=A"'B

Riemann’s 2" bilinear relation implies that the T-matriz is symmetric and the imaginary
part of it is positive definite, i.e., Imt > 0, which will be used to define the Riemann
metric on B°.

Remark 4.1.10. When g =1 we have that

fdx/j{dx
T="T11= — —
B Yy a Y

is the usual T-function of elliptic curve which belongs to the upper half plane H, i.e.,
Im(7) > 0.

As had been discussed in section 3.1.4, there exist angle coordinates {6’
the torus fibers such that

103t j<g OD

o

foas =5 fav-s
g Bi

Then introduce the canonical complex coordinates (see the formula (3.1.47)) on the
fiber of m: ‘
Ww; ‘= 91 —+ ZTij «9J
J

together with the local holomorphic coordinates a’ on the base manifold B, we can write
the following holomorphic symplectic form (see the formula (3.1.48)) on the total space
of fibration 7 as

w0 =Y " da’ A dw; (4.1.32)

Remark 4.1.11. By the formula (3.1.49) and the next proposition, we see that the com-
plex integrable system defined by 7 is principally polarized.

With these preparation, we can state the following proposition:

Proposition 4.1.1. The torus fibration m : X — B defines a complex integrable system
of Seiberg-Witten type.

Proof. By our construction, the generic fiber of 7, being the Jacobian torus of the corre-
sponding hyper-elliptic curve, is endowed with the angle coordinates 6; (thus the complex
coordinate w;). This implies that the holomorphic symplectic form w?? vanishes when
restricted to the generic fiber. Consequently, the generic fiber of 7 is Lagrangian which
completes the verification of the definition of complex integrable system.

To show that it is of Seiberg-Witten type, we need to construct a central charge
function which is furnished by the following lemma. O
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Lemma 4.1.2. A central charge function Z as defined in definition 3.1.12 can be con-

structed for the complex integrable system m : (X,w*?) — B constructed above.
Proof. With the aid of the holomorphic symplectic form w?" constructed above, the
central charge function Z € T'(B°, I ® Opo) is defined through (see definition 3.1.12)

dZ () = ?{ w*? (4.1.33)

which is clearly an additive map from I to C. m

Choosing symplectic basis {a?, 6j}1§ij§g’ then by (3.1.50), there exist locally defined

holomorphic functions {a’, ap ;) }1<i <4 on By depending on any holomorphic coordinates
u, such that for

vi=(g.q) = (4 q) Zg% + Zq]oﬂ er, (4.1.34)

We have that

Zy(v)=(g a) ( a; ) => dlapi(u —|-Zq]a3 (4.1.35)

A

with Zy(a') = a’(u) and Z,(8;) = ap,(u). Thus by the definition of the central charge
function, we have that

da’ = j{ w0 dap,; :j{ w0 (4.1.36)

J

The following proposition is pointed out in | ].
Proposition 4.1.3. There exists Lagrangian sub-lattice Ly C Hy (7=1(b),Z).

Proof. By remark 3.1.13, we see the symplectic form on H; (7~!(b),Z), in terms of the
angle coordinates, is given by
> do' A db;

As the class [df;] is dual to o', we see that the sub-lattice spanned by {a'}, ., is a
Lagrangian sub lattice. O]

By (3.1.38), their exits holomorphic function F, called the prepotential, such that
oF

“Di = qi

1=1,---g=n—1.

And recall that we have defined the symmetric matrix

. . 8CLD’Z‘ . 82f
7= (7j) = dad ) \ Daidal

then we have the following:

Proposition 4.1.4. The 7 matriz coincide with that defined in definition 4.1.4 via the
period matriz 3.
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Proof. By formula (3.1.45), there exists action one form o pouvine (also called Liouville

one form) such that

_ 20
dotiouville = W

Using this, the relations (4.1.36) can be rewritten as

i
a = 7{ & Liouville ap,j = % Q Liouville
ot .

J

where & piouville 1S given by

A Liouville = Z ap; A del + ai A d@l
%

We will construct a meromorphic one form Agy with vanishing residues (the meaning
of it will be explained in the lemma 4.1.6 below) in the cohomological class of [« Liouvile],
which will be called the Seiberg-Witten differential, i.e., we should have

a' = ]{ Asw  ap, :f Asw (4.1.37)

J

Then wee see that

dCLDJ' 8aD J 8a9 a)\gw j{ a)\sw
Ty = i =
J da’ 8uk @uk 5 ouy, oi Oug
from which we infer that in order for the 7 matrix to match with that defined through

the period matrix €2, it is suffice for the following identities to be satisfied

8>\SW
auk

=fi(Wwpy k=2,---,n (4.1.38)
for some holomorphic functions f,(u) on the base B°.

One sees that {aé\jw } form a basis of H° (Cu, Q} ) up to a scalar multiplication
k) 1<k<g "

induced by holomorphic functions fi(u).

The simplest choice of scaling functions being fr(u) = 1, Vk. In this case, the SW
differential form can be chosen to be

AW = Ug Wy + -+ - + Up Wy, (4.1.39)
The basis of H (Cy, 22 ) can be chosen to be the following Abelian differentials of
the first kind (see for example the book | )):
n—~k
wk:x dr k=2,---.n
)
Then (4.1.39) becomes
d
A = (uz g a4+ un) f
n dx
= (2" = Wa,_, (z,u;)) m (4.1.40)
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Following authors of the papers [ 1Ll | e.t.c., we choose the following
Lemma 4.1.5. The Seiberg- Witten differential can be chosen to be

d
Asw = constant - (%WAHI(J:, uz)) % (4.1.41)

up to addition of exact forms.

Proof. In the formula (4.1.38), we choose the scalar factors to be
fr(w):=—=(n—k) k=2,---,n
which is being realized by letting Agy to be the linear combinations of w;’s as follows
Asw = —(n—2)ugws — (n — ugwg — -+ — Up_1 Wy_1 + nT"

d
= (—(n — 2)uy " — (n —3)us 2t + nxn—l) Tax

which clearly equals
0 xdz
— (%WAnl(I, uz)) 7
0

Lemma 4.1.6. The Seiberg- Witten differential sy constructed above is residues free,
thus when pairing with cycles, the value is invariant under continuous deformation of the
cycle even if the cycle crosses the poles of Agw .

Proof. By the proof of the lemma 4.1.5, we see that Agy is linear combination of basis
{w;} of H' (Cy, %), which are holomorphic one forms, thus residues free. To prove the
second part of the lemma, suppose the one cycle v is being deformed continuously to
another cycle 4" which encircles exactly one pole p of the differential Agy-, then consider
a small circle v, surrounding p with proper orientation such that 7" = v + ~,, then it is

clear that
/)\SW:/Asw-i‘/ Asw
04 v Yo

= /)\SW +R€Sp ()\SW) = /)\SW

Y Y

]

Before closing this subsection, let us compute the Seiberg-Witten differential form in
SU(2) and SU(3) cases.

SU(2): By (4.1.21), we compute that up to a multiplication of a constant, we have

that 5 J 3 i
B vdr o rdx
Asw = <_8:7c Wa, ) e _8x<x w) Y

222 dx 222 dx
— ; - \/(xQ =i (4.1.42)
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SU(3): By (4.1.24), we compute that up to a multiplication of a constant, we have
that

(0 rdr 0, 4 xdx
Asw = <8xWA2) o (7 —ux —v) y
2 2 _
_ (3x* —u) xdx _ (3x* —u) x dx (4.1.43)
Yy V(23 —uz —v)2 — AS

Using the Seiberg-Witten differential Agy, and by (4.1.34) and (4.1.36), we see that
for the charge v in (4.1.35), its central charge is given by

23 = § Asw (4.1.44)

Definition 4.1.5. The mass m(y) of the charge 7y is defined to be the absolute value of
its central charge, i.e.,

my(7) = [ Zp(7)] =

75 /\SW‘ (4.1.45)

Remark 4.1.12. As had been mentioned in remark 4.1.8, when A — 0, the quantum
moduli space M, collapses into the classical one M., and the torus C, degenerates into
the level manifold A of the polynomial Wy, _,. This means that the homologically non-
trivial one cycles v on C, would collapses into various contours encircling various zeros
e\, s of the polynomial Wy, _, .
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4.1.3 SW Curve as Weight Diagram Fibration

We make the transformation of variables as y — 2z = y—Wa, _, (2, u) for the curve defined
in the formula (4.1.17) as bellows

Cu:y? = P.(x) =Wa, (x, u)2 + A" z,yeC

Then we get the following form of the curve in new variable z, still denoted by C,:

A2n
Co:2z4+——=2Wa, (x,u)=0 z,z€C (4.1.46)
z
This form of curves appear in physics literature (for example | 1Ll ]) in con-
nection with the Toda chain system | |. Tt also arises from the rigid limit of type II

string theory on Calabi Yau 3-fold, (see for examples | 1Ll 1Ll 1Ll ],
[ 11 ]). The Seiberg-Witten curve written in this fashion also appears in the
paper | | (section 2.7) of Kontsevich and Soibelman.

Since the transformation is birational, C, is being transformed into the same curve.
We first show what should be the form of Seiberg-Witten differential in terms of the new
variables.

Proposition 4.1.7. In terms of the new variable z, the Seiberg- Witten differential form
Asw (see 4.1.42) (assuming the constant = 1) can be written as

d
Asw = —1 — (4.1.47)
z
Proof. As z =y + Wj,_,, we have that
0
dz = dy — Wi dx
Ox

then we compute as follows:

OWa
d 0 w n—1 o
x_z — z <dy_'_ WAnfl de) — E < An_1 ox d,’L‘ . WATL,1 d{L‘)
z

z ox z Y ox
oW
e Wa, Wa, —y) e Wa,
z Oz Yy Y—Wa, , Yy
_ oy, b

]

Compactifying C by adding point at oo, we see that the equation (4.1.46) describes a
fibration over the projective line P! coordinated by z , with generic fibers being the level
manifold associated to the singularity Wy, _,(x,u). See figure 4.5 for the illustration in
the rank one case.

Remark 4.1.13. Consequently, we can roughly say that each fiber corresponds to a classi-
cal story as had been discussed in section 4.1.1, while its families give rise to the quantum
deformation of the classical theory.
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Of course, the fibration is non-trivial only if the parameter A # 0, as when A ap-
proaches to zero, the fibration becomes

24+ 2Wy, (z,u) =0
which gives nothing but the classical level surface
M ={x:Wa,  (z,u) =0}

This is the scenery to be expected from the remark above and the remark 4.1.8. Fur-
ther more, we should also expect the central charge function as well as the mass function
also degenerates into their classical counterparts when A — 0. Indeed, we have the fol-
lowing result which appeared in | ]

X X, X,

| \\\\
27 = -lz”
4 - OO0
| Y
0 = 'Jg - ‘Z] *
&

Figure 4.5: Ilustration of weight diagram fibration in SU(2) case, figure taken from

[Ler98]

Proposition 4.1.8. For the vanishing 0 cycle
Vij =€\ — €y € Ho(%,Z) = AR
corresponding to the root o ;, we know from the formula (4.1.4) that

Z(ai;) = ex, — ey,

By remark 4.1.12, we can lift a contour C;; (0o- shaped) encircling the two roots ey, and
ey, on the complex x-plane to a homology one cycle v;; € Hi(Cy,Z). Here, the moduli u
lies near the components of Ax where the two roots collide. Then, the central charge of
vij equals to that of the root v ; given above, i.e.,

Z(ij) = Z(uz) = ex, — ey (4.1.48)

Parallel result holds to the mass function.
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Proof. When A — 0, we see that
z — —2Wa,_,(z,u)

And by definition (see (4.1.44)), we compute as follows

Z(%‘j):% /\SW:]{ xﬁ B j{ x@:]{ zdlog z
Yij Yii z C. z C.

J 3 g

Write Wy, (z,u) = [[,(x — ey,), we see that as A — 0, we have that

dz d(—2Wa. ) 7{ ]{
A4 ii) = r— = r—" = zdlo Wn71 = zdlo T—e),
(7]) %Cz z \%Cij —2 WAn_l Cij g( 4 ) Cij g];[( g )

x
= xd log(z —e :j{ x d log(x — e :7{ dx
foo(Ste- o) =« St o= f ¥

Cjjisoo shaped contour encircling tworoots X T
Res,, E — Res,, g
1 J— —
& Xz 6)% J & x 6)\k

x
= i - — i — e =e) —en, = Z(a;;
mireri v N zk: T — €y, x%ngj (:L’ e/\]) zk: T — €, X A (Oé J)
By equation (4.1.45), we see that
mal) = Z0) = | dsw| = lex, = e, | = |Z(au)
Yij

O

By writing the SW differential form Agy in terms of z, we can easily prove the
following proposition which justifies our expectation that the central charge of the charges
represented by vanishing cycles should vanish.

Proposition 4.1.9. The SW one form Agw is reqular near the locus corresponding to
vanishing cycles.

Proof. Near the discriminant locus Ay, certain roots of W, _, collide with each other,
which means that whenever the complex moduli u hits A, we have

y=0, and Wy, , = A"

Consequently, near the discriminant, we have

Asw =z dlogz = zdlog (y — Wa,_,) ~ zdlog(FA")

which is clearly regular. Thus, if v is a vanishing cycle in the fiber over b, then

Zo(v) = ]f Aow = 0

as expected. O
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Geometric Reformulation

Given z € CP', there are generically n solutions to the equation (4.1.46) in z, thus
Cu could be realized as an n-sheeted cover of the projective line CP!. Denote these n
solutions to the level surface equation of Wy, (z,u) by

{61<Z,u), ce ,en(Z,U)}

Then each of the above n coordinates define the local coordinate on particular sheet of
the covering, and each labeling a particular weight w; of the fundamental representation.
(Here e;(z,u) is just short for the previous notation ey, (z,u)).

On the sheet corresponding to e;, the SW differential form Agy, lifts up to the form

Ai = —ei(z,u) % (4.1.49)

which can also be viewed as the coordinate for the corresponding e;-th sheet. The
following proposition is inspired by the construction in section 11.2.1 of the book | ].

Proposition 4.1.10. The cycle {z : |z| = 1} C CP" lifts up to n cycles on each sheet of
the covering. Denote by ~y; the cycle living on the i-th sheet with coordinate given by \;,
then the cycle v;; € Hy (Cu,Z) (as had been constructed in the proposition 4.1.8) can be
identified with the the cycle represented by the difference cycle v; — ;.

Proof. We compute that

1 1 1
5 )\SW:T?{ )\sw—T]{ Asw
UK Yi—Yi UK Vi m Vi
1 1
= — Aj— =— Ai
271 v 271 o
1 dz 1 dz
=5 ]{ (—ex (2, 1)) < (—ex(z,w)) —
J 1
1 dz
- (eAi<Zv u) — € (Zv u)) % %zl ?

= ey (z,u) — ey, (z,1)
Comparing with the formula (4.1.49), we see that as homology classes in H; (C,, Z),
we have that
[isl = [ =il
O]

As a covering of the projective line CP' = S?, it is branched exactly when two or
more roots e; collide with each other, i.e., when the following discriminant vanishes (by
viewing z as a constant):

0. =] (e — ;) (4.1.50)

i<j

Denote by A, the vanishing locus of the polynomial equation 9,.
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Examples

SU(2) case: The equation of SW curve is given by

A4
z+7+2(x2—u)20 (4.1.51)

In this case, the two roots corresponding to a given z are given as

4
ei:i\/u—%(z+%)

there for the discriminant is given by

1 AN
o4 )
2 z
whence its vanishing locus (branching points) consists of the two points given as
ze =utVur—A? (4.1.52)

Notice that for the moduli u to hit the quantum discriminant Ay, i.e. u = £A2, the
two branch points z4 coincide with Aj,.

SU(3) case: The equation of CW curve is given by
AS
24+ — 422 —ur —v) =0 (4.1.53)
z

Using the discriminant for cubic equation, we compute that

6 2
<52:47f"—27(1 (z+A—)—v)
2 z

from which its vanishing locus can be computed to consist two pairs of points on the
sphere S?, namely

2
2 + 3v3v + \/(2u3 + 3\/511) _ 97AS

=

3v/3

2
—2uf + 33 £ \/(2u3 - 3\/§v) — 27AS
+
. 4.1.54
In general, there are n — 1 pairs of branch points Z;t, 1=1,---,n — 1, each pair is
related by the symmetry of the SW curve, namely

A2n

2 — — (4.1.55)
z

Remark 4.1.14. Each pair of the branch points corresponds to a particular pair of roots,
say e; and e;, colliding with each other, hence produces a vanishing cycle v;; = ey, — ey,
in Hy(A ,Z) (comparing with the corresponding discussion section 4.1.1).
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By the above remark, we see that the pair of branch points z;IE corresponds to the
simple root a; = ;41 € Ar, we then have the following

Proposition 4.1.11. The monodromy around the branch points zf 1s given by the fun-
damental Weyl reflection M,, (see 4.1.16) associated to the simple roots «;.

Proof. By circling around the branch point z; (the same for z;7), the roots ey, and ey,,,
get exchanged, that is, the two sheets labeled by weights \; and \;;; get permutated
which corresponds to a Weyl group action of the weights. Geometrically, the monodromy
is given by Picard-Lefeshetz transformation (4.4.16) associated to the vanishing cycle
Vi = ey, — €y,,,. Viewing it as action on the weight system, it is exactly the Weyl
refection 4.1.16 in this case. O

Remark 4.1.15. The new form of the curve (4.1.46), which is birational to the original
one, defines a genus g = n — 1 Riemann surface. To describe it by cut and pasting of
complez plane C, we add two more branch points, say zo = 0 and z,, = 00, to the already
evisting 2z, i = 1, --- ,n — 1. Choosing the branch cuts from z to each z; , denoted by
I; as well as the cuts from z, to each z, denoted by I}, there are altogether n — 1 pairs
of cuts. Then by the standard Riemann surface construction (uniformization procedure),
we play with two copies of CP* = S?, each of which is attached with the n — 1 pair of
branch cuts l;t. Gluing the two spheres together by pasting the cut l;t cross-wisely with
the cut l;t, the resulting surface would be the desired genus g =n — 1 curve.

u i\l
Vu

Figure 4.6: The Riemann surfaces through gluing and pasting, figure taken from | ]

Monodromy action on the fiber

Considering a loop v circling around components of the vanishing locus A,, and
by tracing along <, we see that the individual roots e,, may undergone change even
though the totality of them are keep unchanged. Consequently, we get the monodromy
representation associated to the covering C — CP! as follows

p:m (CPN\A,) — S, (4.1.56)

which associates a loop v to a permutation induced by the parallel transport near a
given fiber along the loop. The image of p generates the monodromy group M, (also
called the Galois group) associated to the covering.
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Proposition 4.1.12. The monodromy group of the covering associated to the SW curve
(4.1.46) is the full permutation group S,.

Proof. As noted before, the sheets of the covering can be identified with the weights {\;}
of the n-dimensional fundamental representation n of SU(n). Tracing along a non-trivial
loop (homologically non-trivial) in CPM\ A, the sheets of the covering corresponding to
the weights would get permutated while the characteristic polynomial

det(zI — ¢) = H (x — ey (z,u))

%

is invariant. This means that the roots {ey,} belong to the same conjugate class with its
elements being related by the Weyl group of the corresponding Lie algebra su,. As is
well known that the Weyl group in this case is exactly 5,,. [

As an example, let us look at the SU(2) case considered above. Similar to the simplest
example /z, when we trace along a curve around the origin-the only branch point for
V%, the two values {\/z, —/z} get exchanged. In our case, consider for example, a simple
curve encircling only the branch point

zy =u+ Vu? — A?

where e, collides with e_, we see easily that the two roots would get exchanged. This
verifies that the monodromy group in this case is given by the Weyl group of suy, namely
Sy = Zsy, which is also the Galois group for the equation w = z? defined over Q.

For more involved aspects of the appearance of Galois groups in supersymmetric
physics, see the paper of Frank Ferrari | ] on Galois symmetry.
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4.1.4 SW Geometry from K3 Fibration

From the perspective of physics, the appearance of Seiberg-Witten hyper elliptic curve
in N =2 d =4 SYM is by no means accident, rather, it has a deep origin as certain
limit of type ITA string compactification on Calabi-Yau 3-fold which could be realized as
K3 fibration over the base CP! = 5% (see | Il 1,1 1l 1, ] for

more details). Below, we review some mathematics that are relevant to this story.

Starting with the defining equation (4.1.46) of the SW curve, we consider its Morsifi-
cation by adding extra quadratic pieces in the complex variables y and z which does not
affect the singularity type

2n

A
Xzt —+ 2Wa, , (z,u) +2y° + 20> =0 (4.1.57)

Fixing z € CP!, the above equation describes a local ALE geometry sitting in a K3
surface, i.e., we get a fibration over S? with generic fiber the non-compact ALE space of
type A,_; defined by the level manifold of the following polynomial equation in C3:

WALE = W, (2,0) + 57 + w0’ (4.1.58)

Here ALE (stands for Asymptotically Locally Euclidean) space of type A, means a
four dimensional Riemann manifold that at “o00” looks like C?/T", where I' C SU(2) is
a finite group such that the quotient space has singularity of type A,_;. It is proved in

[ ] that it is diffeomorphic to the minimal resolution of the Kleinian singularity
C?/T.

Indeed, the parameters u = {ug, -+ ,u,} provide a minimal resolution of the singu-
larity at the origin in C3. By blowing up the singular points, we arrive at a collection of
exceptional spheres with self intersection 2, and they mutually interact with each other
in a way that could be encoded by the corresponding Dynkin diagram of type A,,_;.

4, %1 %2 On  SU( + 1)
O—O0—eee—0

Figure 4.7: Dynkin diagram of type A, .1

Proposition 4.1.13. The critical points of the level manifold of Wj‘fﬁ at the level | are
the set

{(£1,0,0), -+, (2,-1,0,0)}

where {xy1,- -+ ,x,_1} is the set of critical points of the equation Wa,_,.

Proof. The critical points are the solutions of the following system of equations

0 0
WALE (2, y,w) =1 o o 5 W, =0

a ALFE a ALE
g —y—0 —2:=0
ayWA”_l Yy azWAn_l z
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which reduce to P
=1 — =0
WAn—l<x7y7w) axWAn—l

which is exactly the way to compute the critical points associated to the level manifold
of A,_; singularity. O

By the above proposition, we see that the singularity type of the ALE space resembles
to the one of the pre-classical moduli space .# (see section 4.1.1) defined as the level
manifold of the polynomial Wy, ,. Inspired by this observation, we obtain the following,
which is the special case of geometric Mckay correspondence | ].

Proposition 4.1.14. There are n — 1 independent two spheres S;, i =1,--- ,n—11n
each ALE space fiber, with intersection numbers given as

S;08; =2, S;08,.,=-1, 508; =0, when ever|i — j| > 2 (4.1.59)

which reflects exactly the Dynkin diagram of type A,_1. These n—1 spheres consist of the
vanishing cycles that generate the middle homology Ho(Xy,Z) C Hoy(K3,7Z). Moreover,
we have the following isomorphism of the lattices

Hy(Xu,Z) = Hy( M, 7) = Ag (4.1.60)

where Ag is the root lattice for SU(n).

Weyl monodromy acting

on the ADE sing. ,/—— 7 Vo 7

\ / X x / /AKX
N/ / : / /
\./ / multiple cover / /

oo , /

/(%) X / /AKX /
/(*) / Vi

A / yA— /

Base IP' with monodromies Riemann surface

Figure 4.8: Correspondence between vanishing cycles in ALE fiber and that in level
manifold, picture taken from| ]

Proof. The n — 1 spheres S; are the exceptional fibers of the minimal resolution of the
A,,_1 singularity which can be described explicitly as follows:

Denote by I; the critical value of Wﬁfﬁ at the critical point (x;,0,0), i.e., we have

that [, = Wy, ,(x;,u). Near the critical point corresponding /;, W’Af‘f_bl can be put into
the following standard form
W =Wl (z,y,0) = I+ 2 + 3% + 0’

1

Let the level [ € C trace along a small loop v encircling only the critical value [;. The
equation of 7 is then seen to be given by

v l(t) = 1 + 62

for § small and ¢ € [0, 1].
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Locally near the critical point, we have the situation described by the equation
:E2—|—y2—1—w2 :l—ll :52627rit

Then the vanishing two sphere in this ALE-fiber is given by the real part of the above
equation, i.e.,

S; = {(z,y, 2) 2+ +wr = =1, Im(x) = Im(y) = Im(w) = O}

=/I1—1;5 (4.1.61)

where S? denotes the unit 2-sphere.

Indeed, as we approach to the critical point (x;,0,0), [ — [;, the K&hler class [\/l - li]
measuring the size of the sphere .S; approaches to zero, justifying that the 2-sphere S; is
the vanishing two cycle desired.

Now we compute the intersection numbers between these vanishing two cycles. First,
deforming the cycle S; a litter bit by deforming the line segment | — [; to an arbitrary
path but with the two end points retained, then it is clear that the deformed two cycle
S; intersect with S; in exactly two points, i.e., the two end points. This shows that the
self intersection of each S; equals to two.

Let [ be the line segment connecting the two critical points (x;,0,0) and (z;11,0,0)
and use this line segment to construct the two vanishing spheres S; and S;;; as above,
then it becomes clear that by deforming the two sphere such that the sum of the radius
of the two spheres equals to the length of the line [, we see that they intersect in exactly
one point but with negative sign. Thus, S; 0 S;11 = —1.

Apparently, by the above reasoning S; 0.S; = 0 for |¢ — j| > 2. This finishes the proof
of the first part of the proposition.

To prove the second part of the proposition, note that the critical point z; of Wy, _, (z,u)
corresponds to the roots ey, and ey, coinciding with each other, which by section 4.1.1
corresponds to the vanishing 0-cycle

€ Ho(A,Z)

v, = 6)\i - e)\prl
As we know before that the n — 1 independent vanishing cycles v;; generates Hy(.#,Z)
and is isomorphic to the root lattice Ag. O

Remark 4.1.16. By the above proposition, we infer that the SW geometry, encoded by
the fibration of weight diagram over S2, which is linearized by the local system of lattices
Ho(A ,Z) over CP', can be obtained by the degeneration of the ALE space fibration over
S% by letting y and z equal to zero in the equation 4.1.59 (in physics term, it is called
integrate out the variables). In other words, the local system of lattices Ho(ALE,Z) over
CP! encodes the same information as that of Ho(.#,Z). The essential information is
the root lattice Ar of type A,_1. Indeed, the intersection matriz of the vanishing cycles
in both cases equal to the negative of the Cartan matriz for SU(n).
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In general, by remark 4.1.14, suppose that at ZZ:t € CP!', the two roots e), and ex,
collide with each other. Denote by S;; the vanishing 2-sphere in Hy(X,Z) corresponding
to the vanishing O-cycle v;; = ey, — ey, in Ho(4,7Z).

From the proof of the above proposition, we see that the vanishing two spheres van-
ishes exactly when W = WALE = 0, i.e., the points on the SW curve C,, that is when
x = ey, for some 4, which means that the radius of the vanishing two sphere S; is mea-
sured by ey,, and consequently that of the S;; is measured by ey, — ey,. We will use this
fact in the proof of the proposition below.

From the proposition and the remark above, we expect the SW one form Agy could
also be deduced from the local CY geometry.

Xy should be viewed as the defining equation of a local Calabi-Yau 3-fold near the
singular K3 surfaces fibred over CP! with the singularity type A,_;.

Denote by Q € H*°(X,C) the unique (up to scalar multiplication) holomorphic vol-
ume form (as ensured by Calabi-Yau condition: Kx = 0), which is given by

dz dx N dy
DuWALE (2,9, w, 2)

Q= (4.1.62)

We want to produce a one form on CP! by integrating the 3 form € over the vanishing
2-spheres S;; constructed above.

Proposition 4.1.15. Up to multiplication by some constant, we have that
d
// Q= (er, —ex) = (4.1.63)
Sy z

Proof. As the two sphere S;; corresponding to v;;, we see that locally S;; is defined to be
the real part of
IQ +y2 +w2 — 02 . (eki . 6)\].)2

where ¢ is a constant, we then compute as follows

// // dz dz N\ dy // dz dx/\dy
8 WALE (2,9, w, 2)
// dZ dx A dy xr=pcosh, y=psin
clen, —ex))? = (2% + 97

// dz dp N df
== — A
2 Sij * \/(C(e)\i - 6)\]'))2 —p?

o ds  [lclex,—ex;))? dp
22 0 \/(C(e/\i - e)\j))2 — p?
dz

= 2mc(ex, —ey,) ~
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Proposition 4.1.16. Up to multiplication by a constant, we have that

z

Proof. By above proposition, we see that when integrated out the extra variables y and z
over the vanishing 2-sphere S;;, which corresponds to degenerate the lattice from Hy (X, Z)
to Ho(A ,Z), the volume form 2 was reduced to the form

dz
(6&' - €>\j) ?

By (4.1.49), this form equals A\; — \;, which vanishes on v;;. The claim then follows
from proposition 4.1.10. O]

Given the volume form €2 on a CY-3 fold X, we can define an analogous notion of
central charge function in this case, namely

Definition 4.1.6. The central charge Z¢Y associated to a CY-3 fold (X,Q)is given
through the following period map, which is an abelian group homomorphism:

Z%Y . Hy(X,7Z) — C

v Z9Y () ::/Q (4.1.65)

Following from the proposition 4.1.14 and proposition 4.1.15 above, we can show that
the central charge function (periods of SW curve) associated to the SW integrable system
can be induced from the central charge function (periods of CY 3-fold) associated with
the CY 3-fold defined above.

By formula (4.1.64), the integration of the holomorphic form Q over the vanishing
two spheres S;; in the local ALE fiber gives the SW form gy = —x% restricted to the
i-th and the j-th sheets of the weight diagram fibration. As the vanishing 2 sphere .S;;
is associated with v;; = ey, — ey, that corresponds to the pair of branch points z% over
which the two roots coincide. Connect the two branch points (directed from z;; to z;;)

by a line segment /;; (branch cut) and integrate over it, we get the period for 2 as

+ + + +
2 Zij dz Zij dz Zij dz
[l pmo-on [ [ [F
z;,; Sij 21_3 z zl_j z Z:J z
d d d
:/ SL’—Z+/ x—Z:/ :U—Z:/ Asw (4.1.66)
Lj 7 ~lj v F Vi

¥ ) J J
where v;; € Hi(C,Z) denotes the lift of the line segment /;; C CP'. The identity in
the last line of the above equation follows from the fact that the SW curve C), is presented
as a Riemann surface by pasting two copies of complex line CP! along the branch cuts
l;; with opposite direction. (see remark 4.1.15)

From the above computation, we see that when consider the three cycle v € H3(X,Z)

that can be written as a cycle composed of a vanishing two sphere S;; over the line
segment /;; lying the Riemann sphere CP'. Then we have that

270) = [ 0= [ Aaw=z00) (4.1.67)
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Proposition 4.1.17. The three cycle v above is topologically homemorphic to the three
sphere S3.

Proof. Clearly, the cycle v presented above can be viewed as a two sphere fibration over
the line segment [;; with two end points z:; and z;;. Since at the two end points, the
sphere shrinks into zero size, we see that the topology type of v is the same as that of
53, i.e, by slicing S? into S? leaves with the north pole of S? being identified with the
vanishing two sphere on one end, while the south pole that of the other end. O

The topology type of the non contractible connected one cycles on two sphere CP!,
besides the line segments described above, there are also cycles of the topology type of the
circle S1. The natural three cycles lifted from this type on the base CP! of the fibration
to X is of topology type S? x St (see Figure 4.9).

K — =X

Figure 4.9: The topology types of the lifted one cycles, either of the type S? x S! as
shown in the left hand side of the figure, or of the type of the three sphere S® on the
right hand side of the figure.

Under the projection 7 : X — CP!, the three cycles in X were mapped to one cycles
on CP! which falls into the two types described above. As we showed in proposition
4.1.14 that the middle dimensional homology of the ALE-space fiber X, is given by

Hy(Xy,Z) = AST™

which is generated by the set of vanishing two spheres S;; corresponding to the colli-
sion of two roots ey, and ey, of A,,_; singularity W, _,. Thus, by considering the fibration
of the vanishing two spheres over the two type of one cycles on the base of the fibration,
the three cycles of X would be generated.

In conclusion, we get the following map on the homology level

¢ Hy(X,Z) — Hi(C,7Z) (4.1.68)

which is defined as the composition

¢ Hy(X,Z) = H,(CP',2) % Hy(C,2) (4.1.69)
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We have already noted above that if the three cycle v is mapped into line segment
l;; connecting the pair of branch points zfj corresponding to the collision of two roots ey,
and ey;, then ¢ would map + to the lifted one cycle 7;; in H1(C,Z). On the other hand,
if the three cycle ~ is mapped under 7, into a circle S* C $2, then we denote by 5" its
lift on the Riemann surface C. Then it can be shown that these two types of cycles 751
and v;; generates H,(C,Z).

It is clear that we have the following property which relates the periods of C'Y 3-fold
to the periods of SW curves C,,.

Proposition 4.1.18. We have that for v € H3(X,Z) the following identity

ZY (N = | Q= Asw = Z 1.
() / /¢ . (6(7)) (4.1.70)

H3(X,Z) is endowed with the intersection form (-, )¢y, which is symplectic as the
complex dimension of X is 3. Denote by (-,-)sw the intersection form on H;(X,Z), then

it was claimed in | ] that the map ¢ preserves the intersection form, i.e.,
(71,72 ey = (), d(12)) sw (4.1.71)
Besides it is also claimed in | | that
ker(¢) =0 (4.1.72)

which, together with (4.1.71), means that the information about the intersection of three
cycles on X could be encoded in the interaction pattern of the one cycles on the Riemann
Surface C.

Sketch of the proof of (4.1.71) and (4.1.72)

To show the validity of (4.1.71), notice that since we have presented the three cycles in
H3(X,Z) as Sy (which generates Hy(Xy,Z)) fibration over the one cycles lying on CP?,
while the one cycles Hy(C,,Z) on the SW curve is generated by the one cycles on the base
CP! that either connects the two branch points of the ALE fibration or the closed loops
circling around the branch points, thus under the push-forward map ¢, the intersection
product (-,-)cy is determined by the induced intersection patterns on its ALE-fibers,
namely that induced on Hy(X,,Z). By proposition 4.1.14, this group is identified with
H,(Cy,,Z) from which it follows that the intersection patterns of the three cycles on X
coincide with that of one cycles on the SW curve, i.e., we have

&1 (5 dey = (s )sw

Next, to show that the kernel of ¢ is trivial as homology class, we note that if ¢(v) = dc
for some two cycle ¢ € Hy(C,Z), then we show that v = 0¢. Indeed, by projecting the
two cycle ¢ on to the base sphere CP!, we will get a two cycle ¢* on the base. Then we
take the boundary dc¢* and consider the S? fibration over it, we denote the three cycle
thus obtained by ¢, which by the construction of the map ¢ described in (4.1.69), we see
that 0¢ = . O
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Remark 4.1.17. The one cycles on the Riemann sphere CP' = S? is called in physics
literature as the self-dual strings (see [ ]/ 1] | for more information about
this story). From the discussion above, it is expected that the BPS states in type IIB string
theory compactified on C'Y 3 fold X, being represented as D3-brane wrapping three cycles
on X (see appendiz A), could be studied through the configuration of self-dual strings on
complex z-plane. Of course, by supersymmetry the three branes wrapping three cycles
should minimize its volume in its homology class. Remember that we have represented
the three cycles as vanishing two spheres over the one cycle on CP*, as the two spheres
are already of the minimum volume possible, we only need to minimize the length of the
self-dual strings in question, i.e., the geodesics of curves on S* with the natural metric

defined below.
Definition 4.1.7. The natural metric on the base CP! is given by
ds? = Agw|? = g.z dzdz = (2(2)/2)° dzdz (4.1.73)
As the dependence of = on z is assumed to be holomorphic, we get that the curvature
9dlog g.z =0

Consequently, by going to the flat coordinate where the flat metric is in canonical form,
we see that the geodesics are straight affine lines in the affine structure induced by the
flat metric (see section 3.1.5).

The canonical flat coordinate is given by

Indeed, in terms of the coordinate Z, the metric can be rewritten as
ds® = dZdZ = |Asw|? (4.1.75)

which justifies the name “flat” of the coordinate Z. Using it, the equation of geodesics
can be written in the following form

Z(t) = at + (4.1.76)

where t is the “time” parameter for the geodesic line, o and § two arbitrary complex
valued constant. Apparently, a specifies the direction of the geodesic line in complex
plane.

The above equation is the solution of the first order differential equation, i.e. the
geodesic equation in canonical flat coordinate:

d
— Z(t) = 4.1.77
=21 =a (1.7

which in our case reads 9t
2(2)z! % =a (4.1.78)
For the simplest SU(2) case, the above equation specifies into the following
A2 0z(t)
QN — 5 — 12N 4.1.

U=z —2 a (4.1.79)

Some trajectories of the above equation and the relation to the BPS states for SU(2)
supersymmetric Yang-Mills theory can be found for example in | ].
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Remark 4.1.18. Note that the form of equation (4.1.77) is very similar to the attractor
flow equation (3.2.7) in affine coordinates in section 3.1.7 if the flat coordinate Z here
could be interpreted as the central charge function. This is indeed the case, which on the
physics side, supports the plausibility that the structures of the self dual strings should in
principle encodes the BPS spectral of the theory lying behind.

We now state the following proposition which clarifies the remark above.

Proposition 4.1.19. Let Z : I, := H{(Cy,Z) — Z be the central charge function of the
SW integrable system. Consider the wall of second kind defined by

Im(Zy(v)) = 0

for some charge v € I'y. If the above equation is viewed as defining a curve in the base
B of the SW integrable system, then it gives the attractor flow equation (3.2.7) defined
before. However, if we present the SW curve as the fibration of weight diagram over
CP!, then in terms of the base coordinate z, the wall equation above gives the geodesic
line equation (4.1.79) on CP*.

Remark 4.1.19. Since both forms of SW curve are equivalent, we see that attractor
flows on the base of the SW integrable system and the self dual strings on the Riemann
sphere essential contains the same amount of information as regards to determining the
BPS-invariants (aka DT-invariants). Notice that in the SU(2) case the base B actually
coincides with the Riemann sphere S? after one point compactification of the complex
plane.
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4.1.5 Connection with Hitchin System and Spectal Networks

The Seiberg-Witten curve is usually presented (for example the one given in | )
in the form that is pertinent to the Hitchin integrable system (for more details see
[ Il Il | and the references contained therein).

Given a punctured Riemann surface S together with certain data describing the
boundary conditions at the punctures, and let G' be a simply laced compact Lie group (in
the following, G is assumed to be SU(n)). Let E be a complex G bundle over S endowed
with a G-connection of (0,1) type, which can be written as

D =0+ A;
Consider (1,0) form valued in End(E) as follows
¢ € QLY (S, End(E)) = H° (S, End(E) ® K)
where K is the canonical bundle of S. The adjoint field ¢ is called a Higgs field if it

gives solution to the following Hitchin equations:

{FDJ“R%’(E] =0 (4.1.80)

8ng5 + [Ag, Cb] =0

where F'p is the curvature of the connection D, and R a positive real number.

The pair (£, ¢) is then called a Higgs bundle over S. The space of all Higgs bundles
modulo the group G := Aut(E) gives the Hitchin moduli space M y;,,s which carries
hyperkéhler structure (see the definition 3.1.20).

A point of M ;445 corresponds to a cover of S through the spectral curve:
C:={\eT"S:det(A\I —¢) =0} CT"S (4.1.81)

where in the fundamental representation of SU(n), the determinant can be written
(trace= 0 by the SU(n) condition) as

detOANT — @) = A"+ AN 2py + -+ (=1)"¢, =0 (4.1.82)

Here the fields ¢; € H (S, K') may have singularities at the punctures. Clearly, by
utilizing the spectral curve C, we get a n-folded cover of the Riemann surface S

rCclh s (4.1.83)

with the fiber over a generic z € S given by

7 l(z) = {)\(z) eT*S: \"+ z”: (—1)ip; " = 0} (4.1.84)

1=2

The fiber above generically consists of the n-roots of the equation (4.1.82). The cov-
ering 7 is branched at the discriminant locus A where two or more roots collide.
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The Coulomb branch B consists of tuples {¢s, - - - , ¢,,} of meromorphic differentials,
which are the Casimirs of the Higgs field ¢. Thus

B = é H° (S, K§") (4.1.85)

=2

Given a point of B, i.e., by specifying n — 1 tuples {¢;}_,, we will obtain a branched
covering of S through the spectral curve construction (4.1.81). Moving points in B gives
a family of covering (4.1.83).

Denote by B*™9 the locus where this fibration is branched. And denote by B° =
B\B*"9 the smooth part. Then we have the Hitchin fibration

h: Miiggs — B=ED H (5,KF")

=2

which maps a Higgs bundle (E,¢) to the characteristic polynomial of ¢. It can be
proved that away from the singular locus B*"™, it gives a complex integrable system
([ Il ]) in the sense that it is a holomorphic mapping with the generic fibers
being the compact Lagrangian tori. Actually, in our case, the generic fiber A~1(b) is an
abelian variety given by the Prym variety J(C,) of the covering C, — S, which in our
A, _1 case can be identified with the Jacobi variety of Cp.

The following picture due to M.Kontsevich vividly illustrates the geometry of the
Hitchin fibration as a complex integrable system.

W\oaluLE space of . ] )
M o= H‘.Hs bundleg TC W X 1\ )
Hl”$ (8; ¢) ‘ 1 l C
aeae\nmic ‘ | &g !
S\j'ﬂl’zz‘-k‘— %zneria Liber is
Laqfnuaian abelian
T

var ¢*‘1 ~ Jac (S‘)

moduli space 4 T“Cﬁ—\,)

BQSQ B‘-'—’ 5p¢a‘\r¢\ ausves B C
55 g <T* [;_i,L

CM

Figure 4.10: The geometry of Hitchin integrable system

Remark 4.1.20. The Prym wvariety of the covering m is defined to be the kernel of the
corresponding map on the Jacobian level, i.e.,

J(C) :=ker (Jac(C) — Jac(S)) (4.1.86)

In the case when S = CP' (to be focused on momentarily), as the Jacobian of S is
trivial, the Prym variety of the covering coincide with the Jacobian of C.
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Remark 4.1.21. Given coordinate (z,x) € T*S, the tautological one form (Liouville one

form) on the cotangent space reads
A =xdz (4.1.87)

while the canonical symplectic form on T*S is given by (up to a normalizing constant)
PV =d\=dx Ndz (4.1.88)

The restriction of the tautological one form X\ on the spectral surface C gives the so
called Seiberg- Witten differential, while the surface C itself is termed as Seiberg- Witten
curve. The rational of these terminologies will be justified in the following in the case for
gauge group to be of type A, _1.

Relation to SW curve for A,,_; case

We take the Riemann surface to be the Riemann sphere S = CP' = S? with holo-
morphic coordinate z, while the complex bundle £ is taken to be its cotangent bundle
T*CP'. Let z be the fiber coordinate of T*CP?', then the tautological (Liouville) one
form on the symplectic manifold T*CP! is given by

Aan = & — (4.1.89)

Indeed, it is invariantly defined on CP! since its form is kept (albeit differed by a negative

sign which is inconsequential for our purpose) under the coordinate patch transformation

on the projective line CP!, namely: z — 271

The canonical symplectic form on T*CP* is given by

z

d d
W =de N =4 (x —Z) = dAean (4.1.90)
z

We claim that by substituting

A= >\can ¢z = Uy <@)

z

in the characteristic polynomial (4.1.82), the classical simple singularity of A,_; type in
the description of SW curve (4.1.46) will be recovered.

Indeed, the characteristic polynomial in this case becomes

- (%)n (2" +ug a2 4 (1) "u,) = (%)n (Wa,_, (z,1))

Thus in terms of coordinates (z,z) € T*CP?', the equation defining the spectral curve
can be written as Wy, _, (z,u) = 0, which means that for each = € CP', we get a copy of
the level manifold of Wy while the level itself can be fixed by judicious choice of .

n—17
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Consequently we get the SW curve in the form of (4.1.46), i.e., as the weight diagram
fibration over CP!. For this reason, the curve C, viewed as a branched covering of CP*
is also called the Seiberg-Witten curve in the mathematics and physics literature once a
fundamental representation of A,,_; has been fixed.

Let’s take again the example of SU(2) case as an illustration of the perspective pre-
sented in above. The spectral curve equation in this A; case reads

N4 ¢y =0

Make the following choice for the quadratic differential

P2 = (—; - — - A—4) ® (dz)? (4.1.91)

2z 228

Then by substituting A = Aean, = 2%, we see that the spectral curve equation becomes

dz\> u 1 A*
P hied - el . I d 2 =0
x(z) <22+22+2z3)®(z>
which, after collecting the terms becomes
1 A dz\?
2 z z

4
4+ —+2(@*—u)=0
2

that is

And this is exactly the SW curve (4.1.51) for SU(2) case.
Similarly, in SU(3) case, the characteristic polynomial reads as

At Xy — s =0
Choose

by = Z—;“‘ ® (dz)?

1/1 AS
¢3:(§—5(;+z—4))®<dz>3

Substituting them in the characteristic polynomial, together with A\ = x
obtain the equation for SW curve (4.1.53) in this case, namely

and

dz

PR

we will

6
z4+ —+2@° —ur —v)=0
z

Remark 4.1.22. From the above description, one sees easily that the SW differential on
form for the SW curve C, is exactly given by the minus of the restriction of the Liouville
one form Aeun to C, which is the expected scenery from the perspective of the complex
integrable system.
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Split attractor flow versus spectral network

For a generic z € S, the fiber of the spectral covering 7 (see 4.1.83) is given by the n
roots of the characteristic equation (4.1.82), namely

Dy ) (4.1.92)

which correspond to the sheets of the covering. At the discriminant locus A, two or
more roots coincide, and the corresponding sheets collapse. Following the terminologies
in | ] and | ], we make the following definition.

Definition 4.1.8. The BPS ij-string of phase 0 € S' = R/2x7Z labeled by pairs of
sheets is defined to be an integral path on S obeying the following differential equation:

i — N, 0 € R, (4.1.93)
where t is the “time” parameter for the path and 0, is the tangent vector along the path.

Locally, write A; = f;(z)dz, then the equation (4.1.93) is equivalent to the following

dz ;
(Filz(®) = £;(=(1)) 7= = €” (4.1.94)
which, by introducing the Z-affine coordinate
w = / i — A (4.1.95)

the above equations is solved by straight lines in the rotated Z affine structure (see remark
3.1.17 in section 3.1.5), namely

Im (e “w?) =0 (4.1.96)

Remark 4.1.23. For fized i, j, the affine lines solving the above equation gives a foliation
of the surface S.

Denote by P;; the path that solves the above differential equation. It can end on the
branch point where
)\ij :)\z—)\JIO

or it can end on a junction point where a ij-string, an jk-string and an ki-string meet
each other.

Figure 4.11: Junction point where a ¢j-string, a jk-string and a ki-string meet.
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Definition 4.1.9. The central charge of Pi; is defined through the following

ij

while the mass function is defined as

M(Py;) = /P | Aij (4.1.98)

1,

Remark 4.1.24. Clearly, we always have that M(P;;) > |Z(P;j)|. Since BPS-states
corresponds to those paths that saturate this inequality, we see that this is possible if and
only if the phase of \i; stays constant along the path. In this case we have the following
relation Z(Pi;) = € M(P;;) which motivates the introduction of the notion of BPS string.

Lemma 4.1.20. If an ij-string, jk-string and ki-string meet at a junction point, then the
phases of the corresponding BPS strings coincide.

Proof. Suppose the central charge Z has phase 0;; along the path P;;, 0;, along Pj;, and
0r; along Py;. Since p is the junction point where the three paths meet, then at this p, we
must have 0,; = 0;;, = 0y;, as the phases are preserved along the paths by the definition
of the BPS-string, we conclude that the three paths share the same phase. O

The ¢j-string P;; can be endowed with an orientation by requiring

Re (e—” / Aij> >0 (4.1.99)

along the path, while the opposite orientation gives an jk-BPS string.

Definition 4.1.10. A Spectral network is defined to be a finite web consisting of BPS
strings at a given value 6 (which is justified by the above lemma 4.1.20). All strings in
the web are assumed to have finite total central charge.

An example of spectral network due to Andrew Neitzke (taken from the note of his
talk in string math conference, 2013) is given below:

Figure 4.12: Example of spectral network. The wigged lines denote the new strings being
created after the “scattering”.
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We now associate the charge to BPS-strings as well as that of in the charge lattice
I' = Hy(C,Z) by lifting the paths and webs from S to the SW curve C. Thus, suppose
that we are given a spectral network as a web of BPS strings

we=J7P (4.1.100)

finite

Each path P; C S can be lifted to a closed one cycle v; € Hi(C,Z) in C (see the
discussion around (4.1.68) for the construction of the lift or see the relevant discussion
in| | for more details).

The lifted one cycle 7; € H;(C,Z) is then called the charge associated to the path
P;. As the union is finite, we can define the charge associated to the web W as

W=D (4.1.101)

then the central charge of it is determined additively, i.e.,

Z0Y) =Y Z(w) = Z f Asw (4.1.102)

i

In terms of the charge and the central charge of the path, we can rewrite the equation
of BPS string (see (4.1.96)) as

Im (e Z(7)) = Im <e_i9 7{ /\SW) =0 (4.1.103)
g
were 7y the charge associated to certain BPS string P C S.

Specializing to the case of SW integrable system for A,_1, i.e., by take S = CP! as
before, then the BPS string equation above is exactly the equation for self-dual string on
CP!, which should be obvious on physics ground.

Proposition 4.1.21. The spectral network on S associated with A, _1 contains the same
amount of information as that of the split attractor flows introduced in section 3.2.1 so
long as the determination of the BPS charges (states) are concerned.

Proof. (Sketch) A single BPS string and a single attractor flow is two aspects of the
same object which follows directly from proposition 4.1.19, while for the webs of the BPS
strings, we just need to notice that the junction points of three BPS strings correspond
exactly to the splitting point of the attractor flows by the lemma 4.1.20 proved above.
Consequently, the WCS in terms of attractor flows (see section 3.2.3) can be transported
to that in terms of the spectral network as had been defined and studied in great details
in, for example | 1Ll ], and more recently| |. The proposition then
follows from these considerations. O

Next we show that the balance condition for the split attractor flows (see definition
3.2.5) also holds in the case of spectral networks.
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Proposition 4.1.22. Consider the situation when an ij-BPS string P;;, an jk-BPS
string Pjir and an 1k-BPS string Py, meet at the junction point p, with the corresponding
charges of the three strings denoted by v,j,vjx and Vi, respectively, then at the junction
point p, we have that

Yik = Yij + Vik

Proof. By lemma 4.1.20, the central charges of the three charges share the same phase,
say 6. Consider then the following web defined as:

Wijk = P@'j U ij U P

with the corresponding charge nyijk € Hi(C,Z), where the path Py; is the reverse path
of P;.. Then we compute as follows

m(viz) + m(vjr) + m( ki) :j{ | Asw| +jl{ | Asw | +]{ [Asw|
Yij Yik Vi

J 7

=e ¥ (j{ )\sw+j{ Asw+]§ )\SW)
Yij Vik Yki

)

_ (f[fy O _AjH?{jk O\ _Ak)+7£m (M _m>

]

S TV R SRS O Y
’ywljk ’sz]k ,szjk

=eﬁ(éwﬂurnw+«&—xm+uwﬂw)Eo

But as

m () = m(y) + mly) +mi) = 0

which forces it to vanish identically. As a consequence, we get that

Z (") = Z0w) + Z(4) + Z (i) = Z (i + 7+ i) = 0

Since by proposition 4.1.9, the SW form Agy, does not blow up, from which it follows
that
Yig + Vik + ki =0
which, by our orientation convention, is equivalent to the following balancing condition
at the junction point p, i.e.,
Yij + Vik = Vik
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4.2 Vanishing Cycles and Monodromies

Recall that in section 4.1.2, we have already constructed SW integrable system associated
to SU(n). It is given through the family of SW curves (4.1.17) C, with the parameter
u € B = C"!, which is identified with the base of the SW integrable system. The
Lagrange tori fiber over u is given by the Jacobian Jac(Cy) of the curve C,, while the
period lattice defining the Jacobian is identified with the first homology group with Z
coefficients. Therefore, we get a local system of lattices over B, with the charge lattice
being defined as previously by: ', = Hy (Cy,Z). The SW integrable system is endowed
with a central charge function

Zw: Ty =H(Cy,Z) — C

which is an abelian group homomorphism defined via the SW form Agy, by
Zu(V) - f ASVV for v E Eu
2l

We know that when the moduli u approaches the discriminant locus A C B, the torus
fiber becomes degenerate (or singular) in the sense that certain nontrivial homology one
cycles on it shrink to zero. These middle dimensional cycles are termed vanishing cy-
cles and they are known to generate the middle dimensional homology H;(C,Z) (see for
example [ ).

Over BY := B\A, the Lagrangian torus fibration 7 is smooth. However, when circling
around the components of A, a given fiber of © would usually not come back to itself, it
undergoes the so called monodromy transformation which is given by the Picard Lefschetz
formula (see the formula (3.1.89)).

In view of the connection to WCS (see section 3.2.3), the attractor flows, which are
defined as the gradient flow lines of the real part of the (rotated) central charge function
Z, will terminate at the points (attractor points) belonging to the discriminant locus
A. The charges v corresponding to the monodromy invariant directions is assigned the
DT-invariants () = 1 (see remark 3.2.14). In this way, we will obtain the initial data
of the WCS.

The WCS can then be constructed, roughly speaking, by shooting rays (attractor
flows in Z-affine structure) from the discriminate locus A, and applying the KSWCF at
the intersection points of these tail edges which lies on the wall of the first kind where
the phases of the corresponding central charges align.

Since their central importance in construction WCS for SW integrable system, the

vanishing cycles and the associated monodromies will be studied in the next few subsec-
tions. We focus here on the SU(2) and SU(3) cases.
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4.2.1 Classical and Semi-classical Monodromy

The exposition in this subsection is based mainly on the papers [klemm1996nonperturbative]
and | ].

Recall that the discriminant locus A, in the classical moduli space ., (see definition
4.1.2) is given by the intersection of certain hypersurfaces (see the formula (4.1.11)):

Z(ay;) = eq, (1) = ey, —ex;, =0
for some positive roots a € ®,. That is, the discriminant locus A. characterize the
location of the vanishing 0 cycles in .Z,:

We already noted in section 4.1.1 that the classical monodromy associated to the
vanishing cycle v,, ;, i.e., the effects on the coordinates a induced by tracing along a
contractible loops around the hypersurface: Z(w;;) = 0 is given by the fundamental Weyl
refection associated with the simple roots «; ;. We now illustrate this in SU(2) and SU(3)
cases.

In the simplest SU(2) case, we know that the discriminant §. = 4a® = 4u. Thus, by
looping around the point {u = 0}, i.e., u — €*™u for 0 < t < 1, which amounts to
a® — (e™a)?, from which we see that the effect on a is given by

ar— —a

which is exactly Z, transformation, i.e., the Weyl reflection in SU(2) case.

Next, we consider the SU(3) case. In this case, we have

i= 1Y ) = 2t cyya

1 2 -1 a
:§(a1 a2)<_1 9 ><a;):a?+a§—a1a2

where C}y, is the Cartan matrix for A,.

as well as
v = H Z(N) = ejeges = ar(—az)(az — aq)

fund.rep.weightsA
= ajas(a; — ap)
The discriminant is given by (see formula (4.1.12))

n

b =[] (ex. ) — ex,(w)* = ] (ea(u)? = 4u® — 2702

i<j OZG‘I)+

It is involved to compute the monodromy directly as in the previous SU(2) case. We
just verify here that the monodromy is indeed given by the Weyl group action.
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The Weyl group in this case reads Ss, i.e., the permutation of the three roots e;

Around the locus A, where v, 9 = e; — ey shrinks to zero, the monodromy is induced
by the permutation (12) € S3, which exchanges e; and e; while leaving e3 unchanged.
Consequently, from the relation (4.1.9), we see that the effect on a; s is given by

a; — —asg, g — —ay

Similarly, the transposition (13) induces the following monodromy
a; — Gg — a1, Ay — dg

And the transposition (23) induces the following monodromy
ay —> @1, G2 —> Q1 — Q2

As the permutation group S3 is generated by these transpositions, thus the Weyl action
is realized as the monodromy explicitly. Following the convention in [klemm1996nonperturbative],
we denote by r; the Weyl refection induced by the transposition (13), and by 7o that in-
duced by (23) and r3 that by (12). In matrix representation, the action of Weyl group
on (a; ag)' is given by

-1 1 1 0 0 -1
r = ( 0 1 ) o = < 1 —1 > rs = < _1 0 > (421)
Besides the “electric coordinates” a, we also have the dual coordinates (magnetic

duals) ap, which is given through the prepotential function F(a) by

oF
L= 4.2.2
aDﬂ aai ( )

We claim that the induced monodromy on ap is given by (r~!)! in terms of the matrix
representation, where the uppercase t denotes the transpose of the matrix.

To see this, we compute as follows:

oOF OF Ouy,

o 8ai A 8uk (9ai

As F is holomorphic and invariant under Weyl group action, and uy s being invariant

coordinates, thus the effect of the action r on a changes ap only through the Jacobian

matrix (%If) of the coordinate transformation. Denote by a’ and a’, the transformed

forms of a and ap respectively under the action of r = (r;;). Then, we see that

ap, = da; Zk: Ouy a; %: duy, dd; da; = %ﬂ: Sy 0 Tji = Z i ap ;

J

thus it follows that
aly = (r1)'al, (4.2.3)
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Consequently, the classical monodromy action on (ap)’, a is given in matrix forms

(- (3)

For notational convenience, we denote by 7<% the matrix that appeared in the above
formula.

The above classical symmetry can be augmented to the semi-classical symmetry
by considering the form of the prepotential F in the semi-classical regime, i.e., the regime
where |u| > A™. In this region, the semi-classical contribution to the prepotential func-
tion is given by (| )

Frown = 5o 3 (Za) 10w [(2,)°/A7)
LS el [l e (125

while the classical part of the prepotential function is given by

1
Jtclass - ETa (426)

where 7 is the matrix with entries agfji, which would be later (quantum moduli space
J

case) identified with the period matrix of certain hyperelliptic curve.

The semi-classical contribution comes from the ambiguity in the logarithmic piece in
Fioop When circling various locus {Z, = 0}.

SU(2) semi-classical monodromy

In the simplest SU(2) case, e; = a, es = —a, then

4a®> i du 1 O
fl—loop 10g A2 = ; UlOg F = ; ulog P
The semi-classical contribution to the monodromy action on ap = —afg;""p when cir-

cling the discriminant locus A, = {d. = 0} is given by the nontrivial logarithmic piece in
the expression ap, i.e.,
21 0 2 4a?

ap ~ —alo = —alo
D08 e & A2
The actual contribution to the classical monodromy depends on the particular path

circling around the singular locus A, = {u = 0}, for example, consider u +— e*"y, that
is a — e™a, for 0 < t < 1, then we have that

4 2 2mt 2 4 2
alog CLA2 = 7: ’”talog% + —emta(th)

2

ap — —e™
T

2 it 4a*

— it
= alog — A2 —4te™a
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when ¢t = 1, it specialize into
ap — —ap + 4a

Consequently, the semi-classical monodromy acting on (ap, a)’ is given in matrix form

ab _ -1 4 ap
a’ 0 -1 a
By letting a — é, we see easily that the above monodromy coincide with the mon-

odromy around u = oo, for this reason, we denote by the above semi-classical monodromy
matrix by M., namely

as

Mo = ( —01 _41 ) (4.2.7)

SU(3) semi-classical monodromy

Next, we consider the SU(3) case. In this case, we have that
€1 = a1 €2 = —Qz €3 =42 — a1

Thus, at the branch where Z,,
as == 2a;. Consequently, we have:

L3 = €1 —e3 = az — 2a; — 0, that is, the place where

(e1 — e2)? = (a1 + az)* =~ (3a,)?
(62 — 63)2 = (CLl — 2(12)2 ~ (-3@1)2
Besides, we have that
u=aj+ a3 — ayay ~ 3a;

Similarly, when Z,,., = e; — e3 = a; — 2a, — 0, that is, when a; ~ 2a,, we have:

Q23

(e1 —e3)* = (a1 + az)* ~ (3ay)*
(e1 — 63)2 = (ay — 2a1)2 ~ (—3a2)2
Thus
u= a3+ a3 — ajay ~ 3a;

Finally, when Z,,, = e; — es = a; + as — 0, that is, when a; ~ —as, we have:

1,2

(€2 —e3)? = (a; — 2a,)* ~ (3a;)*

(e1 —e3)? = (ay — 2a1)? = (—3a,)?

Thus
u=aj+a;— ayay ~ 3aj
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In conclusion, we see that near the discriminant locus A., we can use u as local
coordinate, in which the prepotential function (4.2.5) (can be expressed similarly as in
SU(2) case as

fl_loop = é Z ulog ((ei — 6]')2//\2)

i<j

_ ¢ 206 _ ¢ 6

= ulog (g(el —e;)°/A > = aulog (6./A°) (4.2.8)
Using this, we can now determine the semi-classical contribution of the monodromy

acting on ap.

First, the contribution to ap; is determined by

a]:1—loop i Ou 6y 7 .
Do~ G ey 080/A%) = o (201 — az) log(6:/A)) (4.2.9)

while that of ap s is determined by

8JE‘l—loop 1 (9u 6\ 1 6
aa2 61 aa2 log((;c/A ) - 61 ((2@2 al) log(éc/A )) (4210)

Thus, tracing along the locus in which e; — e3, the monodromy on (a; ap)* is given
by the action of the Weyl reflection r; which can be implemented by the following path

a(t) = e™ay + %(1 — e"™)ay
as(t) = ag
Consequently, the coefficient (2a; — az) in (4.2.8) transform into
2(ag —ay) —az = as — 2a;
Similarly, the coefficient (2ay — a1) in (4.2.9) transform into

2(1,2 — (CL2 —al) =ay + ag

Besides, as u & 3a} and v ~ —2a?, we see that . = 4u® — 27v? is of homogeneous
degree 6 in ay, so we see easily that upon traversing along the curve given above, the
logarithmic pieces in (4.2.8) and (4.2.9) will pick up a factor of log 5™ = 6mit, which
when multiplied by the coefficient %, gives us the monodromy factor —1 after evaluating
at t = 1.

In conclusion, we see that the semi-classical monodromy action on ap is given by the

following;:
< a/D,Q ) N ( 1 1 ) ( CLD72 ) - ( -1 =1 ) ( as > (4211)

Combining with the monodromy action on a, we conclude that the total semi-classical
monodromy associated to the Weyl reflection r; is given by the following matrix which
acts on the vector (ap a)' as:
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-10 2 -1
S (R TS Qe |

A (4.2.12)
00 0 1

Which can be rewritten more succinctly in block form as follows:

M, = ( (rlz)l)t 7?1 ) ( (1) (f ) (4.2.13)

where the matrix C is determined by

oye=(2 7))

from which we get that

=~ -2 1 2 -1
oo )= (3 )=c
where C' is the Cartan matrix of As,.

Consequently, we get that

(5 )GV ()

Denote by T the matrix ( (1) Clj ), which is called the quantum monodromy in

physics literature.

Finally, we write the total semi-classical monodromy as
ME = e 7! (4.2.14)

Computing in exactly the same fashion as that for r; for the other two fundamental
Weyl reflections r5 and r3, the same pattern appears. We conclude that the semi-classical
monodromy is generated by

ME =rdlessp=lo =123 (4.2.15)

T

By the matrix forms of 5 and r3 in the formula (4.2.1), we give the matrix represen-
tations of My, and M, as follows

11 -1 -1 0 -1 -1 2
A I RS R (S T - S|

Me=1o 0 1 o0 My=1 0 o o -1 (42.16)
000 1 -1 0 0 -1 0
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Monodromy in terms of the SW-curve

We want reproduce the monodromy matrix directly in terms of the geometry of the
SW curve. The idea is that we choose a particular point u € B such that the monodromy
would be easy to see in this case. The following exposition is based on the treatment
given in | |.

We choose a special point u = (ug, -+, up_1,u,) = (0,---,0,u,), which corresponds
to the direction in moduli space in which the roots of W,_1(z,u) — A*" are maximally
separated. Indeed, in this case, the curve (4.1.17) becomes (for the sake of simplicity, in
the following, we denote by u = u,,)

y2: (x”—u)Q—AQ"Z (x"—u—l—A”)(x"—u—A”)

Denote by us := +/u F A". Notice that in the semi-classical region, i.e., when |u| >
A", we should have that u, =~ u_. The roots of the right hand of the above equation
then become

ef:wkui, 1<k <n.

where w,, := e%" denotes the n-th root of unit. Consequently, among these 2n-roots,
n of them, namely {e/} (or {e; }) are distributed evenly along a circle centered at the
origin with radius |uy| (or |u_|). The two circles become very close to each other when
in the semi-classical region, i.e., in large radius region.

The cycles o (1 < i < n) is defined to be the (lifted up to the double cover of the
r-complex plane) one encircling the pair of roots e, while the cycle 8; (1 <i < n — 1)
the one that encircles the roots e; and ef. Notice that the cycles ' are not linearly
independent since they are easily seen to satisfy the relation

Zo/:o

Clearly, the intersection numbers between o and f; are given as (o, ;) = 5; after
choosing proper orientations along the o and § cycles.

Now consider the monodromy around u > A", i.e., the monodromy around oo in the
moduli space. Thus, take u +— 2™y, 0 < 6 < 1, we see that

+ _ ok k n/ om0 noae ok s kL,
e, = wyutr — wy Ve u FA" & wrwdurwy T ug = e

which means that the cycle o is get transformed into a**!.

These transformations generate the permutation group .S,,, which is exactly the Weyl
group for SU(n).

This further implies that the semi-classical monodromy acts on a by Weyl reflections,

which justifies our previous results by using the perturbative behaviour of the prepoten-
tial function F.
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1

Thus, the monodromy acts on o = (a!---a™ 1) by the permutation matrix P defined

as
pii — §i+li _ gitln
The action on the 5 cycles is slightly more complicated, let us determine it now.
As had been displayed above, going around a large loop near oo, we have that

+ + + +
e, —> €, 1<k<n-—1, ande, — €]

So the action corresponds to the permutation (12---n). As during the rotation pro-

cess, the cycle B crosses the branch cut connecting ef and e, we expect that the

transformed cycle 8 will receive contribution from oF.

To determine it, we assume that the monodromy action on 3 = (31 - -+ 8,_1)" is given
in the following form:

Br—A B+B -«

We claim that the matrix A is given by A = (P~!)!. Indeed, under the monodromy
transformation, the intersection numbers undergo no changes. Thus, we should have that

<Z P*oog, Y Ay B4y B al> = (", 3;)
k l k

from which we get
S PAR = 5
k

Thus, A = (P~!)!. To determine the “correction” matrix B, we first note that from
the above discussion, the (semi-classical) monodromy (around oo) acts on the 2(n — 1)
column vector (3 «)" by the matrix

o (Y BY_ () o) (1 C
N 0 P 0o P 0 I
where (P~1)t - C' = B. We now make the “ansatz” such that
(PY.C=C-P

so that the two matrices on the right hand side of the above identity commute with each
other, and consequently, we should have that

e (PO (1 G _ (1 al
B 0 P o 1) \o0o I
Applying the monodromy M n-times, all roots are rotated back to the original place,

thus all « cycles return to themselves as indicated by the entries of the second row of the
above matrix.
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One subtle point here is that even though the 8 cycles would go back to themselves,
however, as 3, wounds n-times around the branch-cuts connecting {e} and {e;"} respec-
tively, we see that it gets shifted by

na® =t — 2na® + na*tt 4 2na”

From this observation, one can infer that

Br — B + HZ 5kj ok = Bk + natt — 2nak 4+ oF !
J

Thus the matrix C is given by

Crj = 0p—1, — 20k + Oky1,j
That is C = —C, where C' is the Cartan matrix for A, _;.

This agrees with the previously computed (by using prepotential F) results for the
A; and A, case, and it generalizes to arbitrary SU(n).
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4.2.2 Quantum Monodromy: SU(2) case

In the quantum situation, the classical discriminant locus A, splits into two. That is, the
quantum discriminant locus becomes: Ay = A, U A_, over which certain cycles on the
torus fibers degenerate.

By the well known facts in the singularity theory (for example [ ]), the mon-
odromies generated by tracing paths around these discriminant are given by the Picard-
Lefschetz formula, namely, for the component of A,y where v is the associated vanishing
cycle, then the associated monodromy ., acts on the one cycle u € Hi(Cy,Z) is given
as

My p— o+ (v, pdp (4.2.17)
where (-, -) denotes the intersection paring on the one cycles.

In this subsection, we compute the vanishing cycles and the associated monodromies
in SU(2) and SU(3) cases, which would be our first step toward determining the WCS

for both cases. To start with, let us reproduce the relevent results for the SU(2) case as
a warming us exercise toward the more involved SU(3) case.

The methods and results presented in this subsection, while scattered around physics
literature (| 1Ll Il 1l 1Ll 1Ll 1Ll I,IAF] ete.) are all
well-known, thus no originality is claimed, despite the fact that substantial revision and
re-organization have been made on my part to suit for the main theme of this thesis.

=y

Figure 4.13: Seiberg-Witten integrable system associated to SU(2).

The moduli space B is the complex plane C in this case. And the discriminant locus
A, consists of two points {—A?, A?}, over which the torus fibration degenerates. This is
illustrated by the figure 4.13 above.

The fiber over smooth point u € B? := B\A, is given by (cf., (4.1.21))
Co:y? =W3; — A =(2® —u)” - A*
The right hand side polynomial factors into the product of two polynomials, given as

Pi(u;x) = 2 —u+ A?
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Denote by ef, k = 1,2. the roots to the polynomial P, respectively, which are given
as

Now consider a small loop
Yp2(8) = {u: u = e + A?}

of small radius ¢ around the singularity A? in B. By tracing around the loop, i.e., by
letting the parameter 6 go from 0 to 27, th two roots e], eJ rotates around each other.
Indeed, along the loop, the two roots have the following expression:

i0 0
ef =Vie> ey = —Vdez

Thus, as 0 goes from 0 to 27, €] goes from V8 to —/4, while e, the accompanying
root, goes from —v/8 to /0.

By a similar argument, it is easy to see that when circling around the small loop
v_a2(0) around the other singularity —A?, the roots e; and e, will rotate around each
other.

Then, the canonical basis for homology one cycles on the torus fibers are given as the
lift of the two cycles circling around the two pairs of roots to its double cover. Namely,
the cycle encircling around e; and e on the complex plane, when lifted, gives the cycle
denoted by o, while the cycle encircling around ej and e} gives the beta cycle 3. Choos-
ing the orientation of the two cycles properly, we assume that their intersection number
is given as («a, f) = 1.

As the moduli u approaches to the singularity A%, the root ej collide with the root
e], which means that the vanishing cycle v, ,2, associated to the singularity +A? is
just the cycle 3.

Hence, we can compute the (quantum) monodromy M,z by using the Picard-
Lefschetz formula (4.2.17) as follows:

a—a+ (f,a)f=a—-0
B B+(B,8)8=20

Recall that we have identified the special Kahler coordinates a and ap with the period
integral of the elliptic curve in question, namely

a_]{)\sw aD_j{)\SW
@ B

where the Seiberg-Witten differential in this SU(2) case is given by (see (4.1.42))

2x2dx

Asw =
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We see that the monodromy acting on (ap a)' is determined through

aD:%Aswl—)aD
B

while for the period a, we have that

CE:J(I{)\SWH )\SW:%)\SW_]{)\SW:CZ_@D
o a—pB3 «a B8

Thus, the quantum monodromy M s> associated to the singularity +A? is given in
matrix form (which acts on (ap a)*) on the left) as:

1 -1
Mgz = < 01 > (4.2.18)

Remark 4.2.1. The monodromy above can be determined directly by computation. As
B is the lifted cycle of that encircling the two roots ey and e on the complex plane,
we see that 3 in unchanged when tracing along a small loop around +A2%, consequently,
the B-period ap remains unchanged during the process. However, the a-period a changes
according the following:

+ +

€2 €1
CL:%/\SW:2/ /\SW’—>2/ )\SW

2 2

ot +

2 €1
22/ /\SW+2/ /\SW:CL—CLD
e, et

2 2

Similarly, when u approaches the singularity —A?, the two roots e; and e, collide
with each other, which causes the cycle that is the lift of the cycle encircling these two
roots on C shrinking into zero size. Consequently, the vanishing cycle v_,2 can be chosen
in the basis {a, 8} as v_2 =  — 2a, from which we compute the quantum monodromy
associated by using Picard-Lefschtz formula as follows:

M,AZ (a)

a+ (Vop, ) v pe =a+ (f—2a,a) (f—2a) =3a—f
M_p2(B) = 8

+
+(von2, B)vpe = B+ (B — 20, 8) (B —2a) = 4a — f8

which means that M_,2 acts on (ap a)" as

aD:%)\SW'—> )\SW:4CZ—CLD
B da—p
a:j{)\smﬂ—) =3a—ap
« 3a—p

In matrix form it is given by

M_pe = ( j ;1 > (4.2.19)
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Remark 4.2.2. [t is easy to verify that the product of the two quantum monodromies
Mp2 coincide with the semi-classical monodromy M, given in last subsection (see
formula (4.2.7)), i.e., we have the following formula

Mgz M_p2 = Mo (4.2.20)

This relation should be anticipated in view of the fact that the monodromy action forms
a representation of the fundamental group (see (3.1.70) and the related discussion there)
of BY := C\{—A? +A?} into SL(2,Z) in our case (More precisely, M2, together with
M generates the subgroup I'g(4) C SL(2,Z)).

Figure 4.14: Monodromy relation

Apparently, the fundamental group m (B, ug) is generated by two loops,namely, the
closed loops yia2 based at ug encircling the two singularities +A? respectively. Tracing
along the two loops gives the two monodromies M4y2. However, by taking a loop that
encompassing both loops, which is to be denoted by Vo, then with the proper orientations
being assigned to the three loops, we have the equivalence of loops:

Yoo = V4AZ * VA2
from which the above identity (4.2.20) follows.

Remark 4.2.3. We notice that the monodromies M2 computed above by using the
Picard-Lefschtz formula associated to the vanishing cycles viy2 coincide with that (see
formulas (A.6.16) and (A.6.20) in appendiz A) computed by using the perturbative ezx-
pansion of the prepotential Fi_jo0p (4.2.5) in appendiz A (except that in the appendiz
the two singularities =A% are normalized to be 1 respectively, but that does not alter
the monodromies considered here). This provides rationality for using the Seiberg- Witten
(hyper-elliptic) curve to encode the analytically information expressed in terms of the pre-
potential function F, which is an infinite perturbative expansion (instanton expansion in
physicist’s terminology). This is wonderful since the curve, though a finite object, could
encode the perturbation of prepotential function. This gives the so called “exact solutions”
(non-perturbative aspect) to the physics question regarding N = 2,d = 4 supersymmetric
Yang-Mills theory (see for example [ | for more information about this story).

We give further rationality for the relation (4.2.20) by computing directly from the
Seiberg-Witten curve that the semi-classical monodromy is indeed given by M. To
this end, we use the another form of Seiberg-Witten curve (as Weight diagram fibration;
see section 4.1.3 for more details) to do the computation. This will proven to be much
simpler than the curve given in terms of the A;-singularity. Since we have proved the
equivalence (bi-rational) of the two forms of curves, this does not affect the results.
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First, recall that in SU(2)-case, the curve is given by (4.1.51) as

A4
i 42 (2 —u) =0 (4.2.21)

while the Seiberg-Witten differential assumes the following form

d
A = —x?z (4.2.22)

The branch points, besides 0 and oo, had been computed to be
ze =ut Vu—A? (4.2.23)

Then the semi-classical monodromy can be computed as follows:

The semi-classical region corresponds to the region where |u| > A2, i.e., near co in
B. The « cycle is obtained by lifting the circle |z| = 1 on B = C, while the § cycle can
be obtained by lifting the cycle circling the two branch points z.. Then in the semi-
classical limit |u| > A2, from equation (4.2.21), we see that near the circle |z| = 1, z is
approximately y/u = a, thus the a-period integral is computed as:

d d
a:]{/\ng—j{ I—z%—f CL—Z%—ZTI'Z'\/E
a |z|=1 < lz|=1 *

From expression (4.2.23), we see easily that in the semi-classical limit, = can be
approximated near the -cycle as x ~ y/u = a, thus the S-period ap is computed as:

Z+ d u+vu2—A4 d
aD:%)\SW:—Q/ :E—Z:—Q/ u—z
B8 Z_ Z u—vuZ—AT z

qu\/m__2\/6111(%\/@)2
u—ul —A* A

2u
~ —4y/u In e

From above computations, then it is easy to see by taking a loop around v = oo,

a — —a, while ap — 4a — ap, which is indeed the semi-classical monodromy M., given
before (by formula (4.2.7)).

= —2v/uln

Remark 4.2.4. Since the Seiberg-Witten curve (4.2.21) has four branch points, given
respectively by z,,z_,0,00, these are points where the double cover degenerates. This
suggests to consider the following elliptic curve, which has ramification exactly at these
four branch points:

2 =x(r—2)(x —2) = z(x — u+ Vu2 — A)(z — u — Vu2 — AY)
That is

y? = 2% — 2uz® + Az (4.2.24)

which has two branch cuts, one from 0 to z,, and the other from z_ to co.
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By the construction, it contains the same topological information as given by the form
of curve (4.2.21) as well as the form given in terms of Ay Singularity (see equation
(4.1.21)), we may expect them all to be birational equivalent in the sense that they have
the same j-invariant as elliptic curves, thus differ each other only by some birational
transformations of the variables of defining equations. Indeed, the birational equivalence
of the later two curves has been established at the beginning paragraph of the section
4.1.3, while the direct equivalence between (4.1.21) and (4.2.24) can be obtained by using
projective transformation that maps the four zeros efQ to the four branch points 0,00, z4
i some proper order, we omit the details here.

Before ending this subsection, let me use the form of curve given in (4.2.24) to verify
that it also gives the correct monodromies, which is expected as it is birational to the
previous forms of Seiberg-Witten curves.

First, we prove that the curve can reproduce the correct periods, thus the prepotential
function Fj_j0p, near oo.

Proposition 4.2.1. Choosing Seiberg-Witten differential on the curve (4.2.24) to be
Asw = d?” (as it is the unique holomorphic differential in this case, up to a normalizing
constant), then the period integrals of the curve give the desired expressions of special
Kihler coordinates (a ap) near u = oo neighborhood.

Proof. As u? > A%, i.e., in semi-classical region, we have that

A* A*
N7y ¢ S SVE
i u+vVu:—At 2u
while

- =u+Vu+ A x2u

Since a cycle can be represented as small circle around the branch points 0 and z,,
and on this small circle «, since x is small compared with 2u, and thus x — 2u ~ —2u.
Consequently, the a-period, and hence the “electric coordinate” a, can be computed as

azji)\svv:j{dg:f; \/x(x—jf)(x_z—) )

B ?{ dx N 1 7{ dx
a\/x($—/2\—3)(x—2u) 2ui a\/x(:v—’;—i)
1 dx 1 , \/5
~ - — = -2 =T —
20t Jo T 2ut U

On the other hand, the g cycle is obtained by circling the branch points 2z, and z_,
thus we can compute the S-period ap, i.e., the “magnetic coordinate” as follows:

]2 Jeta /¢ i)
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To estimate the above integral, we split it into two parts by choosing a point x. such
4
that g—u <L . <K 2u, thus

[Cen=fTe= [l [

Then we notice that over [/2\—3, xc}, x is very small compared with 2u, thus the first

part of integral in above formula can be approximated by

/ e dx 1 e dx 1 | 8uz,
& \Jx(x — /2\—2)(215) V2u J4s x(r — ’;—:) V2u A
while over [z, 2u], x — /2\—2 ~ x, thus the second piece of integral can be approximated
by
/2“ dr qu=e /1 2udt 1 (' dt
e TV2U—T ze 2uty/2u —2ut  2u Jze tV1 -t
1 8u
~ —— log —

21 1 lo Su . + L lo Su 2'\/510 Su
a ~ — 1 —_— = — 41 — —_—
b v 2u & A4 vV 2u & T U & A2
]

Given the above expressions for (ap a), by considering the loop around u = oo, i.e.,
in the above expressions, by letting u — €2>™u, we see that the semi-classical monodromy
M is reproduced, thus the following:

Corollary 4.2.1.1. The curve (4.2.24) could be used to produce the semi-classical mon-
odromy M.

Remark 4.2.5. The semi-classical monodromy obtained above uses can also be read off
geometrically as follows: We know from the above that near w = co, the four branch points
are given respectively by 0, %, 2u and oo, we will obtain the monodromy M, by keeping
track with the motion of these branch points when circling around v = oco. To make life
easy, let us first re-scale the variables (which does not affect the topological information to
be concerned here) so to make 2u stays finite during the process. Thus, define T = %, so
that the four branch points get mapped into 0, %, 2,00. And the accompanied re-scaling
on y variable is given by y = y/u%, so that the equation for the elliptic curve transforms
into the following

A4
=320+ i
u
while the re-scaled Seiberg- Witten differential is given by
dx dz _idzx
)‘SW = —tF — =U 2 —
T ) Y

175



Let us trace along the u = 0o by letting u — €>™%u, 0 < 0 < 1. It easy to see that the

branch point % will rotate twice around the branch point 0, while the other two branch
A4

points stay unchanged during the process. As a cycle is the one encircling 0 and 5, we
see that it remains the same, however, the B-cycle, which encircles % and 2, will be get
shifted by —4a as it would across the branch cut connecting 0 and % twice during the

process. Thus the monodromy around u = oo acts on o and B cycles as
a— a, b — [ — 4«

However, since the factor u"z in the re-scaled SW differential as above changes sign
when circling around u = oo, we conclude that the monodromy acts on (ap a) as follows:

ap — 4a — ap ar— —a
which 1s indeed the desired semi-classical monodromy M., given before.

Remark 4.2.6. Besides the above proposition and corollary, the monodromies as u —
+A? can also be checked to coincide with that computed by using the Picard-Lefschtz
formula before, we omit the details here.

From the discussion in the remark 4.2.5 above, we can deduce the following proposi-
tion, which tells us about the vanishing cycle associated to u = oc.

Proposition 4.2.2. The vanishing cycle at oo, which, in either forms of Seiberg- Witten
curve given, correspond to more than two roots colliding with each other, i.e., “non-stable”
degeneration case, is given by Vs = 2.

Proof. As already noted in remark 4.2.5 above, we see that as we loop around u = oo
once (counter-clock wisely), SW differential A\gy changes its sign, we just need to know
how the monodromy acts on the cycles. To this end, let us assume that its effect on the
symplectic basis {«, 5} is given by

o — ma +nf B — pa + qf

n

where the matrix ( T; ¢ > € SL(2,7Z). This means that its effect on the period matrix

(ap a) is given by
ap — —pa —qap  a+— —ma —nap

Comparing with the known result for M., computed by using the prepotential F, we
find that
m n\ 1 0
p qg) \ -4 1
Next, suppose that v, = aa+b5, then compute by using the Picard-Lefschtz formula:

= 4 Vo, @) Vog = (1 — ab) o + b3
B B4 Voo, B) Voo = a®a + (1 + ab) 3

Comparing with the above matrix, we conclude that b = 0 and a? = 4. By choosing
proper orientation, a can be chosen to be 2, consequently v, = 2. O
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Computing v, analytically

By slightly modifying the argument in the paper | ] in obtaining v, we have
the following analytic way of determining the monodromy at infinity. Again, we shall

related the two equations defining the Seiberg-Witten curve, namely

y* = 2% — 2uz® + A'z c.f. equation (4.2.24)

y? = (2% —u)? — A* c.f. equation (4.1.21)
Since they define the same curve, i.e., birational to each other, there exists projective
transformation ;
ar + a b
T p——T where ( d ) € SL(2,Z)

such that the four branch points of (4.1.21) are transformed into the four branch points

of (4.1.24) in the following fashion:

ey = —Vu—A2 — 0 (1)
el = Vu+ A2 — u+vVu? — A (2)

e = —Vu+A? — o0 (3)

We want to know where does the branch point e go under the above transformation?
We do not need the precise solution since our purpose is to determine the monodromy

near oo. Is is sufficient to exhibit its behavior as % — 00.

b—avu+ A?
The equation (3) above reads: pTavuE A oo, which implies that the relation
d—cvu+ A?

d = ¢v/u + A? holds. Then by using this relation, the equations (1) and (2) become:
b—avu— A? ,
=0 (1)
c(Vu+ A2 —Vu—A?)
b+ avu+ A?
Vut X 2y
2cvu + A2 2)

By dividing both sides by A of the above two equations, and after a little bit arrange-

ment, we get the followings

From the above equation (1)”, we infer that asymptotically, we should have

b [ u
K =aq F (1)///
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inserting this relation into (2)”, we see that asymptotically as 5 — oo, the equation (2)”
becomes

a U
22 2\
2c A (2)

With the above preparation, we see that under the projective transformation, we have
that as 5 — oo:

+:m'_)a:avu—/&2+b: Clw//%—l—l—]—li
' VR 4d (g 1+t

_ ay/+z — 1+a/5s NaNQ_u
W TryerD et

but the root u + vu? — A* also approaches QX“ as 33 — 00. Consequently, we see
that in this limit, the branch points v + vu? — A* and @ collide with each other, which
corresponds to the collapse of ef and e;. We thus infer that the cycle o vanishes (since
after gluing the branch cuts, the cycle enclosing e} is get identified with that enclosing
e which gives the a-cycle).

(&

To determine exactly the vanishing cycle v, associated to u = oo, we need to know
the asymptotic behavior of @ as {7 — oo.

To this end, defining t = % = 4z. Let us first estimate the behavior of the quantity
U — ZX“ as 1z — 00. In terms of the variable s, we then write as:

2 a1 —s+2ys C2A
A_c(\/l—s—i-\/l—i-s) 5
+2V5) (VI+s—vV1=5) C2A

2cs S

(*)

By the relations (1)” and (2)” above, as well as bi-normal series, we get that the
above equation (x) can be approximated when s — 0 as follows

2cs S
s3 20 A 2 2A
zcs<“‘5“>< §)—? ‘“*”—S)( 8)‘?
ZA( 32> 20 As A3
e (R
S 8 S 4 4

Consequently, tracing one circle around v = oo, i.e., by letting u — €™y, 0 < 0 < 1,
we get a whole loop around in %—plane, which implies that e]” would rotate around e by
one whole circle. From this we infer that the vanishing cycle associated to u = oo should
by 2a as the effect of the rotation, i.e., a cycle is dragged by rotating itself so that it is
get shifted by a.
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Remark 4.2.7. It is curious to note that if we take the monodromy with respect to the
parameter A\, i.e., by letting A — ¥ 0 < 0 < 1, the branch points e] = Vu — A2
and e; = vVu+ A? will trade place, while at the same time, the other pair of branch
points, namely e = —Vu — A% and e = Vu — A2 will be transformed into e; and e]
respectively. As a consequence of this fact, the a-cycle remains the same, while the [3-
cycle is being dragged into f —2a—2a = [ —4a.. Thus, the monodromy M, can be seen
as the effect of monodromy with respect to the parameter A. For the moment being, I do
not know if there is some intrinsic explanation of this fact though a possible explanation
seems to be suggested in the reference [ ]. The idea is to view first A* as a complex
parameter, and then compactify the moduli space B = C by assigning the homogeneous
coordinate on B = CP' as [u : A%]. By this construction, the line of infinity in the
moduli space is obtained by letting A> = 0 (indeed we see in this case multiple branch
points get aligned which corresponds to the non-stable degeneration of the elliptic fibers),
consequently, it is intuitively clear that we can view the points at oo as corresponding to
the “singularity” {A = 0}. From this, we expect that the monodromy at u = oo should
correspond to the monodromy around the singularity {A = 0}, which is indeed the case
as had been shown at the beginning of this remark.

Summary of the main results to be cited later

In summary, the quantum monodromy in the SU(2) case consists of M,z corre-
sponding to the two singular points A% The semi-classical monodromy M., is given
by the monodromy around oo. The quantum monodromies, together with the semi-
classical one, satisfy the relation (4.2.20). The vanishing cycles 4,2 associated to +A?
are given by  and —2a + 3 respectively, which correspond to monodromy invariant
directions of the corresponding Z-affine structure.

In view of the connection to WCS to be discussed later, we conclude that at the
(quantum) discriminant locus A, = {+A?}, there are two BPS states with charges given
respectively by:

Yope =B —2a = (—2,1)

vepz =B =(0,1) (4.2.25)

where the first entry corresponds to the magnetic charge taking values in the weight
lattice Ay, while the second entry to the electric charge with values in the root lattice
Ag. Consequently, the local system of first homology group of hyper-elliptic fibers splits
in to the direct sum of local systems of root lattice (spanned by a-cycles, i.e., integral
combinations of o) and the weight lattice (spanned by [S-cycles, i.e., integral combinations
of 5). That is:

T, =H(C,Z)=ZadZLB=Ar & Ay (4.2.26)

=u
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4.2.3 More on Picard-Lefschetz and Braid Monodromy

In this subsection, we will give a detailed review about the techniques involved in inves-
tigating the monodromies associated to the Seiberg-Witten curves that had been scattered
in  the physics literature  (for  example, see | i i ]
[ i J[AF]] i ). We will present them coherently so to make them
become more accessible (especially for those interested in mathematics other than its
physics contents). Also we display the relations between different methods by letting
them “interact” with each other.

This subsection serves as a “link” between the last subsection in which we dealt with
the SU(2)-case quantum monodromies and the next subsection in which the quantum
monodromies of the SU(3) case will be discussed. On the one hand, it helps further
understanding the methods used in the last subsection, and on the other hand, it provide
more general and more effective tools for a proper investigation of the SU(3)-case in the
last subsection.

The mathematics to be discussed in this subsection are interesting in itself, and ser-
vice as independent curiosity. For example, the idea that the monodromies associated to
the vanishing cycles can be computed either geometrically by employing Picard-Lefschtz
formula, or be directly read off from the asymptotic behavior of the prepotential function
F (which is related to the period integrals of the associated hyper-elliptic curves), is seen
to be a particular example (toy model) of the famous Mirror symmetry scheme. We will
compare the two methods by doing detailed computations. And at various occasions, we
will give different interpretations on particular result so to make the consistence between
various approaches becoming manifest. Furthermore, the general methods exhibited in
this subsection could be used in other places.

Although the materials to be discussed in this subsection are detailed and long in
length, which may form the impression that they will attract us away from the main
focus of this thesis, however, this is not true as these materials are not only indispensable
ingredients in studying the geometry of Seiberg-Witten integrable systems, but also shed
new lights on some discussions in chapter three. For example, the two remarks (remark
4.2.10 and 4.2.11) given in this subsection provides rationality in the description of the
local model near discriminant in sections 3.1.6 and 3.1.7 in the last chapter. Besides, the
vanishing cycles and the associated monodromies contain essential information about the
initial conditions for the Wall-Crossing Structure that had been discussed in chapter two.

No originality is claimed for the work done in this subsection, though

substantial efforts have been poured in arranging and polishing the results
existing in the physics literature.
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To begin with, let us discuss some ideas that apply to the general SU(n) case. And
their effectiveness will be illustrated by specifying the SU(3), which is our main concern
in the next subsection.

Recall that in section 4.1.2, we write the Seiberg-Witten curve in the SU(n) case (i.e.,
the curve associated to the simple singularity of A,,_;-type) as follows:

Co: = Po(x) = Wa, ,(z,0)° =A™  zyeC

=Py x Pom = Wa,_,(z,u) + A") x Wa,_,(z,u) — A")
= Wa,_, (@;us, -+ up1,un — A")) X Wa,_, (z3us, -+ U1, up + A™))

We denote the roots of the polynomials P, by {e;"}, and their discriminant by §(P,.)
respectively. The corresponding vanishing locus of 04 := 6(P,+) are denoted by A.. Thus
the (quantum) discriminant d,, defined as the discriminant of the polynomial P,(x), is
given by the product of 6, and §_. Consequently, the (quantum) discriminant locus, i.e.,
the locus of zeros of d,, factorizes as

Ap=A, UA_

On the other hand, as a genus g = n — 1 Riemann surface, C, is obtained as a double
cover of complex z-plane, ramified at the 2n branch points {e"}. It can be constructed
by pasting the n-copies of complex plane along the n-branch cuts given by line segments
[; connecting the pair of branch points {e,f}. We now construct the canonical symplectic
basis for Hy(Cy,Z) as follows:

e o': the cycle encircling the branch cut [;, i.e., the cycle that encloses the pair of
branch points {e°}, fori =1,--- ,n — 1.

e [3;: the cycle encircling the branch points e and ¢}, fori=1,--- ,n — 1.

By proper and consistent choice of orientations, the above cycles can be arranged
into a symplectic basis in the sense of that the intersections among {«’, 5;} satisfy the
following conditions:

(@, 09y = (B, B) =0 (o, 8) = dL. (4.227)
A particular basis for the space of vanishing cycles

The vanishing cycles v € H{(Cy,Z) are caused by the coincidence of two or more roots
among e or e; as the moduli parameter u approaches to the various components of the
discriminant locus A,. We denote by uf] the vanishing cycles associated to the colliding
of the two roots e and e;-:, for 7 < 7. Of course, not all of these @ vanishing cycles
are independent, we thus selects from them the following 2(n — 1) ones as follows, which

generate the first (middle) homology group H;(Cy,Z).

e v;: the cycle encircling the branch points e/ and ¢/, |, fori =1, ,n — 1.

e v, : the cycle encircling the branch points e; and e, |, fori =1,--- ,n — 1.
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We also denote by v, the cycle encircling the branch points e and e}, and by v,
the cycle encircling the branch points e; and e, .

In terms of the symplectic basis {a?, 8;}, the set of vanishing cycles {v;"} can be
expressed (see: | Il ]) as:
(V=B —Bi—a', 1<i<n-—2
v =fim—fitatt —2a", 1<i<n-—2

Vpo1 = —PBn-1+ Z;:f a'

S - (4.2.28)
y’n,—l - _/BT'L—]. - 2a
VﬁL =

For example, in the n = 2 case, we compute by using the above formulas that there
are exactly two vanishing cycles, namely vy = (5, and v, = 1 + 2a?!, which are exactly
the vanishing cycles associated with singularities +A? respectively in the SU(2)-case.

While in the n = 3 case, we have the vanishing cycles Vii, which corresponds to the

coincidence of the branch points ef and eip for i = 1,2, as well as the vanishing cycles
v; corresponding to the coincidence of ef and ef. In terms of the formula (4.2.28) above,
these vanishing cycles are given in the symplectic basis as follows:

v =0y — 1 —al v =Py — f1+a® —2a!
1/;’_ — —524-@1 v, = —62—2042 (4229)
vi =B vy =01 +2a +a?

Remark 4.2.8. By the construction of the set of vanishing cycles (4.2.28) above, it is
clear that —vF = 7" UF | that is

=1 7
Y =0 (4.2.30)
=1

which is consistent with the formulas above as can be easily verified as

n n—2 n—2
Z v = (Z Biy1 — Bi — 0/) + <—5n—1 + ZO/) + b
i=1 i=1 i=1

n—2 n—2 n—1
=1 =1 =1

=Bn1—P1— P11+ 61 =0.
Similarly, we have

n—1

n n—2
D= (Z Bivr — B + o't — 20zi> —Bar = 20"+ B+ Y o' +a
i=1 i=1

=1

n—2 n—2 n—2 n—1
= (Z Bit1 — @') —Bp—1+ 51+ ( o't — Oéi> =Y o' =207+ ) o' +a

i—1 i=1 i=1 =1
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+ = 0.

n2 n—2
- [(Z ﬁi"‘l - 51) - 671—1 + 61 (Z ottt — O/) ot + ol
=1 P

In connection with the SW-integrable system, this means that we can choose the coor-
dinates {a;}7=! on B~ C"! as

a; ::j{ Asw  di=1,--,n—1 (4.2.31)
Vi

2

such that: Z?:_ll a; = 0, which follows from the condition: Y 7' vF = 0.
As the set of vanishing cycles generate H;(C,Z), we could select 2(n — 1) vanishing
cycles such that they are linearly independent.

Proposition 4.2.3. The vanishing cycles v, 1 <i < n —1 form a basis of the middle

7

homology group Hy(C,7Z) of the SW curve C.

Proof. From the formula (4.2.28), we see that the transition matrix between (v - - - v;f_|

and (B -+ Bt ot ---a™ )" is given by the following matrix:

-1 1 0 0 0 | -1 0 0 0 0

0 -1 1 0 0 | 0 —10 0 0

0 0 0 -1 1 | 0 0 0 ~1 0

P 0 -1 ] 1 1 1 1 0
=110 0 0 | 2 1 0 0 0
0 -1 1 0 0 | 0 —21 0 0

0 0 -1 1 | 0 0 0 2 1

0 0 0 0 1] 0 0 0 0 -2

(A B
~\C D
From the expression above, we conclude that det(A) = det(C) = (—1)""!, and
det(B) = 0, det(D) = (—2)"~!, consequently
det(M) = det(A)det(D) — det(B)det(C) =2""1 #0
[l

For example, in the SU(3) case described in (4.2.29), we see that the remaining

vanishing cycles 1/§E can be expressed in terms of the basis {Vii}izl,g as

it = vt —vf
Vg = —U] — Uy (4.2.32)
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Proposition 4.2.4. The only non-trivial intersections among various vanishing cycles
given in (4.2.28) are given by the followings:

<Vi+7Vi++1> <Vi_7yi_+1> =1

o) = (o) = 1
() = =2 () = 2 (4.2.33)
<V:,V;> = -2 <V:7V1_> =2

Proof. First, we consider the case that the intersections are between those with “+ 7 or

(13 b

— 7 sign only, i.e., not of the “mixing type” to be considered momentarily. By the form

of vanishing cycles ;" for 1 < i < n — 2, we see that when |i — j| > 1, (v, I/]i> =0, as

the appearance of the terms like (a’, 8;) would be forbidden in this case. Thus, in this
sub-case (1 <7 < n—3), the only possible non-vanishing intersections would fall into the
following two types:

(" vi) = (Biyr — Bi — o, Biss — Bis1 — a1

= (Bir1, —a'Ty =1

Similarly, we can show that (v; , v, ;) =1 for 1 <i <n — 3, while

n—2
<V:_2, V;_—1> = <5n—1 - 571—2 - an—27 _Bn—l + Z ai> = <_Bn—2a an—2> =1
=1
and
n—2
<V7—:_—17V:> = <_Bn—1 + Z 041,61> = <a1761> =1
=1
Similarly, we have that

Wy v )= Bn1— P+t =2a"% =B, 1 — 22"

= Bo-1,—22" ) + (", =By =2—-1=1

and )
<V7:—17 V_> = <_ﬁn—1 - 204”_17B1 + Z ai + 051>
i=1

= (—Bp1,a" ) =1

We still need to check the cases when v and v intersect with vEfor1<i<n-—3.

n—2
<Vi+7 V:—1> = <Bi+1 - 61 - aia _Bn—l + Z ai>
i=1

n—2 n—2
= <5¢+1,Z Oéi> - <5¢>Z ai> =1-1=0
=1 =1

(Vi Vpo1) = <ﬁz‘+1 — Bi+ ottt —2at —B, 1 — 204n_1> =0

and
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Next, we show that (v, ") = (v,-,v;7) = 1. Indeed, for 1 <i < n — 3, we have that

(v vy = (Br, Biy1 — Bi — o) = (Br, —a') = 4.
and

n—1
<V7:7Vz> <ﬁ1+20&+0¢ Bz+1_ﬁz+a — 2« >

=264 1—1—6 =25 -4

Now we consider the “mixing” of “+ 7 sigh types. First, note that for 1 <i <mn — 2,
we compute that

<V v, > <Bz+1 Bi — Oéi; 5j+1 — 5]‘ + ot — 2aj>

= (Biv1, o) = 2(Bi1, ) = (Bi, o7 Th) — (Bi, —207) — (o, Bjua) — (o, —B;)

+1 j+1 ) )
= —0lf 200, + o7 — 28] — 6, + 6

From the above identity, we infer that when ¢ = 7, the value of the above identity
specialize into —1 — 2+ 1 = —2, while for j =4+ 1, it equals to 2+ 1 — 1 = 2, which

finishes the proof for the case 1 < i <n — 3. Next, we check the remaining cases:

For 1 <i <n — 2, we consider:

<Vn Y < ﬁn 1= 20" 751'4—1 - Bz - Oéi> = <—20én_1,6i+1> = —2(5::_11

n—2
<V7—l_17z>:< /671 1+Za762+1 /81—1—05 22>

= (—Bn—1, &) + (=Bp_1, —2a") + <Z o, 5z'+1> - <Z 04i75i>
=1 =1
n—2 n—2
= 5:‘::11 - 2(5271 + <Z Oéi, 51+1> — <Z Oéi, ﬁz>
i=1 =1

from which we deduce that when ¢ = n—2, the above identity becomes 1—-2x0+0—1 =
0, while for ¢ < n — 2, it becomes 0 —0+1—1=0.

Similarly, for 1 <17 < n — 2, we have that

(v, vy = <51—|—Za +at ﬁl+1—ﬁz—a>
51,—CY <Za>ﬁz+1> <Z > Bz—l—l) <1>5i>
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n—1 n—1
=0; + <Z Oéi,ﬁz‘+1> - <Z,3i> — 4
=1 i=1
n—1 n—1
- <Zai’ﬁi+1> — <Z@@> =1-1=0.
=1 1=1

Next
vy ) = (81, Bis1 — B + o' = 2a") = (B, —2a") = 25}
then
n—2 n—1
<V:zr—1a Vp) = <_/Bn—1 + Z o', B1 + Z o'+ a1>
i=1 i=1
n—1 n—2
= <—5n1,20/> + <Zaz,ﬁl> =14+1=2.
i=1 i=1
and then
<V7:—17 V7j> = <_5n71 - 204”717 61> =0.
and then

n—2
<V:—17 V5_1> = <_6n—1 + Z ai’ _ﬂn—l - 2an—1> = <_6n—17 _2an—1> = 2.

and finally

n—1
(v ) = <51,51 + Z a' +041> = (B,a') + (B1, ') = —2.
i=1
which completes the proof of the proposition. n

With the above proposition, the monodromy action M+ associated to the vanishing
cycle v, in the basis of H,(C,Z) given by the vanishing cycles {v¥}7~! can be determined

easily by using the Picard-Lefschetz formula:

M, +(0) =6+ (v, 0) v (4.2.34)

More explicitly, we have for 1 <i,j <n — 2 that

(v - j=i-1 vy =25 j=i
M) = Quf v G=itl  Me5) = o+ j=i+]
\y;r j#Fi+1,i—1 vi J#FLiI+1
(v —20; j=i-1 vi +v; j=i+1
MV;(Vf)Z Vj++2’/[ j=1 M,,;(yj‘): v, —y; j=i—1
_l’_ . . . —_ . . .
v, JFi— 1 v, Jj#Fi—li+1
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Now we list the remaining case:

)= vi+vt i=n—-2
v i<n—2

n—1

+ =1

V;_Vz
oo (7

+
VTL
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Remark 4.2.9. Let a,b be two variables that can take value from {+}. €4 is the two
dimensional anti-symmetric tensor. Denote by I;; the intersection matriz among the
vanishing cycles {v;FY"=!, which in our case was chosen to be the standard symplectic
metric. Recall that the Cartan matriz for A,y is given by ((cy, ;). then the above

computation can be summarized more compactly as

Moo (1)) = V) + (€50 + Lji) (v, o) v

Remark 4.2.10. The intersection matriz of the standard symplectic basis {a', B;} is the
standard symplectic metric given as

Q: ( Onflxnfl ‘ ]Inflxnfl ) (4235)

_]Inflxnfl ‘ Onflxnfl

Then there ezists some symplectic transformation U € Sp(2(n —1),Z) on the sym-
plectic basis such that the transformed intersection matrix has the following form

O On—lxn—l ‘ OA _
Q= ot 4.2.36
( —Capy | Opoixn—1 ( )

1s the Cartan matrix of type A,_1, which is given as follows

where the matriz Cy

n—1

2 -1 0 O0-- 0 0
-1 2 -1 0-- 0 O
o -1 2 —-1--- 0 O
o 0 0 O 2 -1
o 0 0 O -1 2

Notice that the matriz Q is again symplectic since it satisfies the following defining
property of symplectic matriz _ _
Q100 =0

This means that the basis of one cycles {a’, 3;} can be transformed into {&, EZ} such
that o L
<az7ﬁi> = 27 <&l7ﬁi:|:1> = -1

We note that the basis cycles satisfying the above condition can be obtained by “pushing
down” the n — 1 independent two spheres S;, 1 <1 < n — 1 (see proposition 4.1.14) in
the ALE fibers when lifting of SW geometry to K3 fibration constructed in section 4.1.4.
Here, the term “pushing down” means that after degenerating the ALE fiber in the K3
fibration, the vanishing two sphere S; becomes the two closed “strings” encircling {ezi}
and {e], et} respectively.

10N
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Compatibility of the Picard-Lefschetz formula with the monodromies com-
puted in terms of the prepotential

Suppose that the cycle v vanishes at the component {u : Z,(v) = 0} C A, of the
(quantum) discriminant locus. We know that the monodromy acting on the middle-
dimensional homology group I',, = H;(Cy,Z) of the torus fiber C, is given in terms of the
Picard-Lefschetz formula, that is, for § € [}, the (quantum) monodromy M, associated
to v acting on ¢ as

M, d— 6+ (v,0)v (4.2.38)

We now show that the above formula can be obtained analytically from the prepo-
tential F computed from the periods of the torus fibers.

Recall that in terms of the period integrals, the prepotential function is given by the
following

F(a) = / ap da

== (ap a)= (f paw- § ASW>

Denote by @+ = {a;} the set of positive roots. We have computed in great details in
the SU(2) case in the last subsection (see the lines of the proof of the proposition 4.2.1)
the analytic formula for ap (and consequently that for F(a)). For general SU(n) case,
the expression of ap in the limit where |a - ;| > A was given in the physics literature

where

i

(for example in | | and| i ]) as follows
1 L2 1 2
ap = 5 ala- a) {ln (aTa> —1—1} o ala- a) ln%
acedt acdt
1 a? 1 a
where hY denotes the dual coxter number (see for example | |) of the gauge group

SU(n), which equals n in this case.

Now, suppose that the cycle (charge)

v=(g a)=ap-g+a-q=) g¢'Bi+qa €L, =H(CyZ)

1

vanishes at some place in the moduli space, then there exists some transformation U &€
Sp(2n — 2,7Z), such that

VU:(g q)U:(qula()?aO)

where ¢; = ged (g%, -+ , 6" Yiqu, -+, qn_1), the greatest common divisor of the num-
bers inside the bracket.
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Thus, the singularity in the moduli space corresponds to {¢ia' = 0}. By using {a;}
as local coordinate near the singular locus, it follows from (4.2.39) that ap is expressed
near {qia' = 0} as

1 - q~1a1
ap; ~ 5 81 (G1)*a' In e (4.2.40)

Remark 4.2.11. Assume for simplicity that ¢; = 1, then by integrating the above formula
for ap1 with respect to a® gives that near the singularity, we have the following expression
1)2 1
Fla') = 2%” (&2> In aX + holomorphic part
By setting the parameter A to be 1, we see that this is exactly the from of the local
model of the prepotential function near the discriminant locus. (compare with the formula
(8.1.78) in subsection 3.1.6).

Using the formula (4.2.40), we can compute the monodromy around the origin as
follows:

Consider a loop around {a! = 0}, i.e., a' — a'e®™ 0 < § < 1. Inserting in the
formula (4.2.40) above, we see that

1, 1 p2mif
ap] = — a In
D, o (Ch)

1 ~ 1 276 q~1(11
— it g B2
1

= 1
= — ()2 a' €2 In QXL +0(G)2al €2

~ 1 ~
Y L 9 1 omio . Q10
s — In——
AT gy (@) e e In T
1 ) )
T (q~1)2 al 627r16 In (627”9)
T

By specializing 6 = 1, we get that ap; + ap 1 + (¢1)? a', consequently, we have that
the following proposition:

Proposition 4.2.5. The monodromy M 4 ... o) acts on ( ap a ) by the following ma-

triz: (((jl)gEH 3) o

where I is the (n — 1) x (n — 1) identity matriz, while the (n — 1) X (n — 1) matriz Eq;
1s defined as

(Ep1)"9 =68 67,

Remark 4.2.12. In comparison with the remark 4.2.10 above, we see that when ¢; = 1,
the monodromy (4.2.41) above acts on (ay a},) by the following 2 x 2 matriz:

11
Mfocus—focus - ( 0 1 )

which is easily seen to be the focus-focus type singularity (see formula (3.1.73) in
section 3.1.0), i.e., the monodromy near the local model of the discriminant locus.

This provides further rationality in the structure of the local model near the discrimi-
nant in section 3.1.6
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Let us remark that if M,, acts on the row vector = := (ap a) by the right multiplica-
tion of the matrix M,,, then it acts on the cycle y = (g q) by the right multiplication of
the matrix (M;")". This follows from the requirement that the central charge of v (and
consequently its “mass”) should keep invariant under the monodromy action. Indeed,
suppose that the action on ~ is given by the matrix MV, then we have that

Z(V):g~aD+q-a:’y~Etl—>(’y~//\/lv,,>-(E-Ml,)t
:7-<]\7V-Mty>-EEZ(V)

— M, M =1+ M, = (M) (4.2.42)

Thus, by (4.2.41), the monodromy Mg g ... o) acts on the charge lattice ', by right
multiplication of the following matrix

Moy = ( g (‘fl);E” ) (4.2.43)

Besides, since our basis {a?, 3;} is chosen to have the intersection matrix given by the
standard symplectic metric € (see (4.2.35)), we see that the intersection number between
the two cycles v1 = (g1 q1) and 75 = (g2 q2) can be computed as

(11,72) = ((81a1), (8242)) = <Z (91 i + qu '), Z (95 i + qai Oéi)>

% 7

:Zgé%—zgiQQi:gz-ql—gl-qg

0 I
:(ngh)'(_ﬂ 0)(%1 ) =7 - Q=7 QAL (4.2.44)

Remark 4.2.13. In physics literature, the above intersection formula between two “charges”
(cycles), which gives the polarization of the complex integrable system, is called the Dirac-
Schwinger- Zwanziger pair (DSZ-pair for short). It is an integer-valued bilinear form
which gives quantization condition in physics.

Definition 4.2.1. We say that two charge vectors v, and 7, to be local at some place
u € B if and only if (y1,v2)=0 at this place; and non local otherwise.

Proposition 4.2.6. For v € ', = H1(Cy,Z), a vanishing cycle situated at the point
uec Ay, and U € Sp(2(n —1),Z), we have the following relation

Myy=U"1" M, U (4.2.45)

Proof. Suppose that the monodromy M, is implemented by taking a small contractible
loop around the singularity u (or irreducible component of the discriminant locus), and
the monodromy M, .y by a small contractible loop around the singularity u’. Connect
the two singularity component by a line [, which is so chosen to avoid any other singular
component. Thus, to go (which means by parallel transportation) from the place u to
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the place u’ along the line [ has the effect to transform an arbitrary cycle v situated near
u into the cycle v - U near u’. In order to compute the action associated with v - U,
i.e., M,.y(7), we need to place the cycle v near the singular component u’, and then go
around a small loop around it to see to where it carries the cycle in question. However,
this can also be obtained by first parallel transporting the cycle + near to u along the
line [ by using the Gauss-Manin connection. This has the effect that the cycle v will be
transformed into the cycle v - U~!. Then, we go around a small loop around u, which
resulted in the new cycle v - U~! - M,. Finally, we take the cycle back to the starting
point near u’ along the line [. The total effect therefore is to transform v into the cycle

v-U~'- M, -U. This finishes the proof of the proposition. n

Before stating the next proposition, we introduce the notion of Kronecker product of
two matrices (c.f., | |), which would be very useful in writing the monodromy matri-
ces compactly.

Definition 4.2.2. Let A be a m X n matriz and B a p X ¢ matrix, then the Kronecker
product of A and B, denoted by A ® B, is defined as

CLHB cee CLlnB
A®B = ST (4.2.46)
am B  amnB

The following identities hold whenever the operations make sense:

(AB)'=A"'9B"' (A®B)!=A'® B
(A B)@C =A@ (B®C) (A®B)-(C®D)=(A-C)®(B-D)

Proposition 4.2.7. Associated to the vanishing cycle v = (g q), the monodromy M,
s given by the following matriz

M, =1+Q-ov (4.2.47)

Proof. Defining a matrix q; := (¢;0---0), then by using the definition of Kronecker
product, it follows that

G (@1)* 0 0
L 0 ] 0 0 0
dq1 ®qp = : ®(@0---0)= :

0 0 0 0

which is seen to be exactly the block (¢;)?E;; in the matrix (4.2.43). Thus the
monodromy matrix acting on the one cycles can be rewritten as

I q'®d 0 qi'®ar
My = ( 0 a ]E@(h > = Iy(n-1)x2(n—1) + ( 0 a 89(11 )
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By using the standard symplectic metric €2, the above matrix can be further rewritten
in the following form

TN - 0 -
M,,.U:I[—i-(qé )@(0 Oh):]I—i-Q'(qlt)@(O qi)

—1+0-(0 ') ®(0 G)=T+Q-(v-U)' & v-U)

Then, by using (4.2.45), we see that
M, =U-M,y-U!

=U-I+Q-(v-U)@w-U)]-U"!
=1+U-Q-(v- U)W -U)-U"
=1+({U-Q-UY vVev-(U-UM

As the transition matrix U belongs to Sp(2n — 2,7Z), it follows that U - Q- U' = Q.
Inserting it into the above formula, we finally get that

M, =1+Q- Vv

This finishes the proof of the proposition. O]

Now suppose that v = (g q) = (¢;¢:) = >, ¢'8i + ¢;o", then the formula (4.2.47)
can be rewritten as

M, =1+(Q-(g q')® (g a

B 0 I gt
(1) ()o@
14 9 )o@ @14 928 92d
—g' —g'®wg —g'®q
that is

I+qd®g d®q
. _ 4.2.48
M M(gQ) ( _gt®g ]I—gt®q ( )
_ (G tws
—9'¢" 8 — g

Proposition 4.2.8. The monodromy action M, computed as above (4.2.47) is given
exactly by the Picard-Lefschetz formula (4.2.38).

Proof. Given § € Hy(Cy,Z), by the formula (4.2.47), the monodromy action on it is given
by
M) =6 M,=6-I+Q @)

using (4.2.44

=5+(6-Q- v )5—|—<V,5)V
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Proposition 4.2.9. Given two local vanishing cycles v and v,, we have that
My, M,,] =0 (4.2.49)
Proof. Using Picard-Lefschetz formula, we can compute that

MU2 Ml/l(a) = 6_'_ <V175> v+ <V275> vy + <I/27<I/17§> Vl) 1%

=0+ (v1,0) v1 + (2, 0) v + (11, 0) (12, 11) 1 RS e O+ (v1,0) v1 + (10, 6) 1

which is invariant under the exchange: 1y <— 15, consequently,

MVQ : Ml/l - Ml/1 : MVQ <1:> [MV17MV2] = O

Another proof of proposition 4.2.9

A direct proof by using the matrix representation (4.2.48) of M, is also interesting.

Suppose M,, - M, = A = ( ZH 212 ), then by the formula (4.2.48), the entries are
21 22

given respectively by

an=I4+q; g +dy®g + (dh ®g) - (a ®g1)

q}®g2=q,Rg}
== 1 q,®Rg +d0g + (a2 (d ®g)

(A®B)-(C®D)=(A-B)®(C-D)

I+ @g+dbog+ (0, g)(d - g1)

which is clearly invariant under the exchange of indices 1 <— 2. Similarly:

G =qiOq +9Rq+ (450 g) - (41 ®81) — (4 ®q2) - (8] @ a1)

_A08:=0,08) ¢ o o
=SS gl oa ta @ m (@@ (4 @e) — (©a) (g 9a)
2 —H2 2

(A®B)-(C®D)=(A-B)®(C-D)

AR+ 9O+ (q2-q7) ® (g5 - 81) — (92 87) @ (a5 - q1)

As (v1,15) = 0, we have that g2 - q4 = g1 - qb. Inserting it in the above identity, we
get that

a2 =q) ® a1+ d @2+ (a2 d)) @ (8- 81) — (82 d1) @ (a4 )
By exchanging the indices 1 <— 2, the last two terms in the above identities become
(a1~ a) ® (g1 - 82) — (81 az) ® (ay  q2)

(v1,v2)=0=>g1-ab=g2-q}

(a2 ay) ® (8% - 81) — (g2 1) ® (a3 - an)

from which it follows that a5 is again invariant under exchange of indices.

By exactly the same reasoning, the invariance of the other two entries: as; and ag
under 1 <— 2 can also be obtained. As a consequence, we see that the two matrices

M, commutes with M,,. O.
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In terms of SW curve as weight diagram fibration

Now, we give the description of the vanishing cycles in terms of the SW curve written
as the weight diagram fibration (see section 4.1.3). The curve is given by the following

2n

A
Cu: z+7+2WAn_1(:v,u) =0

with the associated Seiberg Witten differential given by (formula (4.1.47))

d
Asw = e
z

The advantage of this form of equation makes the relations between the vanishing cy-
cles and the roots of SU(n) more transparent. The idea presented here is due to | ]
and | .

Recall that for given z and u, the solutions to the equation defining the curve C,

above are given by
{61(27 u)7 e ,€n<Z, u>>}

which correspond to the n weights of the fundamental representation of SU(n), and
could be used to serve as local coordinates on the corresponding sheets of the fibra-
tion. Thus, on the i-th sheet, the coordinate is given by the Seiberg-Witten differential

restricted on it as

)\i = —BZ‘(Z, ll)ﬁ
z

Define the a cycles to be the lift of the unit circle S* := {z : |2| = 1} € CP! of the
base of fibration, i.e.,

o' = lift of S* to the i-th sheet of the fibration. (4.2.50)

Remark 4.2.14. Notice that in the proposition 4.1.10, we used the notation y; for the
cycle o defined here. As in the A,_1-case, we have that ., €;(z,u) = 0, which implies
that the cycles o'’s are not independent such that

By defining the a periods as a' := fai Asw, the above identity becomes the desired
S a =3 f dw=0
i=1 i=1 7o

As had been discussed before, there are n— 1 pairs of branch points zii, 1=1,--- . n—
1, each of which related by the symmetry relation (c.f., (4.1.55))

+.— _ A2n
2z = A

plus the other two branch points, which are situated at 0 and co. The pair 23~ corresponds

to the colliding of the roots e; and e;11, i.e., the colliding of i-th branch and (i + 1)-th
branch of the fibration, which is associated to the simple root « of the Lie algebra.
Consequently, by proposition 4.1.11, the monodromy around this pair of branch points is
given by the fundamental Weyl reflection M,, (see (4.1.16)) associate to the simple root
Q.
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Remark 4.2.15. FEach of the branch point zljE has degree 2, while that for 0 and co being
n — 1. Applying the Riemann-Hurwitz formula to the cover

Cy — CP' = &2

we get that the relation between the Euler characteristics as

X(Cy) = (number of sheets) x(S?) — Z deg(p;) — 1
branch pointsp;
=2n—-2n—-1)—(n—12=4—-2n

Using the relation between Euler characteristic and the genus of the curve Cy

X(Cu) =2- 29 (Cu)

we get that
g(Cy) =n—1 as desired.

The p-cycles, which are dual to the a-cycles are defined as

—

B = (? ,i.e., the lift of path up to i-th sheet connecting z;"and 0. (4.2.51)

)

Proposition 4.2.10. The cycles {a', 3;} constructed above satisfy the following inter-
section properties
(a',a) = (8, 8;) = O;
(o', Bj) = 05
Proof. The identities in the first line are clear since the two entries inside the intersection
bracket come from different sheets, thus are void of intersection. For the non-trivial ones
in the second line, we notice that the path %; intersects with S on the base of the

fibration in exactly one point positively (by proper choice of orientation), and by lifting
the configuration up to the i-th sheet, the intersection pattern remains unchanged. [

Next we show that in this setting, the large u (semi-classical) behaviour of ap (see
(4.2.40)) can be reproduced, which generalizes similar computation we had performed in
the SU(2) between the remark 4.2.3 and remark 4.2.4.

Proposition 4.2.11. For |u| > A", we have that (compare with the formula (4.2.59))

na®  a*
apj ~ 97 In N
Lemma 4.2.12. On the k-th sheet, the Seiberg- Witten differential can be approximated
by .
A\ R a_@
21 2

Proof. By definition, we have

K dz dz dz ,
a’ = —r— = —ep— & —ey — = —2mey
ak z |z|=1 z lz2|=1 %

Using this, we get that

d kd
)xk:—ej—ZN a® dz

z 2Tz
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Lemma 4.2.13. For large [u|, 25 can be approzimated by
A2n
(a*)"

Proof. Write the left hand side of z + A72n +2Way, ,(z,u) =0as 2][,(x —e;). When |u]
becomes very large, i.e., A is relatively very small, we see that the pair of branch points
& approaches to the pair {0, 00} (for examples, see the formula (4.1.54) and (4.1.55)).

We assume in the following that z;" is the larger one. Inserting z = 2} in the equation

defining C, above, as z; is very large, we see that < ’\ ~ 0. Also, some roots collide with

AN (S

ex, without loss of generality, we assume that ez ~ ek, Vi # k. Thus, we get the relation
zr —u, = e}, but as e &~ a¥, we get that z;7 ~ (a¥)". Since 2z, = A?", we get the

remaining approximation. ]

Proof. (of the proposition 4.2.11) As had been noted in the proof of the lemma above,
we see that in the semi-classical regime, z, — 0, thus by lemma 4.2.12, we have follows:

+ +
Zk * aF dz a® dz
apr = P Asw = A R ——~ —
0 - 2m z 27 z
Bk Zk (ak)n

k k\n k k\ 27 k k
_ o L_Q_ID(GA) _ne, o

i A /(a®) 2w

Vanishing cycles and the associated charges

First, let 2" = z/:z/_ denote the path that connects the pair of branch points zjE By
lifting 2" to the i-th and (i + 1)-th sheet, we get the cycles denoted by QZ;F and @l i
respectively. Since the Weyl reflection r; associated with the root «a; acts on the sheet by
the permutation simple transposition (7,7 + 1), i.e., by permutating the i-th sheet with
the 4 1-th sheet, we see that the difference cycle @* > i1 1s closed as 9;;1 represents

the reverse cycle of :?7;“ which intersects with each other over the points z* where the

i-th and (7 + 1)-th sheets collide. We then define the following closed cycles
— P — P (4.2.52)

When the moduli u approaches to some components of the discriminant locus Ay C B,
the two branch points z;t come together, which causes the path £ and consequently
the cycle 7;" to shrink into zero. This implies that 7;" is the vanishing cycle associated
to the pair of branch points {zzi} However, as the pair of branch points zf satisfies
the relations z; z; = A", we see that when the two branch points hit each other, their
common value equals +£A". This implies that there are two ways for the two branch
points to get together corresponding to the + signs. Thus, besides the (n — 1) vanishing
cycles ;T associated to the (n — 1) pairs of branch points, there should be another (n—1)
vanishing cycles which are to be constructed in the following. Together, they will form
the basis of the first homology cycles of the SW curve. Denote then by the path &2
with homology class represented by ;" followed by winding around the origin once

counterclockwise, i.e., as homology one cycle on the base CP!, we have that

(771 = 2]+ (5] (4.2.53)
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We need to lift these paths to the sheets of fibration to get the required vanishing
cycles, we will employ an method that generalizes the construction of 7;". Denote by

:@Zi(w) the lift of the path & to the sheet labeled by the weight w of the fundamental
representation of SU(n). As the pair of branch points {2} is associated with the simple
roots o; = 41, with the monodromy around the branch points given by the Weyl

reflection r; = r,,,we see that the path &}(w) on the sheet labeled by w is followed by

the returning path :?Zi(m(w)) on the sheet labeled by the weight r;(w). Motivated by
this, we define the following one cycles

v = %Z (w, a;) PE(w) (4.2.54)

where N is some normalizing constant so to make the vanishing cylces above indepen-
dent of the weights of the representation (thus independent of the representation itself).

Claim: To make the cycles constructed above independent of the representation, the
normalizing factor N can be chosen in such a way that [ |:

Proof of the claim: We consider the integral of the SW differential over these cycles.
First note that on the sheet labeled by the weight w, the differential Agy becomes:

dz dz dz
Asw = —r— = —ei(z,u)— = —(w, p) —
z z z

where ¢ = a-H = Z?:_ll a'H; € b, the element in the Cartan algebra defined in
section 4.1.1, then we compute as follows:

1 2
Asw = — > (w, Oéz'>j{ Asw = — > (w, ai>7{ Asw
é_i N g FE (w) N % P (W)= P (ri(w))

2
=N (w, a) ]{N Asw — j{N Asw
" PE(w) PE (s (w))

i

2 dZ
=y Zwa 7{}?(10) ((ri(w), 6} — (w, ) Z
__E w. o (w, i) « z d_z
— 2w 7{%) R (o 0(2)
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Consequently, by choosing N such that 2= = 3" (w, a;)(w, o;), we see that the inte-
gral is independent of the representation. 1.

Thus, the overall effect is that as homology class of one cycles, i.e., when the integra-
tion over them is concerned, we have that

7] =~ |77

Besides the (n — 1) pair of branch points {z}, we also have two more branch points
{0, 00}. Let us connect them by a path .., which connects all the sheets with weights
belonging to one orbit of the cyclic group generated by the Coexter elements. The Co-
exter element specifies how the sheets are connected above oo.

By lifting the path Zy,, by using formula (4.2.54), we get the closed one cycle denoted
by 7+, together with {77}, we claim that their intersections are the same as that being
satisfied by the vanishing cycles {V »_, constructed before.

Proposition 4.2.14. The intersections numbers among {U;-}, satisfy the relations
(4.2.33) given in proposition 4.2.4.

Proof. Instead of direct computation, we establish the one to one correspondence between
the two sets of vanishing cycles, namely {7:"}7_, and {¥;"}?_,, thus the proposition follows
from the proposition 4.2.4. Before establishing the correspondence, let us first note that
their are two ways that the pair of branch points {z;"} can come close to each other,
which correspond to two ways that the roots of y* = (Wa, _ ( u))? — A% collapse with
each other, say, z;5 = z; = A" corresponds to the roots e; Colhdmg with e, "1, while
z7 = z; = —A\" corresponds to the coincidence of the roots e; with e;, ;. Similarly, by

approximating 0 by eA™ and oo by = A" as € — 0, we deem that e — 1 corresponds to the
root ej colliding with e, while e — —1 corresponds to the colliding of e; and e, . In this

way, we associate the vanishing paths {@}}”_1 (and consequently the vanishing cycles

{TEIh) to {vF}ls as well as % (and thus the vanishing cycles 7X) to v=. a

Proposition 4.2.15. Let a,b be two variables that can take value from {t}, then the
monodromy actions associated with the vanishing cycles can be summarized as

Mo () = T} + (ean + Lij){aj, i) (4.2.55)

where €, is the two dimensional anti-symmetric tensor, and /;; the intersection matrix
among the vanishing cycles {;"}7~', which in our case is chosen to be the standard

symplectic metric. And the Cartan matrix for A4,_; is given by ((Ca,_,)i;) = ({as, o).
Proof. This follows from the above proposition and the remark 4.2.9. O]

By the above proposition, we will not distinguish between v, 1/ and 1/Z , we simply use

notation V to denote both of them. Using the same notation ui = (g q) for the
charge vectors associated to the vanishing cycles v; 1/ . Namely, we have

n—1
= gBit+ad = (g @) (B o)
=1

Next, we will use the information we have obtained so far to give the expressions of
7+ in terms of the roots of the Lie group SU(n) (c.f., | D).

%
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Proposition 4.2.16. The charge vectors associated to the vanishing cycles can be ex-
pressed as
v" = (i, (pi+1) ) v, = (i, pi ;) (4.2.56)

where for i,j such that (cy,a;) # 0, we have that the integers p; are restrained by
pi —p; = Ly (4.2.57)

Proof. First, by (4.2.54) and the proof of the claim, we have that

Z(VZF—VZ'_)Z% )\sw—j{ )‘SW:%N —]{N/\sw
V;r v, (@j Asw 37;

dz
z

by (4.2.53): 2] — 7 =S1 7{

lift of St

Asw = jgft of St <ai’ gb(z)>

p=a-H dz dz
j{ (aj,a-H)y — = (aj, Hla— = ;- a
lift of S! < lift of S! <

2 —v)=Z2-(g @=(ap a)-( —v)

Comparing, we get that

But

vi—v; = (0,) (4.2.58)

7

Next, by Picard-Lefschtz formula, we have that

Moo (V) = v} + (v, 1)) vf

Comparing it with the formula (4.2.55), we have the following relation

<l/q l/l-) = (Eab + ]m’)(@j, Oéi> (4259)

1777

Now suppose that v, = (g;, q;), then by (4.2.58), v = (g;,q;) + (0, ;). Then, by
(4.2.59), we get the following relation:

Wi vh) = Loy, ai) (v, v7) = Loy, o)
(v vy) = Iy — 1){ay, aq)

Using these identities, we get that
(i +(0,03),v57) = (v, v5) +((0, i), (85, 45))
= Lij{aj, ai) — (i, 85) = (L — D{oy, 0) - = g5 =«
By using the third identity again, we have that
(Vi+77/f> = (i, i + i), (@i, Qi) = (i, q5) — (o, i) — (i, )
= Lij{ai, a5) = (i, 05) = (i, @) — (o, @) = Lij{ai, o)
It is clear then that the above linear equation is solved by
Qi = Pi &

for some integer p; € Z, and the integers {p;} satisfy the condition (4.2.57). O]
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Remark 4.2.16. There are certain ambiguities in determining the charge vectors of
the associated vanishing cycles. Namely, the integer p; in the formulae (4.2.56) can be
shifted by arbitrary n € Z by looping the paths 22, n-times around the origin (orientation
depends on whether n is positive or negative). We can thus resolve the ambiguity by fixing
pi =n for all i. Thus, the formula (4.2.57) can be specified as

vt = (a;, (n+1) o) v, = (g, na;) (4.2.60)

Note that the charge vector (ay;,nay) corresponds to the vanishing cycle that is the
lift of the path P} + (n — p;) S'. In physics literature, this phenomenon is called the
manifestation of the democracy of dyons (see [ | for more information).

Braid group and the Monodromy

We now introduce another approach to the computation of the vanishing cycles and
the associated monodromies. This method is based on the concept of braid group and its

representations. For its history and development, please see the book | ], the paper
[ |, as well as the references contained there in. Its application in the physics con-
tent related to the Seiberg-Witten integrable system are discussed in | ] and | ]-

We give some preliminary discussions. Recall that our purpose is to compute the mon-
odromy acting on the local system I' :== H;(Cy,Z) (thus on the period integrals (ap a))
when the moduli u circles the discriminant locus (singularities) Aj. This amounts to
studying the representation of the fundamental group of the complement of the dis-
criminant A, in B on the local system of first homology lattices of the hyper-elliptic
curves fibration, i.e., we study the following homomorphism (by choosing a fixed point

by € B\Ay)

7 m(B\Ay, by) — GL(D) = GL(H, (Co, 7)) (4.2.61)

Since we require that the intersection paring (-, -) is invariant under the monodromy,
we see that the monodromy should factorize into the symplectic representation, namely,
the image of p should lie in the subgroup

Sp(H(Cy,Z)) = Sp(2n — 2,7)
Consequently, we have the following monodromy representation
p:m(B\Ax, by) — Sp(2n —2,7Z) (4.2.62)

From this, we see that to solve the monodromy problem, we first need to understand
the structure of the fundamental group of the complement of the discriminant locus, and
then we should understand how its generators acts on the first homology cycles.

We will display in the following how the braid group action is related to the study
of the above representation.

Given the local system of lattice 7 : I — B° := B\A,, the action of the fundamental
group 71 (B, by) on the fiber I',, = H;(Cy,Z) can be constructed as follows:
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Given a small loop 7 : [0,1] — BY based at by, consider the pull back of the fibration
7 over [0, 1], which gives us a trivial fibration 7* : v*(I) — [0, 1], with fiber (7*)~!(¢) over
t € [0,1] being 7= 1(v(¢)), i.e., we have the following commutative diagram:

7(L) — L
ok
0,1 —— B°
Note that 7* is trivial with the following trivilization map
6:[0,1] x T = 7*(I)
Then a section s of the 7 can be pulled back to a section s of 7* via
S:=¢loson.

Now given an one cycle a € I',, we want to describe the monodromy action of v on «,

namely p(7)(a) =: a”.

u’

To this end, let us first view the cycle o as a path « : [0,1] — {0} x [, which
is a lifting of the zero constant path 0 : [0,1] — [0,1]. Considering the homotopy
h :[0,1] x [0,1] — [0, 1] given by h(s,t) = ¢ that takes the constant zero path 0 to the
constant one path 1. By the homotopy lifting property, the homotopy can be lifted to the
fiber level as the following map

h:[0,1] x [0,1] = [0,1] x [,
such that h(s,0) = a(s) and h(0,t) = h(1,t) = 5(t).
Finally, the monodromy action of v on « is given by the following
a"(s) == poh(s,1)=s(y) T oaos(y) L. (4.2.63)

That is, roughly speaking, we push the a cycle fiberwisely along the loop ~ while
keeping the base point along the section s. Note that by the homotopy lifting property,
the a” thus constructed is independent of the choice of the trivilization map ¢.

After discussing the monodromy action, we show next that it is given by the braid
group action. We note that the fundamental group of BY can be identified with the braid
group B,. Denote by

Conf, ={(z1,---,2,) €C" 1 2; # 2, i # j}

the configuration space of ordered n-distinct points on the complex plane C.

The symmetry group S,, acts on it by permutating the n-points. Then, the config-
uration space of non-ordered sets of distinct n-points on C is defined by the following
quotient

Conf, = Conf,/Sy
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The braid group on n-strands is defined as the fundamental group of the above

configuration space based on a point S € Conf,, namely

B, = m (Con o 5)
Denote by D € C = R? the unit disk in C = R2. Consider

D" = (D™\(big diagonal)) /.S,

—_~—

Then it is easy to see that Dr is homotopy equivalent to C'on f,, as the inclusion D — C
is a homotopy equivalent. As a consequence, it follows that

B, =m (ﬁ;lup>

///

) N ;o

Figure 4.15: A braid

where the base point p € D" can be chosen to be the point S € Conf, which consists of
n distinct points situated on the line segment [—1,1] C D C C.

Given a point (z1,---,2,) € Conf,, we associate it with the following polynomial
that has exactly n-roots {z;}

H(z—zi):(z—zl)-~~(z—zn):z"+a1z”_1+-~'+an_lz+zn
i=1

The above polynomial determines uniquely (as the polynomial associated is monic) the
n — 1-coefficients {a;}? ; of the above polynomial.

The totality of these coefficients, which is seen to be C*~!, parametrizing the monic
polynomials of degree n. Inside C* !, we have the discriminant locus A, which is the
location where the monic polynomials associated have two or more roots colliding with

each other. Thus, by associating the point (21, ,z,) € CT)?L?H to the n — 1 coefficients
(ay,--+ ,a,_1), we have established an one to one correspondence
Conf, +— C" 1\ A
which implies that
B,=m (c@ﬁﬁ S) = m (C"\A,b) (4.2.64)
By a theorem of Artin, the braid group B, is generated by n—1 elements oq,--- ,0,_1,

which are subject the following relations:
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oio; =oj0; if |i —j| > 1; (4.2.65)

0;0;410; = 0410041 for ¢ = 1, e, N — 1. (4266)

Geometrically, the generator o; corresponds to the exchange of the i-th and (i 4 1)-th
strand of the braid (see the below figure for illustration).

i—1 i i+1 i+2
i—1 i i+1 i+2

Figure 4.16: Geometric representation of the generator o;.

The nontrivial braid relation (4.2.66) can be illustrated as follows

. /‘/I

o

! homotopic

/O

Ti+1

f s

Figure 4.17: Illustration of o;0,110; = 0,110,011

Consider the free group F), generated by n letters { fi,--- , fu}, it is shown by E.Artin

in [ ] that the braid group acts on the free group F;, in the following way
fi J#FLi+1
= fifia i J=1 (4.2.67)
fi j=1+1

Next, we give a geometric realization of the above Artin representation (which is
faithful).
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Consider the universal family of the complements 4 on ﬁ‘, defined as
C = {(S,y)E@x(C:y%S}

where the point S is viewed as a subset of n-points in C. Then the projection to the
first factor defines a locally trivial fibration p : 4 — D with fiber over the point .S being
the complement C\S to the subset S. A particular section of p is given by S — (.S, 2i)
as 2¢ ¢ D. Then it is easy to see that

m (p~'(5),2i) = F,

with n-generators given by the loops v; that starts at the base point 2¢, circling around
the n-distinct points z; contained in S.

Proposition 4.2.17. The action of m <]1f)5’/1,5> = B, on m (p1(S),2i) is given by the
Artin representation (4.2.67).

Proof. Note that the generator o; of the braid group B, corresponds to the exchange of
two points z; and z;.1 in S, which can be realized by a rotation of z; and 2;,; about their
center. This causes the loops 7; and ;41 to be dragged while the rest of the loops kept
intact. The effect is that the loop ;41 is being dragged into ~;, while the loop v; being
dragged into v;y:117; ', which corresponds exactly to the relations given in (4.2.67). [

With these preparation, we can study the the relation between the vanishing cycles
and the braid group action. We want to see how the action of m(B° by) on the first
homology group H;(Cy,Z) could be induced from the braid group action. The generator
o; corresponds to the exchange (braiding) of the two roots of the polynomials

Po(w,0) = (Wa,_, (z,0)" = A
= (Wa, () + A") - (Wi, (o) = A") = PF - Py

defining the curve C,. We have pointed out before that any two roots of the polynomial
P* can be exchanged by forming a suitable words in the generators ¢;. The roots of
the polynomial splits into two categories, namely the roots of P and P, respectively,
denoted respectively by {v;"}7; and {v; },.

Thus, the fundamental group 71 (B°, by) should be generated by those elements o € By,
that respects the above splitting of the roots of the polynomial. And to each such el-
ement in the braid group, we can associate it to the corresponding vanishing cycles

v, = (g,q) = (¢", ¢;) in the homology basis {a’, §;}.

Since we know that the monodromy associated to the vanishing cycle v, is given by
the Picard-Lefschtz formula, which in matrix form, is given by the formula (4.2.48) as

M :<H+qt®g qd ©q ):((5{+4qu¢ K )
Ve —g'wg I-g'®q —9'¢ 0 —gq

Or in more compact form, it reads as

M, =1+ Q- V),
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Proposition 4.2.18. (c.f./ ) The subgroup of Ba, that respects the splitting of the
roots {v;"}n_, | {v; }, is generated by the following set of 2n-generators

{017"' 7Un—1,<772N0n+1,"' ,Oon-1,1 = (0102"'U2n—1)n}

Before proving the above proposition, let us first illustrate it with the example of the
simplest SU(2)-case.

In this case, the four roots split into two groups, namely {v;",v5} and {v;,v5 }.
The element o, corresponds to the exchanges of the two roots vi" and vy, while o3 acts
as identity. Now o3 corresponds to the exchange of vy with v, , while the braiding 7'
corresponds to the exchange of the two groups of the roots. These indeed generate all pos-
sible bradings among the two groups of roots, thus the proposition holds in this situation.

Generalizing a little bit, we can prove the proposition as follows

Proof. First, it is easy to see that the elements belong to the set {0y, -+ ,0, 1} gen-
erates the braidings among the roots in the group {v;"}; while the elements in the
group {041, - ,09,-1} generate the braidings among the roots in the second group
{v;} . Clearly, the element o2 corresponds to the identity element. Finally, since the
product o103 -+ 09,1 induces the cyclic permutation of the set (ordered as indicated)
{vih, -+ vt v -+ v}, consequently, the element T" corresponds to the exchange of the

VA )

two groups of the roots as a whole. This completes the proof of the proposition. O

Remark 4.2.17. By the discussion in the remark 4.2.7, the above proposition implies
that the brading T corresponds to the monodromy around oo in the moduli space.

The vanishing cycles v,, associated to the generators o; should satisfy the following
constraints which are imposed by the braid group relations (4.2.65) and (4.2.66). Indeed,
the relation o,0; = 00, implies that

My, M, | =0
which by proposition 4.2.9, translates into the following relation
(Voy, Vo,) = Vg, - Q- Véj =0 li—j| >1 (4.2.68)
Similarly, the relation 0;0;,10; = 0;110;0;11 becomes
Myai * M

M, =M, M, -M

Vo1 Vo1 Voiy1
which translates into the following relation
Vors Vo) = Vo, QU ovy =1 di=1,--,n—1 (4.2.69)

In terms of coordinates, the above equations (4.2.68) and (4.2.69) becomes

T — ] >1
{Zk%% Yi ik U] (4.2.70)

S e 9E Gk — 9F gk =1 t=1,---,n—1
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By the proposition 4.2.4 and the remark 4.2.16, the solutions to the above equations
can be given in terms of the simple roots as follows

Vaizyj:<ai7(n+1>ai) ’i217~--7n (4271)

Vosrn =V, = (u,na) i=1,---,n o
Remark 4.2.18. In [ /, another solution to the equations (4.2.68) and (4.2.69) is
giwen by the following

Vey, = (0,6, — €;_1) i=1,--- ,n—1

I/U'Zn = (07 _enfl) (4 2 72)

Vey, = (—€;,0) i=1,---,n—1 o

Voo, = (€1+ -+ + €n_1)

where e; denotes an orthonormal basis in R"™' (viewing eg = 0). The merit of this form
of solution is that the electric charges of the odd-numbered v and the magnetic charges
of the even numbered v are given explicitly in terms of the roots and the fundamental
weights of SU(n). Actually, it can be shown that the two solutions differ by a duality
transformation, i.e., a Sp(2n,7Z) transformation. Thus they can be viewed as equivalent
solutions.

Zariski-Van Kampen Theorem and the Fundamental Group of the Comple-
ment

The fundamental group m;(B° by) = m(C"'\A,by) can be computed by using
method initiated by Zariski and Van Kampen | Il ]. Our exposition follows
the paper [ |. Note that by Zariski-Lefschetz hyperplane section theorem, the com-
putation of the above fundamental group can be reduced in the complex two dimensional
case as follows

1 (C"NAL) = T (H\H N Ay) (4.2.73)

where H = C? C C"! is a hyperplane, and H N Ay is the corresponding hyperplane
section. Thus, in the following, we consider the hypersurface S C C? defined by a poly-
nomial f(x,y) = 0, and find the method to compute the fundamental group m;(C?\9).
To this end, take a point P € C?\S, and consider the projection from P, which defines a
map Pr : C2 — C!. The restrict of it on the curve S will be denoted by the same symbol
Pr. Thus, let us consider the map

Pr:S—=C (4.2.74)

The fiber over z € C is the intersection points of the line [, connecting between z and
the graph of the curve C', which generically consist of deg(f) points. The number of inter-
section points becomes less that deg(f) over the discriminant locus A = {q1,- -+ ,gm} C

C.

Denote by £ := Ly U---U L, = Pr~'(A), i.e., the union of non-generic vertical lines.
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L, Ly Ly Ly

qn qn—1 cee q2 q1

Figure 4.18: The picture is taken from | ]

The fibration Pr is not “good” in the sense that the fibers come close to each other
near the projection point P. In order to make a good locally trivial fibration out of Pr,
we need to separate the directions based at the point P by replacing it with a copy of
CP! which parameterizes all directions issuing from P, that is, we need to consider the
blow up BLp(C?) of C? at P. Making a coordinate transformation, we can assume that
P = (0,0), the explicit construction of the blow up goes as follows:

BLp(C?) == {((2,w); [u,v]) € C* x CP'|uw = vz} (4.2.75)

Denote by € : BLp(C?) — C? the projection map onto the first factor. Note that the
fiber of € over the point P = (0,0) is a copy of CP', which we call it the exceptional
fiber, and denote it by E, while the rest fiber is given by ((z,w);[z,w]), i.e., the point
(z,w) together with its “direction” specified by the element [z, w] € CP'. Now consider
the following composition map

Pr=Proe:BLp(C?) — C (4.2.76)

Then it is easy to see that the fiber of Pr over a point z € C is given by C. It can be
seen from the above construction that there is a birational isomporphism

BLp(CH\{E} = C*\{P} (4.2.77)
as well as the following identity
Prlsepcopgzy = Pricapy (4.2.78)
Now let us lift the curve S and the union of lines £ from C? to BLp(CP?) through
the blowing up map €, namely
S = 1(S) L:=¢'(L)

Note that we have that S = S as P ¢ S. As the blowing up is birational, Pris a
proper submersion. Consequently, by Ehresmann’s fibration theorem, we conclude that
Pr is a locally trivial fibration with fiber being isomorphic to the projective line C, which
induces the following locally trivial fibration

Pr:BLp(CH\(SUL) — C\A (4.2.79)
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with the generic fiber being F' := C\Z,, where Z; is the union of d = deg(f) distinct
points. It can be shown (for example | ]) that the blow up map e will induce the
following isomorphism on the fundamental group lever, namely

€ i T (B£P<<c2)\(§ U E)) ~ 1 (C3\(SU L)) (4.2.80)

The fundamental group of the fiber F'is a free abelian group generated by d-meridians
Vi, ©=1,---,d with v; circling around the ¢-th distinct point, that is

m(F) = (1,0 7a) (4.2.81)

Apparently, the fundamental group of the base of the fibration C\A is a free abelian
group generated the meridians «;, ¢ = 1,--- ,m with the meridians «a; being associated
with ¢; € A, that is

m(C\A) = (v, -+, o) (4.2.82)

Next we show that m(C?\S) can be computed from the action of 7;(C\A) on 7 (F).

Let us begin by first eliminating the effect £ and £ in the isomorphism €, in (4.2.80).

Note that the inclusion of £ in BLp(C2)\(S U £) induces the following surjection on the
fundamental group level

i m (B,cp<c2>\(§ U E)) . (Bcp(c2)\§) (4.2.83)

‘We claim that the kernel of the above surjection is generated exactly by the meridians
of £, which is the same as the meridians of C\A. Indeed, suppose that ~ represents a
class [y] € m (BLp(C2)\S) that maps to zero under the above surjection. It follows that
there exists a disc D such that v = 0. Then by putting the disk in general position if
necessary, we assume that D intersects transversely with £ at the points {s1, -, s}

Choosing small disks D; C D such that D;NL = {s;}. Then by denoting o; = 0D, i.e.,
the meridian associated to L; C L, it is easy to see that « is homotopic (with orientations

being properly chosen) to [];_, ;, which is seen to be the meridian associated to £. The
claim is thus proved, and we get the following

=1 (BLo(CN\EULD)) [, ) s

To continue, let us proof the following proposition

Proposition 4.2.19. Giwen a locally trivial fibration m : E — B with fiber F and a
section s : B — E. Then we have that

m(F) = m(F) x m(B) (4.2.85)

where w1 (B) acts on m (F) by the monodromy representation (4.2.62).
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Proof. The existence of the section s implies the splitting of the following exact sequence

1 — m(F) -5 m(E)  m(B) — 1

Sx

Thus, as a set we have that
m(E) ={(a, ) = s.(@)i.(8) : a € m(B), f € m(F)}
while the product structure is given as follows
(a1, B1) - (g, B2) = s:(@1)in(B1) 54 (02)i (B2)

= s, (0n) 5. () s (02) " 1iu (1) 5. (2)in(B2)
= (g, 5*(@2)_1513*(%)52) = (a1, B7? B2)

Thus
m(E) =m(F) x m(B)

Note that the fibration Pr (see (4.2.79)) is endowed with a section given by
s:z((z,2); ]2 2])
By applying the above proposition to Pr and using the isomorphism (4.2.84), we get
71 (CA\S) = (m1(F) x 1 (C\A)) o, , ) (4.2.86)

Also note that when we trace along a generator «; of m(C\A) based at the point
zp € C\A, which causes the motion of the roots of f(zg,w). This induces a braid among
the roots. Consequently, we get the following braid monodromy map

0 m(C\A, z) — By (4.2.87)

Thus 7 (C\A) acts on 7y (F') through the braid monodromy map 6, which is given by
Artin representation, i.e., the a; action is given by the action of #(«;) € By on m(F) = Fy
through (4.2.67).

Now we can state the following Zariski-Van Kampen theorem

Proposition 4.2.20. Given a curve S C C? that gives rise to a d-sheeted cover of C
which ramifies at the discriminant locus A C C that consists of n points. Then the
fundamental group m(C*\S) has the following finite presentation

m(C\S) = (v, 70 0(aa) yy =75, 4 =1, ,d) (4.2.88)
with the meridians v; and o; constructed as before.

Proof. By (4.2.86) we have that
m(CA\S) = (m(F) 39 m(C\A)) [{a, -+, om)

- <717"' y Vdy, Q1y ,O[m20(067;)’}/]':O[;l’}/jOéi>/<Oél,"' ,Oém>

:<f}/15"' 7ﬁyd9(az)”y]:’y]7‘7:1, ’d>
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Examples: Define Conf, to be the configuration space of unordered n-distinct points
{21,-++ , 2z} on C with center of mass £ 3" | 2 being situated at the origin. Clearly

0 —_ —
Conf, is homotopic to Conf, with the homotopy given by

n

t t
Ht)(z1,-y2n) =21 — — Ziyt s Zn — — z] 0<t<1
O = (-3 £3] nsis
0

However, the associated polynomial for a point (z1,---,2,) € Conf, is given by
[T-,(z — z) with the coefficient of z being zero, which is exactly our A,_; polynomial

given before. For the “trivial” n = 2 case, we get that

—~—0
Confy ={z*+bz+c: b —4c#0,b=0} =C*

Thus

0
By =m (Oonj} , base point) = 7 (C*, base point) = Z = ()

where 7 represents the class of loop that circling around the origin based at the “base
point”, which under the monodromy representation corresponds to the exchange of two
roots of the quadratic equation.

0

Figure 4.19: Fundamental group of Con fy

0
Next we compute the fundamental group of Conf, in the case of n = 3. In this (less

trivial) case, the configuration space can be represented as

0 4
Confs = {23 +uz v v?— ﬁuf‘” # 0} =~ C*\ {4’ — 270v* = 0} (4.2.89)

where the curve C':= {(u,v) € C*: 4u3 — 27v? = 0} is singular at (0,0) with “cusp”
type singularity.

Now we apply the Zariski- Van Kampen theorem to compute the fundamental group
0

e~

of Confs . To this end, let us choose the projection

m:C*—C (u,v) — u
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Restricting it to the curve C, we get a double branch covering 7|c of C ramified at
A = {u =0} C C. The fiber over u consists of the solution to the equation 4u*—27v? = 0
in v. The fundamental group 7 (C\A, base point) is generated by a single loop « around
the origin that start and end at the “base point”. By tracing along the loop «, the
induced braid monodromy 6(«) € By = (01) can be computed as follows.

Let « be represented by a circle about the origin of radius d, then replace u by
§e¥™ () < 0 <1 in the above equation, we get the solutions

[4 5 5
=d/==d62" 0<H< 1L
v 27(526 0<6<

Thus, we see that when 6 goes continuously from 0 to 1, the two roots first change
the sign when 6 = %, and change it again when 6 hits % and 1. As a consequence of it,
the induced monodromy 6(«) reads in this case as

6(a) = o3 (4.2.90)

Nnrenre it =
Figure 4.20: The monodromy 6(a) = 0% and the generator of the fundamental group

As the covering 7 is two-folded, we see that the fundamental group of the fiber be-
ing the free group Fy generated by two meridians (vy;1,79) associated two two separated
branches of the curve. Then we have the following

Proposition 4.2.21. The fundamental group of the complement of the cusp curve C' in
C? has the following presentation

T (C\C) = (71,72 : M2 = Y2 Y2) (4.2.91)

Proof. By the Zariski-Van Kampen theorem, we get that

T (C\C) = (71,72 : 0(a) v = yi, i = 1,2)

By the Artin presentation (4.2.67), we compute the monodromy action of 6(«a) as
follows

0(a) 1 =07 () = oty ) = o1 (o1(n)or(e)or (1))
=0 (717271_1717172_1%_1) =01 (71727172_171_1)
= o1(m)a1(12)o1(m)or(v2) o (n)
= 1y ey o e e = e e
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Similarly, we have that
B(a) v = 0}(72) = of (m) = n(mren ') = ar(n)ori(r2)or(n)

= MY MM Y= e nYs

Consequently, the two relations 6(«) v, = 71 and 6(«) 72 = 72 becomes the following

nrenen et = and e 't = e

The second relation simplifies immediately into 717271 = Y2712, while the first is
easily seen to be equivalent to v17v2v172 = 71717271, Which, by using the braid relation
(4.2.66) to the underlined part, simplifies further into v1727172 = 71727172, which is
trivial. This completes the proof of the proposition. n

Remark 4.2.19. A faithful representation of Bz can be realized by letting the two gen-
erators 1 and vy, acting on C% through the following SL(2,7) matrices as follows

1 0 11
M’“:<—1 o> M’W:(o 1)

The geometry of the cusp curve can be studied by surrounding the cusp curve C' by
a 3-sphere S% := {|u|* + |v|* = R*} C C? with varying radius R centered at the origin.
Considering the homeomorphism given by

u s 2u? v 3\/3@,

we see that the three sphere is diffeomorphic to {4|u|® + 27|v|* = R?}, which intersects
the cusp curve C': {(u,v) : 4u® = 27v?} at the locus

1
{4|u|3 = 27P|* = 532}

Writing u as u = |u|e?, and v as v = |v| e, we see that the above locus can be
described in the following way

A =g

3 _ —_
[ul” = 5 54

30, =20, mod 27

which describes a curve that wraps the a torus in one direction (corresponding to the
angle 6,,) three times, while wrapping in another direction (corresponding to the angle 6,,)
two times. That is, we get a (2,3)-torus knot, which is of course the simplest non-trivial
knot—the trefoil knot.

Figure 4.21: Trefoil knot as torus knot, the picture is taken from | ]
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Denote by U the complement of the C? to the three sphere S%, we have that
CN\C ~ (C*°NU)\ (CNU) = 5\{trefoil knot}

where “~” denotes homeomorphism. Thus, by above proposition 4.2.21, we get the
knot group for trefoil knot as follows

m (S*\{trefoil knot}) = 71 (C*\C) = (71,72 : 172N = Y27172) (4.2.92)

Note that in the computation in the proof of the proposition above, we have used the
projection to the u coordinate, which gives a two-fold branched covering. Similarly, by
projecting to the v coordinate, we will get a three-fold covering. Using this cover to do
the computation should give us the same result. Let us now verify this.

Consider the projection
:C*—C (u,v)—v

Restricting it to the curve C, we get a three-fold branch covering m|g of the complex
plane C ramified at A = {v = 0} C C. The fiber over v consists of the solution to the
equation 4u? — 27v? = 0 in u. The fundamental group 7 (C\A, base point) is generated
by a single loop « around the origin that start and end at the “base point”. By tracing
along the loop «, the induced braid monodromy #(«) € Bs = (07, 03) can be computed
as follows.

Let « be represented by a circle about the origin of radius §, then replace v by
§e2™ () < 0 < 1 in the above equation, we get the solutions

Up = ’3/%7536‘“‘3“&)141: \3/¥5§ew(263w 0<6<1, k=123

from which we see that when @ first hit § = %, the three roots u; undergo a cyclically
permutation represented by the brading o0, and the same happens when 6 further hit
6 = 1. Consequently the braid monodromy in this case reads as

0(a) = 02010201 = (0201)* = 02090109 = 050109
Thus, by Zariski-Van Kampen theorem, we get that
71 (CA\O) = m(S*\{trefoil knot}) = (1,72, : O(a) v =i, i = 1,2,3)
The results of the computations read as follows
{9(04)(’71) =M% s e

B(a)(v2) = ' s O(@)(1s) = m
From this we see that the relations 0(a)(;) = i, ¢ = 1,2, 3 specify into the following

Y2732 = V37V271 71 =73

Thus only two among the ~;’s are independent. By eliminating 3, for example, we
get the relation between ~; and 75 as: y19271 = Y2712, exactly the one given in (4.2.92),
which gives another proof of the proposition 4.2.21.

{737271 = V27172
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Remark 4.2.20. The equivalent of the two projections in computing the fundamental
group lies in the fact that as a torus knot, the trefoil knot can be either represented as a
(2,3)-knot or as (3,2)-knot, which corresponds to projecting to different projections.

Figure 4.22: The trefoil knot as (2, 3)-knot and (3, 2)-knot.
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4.2.4 Quantum Monodromy: SU(3) case

In this subsection, we study the monodromies associated to the vanishing cycles in SU(3)
case. As the moduli space in this case is given by B = C?, and the (quantum) discriminant
locus A, is of codimension one. The situation is much more complicated than the SU(2)
case, and more involved tools (as had been reviewed substantially in the last subsection)
are needed. Let us begin by computing

71 (C*\ Ay, base point) = 71 (B°) = 71 (C" 1\ A,)
for n = 3,i.e.,SU(3) case. That is, we need to compute the fundamental group
m (C*\{4u® = 27(v £ A®)*}, base point)
The discriminant curve is given in this case by
Ay = AT UAY = {(u,v) € C*: 4u® = 27(v £ A*)?}
where Af is defined by
AT = {(u,v) € C*: 4u® =27(v F A*)?}

This tells us that the curve A, is composed of two cusp curves Af linked together.
Or equivalently, by intersecting the curve with the 3-sphere and by employing the iso-
morphism (4.2.92) established in last subsection, we see that C?\ A, is homeomorphic to
S3\{Z}, where . is the link made by tangling the two trefoil knots together. The two
trefoil knots K are given by the intersection S® N Af and

L=K,UK_=(5°nA})U(S°nAy) (4.2.93)

Thus
7 (CH\AL) = 1 (S*\Z) = m(S*\K,  UK_) (4.2.94)

To determine how the knots K4 get linked together, we observe that since the equa-
tions defining the two curves A7 differ from the standard cusp curves 4u® = 2702 by a
shift in the v-direction by the amount +A3. Thus by shifting the standard trefoil knots
defined by intersection the curve 4u® = 27v? with a three sphere S® in the v-direction
by the amount +A3, we will get the knots K. respectively. Thus, the knot K, can be
obtained by shifting the knot K_ in the direction corresponding to —v by 2A® unit.

As a consequence of this, and in viewing of the computation laid down at the end of
the last subsection, we see that the fundamental group 7 (C?\Ay,) is generated by six

generators: {'yii}f:l, where {7;“ }f: are the three generators corresponding to the knot

1
K, while the generators {’y[ }le are that for the knot K_. Each set of three generators

satisfy the relations computed by using Zariski-Van Kampen theorem.

The three generators, in terms of the Trefoil knot, can be illustrated in Figure 4.23
taken from | | (Fig.2 there). When in the quantum situation, the trefoil knot in
figure 4.23 “splits” into two, and the three generators become six generators which are
illustrated in Figure 4.24 taken again from | ] (Fig.3 there).
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Figure 4.23: Three generators of the fundamental group being illustrated, figure taken
from | ]

Figure 4.24: Six generators of the fundamental group illustrated, figure taken from | ]

Previously, we have displaced that the six generators are not independent homo-
topically, there are some relations among them. For example (proposition 4.2.21), as
homotopic classes, we have that

Wil =03 bilhelhi] = helhilhs)

or simply, we write directly as follows (with homotopic classes implicitly understood)

M= ONRN =N (4.2.95)

For example, the relation v; = 73 origins from the geometric fact that as you slide the

loop 71 in figure 4.23 along the Trefoil knot to becomes the loop 73, the loop v; will come

cross the loop v, during the process, thus geometrically, we have that v, ~ v - 3 - 75 ',

thus as homotopical classes, we have the identity 74 = 73 in the fundamental group
71 (C*\A,). Now consider the monodromy representation (4.2.62) in this case:

p:m(B\Ay) — Sp(4,7Z)

For an element v € m(B\A,), denote the matrix that represents the monodromy
associated to p(y) by M.,. Then since p is a group homeomorphism, they should respect
the relations (4.2.95), namely

M =M+ M= - M~! plus cyclic permutations of {1,2,3.} (4.2.96)
1 V2 73 Y

Mg - Mg - Mz =Ms - M- Mz (4.2.97)
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Detailed Analysis of the Geometry of Moduli Space

First, the two curves intersect with each other at the following three points, we call
them Zs-points in accordance with the convention in physics literature

52 52 52
AT N AL = {( Z7A2,0) , (w Z7A2 ,0) , <w2 {A%o)} (4.2.98)

where w := e’ is the primitive cubic root of unit one. We denote the above three
Zo-points by pq, po, p3 respectively, that is

[27
Pe = (w’f—l ¥ ZA2 ,0) k=1,2,3. (4.2.99)

Denote by 83 (u,v) = 4u® — 27(v F A*)? the discriminant polynomial. Then the dis-
criminant locus AyAp (where we denote by u := (u,v)) of the discriminant curve Ay
itself is given by the solutions to the following set of equations

4ud = 27(v + A?)?

ok oE
5*—8A:8—A:0 «— <1202 =0

AT u T o
—54(v £ A3 =0
The solutions are given by the two points set
AuAA = {Q—H Q—} = {(07 A3)7 (07 _A3>} (42100)

which we call them Z3-points, again in accordance to the conventions in physics litera-
ture. Note that g4 corresponds to the cusp singularities of the two curves AL respectively.
Next, we find the roots of the polynomial

Py(z,u) = (2° — ux —v)? — A°
=@ —ux —v+ A —ur —v—A*) =P - Py

which defines the Seiberg-Witten curve in the SU(3) case.

Recall that for a general cubic equation 3 + pt + ¢ = 0, its solutions are given by the
Cardano’s formula as follows

2 3 2 3
tk:w’“1§/—g+\/%+%+w2(’“U(’/—g—\/qurg—? k=1,23.

We apply it to the case of P3(x,u) = 0. To this end, let us denote by ef, k=1,2,3.
the three roots of the polynomials P; respectively. Also recall that the discriminant of
the polynomials P is given by 6. = 4u’ — 27(v F A%)? respectively. Then by Cardano’s
formula above, we have the following explicit expressions of these roots:

ei _ wkil 3 U:FA3 n \/ —04 _|_w2(k71) 3V :FA3 VvV —04 (4 2 101)
C 2 6v/3 2 6v3 -
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We see that when the moduli u = (u,v) lies in the locus Ay, then roots degenerate.
For example, when §, = 0, we see easily that e = e;, and at the node point, i.e., Z;3-
point where v = A3, all three roots e, k = 1,2, 3 degenerate. Further, at the intersection

points py, i.e., Zy-point where v = 0, again we have the degenerate situation: ej = e .

Since Ay is a complex surface sitting inside C?, in order to study the monodromy
around the various components (branches) of it, we cut the surface by a family of real
planes defined by

Hy:={Imv=t teR} CC? (4.2.102)

which will give us a family of real curves %, = H, N Ay, t € C2. Thus, we reduce
the study of monodromies associated to various branches of A, into the studying of the
monodromies associated to various branches of £; for different . Near the two nodes ¢,
we cut the surface by the three sphere S;, which give us the trefoil knots. We can study
the associated monodromies by using the braid monodromy as before. We first prove
that it is sufficient to study the situation in the case of t = 0.

Proposition 4.2.22. The monodromy group associated to the locus Ay equals that as-
sociated to the locus £y = Hy N Ay, i.e., we have that

1 (AA) =T (HQ N AA) =T (%) (42103)

Proof. We note that the singularities of the surfaces, that is: the Zs-points {q+} lies
on the hyperplane section % by (4.2.100), thus, the complement set Aj\-% is smooth.
Then by applying the Lefschetz hyperplane theorem (for example, see | |), we get the
desired isomorphism. O

Consequently, we focus on the hyperplane section 25 = Hy N A, in the following
discussion. We simply write %, and Hy as £ and H respectively. We write u = x + 1y,
v =z +iw, where (z,y, z,w) € C> 2 R* Then Ay N H is described by the equation:

4(x +iy)® = 27(z &£ A®)?

Equating the real and imaginary part, we get the equations describing .Z:

4(z3 — 3ay?) = 27(2 + A3)?
g P = duy) =27 £ A (4.2.104)
3r%y =y
which “splits” into three different cases:
. 43 = 27(z + A3)? e =323 = 27(2 + A®)?
y=0 y =3
—3223 = 27(z & A3)?
z v (2 A7) (4.2.105)
y=—3z
which further “split” into the following three pairs of lines:
LH=3Lux! LH=2Uux? LH=2Uu%? (4.2.106)

where ¥%, k = 1,2, 3 is described by the equations in (4.2.105) with + signs respectively.
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Apparently, the pair of lines %] lie on the hyperplane H; := {y = 0}, while the pairs
253 lie on the hypreplanes Hy 3 := {y = 4_—\/§} respectively with 2 corresponding to +
and 3 to —. The three Zy-points pg, k = 1,2, 3, (see equation:(4.2.99)) are given by the
following

pr=3tNXF, k=123 (4.2.107)

All three points lie on the plane {v = 0}, and is rotated into each other under the
Zs permutations. Besides, the three “positive” lines Zﬁ intersect at the Zs-point ¢_ =

(0, —A?), while the three “negative” lines ¥* intersect at the other Zz-point ¢, = (0, A?).
That is

YLINEINYEE =g = (0, FA?) (4.2.108)

The situation described above can be depicted in the following picture (Figure 4.25),
this picture is taken from | | (Fig.4 there).
A Rew

v = A>3

——

S . S

Figure 4.25: Geometry of moduli space for SU(3) when Imv = 0, figure taken from

[ ]

Now we can study the monodromies around each six singular lines ¥/, for i = 1,2, 3.
Thus we fix a base point (see figure 4.25) uy that belongs the the plane H. = {z =
Re(v) = constant > A3}, we then consider the six loops based at uy which encircling
the six singular points cut out by the plane above. Denote by v the loops circling
around the singular lines Y% for i = 1,2,3. In other words, the loops %i circles around
the points PijE on the plane H., if PijE denote the intersection points of the base plane
with the six singular lines, that is: PZ-jE := 3% N Hey.Denote the monodromy matrices

associated to the loops 7;~ by M for i = 1,2, 3. Roughly speaking, when looping around

the points Pf, certain roots among {ef}il coincide, which causes certain one cycles
become the vanishing cycles. And this induces the corresponding monodromies given by
Picard-Lefschtz formula.
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Remark 4.2.21. We notice that as A approaches to zero, i.e., when the quantum moduli
space “degenerate” into the classical moduli space. In particularly, the roots ef coincides
with e; . Consequently, by denoting r; the loops circling around the pairs of the points
Pf fori=1,2,3, we see that in this degenerating situation, the loops r; vanishes, which
produce exactly the classical monodromies M. (see (4.2.15)) given before. Besides, by
proper choice of the orientations of loops, we see that as homotopical classes, we have
that r; = ;" - ;. In terms of the monodromies associated, this infers that

M =My M-, i=1,2,3 (4.2.109)

We note that the classical monodromy M. corresponds to the braid monodromy B,,
associated to the braid generator v; for the m (C*\{trefoil knot}), thus they should obey
the braid relations given in (4.2.97), namely

ML =M, - M- Mﬁ;l (4.2.110)
as well as the following
M ML M =M M M (4.2.111)

Remark 4.2.22. Notice that since 6+ = 4u® —27(vF A®)?, we see that A — 0 amounts to
the limit v — oo. Thus, geometrically, choosing the cut plane H ., far Re(v) — oo, then
the monodromies computed with reference to the plane H., are reduced to the classical
monodromies.

Remark 4.2.23. Intuitively, each pair £; = X', UX" of the singular lines correspond to
a situation similar to that SU(2) case discussed above. For example, r;, in this interpre-
tation, becomes the vanishing cycle that induces the classical monodromy at “co0” of the
SU (2)-quantum moduli space C (since we know that for SU(2) case, Moo = M yp2-M 2,
c.f., see formula (4.2.20)). And the vanishing cycles associated with the two singular lines

' are interpreted as the two vanishing cycles for this copy of SU(2) model. Thus the
three pairs of singular lines corresponds to the three ways of the embeddings of the Lie
groups SU(2) — SU(3) (c.f., [ /), which further induces the embedding of the
moduli spaces Bsy2) = Bsu). Roughly speaking, the moduli space Bgy ) “cuts out” a
subspace C inside Bgsy sy, with the two singular points {—A2,+A2%} corresponding to one
pair of intersections of this complex plane with the discriminant locus Ay for SU(3) case.

We see that the discriminant ¢, when restricted to the tree pair of lines ., i = 1,2, 3,
becomes
6r = 4u — 27(v F A*)? = 4(x +1dy)® — 27(2 F A?)?

= 4(2® — 3xy?) — 27(2 F A*)? + 4i (32%y — ¢°) = 4(2® — 3xy?) — 27(2 F A?)?

Consequently, by (4.1.101), the roots e,f, k =1,2,3, when restricted to pairs of lines
£, i=1,2,3, becomes

i:wk—li/”:FAS V_5i—|—w2(’€—1)if/v¢A3_\/_5jE

e +
k 2 6v/3 2 6v/3

_ 2N V2TEF AP — A — 3ey?)
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2 6v/3
More specifically, by (4.2.104) and (4.2.105), we have the followings:

—Hdw“_l)i/z FA V27(z F A3)? — 4(2? — 32y?)

On XL, we have that 4z° = 27(z F A3)?, and y = 0, thus by circling around 3%, we
see that ef <+ ef, with the corresponding vanishing cycle v ;

On Y2, we have that —32z° = 27(z ¥ A®)?, and y = /3, thus by circling around
Y2, we see that eét — e3i, with the corresponding vanishing cycle 1/2i;

On Y2, we have that —322° = 27(z F A%)?, and y = —+/32 thus by circling around
»3 , we see that ef <+ ef, with the corresponding vanishing cycle v5" ;

Following [ | and | |, after the proper choice of the homology basis (c.f.,
(4.2.27) in section 4.2.3)

{Bl)ﬁQ;&l7Oé2} € AW S¥ AR = H1<C,Z)

the above six vanishing cycles - = (g, q;") associated to the six singular lines ¥/,
in the moduli space can be presented as follows (see formula (4.2.29)):

vii =By — 1 — al, vy =By — P +a? —2at
y;' = —/32 + 041, VZ_ = —52 —92a2 (42112)
vy = B, vy = P14 2a' +a?

In coordinates form, they read as follows

vy =(0,-1;1,0), vy = (0,—1;0,-2); (4.2.113)

Remark 4.2.24. We noted before (see formula (4.2.32)), that the siz vanishing cycles

are not independent, for ezample the vanishing cycles V§E can be expressed as

+ + +
V3 ==l — s

This echos the fact that only two of the three generators {v;}:_, for the fundamental
group 71 (C*\{trefoil knot}) are independent.

Recall that for the vanishing cycle v, the associated monodromy matrix M, is given
by

I+q®g d®q >
M, =Mygq =
(ga) ( —glowg I-g'®q
Thus, for vi = (g ,q]) = (—1,1; —1,0) above, we compute that

H+(qf)t®g1+=((l) (1))+(_01)®(—1 1)
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Figure 4.26: Monodromy around the singular lines

(V) v )=(0 )
similarl
y (q1+)t®q1+=(_01)®(—1 0)=<(1)8);
" wreer = (3 )e (=4 1)
as well as
I—(g1) ®@af ( é ? ) —-( ?} ) ©(-10)

)-(4o)=(Y)

Putting then above computations together, we finally get

2 —1]10
0 1 0 0
My =1—7 0 0
1 -1 |11

We can do the same for all other vanishing cycles, we summarize the computations
as follows

2 =110 3 -2 4 =2
0 1 00 -1 2 -2 1
lef’ 1 -1 1 0 0 My; = 21 1 -1 1 (4.2.114)
1 -1 11 1 -1 2 0
1 -1 10 1 0 0 O
0 1 0O 0 3 0 4
/\/ly; =10 0 10 /\/ly; =10 0 1 o0 (4.2.115)
0 -1 11 0 -4 0 -1
1 000 3 0 4 2
0 100 11 2 1
Mu;r - -1 010 Mug - -1 0 =1 =1 (4.2.116)
0 0 01 0 0 0 1
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Remark 4.2.25. Notice that the quantum monodromy matrices in SU(2) case, namely
M2 and M_y, given in (4.2.18) and (4.2.19) respectively are embedded as sub-matrices
in the above M +s, which reflects the fact the embedding of the Lie groups SU(2) —
SU(3).

Remark 4.2.26. The above results tell us that when restricted to the hyperplane H =
{Im(v) = 0} (generic situation) inside C*, the discriminant locus Ay was cut into an
union of siz singular lines 3, with each point on the singular line . being associated
with the vanishing cycle v, which in its coordinate form (4.2.112), can be realized as
the charge vector of a BPS state Vii (by abusing the notation) with the corresponding
mass function vanishes. These “states” are important in the sense that they will later
(section 5.2) serve as the initial data for the wall crossing structure (WCS) associated to
the Seiberg- Witten integrable system in the SU(3) case.

Moreover, the Zsy-points and Zs-points are worth special mentioning here. We notice
that at the three Zsy points py = EﬁﬂE’j, k=1,2,3, there are vanishing cycles with corre-
sponding charge vectors that are mutually local (see definition 4.2.1) to each other, which
means that at these three points, two BPS states can become massless simultaneously. In
our case, they read as: for py, the pair being {v;", Viso) for k=1,2,3, and k + 2 being
taken mod 3.

The two Zs-points {q+}, which by 4.2.108, are the common cusp points of the siz lines,
which means that there are three massless BPS states situated there. At ¢, = (0,A3), the
three BPS states are given by {v; }, k =1,2,3, while at ¢_ = (0, —A3), they are given by
{v, },k =1,2,3. respectively. It can be verified directly (or by using the results given in
4.2.33) that the charge vectors in each group are mutually non-local, i.e., there mutual
intersections being non-trivial.

Remark 4.2.27. Note that the vanishing cycles and the associated monodromy matrices
we computed differ from the one given in for example [ Jand [ |, however, they
differ each other by SL(4,7) duality transformations. Indeed, in [ /|, the authors
choose the homology cycles to be the ones such that oy encircles ef and e5 ; ap encircles
es and eg; By encircles e; and ey , while 3y encircles ef and e5. The particularity about
this choice is that the [-cycles vanish,and o; corresponds to the fundamental weights,
while oy to the simple roots of SU(3), see the following figure 4.27 for an illustration:

,H

Figure 4.27: One choice of homology basis, figure taken from | ]

In this basis, it was shown in [ | that the vanishing cycles and the associated
monodromies are given by
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vy =(0,1;0,0) 7y, =(0,1;—1,2); (4.2.117)
= (-1,-1;2,-1) 7y =(-1,-1;1,-2);

o O O

~1 0 4 -2 1 000
1 1 -2 1 — 0 100
103 1| MaT| 1010 (42.118)
00 0 1 0 00 1
0 0 0 1 -1 1 -2
1 00 —~ 0 3 -2 4
o 10| Ma={o 0o 1 o (42.119)
-1 0 1 0 -1 1 -1
—2 4 -2 0 -1 1 -2
2 -2 1 — 2 3 -2 4
-1 3 -1 Mo=1 21 21 2 = (4:2.120)
-1 2 0 -1 -1 1 -1
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Chapter 5

WCS for Seiberg-Witten Integrable
systems

In this final chapter, we will use the wall-crossing structure (WCS) formalism that had
been laid in chapter two to study the Seiberg-Witten integrable systems in the SU(2)
and SU(3) cases.

The ideal is that the WCS associated to the corresponding integrable systems can be
used to generate the so-called BPS-states and study the wall-crossing phenomena of the
associated BPS-invariants (or DT-invariants) by employing the algorithm given in terms
of the split attractor flow.

The success of using WCS in these two cases shows the properness of the WCS formal-
ism, which gives us the confidence that this formalism could be applied to more general
settings. For example, it is expected (c.f., [ |) that the WCS formalism can be ap-
plied to the Hitchin integrable systems, as well as to the integrable system arsing from
the studying of N = 2 supersymmetric black holes in super-string theory.

The investigation of the BPS states and the corresponding BPS invariants in these
situations belong to the current pursuits of theoretical physics.

In section , the WCS for Seiberg-Witten integrable system in SU(2) case will be dis-
cussed in details. The main ingredients of the WCS for SU(2) case are the results of
physics (see for example | I ]). We just reformulate in terms of WCS.

We will generalize it to the SU(3) case in section . The construction roughly goes as
follows:

We know from | I i | the vanishing cycles associated to the dis-
criminant locus, which help producing the so-called initial condition of the WCS.

The WCS is then studied by cutting the real four dimensional base B with two com-
plementary hyperplanes, so that the situation is reduced to the real two dimensional case.
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On the resulting plane after cutting, the discriminant locus was cut into six singular
points that fall into three pairs, each of which determines a situation similar to the SU(2)
case. This corresponds to three embeddings of the Lie algebra su(2) < su(3). Thus, by
applying the WCS formalism to this situation, we get three families of BPS states with
non-trivial DT-invariants (or BPS invariants).

We apply again the WCS formalism to another wall (its existence is discussed for ex-

ample in | I ]) in order to derive the results about the interaction of the above
three families. This gives us new BPS states with DT- invariants equal to 2.
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5.1 WCS for SW Integrable System: SU(2) Case

5.1.1 Description of the problem

Recall that the base of the SW integrable system in the SU(2) case is given by B = C,
and we have a local system [ of rank 2 lattice over the smooth part B® = B\A,, where
the discriminant locus A, (corresponding to the singularities of the Z-affine structure on
B) consists of just two points {+A?}.

Endowing B with coordinate u, then the elliptic curve C, sitting over u € B° is given

by (c.f., (4.1.21))
Co:yP =W3;, — A= (2" —u)?— A" (5.1.1)

Then the stalk of the local system [ of charge lattices at u is described by
£u:Hl(CU,Z>:EZ@ET:ZO&@ZBZAREBAW (512)

which splits the lattices (4.2.26) into the direct sum of two sub-lattices spanned by
the a and 8 cycles, denote respectively by I'{ and I'." as above.

Figure 5.1: Local system [ over B

When u approaches to A%, the cycles 7. 2 shrinks to size zero, thus the vanishing
cycles associated are given by (c.f., (4.2.27))

Yopr =B —2a=(-21)
{mQ =5=1(0.1) 19

Figure 5.2: Basis cycles on an elliptic curve
Thus, any charge v € I' can be decomposed uniquely as
Y=qa+gp

where g and ¢ are integers, which are called the “electric” and “magnetic” coordi-
nate of the charge vector .
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We need a central function Z, € Homgy (I',,C). To describe it, we denote the
central charges of o and [ respectively by

a(u) := Z,(«a) ap(u) := Z,(5)

Consequently, for the general charge vector v € I, given as above, its central charge
is given by

Zu(v) = qa(u) + gap(u) (5.1.4)

It had been shown (see the relevant discussion in section 4.1.2) that the central charge
function, as a holomorphic function, can be expressed as the integral over the charge
vectors with respect to a holomorphic differential one form

Asw € H*(C,,C)

called the Seiberg-Witten differential (see formula (4.1.41)). The central charge function
is then expressed explicitly as

Zy(v) = f)\sw = CJ?{ Asw "‘Q%ASW (5.1.5)
R e’ B

where Agy in this SU(2) case is given by (see formula (4.1.42)) :

9, rxdr 0 , x dx
v = (g ) 5 = gt -0
_ 22%dr 22% dx

" N T (5.1.6)

In particular, we see that the special Kédhler coordinates a(u) and ap(u) can be ex-
pressed in terms of Agy as

a(u) = j{)\gw ap(u) = jg)\gw (5.1.7)

Recall (see definition (2.2.2) in section 2.2) that the wall of the first kind (which is
called the wall of marginal stability by physicists, see appendix A for more information
on it from the physicists’ perspective) is defined to be the locus in the moduli space
where two or more charge vectors with equal phase of the corresponding central charge
functions, namely

wh=Jw) (5.1.8)
¥
where
W= | Win (5.1.9)
Y=71+72
and

W%,W = {u €B: R>0 : ZU(/Vl) = R>0 ’ ZU('YQ)}
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:{uEB:Im(M> :O}
Zu<72
We claim that the wall of the first kind W' in SU(2) case is described by

W' = {ueB:Im (aD(“)) :0} (5.1.10)
a(u)
Lemma 5.1.1. Given two complex numbers z; and z9, we have that

Im (_) _ Im(az)

Z9 |Z2|2

The lemma follows from . .
<1 2122 2122

2 w7 |l
Proof. (of the claim) Given two charge vectors ; = q;a + ¢;3, for i = 1,2. Applying the
lemma above, we compute as follows

ap(u)
. (Zu(’n)> i (qla(u) +91aD(U)) o (B9
Zu(Y2 q2a(u) + gaap(u) g + gg'ZD(—ff)b)
z::“f(ff)‘) Im <Q1 + 912) —Im ((fh + g12)(q2 + ng))

G2 + g2z (g2 + 922)(q2 + 92%)

. Na2 + 919212 + 1927 + G122
=1Im 5 TP
¢ + 93|12 + qaga Re(2)

= Im(q192Z + 91¢22)

= (9102 — q1g2) Im(2) = (9142 — qu92) Im (aj(gg))

Since we consider all possible v;, so the integers ¢; and g; are arbitrary, but the above
identity holds for all possibilities, thus follows the proposition. O

It can be shown (for example | ]) by using the analytic expressions for a(u) and
ap(u) that the curve W' (see the picture below) is a closed curve that passes through
two singularities =A% and looks like an ellipse, but not exactly.

The wall W! divides the moduli space B = C into two connected components, the
inside of the curve is called the strong coupling region, and is denoted by Bgtrong, While
the outside of the curve is called the weak coupling region, and is denoted by Bycak-

It had been shown (c.f.,[ 1Ll ]) that the BPS states for the underlying physics
theory associated to the SU(2) Seiberg Witten integrable system were given as follows:

Within Bsirong, we have

e the “magnetic monopoles” with charge vectors given by (¢, g) = £(0,1);

e a “dyon” with charge vectors given by (¢, g) = +(—2,1) in the lower u plane, and
+(2,1) in the upper u plane.
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—A? +A2

Figure 5.3: Curve of marginal stability in SU(2) case

Within Beqr, we have

e the “magnetic monopole” with charge vectors given by (g, g) = £(0, 1)
e “dyons” with charge vectors given by (q,9) = £(2k, 1), with k € Z.

o W¥ “gauge bosons” with charge vectors given by (g, g) = (£2,0)

And the BPS invariants () of these states all equal to one except for the W-bosons,
which are equal to —2. Now we can state the main problem to be answered in this section.

Problem: To encode these charges and the corresponding BPS invariants using the
WCS formalism for complex integrable system that had been laid down in chapter 3 (see
section 3.2.3 for more details).

5.1.2 Attractor flows

Recall that in section 3.1.4, we have displayed that the base B°, as a complex manifold,
can be endowed with the Kéhler metric ggo (see equation (3.1.43)):

gro = Im (dapda) (5.1.11)
with the corresponding Kahler potential given by
K = Im (apa) (5.1.12)

Given y € L', , let 0 = Arg Z,,(7y), we can consider the attractor flow to be given by
the gradient flow of the following function

E,(u) := Re (e " Z,(7)) (5.1.13)

where the gradient is taken with respect to the Kéahler metric ggo given above. Thus the
flow equation is given by (see formula (3.2.5))

u+ grad F,(u) =0 (5.1.14)

Denote by £, the flow line that satisfies the flow equation above, then by the propo-
sition 3.2.2 in section 3.2, we see that along the flow line £, the quantity I'm(e~*Z,(v))
stays constant. However since at the point uy € B°, we have that § = Arg Z,,(v), we
deduce that Im(e~*“Z,(v)) = 0. Consequently, as a set, the flow line is described by

L,={ueB:Im((e"Z,(y)) =0} (5.1.15)
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We endow the base B° with the Z-affine coordinates (see remark 3.1.17 in chapter 2):

{x =1Im (e ?Z,(a)) = Im (e7 a(u))
y:=1Im(e™Z,(B)) = Im (e7 ap(u))

By writing the charge vector v = qa + g3, we see from above that the attractor
flows correspond to the Z-affine lines on the Z-affine manifold B° given by the following
equation

L, qa(t)+gyt)=0 (5.1.16)

where ¢ is the “time” parameter for the flow line £,.

Note that the flow line equation (5.1.15) implies that the phase of the central charge
function Z,(v) is preserved along the flow line £., namely

Arg(Z,(v)) =6 (5.1.17)

For this reason, we also call the attractor flow lines the lines of constant phase.
Besides, the choice of the function F,(u) in (5.1.13) implies that along the flow line £,
we have

F,(u) = Re (e”'gZu(’y)) = Re (e’wem”g(z"(”))|Zu(’y)])
= Re (e ¢?| Zu(7)]) = Re (|1Zu()]) = 12u(7)]

which is exactly the “mass” function introduced before (in remark 3.2.3). Denote it
by
ma(3) = | Zu(7)| (5.1.18)

By applying the proposition 3.2.5 in section 3.2, we get the following

Proposition 5.1.2. Away from the discriminant locus Ay, the mass function m,(y) is
decreasing along the flow line L.

Remark 5.1.1. The mass function m, () in physics literature measures exactly the phys-
ical masses of the BPS states, for this aspect of the story, please consult appendix A for
relevant information.

From the proposition above, we conclude that away from the singularities and the
critical points of the function F,(u), along the flow line £, F,(u) is always decreasing,
converging to a local minimum, the so called attractor points (see definition 3.2.2).

Proposition 5.1.3. The attractor points in SU(2) case considered here coincide with the
discriminant locus Ay = {+A?}.

Proof. Indeed, as the mass function myn) = F,(u) is decreasing along the attractor
flow line £,, and it is non-negative by definition, thus, the terminal points of the flow
correspond to the points where the mass function vanishes. However, we know from 5.1.3
that the cycles vy 2 are the associated vanishing one cycles over £A2. Thus the possible
attractor points for the attractor flow lines in this case are +A2. O
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K7—\ attractor flows
. /\

attractor points

Figure 5.4: Attractor flows and attractor points

Remark 5.1.2. By the above proof, we see that the attractor flow converges to the
minimum of |Z(7y)|, which should be the zeros of the central charge function Z(vy) =

aAp(u)

qa(u) + gap(u). Consequently, ) = —1 € R (assuming q # 0), which means that the

zeros of it must lie on the curve of marginal stability W'. This is indeed the case as had
been noted before that the points +A? lie on W?.

Remark 5.1.3. It is possible that the attractor flow lines terminate at a “regular zero”
of the central charge function lying on W*, however, this case can be excluded by the
following argument. Suppose that Z,, () vanishes, then since Seiberg- Witten differential
Asw is regular, thus Z,, (v) = §7 Asw = 0 implies that v must be the vanishing cycles
over the point u,,. But we know that the only possible vanishing cycles are situated at
+A2,

Remark 5.1.4. The proposition 5.1.3 also follows from the observation (5.1.17) that the
phase of the central charge function Z,(vy) stays constant along the flow line. For suppose
that the attractor flow line does not terminate at the zeros of Z,(7y), then the attractor
flow line could be continued further and the “constant phase” condition will be violated.

Proposition 5.1.4. The attractor flow associated to the charge v can intersect with the
wall Wﬂilm at most once. In particular, the attractor flow line intersects with the wall
transversely. And since our flow is confined in the complex plane, thus it is atomically
planar (see definition 3.2.6), thus by using the terminology defined in definition 3.2.9, we

conclude that the attractor flow lines form an attractor tree that is good.

Proof. This is the special case of the proposition 3.2.10. O]

Thus by proposition 3.2.17, we expect that by considering the split attractor flow lines
on the base B of the SW integrable system in SU(2) case, we will get an local embedding

B° « Stab(g,) for each b € B, (5.1.19)

from which we can obtain information about the charge vectors of the BPS states and
the corresponding BPS invariants (DT-invariants).

We will see that these are exactly the ones that had been obtained by physics consid-
erations.
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5.1.3 Algorithm for computing the BPS invariants

To get a WCS on the moduli space B = C suitable for our purpose, we consider the
following map

Y :Bx S@ — Fﬁ%
(1, 60) 1 Yalw)(7) i= Tm(e " Z,(7)) (5.1.20)

Remark 5.1.5. Intuitively speaking, this means that we want to “scan over” all possible
charge vectors v € Ty, over all points u € B, in all directions, in order to see which charge
vectors can be realized as the BPS states at the given place in the moduli space.

Notice that this essentially amounts to the (local) embedding of the moduli space into
Stab(gy), i.e., the space of stability conditions on g. For this reason, we say that the
information about the BPS states are “encoded” by WCS.

Choosing 0 = Arg Z,(v). By (5.1.17), we know that the attractor flow lines lie at the
locus where the central charge has constant phase 6.

The attractor flow lines on the base B can be lifted to (see the discussion in section
3.2.2) the flows on the following two sub-spaces of the total space of the local system of
lattice I' over B:

BY := {(u,v) € tot Ty : Y (u)(v) = 0}
BY :={(u,7) € totI : Y(u)(v) = 0}

Moreover, the lifted flow lines equation are given by the following

{: _ 8(7) (5.1.21)

Before giving the algorithm for computing the BPS invariants using the WCS, let us
first recall that the vanishing cycles associated to +A? are given by 7ia2 respectively
(see the formula 5.1.3). They correspond to the monodromy invariant directions of the
corresponding monodromy matrices M2, namely

Moz - Yapz = Yop2

From this, we easily see that the tail set (see section 3.2.3) 7;3% C BY in this case
reads

Tay = (£A* 72a2) C BY (5.1.22)

Indeed, we can verify that the fibers of £A? under the projection of tot I'y to B® are
one dimensional vector subspaces spanned by two vanishing charge vectors respectively,
which are strict convex cones. Further more, the tail set above is easily seen to be pre-
served by the “inverse attractor flow”.

234



Consequently, the initial data (see definition 3.2.7) of our WCS, which is given by
the restriction of the map a : totl’ — I'; to the tail set, reads in this case as

A4 A2 (’YiAQ) = DT(’YiA2) "Cyiae € 902 (5'1'23)

VA2
That is, the local systems attached to the initial data are typically trivial of rank one.
And by the remark 3.2.14, we can assign the BPS invariants for the initial data by

Q:tAz(’y:tAQ) =1. (5124)

Remark 5.1.6. We see that the Tail assumption and Mass function assumption
are easily verified to be true in SU(2) case. Indeed, as the “initial points” +A* are the
attractor points for all attractor flows, thus given open subset U C BY, the subset of
points (u,y) € U such that their mazimal positive trajectories intersect the tail set 72;%
is dense in U. The mass function that satisfies the mass function assumption is simply
F.,(u) since its restriction on the attractor flow line L., is simply the “mass” function
m. (), which had been shown to be decreasing and strictly positive.

attractor points

Figure 5.5: Attractor flows on the moduli space
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Algorithm for computing BPS invariants in SU(2) case

e Initial data: at the attractor points A%, we have BPS states with charges (0, 1) and
(2, —1) respectively. We assign the corresponding BPS invariants to be Qi x2(7,, ,,) =
1. These are the only non-trivial invariants at the attractor points.

e Constructing attractor trees: Given (u,7y) € I, we consider all trees, called the
attractor trees on B with (the only) root at u, and the external vertexes all ending at
the attractor points. All edges of the trees are given by the attractor flow associated
with (u,7), and each internal vertex should have valency at least three and lies in
the wall of the first kind WW?!. Moreover, the following “balance condition” at each

such internal vertex v must be satisfied:

Balance condition: If the incoming edge at v is the attractor flow associated to
v, and the out coming edges are associated to charges 7*!, then we have that at
each internal vertex v:

e Determining €,(7y): Under the assumption that the number of the attractor trees
considered above is finite, we start at the attractor points of the union of above

trees, and move backward toward (u,7), and at each inner vertex, we apply the
KSWCF

— . — _
1T ICS(L(? ) =11 O™ (5.1.26)

,Y'Ln

so that at each inner vertex, §2,(7") can be computed from €2, (~°*).

By induction, we will eventually arrive at the value of the £,(7).

Before applying the above algorithm, let me first remark that the strong and weak
coupling region are characterized as

Bitrong = {u € B: Im“2 < 0}
a

Bweak:{ueB:Ima—D>O}
a
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5.1.4 WCS in the strong coupling region

We first work in the strong coupling region Bsirong, 1.€., the region inside VA%

Given (ug,v) € L, where ug € Birong, We define 0y = arg Z,,(7), and consider the

attractor flow equation issuing from ug
u+ grad F,(u) =0
which by (5.1.15), is solved by
Loy~ ={ueB:argZ,(y) =00} (5.1.27)

From proposition 5.1.2 and proposition 5.1.3, we see that in order for the line £, -
to end at the attractor points, the only possibilities for the choice of v are the vanishing
cycles 4,2 situated at the attractor points A2 respectively.

We prove in the following that L, is the unique line that connect u, with either
+A? depending on if v = vy 2.
Proposition 5.1.5. The attractor flow can cross the wall W' only at its end point.

Proof. Let v = (q,9), then Z,(v) = qa(u) + gap(u). By proposition 3.2.8, the flow line
L.~ can be rewritten as

qa(u) + gap(u) = ¢(1 —1t), t €[0,1] (5.1.28)
where ¢ is the real time parameter (for the flow) and the constant ¢ is given by
¢ = qa(ug) + gap(ug) such that Argc =6
Assuming ¢ > 0, we consider the Kéhler potential K (t) = Imapa of the metric
ds®* = Imr dapda

which is easily seen to have the same sigh as that of Im(“2). We compute its restriction
on the flow line £, - as

K(u(t)) = Imapa = Im (W@)

— Im ca(l —1t) :1—tmca
=1 ( . ) . Im(ca) (5.1.29)

from which we see that if £, - intersects W', i.e., Im(%2) = 0, then it either intersects
at the end point where ¢t = 1 or at points where Im(ca) = 0. But the following lemma
shows that this quantity cannot be zero. The proposition thus follows. O

Lemma 5.1.6. Along the flow line L,, -, the quantity Im(ca) never vanishes.
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Proof. Since ug € Bgtrong, thus when ¢ = 0,

K () %fm@a) <0

by our assumption that ¢ > 0, we conclude that initially Im(ca) < 0. We then prove that
it can not be zero by showing that along the flow line, it is a decreasing function. This

can be done by showing instead that Im(ca) is increasing along L, . Indeed, by using

the definition 7 = dé%f’ and taking the derivatives on both sides of the flow line equation

(5.1.28) with respect to ¢ , we see that

da  —c
dt  p+qr
then we compute as follows

d e

—Im(ca) = Im(ca) = Im ( « )

dt p+qr

—|c[? _ glc/?

= ———Im(p+q7) = —— Im7 >0
b+ qr|? ( ) b+ qr|?
This completes the proof of the lemma. n

In summary, we conclude that in the strong coupling region Bgiyong, the only attractor
flow issuing from a point is the straight line (in the affine coordinate) that connects it
to the corresponding attractor points A% depending on in which monodromy invariant
direction is our attractor flow pointing to.

Figure 5.6: Attractor flows in strong coupling region

Consequently, within Bgirong, the only BPS charges existing are those corresponding
to the two vanishing cycles 4,2 at the two singularities +A%, namely, the magnetic
monopole with charge vector (0,1) and the dyon with charge vector (2, —1).

Remark 5.1.7. The proofs of the above two propositions are based on the treatment in

[Fay97].
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5.1.5 WCS in the weak coupling region

Given (ug, ) € L, where ug € Byear, i.e., outside of the wall W, In this weak coupling
region, we have I'm (“2) > 0. Define: 6y = arg Z,,(7), and consider the attractor flow

associated to the function

F\(u) = Re(e™* 2, (u)

as before, the flow line £, . is given as before, see equation (5.1.15).

From the algorithm described above, we need to consider rooted attractor trees with
root at uy that terminates at the attractor points =A%, We expect the following scenery:

e For 7 = 71z, the flow line £, , will directly flow into the attractor points {£A?}
without splitting, which means the two states with charges iz persists in the
weak coupling region.

e For charges v other than the ones represented by the vanishing cycles, the flow line

L,,~ will intersect the wall W' at the point u, where the flow line splits into two
flows L, m~, ., and Ly, »y ., that start at u, and terminate at the attractor points
) +A VET—A

+A? respectively, i.e.,

LUOW = ‘Cu*,m’ul\Q + Eu*,n77A2 (5130)
corresponding to the split of the charge vector
Y= MYypa2 + NY_p2

We see that if such a split attractor flow exists, then the corresponding BPS state
with charge v (with non-vanishing BPS invariant) exits in Byeq, and its BPS
invariant ,,() can be computed by applying the KSWCF at the splitting points.

Figure 5.7: Split attractor flow

We need to further investigate the second case above. The first question need to be
addressed is when shall a split attractor flow exist?

Apparently, we should make sure that each of the three flow lines in (5.1.30) exits.
This is indeed guaranteed by the following two lemmas.

Lemma 5.1.7. The two attractor flow lines [,u*,mﬁ/\g and Loy, ny_,, issuing from +A2
respectively can only intersect at the wall of marginal stability W*.
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Proof. We have that
»Cu*,mv_‘_Ag = {U € B: ATg Zu(V-}-AZ) = 00}
Eu*,n’y_l\z - {U eB: ATg Zu(’y_AQ) = 00}

from which we see that Ly, m, . intersects with Lo, ny , at

L’u*,mquz N Luwny o = {u* € B: Arg Zy(v_n2) = Arg Zy(Via2)}
which belongs to the following set

{“ <5 dm (%) - O} - {“ B m g - O}
- {uGB:]maD(u) =o} — W!

a(u)

Therefore, the intersection point w* lies on the wall W?. O
Lemma 5.1.8. The intersection points u* coincides with the splitting point ..

Proof. At the splitting point u, is the point where the central charge function becomes

Zu(77) = mZy(Yyaz) + nZu(7-p2)

as we have at the splitting point that

Y = mygaz +nyoae

Suppose that u* # w,, then the phase of Z,, () would be different from that of
Zy(7+a2), contradicting to

Arg Zu,(y) = Arg Zu-(yza2) = o
Thus u* = u,, and the lemma is proved. O

Now we can answer the question: When will a split attractor flow tree like (5.1.30)
exist? Putting it in another way, we can ask: given a point ug € Byear, for which partic-
ular charge vectors v € I, , should the attractor flow tree associated to it exist?

To answer this question, we need to reverse the logical above, and consider instead the
two attractor flow lines £, y2 and £_ 52 issuing from the two attractor points (singularities)
+A2, which are given respectively by

Liyz=A{ueB:ArgZ,(via2) =0}

L pno={ueB:ArgZ,(v_s2) =0}

The two lines correspond to the same #-value, though the 0 here can be arbitrary. In
terms of the framework of WCS, we say that we need to consider the initial data of the
WCS. As the lemma 5.1.8 above shows, these two “incoming rays” L2 will intersect
exactly at one point u, € W!.
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By KSWCEF, the two rays will “scatter” at w, into possibly infinity many rays £,, ,

with all possible charges m~y, 2 +nvy_j2. Together with the incoming rays, they form the
so-called scattering diagram.

Scattering point

\ \
f \ NN
\ A A N\ Outgoing rays

Incoming rays

Figure 5.8: Scattering of the incoming two rays

Then by considering a small loop around the scattering point wu,, i.e., the splitting
point, the KSWCF is then equivalent to the triviality of the following monodromy (see
proposition 2.2.1 in chapter 2)

I s, = id

O
t;

where the product is taken in the increasing order of elements ¢;. Written in terms of the
KS transformations, this read as:

Qi (m,n) Q* (m,n)
I Kew = 1TI Kok (5.1.31)

m,n>0;m/n m,n>0;m/nN\

1‘[ S(L,) = id
ti

Figure 5.9: Monodromy around the splitting point
In the case in which we are concerned here, we have that
F= (v ea) = (2,—1),(0,1)) =210+ (—1) =2
Then the KSWCF above specialize to the following (see formula (2.2.11))

Ko,—1 Ko1 = (]CO,l Kog Ka - =) IC;,[? (--- Ke,—1Ks,—1 ]CZ,fl) (5.1.32)

from which we infer that after the “scattering”, we will get countably many BPS rays
associated to new BPS states with the charges indicated by the sub-index on the RHS of
the above formula, while the corresponding BPS invariants are indicated by the super-
index on the RHS of the formula above.
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0,1)

(2,1)

(2,0)
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(4,-1)

2-1)
Figure 5.10: Scattering diagram in k = 2 case

Finally, we can spell out the WCS that in some sense “foresees” these BPS states by
applying the algorithm in section 5.1.3 as follows:

Given (ug,v) € L', where ug € Byeqr, Our purpose is to test at ug, if the BPS state

with charge v exists or not. And if it exists, then to determine its BPS invariant Q,, (7).
To this end, we follow the procedures (algorithm) as below:

e First, determine 0y = arg Z,,(), and consider the gradient flow associated to the
function F,(u) = Re(e™ " Z, (u)).

e Second, the rooted attractor flow tree with root uy would be generically a tree that
splits only at some point u, € W', with the two external edges ending at the two
attractor points {£A?}.

e Third, we start with the attractor points, tracing along the external edges till the
scattering point wu,, at this point we use the KSWCF, and from which we can tell
if the charge ~ coincides one of the charges on the RHS of (5.1.32):

If the answer is YES, the state with charge vector v exists at the point uy with
corresponding BPS invariant €2,,(y) can be read off from the KSWCF (5.1.32); If
the answer is NO, then at uy there does not exist BPS state with charge vector ~.

Remark 5.1.8. We see that the possible BPS states that had been “captured” by the
procedure above fall into a convex cone on the space

— {(b,7) € tol T : Y(b)(v) = 0}

which then confirms the claim in proposition 3.2.16, namely that in this case, the
WCS is uniquely determined by its initial data.

2,1) (4,1)

0 (4,-1)
2,-1)

Figure 5.11: Convex cone generated by the BPS charges
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5.1.6 Further remarks and miscellaneous discussions

Remark 5.1.9. As we change 6 continuously, i.e., by rotating the affine coordinates on
B (see remark 3.1.17 in chapter 3), we see that any flow line in the scattering diagram
described above would sweep the whole complex plane, from which we know that for the
BPS states with charge given by KSWCF in the weak coupling region, they actually exist

for all point u € Bear-

Figure 5.12: Rotating the affine coordinates

Actually, the split attractor flow lines also get rotated after continuously changing the
angle 0. Algebraically, this means that the flow lines are still the curves of constant Z-
phase, despite that the phases could be arbitrary 6, instead of being 0. Geometrically, this
means that if there exits a vanishing cycle in one direction specified by 0y, then it also
exits along all other directions of the Z-affine structure.

Figure 5.13: Rotating the splitting attractor flows

The discussion above enables us to verify the compactness assumption in section
3.2.3, that is: There exists an open dense subset BY' C BY with the property that for
every (b,y) € BY', there exists a compact subset Ky, C BY and an open neighbor-
hood U of (b,7) such that for every attractor tree T" with the root and root edge in U,
the corresponding tree T° belongs to K@,). Indeed, by the remark above we see that
given by € B and v € I';, and an open neighborhood Uy, around by, then for b € Uy, that
is infinitesimally close to by, the attractor flow line £,, is also infinitesimally close to £, .

Even if in certain regions, the topological type of the attractor trees could “jump”,
however, as can be seen in the following discussion, they are still bounded by compact
sets, thus the compactness assumption holds. The asymptotic expansion for a(u) and
ap(u) are given by (after re-scaling A =1 (c.f.,] 1Ll D).

~ \/u/2
Near u = oo o) . u/ (5.1.33)
ap(u) ~ =v2u(Inz+3mn2—2)
Neart — 1 a(u) ~ # [evtlIn v + L (i — e(1 4+ 41n2)) + 4¢] (5.1.34)
ap(u) ~ tvV2u(Inz+3In2—2)
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~2 o Ludlfpusl ] 41n2
Nearu = 1 {a(u) o2 (I3 + 02| (5.1.35)
ap(u) ~1i

Certain attractor flow lines can then be depicted by using Mathematica:

Figure 5.14: Curves of constant Z(v) phase 0 for v = (1,0),(0,1),(2,1),(4,1). The
graphs are taken from | ]

Discussions: From the above graphs, we see that for v 52 = (0,1) and yy52 = (2, 1),
there exists attractor flow line that starts at any point © € B and ends at the attractor
points (+A? corresponding to 4,2 respectively), which means that the BPS states with
charge vectors given by vy,2 exist through the moduli space. However for v = (1,0), i.e.,
the left upper picture above, we see that there are no flow lines that terminates at the
attractor points, which simply means that through out the moduli space, there are no
BPS state with charge (1,0). This is indeed the case as had been implied by KSWCEF.

The tricky part is about the flow lines associated to the “dyon” v = (4,1). As the right
lowest picture shows that for some values of 6 (for example ¢ = 7), the flow lines will first
hit the wall W', and then proceed to intersect the cut [—A? A?]. In this case, it can be
shown that the flow line could be represented by a flow line that splits at the intersection
point into two flow lines that terminate at +A? respectively, as the charge vector (4,1)
can be written as a sum of the primitive charge vectors associated to the monodromy
invariant directions at the attractor points £A2, i.e., when above the cut, we have that

(4,1) =2 x (2,1) — (0,1)

and when below the cut, we have that (4,1) = 2x (2, —1)+(0,1). However, for v = (1,0)
above, this decomposition is not possible, thus the flow line associated to v can not be
represented by split attractor flows. For if

(1,0) =m(2,1) +n(0,1)

then we have 2m = 1, which is impossible as we are seeking integer solutions.
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> €5

Figure 5.15: Representing the flow line by split attractor flow

More detailed analysis ([ ]) shows more interesting properties of the rotated at-
tractor flow lines associated to the charge vector (4,1), the same holds for more general
(2n,1) and (2n, —1) BPS states, which are called “dyons” in physics literature.

So let v = (4,1), then the attractor flow lines are given by the equation
Arg(Zu.(v)) =0, 6 €[0,2n]

As 0 varies, it can be show that the moduli space are separated by the wall W!, the
flow lines corresponding to # = 0 and 6 = 7 into four regions.

Figure 5.16: Four regions in moduli space

We see from the above graph, that when 6 = 0, 7, the attractor flows are given by a

single flow lines, however, when crossing the regions divided by the these two lines, the
attractor flow would undergone “phase transition” (see figure 5.17) in the sense that it
will be represented by splitting attractor flow instead of a single flow line.

‘; m/2

Figure 5.17: “Phase transition” of the attractor flow lines
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Before ending this section, let me point out that the split attractor flow trees on the
base B of the integrable system
m: X =B

when lifted to X, corresponds to how the torus fibers degenerate.

More precisely, borrowing the terminologies form | |, it corresponds exactly to
the pseudo-holomorphic disc with boundaries in the relative class

v € Hy(X°,77'(1)), Z)

Thus when at the splitting point on the wall of the first kind, there would be new
holomorphic discs produced, which is called the “bubbling phenomenon” in | ].

With this interpretation, the BPS invariant (7), which is locally constant in b,
roughly speaking, corresponds to the counting of the number of pseudo holomorphic

discs in the relative class 7.

Near a singularity of focus-focus type, the local model is given by the Ooguri-Vafa
space (see section 3.1.6 for its description).

X

Figure 5.18: WCS and pseudo holomorphic discs
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5.2 WCS for SW Integrable System: SU(3) Case

In this section, we will apply the formalism of WCS to the Seiberg-Witten integrable
system in the case of SU(3). It turned out that this case is much more involved than
the SU(2) case investigated in the last section as the moduli space B in this case is of
complex dimension two, and consequently, the discriminant locus Ay, as well as the walls
of the first kind (walls of marginal stability) W, are much more complicated than the
SU(2) case. Besides, the combinatory of the split attractor flows in this case is more
subtle than the SU(2) case considered before.

However, by employing the methods discussed in section 4.2.4, i.e., by considering
a slice of moduli space given by Im(v) = 0, the problem can be reduced to the real
three dimensional situation, so that the visualization become possible in this case. The
proposition 4.2.22 then guarantees that we will not losing essential information after this
induction.

Moreover, by remark 4.2.23, remark 4.2.25 and remark 4.2.26 in the last chapter,
we see that some aspects of the WCS in SU(3) case can be investigated through the
reduction to the SU(2) case which had already been explained in last section. Morally,
this corresponds to the embeddings SU(2) — SU(3).

5.2.1 Description of the problem

First, we collect some facts that had been given in previous chapters regarding the SW
integrable system in the SU(3) case. The SW curve in this case is given by (4.1.24) as

Co: y? =W, — A= (2% —uz —0v)* = A° (5.2.1)
where u := (u, v) denotes the moduli parameter.

Thus the moduli space is given by B = C2. And the quantum discriminant is given
by (4.1.25) as

o = 2°A" (4u® — 27(v + A%)?) (4u® — 27(v — A®)?) (5.2.2)
So the discriminant curve is given in this case by

Ay = AT UAL = {(u,v) € C*: 4u® = 27(v £ A*)?} (5.2.3)

where Af is defined as

Ay = {(u,v) € C*: 4u® = 27(v F A*)*} (5.2.4)

And the SW differential is given by (4.1.45) as follows

0 rxder 0, 4 xdx
o = () 55 = g - =0 5
_ (32 —w) xdrx _ (32 —w) rdx (5.2.5)
Yy V(23 — ux —v)2 — AS

247



The central charge is given by the following

Zu(y) = ]{ Asw (5.2.6)

Given standard basis {a!,a?; 31, 32} of the hyper-elliptic curve C, (c.f., 4.2.27 in
section 4.2.3), then a charge vector can be written as

v=(g q) =g"b+ B+ aqa' +q@a*el,=H(CyZ)

where g = ( g\ g? ) denotes the “magnetic charge” of the “BPS state” represented
by v, while q = ( ¢t ¢ ) denotes the “electric charge” of the “state” represented sv.

Cli ::f )\SW ap; ZI% >\SW 1= 1,2

i

Defining

then the central charge of v can be written as follows
Zu(y) = ]{ Asw = g'ap1 + g’apa + qa’ + qua’ (5.2.7)
Y

Recall that near the discriminant locus Ay, the moduli space B is studied by inter-
secting the moduli space with the three sphere S% with radius R (see section 4.2.3), while
the monodromies near this locus is investigated by intersecting it with the hyperplane
given by {Im(v) = 0} (see section 4.2.4). Then the region where R becomes very large,
or |Re(v)| becomes very large is called the weak coupling region. Or equivalently, the

weak coupling region is characterized by (see for examples: | il i )
;- a o
‘ n ‘ >> 1, for all positive roots a;. (5.2.8)

Remark 5.2.1. By remark 4.2.22, we see that the weak coupling region corresponds to
the semi-classical limit of the theory, thus the monodromies in this region will be given
by semi-classical limit discussed in chapter four.

Weak coupling spectrum

We list the known BPS states in the weak coupling region (| ]). As the above
remark indicated, these states should be the ones that are invariant under the semi-
classical monodromies. To this end, let us denote by {1, as, a3} the positive roots of
SU(3). In terms of the orthonormal basis {e;} of the plane, the positive roots can be
expressed as

1
a; = —(61' — 61‘4_1) 1= ]_,2

V2

while a3 = oy + a9, namely, we have that

ar = (1,0), as = (=1/2, V3/2), as = (1/2,V3/2)
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Then by proposition 4.2.16 and remark 4.2.16, we see that there exist BPS states that
are given by

F = (o 1) oy
{”Z_ (0, (n 4 1) ) (5.2.9)
v; = (i, na;)
fori=1,2and n € Z.
We introduce the following notations for these states in accordance with | | and
[HoloT}:
o= —1
Q30 = (az,n0)

By what we had said above, the states obtained from these by applying the semi-
classical monodromies should also exist in the weak coupling region. Recall that the
semi-classical monodromies (see (4.2.15)) reads:

M= ME =i T i=1,2,3.

which acts as follows (| 1)
1 +n n
. -+
Q} Min Q}l (5.2.11)
@y - M; = £Q5
Since we have the braid relation (4.2.110)
Mz = My My - M5!
we see that the remaining possible BPS states are given by
Ql - My = Qb - My (5.2.12)

That is, besides the tower of “dyonic BPS states” Q)7 and Q)§ as above, we should
also have the following two towers of BPS states:

Qyy = Q7 - Mjz = (a1, (n — Day) - M3

= (o1 + a9, (n — Dag £ ag) = (a3, £ag + nas) (5.2.13)

Besides these states, there exist also the following family of BPS states in the weak
coupling region:

Wy = (0,a3), k=1,2. (5.2.14)

which are called the “W-bosons” in physics literature.

Remark 5.2.2. [t should be understood that all BPS states above are accompanied by
their anti-BPS states, i.e., the BPS states with opposite charge vectors. For this reason,
we omit the discussion of them through out.
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Strong coupling spectrum

Since there does not exist a single wall (of the first kind) as in the SU(2) case, we can-
not separate the moduli space B by a single wall as the weak coupling region and strong
coupling region. However, inspired by the SU(2) case discussed in previous section, we
expect that the strong coupling region in SU(3) case corresponds to the region that is
near the discriminant locus Ax. That is the region where the |u| becomes relatively small.

We know that in this region, there are at least six BPS states with vanishing “mass”
function (defined as the absolute value of the central charge function). These states are
represented by the six vanishing cycles z/ii, 1 = 1,2,3 as had been exhibited in section
4.2.4. These cycles are the invariant cycles under the (Picard-Lefschetz) monodromies
around the six singular lines ), i = 1,2, 3. They are given explicitly by (4.2.113):

v =(=1,1;-1,0) vy =(-1,1;-2,1)
1Z

+

1

$=(0,-1;1,0) vy =(0,~1;0,—2) (5.2.15)
4 =(1,0;0,0) vy =(1,0,2,1)

Vg

In the following, we choose the basis of homology one cycles as in remark 4.2.27. In
this basis, the six vanishing cycles become the following (we use the same notation v*)

v =(1,0;-2,1) vy =(1,0;0,0)
vy =(0,1;0,0) 1 =(0,1;-1,2) (5.2.16)
vi =(-1,-1;2,-1) vy = (—1,-1;1,-2)

Like the vanishing cycles given in (5.2.15), these basis are not linearly dependent. In
fact, it can be verified (see formulas (4.2.32)) that

From proposition 4.2.4., we know that the intersection numbers among these vanishing
cycles are given by

vivt) =) =1 i=1,2.
= . - = 1
(s v (5.2.17)

(2

v v ) =—2 (Vivi)=2 i=1,2.
y=-2 () =2

We can choose the simple roots of SU(3) in Dynkin basis to be

{Z; ~ EQ_;; (5.2.18)

which are the column vectors of the Cartan matrix A, for SU(3), that is

2 —1
AQ'_<—1 2 )
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The fundamental weights are given by

{wl = (L,0) (5.2.19)

Wo = (O, 1)

Since we know that the “magnetic charge vectors” sit in the weight lattice A,,, which
have elements expressed in terms of the co-roots, i.e., vector of the form

g = niay + naay € A,

where the co-root is defined through

In our simply-laced case, the roots are self dual, namely, o = «. In these notations, we
can re-express the six BPS states (see 5.2.17) associated to six singular lines X% for k =
1,2, 3 as follows

vl = (a1, —) vy = (aq,0)
vi = (2,0) vy = (a2, q0) (5.2.20)
vy = (—ay — ag, ) vy = (—a1 — ag, —az)

In terms of the notation )7, k = 1,2 and ()%, , the above BPS states can be expressed
as

v =07 v =Q)
vy = Q5 vy = Q3 (5.2.21)
vi =—Q3  v; =—Q5

Now we can state the main problem to be solved in this section.

Problem: Starting with the known BPS spectrum (5.2.21) at the strong coupling region
(as the initial data for the WCS), to enumerate the weak coupling BPS spectrum (5.2.10),
(5.2.13) and (5.2.1}) by using WCS. Then to extend the known spectrum if possible.

5.2.2 Attractor flows and walls of the first kind

Again, in out SU(3) case, the attractor flow (see (3.2.5)) stating at (u,~y) € I, is defined
to be the gradient flow of the function

F\(u) = Re(e™" Zu(7))

where 0 = Arg(Zy()), that is
i+ VE,(u) =0 (5.2.22)

which, by proposition 3.2.22 and proposition 3.2.23, is equivalent to the Hesse flow asso-
ciated to the Hesse potential .77, i.e., the attractor flow lines are the flow lines on which
the gradient of the Hesse potential .#® vanishes identically.
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The gradient above is taken with respect to the following Kéhler metric on B°
ggo = Im (daDJddl + dangaQ)
Then by proposition 3.2.3, the above attractor flow equation is solved by
Im (e Zy(7)) =0 (5.2.23)
In Z-affine coordinates (y;,y") on Bj, the flow lines are straight affine lines
gt + ) +ay' () +y’(t) =0 (5.2.24)
here the charge vector v is given by
v =g'"B1+ ¢*Ba + @’ + @a® € Hy(Cy, Z)
Further more, the central charge function is given by
Zu(y) = g'ap(u) + g°aps(u) + g1a' (u) + ga*(n) (5.2.25)

Since we know that the “mass function” my(y) := |Zu(7)| decrease along the flow
lines, and the central charge function is free of critical points by proposition 3.2.3, we
see that the flow lines terminate (possibly after some splittings, to be discussed later) at
the locus where the central charge function vanishes. In other words, as in the SU(2)
case, if the BPS state with the charge v exits at u € B, then the attractor flow associated
to (u, ) would eventually terminate at some places situated at the discriminant locus Aj.

Walls of the first kind: Let us investigate the possible wallS of first kind (wall of
marginal stability in physics) W!. we expect that on certain components of the wall W*,
some BPS states decay into z/iis. As each pair I/i:t corresponds to a SU(2) copy of the
situation away from singular locus (see remark 4.2.23), we have the following three walls

of marginal stability:

Wit vy) = {u = (u,v) € C*: Im (%) = } (5.2.26)

Denote by W} the wall W!(v;", ;) defined as above, then by the explicate expression
of these vanishing cycles in (5.2.16), these walls are described as

ap1 _

Wi = {u = (u,v) €C2: Im (ﬂ) = 0} (5.2.27)

2a% — al
o}

apj +aps + a* — 2a'
ap1+apa+2a® —al
The above are possible walls near the discriminant locus Ay, they are of real dimension
three and has topology type S* x C (as had been pointed out in | ]) for large moduli
u. We will prove this fact later (see proposition 5.2.2).

Wgz{u:(u,v)E(CQ: Im(
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When restricted to the hyperplane Hy = {Im(v) = 0} inside B = C?, the above walls
have the cylinder topology, i.e., S' x R. Numerical test about their shapes are given in
[CANTO0], we list some of them as below (see figure 5.19 and figure 5.20):

Figure 5.19: W1 away from singular locus when Im(v) = 0, Re(v) > 0

The change of the value of I'm(v) (i.e., foliating the moduli space by Im(v) =
constants.) has the effect that the above wall are being shifted. We have the illustration
for this below taken from [C'AN10].

5 —

Im(u)

T

Figure 5.20: Wall W} away from singular locus when Im(v) = 3,1,0, -1, -3, Re(v) >0

5 L

Indeed, the moduli variable v is “frozen” in this situation. The plane H is endowed
with the coordinate u. Notice that cutting the moduli space further with the plane H_
in figure 5.19 corresponds to taking a slice of cylinder (wall of the first kind in Im(v) =0
hyperplane), which is of course of topological type S'. Also notice that the green lines in
the figure are nothing but the singular lines. Thus the two intersection points P,;t plays
exactly same role as +A? played in the SU(2) case.

Away from the discriminant locus Ay, we are entering into the weak coupling region.

By the form of weak coupling spectrum given in the last subsection, and since the charges
are written in terms of the simple roots a; and ay, we infer that the wall (of the first
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kind) in the weak coupling spectrum region consists of a single wall, namely

W (e, an) = {(u,v) cC?: Im (0‘1 'a) = Im (M> = 0} (5.2.28)

oy - a 2a% — al

A mathematical argument supporting this fact will be given later in proposition 5.2.5.
This wall then separates the moduli space B within the weak coupling region into two
parts in which the towers of BPS states Q% sit respectively (see figure 5.21 below).

Figure 5.21: Wall in the weak coupling region that separates 5,

5.2.3 Algorithm for computing the BPS invariants

Now we put our discussion in the framework of WCS. To get a WCS on the moduli space
B = C? that is suitable for our purpose, we consider the following map

Y :Bx S@ — FIT&
(u,0) — Yp(u)(y) := Im(e " Zy()) (5.2.29)

Choosing 0 = Arg Z,(y), we see that the attractor flow lines lie at the locus where the
central charge has constant phase §. And the attractor flow lines on the base B can be
lifted to the flows on the following two sub-spaces of the total space of the local system
of lattice I' over B:

{BO’ = {(u,v) € tot T : Y(u)(v) = 0}
BY = {(u,) € totL : Y (u)(y) = 0}

From previous subsection (see formulas (5.2.16), (5.2.20), (5.2.21)), we know that the
tail set Tzy C By in this case reads

Toy = (Aa,viZ105) C BY (5.2.30)

where V,:le 5 5 denotes the six vanishing cycles associated to the discriminant.

Remark 5.2.3. The tail set in SU(3) case differs considerably from the SU(2) case in
that its projection to the base B° is high dimensional manifold instead of just two points
+A?% in SU(2) case. Despite this, the associated BPS states, nevertheless, are finite in
number, as in SU(2) case. Besides, the set of attractor points where the split attractor
flows terminate, belongs to the discriminant locus. Thus the initial data of the WCS,
which is given by the restriction of the map a : totl’ — I'y to the tail set, is given in
SU(3) case by

au(vi) = DT(v) e, € g, o UE ¥k, (5.2.31)

254



That is, the local systems attached to the initial data are typically trivial of rank one.
And by the remark 3.2.14, we can assign the invariants

Qu(vf) =1 uext. (5.2.32)
The tail assumption and mass function are easily seen to be true in this case.

Given the initial data above, the BPS invariants in SU(3) case can be similarly com-
puted as in the SU(2) case. That is, we need to construct all the rooted attractor trees
with root (u,~y) € [, such that their edges are given by the attractor flow lines associated
to (u,7v). Each internal vertex should have valency at least three and lies in the wall of
the first kind W*.

Moreover, the “balance condition” at each such internal vertex v must be satisfied.
That is, at each such internal vertex v, if the incoming edge at v is the attractor flow
associated to 4™, and the out coming edges are associated to charges y?“*, then we have
that at each internal vertex v

A" = Z Sl (5.2.33)
K3

Finally, under the assumption that the number of the attractor trees considered above
is finite, we start at the attractor points of the union of above trees, moving backward
toward (u, ), and at each inner vertex, we apply the KSWCF

— , — _
[T k%™ =T k™ (5.2.34)

,Y'Ln

out)

so that at each inner vertex, €,(7") can be computed from Q,(7°%). we will arrive at

the desired €2,(v) by induction.

In order to make this algorithm works, we first need to verify the finiteness assump-
tion, i.e., given (u,v) € ', we need to show that the number of attractor trees rooted
at u and with the root edge given by the attractor flow line in the direction of + should
be finite. Let us denote the set of such attractor trees by Att(u,~), now we state the
following proposition.

Proposition 5.2.1. For the SU(3) theory being considered in this chapter, the number
of elements in the set Att(u,~) is finite.

Proof. First, we notice that for those charge vectors V,;t associated to the vanishing cy-

cles, the associated attractor trees Att(u,vi) consists of a single flow line that starts at
u, and ends at where the vanishing cycle 1/,;'[ is situated. The terminal point is uniquely
determined by the initial point u, as well as the direction vector at u given by z(u,;t).
Now consider the case for general v € I';,. Since the “mass” function my(y) = [Zu(7)| is
decreasing along the flow line £, thus, if £, terminates at discriminant locus A, without
spitting along the way, then Att(u,~) consists of a single flow £.. In this case, v must

be of the form 1/,;'[.
However, in general, we expect the scenery that the attractor flow will split several

times when it finally terminates at A,. This corresponds to the splitting of the charge
vector vy at various components of walls of the first kind W!. We argue that there are
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only finitely many possibilities, and therefore only finitely many attractor trees possible.
Indeed, an attractor tree in Att(u,~y) corresponds to a split of the following type:

v = v+ 72 = (1 + 712) + (Y21 + Y22) —

— (111 + 7112) + (121 + 7122) + (Y211 + Y212) + (Y221 + Yaz2) — - -

where for each split indicated by “ — 7, the balancing condition should be satisfied,
for example v = 71 + 72, 72 = Y21 + Y22, ect.

The final split should give those charge vectors among the ones associated with van-
ishing cycles I/]j:, so that the terminal edges of the attractor flow trees would land on the
attractor points as required. It is then clear that there are only finitely many possible
splits of the charge vector v as above, thus only finitely many possible attractor tress
corresponding to them.

This shows that there are only finitely many combinatorial types of the attractor trees
associated to (u,7y). To finish the proof, we still need to show that for each attractor
tree, there are only finitely many edges of it, this can be seen from the following argument.

Suppose that to the contrary, that there are infinitely many possible tree edges, i.e.,
infinitely many splitting points, then the set of splitting points has an accumulation point
which we denote by u*, and it hits the discriminant locus Aj,.

Then by the proof in proposition 3.2.12, we know that the length of the attractor
flow line connecting point on the wall of the first kind and on the point outside the wall
must be positive as the “mass”function my(7y) = |Zu ()| is decreasing along the flow line.
However, in the situation being considered here, this length can be arbitrarily close to zero
when approaching the accumulating point. The contradiction shows the proposition. [

Remark 5.2.4. As the moduli space is of real four dimensional, it is very hard to visualize
the situation. However, as we have noted before that the essential information regarding
the WCS retains if we restrict to generic hyperplane section of the moduli space. By
doing this, the problem 1is reduced to the three dimensional scenery, and the situation
becomes much more manageable. Moreover the discriminant locus Ay, after intersecting
with the hyperplane, becomes a bunch of one-dimensional curves (see figure 4.26), and
each branch is associated with the (quantum) monodromies that are essentially all that
could be captured by the (quantum) discriminant locus Ay .

Moreover, each pair of singular lines ¥ corresponds to one way of embedding SU(2) <
SU(3). Consequently, away from the singularities of the discriminant locus, by intersect-
ing with another plane that are complement to the original hyperplane, we will get a local
situation that resembles the one in SU(2) case, so we can apply the WCS in SU(2) case
for this local situation. And by “patching” together these local situation, we will get the
global WCS for the SU(3) SW integrable system.
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5.2.4 WCS in the strong coupling region

Strong coupling spectrum: The strong coupling region in SU(3) case is charac-
terized by small values of uw and v (c.f.,[Gal+13]). Tt is known that in this region
([FKle+94][IKTL95][Ke+95]) there exists only six BPS states with vanishing “mass” func-

tion.

These states correspond to the six vanishing cycles z/f, t = 1,2,3 that are the in-

variant cycles under the Picard-Lefschetz monodromies around the six singular lines >,
1=1,2,3 below.

This can be seen by cutting the base by hyperplane H = {Imv = 0}, in which A,
becomes three pairs of lines %, = X¥ UX*, & = 1,2,3 (see [KT195], from which the
figure 4.25 is taken).

There exists a symplectic basis such that in this basis ([Hol97]):

Uf“ =(1,0;-2,1) v =(1,0;0,0)
vy =(0,1;0,0) vy =(0,1;—1,2)
vs = (1,1;-2,1) vy = (1,1;-1,2)

In the strong coupling region Bsyong in SU(3) case, where the moduli u := (u,v)
becomes small, we shall show that the WCS will give us exactly six BPS states 1/];t for
k =1,2,3, corresponding to the six vanishing cycles in the theory.

To facilitate our investigation, we will not cut the moduli space B by two complemen-
tary hyper-planes as in the investigation in the weak coupling region case, instead, as
what had been done in section 4.2.4, we intersect the moduli space by a three sphere S,
centered at the origin, and with radius R large that A3, then, the (quantum) discriminant
locus Ay, after the cut, will become two trefoil knots linked together. The weak coupling
region corresponds to large A3, while the strong coupling region to be investigated below
corresponding to the radius being close to A3.

Then the walls of the first kind W}, k = 1,2, 3, as defined in (5.2.27), when restricted
on the three sphere S%, become the family of closed curves that each of them touch the
two trefoil knots in exactly one point, that is, it looks like a tubular neighborhood of the
trefoil knot. For illustration, please see the following picture taken from wikipedia, the
trefoil knot entry.

Figure 5.22: The wall of first kind in strong coupling region
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It is clear then that the region bounded by this wall would be the strong coupling
region where there exists only six BPS states corresponding to the six vanishing cycles.
Because inside this region, there are no possible walls for the attractor flows to split,
thus, only for this states with charge vector V,:fs could the associated split attractor flows

exist that land on the location where V,:: vanishes.

If, as before, we cut our moduli space B by two complementary hyper-planes, and
concentrate the WCS on the resulting two plane

H::BﬂHchut

where H = {Im(v) = 0} and H.y, := {z = Re(v) = constant}. The constant in this
case is allowed to be close to A3.

For z # 0,4+A? and given u € H, and v € L, then the associated attractor flow
L., exists only for v = V,;t, k =1,2,3, which consists a single flow line starting at u and
terminates at the place where v vanishes. And the direction of the flow line corresponds
to the monodromy invariant direction, where the monodromy is given by the Picard-
Lefschtz formula associated to the vanishing cycle.

For z = 0, then in this case v = 0, thus we have a single moduli u as in SU(2) case.
This corresponds to the three Z, points pg, £ = 1,2,3, where two mutually local BPS
states have vanishing mass simultaneously. And the three walls W}, k = 1,2, 3 all shrink
to a point. Thus there are no wall crossing phenomenon near Z, points.

Finally, for z = +A3, we are at the two Zs points where three mutually non local
BPS states have vanishing mass simultaneously. At these two points, the three walls
Wik =1,2,3 merge together to touch each other in exactly one point, which is exactly
the Zs3 point where the three cycles vanishing simultaneously.

More precisely, at the Zs point ¢, = (0, A%), the three walls touch together such that
the singular points P;7, k = 1,2,3 coincide, which means that the cycles v}, k = 1,2,3
vanish simultaneously. Similarly, at the Zz point ¢ = (0, —A3), the three walls touch
together such that the singular points P, &k = 1,2,3 coincide, which means that the
cycles v, k = 1,2, 3 vanish simultaneously.
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5.2.5 WCS in the weak coupling region

Recall that in section 4.2.4, we cut the moduli space by the hyperplane
H ={Imv =0}

And A, becomes three pairs of lines (4.2.106)

L=xtusl #H=x2ux? #HB=x3ux? (5.2.35)

I copy the figure 4.25 to here for convenience.

Figure 5.23: Geometry of moduli space for SU(3) when Imv = 0, figure taken from

[ ]

The weakly coupled region is the region on B where | - a| > A for all positive
roots a (c.f.,] D).

In order to study the WCS in the weak coupling region, by remark 5.2.4 at the end
of the last subsection, we cut the moduli space by the horizontal plane given by

Hey = {2z = Re(v) = constant >> A%}

which intersects with the six singular lines at P,;t =% N Hews-

With these preparation, let us investigate the WCS on the plane
H = B N H N cht

Then the walls of the first kind W} (see (5.2.27)), when restricted to the plane H,
becomes a closed curve that passes through the points P,;t.

Proposition 5.2.2. The walls of the first kind W}, when restricted to the plane H, is
topologically homeomorphic to the circle S*, and plays the same role as the wall of stability

in SU(2) case.
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Proof. The variable v is “frozen”. H is endowed with coordinate u. We know from
[ | and | | that the period integrals a and ap can be expressed in terms of
Appell function

where (a), is the Pochhammer symbol (a),, := F(Fa(:)"). However, if one of the variables u,

v is set to be constant, the Appell function reduces to the hypergeometric function used
in expressing the period integrals in SU(2) case. Thus, the situation will be reduced to
the SU(2) case, to which the results about the shape of the SU(2)-wall applies. O

Figure 5.24: when restricted to H, walls reduced to that in SU(2) case.

Proposition 5.2.3. The WCS formalism, when applied to H, enables us to produce the
following BPS states:

'+ -y, k=123 n=12--
vi v, k=1,2,3; (5.2.36)
(n—Vyf +nv,, k=123 n=----3-2—1,1.

All states with DT-invariants 2 = 1, except for the middle row states, which have
DT-invariants 2 = —2.

Proof. We know from (5.2.17) that (v, v, ) = 2, for k = 1,2,3, thus by (2.2.12), we can
apply the following KSWCF for k = (v1,72) = 2 to each pair v

0 1
Koo Koy = (H Km1+(n—1)72> IC’;12+’YQ ( H ’C(n—l)”/1+mz> (5.2.37)

n=—oo

n=1

Figure 5.25: Wall crossing structure in the weak coupling region
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More precisely, the above proposition says that in the weak coupling region Byea, i-€.,
where v becomes large compared with A3, we have the following: Given u € Byeax and
v € I, we consider the attractor flow associated to (u,~y). Then, for v among those in
(5.2.36), the flow line £, exists, which are in general (except for v = 1) splits according
to the splitting of the charge vector as in (5.2.36), where the splitting points occur at
Wi k=1,2,3.

As an example, let us consider v = ny;f + (n — 1)y, € L, the associated attractor
flow tree then looks like the following

Figure 5.26: Attractor flow in SU(3) WCS

where the two splitting flows that terminate at Pki respectively are given by the flow
lines associated to the charges nv;” and (n — 1)v; respectively.

Remark 5.2.5. For those points inside the wall W} in the weak coupling region, to
show the above BPS states exist at this point, we can change the value of Im(v), i.e., by
choosing a different vertical intersection, we can mowve this point outside the wall, and
then consider the associated attractor flow, we will show the existence of these BPS states.
However, for the region in the moduli space where we restrain the value of v to be small,
then this kind of “perturbation” of the point will not be possible, this will restrain the
possible BPS states for those points in side the wall, and we are in the strong coupling
region to be discussed in the previous subsection.

Because in the weak coupling region, the three classical monodromies M$, k =1,2,3
act on the charge vectors, thus by proposition 4.2.15 and the remark 4.2.16, we know
that the charge vectors associated to the vanishing cycles, in the weak coupling region,
are represented (see (4.2.60)) by the following

v = (ag, (n+ 1) ay) v, = (o, nay) (5.2.38)

for k = 1,2 that corresponds to the two simple roots «; and ao, while for the root
a3 = aq + as, the monodromy action on 1/§E gives the following

{u; = (a3, naz — o) (5.2.39)

vy = (a3, nas + az)

Consequently, we expect that the attractor flow associated to these charge vectors also
exist in the weak coupling region Bye.- We show that the corresponding DT invariants
associated to these charge vectors are all equal to one. To this end, we note that since

(a1, (n = Day), (ag,nag)) =nag-ag — (n—1)ag -ag =g -ag =1
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the KSWCF gives us the following pentagon identity

K(aly(”—l)al) ) ’C(amnaz) = ’C(az,naz) ' ’C(Otg,(n—l)ag—l-ag) : ’C(al,(n—l)al) (5.2.40)

Similarly, we also have the following

IC(OQ:(”*UO!Q) ) ’C(ahnm) = K(ahnm) ' ’C(a3,(n71)a3+a1) : ’C(QQ,(TFUQQ) (5.2.41)

These two pentagon identities imply that the DT invariants of the states in (5.2.38)
and (5.2.39), being the exponents of the corresponding KS-transformation /C, equal to one.

The states v; in the formula (5.2.39) are separated in the weak coupling region by
the wall W!(ay, ag), whereas the states v, k = 1,2 in the formula (5.2.38) are present
in both sides being separated by the wall above. Indeed, we can build more complicated
KSWCF that takes account this fact by using the above two basic pentagon identities.

Lemma 5.2.4.
’C(al,nal) . K(amnaz) = ’C(CYQ,TLCMQ) . IC(oq,noq) (5242)

Proof. This simply follows from

((aq,naq), (ag,nag)) =0
thus the associated KS-transformations commute with each other. O

Next, we start with the following trivial identity

H ’C(al,nal) : ]C(ozl,(n—l—l)al) : K(az,(n—l—l)ag) . K(ag,(n+2)o¢2)

n=—oo

= H }C(QQ,(’I’L72)O[2) ' K(QQ,(nfl)CVQ) : ,C(al,(nfl)al) : ,C(ahnal) (5243)

n=—oo

Applying the above lemma, we can rewrite it as

H IC(Oq,noq) : K(ag,(n—‘rl)az) = H K(ag,nag) : ’C(al,(n—l)al) (5244)

n=—oo n=—0oo

Then we apply the pentagon identities (5.2.40) and (5.2.41), we get the following
wall-crossing formula

H ,C(ag,(n—‘rl)ag) : K(ag,noag—i—az) : IC(Oq,TLOq)

n=—oo

= H K:(al,(n—l)oq) ’ ’C(a3,na3—a1) ’ ’C(ag,nag) (5245)

In terms of the attractor flows, the existence of these BPS states can be verified as

follows: For BPS states with charge vectors (ay, nay), for k = 1,2, since it can be written
uniquely as

(g, nag) = —nv + (n+ Dy
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Thus, we see that the corresponding attractor flow is a rooted tree with two terminal
points landing where l/l;t vanish, and splits at the wall W}. However, for charge vectors
(g, nag + ag) and (ag, nag — ay ), the situation is different, we show that the associated
split attractor flows consist of two tress in each case. First, note that we the two charge

vectors can be written as

{((13, nos + ) = nvy — (n+ 1)y (5.2.46)

(ag,nas —ay) = (n — v —nvy

Thus, the corresponding attractor flow, for each of the above charge vector in the
weak coupling region, consists of a single rooted tree with exactly two terminal points
terminating at the locus where v vanish. The illustration of the attractor flows is similar
to that given in figure 5.25. The two charge vectors above can also be written as follows

{(ag,na3 +az) = (a1, nan) + (a2, (n + 1)ay) (5.2.47)

(az,nas — ay) = (a1, (n — Dag) + (ag, naz)
The splitting of the charge vectors is represented as follows
(ag,nag + ag) — (ag, nag) + (g, (n+ 1)ag) —
= (= + (4 D) + (=0 + Dy’ + (n+2)1y)
And similarly, for (ag, naz — ayq), we have that
(az,naz —ay) = (a1, (n — Dayg) + (ag, nag) —

= (=(n = v +nvp) + (=g + (n+1)1y)

Therefore, the corresponding attractor flow first splits on the wall W!(ay, as) at u*,
and then splits at uj and uj on W} and W; respectively. See the left of the below picture
(figure 5.27) for the split attractor tree L(ay nas+a,) in this case, while the right one denote
the other possible splitting attractor tree discussed above.

(ag,na3 4 ag)

W (ay, as)
3, ey + ()

(g, nay) (ag, (n+1)as)

_,”,1+ (n+2)v,

Figure 5.27: Two split attractor trees for (ag, nag + as)

To illustrate, we compute the DT-invariant Q,((ag, nag + as)) by applying the algo-
rithm to the above splitting attractor tree.
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Indeed, for the left picture of the above graph (see figure 5.27), we see that the initial
data of the WCS consists four “vanishing” charge vectors {vi", v} with the DT invari-
ants all equal to one.

Then move toward the splitting points uj and uj, and applying KSWCF for
(v )=2,k=1,2

we get the the DT invariants for (a1, na;) and (ag, (n + 1)as) are both equal to one.
Namely, we have that

Qu((a1,n0n)) =1 Quz (a2, (n + 1ay)) =1

Finally, we move toward the splitting point u*, and apply the KSWCF there, what we
will get is nothing but the Pentagon identity, which further implies that the DT invariant

Qu((ag,nag + Oé2>) =1

And for the attractor flow tree in the right of the above figure, by applying the
KSWCEF once at the only splitting point u**, we will get the same result.

We will have a similar picture for the attractor tree Lia; naz—a,), S0 we omit the dis-
cussion here.

Interaction among split attractor flows

SU(3) case is interesting in that when A — 0, there exists wall W}

1.0, TESPONSible for
the “decay” of states like the following

(ag, 00 + (n— 1Daz) = (g, nay) + (g, (n — 1)as)

which means that the state with charge (as,; + (n — 1)as), besides being created by
“scattering” v and v3 , can also be created on one side of W), by "scattering” (o, noy)

and (g, (n — 1)ag) (the relevant KSWCF is given by the pentagon identity).

Proposition 5.2.5. (/ /[ i |) The wall (of the first kind) at weak coupling
region is given by

1
1 9 ap-ay a\
Wi = (e €€t (522) = im (5] =0}
Proof. Tt is known (| |) that in the weak coupling region, we have the following

expression

ap(a) = % > ala-a) [ln (%)2]

a positive roots

Then, as A — 0 (or equivalently, |« -a| > 0 for all positive roots a), ap ~ (C'-InA)a
for some constant C.Thus, in this limit, |ap| > |a|, which implies that Z(y) = ap - g +
a-q~ (InA)a-g. This means that in this region, the central charge is dominated by
the magnetic charge, thus follows the proposition. O
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Figure 5.28: Attractor trees for s outside Wy, o,

Therefore, on one side of Wolqm where the walls W}’s are present, the states with
charge (ag, 1 + (n — 1)ag) exist with DT-invariant equals to 1 (following from k& = 2
KSWCF), while on the other side, the same states derive their existence in two ways.

Figure 5.28 above illustrates the corresponding split attractor flow. Thus, we expect
that the DT-invariant Q((as, a1 + (n — 1)ag)) to “jump” from 1 to 2 after crossing the
wall of the first kind: Wclylm.

The KSWCEF to be used at the split point b* is given by the proposition 5.2.6 below.

Using short notations:
Y= (a1, nan) Y2 = (a2, (n — Dag) 73 := (az, a1 + (n — 1)as)

we prove the following wall-crossing formula:

Proposition 5.2.6. The KSWCF at the split point b* is given by:

Ky KyuKy =27 K2 K227 K, (5.2.48)
where

E = [ [ Koot tnmt) ) Kot (n=1) ()
n=1

1

—_

== H Kn-1ytnnvs)+vs K1)y 4nn+vs)

n=oo

Proof. Since (y1,72) = (71,73) = 1, by applying the pentagon identity, we have
Kt Krs Ky = Ky Ky 172K Ky = Ky Ky 472 K00 Ky 15K (5.2.49)

Note that
(m +73,72) = (11, 72) + (73,72) =2
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so by applying KSWCF for k = 2, the right hand side of (5.2.49) becomes

Ko H ’Cn72+ (n=1)(n+73) IC’Y12+’}/2+’73 H ’C(n—l)72+n(71+73) Koy Koy = PIC2_723 QK

n=1 n=o00
where .
P:=K,, H Kryat(n=1) (1 4+7s)
n=1
and

1
Q= [T Kirtpatnn 12 K

We now simplify P and (). By repeated use of pentagon identities, we get that

P =K, (ICW IC2’72+(’71+’YS) IC372+2(’71+’Y3) T )
= ’Cvz ’C’Y2+’73 IC'ys IC272+(71+73) ’C372+2(71+“/3) IC472+3(71+73) T
= Koo Kootrs Kayar(mvs) K2not(nt21s) Kos Kspr2(31498) Kana+3(v1473) -
= Koo Koyias ’C2’72+(’Yl+73) IC272+(’Y1+2’73) ’C3’72+2(’y1+’ys) ,C372+2(’Y1+’Ys)+’73 Ky IC472+3(71+73) T

= (Kw IC'Yer’Ys) (]C272+(71+73) K272+(V1+73)+73) (]C372+2(71+73) IC372+2(71+73)+73) ]C73 IC4’Y2+3(71+73) T

oo

= = [ [ Kt -ty +20) Ko a1y 000 Kooa = 7 K (5.2.50)

n=1

Similarly, we have that

Q= ( ) "C3’Y2+4(71+'YS) IC2’72+3(71+73) ’C72+2(’71+73) }C'y1+73) IC'ys

o ,C372+4(71+’Ys) IC272+3(’71+’Y3) }C’Y2+2(’Vl+73) ’Cva ICWH-?WB IC71+73
o K:372+4(“/1 +73) IC2’72+3(71 +73) ]C’73 IC72+2(”/1 +73)+73 ’C72+2(71 +73)

e ’C372+4(71+73) ’C% IC272+3(71+73)+73 IC272+3(71+73) IC72+2(71+’Y3)
1

==Ky H K n-1yya+n(1475) 473 Kn=1)atn(n+rs) = Ky B (5.2.51)

n=oo

Putting these together, we get finally that

IC’h IC% Kjw =r K:2_'723 Q IC'“ = E+ ’C’Ys ICQ'YS ]CVS c ’C'Yl - H+ IC2 ’C == ]C’Yl

2y3 —

]

Remark 5.2.6. The proposition 5.2.6 above yields the desired “jump” of the BPS invari-
ants:

Q) = Q(as, 1 + (n — 1)ag