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Abstract

Wall-crossing structure (WCS) is a formalism proposed and studied by M.Kontsevich
and Y.Soibelman that enables us to encode the Donaldson-Thomas (DT) invariants (BPS
degeneracies in physics) and to control their “jumps” when certain walls (walls of marginal
stability in physics) on the moduli space are being crossed. The celebrated Kontsevich-
Soibelman wall-crossing formulas (KSWCF) are the essential ingredients of WCS.

WCS formalism is well adapted to the data coming from the complex integrable sys-
tem. The famous Seiberg-Witten (SW) integrable system is an example. By considering
certain gradient flows on the base of the integrable system called the split attractor flows,
WCS can produce an algorithm for computing the DT-invariants inductively.

This dissertation is about applying the WCS to the SW integrable systems associated
to the pure SU(2) and SU(3) supersymmetric gauge theories. We will see that the results
via the WCS formalism match perfectly well with those obtained via physics approaches.
The main ingredients of this algorithm are the use of split attractor flows and KSWCF.
Besides the known BPS spectrum in pure SU(3) case, we obtain new family of BPS states
with BPS-invariants equal to 2.
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Abstract

Wall-crossing structure (”WCS” for short) is a formalism proposed and studied by
M.Kontsevich and Y.Soibelman that enables us to encode the Donaldson-Thomas (DT)
invariants (BPS degeneracies in physics) and to control their ”jumps” when certain walls
(walls of marginal stability in physics) on the moduli space are being crossed. The
celebrated Kontsevich-Soibelman wall-crossing formulas (”KSWCF” for short) are the
essential ingredient of WCS.

WCS formalism is well adapted to the data coming from the complex integrable sys-
tem. The famous Seiberg-Witten integrable system (“SW integrable system” for short)
is an example. By considering certain gradient flows on the base of the integrable system
called the split attractor flows, WCS can produce an algorithm for computing the corre-
sponding DT-invariants inductively.

This dissertation is about applying the WCS to the SW integrable systems associated
to the pure SU(2) and SU(3) supersymmetric gauge theories. We will see that the results
via the WCS formalism match perfectly well with those obtained via physics approaches.
The main ingredients of this algorithm are the use of split attractor flows and KSWCF.
Besides the known BPS spectrum in pure SU(3) case, we obtain new family of BPS states
with BPS-invariants equal to 2.
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Chapter 1

Introduction

1.1 Outline of the thesis

The study of BPS spectra in 4d N=2 Super-symmetric field theory is the central theme
in modern theoretical physics (see [Moo12b] for a review). During the last decades, there
has been tremendous progress in understanding the spectra in a large class of N=2 the-
ories. The key in these developments lies in the gradual understanding of the so-called
wall-crossing phenomena for the BPS-invariants (corresponding to Donaldson-Thomas
invariants in mathematics) associated to the BPS-states. In particularly, the celebrated
Kontseivich-Soibelman Wall-Crossing Formula (see [KS08]) had been proved to be the
essential ingredients in understanding the structures of the BPS spectra. Moreover, it is
believed that the wall-crossing formula gives universal solutions for all problems involving
wall-crossing phenomena.

It is suspected that any N=2 theory would give rise to a complex integrable system (see
[Nei14a] for a short exposition). The famous Seiberg-Witten solution to the N = 2, d = 4
super Yang-Mills theory is a particular example of this scheme ([SW94]), whence came
with the notion of Sieberg-Witten Integrable System that had been widely investigated
in various perspectives (see example [Mar99] and [Ler98] for the physics background and
[Don97] for a mathematical treatment). For any such a theory, we have a complex man-
ifold B, called the moduli space of vacua in the physics literature. Over B, it is endowed
with a local system of lattices Γ, which is called the charge lattice. Most importantly,
for the cases being considered in this thesis, we are given a central charge function Z,
which is simply a linear map from Γ to Z (understood as constant local system Z over B).

Thus, it would be natrual and desirable to have a formalism encoding the wall-crossing
phenomena for Donaldson-Thomas invariants (DT invariants for short) that is compatible
with the data coming from complex integrable system. This is exactly the wall-crossing
structures (WCS for short) that had been established in [KS14] by Kontsevich and Soibel-
man. In fact, WCS generalizes the notion of stability data that had been thoroughly
treated in [KS08].

WCS formalism, when applied to the Seiberg-Witten integrable systems, will produce
an algorithm for computing the DT-invariants associated to the systems. The most im-
portant ingredients of the WCS are the celebrated Kontsevich-Soibelman Wall-Crossing
Formulas (KSWCF for short).
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Roughly speaking, we will consider certain gradient flow lines associated to the central
charge function Z on the base B of the integrable system. Following the terminology of
physicists, we call these gradient flow lines the split attractor flows. The term “split” here
refers to the fact that these flow lines will split into several branches when hitting certain
co-dimensional one walls on the base B. These walls are called the walls of the first kind
(or walls of marginal stability in physics literature). After (possibly infinite many times
of) such splitting, the flow lines will form a rooted tree on the base. Then, we assign the
DT-invariants to the terminal points of the tree, called initial data of WCS, and move
toward to the root of the tree. Under the good condition that the number of attractor
trees is finite, we use the KSWCF at the split points. In this way, we will eventually
arrive at the value of DT-invariant at the root of the tree, as well as the charge vector
associated to the root.

This thesis is mainly about the application of the WCS formalism to the Seiberg-
Witten Integrable Systems (SW Integrable Systems for short) with pure gauge group
SU(3). Our results show that WCS formalism is proven to be a very effective way to
compute the DT-invariants (or BPS invariants in physics) algebraically. Not only the
large sector of the known BPS spectra existing in physics literature (see for examples:
[Hol97][FH97][CDP11][Tay01]) can be recovered in this way, but also certain BPS states
with invariants 2 could also be obtained as a by product.

The contents of this dissertation are outlined as bellow:

In chapter two, we will give a detailed exposition of the wall-crossing structure for-
malism following the original paper [KS14] of Kontsevich and Soibelman.

In section 3.1 of the chapter three, we introduce the notion of complex integrable
systems including the construction of the action-angle coordinates and their relation to
the central charge. We will focus more on the geometry of the base of the integrable
system, and show that the base is naturally endowed with the S1-family of the integral
affine structures.

In section 3.2, we review the basics notion of split attractor flows, as well as the ax-
iomatic treatment by Kontsevich and Soibelman in [KS14]. We will discuss its relation to
WCS in sub-section 3.2.3. At the end of the chapter three, we will display the relationship
between the attractor flows and the Hesse flows by performing the explicit computations
in the frame work of the special Kähler geometry, and we point out its relevance in Mirror
symmetry.

Chapter four is about the geometry of the Seiberg-Witten integrable system. We
collect many discussions and treatments scattered in the physics literature and rearrange
them in a consistent fashion. In particularly, we will show several equivalent descriptions
of the Seiberg-Witten integrable systems in terms of the so called Seiberg-Witten curves
in section 4.1. And in section 4.2, we study the vanishing cycles and the associated
monodromies of the SU(2) and SU(3) Seiberg-Witten integrable systems from various
points of views. These results will be used in chapter five to give the initial data of the
corresponding Wall-crossing structures. This section contains a lot of materials that are
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irrelevant to the last chapter and the previous chapters, thus, except the results to be
cited for later use, this section is largely independent of the rest of the thesis.

Finally, in chapter five, we will construct the WCS for the Seiberg-Witten integrable
systems associated to SU(2) and SU(3) respectively. The ingredients for constructing
the WCS in SU(2) case are essentially known in physics literature, we just reformulate
them in the framework of the WCS formalism in section 5.1. This section can also be
viewed as a warm up excises for section 5.2 in which the WCS for the Seiberg-Witten
integrable system in SU(3) case was constructed. The WCS in this case was constructed
by reducing the situation to the SU(2) case that had already been constructed in 5.1.

There are two appendices intending to provide the readers with the necessary physics
backgrounds that are relevant to the main content of this dissertation. Appendix A
provides a short exposition of the notion of BPS states in 4d,N = 2 supersymmetric
Yang-Mills theories. In appendix B, we give some motivations for the introduction of the
split attractor flows in supergravity.
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1.2 Summary of the main results

The most important result obtained in this these is the construction of the WCS for SW
integrable system with gauge group SU(3). This consists two parts: the WCS in strong
coupling region and WCS in weak coupling region. The WCS in strong coupling region
is discussed in section 5.2.4, while that in weak coupling region is investigated in section
5.2.5.

We showed in proposition 5.2.2 in section 5.2.5. that the walls of the first kind W1
k ,

when restricted to the plane H that cut the base B of the integrable system, is topolog-
ically homeomorphic to the circle S1, and plays the same role as the wall of stability in
SU(2) case (see figure 5.24 there for illustration).

Consequently, the construction of WCS in SU(3) case can be reduced to the similar
situation that had been constructed for the SU(2) case in section 5.1.

In particularly, in proposition 5.2.3, we will obtain easily by using the WCS formalism
the following three families of BPS states and the associated DT-invariants that match
those obtained through physics approach (see for example [FH97]) :

nν+
k + (n− 1)ν−k , k = 1, 2, 3; n = 1, 2, · · ·

ν+
k + ν−k , k = 1, 2, 3;

(n− 1)ν+
k + nν−k , k = 1, 2, 3; n = · · · − 3,−2,−1, 1.

All states with DT-invariants Ω = 1, except for the middle row states, which have
DT-invariants Ω = −2. The split attractor flows that “represent” these states are illus-
trated in Figure 5.26 and Figure 5.27.

Moreover, since in the weak coupling region, there exists another wall W1
α1,α2

(of the
first kind) that had been pointed in [Hol97] and [Kuc08], the attractor flows will split
when hitting this wall (see figure 5.28). By applying the WCS formalism to this situation,
we proved in proposition 5.2.6 that there exists new BPS states (denoted by γ3 in the
below) with DT-invariants jumps from one to two when crossing this wall.

The relevant KSWCF to be used at the split point is given as below.

Using short notations: 
γ1 := (α1, nα1)

γ2 := (α2, (n− 1)α2)

γ3 := (α3, α1 + (n− 1)α3)

where α1, α2 and α3 denote the three positive roots of the Lie algebra su3, we have
that the KSWCF at the split point is given by:

Kγ1Kγ3Kγ2 = Ξ+K2
γ3
K−2

2γ3
Ξ−Kγ1
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where

Ξ+ :=
∞∏
n=1

Knγ2+(n−1)(γ1+γ3)Knγ2+(n−1)(γ1+γ3)+γ3

Ξ− :=
1∏

n=∞

K(n−1)γ2+n(γ1+γ3)+γ3 K(n−1)γ2+n(γ1+γ3)

We also pointed out in remark 5.2.6 that the jump of the DT-invariants γ3 com-
puted above by using KSWCF is compatible with the so called “primitive wall-crossing
formula”:

∆Ω(γ3 → γ1 + γ2) = (−1)〈γ1,γ2〉+1|〈γ1, γ2〉|Ω(γ1) Ω(γ2) = 1

• In section 5.1.4 and section 5.1.5, we reformulated the scattered facts in physics
literature in terms of the language of the WCS formalism, thus produced the WCS for
the SW integrable system with gauge group SU(2). The BPS states, as well as the
associated DT-invariants, produced by using WCS formalism, turns out to match the
results that had been obtained by physics approaches perfectly.

5



1.3 Summarize of miscellaneous results

• In proposition 2.2.1 of section 2.2.3, we displayed that the KSWCF can be formally
interpreted as the triviality of the monodromy around any small loop (already pointed
out in section 2.3 of [KS08]), i.e., for any short loop, the monodromy

�∏
ti

S(lγi) = id

where the product is taken in the increasing order of elements ti. And in lemma 2.3.5 of
section 2.3.3, we generalize it to the nilpotent case.

• In section 3.1.4, we introduced the holomorphic coordinates {z1, · · · , z2n} for the
complex integrable system that are the complex analogy of the action coordinates {I1, · · · , i2n}
in the real case. In particular, we showed in proposition 3.1.21 the relation between these
holomorphic coordinates and the action-angle coordinates (I i, θi) reads as

Write wi = ezi and suppose that dzi = αi, then we have that

I i = Re(logwi) = log|wi| θi = Im(logwi).

• In the proof of the proposition 3.2.17 of section 3.2.3, we explicitly described
how the WCS on the base B of the integrable system gives rise to an local embedding
B0 ↪→ Stab(gb) for each b ∈ B0.

• In section 3.2.4, we introduced the notion of Hesse flow proposed in [Van12], and
compare it with the notion of split attractor flow. To this end, we also introduced the
notions of dual attractor flow and the dual Hesse flow, then we proved the following result:

Start with central charge function Z(γ) associated to the charge γ, and use the Z-affine
coordinates on B, we see that taking the real part of Z(γ) gives us the Hesse flow

Re
(
e−iθZ(γ)

)
= ∇̃F̂ y · γ

while taking the imaginary part gives us the dual Hesse flow

Im
(
e−iθZ(γ)

)
= ∇̃F̂ x · γ

Next, denote θ = Arg (Z(γ)). We see that in the Z-affine structure Bθ, the dual Hesse
flow specializes into the attractor flow; while in the Z-affine structure Bθ+π

2
, the Hesse

flow becomes the dual attractor flow.

• In section 4.1.2, we displayed in the proof of the proposition 4.1.4 how to construct
the Seiberg-Witten differentials by using the Abelian differentials of the first kind (see for
example the book [ACG11]):

ωk =
xn−kdx

y
k = 2, · · · , n
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on the Seiberg-Witten elliptic curves. In particular, by choosing suitable linear combina-
tion of the Abelian differentials of the first kind, we reproduced the following form of the
Seiberg-Witten differential as given in the physics papers (for example [Ler98],[Kle+94]):

λSW = constant ·
(
∂

∂x
WAn−1(x, ui)

)
x dx

y
(1.3.1)

up to an addition of exact form.

• In section 4.1.3, we represented the Seiberg-Witten curves as weight diagram fibra-
tions, and we showed in proposition 4.1.7 that in this case, the Seiberg-Witten differential
1.3.1 above reduces into the following form

λSW = −x dz
z

(1.3.2)

• In proposition 4.1.11 of section 4.1.3, we showed that the monodromy around the
branch points z±i is given by the fundamental Weyl reflection Mαi associated to the simple
roots αi of the gauge group SU(n).

• In section 4.1.4, we study the geometry of Seiberg-Witten systems in terms of the
K3-fibrations by lifting the weight diagram fibrations into higher dimension. We per-
formed explicit computations to show the compatibility of the two approaches, which can
be summarized as saying that the SW geometry, being encoded by the fibration of weight
diagram over S2, which is linearized by the local system of lattices H0(M ,Z) over CP 1,
can be obtained by the degeneration of the ALE space fibration over S2 by letting y and
z equal to zero in the defining equation (in physics term, it is called integrate out the
variables) of the K3-fibration. In other words, the local system of lattices H2(ALE,Z)
over CP 1 encodes the same information as that of H0(M ,Z). The essential information
is the root lattice ΛR of type An−1. Indeed, the intersection matrix of the vanishing cycles
in both cases equal to the negative of the Cartan matrix for SU(n).

Besides, in proposition 4.1.15, we computed that by integrating the unique (up to
scalar multiplication) holomorphic volume form

Ω =
dz

z
∧ dx ∧ dy
∂wWALE

An−1
(x, y, w, z)

∈ H3,0(X,C)

over the vanishing 2-spheres Sij, we will produce essentially the Seiberg-Witten differ-
ential given by 1.3.2 above, namely we have that up to multiplication by some constant,
we have that ∫∫

Sij

Ω = (eλi − eλj)
dz

z

In proposition 4.1.18, we clarified the relation between the periods of the CY 3-
fold defined by the K3-fibrations and the periods of the Seiberg-Witten curves, i.e., for
γ ∈ H3(X,Z), we have the following identity

ZCY (γ) =

∫
γ

Ω =

∫
φ(γ)

λSW = Z(φ(γ))
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where the map φ : H3(X,Z) −→ H1(C,Z) is the pushed forward map on the level of
homology.

• In the SU(2) case, the base of the integrable system can be identified with CP 1 ∼= S2,
we endow the base with the metric given by

ds2 = |λSW |2 = gzz dzdz = (x(z)/z)2 dzdz

Introducing the flat coordinate on the base given by z ≡
∫ z

λSW , then the geodesic
line equation in terms of the coordinate z reads√

2u− z − Λ2

z
z−1∂z(t)

∂t
= α (1.3.3)

Then we have the the following observation given in proposition 4.1.19:

Let Z : Γb := H1(Cb,Z) → Z be the central charge function of the SW integrable
system. Consider the wall of second kind defined by

Im(Zb(γ)) = 0

for some charge γ ∈ Γb. If the above equation is viewed as defining a curve in the base
B of the SW integrable system, then it gives the attractor flow equation. However, if we
present the SW curve as the fibration of weight diagram over CP 1, then in terms of the
base coordinate z, the wall equation above gives the geodesic line equation 1.3.3 on CP 1.

• In section 4.1.5, we introduced the notion of spectral network, and compared it with
the notion of split attractor flow in SU(n) case when the base can be identified with CP 1.
We argued in proposition 4.1.21, that the spectral network on the base contains the same
amount of information as that of the split attractor flows so long as the determination
of the BPS charges (states) are concerned. We also proved the balancing condition for
spectral network in proposition 4.1.22.

• In section 4.2.1, by using the expression of the one-loop prepotential function

F1-loop =
i

6π

∑
i<j

u log
(
(ei − ej)2/Λ2

)
we performed the explicit computation to verify the known semi-classical monodromies
in SU(3) case ([KTL95]). See equation 4.2.12 and equation 4.2.16 in that section.

• In section 4.2.2, we gave very through treatment for the quantum monodromy for
the SU(2) case. For example, by using the Seiberg-Witten curve and Seiberg-Witten
differential in the form of weight diagram fibration (see equation 4.2.21 and equation
4.2.22), we reproduced the Semi-classical monodromy by using the prepotential function.
And we computed in the proof of the proposition 4.2.1 that the period integrals have
the desired semi-classical approximation. Further more, we also computed the vanishing
cycle ν∞ at ∞ of the curve analytically by comparing the two equivalent forms of the
Seiberg-Witten elliptic curve in SU(2) case.
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• In section 4.2.2, we displayed the compatibility of the Picard-Lefschetz formula with
the monodromies computed in terms of the prepotential. See proposition 4.2.8 in that
section for more details. We also give two proofs of the fact that the monodromies asso-
ciated to two non-intersecting vanishing cycles commute with each other (see proposition
4.2.9), one by using Picard-Lefschetz formula directly, the other by manipulating alge-
braically the equations involving the tensor product of matrices.

• In section 4.2.3, we used the Zariski-Van Kampen theorem to compute the funda-
mental group of the complement of the cups curve (i.e., the discriminant locus) in C2

in proposition 4.2.21, which is used in section 4.2.4 to exhibit the relations among the
quantum monodromy matrices in SU(3) case, see equation 4.2.97 and remark 4.2.21 for
more details.
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Chapter 2

Introducing Wall-Crossing
Structures

Wall-Crossing Structure (“WCS” for short), which had been proposed and studied by
Kontseivich and Soibelman in [KS14], arises in the study of N = 2 super-symmetric
quantum field theories in physics. On the mathematics side, it gives a natural framework
for dealing with the so-called Donaldson-Thomas invariants (“DT-invariants” for short),
which in the physics literature, corresponds to the BPS-invariants (see Appendix A for
more information).

This chapter is organized as below.

We begin by reviewing the concept of stability data of [KS08] in section 2.1. This
serves to motivate the concept of wall-crossing structure, as well as to introduce the nec-
essary terminologies that will be used later. We will see how the celebrated Kontsevich-
Soibelman Wall-Crossing Formula (“KSWCF” for short) could be written down explicitly
in the formalism of WCS.

After this, we can generalize the concept of stability data to that of the Wall-crossing
structure in section 2.3, which would be our main concern in this thesis. Moreover, we
will see how KSWCF could be reinterpreted formally as kind of cocycle condition in the
WCS formalism. The description of WCS in terms of sheaves will be discussed in sec-
tion 2.4, which is useful when considering in section 2.5 WCS on general topological space.

Finally, in section 2.6, we give some examples of WCS.
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2.1 Stability data

Roughly speaking, a stability data on a graded Lie algebra g gives us a natural way to
encode the set of Donaldson-Thomas (DT) invariants, and the space of stability data
(called stability data on g) would enable us to describe how these invariants behave
(KSWCF) when the central charge is being varied. The treatment in this subsection
follows [KS08].

2.1.1 Donaldson-Thomas invariants

Fix a finite rank free abelian group Γ ∼= Z⊕n, called the charge lattice. We endow it
with a skew symmetric bilinear form

〈·, ·〉 : Γ× Γ −→ Z (2.1.1)

The BPS invariants (or BPS degeneracies in physics) will given a map between sets

Ω : Γ −→ Q (2.1.2)

The central charge is a abelian group homomorphism

Z : Γ −→ C (2.1.3)

which satisfies the following support properties:

Support property: By endowing a Euclidean norm ‖·‖ on Γ⊗ZR, then there exists
a positive constant C such that for any γ ∈ Γ, with Ω(γ) 6= 0, we have that

|Z(γ)| > C · ‖γ‖ . (2.1.4)

Remark 2.1.1. From the support property, we can infer that in any bounded region of
the complex plane C ∼= R2, there are only finitely many points of the form Z(γ) with
γ ∈ Γ such that Ω(γ) 6= 0. In fact, we have the estimation of the number of such points
inside the disc of radius R as follows

# (Z(γ) ∩ {z ∈ C : |z| ≤ R}) = O(Rn).

Definition 2.1.1. The Donaldson-Thomas (DT) invariants of the “charge” γ is
defined via

DT (γ) =
∑

k|γ,k≥1

Ω(γ/k)

k2
∈ Q, (2.1.5)

Remark 2.1.2. By Möbius inversion, we see that BPS invariants can also be expressed
in terms of DT invariants as follows

Ω(γ) =
∑

k|γ,k≥1

µ(k)

k2
DT (γ/k) (2.1.6)

where µ(k) is the Möbius function. So we see that the two invariants are given in terms
of each other. For this reason, we also call Ω(γ) the DT-invariants. These invariants are
conjectured to be integer-valued.
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2.1.2 The torus Lie algebra g

Given the charge lattice Γ ∼= Zn, we consider the associated complexified algebraic torus

T̃ = T̃Γ,〈·,·〉 := HomZ (Γ,C∗) ∼= (C∗)n

Choosing a set of basis {γi}ni=1 of Γ and the set of dual basis {γ̌i} in the sense that
γ̌i(γj) = δij. Let Xγi be the character associated to γi, i.e., the functions on Γ through

Xγi :
∑
k

θkγk 7−→ exp

(∑
k

θkγ̌i(γk)

)

Then the coordinate ring C[T̃] of T̃ can be identified with the ring of Laurent poly-
nomials:

C[T̃] = C[X±γ1
, · · ·, X±γn ]

T̃ can be made into a symplectic manifold by endowing it with the following symplectic
form

ω =
1

2

∑
i 6=j

〈γi, γj〉−1d log(Xγi) ∧ d log(Xγj) (2.1.7)

which induces the Poisson structure on T̃ with Poisson bracket given as

{f, g} := ω−1(df, dg) for f, g ∈ C[T̃]

.
We see that the bracket acts on the characters as{

Xγi , Xγj

}
= 〈γi, γj〉Xγi ·Xγj (2.1.8)

Next, we consider the T̃-torsor, called the twisted torus given as

T := {σ : Γ→ C∗ : σ(γ1 + γ2) = (−1)〈γ1,γ2〉 σ(γ1)σ(γ2)}

where T̃ acts on it by

(µ · σ)(γ) = µ(γ) · σ(γ) ∈ C∗, µ ∈ T̃, σ ∈ T

Choosing a base point σ0 ∈ T, we get the following identification between T̃ and T
via

λσ0 : T̃→ T µ 7−→ µ · σ0

By this identification, we can give T the structure of algebraic variety, which is inde-
pendent of the choice of the base point σ0 as the translation map is algebraic. Moreover,
since the Poisson structure (2.1.8) on T̃ is invariant under translation, we transfer it to
the twisted torus T as follows

{eγi , eγj} = 〈γi, γj〉 · eγi · eγj = (−1)〈γi,γj〉 〈γi, γj〉 · eγi+γj (2.1.9)

The coordinate ring C[T], as a vector space, is spanned by the following set of twisted
characters defined as
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eγi : T→ C∗ eγi(σ) := σ(γi) ∈ C∗

We see easily that these twisted characters satisfy

eγi · eγj = (−1)〈γi,γj〉 · eγi+γj (2.1.10)

Further more, we can endow C[T] with the Lie algebra structure by defining the lie
bracket simply as [a, b] := {a, b}, i.e.,

[eγi , eγj ] = (−1)〈γi,γj〉〈γi, γj〉 · eγi+γj (2.1.11)

We denote this Lie algebra by g = gΓ,〈·,·〉 := (C[T], [·, ·]), and call it the torus Lie
algebra associated to Γ. This Lie algebra will be of central importance in formulating
the stability data and wall crossing structure later. From the definition, it is easy to see
that it admits the following decomposition

g =
⊕
γ∈Γ

gγ (2.1.12)

Remark 2.1.3. It is pointed out in [KS08] that the Lie algebra g, when equipped with the
associative product defined by (2.1.10), becomes a commutative algebra, and its spectrum
is the twisted torus T.

2.1.3 Kontseivich-Soibelman transformation

The torus Lie algebra g acts on the twisted torus T by Hamiltonian vector fields. For the
generator eγi , we see that {eγi , ·} = [eγi , ·] is a derivation by Jacobi identity, thus there
exists a vector field eγi ∈ V ect (T), which acts as

eγi · eγ = {eγi , eγ}

The time-1 Hamiltonian flow of the vector field eγi gives a Poisson automorphism of
C[T]. More precisely, by identifying eγi with eγi , we see that eγi ∈ g acts on C[T] via the
Poisson derivation

eγi · eγj = {eγi , eγj}
We associate to γ ∈ Γ a ray lγ := R>0 · Z(γ) ⊂ R2. Then, We attach to this ray a

formal sum of twisted characters

DT (lγ) =
∑

γ∈Γ:Z(γ)∈lγ

DT (γ) · eγ ∈ g (2.1.13)

We view it as a formal function defined on the twisted torus T. The associated time-1
Hamiltonian flow gives us a formal Poisson automorphism

S(lγ) ∈ Aut(T) (2.1.14)

We call it the transformation associated to the ray lγ.

Remark 2.1.4. We see that since the sum in (2.1.12) could be infinite, DT (lγ) may
not be a well defined function on T, and the transformation S(lγ) would cease to be well
defined. In the unpublished paper [KS13] by Kontsevich and Soibelman, technical works
had been down to make these automorphisms rigorously defined.
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For a ray lγ that contains only a single element γ ∈ Γ with Ω(γ) = 1, we check that

DT (lγ) =
∑
n≥1

enγ
n2

=
∑
n≥1

enγ
n2

= Li2(eγ) (2.1.15)

where Li2(x) :=
∑

n≥1
xn

n2 is the classical dilogarithm function. Indeed, by (2.1.12),
we have in this case that

DT (γ) =
∑

Z(γ)∈lγ

DT (γ) · eγ =
∑
n≥1

DT (nγ) · enγ

=
∑
n≥1

∑
k≥1,k|n

Ω(nγ/k)

k2
· enγ =

∑
n≥1

Ω(γ)

n2
· enγ =

∑
n≥1

enγ
n2

Under the assumption that the associated time-1 Hamiltonian flow S(lγ) is well defined
on some open subset of T, we compute formally as

S(lγ)(eκ) = exp

{∑
n≥1

enγ
n2
, •

}
(eκ)

It follows that

log(S(lγ))(eκ) =

{∑
n≥1

enγ
n2
, •

}
(eκ) =

∑
n≥1

1

n2
{enγ , eκ}

=
∑
n≥1

1

n2
{enγ, eκ} =

∑
n≥1

1

n2
n〈γ, κ〉enγ · eκ

=
∑
n≥1

〈γ, κ〉
n

enγ · eκ = 〈γ, κ〉
∑
n≥1

enγ
n
· eκ

= 〈γ, κ〉 log(1− eγ) · eκ = log (1− eγ)〈γ,κ〉 · eκ
Consequently

S(lγ) (eκ) = (1− eγ)〈γ,κ〉 · eκ (2.1.16)

The above automorphism, first observed by Kontsevich and Soibelman (see section 2.5
of [KS14]), is of central importance in encoding the wall-crossing phenomena in physics.
And it is called Kontseivich-Soibelman transformation (“KS transformations”) in
physics—a terminology we adopt here.

We use the symbol Kγ to denote the KS transformation. i.e.,

Kγ := exp {Li2 (eγ), •} (2.1.17)

which acts on the generator eκ as

eκ 7−→ (1− eγ)〈γ,κ〉 · eκ (2.1.18)

Remark 2.1.5. Kγ extends holomorphically to the Zariski open subset of T which is the
complement of the divisor {eγ = 1}. Therefore, it defines a birational transformation of
the twisted torus T.
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For general ray lγ, again, under assumption that the automorphism S(l) is well defined
on a suitable open subset of T, we have the following

Proposition 2.1.1. Assuming that for the ray lγ, there are only finitely many γ ∈ Γ
with integer-valued Ω(γ) 6= 0 such that Z(γ) ∈ lγ, then S(lγ) extends to a birational
automorphism of T, with action on the generator eκ given by

S(lγ) (eκ) =
∏

Z(γ)∈lγ

(1− eγ)Ω(γ)·〈γ,κ〉 · eκ (2.1.19)

Proof.

log S(lγ) (eκ) =

 ∑
Z(γ)∈lγ

∑
n≥1

Ω(γ)
enγ
n2
, •

 (eκ)

=
∑

Z(γ)∈lγ

∑
n≥1

Ω(γ)

n2
{enγ , eκ} =

∑
Z(γ)∈lγ

∑
n≥1

Ω(γ)n〈γ, κ〉 enγ · eκ
n2

=
∑

Z(γ)∈lγ

〈γ, κ〉 · Ω(γ)
∑
n≥1

enγ
n
· eκ =

∑
Z(γ)∈l

〈γ, κ〉 · Ω(γ) log(1− eγ) · eκ

=
∑

Z(γ)∈lγ

log(1− eγ)Ω(γ)·〈γ,κ〉 · eκ

We see that when Ω(γ) are integers, S(lγ) is a birational automorphism.

Before closing this section, we note that by using the KS-transformation Kγ, we can
rewrite the transformation S(lγ) more compactly as

S(lγ) =
∏

Z(γ)∈lγ

KΩ(γ)
γ =

∏
γ′‖γ

KΩ(γ′)
γ′ =

∏
Z(µ)∈lγ
m≥1

KΩ(mµ)
mµ (2.1.20)

where we have denoted by µ the primitive charge vector of the ray lγ. From the above
formula, we see that for the ray lγ with Ω(γ) 6= 0, one has

log S(lγ) ∈
⊕
γ′‖γ

gγ′ (2.1.21)

2.1.4 Factorization Property

In order to establish the celebrated Kontseivich-Soibelman Wall Crossing Formula (“KSWCF”),
not only we need to associate transformation to lγ, but also need to associate transfor-
mation to any strict sector ∆ ⊂ C∗ ∼= R2 (i.e., less than 180◦).

Consider the pronilpotent Lie algebra g∆ :=
∏

γ∈∆∩Γ\{0} gγ, as ∆ is strict, there exists
φ ∈ Γ∗R such that its restriction to ∆ gives a proper map to R≥0. Then for N > 0, consider
the quotient g∆,N = g/g∆,≥N , where g∆,≥N ⊂ g∆ is the ideal consisting of elements with
φ(γ) > N for γ ∈ ∆ ∩ Γ\{0}. We get g∆ = lim←−

N
g∆,N . Denote by G∆ and G∆,N the

corresponding Lie groups.
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Given N > 0, let us consider the truncation

S(lγ)<N = exp (DT (lγ)<N) ∈ G∆,N .

Assume that there are only finitely many rays in ∆ that carry charge with φ(γ) < N ,
we form the finite product

S(∆)<N :=
−−→∏
lγ⊂∆

S(lγ)<N ∈ G∆,N . (2.1.22)

where the right arrow above the product sign indicates that the product is taken over
all rays lγ ⊂ ∆ in the clockwise order.

Thus, by taking the limit as N →∞, we get a well-defined group element

S(∆) =
−−→∏
lγ⊂∆

S(lγ) ∈ G∆ (2.1.23)

This will be the desired BPS automorphism attached to the strict sector ∆. Also
notice that the right hand side could possibly be an infinite product.

Observe that if ∆1 ⊂ ∆2, then there is an embedding of the corresponding torus Lie
algebra g∆1 ⊂ g∆2 , which further induces the injective homomorphism on the correspond-
ing nilpotent Lie group level G∆1 ↪→ G∆2 .

Thus if an strict sector ∆ can be decomposed into the disjoint union of two sub-
sectors in the clockwise order (where we assume that ∆− proceeds ∆+ in the clockwise
order), namely: ∆ = ∆+ t∆−, then on the Lie algebra level, this produces the following
decomposition: g∆ = g∆+ ⊕ g∆− , while on the Lie group level, we get: G∆ = G∆+ · G∆− .
Consequently, we have the following factorization property

S(∆) = S∆+ · S∆− (2.1.24)

Proposition 2.1.2. The group element:

S(∆) =
−−→∏
lγ⊂∆

S(lγ) ∈ G∆

determines the invariants Ω(γ) for all γ ∈ Γ with Z(γ) ∈ ∆.

Proof. Recall that S(lγ) encodes Ω(γ) for γ ∈ Γ such that Z(γ) ∈ Γ. Thus, we only need
to show that S(∆) determines all S(l) for l ⊂ ∆.

To this end, we want to decompose ∆ into a finite many sub-sectors, each of which
contains only a single lγ that carries charges φ(γ) < N . This is possible and is equivalent
to working in the group G∆,N . In this group, we have a finite product and since this
decomposition is unique, we infer that S(∆)<N determines all S(lγ)<N for lγ ⊂ ∆.

Since this holds for any N > 0, by taking the limit as N → ∞, the desired result
follows.
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2.1.5 KSWCF

Proposition 2.1.2 above tells us that the DT-invariants Ω(γ) with Z(γ) ∈ ∆ are encoded
in the group element S(∆) ∈ G∆. In practice, we are concerned with how these invari-
ants change if we deform the central charge function Z. Indeed, as can be seen from the
definition of the group G∆, it depends highly non trivially on the central charge Z(γ).
In particular, it will “jump” as the central charge being deformed such that Z(γ) crosses
the boundary of ∆.

KSWCF gives an universal solution to this kind of wall crossing phenomena.

We will show that as Z varies, there exists a collection of hypersurfaces in Γ∗R, such
that in side the chambers determined by the hypersurfaces, the wall crossing group G∆

stays constant, so are those DT-invariants Ω(γ). Therefor, we expect the jumps to occur
only when crossing these hypersurfaces. These hypersurfaces will be called walls associ-
ated to g, and we denote it by Wallg.

Note that every hypersurface in Γ∗R is associated to some class γ ∈ Γ, i.e., γ⊥. and
call it the “wall associated with γ”. Thus

Wallg =
⋃

countably many γ

γ⊥

Further more, in view of the support property given in section 2.1.1, we require that
for an strict sector ∆, the following constraints are satisfied:

Z(γ) ∈ ∆, |Z(γ)| > C · ‖γ‖

Consequently, in stead of working with the charge lattice Γ directly, we can work
with the subset Γ(∆,C) of Γ that consists of non-negative integral combinations of basis
elements satisfying the above two constraints coming from the central charge Z. It is easy
to see that Γ(∆,C) is closed under addition, thus all previous constructions associated to
Γ can be carried on for Γ(∆,C). For example we have the Poisson subalgebra

C(∆,C)[T] :=
⊕

γ∈Γ(∆,C)

C · eγ ⊂ C∆[T]

as well as the associated Lie algebra and the corresponding Lie group

exp : g(∆,C) −→ G(∆,C)

Again, all constructions and identities involving these objects in the last section still
hold in this setting. Thus, for given N > 0, we work in the quotient algebra C(∆,C)[T]<N ,
and the corresponding wall-crossing group G(∆,C)<N depends only on the finite subset of
Γ, namely

Γ(∆,C)<N := {γ ∈ Γ : γ ∈ Γ(∆,C), Z(γ) < N} (2.1.25)

It is easy to see then that when we deform Z inside the space Γ∗, as long as Z(γ) does
not cross the boundary ∂∆ of the sector, the above finite set would stay constant under
the deformation. Since G(∆,C)<N depends only on it, it also stays constant.
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In other words, when deforming Z, the wall crossing group G(∆,C)<N does not
change outside a finite collection of hypersurfaces. i.e.,

Γ∗R \Wallg

where each connected component of it is called a chamber.

Figure 2.1: Walls and chambers

Later, we will see that for each γ that define the boundary ray lγ of an strict sector,
the wall γ⊥ associated to it is the hypersurface of the following form

W2
γ = γ⊥ := {Z ∈ Γ∗R : Im(Z(γ)) = 0} (2.1.26)

where Im(Z(γ)) denotes the imaginary part of Z(γ). And we will call this the wall
of second kind associated to γ, and denote it by W2

γ .

Note that different γ can give the same wall, i.e.,

γ⊥1 = γ⊥2 ⇐⇒ γ1 ‖ γ2

With the above preparation, we can state the KSWCF: Given any strict sector ∆,
the associated group element

S(∆)<N =
−−→∏
lγ⊂∆

S(lγ)<N ∈ G(∆,C)<N (2.1.27)

remains constant as long as Z varies only inside a given chamber.

In other words, the group element above jumps only when Z crosses some wall. In
practice, the deformation of the central charge Z inside Γ∗ is governed by certain param-
eter space B, which is usually a finite dimensional complex manifold. Physicists call such
space the moduli space of the theory. We will encounter such situation when we study
complex integrable system later.

Thus, suppose our moduli space is a complex manifold B, then for any b ∈ B, we have
a charge lattice Γb, in general, we assume that the family of lattice form a local system
of abelian groups, denoted by Γ, with the intersection forms being covariantly constant
with respect to Gauss-Manin connection.
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We also assume that the central charge Zb depends on b holomorphically. Further
more, we impose the following uniform support property:

Fix a covariantly constant family of Euclidean norms

‖ · ‖b : ΓR,b −→ R>0.

then for any compact subset K ⊂ B there exists a constant C > 0 such that

Ωb(γ) 6= 0 for some b ∈ K ⇒ |Zb(γb)| > C · ‖γ‖b

Under these assumptions, we give an equivalent formulation of KSWCF. Given a
contractible open subset U ⊂ B, a constant N > 0, as well as an strict sector ∆, assume
that we can trivialize the local system Γb over U and hence identify Γb with a fixed lattice
Γ. Take C > 0 as in above assumption and assume that the subset 2.1.25 as defined in
the last subsection is constant near b ∈ B. Then the group element in the wall crossing
group

S(∆)<N =
−→∏
l⊂∆

S(l)<N ∈ Ĝ(∆,C)<N

stays constant as b varies in U .

Indeed, we see that the assumptions above ensure that when b varies in U , the central
charge Zb(γ) stays inside the chamber specified by ∆, and by the uniform support prop-
erty, the constant C can be chosen uniformally for b ∈ U , while the constant N appearing
is already fixed before hand.

Remark 2.1.6. Γ can always be trivialized by either passing to the universal cover of B,
or by restricting to a contractible open subset U ⊂ B.

Proposition 2.1.3. Under the assumption that the local system of charge lattices can be
trivilized, then for any fixed charge with class γ ∈ Γ, there is a locally finite collection of
walls as codimension one real submanifolds, which divide B into connected components
as open submanifolds called chambers, such that the invariants Ω(γ) stay constant inside
each chamber.

Proof. Locally near b ∈ B, We consider the composition of maps

B π̃−→ HomZ (Γ,C) ∼= Cn Z−→ C∗ =−→ R (2.1.28)

b 7−→ Zb 7−→ Zb(γ) 7−→ Im(Zb(γ))

where the composition map Z ◦ = defines an element in Γ∗R. From this one sees
easily that a locally finite collection of hypersurfaces in Γ∗R pull back via the map π̃ to
a collection of codimension one real submanifolds in B, which we also call walls. The
proposition then follows from KSWCF.
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Figure 2.2: The induced walls and chambers on the manifold B.

2.1.6 Stability data on g

We now review the concept of stability data on a graded Lie algebra introduced by
Kontsevich and Soibelman ([KS08]). As before, we associate to Γ the torus Lie algebra

g =
⊕
γ∈Γ

gγ

For a charge γ ∈ Γ with Ω(γ) 6= 0, the corresponding transformation S(lγ) encodes
the invariants Ω(γ′) for γ′ ‖ γ. We see previously that Ω(γ) can be expressed in terms of
DT-invariants DT (γ) through the formula (2.1.4), while S(lγ) is the time-1 Hamiltonian
flow associated to

DT (lγ) =
∑

Z(γ)∈lγ

DT (γ) · eγ ∈ g

Thus, DT (lγ) is seen to be a collection of elements

a = {a(γ)}γ∈Γ\{0} := {DT (γ) · eγ ∈ gγ}

Denote by Supp a the set of all γ ∈ Γ\{0} such that a(γ) 6= 0. We see that Supp a is
the same as the support of g defined as

Supp g := {γ ∈ Γ : gγ 6= 0} ⊂ Γ (2.1.29)

By convention, g0 is set to be zero.

Definition 2.1.2. A stability data on g is a pair σ = (Z, a), consisting of a central
charge and a collection of elements a(γ) ∈ gγ, which satisfies the support property.

We denote by Stab(g) the set of all stability data on g. We remark that the support
property is equivalent to the following condition:

There exists a quadratic form Q on ΓR := Γ⊗Z R such that

• 1) Q| kerZ < 0;

• 2) Supp a ⊂ {γ ∈ Γ\{0}} : Q(γ) ≥ 0}

To see this, we just spell out that the relation between the quadratic form Q and the
norm ‖ • ‖ on ΓR is given by

Q(γ) = −‖γ‖2 + C1|Z(γ)|2

for some sufficiently large constant C1 > 0.
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Reformulation of the stability data

We work in the same setting as above, and denote by S the set of all strict sectors in
R2. Note that it may contains degenerate sectors, i.e., rays. Define another set Ŝtab(g) as
the set of pairs (Z, S), where Z is a central charge function, and S a collection of elements
(S∆)∆∈S , with elements S∆ belonging to the wall crossing group G∆. Again, we impose
the support property.

We show that the set Ŝtab(g) (also called the stability data on g) is actually equivalent
to Stab(g).

Indeed, given a stability data (Z, a), we determine a pair (Z, S) as follows

Recall that for every lγ ⊂ ∆, the transformation associated to it is given by

S(lγ) := exp {DT (lγ), •} = exp

 ∑
Z(γ)∈lγ

DT (γ) · eγ, •


= exp

 ∑
Z(γ)∈lγ

a(γ), •


and by the Factorization Property, we have that

S(∆) =
−−→∏
lγ⊂∆

S(lγ) ∈ G∆

Conversely, given a pair (Z, S), we take the same Z for Stab (g), and construct the
elements a(γ) as follows:

Set a(γ) = 0 if Z(γ) = 0. Let us assume that Z(γ) 6= 0. Consider the automorphism
S(l) associated to the ray

lγ = R>0 · Z(γ)

Then recall that we have established (see equation 2.1.21) that

log S(lγ) ∈
⊕
γ′‖γ

gγ′

From it we denote by a(γ) the component of log S(l) which belongs to gγ. And we
get the desired Lie algebra element.
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2.2 More on KSWCF

We introduce a topology on the space of stability data Stab(g) and discuss its relation
to KSWCF. Some explicit expressions of KSWCF will be given. The treatment in this
section is based on the paper [KS08].

2.2.1 Topology on Stab(g) and KSWCF

Define the forgetting map from the stability data to Cn as follows

Stab(g) −→ HomZ (Γ,C) ∼= Cn

(Z, a) 7−→ Z (2.2.1)

The central idea is that we can impose a topology on Stab(g) so to make the above
map a local homeomorphism. Consequently, the complex manifold structure on Stab(g)
can be obtained by pulling back the standard complex structure on Cn to Stab(g).

More precisely, we impose the following topology by specifying the notion of a con-
tinuous family of points in Stab(g).

Definition 2.2.1. Let (Zb, ab(γ)) be a family parametrized by b ∈ B, and let b0 ∈ B be
fixed, this family of points in Stab(g) is said to be continuous at b0 if

• a) The forgetting map (2.2.1) is continuous at b = b0.

• b) There exists open neighborhood U0 3 b, such that the constant C > 0 in the
support property for Stab(g)b for b ∈ U0 can be chosen uniformally.

• c) Near b0, we choose a constant C > 0 as in b), and give an closed strict sector
∆ ⊂ C∗ such that Z(Supp ab0) ∩ ∂∆ = ∅, then the map

b 7−→ log S(∆)b ∈ g∆,b ⊂
∏
γ∈Γ

gγ

is continuous at b = b0. Here the vector space
∏

γ∈Γ gγ is endowed with the product
topology of discrete sets, and S(∆)b ∈ G∆,b is the group element associated with
(Zb, ab) as well as the sector ∆.

The relation between this topology and KSWCF can be summarized in the following
remark:

Remark 2.2.1. Note that the continuity of the map in c) means that the group element
log S(∆)b does not depend on b ∈ B as long as there is no element γ ∈ Supp ab such that
Zb(γ) crosses the boundary ∂∆, i.e., it is locally constant as a function in b near b0. And
consequently, the invariants Ωb(γ) is also a locally constant function in b, while the jumps
of these invariants are controlled by KSWCF given in the next subsection.

We remark without proving that that the topology imposed on Stab(g) is Hausdorff.
The proof can be found in [KS08] (section 2.3. proposition 1 there).
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2.2.2 Crossing the wall of the 1st kind

For γ1, γ2 ∈ Γ\{0}, two Q-linear independent elements, define the set

Wγ1,γ2 := {b ∈ B : R>0 · Zb(γ1) = R>0 · Zb(γ2)}

=

{
b ∈ B : Im

(
Zb(γ1)

Zb(γ2

)
= 0

}
Then the wall of the first kind associated to γ ∈ Γ is defined as

W1
γ :=

⋃
γ=γ1+γ2

Wγ1,γ2 (2.2.2)

We note that the condition is equivalent to the rays lγ1 , lγ2 are parallel to each other
at the wall. Also, the totality of all these walls will by denoted by

W1 :=
⋃
γ

W1
γ

and call it the set of wall of the first kind. When b0 belongs toW1
γ , this corresponds

to that the strict sector ∆ bounded by lγ1 , lγ2 becomes degenerate. Thus, wee see that if
we consider a curve b(t) ∈ B, 0 ≤ t ≤ 1 such that b0 corresponds to t0, then on the left
hand side of b0, i.e., b− < b0, we have that lγ1 < lγ2 , say lγ1 proceeds lγ2 in the clockwise
order. Similarly, on the right hand side of b0 where b+ > b0, we have that lγ1 > lγ2 .

Figure 2.3: Wall of the first kind Wγ1,γ2

When t→ t0, i.e., the two rays lγ1 , lγ2 coalesce, and change the order after crossing the
wall. During this coalesce the rays and swapping the order process, the group element
S(∆) stays constant by KSWCF. Thus, by taking the limit as b → b0 on both sides,
we are able to describe exactly how DT-invariants Ωb(γ) change when crossing the wall.
First recall that (see section 2.1.3)

S(∆) =
−−→∏
lγ⊂∆

S(lγ) =
−−→∏
lγ⊂∆

exp

 ∑
Z(γ)∈lγ

a(γ)


and S(lγ) can be further written as

S(lγ) =
−→∏

µ∈Γprim,Z(µ)∈lγ

exp

(∑
n≥1

a(nµ)

)
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where Γprim ⊂ Γ denotes the set of primitive vectors. For t ∈ [0, 1], we define the
limits

a±t (γ) = lim
ε→0,ε>0

at±ε(γ)

where for t = 0 or t = 1, only one sided limit is well defined.

Then part c) of definition 2.2.1, i.e., the continuity of S(∆) near b implies the following
identity, which we call it the KS wall-crossing formula

−→∏
µ∈Γprim,Zt(µ)∈lγ ,t

exp

(∑
n≥1

a−t (mµ)

)
=

−→∏
µ∈Γprim,Zt(µ)∈lγ ,t

exp

(∑
n≥1

a+
t (mµ)

)
Or even more simply we can write it as

−→∏
µ∈Γprim,Zt(µ)∈lγ ,t

exp

(∑
n≥1

at(mµ)

)
=

←−∏
µ∈Γprim,Zt(µ)∈lγ ,t

exp

(∑
n≥1

at(mµ)

)

where the product on the left (right) hand side is taken in the clockwise (anti-
clockwise) order of the rays lγ,t.

We remark that a−t (γ) = a+
t (γ) = at(γ) unless b(t) hits some wall W1

γ , i.e., there
exist two non-zero γ1, γ2 such that γ = γ1 + γ2 and b ∈ W1

γ1,γ2
. Indeed, as in this case

the two rays lγ1 and lγ2 would get swapped when crossing the wall, thus the order of
the products on both sides of the KSWCF also changes, which forces the DT-invariants
to change in order to make the identity still valid. To see this more clearly, let us use
KS-transformation introduced before to rewrite the above formula in which the change
of the invariants Ω(γ) become visible.

Remark 2.2.2. Informally speaking, the KSWCF says that for a very small strict sector
∆ containing the rays lγ,t, the corresponding group element S(∆), considered as function
of the parameter t, stays constant in a neighborhood of t.

By using (2.1.20), i.e.,

S(lγ) =
∏

Z(γ)∈lγ

KΩ(γ)
γ =

∏
γ′‖γ

KΩ(γ′)
γ′ =

∏
Z(µ)∈lγ
m≥1

KΩ(mµ)
mµ

where Kγ := exp (Li2 (eγ)) is the KS-transformation associated to γ. We rewrite the
above KSWCFs as

−→∏
µ∈Γprim,Zt(µ)∈lγ ,t

KΩ−t (mµ)
mµ =

−→∏
µ∈Γprim,Zt(µ)∈lγ ,t

KΩ+
t (mµ)

mµ (2.2.3)

−→∏
µ∈Γprim,Zt(µ)∈lγ ,t

KΩt(mµ)
mµ =

←−∏
µ∈Γprim,Zt(µ)∈lγ ,t

KΩt(mµ)
mµ (2.2.4)

24



More specifically, we consider the case when b0 ∈ W1
γ1,γ2

, and denote by Γ0 ⊂ Γ the
sub-lattice generated by positive cone spaned by γ1 and γ2 as follows

C0 := Z≥0 · γ1 ⊕ Z≥0 · γ2 = {mγ1 + nγ2 : m,n ∈ Z≥0}

Denote by ∆γ1,γ2 the acute sector bounded by the rays lγ1 , lγ2 . For a charge γ =
mγ1 + nγ2, identify it simply with (m,n), where m,n are integers, not both zero.

Figure 2.4: Illustration of wall crossing and KSWCF.

From the above figure, we see that b− is the point over which lγ1 < lγ2 , i.e.,

Im

(
Z(γ1)

Z(γ2)

)
= Im(Z((γ1) · Z(γ2)) > 0

and b+ is the point in B over which lγ1 > lγ2 , i.e.,

Im

(
Z(γ1)

Z(γ2)

)
= Im(Z(γ1) · Z(γ2)) < 0

And at the point b0, we have that

Im

(
Z(γ1)

Z(γ2)

)
= Im(Z(γ1) · Z(γ2)) = 0

where the cone Γ0 degenerate in to a ray. The KSWCF in this case then specializes into
the following

−→∏
lγ⊂∆γ1,γ2

Sb−(lγ) =
−→∏

lγ⊂∆γ1,γ2

Sb+(lγ) (2.2.5)

Or by using the KS-transformation, this reads as

−→∏
m,n≥0; (m,n)=1

KΩb− (km,kn)

(km,kn) =
−→∏

m,n≥0; (m,n)=1

KΩb+ (km,kn)

(km,kn) (2.2.6)

which is equivalent to the following
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∏
m,n≥0;m/n↗

KΩb− (m,n)

(m,n) =
∏

m,n≥0;m/n↘

KΩb+ (m,n)

(m,n) (2.2.7)

where the product in the LHS is taken over all coprime m,n in the increasing order of
m/n ∈ Q, while the product in the RHS is taken over all coprime m,n in the decreasing
order.

When trying to expand the above formulas, we find that it crucially depends on the
torus Lie group g associated to Γ0, thus actually depends on the antisymmetric pairing
〈·, ·〉 : ∧2 Γ→ Z.

In the following, we give some special cases of the formula (2.2.7).

We work in the field Q, the field of rational numbers. This is sufficient for our purpose
as the DT-invariants Ω(γ) are a priori given as rational numbers (though conjectured to
be integers).

Now, suppose we are about to crossing a point b0 ∈ W1
γ1,γ2

, then the sublattice Γ0 ⊂ Γ
sub-lattice generated by the positive cone C0 get mapped by Zb0 into a line in C. We
denote by x the Lie algebra generator eγ1 , and y that of eγ2 . then the ring of the functions
on TΓ0 is given by

O(TΓ0) = Q[[x, y]]

The antisymmetric pair on Γ0 is the one induced from that on Γ. Denote by k its
value on γ1, γ2, i.e., k = 〈γ1, γ2〉, then it reads for general charges as

〈(x, y), (m,n)〉 := k(xn− ym) ∈ Z

for (x, y) := x · γ1 + y · γ2 ∈ Γ0, and (m,n) := m · γ1 + n · γ2 ∈ Γ0.

Also denote by Km,n the KS transformation associated to the charge (m,n), then we
claim that it specializes in this case into the following formula

Km,n : (x, y) 7→
(
x (1− (−1)kmnxmyn)−kn, y (1− (−1)kmnxmyn)km)

)
(2.2.8)

Proof. By the formula (2.1.16), the computation goes as follow

Km,n : eγ1 7→ (1− emγ1+nγ2)〈mγ1+nγ2,γ1〉 · eγ1

=
(
1− (−1)〈mγ1,nγ2〉 emγ1

· enγ2

)−kn · eγ1

=
(
1− (−1)kmn emγ1

· enγ2

)−kn · eγ1

Similarly for the action on eγ2 , we have

Km,n : eγ2 7→ (1− emγ1+nγ2)〈mγ1+nγ2,γ2〉 · eγ2

=
(
1− (−1)〈mγ1,nγ2〉 emγ1

· enγ2

)km · eγ1

=
(
1− (−1)kmn emγ2

· enγ2

)km · eγ2

Thus follows the formula (2.2.8).
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Example 2.2.1: In the case when k = 1, the KSWCF (2.2.7) specializes into the
following pentagon identity

K0,1K1,0 = K1,0K1,1K0,1 (2.2.9)

This means that on the one side of the wall, we have two “states”, namely γ1, γ2 with
DT-invariants Ω(γ1) = Ω(γ2) = 1. And after crossing the wall, these two “states” still
persist with the same DT-invariants, but a new state, namely the “bound” state γ1 + γ2

with the DT-invariants Ω(γ1 + γ2) = 1 appears.

Figure 2.5: Illustration of the pentagon identity, after crossing the wall, the new “state”
γ1 + γ2 is created.

Example 2.2.2: In the case when k = 2, we have the following KSWCF

K2,−1K0,1 = (K0,1K2,1K4,1 · ··)K−2
2,0 (· · · K6,−1K4,−1K2,−1) (2.2.10)

which is equivalent to

K1,0,K0,2 = (K0,2K1,4K2,6 · ··)K−2
1,2 (· · · K3,4K2,2K1,0) (2.2.11)

or more generally, we have

Kγ2 Kγ1 =

(
∞∏
n=1

Knγ1+(n−1)γ2

)
K−2
γ1+γ2

(
1∏

n=∞

K(n−1)γ1+nγ2

)
(2.2.12)

The interesting aspect of this formula is that it displays that when crossing the wall
Wγ1,γ2 , there are infinitely many new states being created with DT-invariants all equal
to one except for the bound state γ1 + γ2, whose DT-invariant being −2.

As had been pointed out by Greg Moore and Frederik Denef, the factors in the formula
gives the BPS spectrum of N = 2, d = 4 Super Yang-Mills theory studied by Seiberg
and Witten in their seminar paper [SW94], we will come back to the formula later when
discussing the wall-crossing structure for Seiberg-Witten integrable systems.

The formula (2.2.9) can be checked by hand easily (see below), while the direct veri-
fication of 2.2.10 is much harder (see for example [GMN10]).

LHS of (2.2.9) acts on (x, y) as

(x, y)
K1,0−−→ (x, y (1− y))

K0,1−−→
(

x

1− y (1− x)
, y (1− x)

)
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Figure 2.6: KSWCF in k = 2 case. After crossing the wall, there are infinitely many new
“states” being created

while the RHS of (2.2.9) acts on (x, y) as

(x, y)
K0,1−−→

(
x

1− y
, y

)
K1,1−−→

(
x

1−y

1 + xy
1−y

, y

(
1 +

xy

1− y

))

=

(
x

1− y + xy
,
y (1− y + xy)

1− y

)
K1,0−−→

(
x

1− y + xy
,
y(1− y + xy)

1− y

(
1− x

1− y + xy

))
=

(
x

1− y (1− x)
,
y(1− y + xy)

1− y
1− y + xy − x

1− y + xy

)
=

(
x

1− y (1− x)
,
y(1− y + xy − x)

1− y

)
=

(
x

1− y (1− x)
, y (1− x)

)
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2.2.3 Crossing the wall of the 2nd kind

In this subsection, we give a reformulation of the KSWCF in terms of the monodromy
of the wall-crossing group elements around small loops. This will motivate the abstract
formulation of the wall-crossing structure to be introduced in the next subsection.

First recall that the wall of second kind associated to a charge γ is given as (2.1.26)
by the following

W2
γ = γ⊥ := {Z ∈ Γ∗R : Im(Z(γ)) = 0}

A path σ = (Zt)0≤t≤1 ⊂ Γ∗ is said to be short if the convexhull of the set:⋃
0≤t≤1

Zt (Supp (a))

is a strict sector ∆σ in C∗ (this definition is borrowed from [KS08], see section 3.4 there).
Then we can see that for a generic short path σ = (Zt)0≤t≤1, there exists no more
than countably many ti ∈ [0, 1] and the corresponding primitive γi ∈ Γ\{0} such that
Zti ∈ W2

γi
.

Figure 2.7: The monodromy around a short loop

Proposition 2.2.1. For any short loop, the monodromy
�∏
ti

S(lγi) = id, where the product

is taken in the increasing order of elements ti.

Proof. We consider an infinitesimal small short loop σ. If it does not circle a point Zb0
such that b0 ∈ W1(γ1, γ2) for two Q-linearly independent charges γ1 and γ2, then clearly
the monodromy should be trivial, as can be seen from the case in which there were just
two walls of second kind corresponding to γ1, γ2, namely, W2

γ1
andW2

γ2
. The general case

can be seen similarly.

More concretely, we see that in this case the monodromy becomes

S(lγ1)S(lγ2)S−1(lγ2)S−1(lγ1)

which is trivially the identity map.

Next, let us assume that it circles exactly one such Zb0 . It is the intersection point of
infinitely many walls of second kind, namely

W2
mγ1+nγ2

for m,n ≥ 0, m+ n ≥ 1.
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Since the loop is infinitesimal, we can replace the lattice Γ by Γ0 in the computation
(for example, we reduce the problem to rank 2 case), where at b0, the sub-lattice Γ0 is
get mapped into a line, i.e., it degenerates into a line.

Thus, the computation of the monodromy is reduced to computing the product over
the collection of BPS rays lmγ1+nγ2 .

By our assumption that the loop is short, we can assume that these rays fall into the
union of two opposite strict sectors

∆σ ∪ (−∆σ) ⊂ C∗

Then it is clear that as we take the product in the increasing ti order, we get that the
product over the rays belonging to the sector ∆σ can be identified with the following∏

m,n≥0;m/n↗

S(lmγ1+nγ2)

while the product taken over the rays belonging to the opposite sector −∆σ becomes∏
m,n≥0;m/n↘

S−1(lmγ1+nγ2)

Consequently the monodromy around σ is then given by∏
m,n≥0;m/n↗

S(lmγ1+nγ2)
∏

m,n≥0;m/n↘

S−1(lmγ1+nγ2)

or by using KS transformation notation, it can be further written as∏
m,n≥0;m/n↗

KΩb− (m,n)

(m,n)

∏
m,n≥0;m/n↘

K−Ωb+ (m,n)

(m,n)

which is the identity, i.e., the triviality of the monodromy around the small loop σ
under the assumption that the KSWCF (2.2.7) holds.

Remark 2.2.3. In the case that the forgetting map:

π : B −→ Γ∗ := HomZ (Γ,C) ∼= Cn, b 7−→ Zb

is a local isomorphism, we can pull back various wall of second kind to the manifold B
which are hypersurfaces in B. Thus, by mimicking the above procedure, we can consider
the monodromy around short loops in B, and the triviality of monodromy result still holds
in this setting.
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2.3 Wall-crossing structure on a vector space

Now we have all that needed to formulate the notion of wall crossing structure (“WCS”
for short). It generalize the stability data on g discussed previously in the sense that the
central charge function does not appear explicitly in this structure. This is useful because
in practice, we have integrable systems without central charge, thus in order to deal with
wall crossing phenomena associated to it, we need to adopt this WCS formalism.

2.3.1 Summarizing the previous facts

Let us first summarize what we have established so far. Given a charge lattice Γ ∼= Z⊕n
endowed with an antisymmetric bilinear form 〈·, ·〉 : ∧2 Γ→ Z. Denote by ΓR := Γ⊗Z R
its associated real vector space. Again, let g :=

⊕
γ∈Γ gγ be the Γ-graded Lie algebra

over Q, with Lie bracket on it given by

[eγi , eγj ] = (−1)〈γi,γj〉〈γi, γj〉 · eγi+γj

We have seen that given a stability data (Z, a(γ)) on g, the support of a(γ), say Supp a
is the same as the support of g defined in (2.1.29), namely

Supp g := {γ ∈ Γ : gγ 6= 0} ⊂ Γ

We make the assumption that it is finite and is contained in an open half-space in ΓR.
In this case the Lie algebra g is nilpotent. Denote by G the corresponding nilpotent Lie
group, which, under the exponential map, is bijective with g, i.e.,

exp : g→ G

Also recall that the wall (of second kind) associated to γ is the hyerplanes γ⊥ ⊂ Γ∗R
given as

W2
γ = γ⊥ := {Z ∈ Γ∗R : Im(Z(γ)) = 0}

Denote by Wallg the collection of these hyperplanes. The complement of Wallg in Γ∗R
consists of a collection of connected components which are open convex domains in Γ∗R,
called the chambers. These chambers are exactly open strata in the natural stratification
of Γ∗R associated with the collection of these hyperplanes (γ⊥)γ∈Suppg.

We know previously that the DT-invariants Ω(γ) are encoded in the group element
S(∆) belonging to the wall crossing group G∆ ⊂ G, where ∆ is an strict sector in C∗.
We allow it to degenerate into a ray l, in this case S(∆) becomes S(l) (see section 2.1.2
for the terminologies and definitions there).

A ray lγ is associated to a class γ ∈ Γ with Ω(γ) 6= 0, i.e., lγ := Z(γ) ·R>0 recall that
we have established (see equation (2.1.21)) that

log S(lγ) ∈
⊕
γ′‖γ

gγ′ .

Those group elements stay constant if the central charge moves only inside a given
chamber.
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But upon deforming the central charge, such that a wall of first kind, say

W(γ1, γ2) =
{
Z ∈ HomZ (Γ,C)} : Im

(
Z(γ1) · Z(γ2)

)
= 0
}

is crossed, then those DT-invariants Ω(γ) would jump. And its jump is controlled by the
KSWCF (2.2.7), which is equivalent to the triviality of certain monodromy alone small
short loops in the moduli space of central charge (see proposition 2.2.1). More precisely,
if the loop is parametrized by the parameter t, and we have showed that it intersects at
ti with only countably many walls W2

γi
of second kind associated to the charges γi, then

the monodromy around any small short loop σ is trivial

�∏
ti

S(lγi) = id (2.3.1)

2.3.2 Nilpotent case

Now we can formally state the definition of WCS from [KS14].

Definition 2.3.1. A (global) wall-crossing structure (“(global) WCS” for short) for
g is an assignment

(y1, y2)→ gy1,y2 ∈ G
for any y1, y2 ∈ Γ∗R\Wallg, which is locally constant in y1, y2. Further more, the

assignment satisfies the following cocycle condition

gy1,y2 · gy2,y3 = gy1,y3 ∀y1, y2, y3 ∈ Γ∗R −Wallg (2.3.2)

such that in the case when the straight interval connecting y1 and y2 intersects only
with one wall W2

γ = γ⊥, then we have that

log(gy1,y2) ∈
⊕
γ′‖γ

gγ′ (2.3.3)

Figure 2.8: Wall-crossing structure on g

We denote the space of all wall-crossing structures on g by WCSg. We can deduce
some easy consequences from the above definition.

Lemma 2.3.1. If the the straight interval y1y2 does not intersect any walls in Wallg,
then gy1,y2 = id ∈ G.

Proof. let us consider the situation when y1 and y2 are separated from y3 by a single way
γ⊥ so that the straight intervals y1y3 ans y2y3 intersect only with the wall y1y3, and y1

and y2 lie in the same chamber, thus by the locally constant nature of the assignment,
we see that gy1,y2 = gy1,y3 . Consequently, by the cocycle condition (2.3.2), we must have
gy1,y2 = id.
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Figure 2.9: Illustration of the proof of the lemma 2.3.1 and lemma 2.3.2

Lemma 2.3.2. For any y1, y2 ∈ Γ∗R\Wallg, we have that gy1,y2 = g−1
y2,y1

.

Proof. First note that if y1 and y2 lie in the same chamber, then the straight interval y1y2

does not intersect any wall, so by lemma 2.3.1., we see that gy1,y2 = id, and the result is
trivially true in this case. Thus let us consider a configuration in which y1 and y3, which
lie in the same chamber, are separated from y2 by a single wall γ⊥. Since the straight
interval y1y3 does not intersect any wall, by lemma 2.3.1 again, we have that gy1,y3 = id.
Then in the cocycle condition

gy1,y2 · gy2,y3 = gy1,y3

Let y3 approaches to y1, we get that gy1,y2 · gy2y1 = id. The result follows.

Lemma 2.3.3. For any y1, y2, · · ·, yn ∈ Γ∗R\Wallg, we have the following wall crossing
formula

gy1,y2 · gy2,y3 · · · gyn−1,yn · gyn,y1 = id (2.3.4)

Proof. The n = 3 case follows from the lemma 2.3.2. Indeed, the right multiplication by
gy3,y1 = g−1

y1,y3
on both sides of equation (2.3.2) gives us

gy1,y2 · gy2,y3 · gy3,y1 = id

The general case follows by induction.

We see from the above discussion that for any codimension one stratum τ , which is
an open domain in the hyperplane W2

γ = γ⊥ for some γ ∈ Supp g, we can associate to it
a jump

gτ := gy1,y2

where points y1 and y2 are separated by the wall γ⊥ i.e.,

y1(γ) > 0, y2(γ) < 0

Figure 2.10: The jump associated to the wall
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A WCS is uniquely determined by the collection of all jumps (gτ )codimτ=1, which
satisfies the cocycle condition for each stratum of codimension 2.

More concretely, We can specialize these abstract (wall-crossing) group elements de-
fined above by what we had already known.

Here the jump gτ = gy1,y2 can be identified as the automorphism S(lγ). And the
condition (2.3.3) in the definition of WCS becomes exactly (2.1.21) in section 2.1.3.
Besides, if the points y1 and y2 separated by γ⊥ can be realized in terms of two central
charges Z1 and Z2 (as two functionals Im(Z1) and Im(Z2)) in such a way that

Im(Z1)(γ) > 0, Im(Z2)(γ) < 0.

Then we can reinterpret the formula (2.3.4) as the KSWCF.

Suppose that all the group elements appearing on the left hand side of 2.3.4 are non-
trivial (if some of them are identity element, the result still holds). Thus, the straight
intervals yiyi+1 that connects yi and yi+1 is assumed to intersect only with the wall γ⊥i ,
for i = 1, 2, · · · , n − 1. Here the straight intervals yny1 intersect only with another wall
γ⊥n . Roughly, we may think that these straight intervals would patch together to form a
loop in Γ∗R, namely the oriented loop σ = −−−−−−−−→y1y2 · · · yny1. Since the assignment is locally
constant, we can always move the points locally as long as they do not cross the wall,
so we can connect yi with yi+1 for i = 1, 2, · · · , n− 1 and yn with y1. Then the formula
(2.3.4) becomes

S(lγ1)S(lγ2) · · · S(lγn) = id (2.3.5)

or more shortly
�∏
γi

S(lγi) = id (2.3.6)

This is exactly the KSWCF (2.3.1) in the case when there are only finitely many walls
in question (since we are dealing with nilpotent g here). In order to recover the general
KSWCF (2.3.1), we need to remove the restraints imposed on Supp g, this leads us to
deal with the pronilpotent Lie algebra case, which is reminiscent in our discussion of the
completion of Lie algebra in section 2.1.4.

Figure 2.11: KSWCF in terms of cocycle condition
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2.3.3 Pronilpotent case

Now we relax the restrictions on Supp g in the nilpotent case. In particularly, we do not
made the assumption that the support belongs to a half-space in ΓR.

Let ∆ be a strict e sector in ΓR (later when we have central charge function, this can
be realized as the pull back of the acute sector in C∗), we can consider as before (see
section 2.2.3.) the following constructions

g∆ :=
∏

γ∈∆∩Γ\{0}

gγ

which is an pronilpotent Lie algebra as we have an infinite product of Lie algebras.
Under the exponential map, we get the corresponding pronilpotent Lie group G∆. We
use without proof the following characterization of strict sectors.

Lemma 2.3.4. If ∆ ⊂ ΓR is an strict sector, then there exists a functional φ ∈ Γ∗R such
that its restriction to ∆ gives a proper map to R≥0.

Remark 2.3.1. In the special case of varing the stability data, φ here can be specified as
the imaginary part of the central charge Z.

Let us choose one such functional φ. Then for any N > 0, we consider the ideal
g∆,≥N ⊂ g∆ consisting of elements with φ(γ) ≤ N for all γ ∈ supp(g). And we form the
quotient algebra

g∆,N = g/g∆,≥N

By taking the projective limit of the above system, we get the pronilpotent Lie algebra

g∆ = lim
←−
N

g∆,N

And by exponentiating, we get the corresponding pronilpotent Lie group G∆. Then we
have the natural projection of the groups

pr∆,N : G∆ → G∆,N (2.3.7)

Again, by the support property, wee see that for each N > 0, Supp g∆ is finite, and
by the assumption that ∆ is chosen to be strict. It can be further made to lie in a half
space in ΓR. Thus, the WCS is well defined on each g∆,N .

Roughly speaking, the WCS on general g to be defined later can be seen as the one
induced from that on each g∆,N , i.e., it should correspond to some sort of the “projective
limit” of the WCS’s on g∆,N . Yet we cannot take this “projective limit” directly as the
primitive definition of WCS is not suitable for this purpose. So we will find equivalent
way of descriptions in the next subsection 2.4.

Anyway, let us assume that this can be done, so we have well defined WCS on the Lie
algebra g, then the number of points in Lemma 2.3.3. can be assumed to be countably
many, and for each N > 0, we can have a corresponding KSWCF (2.3.4). By taking the
limit as N →∞, we will obtain the KSWCF in more general case, namely
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Lemma 2.3.5. For any y1, y2, ···, yn, · · · ∈ Γ∗R−Wallg, we have the following wall crossing
formula (

∞∏
i=1

gyi,yi+1

)
· gy∞,y1 = id (2.3.8)

Or equivalently, suppose that the straight intervals yiyi+1 for i = 1, 2, · · · ,∞ as well as
y∞y1 together patch (by moving these points locally if necessary) to form a short oriented
loop σ = −−−−−−−−−−−−−→y1y2 · · · yn · · · y∞y1 in Γ∗R, and assume it intersects only with the walls γ⊥i , for
i = 1, 2, · · · ,∞, then we have the following KSWCF (2.3.1).

�∏
1≤i≤∞

S(lγi) = id (2.3.9)

where the product is taken in increasing i order.
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2.4 Sheaf theoretic description

To begin with, let me make some heuristic remarks. Recall that a WCS on g is an assign-
ment for any pair y1, y2 ∈ Γ∗R\Wallg a group element gy1,y2 ∈ G, which in locally constant
and satisfies the cocycle condition (2.3.2). Now, instead of a pair of points, we want to
assign group element for any given point y ∈ Γ∗R\{0}. To this end, we need to consider
sort of limit of gy1,y2 as y1 → y2.

If y ∈ Γ∗R\{0} stays in a chamber, then we choose a nearby point y1 lying in the
same chamber, i.e., the straight interval yy1 does not intersect any wall. We know that
in this case the group element gy,y1 = id. So we can define gy as the limit of gy,y1 as y1

approaches to y. Say
gy := lim

y1→y
gy,y1 = id

On the other hand, if y ∈ γ⊥ lies on a wall of second kind, in this case, in order to
define gy, we consider the following situation. Suppose that y is the intersection point of
the straight interval y1y2 with only the wall γ⊥. Then as gy1,y2 stays constant if both y1

and y2 do not cross the wall γ⊥, so let y1 and y2 both approach to y individually within
its own chamber, we can define gy as the limit of gy1,y2 , which is the same since gy1,y2

stays constant in this limiting process. Thus we define gy1,y2 in this case such that

log(gy) ∈
⊕
γ′‖γ

gγ′ for y ∈ γ⊥

So we now know how to assign group element gy for any y ∈ Γ∗R\{0}. Later we will
see that for y = 0, g0 need to be identified with the entire Lie algebra g.

In summary, for any y ∈ Γ∗R\{0}, the group element gy is trivial unless y belongs to
some wall γ⊥, i.e. there exists some γ ∈ Γ\{0} such that y(γ) = 0.

We want to have a sheaf on Γ∗R such that its stalk over y ∈ Γ∗R equals to 0 if
y ∈ Γ∗R\Wallg, but is a nontrivial element gy such that log(gy) ∈

⊕
γ′‖γ gγ′ when y

belongs to some wall.

It turned out that this can be done ([KS14]), for this we need some preparations.

2.4.1 Existence of the shealf of WCS

Given y ∈ Γ∗R, let us define subsets in Γ as follows

∆+ := {γ ∈ Γ : y(γ) > 0}

∆0 := {γ ∈ Γ : y(γ) = 0}

∆− := {γ ∈ Γ : y(γ) < 0}

Thus Γ = ∆− t ∆0 t ∆+, and we have the decomposition of the Lie algebra g as
follows

g = g
(y)
− ⊕ g

(y)
0 ⊕ g

(y)
+
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where g
(y)
− , g

(y)
− and g

(y)
+ correspond to components gγ such that γ belongs to ∆−, ∆0

and ∆+ respectively. On the Lie group level, this corresponds to the following decompo-
sition

G = G
(y)
− ×G

(y)
0 ×G

(y)
+

where G
(y)
− , G

(y)
0 and G

(y)
+ are the Lie groups corresponding to g

(y)
− , g

(y)
0 and g

(y)
+

respectively. Consequently, every element g ∈ G can be decomposed uniquely as the
product

g = g
(y)
− g

(y)
0 g

(y)
+

Then we have the following canonical projection

πy : G −→ G
(y)
0 = G

(y)
− \G/G

(y)
+

g 7−→ g
(y)
0 (2.4.1)

Recall from the discussion given in the beginning of this subsection, we know that for
any y ∈ Γ∗R, the group element gy associated to y is nontrivial only if y ∈ γ⊥, i.e.,

log (gy) ∈ G(y)
0

Figure 2.12: Sheaf of wall crossing structures

Claim: There exists a sheaf WCSg of sets on Γ∗R with the stalk over y ∈ Γ∗R given by

G
(y)
0 , we call it the sheaf of wall crossing structure.

To show its existence, given a set S, recall that a sheaf of sets S over a topological
space M with stalk at m ∈ M being a set Sm is equivalent to a local homeomorphism
from its étalé space S ét consisting of pairs {(m, s) : m ∈ M, s ∈ Sm} to the base M
given by

S ét −→M, (m, s) 7−→ m (2.4.2)

here the bases of the topology on étalé space S ét is given by the sets

Us,U = {(m, s′) : m ∈ U, s′ = πm(s)}

where s runs through the set S and U runs through the set of open subsets on M , and
πm is the surjection

πm : S −→ Sm

We need the following well-known lemma presented in [KS14].
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Lemma 2.4.1. If for any s1, s2 ∈ S the set {m ∈ M : πm(s1) = πm(s2)} is open in M,
then the projection (2.4.2) is a local homeomorphism.

Given this lemma, and apply it to the case when M = Γ∗R, S = G,Sy = G
(y)
0 , y ∈ M

and the surjection map πm given as above, then the existence of the sheaf of wall crossing
structure WCSg amounts to verifying that for any g1, g2 ∈ Γ∗R, the following set

{y ∈ Γ∗R : πy(g1) = πy(g2)}

is open in Γ∗R, but this is obvious since the projection map πm to the double coset
is naturally continuous under the quotient topology. Later, we will show that space of
sections Γ(Γ∗R,WCSg) of the sheaf WCSg is isomorphic to the space of all wall-crossing
structures on Γ∗R, namely the space WCSg.

2.4.2 Equivalent descriptions of WCS

Given any open subset U ∈ Γ∗R, the space of section over U , denoted by Γ(U,WCSg),
roughly speaking, can be identified as the set of locally constant maps from the set of
connected components of intersections of codimension one strata with U to the corre-
sponding subgroups of G, which satisfy the cocycle condition near points of strata of
codimension two.

More precisely, we defines the convex hull of U by ∆(U) ⊂ ΓR, and denote by ∆±(U)
the subsectors generated by those γ ∈ Γ such that ±yγ > 0 for all y ∈ U . By our
assumptions on Supp g, all these sectors are strict, and we can associate it with the
corresponding nilpotent Lie groups as

G±(U) = exp

 ⊕
γ∈∆±(U)

gγ


then we have that

Γ(U,WCSg) ∼= G−(U)\G/G+(U)

Given a WCS, i.e., a collection of jumps (gτ ) for all codimension one strata τ , we
have already know how to associate it with a sheaf of wall crossing structure. Conversely,
given a section s ∈ Γ(Γ∗R,WCSg), we want to associate it with an unique wall crossing
structure as follows

For any y1, y2 ∈ Γ∗R, if the straight interval y1y2 lies in the same chamber, then gy1,y2

is deemed to be the identity. On the other hand, if y1y2 intersects only with the wall γ⊥

at y0, then the transformation gy1,y2 is given by s(y0) ∈ G(y0)
0 , which is non-trivial since

y0(γ) = 0.

We want to show that this assignment, which gives us a map from Γ(Γ∗R,WCSg) to
WCSg is a well defined map.

Proposition 2.4.2. The above assignment (map) is well defined.

To proof this proposition, we need a lemma first.
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Lemma 2.4.3. Γ∗R\Wallg contains two components U± characterized by that it consists
of all points y ∈ Γ∗R such that y(γ) > 0 (resp. y(γ) < 0) for all γ ∈ Supp g. Thus we can
associate with any WCS σ = (gy1,y2) an group element g+,− := gy+,y− ∈ G, for y± ∈ U±.

Then consider l ⊂ Γ∗R is a straight line intersecting both U+ and U−, endowed with the
direction from U+ to U−. Assume that it does not intersect strata of codimension ≥ 2,
and intersects with walls at y1, · · · , yn, ordered according to the direction of l. Then, we
have the following

a) the space of sections over l can be identified as

Γ(l,WCSg) ∼=
n∏
i=1

G
(yi)
0 (2.4.3)

b) further more, we have the following bijection of Lie algebras

n⊕
i=1

g
(yi)
0
∼= g (2.4.4)

c) and correspondingly a bijection among Lie groups

n∏
i=1

G
(yi)
0
∼= G (2.4.5)

Thus, any element g ∈ G can be written uniquely as the ordered product of elements
of G

(yi)
0 .

d) As a consequence of c), the space of sections can be further identified as

Γ(l,WCSg) ∼= G (2.4.6)

Proof. (of the lemma 2.4.3) a) is obvious. It suffices to prove b) as c).

Define the subsets ∆0
i ⊂ Γ∗R for i = 1, · · · , n as

∆0
i := {γ ∈ Supp g : yi(γ) = 0}

then we show that we have the following decomposition

ΓR =
n⊔
i=1

∆0
i

Indeed, ∀γ ∈ ΓR\{0}, since the straight line l goes through from U+ to U− with the
only intersection points with wall at y1, · · · , yn, wee see that the charge γ can be annihi-
lated only at one of the above n points.

From the above the decomposition in a) follows, and b) also follows directly.
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Figure 2.13: Illustration of the lemma 2.4.3

Proof. (of the proposition 2.4.2) We just need to check that the cocycle condition holds
for all strata of codimension 2, that is, we need to check the triviality of monodromy
around small loops. So let us consider such a strata κ which is being realized as the
intersection of, say n hyperplanes γ⊥i for i = 1, 2, · · · , n in general position, which are
ordered in the increasing i. Thus, locally around κ, we have 2n codimension two open
strata separated by 2n codimension one strata. Denote by y± the point in Γ∗R such that
y±(γi) = 0, for all i = 1, · · · , n. It is easy to see that these two points must lie in two
separate ones among these 2n open strata.

In order to show the monodromy is trivial, we consider the paths connecting the two
points going from y+ to y−. Up to homotopy, near the strata κ, there are two such paths,
each of which intersects at these walls γ⊥ at exactly one point. Without loss of gener-
ality, let us assume that y+ lies in the strata neighboured by the walls γ⊥1 and γ⊥2 , and
y− lies in the strata neighboured by the walls γ⊥k and γ⊥k+1 for some k such that 1 < k < n.

Under these assumptions ,we see that the first path σ1, which intersects with the
walls at the points ordered as y0

2 → · · · → y0
k, while the second one σ2 intersects with

the walls at the points ordered as y0
1 → y0

n → y0
n−1 → · · · → y0

k+1, where y0
i ∈ γ⊥i for each i.

Then by viewing these two special open strata which contains points y± as U± in
Lemma 2.4.3, we can infer from the lemma that the composition of jumps along the path
σ1 is given by

g
(y2)
0 · · · g(yk)

0

which equals to g+,− by lemma 2.4.3. And similarly the composition of jumps along the
path σ2 is given by (

g
(y1)
0

)−1 (
g

(yn)
0

)−1

· · ·
(
g

(yk+1)
0

)−1

which also equals to g+.− by lemma 2.4.3. Thus we get that

g
(y2)
0 · · · g(yk)

0 =
(
g

(y1)
0

)−1 (
g

(yn)
0

)−1

· · ·
(
g

(yk+1)
0

)−1

from which it follows that
�∏
k

g
(yk)
0 = id

This completes our proof of the triviality of monodromy.
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It is not so obvious to establish the equivalence between WCSg and WCFg directly,
for this reason, we prove the following more general result.

Proposition 2.4.4. We have the following canonical identification of sets

G ∼= Γ(Γ∗R,WCFg) ∼= WCSg

Before proving the proposition, we give some explanations. The map from G to
Γ(Γ∗R,WCFg) is given by

φ : G −→ Γ(Γ∗R,WCFg), g 7−→ φ(g)(y) := πy(g) = g
(y)
0 (2.4.7)

where the projection πy is given as in (2.4.1). We have already defined the map from
Γ(Γ∗R,WCFg) to WCSg, and we denote this map by ψ. We can also define a map from
WCSg to G by

µ : WCSg −→ G, σ 7−→ g+,− := g+,−(σ) (2.4.8)

here the group element g+,− is defined as in lemma 2.4.3. All maps are well defined. And
the proposition 2.4.4 is proved by the following three lemmas.

Lemma 2.4.5. The map φ is a bijection.

Proof. For any y, since every element g ∈ G can be decomposed uniquely as the product

g = g
(y)
− g

(y)
0 g

(y)
+

If φ(g)(y) = g
(y)
0 = 0, then g = 0, thus the map φ is injective. On the other hand, as

0 ∈ Γ∗R belongs to the closure of any stratum, therefore any section is uniquely determined
by its value at 0, this shows the map φ is surjective.

Lemma 2.4.6. The composition of maps µ ◦ ψ ◦ φ : G→ G is the identity map.

Proof. Consider the situation as in lemma 2.4.3, by the decomposition of Lie group G
(c.f., (2.4.5)), any g ∈ G can be decomposed as the ordered product of g

(yi)
0 , but in this

case g = g+,−. Thus the lemma follows.

Lemma 2.4.7. The map µ is an injection.

Proof. Recall that a WCS σ is determined by the jumps g
(y)
0 for y ∈ γ⊥ and some γ ∈ Γ.

We consider a straight line l as in lemma 2.4.3, which intersects the walls at y1, · · · , yn.
Without loss of generality, we can assume y = yk for 1 ≤ k ≤ n. Then by (2.4.4), we infer

that g+,− uniquely determines all jumps g
(yi)
0 . In particularly, the jump g

(y)
0 = g

(yk)
0 . As

this holds for all such y, we see that the WCS σ is uniquely determined by the element
g+,−. This finishes the proof of the lemma.

Finally, we can give a proof of the proposition 2.4.4 as follows:

Proof. (of the Proposition 2.4.4) First, by lemma 2.4.6, we see that for any g ∈ G, we
have that

g = µ ◦ ψ ◦ φ(g) = µ ◦ (ψ ◦ φ(g))

thus µ is an surjection. By combining it with the lemma 2.4.7, we conclude that µ is a
bijection.

However, lemma 2.4.5 says that φ is also bijective, thus we have that the map ψ =
µ−1 ◦ φ−1 is also a bijection.
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2.4.3 WCS for general g and the support of the sections

We can use this sheaf theoretic description to define the WCSg for g with general Supp g.
Fix an strict sector ∆ ∈ ΓR, with the associated completed torus Lie algebra g∆ as before,
then the sheaf of wall crossing structure WCSg∆

is defined as the projective limit
of the sheaves WCSg∆,N

for N > 0, i.e.

WCSg∆
:= lim

←−
N

WCSg∆,N

where we have used implicitly a map φ ∈ Γ∗R in order to obtain a filtration (this will
be assumed in the following discussion). More generally, the strict sector ∆ may depends
on point y ∈ Γ∗R, in order to deal with such situation, we give the following definition.

Definition 2.4.1. (WCS for general g): The sheaf WCSg on Γ∗R is described by the
space of sections Γ(U,WCSg) over any open subset U ⊂ Γ∗R, which consists of a family
of elements a(y, γ) ∈ gγ such that y ∈ U, γ ∈ Γ\{0} and y(γ) = 0 which satisfies the
following conditions:

a) for any y ∈ U , there exists a neighborhood Uy and strict sector ∆y,Uy ⊂ ΓR such
that for any y′ ∈ Uy the element a(y′, γ) 6= 0 iff γ 6= 0 and γ ∈ ∆y,Uy .

b) For any N > 0, the image of the following projected elements (c.f., (2.3.7))

pr∆y,Uy ,N

(
exp

(∑
γ

a(y′, γ)

))

for y′ ∈ Uy, belong to the space of sections Γ
(
Uy,WCSg∆y,Uy,N

)
.

Proposition 2.4.8. Given a strict sector ∆ ⊂ ΓR\{0}, we assume that Supp g ⊂ ∆,
then we have the following one to one correspondence

Γ (Γ∗R,WCSg) ←→ G∆

Proof. By projecting a global section σ = (a(y, γ)) of WCSg into the Lie subalgebra
g∆,N ⊂ g∆, the one to one correspondence follows from proposition 2.4.4, and by letting
N →∞, we get the desired correspondence.

Definition 2.4.2. (support of a section) Given a section σ ∈ Γ(U,WCSg) over an
open subset U ⊂ Γ∗R, define its support, denoted by Supp σ to be the minimal closed
subset of U × ΓR such that it is conic in the direction of ΓR and contains the set of pairs

(y, γ) ∈ U × ΓR, such that y(γ) = 0 as well as log
(
g

(y)
0

)
γ
∈ gγ\{0}.
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2.5 Wall-crossing structure on a topological space

Like in the case of continuous family of stability data, we would like the space of wall-
crossing structure WCSg, or equivalently the sheaf of wall crossing structureWCSg to be
parametrized by a topological manifold B. This is useful in dealing with the wall crossing
structures associated with complex integrable systems to be discussed in later chapters.
For this purpose, we need to introduce the notion of wall-crossing structure on B.

let us assume that B is a Hausdorff locally connected topological space endowed with
a local system of finitely generated free abelian groups of finite rank

π : Γ −→ B

Besides, we need a local system of Γ−graded Lie algebras over B, i.e.,

g =
⊕
γ∈Γ

gγ

defined over the field of rational numbers Q, i.e, gγ = Q〈eγ〉, with eγ the generator of the
Lie algebra. Under the assumption that the local system Γ is equipped with a covariatly
constant system of antisymmetric bilinear pairs 〈·, ·〉b. Then the Lie bracket on g is in-
duced from (2.1.9).

Now, given a homomorphism of sheaves of abelian groups

Y : Γ −→ O(B)

where O(B) denotes the sheaf of real valued continuous function on B.

Note that the above map is equivalent, under duality to the following map (also
denoted by Y), which is locally continuous

Y : B −→ Γ∗R (2.5.1)

Denote byWCSg,Y the sheaf on B defined as the pull back of the sheaf of wall-crossing
structure WCSg on Γ∗R, i.e.,

WCSg,Y := Y ∗(WCSg) (2.5.2)

and we call this the sheaf of wall-crossing structure on B induced by the map Y, then we
can give the following definition.

Definition 2.5.1. (WCS on B): A (global) wall crossing structure on B is a global section
of the sheaf WCSg,Y .

Remark 2.5.1. Wee see that when our space B specializes into a single point {∗}, then
the sheaf of WCS on {∗} is nothing but the global WCS on Γ∗R. Thus, we can view WCSg

as the special case of WCSg,Y .

In parallel with the definition 2.4.1 in the last section, we have the corresponding
description of the sheaf WCSg,Y as follows:
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Definition 2.5.2. The sheafWCSg,Y on B is described by the space of sections Γ(U,WCSg,Y )
over any open subset U ⊂ B, which consists of a family of elements a(b, γ) ∈ gγ,b such
that b ∈ U, γ ∈ Γb\{0} and Y (b)(γ) = 0 that satisfies the following conditions:

a) for b ∈ U , there exists a neighborhood Ub and a strict sector ∆b,Ub ⊂ ΓR,b such that
for any b′ ∈ Ub the element a(b′, γ) 6= 0 iff γ 6= 0 and γ ∈ ∆b,Ub.

b) For any N > 0, the image of the following projected elements (c.f., (2.3.7))

pr∆b,Ub
,N

(
exp

(∑
γ

a(b′, γ)

))

for b′ ∈ Ub, belong to the space of sections Γ
(
Ub,WCSg∆b,Ub,N

)
.

Remark 2.5.2. Clearly, the pairs (b, γ) ∈ U × ΓR in the above definition that satisfies
those constraints should be viewed as the support of the sections.

More precisely, we have the following definition.

Definition 2.5.3. (Support of a section) Given a WCS σ on B, i.e., σ ∈ Γ(WCSg,Y ),
we define its support Supp σ to be a closed subset of of tot(ΓR) i.e. the total space of the
sheaf ΓR, whose fiber Suppb σ over any point b ∈ B is given by an strict sector ∆b,σ ⊂ ΓR,b,
which equals to the support of the germ of WCSg,b at the point Y (b) ∈ Γ∗R,b associated
with the section σ.

By definition 2.4.2, we see that Supp σ also admits the following concrete description.

Given a section σ ∈ Γ(U,WCSg,Y ) over an open subset U ⊂ B, Supp σ is an minimal
closed subset of U × ΓR, which is conic in the direction of ΓR, and contains the set of

pairs (b, γ) ∈ U × ΓR, such that Y (b)(γ) = 0 and log
(
g

(Y (b))
0

)
∈ gγ\{0}.

Through the map Y in the definition, we can also define some hypersurfaces in the
topological space B, and we also call these the wall of the second kind. They are defined
as the pull back of the walls in Γ∗R.

Definition 2.5.4. (walls of second kind in B) For every γ ∈ Γ\{0}, the wall of
second kind associated to it is defined as

W2
γ = γ⊥ := {b ∈ B : Y (b)(γ) = 0} (2.5.3)
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2.6 Examples of wall crossing structures

Example a): Stab(g) recovered.

Suppose we are given a free abelian group of finite rank Γ together with a Γ-graded
Lie algebra g =

⊕
γ∈Γ gγ, and a central charge function Z : Γ→ Z.

Given such data, we know how to define the notion of stability data on g. We now
show that Stab(g) can be recovered by considering the WCS on a circle.

Take B = Sθ = R/2πZ, and endow it with a local system of lattices Γ with fiber being
Γ. Also, we equip it with a local system of Γ-graded Lie algebra g. We then consider the
following map:

Y : Sθ −→ Γ∗R

θ 7−→ Yθ(γ) := Im(e−iθZ(γ)), for θ ∈ R/2πZ, γ ∈ Γ (2.6.1)

Proposition 2.6.1. The wall-crossing structure on R/2πZ induced by the above map Y
is the same as a stability data: σ = (Z, a(γ)) ∈ Stab (g).

Proof. Given a section s ∈ Γ(WCFg,Y ), we want to associate it to a stability data σ =
(Z, a(γ)) ∈ Stab (g). The central charge function Z is the same. In order to define
a(γ) ∈ gγ, we recall that the stalk of the wall-crossing sheaf on Sθ at a point θ ∈ Sθ is
given by the stalk of the wall-crossing structure sheaf on Γ∗R at the point Y (θ), i.e.,(

WCSg,Y

)
θ

= (WCSg)Y (θ)

Thus, we see that if Y (θ) belongs to some wall of the second kind γ⊥, i.e., if Y (θ)(γ) =
0, then we can associate to it a “jump”: S(lγ) ∈ G such that

log S(lγ) ∈
⊕
γ′‖γ

gγ′

where S(lγ) is the automorphism of the torus Lie algebra associated to the ray

lγ = Z(γ) · R>0 ⊂ C∗ ∼= R2

which by the condition that Y (θ)(γ) = Im(e−iθZ(γ)) = 0, can also be written as

lγ = eiθ · R>0 ⊂∼= R2 (2.6.2)

Then, the components of log S(lγ) which belongs to gγ are deemed as a(γ) in the
stability data (Z, a(γ)). Apparently, this association is unique.

Conversely, given a stability data (Z, a(γ)) ∈ Stab (g), we can have the group element
g+,− ∈ G as defined in Lemma 2.4.3, then by the proposition 2.4.4, this determines
uniquely a section of WCSg, which after pulling back through the map Y , gives arise to
a section of WCSg,Y . This completes the proof.
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Figure 2.14: Stability data on g as WCS

From the above proof and the definition 2.5.4, we see that the walls in this case are
described as

W2
γ = γ⊥ := {θ ∈ Sθ : Y (θ)(γ) = Im(e−iθZ(γ)) = 0}

= {θ ∈ Sθ : θ = arg Z(γ)}

Consider a collection of walls in Sθ, namely θ1, · · · , θi, · · · , θn such that

θi = arg Z(γi) for all i

We view the circle Sθ as the unit circle in the plan R2, and identify each θi as the ray
passing through the origin in the direction specified by the angle θi, we note that this is
nothing but the ray lγi defined previously. Thus, given any loop σ circling around the
origin, the triviality of monodromy in this case states

�∏
i

S(lγi) = id

which is of course quite familiar to us. (c.f., proposition 2.2.1).

In order to recover Stab (g), the space of all stability conditions on g, we just need to

consider the WCS on the space B̂ := Sθ ×HomZ( Γ,C), endowed with a local system of
charge lattice Γ and a local system of Γ-graded Lie algebra g.

The map Y in this case is given by

Y : Sθ ×HomZ( Γ,C) −→ Γ∗R

(θ, Z) 7−→ Y (θ, Z)(γ) := Im(e−iθZ(γ)), ∀γ ∈ Γ\{0}

Proposition 2.6.2. A section of the sheaf WCSg,Y on the space B̂ is same as a family
of stability data on g.

Proof. If we fix Z ∈ HomZ( Γ,C), i.e., we consider the sub space BZ = Sθ×{Z} ⊂ B̂, then
by restricting the wall-crossing structure sheaf WCSg,Y to this subspace, it is reduced to
the situation considered in the proposition 2.6.1 above. Hence, a stability data can be
associated. By moving Z in HomZ( Γ,C) locally, we get a stability data for nearby central
charges. Since the circle Sθ is compact, we get a germ of universal family of stability data
with central charges in a neighborhood of Z.
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Example b): Continuous family of stability data recovered

In application, we usually use a complex manifold B to parametrize Stab (g), which
have already been discussed in details in previous sections. Here, we want to realize it
as the WCS on the space Bθ := B × Sθ. Again, we endow this complex manifold B with
a local system of charge lattice Γ and a local system of Γ-graded Lie algebra g. And
consider the following map

Y : B × Sθ −→ Γ∗R (2.6.3)

(b, θ) 7−→ Yθ(b)(γ) := Im(e−iθZb(γ)) ∀γ ∈ Γ\{0}

Figure 2.15: Continuous family of stability data on g

Assuming as before that the central charge function Zb depends holomorphically in b,
then we have the following

Proposition 2.6.3. A section of the wall-crossing sheaf WCSg,Y on the product space
Bθ is same as a WCS on the space B.

Proof. Fix b0 ∈ B in (2.6.3), and consider the corresponding WCS, we will get a stability
data on gb0 by proposition 2.6.1. As b varies locally near b0, the corresponding central
charges Zb also varies locally around Zb0 (since Z depends holomorphically on b). Thus
we can use proposition 2.6.2 to get a germ of universal family of stability data near b0.
But this is the same as a germ of universal family of WCS near b0. This finishes the proof
of the proposition.

Given a WCS σ on Bθ, which is a section of the corresponding wall-crossing sheaf,
then by the above proposition, we can associate to it a locally constant map

a : tot (Γ) −→ tot(g) (2.6.4)

(b, γ) 7−→ ab(γ) ∈ g
b,γ

where ab(γ) is the γ-component of the corresponding section ofWCSg,Y (see the proof
of proposition 2.6.1). We see that ab(γ) is non-trivial only if there exists some θ ∈ Sθ
such that

Yθ(b)(γ) = 0

Thus we define a subset in tot (Γ) as

B′ := {(b, γ) ∈ tot (Γ) : ∃ θ ∈ Sθ, Yθ(b)(γ) = 0} (2.6.5)

Then we see that a restricts to a map on B′, we know from before that this map
encodes the DT-invariants Ωb(γ).
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Remark 2.6.1. Since the map a : B′ → tot (g) is defined to depend only on the b-
component of Bθ, so we will later just call a WCS on Bθ as a wall-crossing structure on
B, with the role of the circle Sθ being understood implicitly.

Recall from the definition 2.5.4, given γ ∈ Γ, the wall of second kind associated to it
as

W2
γ := γ⊥ = {(b, θ) ∈ Bθ : Yθ(b)(γ) = 0}

=
{

(b, θ) ∈ Bθ : Im(e−iθZb(γ) = 0
}

= {(b, θ) ∈ Bθ : arg(Zb(γ)) = θ}
which is seen to be a hypersurface in Bθ—the pull back of the wall of second kind

in Γ∗R through the map Y . We can project this wall down to a hypersurface in B, also
denoted by W2

γ , i.e.

W2
γ = {b ∈ B : ∃ θ(fixed) s.t. arg(Zb(γ)) = θ} (2.6.6)

Remark 2.6.2. For a fixed point b ∈ B, and given any γ ∈ Γb, we can define the angle
θ = arg (Zb(γ)), then we see that Im(e−iθZb(γ)) = 0. From this, we can view the wall
above as the rotated wall of second kind W2

γ ⊂ Γ∗R defined before. In particularly, there
are at most countably many

γi ∈ Supp ab := {γi ∈ Γb\{0}, ab(γi) 6= 0} = Supp g
b

over a given point b ∈ B. Thus, we can associate to it a collection of rays lγi,b ⊂ R2 as
before, and call these the rays associated to b ∈ B, and denote this collection by rayb

By the above remark, we get a collection of rays in R2 parametrized by points b ∈ B.
From our discussion on KSWCF, we infer that the set rayb stays constant locally unless
b crosses the wall of first kind defined below.

Definition 2.6.1. Given two non-zero charges γ1, γ2 ∈ Γ, define the wall of first kind
associated to it as the following set

Wγ1,γ2 =
{
b ∈ B : Im

(
Zb(γ1) · Zb(γ2)

)
= 0
}

(2.6.7)

And the wall of first kind associted to γ ∈ Γ is then defined to be

W1
γ :=

⋃
γ=γ1+γ2

Wγ1,γ2 (2.6.8)

and these walls are locally finite hpersurfaces in B which hare locally a pull back of a
ZPL hypersurface in Γ∗R.

We know that as b crosses the wall, sayWγ1,γ2 , the order of the two rays lγ1 and lγ2 are
get swapped. Consequently the function ab(γ) becomes discontinuous at such b ∈ W1

γ ,
and its “jump” is governed by KSWCF (2.2.7), which can be recasted in the setting
concerned here as follows:

The point b ∈ Wγ1,γ2 , at which the set of rays rayb collapse into a single ray, can be
viewed as the intersection of countably many walls of second kind, namely

W2
mγ1+nγ2

for (m,n) ∈ Z≥0 × Z≥0 and m+ n > 0.
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Thus by considering a small short loop σ circling around the point b, KSWCF predicts
that the monodromy of the composite of the corresponding automorphisms along the loop
should be trivial, i.e.,

�∏
m/n↗

S(lmγ1+nγ2) = id

Or by using KS transformation notation, the above is equivalent to∏
m,n≥0;m/n↗

KΩb− (m,n)

(m,n)

∏
m,n≥0;m/n↘

K−Ωb+ (m,n)

(m,n) = id

and consequently, we get the KSWCF (2.2.7) in this situation:∏
m,n≥0;m/n↗

KΩb− (m,n)

(m,n) =
∏

m,n≥0;m/n↘

KΩb+ (m,n)

(m,n)

From the above KSWCF, we can deduce in principle the jumps of invariants Ωb(γ)
when b crosses the first kind wall W1

γ .
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Chapter 3

Attractor flows, complex integrable
systems and WCS

From the discussion of example b) in section 2.6. we see that the WCS on a topological
space B, (or by considering implicitly the product with the circle Sθ) enables us to study
the variation of stability data parametrized by a complex manifold B, i.e., by considering
family of stability data. As had been displayed in the last chapter, this construction gives
us a formalism to encode the DT-invariants Ωb(γ) for b ∈ B, as well as their “jumps”
when crossing the wall of the first kind W1

γ .

But the question still remains as how to construct these DT-invariants in the first
place. In this chapter, we will introduce necessary tools for dealing with this question.
Roughly speaking, we will consider certain flows on the manifold B, which for our pur-
poses, should be realized as the base manifold of some complex integrable system. The
combinatorial structures of the flow lines will give us an algorithm for computing the
invariants for various charges at various points of B. Consequently, we will produce by
this algorithm a WCS on B that encodes these invariants.

For those willing to know the physics motivation of the attractor flow, they are en-
couraged to consult the Appendix B for further information. Here, we will follow the
mathematical treatment of it as had been laid down in the foundational work [KS14] of
M.Kontsevich and Y.Soibelman.

We will begin this chapter by giving a detailed exposition of the complex integrable
system, then we will introduce the notion of (split) attractor flow and its connection to
the WCS.
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3.1 Geometry of complex integrable systems

In section 4 of [KS14], the concept of complex integrable systems was introduced and their
geometric properties were discussed. Here, we will give a more detailed review based on
the papers [B+09], [Bru],[Sep],[Fre99],[ACD02] as well as the first chapter of the book
[BF04].

3.1.1 Definition and preparation

Definition 3.1.1. A complex integrable system is a holomorphic surjective map
π : (X,ω2,0) → B with smooth fibers being holomorphic Lagrangian submanifolds. Here,
(X,ω2,0) is a holomorphic symplectic manifold of complex dimension 2n, and B is a
complex manifold of dimension n.

Denote by B0 ⊂ B the dense open subset over which the fibers of π being smooth,
and by Bsing := B − B0 the discriminant locus. Consider the fibration (still denoted by
π) over B0 by holomorphic Lagrangian submanifolds, i.e.,

π : (X0, ω2,0) −→ B0 (3.1.1)

In the following, we will discuss the geometry of the above complex integrable system
near the points of B0, while the geometry near the discriminant locus Bsing is much more
complicated and will be discussed later.

We make the assumption that the smooth fibres of π are compact, so that they are
actually holomorphic Lagrangian tori (will be proved later in section 3.1.2).

Figure 3.1: Complex integrable system as torus fibration

Symplectomorphism

To study the local geometry of the fibration π given by (3.1.1), we will consider certain
diffeomorphism of X0 induced by the differential one form on the base B0.
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Denote by Diff(X0) the group of diffeomorphism of X0, then its Lie algebra Diff(X0)
can be identified with the Lie algebra of vector fields on X0, denoted by V ect(X0). We
can use the symplectic two form to identify V ect(X0) with the space of differential one
form on X0, denoted by Ω1(X0), as follows:

V ect(X0)
'−→ Ω1(X0)

ξ 7−→ ιξ ω
2,0

where ιξ ω
2,0 denotes the interior product of the vector field ξ with the symplectic form

ω2,0. The isomorphism follows from the fact that the symplectic two form is non-
degenerate.

Recall that a symplectomorphism of X0 is given by a diffeomorphism φ : X0 → X0

such that it preserves the symplectic structure, i.e. φ∗(ω2,0) = ω2,0.

Suppose φ is such a symplectomorphism, with the associated vector field ξ, then the
condition that it is a symplectomorphism can be written as: Lξ ω

2,0 = 0, where Lξ is
the Lie derivative with respect to the vector field ξ. By the Cartan’s magic formula, we
have:

Lξ ω
2,0 = d(ιξω

2,0) + ιξ(dω
2,0) = d(ιξω

2,0) = 0

Thus, the corresponding one form ιξω
2,0 of φ is closed.

Denote by Symp(X0) ⊂ Diff(X0) the Lie algebra of symplectomorphism of X0, then
we see from the above computation that it can be identified with the set of closed differ-
ential one form on X0, i.e., Symp(X0) ' Z1(X0).

In particular, for a function f ∈ C∞(X2,0), we have the associated Hamiltonian vector
field ξf given as

ιξf ω
2,0 = df (3.1.2)

The diffeomorphism corresponding to the one form ιξf ω
2,0 is called Hamiltonian dif-

feomorphism, and denote the group formed by them by Ham(X0, ω2,0). Form the above
definition, we see that the corresponding Lie algebra Ham(X0, ω2,0) can be identified with
the set of exact one forms of X0, i.e.,

Ham(X0, ω2,0) ' B1(X0)

Consequently, H1
dR(X0), the first deRham cohomology of X0, parametrizes the set of

infinitesimal symplectomorphism of X0 modulo the action of infinitesimal Hamiltonian
deformation.
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Lie algebroids and Lie groupoids

We need the notion of Lie algebroid and the Lie groupoid to formalize the structures
that appears when studying the local geometry of complex integrable system to be dis-
cussed in the next section. Here, I will give a rather sketching review, for more details,
please see the references like [Rac04] and [MM03].

Definition 3.1.2. Let M be a smooth manifold, a Lie algebroid over M is a vector bundle
V → M such that the space Γ(V ) of smooth sections of V is endowed with the following
antisymmetric bi-linear bracket

[·, ·] : Γ(V )× Γ(V )→ Γ(V )

which satisfies the Jacobi-identity

[[α, β], γ] + [[β, γ], α] + [[γ, α], β] = 0

Moreover, we have the anchor map ρ : V → TM , which is a bundle map between V and
the tangent bundle TM . This map induces, at the level of sections, a homomorphism
(still denoted by ρ) ρ : Γ(V )→ Γ(TM) taht satisfies the following Leibniz rule:

[α, fβ] = f [α, β] + (ρ(α) · f)β

where f is any smooth function on M .

Lie algebroid generates the infinitesimal action on a manifold. More precisely, we have
the following definition (see [Mok96]).

Definition 3.1.3. Given a Lie algebroid (V, ρ) over M , the infinitesimal action of this
Lie algebroid on a manifold X is defined to be a smooth map φ : X → M , together with
a linear map µ : Γ(V )→ Γ(TX) such that

a) µ([X, Y ]) = [µ(X), µ(Y )], for X, Y ∈ Γ(V );

b) µ(fX) = (f ◦ φ)µ(X), for X ∈ Γ(V ), f ∈ C∞(M),

c) φ∗(µ(X)(x)) = ρ(X)(φ(x)), for X ∈ Γ(V ), x ∈ X.

We can easily generalize this definition to the case when X is given by a fibered
manifold p : E → M (the same base, we shall not give the definition for more general
base). We have the following definition (c.f [KM02])

Definition 3.1.4. Given a Lie algebroid (V, ρ) over M , the infinitesimal action of this
Lie algebroid along p : E →M is given by linear map µ : Γ(V )→ Γ(TE) such that

a) µ([X, Y ]) = [µ(X), µ(Y )], for X, Y ∈ Γ(V );

b) µ(fX) = (f ◦ p)µ(X), for X ∈ Γ(V ), f ∈ C∞(M),

c) For X ∈ Γ(V ), µ(X) is projectable to ρ(X).
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It is clear from the definition of the Lie algebroid that a Lie algebra is a Lie algebroid
over a point. Besides, the tangent bundle TM of a smooth manifold M is seen to be a Lie
algebroid by taking the bracket [·, ·] the usual Lie bracket on the space of vector fields,
and ρ the identity map. More interesting Lie-algebroids are given by Poisson manifolds.

Definition 3.1.5. A Poisson structure on a manifold M is given by an antisymmetric,
bi-linear map (called Poisson bracket):

{·, ·} : C∞(M)× C∞(M) −→ C∞(M)

which satisfies the Jacobi identity as well as the Leibniz rule, i.e,

{fg, h} = f{g, h}+ {f, h}g

A manifold equipped with a Poisson bracket is called a Poisson manifold. And a
smooth map between two Poisson manifolds is called a Poisson morphism if it pre-
serves the Poisson structures.

Note that any symplectic manifold (M,ω) give rises to a Poisson manifold (M, {·, ·})
with the Poisson bracket given as

{f, g} := ω−1(df, dg) = ω(ξf , ξg)

Indeed, by the Leibniz rule, we see that {·, h} is a derivation on C∞(M), i.e., there
exists vector field ζh such that ζh(f) = {f, h}. We call this vector field associated to h
the Hamiltonian vector field of h. We show that it actually coincide with ξh defined before.

{f, h} = ζh(f) = df(ζh) = ιξf ω(ζh) = ω(ξf , ξh)

From the last equality above, we infer that ζh = ξh. Thus, we we use the notation ξf
to denote the Hamiltonian vector field associated to the function f .

For the complex integrable system π : (X0, ω0)→ B0, by endowing B0 with the trivial
Poisson structure 0, we have the following:

Proposition 3.1.1. π : (X0, ω0) −→ (B0, 0) is a Poisson morphism.

The proof of this proposition can be found in [Vai12]. We now state the connection
between Poisson structure and Lie algebroid.

Proposition 3.1.2. A Poisson structure on M is the same as a Lie algebroid structure
on the cotangent bundle T ∗M →M .

Proof. (sketchy): Given a Poisson structure on M , the anchor map ρ : T ∗(M) → TM
is the natural one given by associating to a differential one form df the corresponding
Hamiltonian vector field ξf . Then the antisymmetric bi-linear bracket on Γ(T ∗) is defined
as

[df, dg] := d〈dg, ρ(df)〉
where 〈·, ·〉 denotes the natural pairing between the one form and vector field. The Jacobi
identity and the Leibniz rule can then be easily verified.
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Conversely, given a Lie algebroid structure ([·, ·], ρ) on T ∗M , one can associate the
Poisson bracket {·, ·} on C∞(M) as follows

{f, g} := 〈dg, ρ(df)〉 = ρ(df)g

Then the antisymmetry of the bracket, Leibniz rule and Jacobi identity can be verified
(details can be found in [Rac04]).

Roughly speaking, a Lie algebroid looks like Lie algebras in family.

Definition 3.1.6. A groupoid G consists of a set G0, called the set of objects; and G1,
the set of morphisms (arrows), equipped with the following maps

a) s, t : G1 ⇒ G0, called the source and target map respectively.

b) m : G1s ×t G1 → G1 (g, h) 7→ gh, called the multiplication map that satisfies s(gh) =
s(h), t(gh) = t(g), and (gh)k = g(hk), where G1s ×t G1 is defined to be the set {(g, h) ∈
G1 ×G1 : s(g) = t(h)}.

c) e : G0 → G1, called the identity section such that e(t(g))g = g = ge(s(g)).

d) i : G1 → G1, called the inverse section, and denote i(g) by g−1 such that g−1g =
e(s(g)), gg−1 = e(tg).

Definition 3.1.7. A Lie groupoid is given by a groupoid G such that G0 and G1 are
smooth manifold, and all group operations are smooth, besides, s and t are submersion.

Again, a Lie group is just a Lie groupoid over a single point. i.e. G0 = {pt}.

If a Lie group H acts on a manifold X, we can form the so called action groupoid
by viewing G0 as X and G1 as H × X. Then the source and target maps are given
respectively as

s(h, x) = h−1 · x, t(h, x) = x

and the multiplication is given as (h, x) · (k, h−1 · x) = (hk, x), while the inverse and
identity maps are given respectively by

i(g, x) = (g−1, g−1 · x), e(x) = (id, x).

Definition 3.1.8. A left action of a Lie groupoid G on a manifold X consists of the
following

a) a smooth map µ : X → G0,

b) a smooth map G1s ×µ X → X, (g, x) 7→ g · x where

G1s ×µ X := {(g, x) : s(g) = µ(x)}

such that the following conditions are satisfied

1) µ(g · x) = t(g), where (g, x) ∈ G1s ×µ X and

2) h · (g · x) = (h · g) · x, when s(h) = t(g).
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Since for a Lie group, their is an associated Lie algebra, similarly, for a Lie groupoid,
there is a corresponding Lie algebroid. For a Lie groupoid G, we now sketch how to as-
sociate it with a Lie algebroid, for the detailed construction, see the section 1.4 of [CF11].

As in the case of constructing the Lie algebra from the corresponding Lie group, we
need to consider Left invariant vector fields on G. To this end, we need to construct the
tangent space at unit of the group, but in our case, we have one unit for each point in
G0, so we will get a family of tangent spaces parametrized by G0. Besides, since the left
multiplication is only defined on the fiber of the target map t : G1 → G0. Thus, we need
to look at the vector fields that is tangent to the fiber of t, i.e., we consider the space

T tG1 := Ker(dt) ⊂ TG1

which is a vector bundle on G1. Under the identity map e : G0 → G1, G0 can be
identified with its image in G1. Denote by V := Lie(G1) the restriction of the bundle
T tG1 on G0, we claim that the vector bundle V carries the desired Lie algebroid structure
associted to the Lie groupoid G.

To see this, we show that the space Γ(V ) of sections of the bundle V can be identified
with the space of Left invariant vector fields on G1, denoted by V ecttinv(G1), which is
defined as

V ecttinv(G1) := {X ∈ Γ(T t(G1)) : Xgh = Lg(Xh), ∀(g, h) ∈ G1s ×t G1}

where Lg denotes the differential of left multiplication by g, i.e., Lg : T thG1 → T tghG1.
Then, given α ∈ Γ(V ), we associate to it a vector field α̃g := Lg(αs(g)), which is clearly
left invariant. Conversely, given a left invariant vector field X on G1, it is determined by
its valued at points in G0, i.e., for a point g : x→ y in G1, we have Xg = Lg(Xx). Define
α := X|G0 ∈ Γ(v), then X = α̃.

In this way, we can establish the identification: Γ(V )
'−→ V ecttinv(G1), then the Lie

bracket on Γ(V ) is the one induced by the above identification from that on the space of
invariant vector fields, which can be easily seen to obey the Jacobi identity. The anchor
map ρ : Γ(V ) −→ TG0, in our case is defined to be the differential of the source map s
redistricted to V , i.e., ρ = ds|V , which can be verified to be obey the Lebniz rule.

Before closing this subsection, let us recall the definition of a torsor.

Definition 3.1.9. For a group G, a G-torsor (or a torsor over G), is a principal ho-
mogeneous G-space, i.e., a space P , together with an free and transitive G-action.

Remark 3.1.1. Each choice of a point p ∈ P gives rise to an isomorphism between G
and P , i.e., G is being identified with the orbit {G · p} of p. Thus, this isomorphism
is not canonical. Morally speaking, a torsor is like a usual group that forges its identity
element, any choice of a point p ∈ P serves as the identity, which makes it an actual
group.

Remark 3.1.2. We can easily generalize the above notion to the case when G is a Lie
groupoid due to that we have good notion of the action of Lie groupoid on a space (see
the definition 3.1.6).
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3.1.2 Local geometry near regular fibres and classification

Let us go back to the study of the complex integrable system near its regular fibers given
by π : (X0, ω2,0) → B0. The moral is that all that had been encoded in the geometry
of the base manifold B0, as we will see in the next section when discussion the notion of
special geometry.

As is well known, the cotangent bundle T ∗B0 of the base of the integrable system is
naturally a symplectic manifold, endowed with the canonical symplectic form ωcan. We
can endow the base B0 with the trivial Poisson structure, and consider by proposition
3.1.2 the induced Lie algebroid structure on the cotangent bundle

pr : (T ∗B0, ωcan) −→ B0

In this case, since the underlying Poisson structure is trivial, each fiber of the pr above
can be viewed as an trivial abelian Lie algebra.

The ideal to study the local geometry of π is that the Lie algegbroid T ∗B0 generate
an infinitesimal diffeomorphism on X0, and under certain assumption (to be discussed
momentarily), can be integrated into a Lie groupoid action on X0. The symmetry coming
from this action enables us to find local model of the complex integrable system π that
resembles to the cotangent bundle pr. In other words, we will show that pr is a good
local model for π near regular fibers. The exposition in this section is mainly based on
the papers [Sep] and [Bru]. We assume in the following the the fibers of π are connected
and π is a surjective submersion.

Let b ∈ B0, and choose an open neighbourhood U ⊂ B0 around it, then we consider a
differential one form α defined locally on U , i.e., a local section of pr : T ∗B0 → B0 near
b ∈ U . As in the definition of Hamiltonian vector field of a function (see definition 3.1.2),
we can associate to α a vector field ξα as follows:

ιξα ωcan = π∗α (3.1.3)

This gives rise to the following map at the level of sections:

µ : Γ(T ∗U) −→ Γ(TX0|U), α 7−→ ξα (3.1.4)

In application, we usually consider the case of symplectomorphism of π induced from
the one form α through the map µ. By the discussion in section 3.1.1, wee see that this
corresponds to the case when the one form α is being closed.

Roughly speaking, this means that given b ∈ U , and for any point x ∈ π−1(b), at the
level of stalk, we get an infinitesimal action of T ∗b B0 (viwed as an abelian Lie algebra) on
X0. By utilizing the concept of the action of Lie algebroid (see definition 3.1.4), this can
be formulated more elegantly as follows:

Proposition 3.1.3. Suppose that pr admits a global section, i.e., we can have globally
defined one form on B0, then the map µ defined above can be extended to B0 to give rise to
an action of the Lie algebroid pr : T ∗B0 → B0 along the fibred map π : X0 → B0, where B0

is endowed with the trivial Poisson structure and the anchor map for the Lie algebroid is
given by the isomorphism ρ : T ∗B0 '−→ TB0 induced by the canonical symplectic structure
ωcan on the cotangent bundle.
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Proof. We need to verify the condition a), b) and c) in the definition 3.1.4 of the Lie
algebroid action. As the Poisson structure on B0 is trivial, the bracket on Γ(T ∗B0)
vanishes identically, thus the condition a) of the definition becomes

[ξα, ξβ] = 0 ∀α, β ∈ Γ(T ∗B0) (3.1.5)

where the bracket above is the usual one actiong on vector fields.

Condition b) of the definition specializes in our case into the following

ξfα = π∗(f) ξα, ∀α ∈ Γ(T ∗B0), f ∈ C∞(B0) (3.1.6)

while the condition c) becomes the following

∀α ∈ Γ(T ∗B0) ξα ∈ Ker π∗ (3.1.7)

Now we verify these conditions by performing local computations.

By the definition of the Hamiltonian vector field (3.1.3), the condition (3.1.6) follows
straightforwardly. Near a point b ∈ U , we give the local coordinate (q1, · · · , qn) : U −→
Cn. Write α =

∑n
i=1 αi dq

i, and β =
∑n

j=1 βj dq
j, we first show that ξα ∈ Ker π∗, i.e., ξα

is a vertical vector field. Since

ξα =
n∑
i=1

π∗(αi) ξdqi =
n∑
i=1

π∗(αi) ξqi

we just need to check the condition for ξqi . Since qi are is function on B0, it is constant
along the fiber of π, thus we can consider it as the function π ◦ qi. In particularly, for
and vertical vector field η ∈ Ker π∗, we have: η(π ◦ qi) = 0, but

η(π ◦ qi) = π∗(dqi)(η) = ιξqi ωcan(η) = ωcan(ξqi , η) = 0

Since this holds for all η ∈ Ker π∗, wee see that ξqi ∈ (Ker π∗)
⊥, where “ ⊥ ” denotes

the symplectic orthogonal with the canonical symplectic form ωcan. As π is a Lagrangian
fibration, we have that (Ker π∗)

⊥ = (Ker π∗), the desired result thus follows. Now we
prove (3.1.5):

[ξα, ξβ] =

[
n∑
i=1

π∗(αi) ξqi ,
n∑
j=1

π∗(βj) ξqj

]

=
n∑

i,j=1

(
(π∗(αi))(π

∗(βj))[ξqi , ξqj ] + (π∗(αi))ξqi(π
∗(βj))ξqj − (π∗(βj))ξqj(π

∗(αj))ξqi
)

=
n∑

i,j=1

(π∗(αi))(π
∗(βj))[ξqi , ξqj ] =

n∑
i,j=1

(π∗(αi))(π
∗(βj))ξ{qi,qj}.

The last identity holds since each qj is constant along the fiber, and ξqi belongs to the
vertical tangent vector space, thus

0 = ξqi(q
j) = dqj(ξqi) = ιξ

qj
ωcan(ξqi) = ωcan(ξqi , ξqj) = {qi, qj}.
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Now we “integrate” the above Lie algebroid action into a Lie groupoid action along π,
for this we make a further assumption that for any compactly supported one form α on
B0, the associated vector field ξα is complete. Under the above assumption, we consider
the flow associated to the vector field ξα as

φtα : π−1(U)→ π−1(U)

Since this vector field is vertical, the flow preserves the fiber π−1(b) for every b ∈ U . In
order to see this more clearly, let us choose any compactly supported on form α defined
over U such that α(b) = αb, then the induced diffeomorphism of the fiber is given as

φtαb : π−1(b)→ π−1(b) (3.1.8)

We can formulate more concisely by using the language of Lie groupoid (see definition
3.1.7) and its action on manifold (see definition 3.1.8).

The Lie groupoid to be considered is given by T ∗B0 ⇒ B0, with the source and target
maps being identical and are given by the projection map pr. By viewing the fiber as
vector space, the multiplication map is given by the fiber-wise addition of co-vectors. The
unit elements are realized by taking zero section of pr, while the inversion is given by
taking the negatives of covectors.

Proposition 3.1.4. The action of Lie algebroid pr : T ∗B0 → B0 along the fibred map π :
(X0, ω2,0)→ B0 as in proposition 3.1.3 “integrates” into a Lie groupoid pr : T ∗B0 ⇒ B0

action along π : (X0, ω2,0)→ B0 .

Proof. Consider the fibred product

T ∗B0
pr ×π X0 := {(α, x) ∈ T ∗B0 ×X0 : pr(α) = π(x)}

Then the desired Lie groupoid action (c.f., definition 3.1.8) is given by

µ : T ∗B0
pr ×π X0 → X0 (α, x) 7→ φ1

α(x) (3.1.9)

where φ1
α is the diffeomorphism induced by the time one flow of the vector field ξα

(see equation (3.1.4)).

Remark 3.1.3. As an abelian Lie group, T ∗b B0 is isomorphic to Cn ∼= R2n.

We will use the action µ (see 3.1.9) to analyze the local structure of the integrable
system π. First, notice that as the symplectic form ωcan is non degenerate, the map
in (3.1.4) is subjective, from which we infer that the action µ is transitive along the
fiber π−1(b) for any b ∈ B0. Next, we compute the isotropy subgroup of the action
φ1
α : π−1(b) → π−1(b). For x, y ∈ π−1(b), the corresponding isotropy subgroups Hx, Hy

are conjugate to each other, but as the groups in question are abelian (see the remark
above), they can be canonically identified. Thus, the isotropy subgroup at b ∈ B′ can be
computed as

Hb = {αb ∈ T ∗b B0 : ∃x ∈ π−1(b), s.t, φ1
αb

(x) = x} (3.1.10)

It is clear that dimT ∗b B0 = dimπ−1(b), ∀ b ∈ B0, consequently dimHb = 0.
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As a discrete subgroup in T ∗b B0 ∼= Cn ∼= R2n, Hb must be isomorphic to Zk for some
k ≤ 2n. In the following, we will use the notation Λb to denote this lattice, and call it
the period lattice. Thus, the fiber π−1(b) is isomorphic to

T ∗b B0/Λb
∼= Cn/Zk ∼= R2n/Zk

The map π is assumed to be proper, so the fiber π−1(b) is a compact Lagrangian tori
T2n. In this case, k = 2n. This is the case to be considered now. By using the notion of
torsor (see definition 3.1.9), we can say that π−1(b) is a torsor over the tori T2n. We can
generalize this to the global case. To this end, define

Λ :=
⊔
b∈B0

Λb ⊂ T ∗B0

which is called the period net associated to the complex integrable system π : X0 → B0.
Following remark 3.1.1, we say that π is a torsor over the Lie groupoid p̂r : T ∗B0/Λ ⇒
B0 (with the Lie groupoid structure induced from that on pr : T ∗B0 ⇒ B0), which is
topologically a torus bundle over B0. Indeed, the Lie groupoid action is the one induced
from (3.1.9):

µ̂ : T ∗B0/Λ p̂r ×π X0 → X0 ([α], x) 7→ φ1
α(x) (3.1.11)

where T ∗B0/Λ p̂r ×π X0 −→ X0 is the fiber product defined by

T ∗B0/Λp̂r ×π X0 :=
{

([α], x) ∈ T ∗B0 ×X0 : p̂r([α]) = π(x)
}

Here [α] denotes its image in the quotient.

Lemma 3.1.5. The Lagrangian sections of pr : T ∗B0 → B0 correspond to the closed on
forms on B0.

Proof. Denote the standard coordinate system on T ∗B0 by (p1, · · · , pn, q1, · · · , qn). In
these coordinates, the canonical symplectic form can be written as

ωcan =
n∑
i=1

dpi ∧ dqi.

Then for a section η =
∑n

i=1 ηidq
i of pr, the restriction of ωcan on η is given by

ωcan|η =
n∑
i=1

dηi ∧ dqi = dη

thus the Lagrangian condition is equivalent to the closedness of η.

Proposition 3.1.6. The period net Λ is a Lagrangian submanifold of T ∗B0.

Proof. By the defining property of Λ, we see that it is an integral lattice locally spanned
by the locally closed one forms αb, and consequently, by the above lemma, we conclude
that Λ corresponds to Lagrangian sections.

A local section γ of pr : T ∗B0 → B0 induces a transformation along the fiber of pr by
translation, i.e.,

T ∗b B0 → T ∗b B0, αb 7→ αb + γb (3.1.12)
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Lemma 3.1.7. The above action along the fibers of pr given by translation is symplectic
if and only if the section γ is Lagrangian.

Proof. We see that ωcan is preserved by the action (3.1.1) if and only if the one form γ is
closed, which by lemma 3.1.5 corresponds to a Lagrangian section.

Proposition 3.1.8. The standard symplectic structure ωcan on T ∗B0 induces a symplectic
structure on the Lagrangian tori bundle T ∗B0/Λ.

Proof. By the definition of Λ (see 3.1.10), wee see that T ∗B0 is invariant under the
action of the period net Λ, thus by Lemma 3.1.7, this action is trivially symplectic, and
consequently the canonical symplectic structure ωcan is preserved by the action of Λ. So
ωcan descends to the quotient T ∗B0/Λ.

The local structure of the complex integrable system π : (X0, ω2,0) → B0 can be
summarized into the following proposition, which roughly says that π looks locally like
(actually diffeomorphic to) the p̂r : T ∗B0/Λ→ B0. Whether it is globally of such form or
not depends on further topological information to be discussed momentarily.

Given a local section σ of the integrable system π, i.e., σ : U → π−1(U) for U ⊂ B0.
Then it induces the following map

Ψσ : T ∗U −→ π−1(U) α 7−→ φ1
α (σ ◦ pr(α)) (3.1.13)

It further induces the following map at the quotient level:

Ψ̂σ : T ∗U/Λ|U −→ π−1(U) [α] 7−→ φ1
α (σ ◦ p̂r([α])) (3.1.14)

Proposition 3.1.9. The integrable system π can be locally trivialized by choosing local
sections σ : U → X0 over open U ⊂ B0, while the trivialization is given by Ψ̂σ defined
above.

Proof. We need to show that Ψ̂σ is a local bijective diffeomorphism, which is amount to
showing that the map Ψσ is a local diffeomorphism, since the bijectivity would follow
from the dimension consideration.

As dimT ∗U = dimπ−1(U), to show that Ψσ is a diffeomorphism, by the implicit
function theorem, we need to show that it is injective, i.e.,

KerDΨσ(α) 6= 0, ∀α ∈ T ∗U

Consider now the map µ in (3.1.4), which can be viewed as the derivative of the diffeo-
morphism φt. Its image is the space of vertical vector fields for π, i.e., Imµ = Ker π∗.
Thus DΨσ(α)(X) = 0 if and only if X = 0 were X ∈ T vert

α T ∗U , i.e., the vector field
that is tangent to the fiber of pr. Thus, if we assume that there exists X ∈ Tα T

∗U
such that DΨσ(α)(X) = 0, then, it must not belong to the vertical subspace T vert

α T ∗U .
Consequently,

Dpr(α)(X) = pr∗(α)(X) 6= 0

As the local section σ is a submersion, Dσ ◦Dpr(α)(X) 6= 0. Then we have that

DΨσ(α)(X) = Dφ1
α ◦Dσ ◦Dpr(α)(X) = µ ◦Dpr(α)(X) 6= 0

as X does not belong to T vertα T ∗U . This contradicts to our assumption. We conclude
that KerDΨσ(α) 6= 0.
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Invariants and classifications

By the proposition 3.1.9, we see that the complex integrable system π near regular
points looks like a cotangent bundle, and this has been realized through the trivializa-
tion map Ψ̂σ (see 3.1.14) induced by Local section σ of π. Thus, in order to get global
information, i.e., the invariants, we need to glue these local pieces together.

Consider two open subsets Ui, Uj ⊂ B0 near the regular point b ∈ B0 with non-
empty overlapping Uij := Ui ∩ Uj, together with the local sections defined over them,

i.e., σi : U → π−1(Ui). Then we have the associated trivialization Ψ̂σi , and over the
intersection Uij, and the following transition map

Ψ̂−1
σj
◦ Ψ̂σi : T ∗b Uij/Λ|Uij −→ T ∗b Uij/Λ|Uij

Suppose α ∈ Λb, i.e., it represents the zero element in TbUij/Λ|ij, then by the formula

(3.1.13), we see that under the above transitional map, it becomes the section Ψ̂−1
σj (σi ◦

p̂r(α)). By the transitivity of the Lie groupoid action φ1 as had been noted after remark
3.1.3, we see that there exists unique section µji of pr : T ∗b Uij/Λ|Uij → Uij such that
φ1
µji

(σj) = σi.

Lemma 3.1.10. The transition map acts on [α] ∈ T ∗b Uij/Λ|Uij in the following way

Ψ̂−1
σj
◦ Ψ̂σi([α]) = [α] + Ψ̂−1

σj
(σi ◦ p̂r)([α])

Proof. By the formula (3.1.12), we see that under the transition map, α gets mapped to
α + µij. Besides, we have that

Ψ̂−1
σj
◦ Ψ̂σi([µij]) = Ψ̂−1

σj
◦ φ1

µij
(σi) = Ψ̂−1

σj
(σi),

from which the desired identity follows.

Topological classification

From the above discussion, we see that µij : Uij → T (Uij)/Λ|ij defines a Čech 1-
cocycle for the cohomology of B0 with coefficients in the sheaf C∞(T ∗B0/Λ) of smooth
sections of pr : T ∗B0/Λ→ B0, i.e. µij s give rise to a cohomology class

µ ∈ H1(B0, C∞(T ∗B0/Λ))

Then the class µ is the obstruction for π : (X0, ω2,0) → B0 to be globally diffeomor-
phic to the reference integrable system pr : T ∗B0 → B0. The obstruction is measured by
the so- called Chern class to be defined below.

Denote by C∞(Λ) the sheaf of smooth sections of Λ −→ B0, then we have the following
short exact sequence

0 −→ C∞(Λ) −→ C∞(T ∗B0) −→ C∞(T ∗B0/Λ) −→ 0

from which we have the induced long exact sequence at the cohomology level
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· · · −→ H1(B0, C∞(Λ)) −→ H1(B0, C∞(T ∗B0)) −→ H1(B0, C∞(T ∗B0/Λ))

δ−→ H2(B0, C∞(Λ)) −→ H2(B0, C∞(T ∗B0)) −→ · · ·

As C∞(T ∗B0) is a fine sheaf, H i(B0, C∞(T ∗B0)) = 0 for i ≥ 1, we have in particular
the following isomorphism

δ : H1(B0, C∞(T ∗B0/Λ))
∼=−→ H2(B0, C∞(Λ))

Define the Chern class of the complex integrable system π to be

η := δ(µ)

Thus, we see that η = 0 if and only if π is diffeomorphic fibre-wisely to pr, which is
further equivalent to that π admits a global (smooth) section.

Symplectic classification

The trivialization map Ψ̂σ is only a diffeomorphism (see proposition 3.1.9). If it is
also a symplectomorphism, then the classification scheme in the smooth setting would
yield a symplectic classification as well. Thus, we need to discuss the conditions for the
trivialization maps to be symplectomorphism.

Proposition 3.1.11. The trivialization Ψ̂σ is a symplectomorphism if and only if the
local section σ : U → π−1(U) is a Lagrangian.

Proof. By proposition 3.1.9, Ψ̂σ is a local diffeomorphism from T ∗(Uij)/Λ|Uij to π−1(Uij),
so it is sufficient to check the condition for the cotangent bundle.

Given a section α =
∑

i αidq
i, by (3.1.12), we see that it acts on β =

∑
i βi dq

i by

βi 7→ βi + αi

where we have endowed T ∗Uij with the standard coordinates: {qi, pi}, so that the canon-
ical symplectic form can be written as

ωcan =
∑
i

dpi ∧ dqi

Then we see that under the action, the symplectic form transforms according to

ωcan =
∑
i

dpi ∧ dqi 7−→
∑
i

dpi ∧ dqi +
∑
i

dαi ∧ dqi

from which we see that ωcan is being preserved if and only if dα = 0. However, lemma
3.1.5 tells us that the closed one form corresponds to the Lagrangian section.

Denote by L(M) the sheaf of Lagrangian sections of M → B0, then as in the smooth
case, we have the following short exact sequence

0→ L(Λ) −→ L(T ∗B0) −→ L(T ∗B0/Λ) −→ 0
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from which the following long exact sequence being induced

· · · −→ H1(B0,L(Λ)) −→ H1(B0,L(T ∗B0)) −→ H1(B0,L(T ∗B0/Λ))

δ−→ H2(B0,L(Λ)) −→ H2(B0,L(T ∗B0)) −→ · · ·

Again, since the sheaf L(T ∗B0) is fine, we have the following isomorphism

δ : H1(B0,L(T ∗B0/Λ))
∼=−→ H2(B0,L(Λ))

By proposition 3.1.11, we have that

H1(B0,L(T ∗B0/Λ)) ∼= H1(B0, Z1(T ∗B0/Λ)

where Z1(T ∗B0/Λ) is the sheaf of closed one forms on T ∗B0/Λ.

As in the smooth case, a cohomology class µ ∈ H1(B0, Z1(T ∗B0/Λ) is associated to
π, which is called the Lagrangian Chern class of π. It is a symplectic invariant of the
complex integrable system π.

And the Chern class η of π is defined to be the image δ(µ). It is the obstruction
for π : (X0, ω2,0) → B0 to be symplectomorphic fibre-wisely to the reference integrable
system pr : T ∗B0 → B0, which is equivalent to the existence of a global Lagrangian
section of π.
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3.1.3 Action-angle coordinates

In this subsection, let us endow the complex integrable system π : (X0, ω2,0)→ B0 with
the so-called action-angle coordinates. We first view the integrable system π as the real
one by considering on X0 the real symplectic form given by ω := Re(ω2,0). The following
exposition is based on the book[BF04].

The period net Λ ⊂ T ∗B0 is a local system of lattice over B0, with the fiber at b ∈ B0

being Λb
∼= Z2n. Near b ∈ B0, we choose an open neighbourhood U ⊂ B0 so small such

that it is simply connected, i.e., π1(U) = 0. Then we can choose a local section α of
Λ → U , that is, a set of closed one forms (α1, · · · , α2n), such that (α1(b), · · · , α2n(b))
form a Z-basis of Λb, i.e., a Z-basis for the first homology group:

H1(π−1(b),Z) ∼= H1(T ∗b /Λb,Z) ∼= Λb
∼= Z2n. (3.1.15)

As U is simply connected, these one forms are locally exact, i.e. there exists local
coordinate functions

(u1, · · · , u2n) : U −→ R2n

such that αi = dui. Since these coordinate functions are constant along the fiber of π,
we can view them as coordinates on X0,i.e., ui ◦ π (we still denote these by ui).

Lemma 3.1.12. The coordinate functions ui are in involution, i.e.,

{ui, uj} = 0

Proof. See the last line in the proof of the proposition 3.1.3.

We denote the Hamiltonian vector field associated to dui by ξui . They are linearly
independent and generate the space of vertical vector fields Ker π∗.

We know that the fiber π−1(b) is a tori T2n = T ∗b U/Λb
∼= Cn/Z2n.

Fix a reference point x ∈ π−1(b). Since the action of T ∗b U
∼= R2n on the fiber π−1(b)

is transitive, for any point y ∈ π−1(b), there exists

α =
2n∑
i=1

yi α
i ∈ T ∗b U

for (y1, · · · , y2n) ∈ R2n, such that φ1
α(x) = y. Then we can define the angle coordinates

on the tori T2n as follows:

φi(y) := yi (modZ), i = 1, · · · , 2n. (3.1.16)

Remark 3.1.4. For the reference point x, there exists α =
∑2n

i=1 ki α
i ∈ Λb for (k1, · · · , k2n) ∈

Z2n such that φ1
α = x, then we see from the above definition that the angle coordinates

for x is (0, · · · , 0).

Together with (u1, · · · , u2n) on the base, (u1, · · · , u2n, φ1, · · · , φ2n) gives a local coor-
dinate system on π : X0 → B0.
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Next, we shall find more canonical form of the base coordinates so that the (real)
symplectic form on X0 can be written in the form similar to that on the cotangent
bundle. The vector fields ∂

∂φi
generated by angle coordinates are vertical fields and can

be written in terms of {ξui} as

∂

∂φi
=

2n∑
k=1

cik ξuk

Denote by ω := Re(ω2,0) the real symplectic form on X0, and it can be expressed as

ω =
∑
i,j

c̃ij du
i ∧ dφj +

∑
i,j

aij dφi ∧ dφj +
∑
i,j

bij du
i ∧ duj

As the fiber T2n
b is Lagrangian, the second term in the above expression for ω vanishes,

consequently we have that

ω =
∑
i,j

c̃ij du
i ∧ dφj +

∑
i,j

bij du
i ∧ duj (3.1.17)

Lemma 3.1.13. cij = c̃ij.

Proof.

c̃ij = ω(
∂

∂ui
,
∂

∂φj
) = ω

(
∂

∂ui
,
∑
k

cjk ξuk

)
=
∑
k

ckj ω

(
∂

∂ui
, ξuk

)

=
∑
k

ckj
(
iξ
uk
ω
)( ∂

∂ui

)
=
∑
k

ckj du
k

(
∂

∂ui

)

=
∑
k,l

ckj
∂uk

∂ul
dul
(
∂

∂ui

)
= cij

Lemma 3.1.14. The coefficients bij does not depend on the coordinates φi.

Proof. dω = 0 implies:
∂bij
∂φk

=
∂ckj
∂ui
− ∂cki
∂uj

The right hand side does not depend on the angle coordinates as cij does not. Now
suppose that bij depends on φi, then it must be periodic, thus the right hand side would
depend on φi, which is a contradiction.

Now write ωi =
∑

j cij du
i and β =

∑
i,j bij du

i ∧ duj, they are forms on the base

manifold B0, then the formula (3.1.17) can be rewritten as

ω =
∑
i

ωi ∧ dφi + β (3.1.18)

Lemma 3.1.15. The forms ωi and β are closed.

Proof. dω =
∑

i dωi ∧ dφi + dβ = 0, thus dβ = −
∑

i dωi ∧ dφi. As both dωi and dβ are
forms depending on ui, the above identity between forms is possible only if both dωi and
dβ vanish.
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Thus, near b ∈ U , from our assumption that π1(U) = 0, by using the Poincaré lemma,
we see that there exists a set of functions I i and one form η defined locally near b such
that ωi = dI i for i = 1, · · · , 2n, and β = dη. Define the action one form α by

α :=
∑
i

I i dφi + η (3.1.19)

Then it is clear that dα = ω. We claim that (I1, · · · , I2n) can serve as local coordinates
near b ∈ U , called the action coordinates.

Lemma 3.1.16. The set of functions I i = I i(u1, · · · , u2n) are functionally independent.

Proof. The matrix representation Ω of the symplectic form ω in (u1, · · · , u2n, φ1, · · · , φ2n)
is given by (

0 cij
−cij bij

)
where by definition

cij =
∂I i

∂uj

from which we see that
detΩ = (detC)2 6= 0

Consequently, the Jacobian of the transformation

I i(u1, · · · , u2n) = det (C) 6= 0

Write the one form η as η =
∑

i gidI
i, for functions gi depending on I i, i = 1, · · · , 2n.

Then define the new set of angle coordinates (which corresponds to a new choice of zero
section of the affine tori T2n) by

θi := φi − gi(I1, · · · , I2n), i = 1, · · · , 2n. (3.1.20)

Definition 3.1.10. The coordinate system (I1, · · · , I2n, θ1, · · · , θ2n) constructed above is
called the action-angle coordinates for the complex integrable system π : X0 → B0.

Proposition 3.1.17. In the action-angle coordinates, the symplectic form ω can be writ-
ten in the canonical form as

ω =
∑
i

dI i ∧ dθi (3.1.21)

Proof. By the formula (3.1.19), we compute as below:

ω = dα =
∑
i

dI i ∧ dφi + dη =
∑
i

dI i ∧ (dθi + dgi) +
∑
i

dgi ∧ dI i

=
∑
i

dI i ∧ dθi +
∑
i

dI i ∧ dgi −
∑
i

dI i ∧ dgi =
∑
i

dI i ∧ dθi
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Remark 3.1.5. We can define a canonical one form

αcan :=
∑
i

I idθi

It can be viewed as the analogy of Liouville one form. It differs from α defined in (3.1.19)
by an exact one form. Indeed, we have that α = αcan + d(I igi). Thus, they represent the
same class in the de Rham cohomology group H1

dR(B0,R) of the base manifold B0.

Remark 3.1.6. In terms of action-angle coordinate system, the fibration

π : (X0, ω) −→ B0

is given by the projection:

π : (I1, · · · , I2n, θ1, · · · , θ2n) 7−→ (I1, · · · , I2n).

Actually, this projection can be viewed as the moment map for the action of of the affine
tori (viewed as a torus Lie group) T2n = T ∗b B0/Λb on the fiber π−1(b).

Lemma 3.1.18. For b ∈ B0, the first homology group H1(π−1(b),Z) can be identified
with the period lattice Λb.

Proof. By the isomorphism (3.1.15), Λb
∼= H1(π−1(b),Z), which is isomorphic toH1(π−1(b),Z).

More explicitly, the isomorphism can be realized as :

λ : H1(π−1(b),Z) −→ Λb γ 7−→ λγ (3.1.22)

where λγ is the one form defined through:

λγ(v) :=

∮
γ

ιṽ ω (3.1.23)

where v ∈ TbB0, and ṽ is its lifting to TX0.

By using the action-angle coordinates, we see that Λb = SpanZ {dI1, · · · , dI2n},
then under the above identification (3.1.22), there are corresponding basis elements
{γ1, · · · , γ2n} for the lattice H1(π−1(b),Z).

Lemma 3.1.19. The one cycles γi above satisfy the relation∮
γi

dθj = δij (3.1.24)

where δij denotes the Kronecker symbol, and θis the angle coordinates.

Proof. By definition, γi is the one cycle dual to the one form dI i, thus under the iso-
morphism (3.1.22), we have that λγi = dI i. Consequently from the formula (3.1.23), one
compute as follows:

δij = dI i(∂Ij) = λγi(∂Ij) =

∮
γi

ι∂̃Ii
ω =

∮
γi

ι∂̃Ii

(∑
k

dIk ∧ dθk

)
=

∮
γi

dθi.
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Lemma 3.1.20. The action coordinate I i can be written as

I i =

∮
γi

αcan (3.1.25)

where αcan =
∑

i I
idθi is the canonical action one form defined in the remark 3.1.5.

Proof. By (3.1.24), we see that∮
γi

αcan =

∮
γi

∑
k

Ikdθk =
∑
k

Ikδik = I i

Remark 3.1.7. By remark 3.1.5, we know that the action one form α as defined in
(3.1.19) differs from αcan by an exact one form, thus the action coordinate I i can also be
written as

I i =

∮
γi

α (3.1.26)

More generally, the ambiguity of the action one form tells us that the action coordi-
nates are defined only up to an additive constant.

Indeed, suppose α and α′ are two action forms, i.e. dα = dα′ = ω, then we can write
α = α′ + β such that dβ = 0, but then we have

I i′ =

∮
γi

α′ =

∮
γi

(α + β) =

∮
γi

α +

∮
γi

β = I i +

∮
γi

β

Definition 3.1.11. We have a local system of lattice Γ over B0, with its “stalk” Γb at
b ∈ B0 being the first homology group H1(π−1(b),Z). This lattice will be called the charge
lattice.

Actually, we see from the above discussion that the action coordinates {I i} extends
to a map from the local system of charge lattice Γ to R. Indeed, the map I : Γ → R is
defined through

I(γ) =

∮
γ

α (3.1.27)

which is easily seen to be an abelian group homomorphism as the integration is addi-
tive in its domain. In particularly, we have that I i = I(γi), and for arbitrary

γ =
∑
i

ki γi ∈ H1(π−1(b),Z) = Γb

we have that I(γ) =
∑

i ki I
i.

Remark 3.1.8. We will show in the next subsection that the natural analogy of the
functional I above in the complex case will be the central charge function of a complex
integrable system.
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3.1.4 Holomorphic coordinates and Central charge

Motivated by the construction of action-angle coordinate system as in the last subsection,
we want to find its complex analogy. This section is based largely on the papers [LTY14]
and [Lin14].

Let us consider the complex integrable system π : (X0, ω2,0) → B0. Similar to the
formula (3.1.23), by choosing a basis {γ1, · · · , γ2n} for the local system of lattice Γ near
b ∈ B0, we can define the following set of holomorphic one forms

αi :=

∮
γi

ω2,0 i = 1, · · · , 2n. (3.1.28)

Clearly, they are closed one forms. Thus, there exist holomorphic functions zi defined
locally near b such that dzi = αi for 1 ≤ i ≤ 2n. These functions are defined only up to
an additive constant.

The set of holomorphic functions {z1, · · · , z2n} are complex analogy of the action co-
ordinates {I1, · · · , I2n} in the real case.

Proposition 3.1.21. The holomorphic functions defined above are related to the action-
angle coordinates (see definition 3.1.10) in the following way: write wi = ezi and suppose
that dzi = αi, then we have that

I i = Re(logwi) = log|wi|, θi = Im(logwi).

Proof. Let us consider instead the holomorphic change of coordinates:

zi = logwi, for 1 ≤ i ≤ 2n

And assume that

dzi = αi =

∮
γi

ω2,0

Since logwi = log |wi|+
√
−1 θi, we have that

dRe(logwi) = d log |wi| = dRe(zi) =

∮
γi

Re(ω2,0) = dI i

and Im(logwi) = θi.

In contrast with the action coordinates, zi s are not coordinates on the base B0, but
they define an holomorphic map

(z1, · · · , z2n) : U −→ C2n (3.1.29)

where U is an open neighborhood of b.
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Polarization

If the fibers of the complex integrable system are endowed with a covariantly constant
integer polarization, we call such an integral system the polarized complex integrable
system. Roughly speaking, a polarization gives rise to a covariantly constant skew-
symmetric symplectic bilinear form (which is callde the DSZ paring in physics literature)
on Γ⊗Q, i.e.,

〈·, ·〉 : Λ2 Γ −→ Z B0 (3.1.30)

So the local system of charge lattices Γ is actually a local system of symplectic lattices
over B0. Let ωij the value of 〈γi, γj〉, they form a matrix (ωi,j), and denote by (ωij) its
inverse. Then we have the following

Proposition 3.1.22. a)
∑

i,j ω
ijdzi ∧ dzj =

∑
i,j ω

ijαi ∧ αj = 0.

b)
√
−1
∑
i,j

ωijdzi ∧ dz̄j =
√
−1
∑
i,j

ωijαi ∧ ᾱj > 0.

Proposition 3.1.23. The condition a) in the above proposition implies that the image
of the map (3.1.29) is a Lagrangian sub-manifold, while the condition b) implies that the
map is an immersion.

Proof. Define the symplectic form on Γ∨ ⊗ C ∼= C2n by

Ω =
∑
i,j

ωijdui ∧ duj

where {u1, · · · , u2n} are the chosen coordinates for C2n, then a) translates into the fact
that the image of the holomorphic map (3.1.28) is Lagrangian w.r.t Ω. As we have Kähler
metric space induced by the (1-1) form in b), thus the map in question can be viewed
locally as a map between metric spaces, which must be injective. Consequently, the map
is an immersion.

We denote by Z : U → C2n the map in (3.1.28), from the above proposition, we
conclude that it defines holomorphic Lagrangian embedding of U to Γ∨ ⊗ C defined up
to a shift(as zi s are defined only up to an additive constant). More explicitly, we have

Z : U → Γ∨ ⊗ C, dZb(γ) :=

∮
γ

ω2,0 (3.1.31)

where b ∈ U and γ ∈ Γb can be locally continued to nearby fibers continuously.

Remark 3.1.9. The above map is the complex version of the map I given in (3.1.27).
Consequently, it can be viewed as the complex analogy of the action coordinates.

The map Z is defined only locally. If such map is globally defined over B0, then we
call it the central charge of the complex integrable system, and denote it by Z. More
precisely, we have the following:

Definition 3.1.12. The collection of one forms αi defined in (3.1.27) give rise to an
element δ ∈ H1(B0,Γ∨ ⊗ C), if δ is assumed to be zero, then there exists a section
Z ∈ Γ(B0,Γ ⊗ OB0), called the central charge of the integrable system, which satisfies
dZ(γi) = αi, for 1 ≤ i ≤ 2n.
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Remark 3.1.10. From the definition, we see that Z is an additive map from the local
system of charge lattice Γ to C.

Definition 3.1.13. If a complex integrable system π : (X0, ω2,0) −→ B0 is endowed with
a central charge function Z, then π is called the integrable system of Seiberg-Witten
type (terminology borrowed from [KS14]).

Remark 3.1.11. In terms of central charge Z, the condition a) and b) in proposition
3.1.23 can be rewritten as

a)′ 〈dZ, dZ〉 = 0 (transversality) (3.1.32)

b)′
√
−1 〈dZ, dZ̄〉 > 0 (nondegeneracy) (3.1.33)

Holomorphic coordinates induced from the central charge Z

By using the polarization given by the symplectic form (3.1.30), we can choose sym-
plectic basis for {αi, βj}, 1 ≤ i, j ≤ n for the charge lattice Γ near b ∈ B0 for every
b ∈ B0. Here by “symplectic”, we mean that the following relations among the basis
elements should be satisfied

〈αi, αj〉 = 〈βi, βj〉 = 0, 〈αi, βj〉 = δji . (3.1.34)

Accordingly, for the dual lattice Γ∨ such that Γ∨b
∼= HomZ(Γb,Z), we can choose the

basis {αi, βj} of it that are dual to {αi, βj} in the following sense:

αi(βj) := 〈βj, αi〉 = δij, β
j(αk) := 〈αk, βj〉 = δjk

where we have used the identification α 7−→ 〈·, α〉 from Γ to Γ∨. Consequently, we
can choose αi := βi, and βj := −αj. Under this basis, we can write the central charge
function Z as

Z =
n∑
i=1

aiαi +
n∑
i=1

aD,iβ
i (3.1.35)

where ai, aD,i ∈ OB0 are a set of local defined holomorphic functions (depending on
any given holomorphic coordinates {ui}1≤i≤n on B0) on the base B0. Then we see that
the transversality condition (3.1.32) specializes into

d

(∑
i

aD,i da
i

)
= 0 (3.1.36)

while the nondegeneracy condition (3.1.33) becomes

Im

(∑
i

daD,i ∧ dāi
)
> 0 (3.1.37)

From (3.1.36), we have that
∑

i aD,i da
i = dF for some holomorphic function F , which

is called the prepotential. Thus, we have the following relation

aD,i =
∂F
∂ai

, i = 1, · · · , n. (3.1.38)
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Besides, (3.1.37) implies that the two matrix
(
∂ai

∂uj

)
and

(
∂aD,i
∂uj

)
are invertible matrix,

thus both ai and aD,i can be considered as giving holomorphic coordinates on B0. These
coordinates are called special coordinates (will be discussed in the next subsection),
and by (3.1.38), we can interpret aD,i s as coordinates for B0 dual to ai s.

Kähler metric on B0

By (3.1.37), we see that B0 carries the Kähler form

ω1,1
B0 :=

√
−1 Im

(∑
i

daD,i ∧ dāi
)

(3.1.39)

Denote by gB0 the corresponding Kähler metric on B0, i.e.,

gB0 = Im

(∑
i

daD,i dā
i

)
(3.1.40)

By using (3.1.37) and dF =
∑

i aD,i da
i, it can be further written as

gB0 = Im

(∑
i

d

(
∂F
∂ai

)
dāi

)
= Im

(∑
i,j

∂2F
∂ai∂aj

daidāj

)

Defining the matrix τ = (τij) by

τij :=
∂aD,i
∂aj

=
∂2F
∂ai∂aj

(3.1.41)

the Kähler metric above can be written more compactly as

gB0 =
∑
i,j

Im(τij) da
idāj (3.1.42)

with the matrix Im(τij) being positive definite by (3.1.36).

Remark 3.1.12. It is clear that the Kähler potential for the metric is

K = Im

(∑
i

aD,i ā
i

)
(3.1.43)

which satisfies ∂∂̄K = ω1,1
B0

.

Angle coordinates more explicitly

Polarization would enable us to find more canonical description of the angle coordi-
nates (c.f., (3.1.16) and (3.1.20)). Inspired by lemma 3.1.19, we denote by θi, 1 ≤ i ≤ n
the angle coordinates that satisfies the relations

∮
αi
dθj = δij; and denote by θi 1 ≤ i ≤ n

those that satisfy:
∮
βi
dθj = δji . So, the class [dθi] represents the coordinate βi, i.e., the

dual of βi; and similarly, the class [dθi] represents the coordinate αi, i.e., the dual of αi.
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Clearly, the class of
∑

i dθ
i ∧ dθi would represent the symplectic pairing 〈·, ·〉, i.e., the

polarization.

As had been pointed out before that the analogy of the action coordinates I i in
complex case are given by the holomorphic function zi, which by the formula (3.1.35),
are realized in the symplectic basis as

Z(αi) = ai Z(βi) = aD,i, 1 ≤ i ≤ n. (3.1.44)

From the definition of canonical action one form αcan =
∑

i I
i dθi (also called Liouville

one form) (see (3.1.25)), we find its complex analogy

αLiouville :=
∑
i

zi dθ
i =

∑
i

Z(αi) dθi +
∑
i

Z(βi) dθ
i

=
∑
i

ai dθi +
∑
i

aD,i dθ
i (3.1.45)

Since in the real case, we have that

dαcan = ω = Re(ω2,0)

while in the complex case, we have similarly that

ω2,0 = dαLiouville =
∑
i

daD,i ∧ dθi +
∑
i

dai ∧ dθi (3.1.46)

By the relation (3.1.41), the right hand side can be written as∑
i,j

τijda
j ∧ dθi +

∑
i

dai ∧ dθi =
∑
i,j

dai ∧ (dθi + τijdθ
j)

Note that in the above computation, we used the symmetric property of τij, i.e.,
τij = τji.

Thus we can introduce the canonical complex coordinates on the fiber of π defined as

wi := θi +
∑
j

τij θ
j (3.1.47)

Together with the holomorphic coordinates ai on the base, the holomorphic symplectic
two form can be written in canonical form as

ω2,0 =
∑
i

dai ∧ dwi (3.1.48)

Remark 3.1.13. By using the complex coordinates wi, the form
∑

i dθ
i ∧ dθi that repre-

sents the symplectic paring becomes

−
√
−1

2

∑
i,j

((Imτ)−1)ijdwi ∧ dw̄j (3.1.49)

which is manifestly negative definite (1-1)-form, defining the polarization. Thus the fiber
is actually a principally polarized abelian variety, and our complex integrable system is
called principally polarized.
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Geometric interpretation of Z

Near b ∈ B0, let γ =
∑

i qiα
i +

∑
j g

jβj ∈ Γb
∼= H1(π−1(b),Z), where gi, qj s are

integers, then by the formula , we have that the central charge of γ is

Zb(γ) =
∑
i

giaD,i +
∑
j

qja
j. (3.1.50)

Now we want to give a geometric interpretation of the central charge function. To this
end, let us denote the above local system of lattices by Γsymp, and by Γ the local system of
lattices with fiber at b ∈ B0 being the second relative homology group H2((X0, π−1(b)),Z).
Apparently, the boundary map

∂ : H2((X0, π−1(b)),Z) −→ H1(π−1(b),Z)

is a surjection, with the kernel being the second homology group H2(X0,Z). As b varies,
they form a local system of lattices denoted by Γ0. Consequently, we have the following
short exact sequence of local systems:

0 −→ Γ0 −→ Γ −→ Γsymp −→ 0 (3.1.51)

Remark 3.1.14. The non-degenerate integer symplectic bilinear form 〈·, ·〉 on the sym-
plectic lattice Γsymp can be extended to Γ by

〈σ1, σ2〉 := 〈∂σ1, ∂σ2〉

for σ1, σ2 ∈ H2((X0, π−1(b),Z). It is clear that the extended pairing becomes degenerate
and the kernel of it is exactly Γ0.

Proposition 3.1.24. The central charge Z can be realized as the abelian group homo-
morphism from Γ to C given by

Zb(σ) :=

∮
σ

ω2,0 (3.1.52)

for each σ ∈ H2((X0, π−1(b),Z) = Γb.

Proof. First, we show that the above map is well defined. Suppose we have two cycles σ,
σ′ that represent the same class in H2((X0, π−1(b),Z), i.e.,

σ − σ′ ∈ π−1(b)

Consequently, we have that∮
σ

ω2,0 −
∮
σ′
ω2,0 =

∮
σ−σ′

ω2,0 = 0

Note we have used the fact ω2,0|π−1(b) = 0 as the fibers are Lagrangian submanifolds.
Recall that the formula says that

ω2,0 = dαLiouville =
∑
i

daD,i ∧ dθi +
∑
i

dai ∧ dθi
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Thus, for any γ ∈ Γsympb = H1(π−1(b),Z), since the boundary map ∂ is surjective, we can
choose σ such that ∂σ = γ, then we have that

Zb(σ) =

∮
σ

ω2,0 =

∮
σ

dαLiouville =

∮
∂σ

αLiouville =

∮
γ

αLiouville

=

∮
γ

∑
i

aD,i ∧ dθi +

∮
γ

∑
i

ai ∧ dθi

Write γ =
∑

i g
iβi +

∑
j qjα

j for gi and qj s being integers. Recall further that∮
αi
dθj = δij and

∮
βi

dθj = δji

we conclude that

Zb(σ) =
∑
i

giaD,i +
∑
i

qia
i =

∑
i

giZb(βi) +
∑
i

qiZb(α
i)

= Zb

(∑
i

giβi + qiα
i

)
= Zb(γ)

Suppose that there is another choice σ′ such that ∂σ′ = γ, then it is obvious that
Zb(σ) = Zb(σ

′).

Proposition 3.1.25. The central charge Z is a holomorphic function on B0.

Proof. Denote by J the complex structure on B0, i.e., a linear endomorphism J acting
on the tangent space TbB0 for each point b ∈ B0 such that J2 = −id. Then the vectors
in T 0,1B0 ⊂ TB0 are of the form v +

√
−1Jv for some v ∈ TRB0. And by the formula ,

we compute as

(v +
√
−1Jv)Z(γ) = dZ(γ)(v +

√
−1Jv) =

∮
γ

ιv+
√
−1Jv ω

2,0 = 0

since ω2,0 is a (2,0)-form, while v+
√
−1Jv is a (0,1)-tangent vector. Thus, ∂̄Zγ = 0, i.e.,

Z(γ) is holomorphic on B0 for every γ.

Proposition 3.1.26. For any b ∈ B0, {dZb(γ)}γ∈Γb
span T ∗b B0.

Proof. Indeed, by the formula (3.1.50), we see that let γ runs through those “α”-cycles,
i.e., αj s, then {dZb(γ)} span T ∗b B0 as Zb(α

j) = aj and aj serves as local holomorphic
coordinates.
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3.1.5 Affine, special Kähler and HyperKähler structures

Z-affine structure (The main references are [Fre99][ACD02][GS03].)

Definition 3.1.14. Recall that an n-dimensional topological manifold B is called an (in-
tegral) affine manifold if it is endowed with an (integral) affine structure that is given
by a maximal atlas A = {Ui,Φi} of coordinate charts such that the transition maps
Φj ◦ Φ−1

i belong to the group of (integrable) affine transformations of Rn.

Remark 3.1.15. Denote by Aff(Rn) := GL(n;R) n Rn the group of affine trans-
formations of Rn, and by AffZ(Rn) := GL(n;Z) n Rn the group of integer affine
transformations of Rn. We also use notation Z-affine for the term “integral affine”.

Definition 3.1.15. A map f : Rn → Rm is called affine (Z-affine) if it belongs to
Hom(Rn,Rm)×Rm (Hom(Zn,Zm)×Rm). In the case when n = m, we can speak about
affine (Z-affine) diffeomorphism were the inverse f−1 exists.

Definition 3.1.16. For two affine (Z-affine) manifolds B and B′, a map f : B → B′
between them is called affine (Z-affine) if it is locally affine (Z-affine),

Proposition 3.1.27. The base of the complex integrable system π : (X0, ω2,0)→ B0 is a
Z-affine manifold of (real) dimension 2n, where n = dimC B0.

Proof. Cover B0 by open subsets Ui ∈ B0 such that the non empty intersections Uij :=
Ui ∩ Uj are connected and each Ui s being simply connected, i.e., π1(Ui) = 0. We also
assume that above each Ui, the period net Λ is trivialized (this can always be made true
by shrinking Ui s if necessary). Consequently, we have local sections {α1

i , · · · , α2n
i } of

Λ|Ui , such that for b ∈ Ui, {α1
i (b), · · · , α2n

i (b)} gives a Z-basis for Λb. Then over each Uij,
the basis {α1

i , · · · , α2n
i } and {α1

j , · · · , α2n
j } are related by a GL(2n,Z) transformation,

i.e., ∃! M = (mij) ∈ GL(n,Z) such that

αkj (b) =
∑
l

mjl α
l
i(b)

for b ∈ Uij. Here as Uij are chosen to be connected, the smooth matrix M is a constant
matrix over each Uij. As π1(Ui) = 0 for each i, by Poincáre lemma, locally there exist
smooth function {u1

i , · · · , u2n
i }, such that duki = αki , for k = 1, · · · , 2n. Thus, we get the

relation

dukj =
∑
l

mjl du
l
i = d

(∑
l

mjl u
l
i

)
Consequently, there exists constant cji ∈ R such that ukj =

∑
lmjl u

l
i + cji, which means

that the transition maps for local coordinates uk s are Z-affine.
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Special Kähler structure

We now give an equivalent characterization of the affine (Z-affine) manifold, which
leads us to the notion of special geometry.

Proposition 3.1.28. Given an n-dimensional Z-affine manifold B, there is an torsion-
free flat connection ∇ on the (real) tangent bundle TRB, together with a maximal rank
∇-covariant lattice T Z

RB ⊂ TRB. And conversely, given such a connection and the lattice,
we can induce a Z-affine structure on B.

Proof. Suppose we have a Z-affine structure A = {(Ui,Φi)} with Z-affine coordinate uki ,

then
{

∂
∂uki

}
is a local basis for TRUi, from which we see that it transforms as

∂

∂uli
=
∑
k

mkl
∂

∂ukj

where mkl s are integers. Applying the differential d on both sides, we get that

d

(
∂

∂uli

)
=
∑
k

mkl d

(
∂

∂ukj

)

from which we get a connection ∇ on TRB given by d, i.e., ∇ ∂

∂ul

∂
∂uk

= 0. Clearly, in

this particular coordinates, the connection coefficients Γkij s vanish, and in particularly,
we have that Γkij = Γkji. Consequently, this is a flat, torsion-less connection. Besides, the

full rank lattice T Z
RB is spanned by

{
∂
∂uki

}
, and it is clearly ∇-covariant. Conversely, if

we are given a connection ∇ and a full rank lattice T Z
RB ⊂ TRB, then we have a local

system of lattice over B, which is equivalent to a flat connection ∇ on TRB by well-known
result.

Motivated by the above proposition, we give the following definitions.(c.f., [Fre99][ACD02])

Definition 3.1.17. A complex manifold (B, J) is called a special complex manifold
if B is endowed with a flat, torsionfree connection ∇ on its real tangent bundle TRB such
that

d∇J = 0 (3.1.53)

where J is the complex structure, and d∇ the covariant derivative associted to ∇. And by a
special symplectic manifold, we mean a special complex manifold (B, J,∇) together
with ∇-parallel symplectic form ω. Finally, a special Kähler manifold is a special
symplectic manifold (B, J,∇, ω) for which ω is J-invariant, i.e., of type (1, 1). Then
the induced metric g(·, ·) := ω(J ·, ·) is called the special Kähler metric of the special
Kähler manifold (B, J,∇, ω).

By the formula (3.1.42), we know that the base B0 of the complex integrable system
π : (X0, ω2,0) −→ B0 is a Kähler manifold, and thus from proposition 3.1.28, we conclude
that B0 is a special Kähler manifold.

Now we deduce some consequences from the definition of Special Kähler manifold,
and compare them with the descriptions of the complex integrable system that had been
discussed in section 3.1.4.
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Lemma 3.1.29. The torsionfree condition of ∇ is equivalent to the following condition

d∇(id) = 0

where id ∈ Γ(T ∗B⊗TB) is the TB-valued one form taking any tangent vector X to itself.

Proof. By definition, we have that

d∇(id)(X, Y ) = (−1)1+1∇Xid(Y ) + (−1)1+2∇Y id(X) + (−1)1+2id([X, Y ])

= ∇XY −∇YX − [X, Y ]

from which the lemma follows.

Given a flat local framing {ξα} of B, denote by {ηβ} the corresponding dual coframe,
then the identity section is given by id =

∑
α ξα ⊗ ηα, then we see that

d∇(id) =
∑
α

d∇ξα ⊗ ηα +
∑
α

ξα ⊗ d∇ηα

=
∑
α

∇ξα ⊗ ηα +
∑
α

ξα ⊗ d∇ηα =
∑
α

ξα ⊗ d∇ηα

The last identity holds because for any ξβ, we have that

∇ξα(ξβ) = ∇ξαξβ = 0

Thus, we have that d∇η
α = 0 Then by Poicaré lemma, there exists local coordinates uα

such that duα = ηα. Moreover, these local coordinates satisfy the flat condition∇dui = 0.
Such coordinates are therefore called flat coordinates, or by its connection to Z-affine
structure, they are also called affine coordinates.

Besides, the (real) symplectic form ω is preserved by the connection ∇, i.e., ∇ω = 0,
thus, we can choose the local coordinates to be Darboux in the sense that there exists
a set of local coordinates xi, yj s, for 1 ≤ i, j ≤ n = dimCB, such that

ω =
∑
i

dxi ∧ dyi (3.1.54)

Remark 3.1.16. The above Darboux coordinates are affine since by construction that
the transition maps of these coordinates belong to sp(2n,R) oR2n.

Definition 3.1.18. Let (B, J,∇, ω) be a special Kähler manifold. An affine local co-
ordinates (xi, yj) is called real special coordinates if (3.1.54) holds. Holomorphic
coordinates {zi} is called special if its real part is real affine, i.e., ∇Re(dzi) = 0. We
say that the special coordinates zi and the real special coordinates {xi, yj} are adapted
if Re(zi) = xi. Further more, two set of special coordinates {zi} and {wj} are said to
be conjugate if there exists real special coordinates {xi, yj} such that Re(zi) = xi and
Re(wj) = yj.

Next, we discuss the consequence of d∇J = 0 (3.1.53) in the definition of special
Kähler manifold.
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Denote by π1,0 ∈ Ω1,0(TCB) the (1, 0)-form taking value in the complexified tangent
space TC that projects X ∈ TC into its (1, 0)-component. Then the condition (3.1.53) is
equivalent to the condition

d∇π
1,0 = 0

By Poincaré lemma again, there exists locally a vector field ξ ∈ TC up to a flat complex
vector field such that

∇ξ = π1,0 (3.1.55)

We then have the following proposition:

Proposition 3.1.30. Expressing the complex vector field ξ in the real special coordinates
{xi, yj} as

ξ =
∑
i

zi
∂

∂xi
+
∑
j

wj
∂

∂yj

for some complex functions {zi} and {wj}, then these are conjugate special coordinates
that are adapted to the real special coordinates {xi, yj}.

Proof. As π1,0 is a form of type (1, 0), we see that zi, wj s are holomorphic, and we have
that

π1,0 = ∇ξ =
∑
i

dzi
∂

∂xi
+
∑
j

dwj
∂

∂yj

Taking the real part of the above equation, then the left hand side is just the identity
map, i.e.,

id =
∑
i

Re(dzi)
∂

∂xi
+
∑
j

Re(dwj)
∂

∂yj

From which we deduce that Re(dzi) = dxi and Re(dwj) = dyj.

Proposition 3.1.31. Their exists a local holomorphic function F, determined up to a
constant, called the holomorphic prepotential, such that

wj =
∂F

∂zj
(3.1.56)

Denote then by τij the quantity
∂wj
∂zi

=
∂2F

∂zi∂zj

Then it determines a Kähler potential is simply given by

K = Im(wiz̄
i) (3.1.57)

while the corresponding Kähler form given through

ω1,1 =
√
−1∂∂̄K =

√
−1 Im

(
∂2F

∂zi∂zj

)
dzi ∧ dz̄j

=
√
−1 Im(τi,j) dz

i ∧ dz̄j (3.1.58)
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Proof. We write the real symplectic form ω in complex special coordinates as follows:

ω =
∑
i

dxi ∧ dyi =
∑
i

(
dzi + dz̄i

2

)
∧
(
dwi + dw̄i

2

)

=
1

4

∑
i

(
dzi ∧ dwi + dzi ∧ dw̄i + dz̄i ∧ dwi + dz̄i ∧ dw̄i

)
as ω should be of type (1, 1), thus we have that∑

i

dzi ∧ dwi =
∑
i

dz̄i ∧ dw̄i = 0

In particular, we have ∑
i

(
dzi ∧

∑
j

τjidz
j

)
= 0

from which we deduce that τji = τij, that is:

∂wi

∂zj
=
∂wj

∂zi

Consequently, there must exit a holomorphic function F such that (3.1.56) is satisfied.

With the above preparations, we see that the base B0 of the complex integrable system
π : (X0, ω2,0) −→ B0 is a special Kähler manifold. Recall that the formula (3.1.42) gives
the Kähler metric of the base B0 of the integrable system π, namely

gB0 = Im

(∑
i,j

∂2F
∂ai∂aj

daidāj

)
(3.1.59)

for {ai} special coordinates on B0. We have that the dual coordinates aD,i s are also
special, and it is related to ai by (3.1.38), i.e., aD,i = ∂F

∂ai
. Then let{

xi := Re(ai)

yj := Re(aD,j)

We claim that these are real special coordinates. Indeed, by the constructions of ai

and aD,j, we see that as their real parts are Z-affine. To verify the condition (3.1.54),
we note that since {xi, yj} are local real affine coordinates of B0, the (canonical) real
symplectic form ω of the base B0 is naturally given by

ω =
∑
i

dxi ∧ dyi

Remark 3.1.17. Instead of the real part of the central charge Z, we can also use
{Imai, ImaD,j} as Z-affine coordinates on B0. These define the so called dual affine
structure on B. Roughly speaking, they differs from the adapted ones by a π

2
-rotation of

the central charge Z. i.e.,

Re(e−
iπ
2 Z(γi)) = ImZ(γi).

More generally, we can consider the rotated central charge e−iθZγ, and consequently the
rotated holomorphic symplectic form e−iθω2,0 by arbitrary angle θ ∈ R/Z, which would
yield Z-affine coordinates

{
Re(e−iθZ(γi))

}
or
{
Im(e−iθZ(γi))

}
.
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Figure 3.2: Affine structure and dual affine structure

We can also “rotate” the torsion-free, flat connection ∇ in the following way: Given
θ ∈ R/Z, and associate an endomorphism of tangent plane given by eJθ = (cos θ)Id +
(sin θ)J , then define the rotated connection (c.f [ACD02]) by

∇θX := eJθ∇(e−JθX) (3.1.60)

In particularly, for θ = π
2
, we get the so called conjugate connection

∇J := ∇
π
2 = ∇− J∇J (3.1.61)

It is clear from the definition of rotated connection that if the rotated coordinates
Re(e−iθZ(γi)) are real affine with respect to∇, i.e.,∇Re(e−iθdZ(γi)) = 0, then the coordi-
nates Re(Z(γi)) are affine with respect to the rotated connection∇θ, i.e., ∇θRe(dZ(γi)) =
0. It is proved in [ACD02] that if (B, J,∇) is a special complex manifold, then (B, J,∇θ)
is a special complex manifold for any θ. And if (B, J,∇, ω) is a special Kähler manifold,
then (B, J,∇θ, ω) is also a special Kähler manifold for any θ.

Hyperkähler structure

Good references for hyperk ahler manifolds with connection to integrable system in-
cludes [Hit91],[Hit+87b],[Fre99].[Hit97],[BM04], and our exposition is based on these ref-
erences. Recall that for a manifold X endowed with a linear connection ∇, then the
holonomoy of X at point x ∈ X a representation

ρ : π1(X, x) −→ GL(TxX)

given by sending a loop γ to the parallel transport of a tangent vector along γ induced
by ∇. The holonomy group Hx(∇) (based at x) is defined to be the image of ρ.

Figure 3.3: Holonomy group as representation of fundamental group on the tangent
bundle
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Definition 3.1.19. A complex manifold M of dimension 2n is hyperkähler if its holon-
omy group can be reduced to Sp(n), which is the group of n × n quaternionic unitary
matrices.

As Sp(n) = U(2n) ∩ Sp(2n,C), we see that hyperkähler manifolds are automatically
Calabi-Yau, and admits a holomorphic symplectic form. Roughly speaking, hyperkähler
geometry is more or less holomorphic symplectic geometry. We have the following equiv-
alent definition of hyperkähler manifold:

Definition 3.1.20. A hyperkähler manifold is a Riemannian manifold (M, g) endowed
with three complex structures J1, J2, J3 which satisfying: J1J2 = J3 (equivalent to quater-
nionic relations), and more over g is a Kähler metric for each Ji.

Denote by ωi the Kähler form corresponding t0 Ji, i.e., ωi(·, ·) = g(Ji·, ·). Then we
claim that ω2,0 := ω1 + i ω2 is a holomorphic symplectic form with respect to the
complex structure J3. In the following, we denote by ω the Kähler form ω3.

Proof of the claim: By definition, for X, Y ∈ TCM , we have the following:

ω2,0(X, Y ) = ω1(X, Y ) + i ω2(X, Y ) = g(J1X, Y ) + i g(J2X, Y )

Thus, we compute that

ω2,0(J3X, Y ) = g(J1J3X, Y ) + i g(J2J3X, Y )

= −g(J2X, Y ) + i g(J1X, Y ) = i(g(J1X, Y ) + i g(J2X, Y )) = i ω2,0(J3X, Y )

Similarly, we have ω2,0(X, J3Y ) = i ω2,0(X, Y ). Consequently, we see that ω2,0 is of
type (2, 0) with respect to the complex structure J3. As ωi s are closed, non-degenerate,
it follows that ω2,0 is closed and non-degenerate, from which we infer that ∂̄ ω2,0 = 0 by
its type. �

Besides, one can see easily that for any u = (a, b, c) ∈ S2 ⊂ R3, the endomorphism

Iu := aI1 + bI2 + cI3

of TCM defines a complex structure, with the corresponding Kähler form

ωu = aω1 + bω2 + cω3

Consequently, we have a S2 worth of complex structures on M .

Figure 3.4: S2 worth of complex structures on M
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Identifying S2 with the complex line CP1 (usually called the twistor line), we get
the induced complex structure on S2 with complex coordinate ζ ∈ CP1. Then, it can
be computed ([Lin17]) that the corresponding complex structure Jζ and holomorphic
symplectic form ω2,0

ζ are given respectively by

Jζ =
i(−ζ + ζ̄)J1 − (ζ + ζ̄)J2 + (1− |ζ|2)J3

1 + |ζ|2
(3.1.62)

ω2,0
ζ = − i

2ζ
ω2,0 + ω − i

2
ζ ω̄2,0 (3.1.63)

It is clear that for ζ 6= 0,∞, Jζ are all equivalent to J1, while for ζ = 0,∞, the
complex structure J3 will be recovered. Besides, ω2,0

ζ is a holomorphic symplectic form in
the complex structure Jζ . The hyperkähler structures discussed above can be encoded by
the so called twistor space defined as Z = M × S2 ∼= M ×CP1. We have the following
result due to Hitchin ([Hit91],[Hit+87b]).

Proposition 3.1.32. Given an hyperkähler manifold (M, g), we have the following:

1. There exists a holomorphic fibration p : Z → CP1 such that the fiber Mζ = p−1(ζ)
is complex in Jζ.

2. There exits a holomorphic section ω2,0 ∈ Γ
(

Ω2
Z/CP1 ⊗ O(2)

)
such that ω2,0

ζ =

ω2,0|Mζ
is the holomorphic symplectic form on Mζ.

3. There exists a anti-holomorphic map σ : Z → Z that covers the anti-involution
ζ 7→ −1

ζ̄
on the twistor line CP1.

4. ∀m ∈ M , there exits a holomorphic section sm : CP1 → Z with normal bundle
O(1)⊕2r

Conversely, we can construct a hyperkähler manifold from a twistor space Z satisfying
the properties 1), 2), 3) and 4) above.

Figure 3.5: Hyperkähler manifold as twistor space

85



Hyperkähler rotation trick (c.f.,[Lin17])

We assume that the north and south pole of CP1 corresponds to the hyperkähler
structure (X,ω, ω2,0) and (X,−ω, ω̄2,0) respectively. Then the hyperkähler structures
corresponding to the equator {eiθ} are given by

ωθ = −Im(e−iθω2,0) (3.1.64)

ω2,0
θ = ω − iRe(e−iθω2,0) (3.1.65)

Now, let us go back to the complex integrable system π : (X0, ω2,0) −→ B0. We
will show that X0 is naturally a hyperkähler manifold. Thus there exists S1

θ -family of
complex structures Jθ, Kähler forms ωθ, and holomorphic symplectic forms ω2,0

θ on X0.
And consequently, there would be S1

θ -family of induced affine structures ∇θ (see equation
(3.1.60)) on B0, we denote the corresponding Z-affine manifold by

B0
θ := (B0,∇θ) (3.1.66)

We now show that the induced affine coordinates coincide with the ones obtained
before (see the remark 3.1.17). Indeed, take the negative of imaginary part of ω2,0

θ , we
get Re(e−iθω2,0). Denote the corresponding affine coordinates by Iγ, we then have

dIγ = −
∮
γ

Imω2,0
θ =

∮
γ

Re
(
e−iθω2,0

)
= d

(
Re(e−iθZγ)

)
Consequently, we have that

Iγ = Re
(
e−iθZ(γ)

)
up to an addition of constant. Similarly, by rotating π

2
further, we would obtain the affine

coordinate
Iγ = Im

(
e−iθZ(γ)

)
.

Proposition 3.1.33. For the complex integrable system π : (X0, ω2,0) −→ B0 defined as
before, X0 carries naturally a hyperkähler structure.

Before giving the proof of this proposition, we give some preparations. As the base
of an integrable system, B0 is special Kähler, thus it is endowed with a flat, torsion-free
connection ∇ on TRB0, which is also called the Gauss-Manin connection. Given a local
(Real) affine coordinate system {ui}, it is characterized by

∇ ∂

∂ui
= 0

Recall (see definition 3.1.11) that the local system of charge lattice Γ is defined to
be a locally constant shealf with stalk at b ∈ B0 given by H1(π−1(b),Z). Thus, the
dual local system Γ∨, as a locally constant sheaf, can be identified with the direct image
shealf R1π∗Z. By lemma 3.1.7, we have an isomorphism λ from Γb to the period lattice
Λb ⊂ T ∗b B0 given as: for γ ∈ Γb, we associated to it the following locally closed one form
(see the formula (3.1.23))

λγ(v) =

∮
γ

ιṽ ω
2,0
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for v ∈ TbB0. Consequently, we have the following isomorphism

TB0 ∼= R1π∗R⊗R C∞B0 (3.1.67)

The special Kähler structure is given by specifying the full rank lattice T ZB0 ⊂ TB0,
which is locally spanned by { ∂

∂ui
}. As a sheaf, it can be identified with R1π∗Z. By

the isomorphism (3.1.67), we see that the Gauss-Manin connection induces a connection
(also called the Gauss-Manin connection) on the local system R1π∗R. In fact, through
this isomorphism, the Gauss-Manin connection on TB0 can be given explicitly as

∇ = id⊗ d

for
∇ : TB0 → TB0 ⊗ T ∗B0

Consider the system π : (X0, ω2,0)→ B0. First note that the space of vertical tangent
vector fields on X0, denoted by V ert(TX0), can be identified with π∗T ∗B0 via the interior
product of a vector field with symplectic form.

Also, recall that a connection on X0 would give a splitting of the following Atiyah
sequence

0 −→ V ertTX0 −→ TX0 −→ π∗TB0 −→ 0

or equivalently, a splitting of the following sequence

0 −→ π∗T ∗B0 −→ TX0 −→ π∗TB0 −→ 0 (3.1.68)

We will need the following lemma proved in [Bru].

Lemma 3.1.34. Suppose that π : (X0, ω2,0) → B0 has a section, then the Gauss-Manin
connection ∇ on the base B0 induces a connection on X0.

Proof. Consider the projective pr : T ∗B0 → B0, the Gauss-Manin connection ∇ on B0

also induces a connection on T ∗B0, which provides a splitting of the following Atiyah
sequence

0 −→ V ertTT ∗B0 −→ TTB0 −→ pr∗TB0 −→ 0

thus we have the isomorphism

TTB0 ∼= V ertTT ∗B0 ⊕ pr∗TB0

As π has a section σ : B0 → X 0, we have that X0 ∼= T ∗B0/Λ. By composing pr
with the section σ, we get the induced map ρ : T ∗B0 → X0. It is easy to see that
ρ∗TX0 ∼= TT ∗B0, and pr∗ = ρ∗ ◦ π∗. Consequently, we have the following

ρ∗TX0 ∼= ρ∗V ertTX0 ⊕ (ρ∗ ◦ π∗)TB0 ∼= (ρ∗ ◦ π∗)T ∗B0 ⊕ (ρ∗ ◦ π∗)TB0

where we have used the fact V ert(TX0) ∼= π∗T ∗B0. Thus, we have the desired splitting
of the sequence (3.1.68), which implies that there is a induced connection on X0.
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Proof. (of the proposition 3.1.33), the proof presented here is largely due to Daniel S.
Freed [Fre99], though we borrowed some ideas from [BM04].

As the Gauss-Manini connection gives a splitting of the sequence (3.1.68), we have
that

TX0 ∼= π∗T ∗B0 ⊕ π∗TB0 (3.1.69)

We need to show that TX0 is endowed with three complex structures I, J and K
satisfying the quaternionic relations. Locally, the problem is reduced to the following
linear algebra question.

Given a Hermitian vector space V endowed with the complex structure I, and the
Hermitian metric 〈·, ·〉 determines a real metric and symplectic form on VR through

〈u, v〉 = g(u, v) + iω(u, v)

Consider W = V ⊕V , we claim that it carries a constant hyperkähler structure. First,
the complex structure I on V extends naturally to V ⊕ V ., then define the following
complex structure

J : V ⊗ V → V ⊗ V

u⊕ v̄ 7→ −v ⊕ ū

Define K = IJ , then I, J,K satisfies the quaternionic relations.

Now, we apply the above construction to the (3.1.69) fiber wisely. we we get three
almost complex structures I, J and K, with the corresponding Kähler form being ωI , ωJ
and ωK . The integrability conditions for I, J and K is equivalent to the closedness of the
corresponding Kähler forms.

Define the holomorphic symplectic form ω2,0 := ωJ + iωK , which is holomorphic in I,
then it can be shown that it coincides with the canonical form on W = V ⊕ V defined as

ω2,0(v1 ⊕ l1, v2 ⊕ l2) = l1(v2)− l2(v1), v1, v2 ∈ V, l1, l2 ∈ V ∼= V ∗.

Consequently, the closedness of ω2,0 implies the closedness of ωJ and ωK .

On X0, we have the action angle coordinates {I i, θj} (see definition 3.1.10). By using
the symplectic basis of the charge lattice Γ, we can write I i as {xi, yi}, and θi as {qi, pi}.

Then the symplectic (Kähler) form corresponding to I has the expression (see the
formula (3.1.21))

ωI =
∑
i

dI i ∧ dθi =
∑
i

dxi ∧ dqi +
∑
i

dyi ∧ dpi.

which is a closed two form.
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3.1.6 Monodromy and the local model near discriminant

We have discussed in great details in previous sections the geometry of complex inte-
grable system π : (X0, ω2,0) −→ B0 away from the discriminant locus ∆ = B\B0. Near
the discriminant locus, the Lagrangian fibration becomes degenerate, and some cycles,
called the vanishing cycles shrink to zero. As we will see that this corresponds to the
singularity of the Z-affine structure.

Definition 3.1.21. An Z-affine manifold with singularities is a triple (B,∆,A) where
(B\∆,A) is an Z-affine structure, and ∆ ⊂ B is a set which is locally a finite union of
locally closed sub-manifolds of (real) codimension at least two.

Given a Z-affine structure with singularities on B, it defines a special Kähler structure
∇ on B0 together with a local system of full rank lattice Λ in T ∗B0, which by the
isomorphism (3.1.15), is equivalent to the local system of charge lattices Γ, with fiber
being

Γb := H1(π−1(b),Z)

By choosing a local basis {γi} of Γ near b, there is a set of induced affine coordinates
{ui}, which generates a local system of full rank lattice T ZB0 inside TB0, which is locally
spanned by

{
∂
∂ui

}
.

In the following, we follow mainly the exposition given in [KS06],[KS11]. Recall that
a Z-affine structure gives rise to a representation of the fundamental group π1(B0, b)
through the following

Monodromy representation

For the local system Γ→ B0, the monodromy representation of π1(B0, b) intoGL(H1(π−1(b),Z))n
R2n ∼= GL(2n,R) nR2n is given through the map:

ρ̃ : π1(B0, b) −→ GL(2n,R) nR2n

γ 7−→ γ̃(1) (3.1.70)

where γ̃ is the lifting of the loop γ based at b, i.e., γ(0) = γ(1) = b.

Definition 3.1.22. The monodromy group based at b, denoted by Mb(ρ̃), is defined
to be the image of the above representation ρ̃.

Proposition 3.1.35. The monodromy above coincides with the holonomy of the Gauss-
Manin connection ∇, i.e., Mb(ρ̃) = Hb(∇).

Proof. The monodromy representation ρ̃ determines a local system Γ endowed with a flat
connection ∇, and the holonomy of this connection is the monodromy by construction.
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Proposition 3.1.36. The monodromy representation ρ̃ is equivalent to the following data
a) A local system over B0,
b) A cohomology class δ ∈ H1(B0, T ZB0 ⊗Z R)

Proof. ρ̃ gives us a local system endowed with a flat connection ∇, which by the above
proposition, is equivalent to the holonomy of the connection ∇. Denote by T∇B0 the
sheaf of flat sections with respect to ∇, they span the full rank lattice T ZB0 inside TB0,
thus gives us a cohomology class

δ ∈ H1(B0, T ZB0 ⊗Z R) ∼= H1(B0, T∇B0)

where T ZB0 ⊗Z R is the abelian variety associated to the lattice T ZB0. Also note that
the class δ represents a torsor over the abelian variety T ZB0 ⊗ R which is in agree with
our previous local construction of complex integrable system.

Remark 3.1.18. Since we can rotate the Z-affine structure as in (3.1.60) or in (3.1.66),
which is equivalent to rotating the tori T ZB0⊗R, which can be encoded by the cohomology
class in H1(B0, T ZB0 ⊗ iR/Z). (c.f. [KS11]).

Remark 3.1.19. Since the connection ∇ is flat, and the lattice T ZB0 is locally constant,
the deRham representation of the cohomology class δ, still denoted by δ should be the
identity section id ∈ Ω1(B0, TB0), i.e., δ(v) = v for every v ∈ TB0, more explicitly, we
have

δ = id =
∑
i

∂

∂ui
⊗ dui

which is obviously closed by the torsion-freeness of ∇ (see the lemma 3.1.29).

Geometry near the discriminant

We already know that for the full (polarized) complex integrable system π : X → B,
outside the discriminant locus ∆, i.e., singularities of Z-affine structure, we get a La-
grangian fibration π : X0 → B0, with the fibers being the algebraic torus T2n. Now, as
we follow certain paths to the discriminant ∆, the tori would degenerate (some cycles on
it shrink to zero), causing certain fibres to become singular over ∆. Roughly, we will get
pinched torus over ∆ (see Figure 3.1 at the beginning of chapter 3).

The geometry of the singular fibration over ∆ concerning us here is encoded in its
monodromy near the singular fibers. To this end, we need to make some assumptions on
the nature of singularities. First we show that locally, the situation can be reduced to
the real two dimension case. We know from (3.1.4) that the central charge Z defines a
local embedding of B0 into Γ∨ ⊗Z C, with the corresponding map on the tangent space
level given by

dZb : TbB0 −→ Γ∨ ⊗Z C (3.1.71)

By proposition 3.1.23, this induces an isomorphism

TbB0 ∼= Γ∨ ⊗Z C
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At b ∈ ∆, we identify Γb with the nearby non-degenerate ones (this is possible since B0

is dense in B). Then given a special direction specified by the co-vector µ∗ ∈ Γ∨b near b
which is invariant under the monodromy around b, we have µ ∈ Γb with (µ∗, µ) = 0, where
(·, ·) denotes the canonical pairing between Γ∨ and Γ. This means that we have special
direction specified by µ∗ together with a hyperplane (specified by µ) that is orthogonal
to µ∗. Thus we get a hypersurface that is foliated by lines in special directions.

Figure 3.6: foliation of hyperplane in the special direction

Suppose we have two hypersurfaces that intersect transversely, by what had been said
above, we should have µ∗i ∈ Γ∨b , i = 1, 2 and the corresponding orthogonal elements µi ∈
Γb, i = 1, 2, such that (µ∗1, µ1) = (µ∗2, µ2) = 0. Under the assumption that (µ∗1, µ2) 6= 0
and (µ∗2, µ1) 6= 0, we see that there is a splitting of the lattice Γ∨ ⊗Z R as

Γ∨ ⊗Z R ∼= R2 ⊕ R2n−2 (3.1.72)

where R2 is spanned by µ∗1 and µ∗2.

Figure 3.7: Reducing the the two dimension case

Above is the local picture for WCS to be considered later, we see that we can use the
above procedure to reduce to the real dimension two case. Consequently, we will make
the assumption that the singular affine structure in our situation corresponds to a
two dimensional singularity times R2n−2

Focus-focus singularity

We assume that the singularity in dimension two is the simplest possible case, namely
the so called A1 singularity, or the focus-focus singularity, i.e., the singular fiber being the
pinched torus. It can be modelled by the following Ooguri-Vafa space (see for example
[Cha10]). The base B is the disc {u ∈ C : |u| < Λ} with a single singular point at
the origin ∆ = {0}, thus, B0 = B\∆ is the punctured disc. The local system of charge
lattices Γ is or rank two, and is spanned locally by sections {γm, γe}, with 〈γe, γm〉 = 1.
Then the monodromy around the origin is given by

γe(u) 7−→ γe(u) γm(u) 7−→ γm(u) + γe(u). (3.1.73)
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Equivalently, we say that the monodromy around the origin has matrix representation(
1 1
0 1

)
(3.1.74)

Figure 3.8: Ooguri-Vafa space

Proposition 3.1.37. The central charge function Z : B → Γ∨ ⊗Z C for the Ooguri-Vafa
space can be realized as

Zu(γe) = u Zu(γm) =
1

2πi

(
u log

u

Λ
− u
)
. (3.1.75)

Proof. Since by definition, we see that Z is a homomorphism from Γ to C, and from the
monodromy (3.1.73) above, we conclude that Z(γe) should stay the same after looping
around the origin, while Z(γm) will be shifted as

Z(γm) −→ Z(γm) + Z(γe)

By proposition 3.1.26, we know that Z is holomorphic in u, thus we should find the
simplest holomorphic function in u that exhibits this monodromy property. We claim
that the form given in 3.1.75 satisfies our purpose.

As u 7→ e2πiu, one easily sees that

Z(γe) = u 7→ e2πiu = u = Z(γe)

while for Z(γm) we have

Z(γm) =
1

2πi

(
u log

u

Λ
− u
)
7→ 1

2πi

(
e2πiu log

e2πiu

Λ
− e2πiu

)

=
1

2πi

(
u(2πi+ log(

u

Λ
))− u

)
= u+

1

2πi

(
u log

u

Λ
− u
)

= Z(γe) + Z(γm).
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Denote by x = Re(Z(γm)), y = Re(Z(γe)) the corresponding real affine coordinates,
we see that they transform in the same way as in (3.1.72). Thus, the singular affine
structure also has the monodromy (3.1.73).

More general type of singularities

More generally, we expect the following situation around the discriminant locus (see
for example [Nei14b]). We won’t discuss the more complicated type of singularities, since
at one hand, for the most practical applications, the A1-case is already sufficient, and at
another hand, the more complicated situation is still being less understood.

We assume there there is a smooth component ∆0 ⊂ ∆, such that for b ∈ ∆0, there is
a primitive γ0 ∈ Γb, i.e, 〈γ0, γ〉 = 1, for some γ. Suppose Zb(γ0)→ 0 as b approaches ∆0,
i.e., γ0 corresponds to a vanishing cycle. Then the monodromy of Γ around ∆0 is given
by the Picard-Lefshetz type transformation

γ 7−→ γ + 〈γ, γ0〉γ0. (3.1.76)

We see that Ooguri-Vafa space is a special case in which γe is the vanishing cycle near
the origin such that it corresponds to the monodromy invariant direction. As 〈γe, γm〉 = 1,
the above formula implies the monodromy given in the formula (3.1.73).

Local model near the discriminant

With these preparation, we can state the local model near the discriminant, which is
essentially theA1-singularity assumption given in the section 4.5 of [KS14]. We assume
that ∆ = B\B0 is an analytic divisor, and there exists an analytic divisor ∆1 ⊂ ∆ such
that dim∆1 ≤ dimB0− 2, and the complement ∆0 := ∆\∆1 is smooth, then we have the
following local model near ∆0:

1. There exist local coordinates {z1, · · · , zn} near ∆0 such that ∆0 = {z1 = 0}

2. The central charge map Z : B0 −→ Γ∨ ⊗Z C ∼= C2n is a multi-valued map given in
coordinates by

(z1, · · · , zn) 7−→ (z1, · · · , zn, ∂1F0, · · · , ∂nF0) (3.1.77)

where ∂i := ∂
∂zi

, and F0 is given by

F0 =
1

2πi

z2
1

2
log z1 +G(z1, · · · , zn) (3.1.78)

where G is a holomorphic function. The function F0 is called the prepotential,
and satisfies the positivity condition

i〈dZ, dZ〉 > 0 (3.1.79)

3. The monodromy of the local system Γ about ∆0 is given by the Picard-Lefshetz
type formula

γ 7−→ γ + 〈γ, γ0〉γ0 (3.1.80)

where γ0 is the vector such that 〈γ0, ·〉 ∈ Γ∨ is a primitive covector.

Remark 3.1.20. The Ooguri-Vafa space is easily seen to satisfy the A1-singularity as-
sumption above. Indeed, by integrating the second formula in (3.1.74), we get a potential
of the form given in (3.1.77).
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3.1.7 Semi-polarized case

Previously, we have discussed in great details the geometry on polarized complex inte-
grable system, now we can generalize the discussion to the semi-polarized case.

Definition 3.1.23. A semipolarized complex integrable system is given by a holo-
morphic fibration of a complex analytic symplectic manifold π : X0 → B0 with fibers being
the Lagrangian submanifolds which are semiabelian varieties (commutative group varieties
which are extension of abelian varieties by torus) with polarized abelian quotients.

Thus, we have on the local system of charge lattice Γ → B0 an integer valued skew-
symmetric bilinear form (see the formula (3.1.30))

〈·, ·〉 : Λ2Γ −→ ZB0

with the kernel Γ0. Denote by Γsymp the symplectic quotient, then we have the
following exact sequence of local systems

0 −→ Γ0 −→ Γ −→ Γsymp −→ 0 (3.1.81)

By (3.1.71), we have local embedding Z : B0 → Γ∨ ⊗Z C. Composing it with the
natural map

Γ∨ ⊗Z C −→ Γ∨0 ⊗Z C (3.1.82)

gives us the following surjection

Z : B0 −→ Γ∨0 ⊗Z C (3.1.83)

with fibers being complex Lagrangian submanifolds corresponding to the symplectic
leaves in the Poisson manifold Γ∨ ⊗Z C, i.e., they are affine symplectic spaces parallel to
the fibers of the map (3.1.22).

Remark 3.1.21. It can be shown (c.f lemma 4.4.1 in [KS14]) that when the semipo-
larized complex integrable system is algebraic, the monodromy group G of Γ0 is finite.
Consequently, in this case, we actually have the local embedding

pB0 : B0 ↪→ (Γ∨0 ⊗Z C) /G (3.1.84)

Fix a non-singular point Z0 ∈ (Γ∨0 ⊗Z C) /G, we let

M = B0
Z0

:= p−1
B0

(Z0) (3.1.85)

then the local system Γ0, when restricted to M , becomes trivial. Besides, M is embed-
ded as a symplectic leaf parallel to Γsymp inside the Poisson manifold Γ∨ ⊗Z C.

Remark 3.1.22. Identify Γ∨0 ⊗ZC with Cm, then Γ∨⊗ZC ∼= C2n+m, while the symplectic
quotient Γsymp being identified with C2n, then the local model for the map is given by
C2n+m → Cm with fiber being C2n.
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The local model near the discriminant for the polarized case can be easily generalized
to the semipolarized case.

A1singularity assumption in the semipolarized case

We assume that ∆ = B\B0 is an analytic divisor, and there exists an analytic divisor
∆1 ⊂ ∆ such that dim∆1 ≤ dimB0 − 2, and the complement ∆0 := ∆\∆1 is smooth,
then we have the following local model near ∆0:

1. There exist local coordinates {z1, · · · , zn, w1, · · · , wm} near ∆0 such that

∆0 = {z1 = 0}

2. The central charge map Z : B0 −→ Γ∨ ⊗Z C ∼= C2n is a multi-valued map given in
coordinates by

(z1, · · · , zn) 7−→ (z1, · · · , zn, ∂1F0, · · · , ∂nF0, w1, · · · , wm) (3.1.86)

where ∂i := ∂
∂zi

, and F0 is given by

F0 =
1

2πi

z2
1

2
log z1 +G(z1, · · · , zn, w1, · · · , wm) (3.1.87)

where G is a holomorphic function, and the function F0 is called the prepotential,
and satisfies the positivity condition

i〈dZ, dZ〉 > 0 (3.1.88)

which is satisfied for the restriction of dZ to symplectic leaves

Sc1,··· ,cm := {(z1, · · · , zn, w1, · · · , wm) : wi = ci}

Besides, the Poisson structure on C2n+m is specified by the Poisson bivector field∑
1≤i≤n

∂

∂xi
∧ ∂

∂xi+n

3. The monodromy of the local system Γ about ∆0 is given by the Picard-Lefshetz
type formula

γ 7−→ γ + 〈γ, γ0〉γ0 (3.1.89)

where γ0 is the vector such that 〈γ0, ·〉 ∈ Γ∨ is a primitive covector.
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3.2 Attractor flows

In this section, we will introduce certain flows, called the attractor flows on the base B0

of the polarized complex integrable system π : (X0, ω2,0) −→ B0. These flows first ap-
peared in the study of N = 2, d = 4 supersymmetric gravity in superstring theory (see for
examples [Den00],[Moo98]). The interested readers are encouraged to see the appendix
B more information about the attractor flows on the physics side.

We will first introduce the concept of attractor flows from geometric point of view,
which is more pertain to its physics origin. We will then introduce the axiomatic treat-
ment by Kontsevich and Soibelman in [KS14]. After this, we will see how to use these
flows to produce WCS in section 3.2.3.

3.2.1 Introducing the attractor flows

Recall that the base B0 of the complex integrable system is a special Käher manifold (see
proposition 3.1.28). Choosing a symplectic basis (see (3.1.34)) {αi, βj}, 1 ≤ i, j ≤ n for
the charge lattice Γ near a point b ∈ B0, and with the corresponding dual basis {αi, βj},
1 ≤ i, j ≤ n, then the central charge function can be written as (see (3.1.35))

Z =
n∑
i=1

aiαi +
n∑
i=1

aD,iβ
i (3.2.1)

where ai, aD,i are holomorphic functions on B0. And these functions are related by (see
(3.1.38))

aD,i =
∂F
∂ai

where F is the prepotential, and ai, aD,i s are the special coordinates. It is clear that
Z(αi) = ai and Z(βi) = aD,i.

We can take ai, 1 ≤ i ≤ n the holomorphic coordinates for B0, then the Kähler metric
on B0 is given as (see (3.1.42) )

gB0 =
∑
i,j

Im(τij) da
idaj (3.2.2)

where τ = τij is the period matrix defined by τij =
∂aD,i
∂aj

= ∂2F
∂ai∂aj

, with corresponding
Kähler potential given by

K = Im

(∑
i

aD,ia
i

)
(3.2.3)

By remark 3.1.17, the Z- affine coordinates of the base B0 can be chosen to be

yi = Im(ai) yj = Im(aD,j) (3.2.4)

Given γ ∈ Γ near b0 ∈ B0, consider the function

Fγ(u) := Re(Zu(γ))

for some complex coordinates u of B0. Then we have the following definition:
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Definition 3.2.1. The attractor flow associated to (b0, γ) ∈ tot(Γ) is given as the
gradient flow of the function Fγ(u), namely

u̇ +∇Fγ(u) = 0 (3.2.5)

where u̇ denotes the derivative with respect to the “time” parameter t, and the gradient
is taken with respect to the Kähler metric (3.2.2), i.e., its i-th component ∇i is given by∑

j g
ij̄ ∂jFγ(u). Note that by writing the Kähler metric tensor gij̄ = Im(τij), then its

inverse is denoted by gij̄.

Remark 3.2.1. The attractor flow in its original form ([Den00]), is written as the gra-
dient flow associated to the function |Zγ(u)|. Some authors ([Lin14]) also considered the
function |Zγ(u)|2 to define the attractor flows. However, there is no essential difference
among these choices, as we will show that they give the same gradient lines.

The following is a basic result in complex analysis, and it generalizes easily to holo-
morphic functions in several variables.

Lemma 3.2.1. For a holomorphic function f = u+ iv, we have that ∇u · ∇v = 0.

From proposition 3.1.26, we know that Z(γ) is a holomorphic function on B0. Apply-
ing the above lemma to the central charge function, we infer that

∇Re(Z(γ)) · ∇Im(Z(γ)) = 0

Consequently, we have the following

Proposition 3.2.2. Along the attractor flow defined by (3.2.5), Im(Z(γ)) stays constant.

From the above proposition, we see that the flow lines are straight lines in the Z-affine
coordinates given by (3.2.4). More precisely, suppose

γ =
∑
i

giβi + qiα
i

for gi, qi ∈ Z in symplectic basis, then we have that

Z(γ) =
∑
i

giaD,i + qia
i

Consequently, the attractor flow, in Z-affine coordinates, lies in the hyperplane in B0

given by ∑
i

gi yi + qi y
i = C, where C is a constant (3.2.6)

Thus the solution to the attractor flow equation (3.2.5) can be written as∑
i

gi yi(t) + qi y
i(t) = C, where t denotes the “time” parameter. (3.2.7)

Remark 3.2.2. The above discussion also implies that the flow lines of the attractor
flow, though defined by using the Kähler metric on B0, turned out to be independent
of the choice of Kähler metric, and is thus completely determined by the central charge
function.
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Figure 3.9: Attractor flows on B0 and Z-complex plane

As we have noted before (see (3.1.66)) that our base B0 is endowed with a S1-family
of Z-affine structures. Given θ ∈ S1, the corresponding Z-affine manifold is denoted by
B0
θ , with the adapted affine coordinates given by Im

(
e−iθZ(γi)

)
. Then we see easily that

in the affine structure corresponding to θ = ArgZb0(γ), the flow line (3.2.7) is an affine
line on B0

θ given by Im
(
Zb(t)(γ)

)
= Im (Zb0(γ)), which is equivalent to

Im
(
e−iθZb(t)(γ)

)
= 0 (3.2.8)

Thus in the Z-affine coordinates on B0
θ , the flow line (3.2.7) can be rewritten as∑

i

gi yi(t) + qi y
i(t) = 0 (3.2.9)

Proposition 3.2.3. The phase ArgZ(γ) of is constant along the attractor flow.

Proof. This is a direct consequence of the equation (3.2.8).

Proposition 3.2.4. The central function Z(γ) has no critical points.

Proof. Suppose to the contrary that b is a critical point of Z(γ), then dZb(γ) = 0, then
by (3.1.4), we see that for v ∈ TbB0, we have that

dZb(γ)(v) =

∮
γ

ιṽ ω
2,0 = 0

which is contradicts to the nondegeneracy of the holomorphic symplectic form ω2,0. Con-
sequently, the central function is free from critical points.

Proposition 3.2.5. Away from the discriminant locus ∆, the function Fγ(u) is decreas-
ing along the flow line.

Proof. By using the special kähler metric (see (3.2.2) above)

ds2 =
∑
i,j

Im(τij) da
idaj =

∑
ij

gij̄ da
idāj

the attractor flow equation (3.2.5) becomes

u̇i = −
∑
j

gij̄ ∂̄jFγ(u)

from this we see that

d

dt
Fγ(u) =

∑
i

∂iFγ(u) u̇i = −
∑
ij

gij̄ ∂i Fγ(u) ∂̄j Fγ(u) < 0
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Definition 3.2.2. From the above proposition, the attractor flow would converge to the
local minimum of the function Fγ(u). These terminate points of the flow line will be
called the attractor points.

Remark 3.2.3. By the equation (3.2.8), we see that Im
(
e−iθZb(γ)

)
vanishes identically

along the flow line, consequently we must have that

|Zb(γ)| = Re
(
e−iθZb(γ)

)
This explains the rational of using |Z(γ)| to define the attractor flows. Besides, this
suggest that the attractor points would correspond to the minimum of the function |Z(γ)|,
which has the meaning as “mass” for BPS particles in supersymmetric field theory (see the
appendix A for further physics motivation). Thus, we also call the function Re

(
e−iθZb(γ)

)
as the mass function.

Remark 3.2.4. Motivated by the above discussion, we can consider the attractor flow
associated to the function F θ

γ = Re
(
e−iθZb(γ)

)
, where θ = Arg(Zb0(γ)), for (b0, γ) ∈ totΓ

at the first place. This would be the case when we discuss its connection to the wall-
crossing structure in section 3.2.3. In this “rotated case”, the attractor line is seen to be
given directly by the equation (3.2.8).

The possible minimum of the mass function |Zb(γ)| are the zeros of the central charge.
In particular, we see that near the discriminant locus ∆, certain homology cyce γ ∈ Γb

∼=
H1(π−1(b),Z) shrinks to the zero, which causes

Zb(γ)→ 0 as b→ ∆

Thus we expect the attractor points lie in the discriminant ∆. So, we need to study how
attractor flows behave near the discriminant.

Recall that from the A1-singularity assumption in section 3.1.6, we see that the dis-
criminant locus is given as ∆ = {z1 = 0}, where {z1, · · · , zn} are local coordinates near
∆. Reducing to the two real dimensional case, and denote by γ0 the vanishing cycle,
and by γ1 the remaining basis element, we see from (3.1.78) that near the singularity of
Z-affine structure {u = 0}, the central charge is of the following form

Zu(γ0) = u, Zu(γ1) =
1

2πi

(
u log u+

u

2

)
+ ∂uG(u)

Clearly, the cycle γ0, under the identification TB0 ∼= Γ, corresponds to the invariant
direction under the monodromy given by the Picard-Lefshetz formula (3.1.80).

Proposition 3.2.6. Under the A1-singularity assumption, the attractor flow line cor-
responding to the vanishing cycle γ0 near the singularity of the affine structure, namely
{u = 0}, terminates at this singularity which is thus an attractor point of the attractor
flow, while for the charges γ other that the vanishing cycle, the attractor flow line can
avoid this singular point.

Proof. From the local expression of the central charge near singularity given above, we
see that when we approach to the origin, Zu(γ0) = u goes to zero, which is the minimum
of Re (Zu(γ0)), thus by proposition 3.2.5 and the definition 3.2.2, we see that the flow
line in this case would terminate at the attractor point, namely the origin.
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On the other hand, if the attractor flow associated to Re (Zu(γ1)) terminates at the
origin, then by proposition 3.2.3, the phase of the central charge function would keep
constant value along the flow line, but this is impossible due to the particular form of
Zu(γ1) given above.

Split attractor flows

In general, the flow line would not flow directly into the attractor points as it would
hit the walls on the base B0. Recall from the section 2.2.2, the wall of the first kind
W1

γ associated to the charge γ is defined as

W1
γ =

⋃
γ=γ1+γ2

Wγ1,γ2

where Wγ1,γ2 is the set defined as

Wγ1,γ2 :=

{
b ∈ B : Im

(
Zb(γ1)

Zb(γ2

)
= 0

}
We want to understand what happens when the attractor flow lines hit this wall.

Suppose that the flow line associated to the charge γ, i.e., gradient flow associated to
the function Fγ = Re

(
e−iθZ(γ)

)
, hits the wall Wγ1,γ2 at which the charge splits as

γ = γ1 + γ2. By definition, at the point of intersection of the flow line with the wall, we
have the following condition

Arg(Z(γ)) = Arg(Z(γ1)) = Arg(Z(γ2)) (3.2.10)

We know from proposition 3.2.3 that along the flow line Arg(Z(γ)) stays constant,
consequently, at the intersection point, the flow line would split into two flow lines cor-
responding to Re(Z(γ1)) and Re(Z(γ2)) respectively. We denote by Lγ the flow line
corresponding the the charge γ, thus at the intersection point of the flow line with the
wall W 1

γ , we have schematically
Lγ = Lγ1 + Lγ2

which means that at this intersection point (called the splitting point), the flow line
Lγ splits into two flow lines, namely Lγ1 and Lγ2 respectively.

Figure 3.10: Split attractor flow and splitting point

Apparently, this process could be iterated until the resulting split attractor flow ter-
minates at the attractor points. Namely, at certain stages, some charge, say γi splits at
some wall into γj + γk such that γj and γk corresponds to the vanishing cycles. Then
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by proposition 3.2.6, the flow lines Lγj and Lγk would terminate at the corresponding
singularities at which the two cycles shrink to the zero. Clearly, this would give us a
tree on the base B0 of the complex integrable system, we call it the attractor tree as-
sociated to the charge γ. We expect that this process would stop at finitely many steps
and consequently the attractor tree would be finite. Since the mass function |Zb(γ)| is
decreasing along the flow trees, which also implies the following proposition:

Figure 3.11: Attractor tree

Proposition 3.2.7. The attractor trees associated to (b, γ) ∈ totΓ form an acyclic graph.

Proposition 3.2.8. The flow line equation (3.2.9) can also be written as follows

Zb(t)(γ) = c(1− t) (3.2.11)

where t is the real time parameter, and c is a complex constant depending on the initial
condition of the attractor flow.

Proof. From (3.2.8), we see that the attractor flow is the constant phase curve for
the central charge function, thus, it could be written in the form above. Suppose
Arg(Zb0(γ)) = θ, then c is a complex number with phase θ. When t = 1, the end
point of the flow will land at the attractor point where the central charge vanishes.

Proposition 3.2.9. There is another form of attractor follow equation

∂t Im(e−iθα) = −γ (3.2.12)

where α is the one form in defining the central charge (see definition 3.1.12, later will be
identified with the Seiberg-Witten differential). Consequently, it can be further integrated
into the following form

Im(e−iθα) = −γ t+ Im(e−iθα)|t=0 (3.2.13)

Proof. For the physics derivation of the equation (3.2.12), the readers are referred to
section 3.4 of [Den00]. We present a mathematical proof here. First recall that the
central charge Z is defined through

Zb(γ) =

∮
γ

α =: 〈α, γ〉

Thus equation (3.2.8) becomes

Im(e−iθ〈α, γ〉) = constant.
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Thus we have that
∂t Im(e−iθ〈α, γ〉) = 0

As the flow line equation is linear in affine coordinates, by 〈γ, γ〉 = 0, the above equation
can be written further as

∂t Im(e−iθα) = −γ

It is easy to see that this integrates into (3.2.13).

Proposition 3.2.10. The attractor flow associated to the charge γ can intersect with the
wall W1

γ1,γ2
, where γ = γ1 + γ2 at most once. In particular, the flow line intersects with

the wall transversely.

Proof. We denote by b∗ the intersection point with the corresponding time parameter
being t∗, such that at b∗, we have that

Zb∗(γ) = Zb∗(γ1) + Zb∗(γ2)

and
Arg(Zb∗(γ)) = Arg(Zb∗(γ1)) = Arg(Zb∗(γ2)) = θ

Then applying the equation (3.2.13) in our case, and take the intersection with γ1, then
we see that at the crossing point b∗, we have that

Im
(
e−iθZb∗(γ1)

)
= −〈γ, γ1〉 t∗ + Im

(
e−iθZb0(γ1)

)
The left hand side is seen to vanish, and under the assumption that 〈γ1, γ2〉 6= 0, we
see that the above equation has an unique solution t∗, which completes the proof of the
proposition. Indeed, we can give the solution as

t∗ =
Im
(
e−iθZb0(γ1)

)
〈γ2, γ1〉

=
Im
(
Zb0 (γ1)+Zb0 (γ2)

|Zb0 (γ1)+Zb0 (γ2)| Zb0(γ1)
)

〈γ2, γ1〉

=
1

〈γ2, γ1〉

Im
(
Zb0(γ2)Zb0(γ1)

)
|Zb0(γ1) + Zb0(γ2)|

From the computation done in the above proof, we can deduce that

−(t− t∗) =
1

〈γ1, γ2〉

Im
(
Zb(γ1)Zb(γ2)

)
|Zb(γ1) + Zb(γ2)|

thus the following proposition holds.

Proposition 3.2.11. Assuming 〈γ1, γ2〉 > 0, then near the wallW1
γ1,γ2

, the attractor flow

would flows from the region where Im
(
Zb(γ1)Zb(γ2)

)
< 0, i.e., where Arg(Zb(γ1)) >

Arg(Zb(γ2)) into the region where Im
(
Zb(γ1)Zb(γ2)

)
> 0, i.e., where Arg(Zb(γ1)) <

Arg(Zb(γ2));q1X while at the intersection point, we have that Arg(Zb(γ1)) = Arg(Zb(γ2)),
which is compatible with the definition of the wall of the first kind.

Finally, we can prove the following
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Proposition 3.2.12. The length of attractor flow line connecting b /∈ W1
γ1,γ2

and b∗ is
bounded.

Proof. Suppose the point b corresponds to the parameter 0, then we calculate as follows∫ t∗

0

(
ds

dt

)2

dt =

∫ t∗

0

∑
ij

gij̄ u̇i ¯̇ujdt

=

∫ t∗

0

∑
ij

gij̄

(
−
∑
k

gik̄ ∂̄k|Z(γ)|

)(
−
∑
l

glj̄ ∂l|Z(γ)|

)
dt

= −
∫ t∗

0

∑
ij

(
∂i|Z(γ)|+ ∂̄j|Z(γ)|

)
dt = −

∫ t∗

0

d|Z(γ)| > 0

The last inequality holds because the mass function |Z(γ)| is decreasing along the flow
line (see proposition 3.2.5). Thus we infer that∫ t∗

0

(
ds

dt

)2

dt = |Zb(γ)| − |Zb∗(γ)|

= |Zb(γ)| − (|Zb∗(γ1)|+ |Zb∗(γ2)|) ≤ |Zb(γ)| <∞

Remark 3.2.5. The distance of attractor flow line between a point b /∈ W1 and the at-
tractor point may not be finite in general. However, under the A1-singularity assumption,
we see that the distance is still finite since by the formula (3.1.87), we deduce easily that
in this case for γ being a vanishing cycle, Zb(γ) has a removable singularity at the origin,
thus Zb(γ) and dZb(γ) extends to zero at the singularity.

3.2.2 Axiomatization

Motivated by the discussion of the attractor flow in previous subsection, we can now give
the axiomatic treatment following Kontsevich and Soibelman. (see section 3 of [KS14]).

Over the base B0, we have the local system of lattices Γ, endowed with the antisym-
metric bilinear pairing 〈·, ·〉 : ∧2Γ → Z. Then this pairing gives rise to the following
map

ι : Γ −→ Γ∨ γ 7−→ 〈γ, ·〉
Denote by Γ0 the kernel of ι, i.e., the radical Ann〈·, ·〉 of the pairing, and by Γsymp

the symplectic quotient of Γ by Γ0.

Definition 3.2.3. The attractor flow on totΓ is defined to be

ḃ = ι(γ) γ̇ = 0 (3.2.14)

Here we used the identification TB0
∼= Γ∨, and Im(ι) is an affine space in Γ∨ parallel

to Γsymp.

Remark 3.2.6. The above definition is motivated by the attractor flow equation (3.2.9).
The projection of the attractor flow (3.2.14) onto the base B0 would be the attractor flow
in the usual sense.
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Remark 3.2.7. The attractor flow can to extended to totΓR in the obvious manner.

Recall that in the definition of the global wall-crossing structure on B0 (see definition
2.5.1), we have the continuous map Y : B0 → Γ∗R, and the walls of the second kind W2

γ

in B0 associated to γ (see definition 2.5.4), namely

W2
γ = γ⊥ := {b ∈ B0 : Y (b)(γ) = 0}

We consider the set

B0′ := {(b, v) ∈ totΓR : Y (b)(v) = 0}

and also its subset
B0′
Z := {(b, γ) ∈ totΓ : Y (b)(v) = 0}

Clearly, dimB0′
Z = dimB0 − 1, and dimB0′ = dimB0 + rkΓ− 1.

Proposition 3.2.13. The sets B0′ and B0′
Z are preserved by the attractor flow defined by

equation (3.2.14).

Proof. From the definition, the attractor flow line is locally given by

t 7→ b0 + ι(γ)t

from which we see that

Y (b0 + ι(γ)δt)(γ) = Y (b0)(γ) + Y ′(b0)ι(γ)(γ)δt = Y ′(b0)〈γ, γ〉δt = 0

Remark 3.2.8. The proposition above is motivated by proposition 3.2.2 where we showed
the the flow lines lie on the hypersurface that is defined by the constant phase condition
(see equation (3.2.8)). Consequently, the attractor flow is actually defined on the two sets
above.

Definition 3.2.4. The attractor flow (3.2.14) can be restricted to be a flow on B0′, which
can be further restricted to B0′

Z and hence induces the “integer” attractor flow on it.

Using this new definition, we can prove the proposition 3.2.10 more straightforwardly
as follows. We want to show the attractor flow line intersects with the wall W1

γ1,γ2

transversely.

Proof. Near the intersection point, we have the spliting: γ = γ1 + γ2 such that

Y (b+ ι(γ)δt)(γi) = 0 i = 1, 2.

that is
Y (b)(γi) + Y ′(b)〈γ, γi〉δt = 0 i = 1, 2.

Consequently, we have that

Y (b)(γ1) + Y ′(b)〈γ2, γ1〉(t− t0) = 0

which is easily seen to have an unique solution in t.
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Remark 3.2.9. In the semipolarized case, i.e., Γ0 being nontrivial, we see from section
3.1.7 that B0 is foliated by the fibers of the surjection

pB0 : B0 −→ (Γ0 ⊗ R)/G

where G denotes the finite group of monodromy of Γ0. We denote the symplectic leaf
passing through b ∈ B0 by M := Mb, which can be identified via Y with an affine space
over the vector space Γsymp. We can restrict the flow further to the symplectic leaves,
which induces attractor flows on

M ′ := {(m, v) ∈ totΓR : Y (m)(v) = 0}

and the integer flows on

M ′
Z := {(m, γ) ∈ totΓ\totΓ0 : Y (m)(γ) = 0}

Attractor trees

The attractor flows split when crossing the wall of the first kind, thus generate the
trees on B0, called the attractor trees or split attractor flows. Now we cite its
definition [KS14] (definition 3.2.1 there).

Definition 3.2.5. An attractor tree is a metrized rooted tree T endowed with a continuous
map f : T → M to a leaf M ⊂ B0 and a lift f ′ : T − {vertices} → M ′

Z. We assume
that f ′ maps edges of T to trajectories of the attractor flow, and the metric on each edge
of T is given by |dt|, where t is the time parameter for attractor flow on its lifting. We
assume that all tail edges are maximal positive trajectories of the corresponding internal
vertices of T . We also assume that the balancing condition∑

i

γouti = γin (3.2.15)

is satisfied at each internal vertex v. Here γin is the speed of the f ′ lift of the only edge
incoming from v, and γouti are speeds of the f ′ lifts of all outgoing edges. Furthermore, we
assume that all γouti are pairwise distinct and there exists i1, i2 such that 〈γouti1

, γouti2
〉 6= 0.

Figure 3.12: Balance condition

In the above definition, the term maximal positive trajectory means that for each
point (b,Γ) ∈ B0′, there exits maximal possible

tmax := tmax(b,γ) ∈ (0,+∞]
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such that the attractor flow trajectory exists. The trajectory corresponding to t ∈ [0, tmax)
is called the maximal positive trajectory of the point (b, γ). The combinatorial type of
the attractor tree T rooted at (b, γ) consists of the abstract rooted tree T corresponding
to T as well as a collection of velocities of all its edges, including its tails. The velocities
can be treated as elements of Γ via the parallel transport along the edges. Varying (b, γ),
the combinatorial types form a local system over B0′

Z .

Motivated by proposition 3.2.12 in the last subsection, we infer that the inner edges of
the attractor tree have finite length, thus we have the collection {le} of lengths of its inner
edges e. Then as the velocities is determined by the lengths and vice verse, we conclude
that the combinatorial type of the attractor tree T at (b, γ) is uniquely determined by
{le}. We have the following:

Proposition 3.2.14. The collection {le} and the vector Y (b) ∈ Γ∗b,R satisfy the following
system of linear equations:

1. Y (f(v))(f ′(u)) = 0, where v is a vertex and u is a point on an edge adjacent to v
and sufficiently close to v;

2. For an inner edge e connecting vertices v1 and v2, we have that

Y (f(v2))− Y (f(v1)) = ι(f ′(u)) le

where u is any point of e.

Proof. The first part of the proposition follows directly from the remark 3.2.8, while for
2), we consider the attractor flow which gives the edge e, namely:

ḃ = ι(f ′(u))

Suppose vi corresponds to ti respectively, i = 1, 2, then by integrating the attractor flow
equation, we get ∫ t2

t1

ḃ dt =

∫ t2

t1

ι(f ′(u)) dt

Consequently, we get the desired identity.

Given an attractor tree T rooted at (b, γ), consider the germ of the universal defor-
mation of T , which consists of attractor trees with sufficiently close roots, combinatorial
type and edge lengths. From the above characterization, we can see this this germ of
universal deformation can be identified with an open domain in the vector subspace of
the vector space Γ∗b,R ⊕ Rinner edges defined by the above systems of linear equations. In
particular, we see that the set of roots of attractor trees which are close to T and have
the same combinatorial type is locally an open domain in a vector subspace of Γ∗b,R.

Definition 3.2.6. The attractor tree T is said to be locally planar if for each internal
vertex v, the corresponding vectors γouti span a two dimensional vector subspace in Γ⊗R.

In [KS14] (proposition 3.2.3. contained therein), the following result was proved. We
cite it here with its proof being omitted.

Proposition 3.2.15. If T is locally planar, then the set of roots of all sufficiently close
attractor trees of the same combinatorial type has codimension ≥ 1, and has codimension
≥ 2 were the tree is non-planar. Moreover in the formal case any sufficiently close
attractor tree is uniquely determined by its root.
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3.2.3 Connection with WCS

In this subsection, we want to give a method about how to use the splitting attractor
flows to produce WCS on the base B0 of the complex integrable system.

Suppose we have a closed subset C+ ⊂ B0′ ⊂ totΓR satisfying the following

1. Fibers of C+ under the natural projection of totΓR to B0 are strict convex cones;

2. The set C+ is preserved by the “inverse attractor flow”: ḃ = −ι(v) v̇ = 0, for
v ∈ Γb,R.

Remark 3.2.10. This set C+ can usually be known by some apriori reason, and could
serve as “upper bound” for the support of WCS to be discussed below.

We define the tail set to be an open subset TB0′
Z
⊂ B0′

Z consisting of points (b, γ) ∈ C+

such that their maximal positive trajectories do not intersect the wallW1
γ , and belong to

C+. The same should hold for all nearby points (b′, γ′).

Remainder on WCS

Given a local system of full rank lattice Γ → B0 over B0, and a local system of Γ-
graded Lie algebra g =

⊕
γ∈Γ gγ over B0. Moreover Γ is endowed with an integer valued

symplectic paring 〈·, ·〉 such that if 〈γ1, γ2〉 = 0, for γi ∈ Γb, then the corresponding
components of gb satisfies [gb,γ1 , gb,γ2 ] = 0. We assume that for γ ∈ Γ0, gγ = 0.

We have a locally continuous map Y : B0 → Γ∗R. Then the WCS on B0 in section 2.5
would give us a map a : totΓ→ g such that for b ∈ B0, γ ∈ Γb that satisfies Y (b)(γ) = 0,
we have the element ab(γ) := a(b, γ) ∈ g

b,γ
. It is related to the DT-invariants (thus the

invariants Ωb(γ) through the formula (2.1.3)) in the following way

ab(γ) = DT (γ) · eγ ∈ g
b,γ

The above map a is a locally constant function on totΓ that becomes discontinuous at
those (b, γ) such that γ = γ1 + γ2 and the phase of Zb(γ1) and that of Zb(γ2) get aligned.
Clearly, the discontinuous variety projects to the wall of the first kind W1

γ on B0, which
is a locally-finite hypersurfaces in B0 pulled back through Y from a ZPL hypersurface
in Γ∗R. Also recall (see definition 2.5.3) that the support of a wall crossing structure σ,
denoted by Suppσ is defined to be a minimal closed subset of totΓR that is conic in the
direction of ΓR such that it contains those points (b, γ) ∈ totΓR with Y (b)(γ) = 0 and
ab(γ) ∈ g

b,γ
\{0}, i.e., those (b, γ) with nontrivial DT-invariants.

Finally, we recall that for each γ ∈ Γ\{0}, we have the associated wall of second kind
(see definition 2.5.4)

W2
γ = γ⊥ :=

{
b ∈ B0 : Y (b)(γ) = 0

}
When the wall of the first kind W1

γ is being crossed, the elements (that encode DT-
invariants) ab(γ) would jump, and its jumps are governed by the KSWCF (2.2.5).
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The use of split attractor flows

The algorithm for using attractor flows to construct WCS as proposed by Kontsevich
and Soibelman in [KS14] goes roughly like the following:

In order to produce a WCS on the base B of the full integrable system π : X −→ B,

namely, a collection of elements
{
ab(γ) ∈ g

b,γ

}
for (b, γ) ∈ totΓ that satisfies KSWCF,

we consider all attractor trees rooted at (b, γ) with tail edges hitting the discriminant
locus ∆. Under certain conditions to be discussed momentarily, we expect that the num-
ber of such trees is finite. Then for every such tree we move from the tail vertices, i.e.,
attractor points which belong to ∆ toward the root b, and apply the KSWCF at each
internal vertex b∗ lying on the wall of the first kind.

By assigning the “initial data” of WCS, i.e., the DT invariants at the discriminant
locus ∆, we can construct by induction the DT invariant ab(γ).

Now we try to make the above algorithm more precise. Denote by g
loc

the restriction
of g to the tail set TB0′

Z
, then we define the initial data of a wall crossing structure as

follows

Definition 3.2.7. The initial data of a WCS bounded by C+ is given by the restriction
of the map a to TB0′

Z
.

Remark 3.2.11. From the A1-singularity assumption, we expect that for b ∈ ∆, there is
only one special direction corresponding the the vanishing cycle over b,which is invariant
under the monodromy around b. Consequently, the DT invariants at b in non-trivial only
in this special direction, which means that the local system g

loc
is typically trivial of rank

one.

Since we expect that for generic (b, γ), the attractor flow rooted at (b, γ) would ter-
minate at the attractor points, thus we impose the following tail assumption:

Tail Assumption Given any open subset U ⊂ B0′, the subset of points (b, γ) ∈ U
such that their maximal positive trajectories intersect the tail set TB0′

Z
is dense in U .

For an attractor tree T , denote by T 0 the tree obtained by deleting all its tail edges,
then every edge of T 0 is joined by two vertices.

Compactness Assumption There exists an open dense subset B0′′
Z ⊂ B0′

Z with the
property that for every (b, γ) ∈ B0′′

Z , there exists a compact subset K(b,γ) ⊂ B0′
Z and an

open neighborhood U of (b, γ) such that for every attractor tree T with the root and root
edge in U the corresponding tree T 0 belongs to K(b,γ).

Mass Function Assumption There exists a function X : B0′
Z −→ R that is decreas-

ing along the attractor flow when restricted to C+, and is strictly decreasing and strictly
positive on the set C+\totΓ0,R.

Remark 3.2.12. The mass function assumption is motivated by the function Fγ(b) =
Re(e−iθZb(γ)) in the definition of the attractor tree.
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Consider the union of all attractor trees rooted at (b, γ), which is a graph denoted by
G(b, γ) for (b, γ) ∈ B0′′

Z , then the Compactness assumption ensures that the graph G(b, γ)
is finite and the Mass function assumption implies that the graph is acyclic.

When the root b runs through the set of generic points, i.e., Y (b) falls into the comple-
ment of the locally finite union of codimension ≥ 2 subspace in Γ∗R such that Y (b)(γ) = 0,
we infer from the proposition 3.2.15 that the graph G(b, γ) is locally planar. Now we can
state the following proposition which falls into our expectation.

Proposition 3.2.16. The WCS with fixed g and support belonging to C+
Z := C+ ∩B0′

Z is
uniquely determined by its initial data.

Proof. For a generic point (b, γ) ∈ C+
Z , the maximal acyclic graph G(b, γ) above has all

its tails belonging to TB0′
Z

due to the tail assumption. Then the value of ab(γ) can be
computed from the initial data by induction, namely, we have the value of DT-invariants
at the attractor points, and then move toward the root along the edges of the graph.
As the graph G is acyclic and locally planar, for any internal vertex (b∗, γ∗), ab∗(γ∗) is
determined by the KSWCF in 2-dimensional case (see formula (2.2.7)). We continue
moving until we meet the root (b, γ). By compactness assumption, there are only finitely
many KSWCFs to be used. Thus, ab(γ) can be computed in finitely many steps.

WCS for integrable system

The WCS on the base B0 is defined through the map

Y : B0 → Γ∗R b 7→ Yb := Im(e−iθZb)

Recall that we have a local system of lattices Γ→ B0, the radical Γ0 of Γ is assumed
to have finite monodromy group G. We then have the submersion

pB0 : B0 −→ Γ∗0,C/G

and the fiber M := B0
Z0

for non-singular point Z0 ∈ Γ∗0,C/G is a symplectic leaf in B0

and can be identified via the map Y above with an affine symplectic leaf parallel to Γsymp∗R .

We will consider the split attractor flows on B0, i.e., the projection of the attractor
tree as defined in definition 3.2.5 onto the base. We can describe it by using the Z-affine
structure on B0 as follows:

Definition 3.2.8. The attractor tree (or tropical curve with stop, see [Lin17])
on the affine manifold B0 with singularities being the focus-focus type (A1-singularity
assumption) is given by a rooted tree on B with root b ∈ B0 such that its edges are given
by affine lines and each of its internal vertex is of valency at least two and the balancing
condition is being satisfied there, while the tail edges terminating at ∆ and is in the
monodromy invariant direction.

Remark 3.2.13. We want the edges to be the affine line defined by the so called good
attractor tree to be defined below.

Definition 3.2.9. An attractor tree is called good if it is locally planar in a fiber M of
pB0 such that its tail edges hit transversely the discriminant ∆, with the velocity of any tail
edge being proportional to the corresponding vector γ (monodromy invariant direction).
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Remark 3.2.14. From section 3.2.2, we conclude that the function Re(e−iθZ) in defining
the attractor flow can serve as a mass function. And the initial data is given by assigning
for b ∈ ∆ and the primitive vanishing cycle γ the value

ab(kγ) :=
1

k2
ekγ

for all k ≥ 1, i.e., the DT-invariant Ωb(γ) = 1.

By the above remark, we can use the algorithm mentioned at the beginning to con-
struct a WCS for the complex integrable system. In particularly, we have the following
result due to Kontsevich and Soibelman (see section 2.7 of [KS08])

Proposition 3.2.17. The WCS on the base B of the integrable system gives rise to an
local embedding B0 ↪→ Stab(gb) for each b ∈ B0.

Proof. As b varies, we get a family of stability data on the graded Lie algebra gb, recall
that in proposition 2.6.3, we have shown that this can be identified with the global WCS
on Bθ := B × Sθ via the map (see (2.6.3))

Y : B × Sθ → Γ∗R

(b, θ) 7→ Yθ(b)(γ) := Im(e−iθZb(γ))

Given (b, γ), we consider all good attractor trees rooted at (b, γ), i.e., the split attrac-
tor flow associated to the function Re(e−iθZb(γ)), where θ = ArgZb(γ). Since along the
flow lines, the phase of the central charge stays constant, we see that a or Ω : totΓ→ Q
restricts to B0′ := {(b, γ) : Yθ(b)(γ) = 0}, which is compatible with the above Y .

At the discriminant locus ∆, motivated by remark 3.2.13, we assign the DT-invariant
Ωb(γ) = 1 for γ corresponding to the monodromy invariant direction. As we moving
forward toward the root (b, γ), the attractor flow lines lie on the co-dimensional one wall,
the wall of second kind

W2
γ :=

{
b ∈ B0 : Yθ(b)(γ) = 0

}
And when the flow line hit the wall of first kind where γ = γ1 + γ2, i.e.,

W1
γ1,γ2

:=
{
b ∈ B0 : Im(Zb(γ1)Zb(γ2)) = 0

}
the flow line Lγ associated to γ will splits into two flow lines associated to the charge

γ1 and γ2 respectively i.e.,
Lγ = Lγ1 + Lγ2

and the flow lines Lγ1 and Lγ2 sit inside the wall of second kindW2
γ1

andW2
γ2

respectively.

At each such splitting point, i.e., the intersection point of the flow line with the wall
of first kind, we apply the KSWCF in two dimension case. By this procedure, we will
finally compute Ωb(γ) at finitely many steps of induction by our assumptions.

Thus, for each b inside B0 and γ ∈ Γb, let θ = ArgZb(γ), we have obtained in this way
the collection of DT-invariants Ωb(γ) satisfying KSWCF. Note that the attractor trees
on B can be lifted to attractor trees on B × Sθ in an obvious way.

We see in particularly that for each b ∈ B0, we have a WCS on {b} × Sθ ∼= Sθ, which
by proposition 2.6.1, is the same as a stability data on the torus Lie algebra gb. we thus
get the desired embedding.
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3.2.4 Attractor flows versus Hesse flows

We have already exhibited (see proposition 3.1.27) that the base B of a complex inte-
grable system is naturally endowed with a Z-affine structure with singularities at the
discriminant locus ∆. On the smooth part of the base B0, it is endowed with a Kähler
metric (see formulas (3.1.41) and (3.1.42))

gB0 =
∑
ij

gij da
idāj (3.2.16)

where the metric metrix is given via the prepotential F and the dual coordinates aD,j
through the following

gij = Im(τij) = Im

(∑
i

daD,i dā
i

)
=

∂2F
∂ai∂aj

(3.2.17)

and the Kähler potential of the metric is given by

K = Im

(∑
i

aD,i ā
i

)
(3.2.18)

Next we recall the following definition of Monge-Ampèr manifold(c.f.[KS01]).

Definition 3.2.10. A Monge-Ampère manifold is a triple (X, g,∇), where (X, g) is a
smooth Rieman manifold with metric g, and ∇ a flat connection on the tangent bundle
TX such that

• ∇ defines an affine structure on X.

• The metric g in local affine coordinates (x1, · · · , xn) can be expressed as

gij =
∂2K

∂xi∂xj
(3.2.19)

for some smooth real valued (potential) function K.

• The following Monge-Ampère equation should be satisfied

det

(
∂2K

∂xi∂xj

)
= constant. (3.2.20)

Obviously, the smooth part B0 of the base is a Monge-Ampère manifold.

Definition 3.2.11. Let U ⊂ Rn be a convex open domain in Rn equipped with the stan-
dard affine coordinates x1, · · · , xn, and K : U → R a convex functions. Then the Legendre
transform of the function K is defined as

K̂(y1, · · · , yn) := maxx∈U

(∑
i

xiyi −K(x1, · · · , xn)

)
(3.2.21)

111



Remark 3.2.15. In classical physics, the Legendre transform relates the Lagrangian
formalism with the Hamiltonian formalism. Namely, given the Lagrangian L(q, q̇, t) for
the underlying dynamical system, we get the corresponding Hamiltonian H(p, q, t) through
the Legendre transform

H(p, q, t) = L̂ = pq̇ − L(q, q̇, t)

where p is the variable conjugate to q, i.e.,

p =
∂L
∂q̇

Since Legendre transform is an involution, i.e., for a function K, we have that
ˆ̂
K = K. In

our case, this means that the Lagrangian can also be expressed as the Legendre transform
of the Hamiltonian, namely

L(q, q̇, t) = Ĥ = q̇p−H(p, q, t)

Then under the Legendre transform, the Lagrangian equations (of motion) in Lagrangian
formalism get transformed into the Hamiltonian equations (of motion), that is

ṗ =
∂L
∂q

ṗ = −∂H
∂q
⇐⇒ q̇ =

∂H
∂p

p =
∂L
∂q̇

We have the following duality result for Monge-Ampère manifold (see c.f. lemma 1 in
[KS01] for a short elegant proof).

Proposition 3.2.18. If K : U → R is a convex functions satisfying the Monge-Ampère
equation,then its Legendre transform K̂ also satisfies the Monge-Ampère manifold.

From the above proposition it follows that in the dual affine coordinates (y1, · · · , yn)
on the base B0, we have another metric ĝij (dual to gij) that is given by

ĝij =
∂2K̂

∂yi∂yj
(3.2.22)

Further more, we can state the following proposition which is given in [KS01].

Proposition 3.2.19. For a given Monge-Ampère manifold (X, g,∇) there is a canon-

ically defined dual Monge-Ampère manifold (X̂, ĝ, ∇̂) such that (X, g) is identified with

(X̂, ĝ) as Riemann manifolds, and the local system (TX̂ , ∇̂) is naturally isomorphic to

the local system dual to (TX ,∇). And if ∇ defines an Z-affine structure on X, then ∇̂
defines an Z-affine structure on X̂.

Remark 3.2.16. For the relevance of the Monge-Ampère duality in dual torus fibration
and mirror symmetry, see [KS01] for more information.

Next, we will construct explicitly the dual Monge-Ampère manifold for the base
of the complex integrable system. This part is based on the paper of Dieter Van der
Bleeken[Van12].
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Recall that on the base B0, we have the (rotated) special coordinates {e−iθak} and
the dual coordinates {e−iθaD,l}. where 1 ≤ k, l ≤ n. Consider the adapted real spe-
cial affine coordinates (see definition 3.1.18 and remark 3.1.17 for the meaning of these
terminologies), i.e.,

e−iθak = xk + iyk e−iθaD,l = xl + iyl (3.2.23)

We want to find the exact relations between these affine coordinates.

Since the dual coordinate aD,l = ∂F/∂al is defined through the prepotential F , and
F is a holomorphic function in ak, we see that it can be viewed as a function in variables
{xk, yk}. Consequently, we claim that

Proposition 3.2.20. The affine variables xl is conjugate to yl, while yl is conjugate to
xl, in the sense that there exists some holomorphic function F such that

xl =
∂F

∂yl
yl =

∂F

∂xl
(3.2.24)

Proof. We compute as follows:

xl + iyl = e−iθaD,l = e−iθ
∂F
∂al

= e−iθ

(∑
k

∂F
∂xk

∂xk

∂al
+
∂F
∂yk

∂yk

∂al

)

= e−iθ
(
e−iθ

∂F
∂xl
− i e−iθ ∂F

∂yl

)
=

∂

∂xl
(
e−2iθF

)
− i ∂

∂yl
(
e−2iθF

)
=

∂

∂xl
(
Re
(
e−2iθF

)
+ i Im

(
e−2iθF

))
− i ∂

∂yl
(
Re
(
e−2iθF

)
+ i Im

(
e−2iθF

))
which by applying the Cauchy-Riemann equation for the holomorphic function e−2iθF ,

equals to

2

(
∂Im

(
e−2iθF

)
∂yl

+ i
∂Im

(
e−2iθF

)
∂xl

)
By defining F := 2Im

(
e−2iθF

)
, the relations (3.2.24) then follows from the above

computations.

Since (xk, yl) is conjugate to the variables (yk, x
l) by the above proposition, they are

naturally related to each other through the Legendre transform of F with respect to the
conjugate pairs {xi, yi}, then the function F , which is given ‘apriori ’ as a function in
the variables (xi, yi), now can be expressed as a function in the variables (yi, y

i) through
the Legendre transform with respect to the conjugate variables (xi, yi), namely

F̂ y(yi, y
i) =

∑
k

ykx
k −F (xi, yi) (3.2.25)

It is easy to see that

∂F̂ y

∂yl
= −xl

∂F̂ y

∂yk
= xk (3.2.26)

Thus the special coordinates {ak} as well as its dual {aD,l} can be expressed in terms
of the real affine coordinates (yi, yi) as follows:

ak = ak(yi, y
i) = eiθ(xk + iyk) = eiθ

(
∂F̂ y

∂yk
+ iyk

)
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aD,l = aD,l(yi, y
i) = eiθ(xl + iyl) = eiθ

(
−∂F̂

y

∂yl
+ iyl

)
(3.2.27)

Similarly, we can transform F into a function in variables (xi, x
i) as

F̂ x(xi, x
i) =

∑
k

xky
k −F (xi, yi) (3.2.28)

It is easy to see that

∂F̂ x

∂xl
= −yl

∂F̂ x

∂xk
= yk (3.2.29)

Thus, in terms of real affine coordinates (xi, x
i), we have the following expressions for

special coordinate and its dual

ak = ak(xi, x
i) = eiθ(xk + iyk) = eiθ

(
xk + i

∂F̂ x

∂xk

)

aD,l = aD,l(xi, x
i) = eiθ(xl + iyl) = eiθ

(
xl − i

∂F̂ x

∂xl

)
(3.2.30)

Remark 3.2.17. We can Legendre transform the function F as it is convex which follows
from the holomorphicity of F .

The function F̂ x and F̂ y above are called the Hesse potentials, as the Kähler met-
ric ds2 (see (3.2.16)) on B0 can be expressed in terms of the Hessian matrices of the two
potential functions.

To this end, let us first notice that the Kähler metric gB0 can be written in the real
affine coordinates in the following form

gB0 =
∑
ij

gijda
i dāj =

∑
ij

Im(τij) da
idāj =

∑
k

Im
(
daD,k dā

k
)

=
∑
k

Im
(
eiθ(dxk + idyk) · e−iθ(dxk − idyk)

)
=
∑
k

dxk ⊗ dyk − dxk ⊗ dyk (3.2.31)

In terms of the Z-affine structure on B0 given by the real affine coordinates (xi, x
i),

we can express the Kähler metric as

gB0 =
∑
k

dxk ⊗ dyk − dxk ⊗ dyk

by (3.2.29)
======= −

∑
k

dxk ⊗
∑
l

∂2F̂ x

∂xk∂xl
dxl −

∑
k

dxk ⊗
∑
l

∂2F̂ x

∂xk∂xl
dxl

= −2
∑
k,l

∂2F̂ x

∂xk∂xl
dxk ⊗ dxl (3.2.32)
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On the other hand, by utilizing another Hesse potential, we have the following

gB0 =
∑
k

dxk ⊗ dyk − dxk ⊗ dyk

by (3.2.26)
=======

∑
k

∑
l

∂2F̂ y

∂yk∂yl
dyl ⊗ dyk +

∑
k

∑
l

∂2F̂ y

∂yk∂yl
dyl ⊗ dyk

= 2
∑
k,l

∂2F̂ y

∂yk∂yl
dyk ⊗ dyl (3.2.33)

Naturally, we would like to view the affine coordinates (xi, x
i) and (yi, yi) as defining

two Z-affine structures on B0 which are dual to each other, correspondingly, the two
metrics (3.2.32) and (3.2.33) above, can be viewed as dual to each other in the sense that
we ought to make it a little bit precise.

Denote by B0
x the affine manifold in the Z-affine structure with coordinates (xi, x

i),
while by B0

y the affine manifold in the Z-affine structure with coordinates (yi, y
i). Then

by the above computation, we see that B0
x is endowed with Riemann metric gxB0 given

by the Hessian of the function −2F̂ x, while the metric gyB0 on B0
y is given through the

Hessian of the function 2F̂ y. We want to show that the metric gxB0 is dual to gyB0 in the
sense that their potentials are Legendre dual to each other. Indeed, we have the following
proposition.

Proposition 3.2.21. The two potential functions of the metric, namely, −2F̂ x and 2F̂ y

are Legendre transform of each other.

Proof. ̂̂
F x(yi, y

i) =
∑
k

(
xkyk + xky

k
)
− F̂ x(xi, x

i)

=
∑
k

(
xkyk + xky

k
)
−

(∑
k

xky
k −F (xi, yi)

)

=
∑
k

xkyk + F (xi, yi) = −̂F y(xi, yi)

Similarly, we have that

̂̂
F y(xi, x

i) =
∑
k

(
xkyk + xky

k
)
− F̂ y(xi, x

i)

=
∑
k

(
xkyk + xky

k
)
−

(∑
k

xkyk −F (xi, yi)

)

=
∑
k

xky
k + F (xi, yi) = −̂F x(xi, yi)
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Consequently, we see that the dual affine structures induced by (xi, xi) and (yi, yi),
together with the corresponding dual metrics gxB0 and gyB0 make the base B0 a Monge-
Ampère manifold in two ways which are dual to each other. This confirms the proposition
3.2.19 in our case.

Next, we rewrite the attractor flow equation introduced in section 3.2.1 in terms of
two Monge-Ampère structures discussed above. First, recall that for the charge vector γ
at b0 ∈ B given by

γ = (qk, g
k) =

∑
k

qkα
k(u) +

∑
k

gkβk
(
u) ∈ H1(π−1(b),Z

)
It has central charge

Zb0(γ) =
∑
k

qka
k(u) +

∑
k

gkaD,k(u)

The attractor flow line passing through b0, in the direction γ is given by (see formulae
(3.2.8) and (3.2.9))

Im
(
e−iθZb(t)(γ)

)
= Im

(∑
k

qk (e−iθak) +
∑
k

gk (e−iθaD,k)

)
= 0

where θ = Arg Zb0(γ). By using the real affine coordinates (yi, yi), the attractor flow
equation can be rewritten as ∑

k

qky
k(t) +

∑
k

gkyk(t) = 0 (3.2.34)

which by using the relation (3.2.29) is equivalent to the following

∑
k

qk
∂F̂ x

∂xk
−
∑
k

gk
∂F̂ x

∂xk
= 0 (3.2.35)

Definition 3.2.12. For a function f(xi, x
i) in affine structure given by (xi, x

i), define
its gradient to be the following vector field

∇̃f :=

(
∂f

∂xk
,− ∂f

∂xk

)
(3.2.36)

Then the equation (3.2.35) above can be written as

∇̃F̂ x · γ = 0 (3.2.37)

Consequently, we have the following proposition:

Proposition 3.2.22. The attractor flow lines are equivalent to the flow lines on which

the gradient of the Hesse potential F̂ x vanishes.

Consider the dual of the attractor flow equation (3.2.27) above, namely

∇̃F̂ y · γ = 0 (3.2.38)
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By duality, this equation should be interpreted as certain attractor flow called the
dual attractor flow.

To this end, let us take the real part of the rotated central charge function e−iθZu(t)(γ),
which gives

Re
(
e−iθZu(t)(γ)

)
= Re

(∑
k

qk
(
e−iθak

)
+
∑
k

gk
(
e−iθaD,k

))

=
∑
k

qk x
k(t) +

∑
k

gk xk(t)

By using the relations (3.2.26) and the definition 3.1.12., the right hand side of the
above equation can be expressed as∑

k

qk
∂F̂ y

∂yk
−
∑
k

gk
∂F̂ y

∂yk
=: ∇̃F̂ y · γ (3.2.39)

Consequently, we get the following relation between the central charge and Hesse
potential

Re
(
e−iθ Z(γ)

)
= ∇̃F̂ y · γ (3.2.40)

Equation above defines the so-called Hesse flow in [Van12]. However, as

Re
(
e−iθ Z(γ)

)
= |Z(γ)|

along the attractor flow line, it can not vanish identically. To make (3.2.40) compatible
with (3.2.38), we observe that

Re
(
e−i(θ+

π
2

) Z(γ)
)
≡ 0

and this leads to the following

Proposition 3.2.23. The attractor flow on the Z-affine manifold Bθ given by

∇̃F̂ x · γ = 0

corresponds to the dual attractor flow

∇̃F̂ y · γ = 0

on the dual Z-affine manifold Bθ+π
2
.

Similarly, we introduce the notion of the dual Hesse flow described by the following
equation:

Im
(
e−iθZ(γ)

)
= ∇̃F̂ x · γ (3.2.41)

which is seen to be nothing but the attractor flow equation when

θ = Arg Z(γ)

Consequently, both the Hesse flow and its dual has very simple origin. Namely, by
taking the real and imaginary of the rotated central charge function e−iθZ(γ) (i.e., the
rotated special Kähler coordinate on B), and then write them down by using the adapted
Z-affine coordinates on B, we will get the Hesse flow and dual Hesse flow respectively.
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3.2.5 Relation between the attractor flow and the Hesse flow

Motivated by the above discussion, we can treat both attractor flow and Hesse flow in
the same framework as below:

We start with central charge function Z(γ) associated to the charge γ, and use the
Z-affine coordinates on B, we see that taking the real part of the central charge function
gives us the Hesse flow

Re
(
e−iθZ(γ)

)
= ∇̃F̂ y · γ (3.2.42)

while taking the imaginary part gives us the dual Hesse flow

Im
(
e−iθZ(γ)

)
= ∇̃F̂ x · γ (3.2.43)

Next, denote θ = Arg (Z(γ)). We see that in the Z-affine structure Bθ, the dual Hesse
flow (3.2.43) specializes into the attractor flow (3.2.27); while in the Z-affine structure
Bθ+π

2
, the Hesse flow (3.2.42) becomes the dual attractor flow (3.2.43).

Remark 3.2.18. It is known that the Z-affine structures Bθ and Bθ+π
2

correspond, on the
mirror symmetry side, to the symplectic and complex affine structures respectively (for
example, see [Lin17]). And this duality, heuristically speaking, manifests in the context
of the above discussion as the operations of taking the imaginary and the real part, which,
intuitively speaking, further corresponds to the operations of separating the ”vertical” and
the ”horizontal” direction.
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Chapter 4

The Geometry of the
Seiberg-Witten integrable system

The ideal of Seiberg-Witten integrable system (“SW integrable system” for short) first
appeared in their seminar paper [SW94] by Seiberg and Witten in their efforts toward
producing the exact solution to the N = 2 supersymmetric gauge field theory with gauge
group SU(2) by using the so-called Seiberg-Witten (hyper) elliptic curves. There is a
short introduction in appendix A. The connection of Seiberg-Witten solution to the com-
plex integrable system was further explored by Donagi and Witten in [DW96].

In section 4.1, we will give a detailed mathematical exposition of the geometry of
SW integrable system with gauge group SU(n). We will see that it fits into the general
framework of complex integrable system as had been discussed in chapter 3. I will put
together many results that had been scattered in the physics literature and try to present
them in a mathematically self-contained manner. Occasionally, I also formulate certain
propositions and prove them to fill the details in the existing literature.

In particularly, in subsection 4.1.2, we will see how to associate certain hyper-elliptic
curves (the so called SW curves) with a complex integrable system. And in subsection
4.1.4, we will see that there is actually a high dimensional story lying behind, namely, the
Seiberg-Witten geometry could be obtained from certain limit of the Calabi-Yau geome-
try. This, on the physics side, sheds lights on the desired scenery that the natural habitat
of the Seiberg-Witten theory should be located in the 10 dim string theory scenery. Fi-
nally in subsection 4.1.5, we will view SW integrable system from more general Hitchin
system perspective. And from this perspective, the split attractor flows on the base of
the SW integrable system should correspond to the spectral networks living in the base
of the Hitchin system. We will discuss this relation.

Then in section 4.2, we will focus on the computation of the vanishing cycles and the
corresponding monodromies associated to the the discriminant locus of the base of the
SW integrable system. These information will be used in chapter five in connection with
the WCS for the SU(2) and SU(3) SW integrable system. Indeed, they will serve as the
initial data (definition 3.2.7) of the corresponding WCS.

The materials and the computations in this chapter are based on the results in physics.
The main references used in this chapter are [Kle+95][AF][Kle97][KTL95][Kle+94][AD95].
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4.1 Geometry of SW integrable system for SU(n)

We review in this section the geometry of the SW integrable system for SU(n) case.
Along the way, we introduce the terminologies and the backgrounds for later use. Our
exposition follows closely [Ler98]. For more details, the reader should consult the papers
[Kle97],[Kle+94],[Kle+95],[AF] and the references contained therein. The theory to be
discussed in this chapter applies for all A-D-E type simply laced group. However, for
simplicity and for the purpose of this thesis, we just review the An−1 case. For more
general cases, the readers are advised to read the listed references above for further
information.

4.1.1 Classical moduli space and An−1 simple singularities

Denote by su(n) the Lie algebra associated to SU(n), and by hn the Cartan sub-algebra
of su(n).

Let {Hi}n−1
i=1 be the generators of the Cartan subalgebra hn. Also, denote by Φ the

set of roots of SU(n), and by Φ0 and Φ+ the set of simple roots and positive roots of
SU(n) respectively.

Working in the fundamental matrix representation of SU(n), we have that the basis
for SU(n) is given by the matrices Eij, where its kj-th entry is given by

E(kl)
ij = δikδ

j
l

Under this basis, a convenient choice of generators for Cartan-subalgebra is given by

Hi = Ei i − Ei+1 i+1, i = 1 · · ·n− 1.

The dual basis H∗i is defined through the relation Tr(H∗iHj) = δij, from which we
deduce that

H∗i =
i∑

j=1

Ejj −
1

n
I i = 1 · · ·n− 1

where I denotes the identity n× n matrix.

The vectors αi := diag(Hi) form a basis for the root lattice ΛR, while α∗i := diag(H∗i )
generate the weight lattice ΛW .

Pick an element in hn given as follows

φ = a ·H :=
n−1∑
i=1

ai Hi

where ai s are complex numbers. Following [Pet12], we will call them electric coordinates.
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Let eλi i = 1 · · ·n denote the eigenvalues of the matrix φ, where λi labels the weights
of the n-dimensional fundamental representation.

The Weyl groupWn of SU(n) is given by the symmetric group on n letters Sn, which
acts by permutation on the set of weights {λi}. Notice that the electric coordinates ai
are not invariant under the Weyl group action, so we need to construct out of them the
Weyl invariant Casimirs ui(a). The construction goes as follows:

Consider the characteristic polynomial

det(xI− φ) =
n∏
i=1

(x− eλi(a)) = xn −
n−2∑
k=0

uk+2(a)xn−2−k (4.1.1)

Note that u1 ≡ 0 since u1 = tr(φ) = 0 by su(n) condition.

We see that

uk = (−1)k+1
∑

j1 6=j2 6=···6=jk

eλj1eλj2 · · · eλjk(a)

≡ 1

k
Tr(φk) + product of lower order (4.1.2)

As uks are symmetric polynomials, they are invariant under Sn.

Definition 4.1.1. The electric charge vector q = (q1 · · · qn−1) ∈ Zn−1 is defined to be
the vectors on the root lattice ΛR, while the electric central charge function Z(q) is
defined by Z(q) = q·a, where a is the electric coordinate defined above. Then the electric
mass function for the charge vector q is defined through the relation: m2 = |Z|2.

Remark 4.1.1. As the root lattice ΛR is spanned by αi = diag(Hi), we see that q can
be written as linear combination of αis, i.e., q =

∑n−1
i=1 qiαi.

Remark 4.1.2. Similar to the definition of electric charge vector, we can define mag-
netic charge vector g = (g1 · · · gn−1) ∈ Zn−1 to be the vectors on the weight lattice
Λw, i.e., g =

∑n−1
i=1 g

iα∗i .

Definition 4.1.2. The Classical Moduli Space Mc associated to SU(n) is defined
to be the parameter space of the complexified Cartan sub-algebra modulo the Weyl group
action.

From the discussion above, we see that Mc parameterizes all possible eigenvalues
{eλ1 · · · eλn} of the matrices φ in the Cartan sub-algebra, since

∑
eλi = 0, we conclude

that
Mc
∼= Cn−1/Sn

with invariant coordinates (under the Weyl group action) given by {uk}nk=2.

By definition, we infer that Z(λ∨i ) = eλi , where λ∨i is the root corresponding to the
weight λi. Uder the identification between roots and weights, we can simply write this
as:

Z(λi) = eλi (4.1.3)

121



From this, we know that there exists root αi,j ∈ ΛR such that

Z(αi,j) = eλi − eλj (4.1.4)

for i 6= j. Apparently, αi,j is the root dual to λi − λj.

In terms of Z, and the equation 4.1.2, we get

u2(a) =
1

2n

∑
α∈Φ+

(Z(α))2 =
1

2
at · CAn−1 · a

where CAn−1 is the Cartan matrix of SU(n). As well as the following

un(a) = (−1)n+1
∏

fun.rep weightsλ

Z(λ)

Some Examples

SU(2) case: In this case, the rank is one, the Cartan sub-algebra is generated by

H1 = E1,1 − E2,2 = diag(1,−1).

Thus, for φ = aH1 = diag(a,−a), the eigenvalues are given by e1 = a, e2 = −a. From
this we see that the invariant coordinate (under Z2 action which sends a to −a) is given
by

u = a2 =
1

2
Tr(φ2) (4.1.5)

Besides, we have that Z(1) = e1 = a and Z(−1) = e2 = −a.

We now proceed to the more involved SU(3) case.

In this case, the rank is two, and the Cartan sub-algebra is spanned by H1, and H2

given as:
H1 = E1,1 − E2,2 = diag(1,−1, 0)

H2 = E2,2 − E3,3 = diag(0, 1,−1)

Given φ = a1H1 + a2H2 = diag(a1, a2 − a1,−a2), we can identify

e1 = a1, e2 = −a2, e3 = a2 − a1 (4.1.6)

Through the formula 4.1.2, we compute that

u(a1, a2) ≡ u2 = a2
1 + a2

2 − a1a2

v(a1, a2) ≡ u3 = a1a2(a1 − a2)

Remark 4.1.3. From the above equation, we can solve a1, a2 in terms of u, v ([GR95])

a1(u, v) = ξ+ + ξ−

a2(u, v) = e−2πi/6ξ+ + e2πi/6ξ− (4.1.7)

where

ξ±(u, v) = 2−1/3 3

√
v ±

√
v2 − 4

27
u3
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For the central charge function, we have the following

Z(1, 0) = a1 = e1

Z(0,−1) = −a2 = e2 (4.1.8)

Z(−1, 1) = a2 − a1 = e3

and
Z1 ≡ Z(2,−1) = 2a1 − a2 = e1 − e3

Z2 ≡ Z(−1, 2) = 2a2 − a1 = e3 − e2 (4.1.9)

Z3 ≡ Z(1, 1) = a1 + a2 = e1 − e2

Geometric Reformulation

Notice that the characteristic polynomial (4.1.1) is nothing but the simple singularity
associated to the group SU(n). The details of the theory relevent to this story can be
found in Arnold’classical book on singularity theory [AGV].

Denote by

WAn−1(x,u) ≡ xn −
n−2∑
k=0

uk+2(u)xn−2−k

the equation of simple singularities associated with SU(n). And denote by M the variety
associated to WAn−1 , then we see from (4.1.1) that the classical moduli space can be
described as

Mc = M /Sn =
{
x : WAn−1(x,u) = 0

}
/Sn = {eλi(u)} /Sn = {ui} (4.1.10)

Note that the classical moduli space Mc is singular precisely when two eigenvalues
collide each other, i.e., eλi = eλj for i 6= j. Consequently the singular locus (classical
discriminant locus) ∆c in Mc can be encoded by the discriminant of the polynomial
WAn−1 . The discriminant is given by

δ(WAn−1) :=
n∏
i<j

(
eλi(u)− eλj(u)

)2
=
∏
α∈Φ+

(eα(u))2 (4.1.11)

Then the classical discriminant locus is given by ∆c ≡
{
uk : δ(WAn−1) = 0

}
, and

denote by
M 0

c := Mc \∆c (4.1.12)

the smooth part of the classical moduli space.

Remark 4.1.4. In singularity theory, the discriminant locus ∆c is also called the bifur-
cation sets of the type An−1 simple singularities.

Remark 4.1.5. The classical discriminant locus ∆c is given by the intersection of com-
plex codimension one hypersurfaces in Mc. On each such hypersurface, Z(±α) = 0, for
some pair of roots ±α.
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In SU(2) case, δc = 4a2 = 4u, thus the discriminant locus is just a point {u = 0}.

For SU(3), by using the relation (4.1.6) and (4.1.7), we compute that

δc = (a1 + a2)2(2a1 − a2)2(a1 − 2a2)2 = (a1 + a2)2
[
2(a2

1 + a2
2)− 5a1a2

]2
= (u+ 3a1a2)(2u− 3a1a2)2 = 4u3 + 27(a1a2)3 − 27u(a1a2)2

= 4u3 + 27(a1a2)2(a1a2 − u) = 4u3 + 27(a1a2)2
[
a1a2 − (a2

1 + a2
2 − a1a2)

]
= 4u3 − 27(a1a2)2(a1 − a2)2 = 4u3 − 27v2

So we get that
δc = 4u3 − 27v2 (4.1.13)

From it we see that the bifurcation set for A2 singularity is the complex version of
the cusp curve. See the picture below for the illustration of the classical moduli space in
SU(2) and SU(3) cases.

Figure 4.1: Classical moduli space in SU(2) and SU(3) cases, figure taken from [Ler98]

The space M depends on {ui}, and it becomes singular at ∆c in the sense that certain
homology basis shrink to zero size as the moduli u approaches to the component of the
discriminant locus.

Indeed, by definition, we have M = {eλi}, and ∆c describes the location where eλi
collide with each other. In particularly, the basis

{
eλi − eλj

}
i<j, i6=j vanish on ∆c.

Denote by ναi,j :=
{
eλi − eλj

}
, i.e., the vanishing 0- cycle corresponding to the root

αi,j.
It is clear that these cycles form a basis of H0(M ,Z), which can be identified with

the root lattice ΛR, i.e., H0(M ,Z) ∼= ΛR.

Formula (4.1.4) implies that for u ∈ ∆c,

Z(αi,j) = eλi − eλj ≡ 0

from which we see that the mass of the root αi,j vanishes (c.f., definition 4.1.1).

We also have the following
ναi ◦ ναj = 〈αi, αj〉 (4.1.14)
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Figure 4.2: Weight diagram and vanishing cycles in SU(3) case, figure taken from [Ler98]

where the left hand side is the intersection product of two vanishing cycle, while the
right hand side is the inner product between root vectors.

Besides, the monodromy associated to the vanishing cycle ν is given by the Picard-
Lefschetz formula

Mναi : γ 7−→ γ − (γ ◦ ναi) ναi (4.1.15)

which can also be expressed in terms of the matrix acting on the weight space as

Mαi = id− αi ⊗ wi

= id− 2
〈αi, ·〉
〈αi, αi〉

αi (4.1.16)

where αi and wi are the simple roots and fundamental weights in the Dynkin basis.

Notice that (4.1.16) is nothing but the fundamental Weyl reflection associated with
the simple root αi.

Remark 4.1.6. In the next section, we will see that in the quantum case, the above
geometric picture is generalized to the case that the variety M is replaced by certain
Riemann surface.
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4.1.2 Quantum moduli space and SW integrable system

In order to construct the Seiberg-Witten integrable system, we first introduce the follow-
ing curve associated to the group SU(n):

Cu : y2 = Pn(x) =
(
WAn−1(x,u)

)2 − Λ2n, x, y ∈ C (4.1.17)

Here, Λ is understood as a positive real parameter.

Since the degree of Pn(x) equals to 2n, which is larger or equal to 4 for n ≥ 2, we see
that the curve C is an hyper elliptic curve with genus g = n− 1.

The curve Cu is called the Seiberg-Witten curve (SW curve for short) associated
to SU(n).

Geometrically, the curve Cu for each u ∈ Cn−1 can be described as a double covering
of the complex plane C, branched over the following discriminate locus ∆Λ, which we
call it quantum discriminant locus ( in comparison with the classical discriminate locus
defined previously).

Rewrite the right hand side of equation (4.1.17) as

Pn(x) = Pn+(x)× Pn−(x) =
(
WAn−1(x,u) + Λn

)
×
(
WAn−1(x,u)− Λn

)
Denote by e±i the roots of Pn± respectively, then

Pn(x) =
n∏
i=1

(
x− e+

i

) (
x− e−i

)
By the form of the polynomial WAn−1 (see equation (4.1.1)), we see that

Pn± =WAn−1(x;u2, · · · , un−1, un ∓ Λn) (4.1.18)

Notice that Pn+(x) − Pn−(x) = 2Λn, and Λ 6= 0, we see that the roots e+
i can not

coincide with e−i . As a consequence, the quantum determinant δΛ can be computed as
follows:

δΛ = δ(Pn) :=
∏
i<j

(
e±i − e±j

)2
=
∏
i<j

(
e+
i − e+

j

)2
∏
i<j

(
e−i − e−j

)2
∏
i<j

(
e+
i − e−j

)2

= δ(Pn+) δ(Pn−)
∏
i

(
Pn+(e−i )

)2
= δ(Pn+) δ(Pn−) (2Λn)2n

Thus, we have
δΛ = 22nΛ2n2

δ(Pn+) δ(Pn−) (4.1.19)

From this, we see that the quantum discriminant locus ∆Λ, defined as the zero locus
of the polynomial δλ, is given by the union of two hyper-surfaces which are the varieties
associated to δ(Pn±) respectively, i.e.,

∆Λ = ∆+ ∪∆− (4.1.20)
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where ∆± denote the varieties associated to δ(Pn±) respectively.

Notice also that from equation (4.1.19), we have that

δ(Pn±) = δ(WAn−1)(x;u2, · · · , un−1, un ∓ Λn)

from which we conclude that ∆Λ looks like two copies of classical discriminant locus
shifted in the top Casimir variables un.

Next, we compute the quantum discriminant for n = 2 and n = 3 case.

SU(2) case:

The SW curve is given by

C : y2 =W2
A1
− Λ4 = (x2 − u)2 − Λ4 (4.1.21)

from which, as well as the formula (4.1.19), we get

δΛ = 24Λ84(u− Λ2)4(u+ Λ2) = 162Λ8(u2 − Λ4) (4.1.22)

Thus the discriminant locus in this case reads

∆Λ = {u : δΛ = 0} =
{
−Λ2,+Λ2

}
(4.1.23)

SU(3) case:

The SW curve is given by

C : y2 =W2
A2
− Λ6 = (x3 − ux− v)2 − Λ6 (4.1.24)

from which, as well as the expression of classical discriminant (4.1.13), we get

δΛ = 26Λ18δ (WA2) (x, u, v + Λ3)δ (WA2) (x, u, v − Λ3)

= 26Λ18
(
4u3 − 27(v + Λ3)2

) (
4u3 − 27(v − Λ3)2

)
(4.1.25)

It follows that the discriminant locus ∆Λ in this case is given by the union of two
(shifted in v variable) cusp singularity curves in C2 with non trivial intersection (see the
figure 4.3 below for illustration).

Remark 4.1.7. We see that as Λ → 0, ∆Λ degenerates into the classical discriminant
locus as defined in (4.1.13).

Definition 4.1.3. The quantum moduli space Mq is defined to be the parameter space of
the family of hyperelliptic curves Cu as given in (4.1.17).

Remark 4.1.8. Clearly, the quantum moduli space Mq has much more complicated struc-
ture than the classical moduli space Mc. In physics, Mq arises from the description of the
N = 2, d = 4 supersymmetric Yang-Mills theoy, while Mc emerges from the classical limit
of the theory. Indeed, as the parameter Λ (which controls the quantum effect) approaches
to zero, the curve Cu degenerates from a double cover of the complex plane to a single
cover of it branched at the zeros of WAn−1 which can be characterized as the zero locus of
the polynomial itself modulo the action of symmetric group Sn. This is nothing but the
description of classical moduli space Mc (see (4.1.11)).
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Figure 4.3: Quantum discriminant locus in SU(2) and SU(3) cases

Naively, as the parameters u ∈ Cn−1, Mq can be embedded into Cn−1. When u
approaches to the component of the quantum discriminant locus ∆Λ, certain roots of the
polynomial on the right hand of (4.1.17) coincide, and the curve Cu becomes degenerate
in the sense that certain middle dimensional homology cycles (called the vanishing cy-
cles) on the curve shrinks to zero.

Thus, the points of ∆Λ should be thought of as the singular points of the quantum
moduli space. As will be shown, they play crucial role for the later discussion since they
will play the role in determining the initial data of the WCS associated with the SW
integrable system to be discussed in chapter five.

However, we will not concerned here with the structure of Mq, we just need to as-
sociate to it a complex integrable system—-the so called the Seiberg-Witten integrable
system, which will be used in producing the wall-crossing structure later.

SW integrable system associated to SU(n)

Recall from the definition 3.1.1, in order to specify a complex integrable system, we
need have a holomorphic subjective map π : (X,ω2,0) → B with generic fibers being
Lagrangian sub-manifolds of X.

We show that from the quantum moduli space Mq given in definition 4.1.2, we can
get a complex integrable system in the following manner.

Identifying the base B with Cn−1. Then consider the torus fibration π : X → B with
fiber over b ∈ B being the Jacobian Jac(Cb) of the curve Cb (see formula (4.1.17)) sitting
over b with local holomorphic coordinate near b ∈ B given by u. Recall that the Jacobian
of the curve Cb is defined as

Jac(Cb) := H0(Cb,Ω1
Cb)/H1(Cb,Z) ∼= Cg/Z2g (4.1.26)

where g = n − 1 is the genus of the SW-curve Cb, and H0(Cb,Ω1
Cb) is the space of

holomorphic one forms on the curve which is a g dimensional vector space.
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Remark 4.1.9. Note that the lattice Γb := H1(Cb,Z) ∼= Z2g is embedded in H0(Cb,Ω1
Cb)

via the Abel-Jacobi map
H1(Cb,Z) −→ H0(Cb,Ω1

Cb)
∨ (4.1.27)

which through the identification (3.1.22) and the isomorphism given in (3.1.15), can be
identified with H1(π−1(b),Z). Following the terminologies given in section 3.1.2, we call
the lattice Γb the period lattice and the local system Γ formed by them the period net.

Definition 3.1.11 tells us that the local system of lattices Γ is also called the the local
system of charge lattice.

Clearly, the fibration π is singular at the quantum discriminant locus ∆Λ where the
Jacobian variety degenerates due to the presence of vanishing cycles in H1(Cb,Z) (See
figure 4.4). Denote by B0 := B/∆Λ the smooth part of the base,and consider the smooth
torus fibration

π : X0 −→ B0.

Figure 4.4: Torus fibration π over the base B, torus fibers being degenerated over the
discriminant locus ∆Λ

We now show that the torus fibration π defined above is a complex integrable system
of Seiberg-Witten type (see definition 3.1.13), which will be called the SW integrable
system associated to SU(n).

Let {ω1, · · · , ωg} be a set of basis of the space H0(Cb,Ω1
Cb) of holomorphic differen-

tial one forms on the curve π−1(b) = Cb. Choosing symplectic basis {αi, βj}1≤i,j≤g (see

(3.1.34)) for the charge lattice Γb
∼= H1(π−1(b),Z), i.e., the matrix of intersection product

◦ of these basis is the following symplectic matrix

J =

(
0 Ig
−Ig 0

)
(4.1.28)

Then the period matrix of the curve Cb is the g×2g matrix Ω defined as Ω = (A,B),
where A and B are g × g matrix with entries given respectively by

Aij :=

∮
αi
ωj Bij :=

∮
βi

ωj (4.1.29)

The period matrix Ω satisfies the following Riemann bilinear relations(see for example
[Gri70]):
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Riemann 1st bilinear relation ΩJtΩ = 0

Riemann 2nd bilinear relation
√
−1 ΩJtΩ̄ > 0 (4.1.30)

which follows from the following identities∫
Cb
ωi ∧ ωj = 0

√
−1

∫
Cb
ωi ∧ ωj > 0 (4.1.31)

Definition 4.1.4. Define the τ -matrix to be

τ = A−1B

Riemann’s 2nd bilinear relation implies that the τ -matrix is symmetric and the imaginary
part of it is positive definite, i.e., Imτ > 0, which will be used to define the Riemann
metric on B0.

Remark 4.1.10. When g = 1 we have that

τ = τ1,1 =

∮
β

dx

y

/∮
α

dx

y

is the usual τ -function of elliptic curve which belongs to the upper half plane H, i.e.,
Im(τ) > 0.

As had been discussed in section 3.1.4, there exist angle coordinates {θi, θj}1≤i,j≤g on
the torus fibers such that ∮

αi
dθj = δij

∮
βi

dθj = δij

Then introduce the canonical complex coordinates (see the formula (3.1.47)) on the
fiber of π:

wi := θi +
∑
j

τij θ
j

together with the local holomorphic coordinates ai on the base manifold B, we can write
the following holomorphic symplectic form (see the formula (3.1.48)) on the total space
of fibration π as

ω2,0 =
∑
i

dai ∧ dwi (4.1.32)

Remark 4.1.11. By the formula (3.1.49) and the next proposition, we see that the com-
plex integrable system defined by π is principally polarized.

With these preparation, we can state the following proposition:

Proposition 4.1.1. The torus fibration π : X → B defines a complex integrable system
of Seiberg-Witten type.

Proof. By our construction, the generic fiber of π, being the Jacobian torus of the corre-
sponding hyper-elliptic curve, is endowed with the angle coordinates θi (thus the complex
coordinate wi). This implies that the holomorphic symplectic form ω2,0 vanishes when
restricted to the generic fiber. Consequently, the generic fiber of π is Lagrangian which
completes the verification of the definition of complex integrable system.

To show that it is of Seiberg-Witten type, we need to construct a central charge
function which is furnished by the following lemma.
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Lemma 4.1.2. A central charge function Z as defined in definition 3.1.12 can be con-
structed for the complex integrable system π : (X,ω2,0)→ B constructed above.

Proof. With the aid of the holomorphic symplectic form ω2,0 constructed above, the
central charge function Z ∈ Γ(B0,Γ⊗ OB0) is defined through (see definition 3.1.12)

dZ(γ) =

∮
γ

ω2,0 (4.1.33)

which is clearly an additive map from Γ to C.

Choosing symplectic basis {αi, βj}1≤i,j≤g, then by (3.1.50), there exist locally defined

holomorphic functions {ai, aD,j)}1≤i,j≤g on B0 depending on any holomorphic coordinates
u, such that for

γ := (g,q) = (gi, qj) =
∑
i

giβi +
∑
j

qjα
j ∈ Γb (4.1.34)

We have that

Zb(γ) =
(

g q
)( aD

a

)
=
∑
i

giaD,i(u) +
∑
j

qja
j(u) (4.1.35)

with Zb(α
i) = ai(u) and Zb(βi) = aD,i(u). Thus by the definition of the central charge

function, we have that

dai =

∮
αi
ω2,0 daD,j =

∮
βj

ω2,0 (4.1.36)

The following proposition is pointed out in [NP12].

Proposition 4.1.3. There exists Lagrangian sub-lattice Lb ⊂ H1 (π−1(b),Z).

Proof. By remark 3.1.13, we see the symplectic form on H1 (π−1(b),Z), in terms of the
angle coordinates, is given by ∑

i

dθi ∧ dθi

As the class [dθi] is dual to αi, we see that the sub-lattice spanned by {αi}1≤i≤g is a
Lagrangian sub lattice.

By (3.1.38), their exits holomorphic function F , called the prepotential, such that

aD,i =
∂F
∂ai

i = 1, · · · g = n− 1.

And recall that we have defined the symmetric matrix

τ = (τij) =

(
∂aD,i
∂aj

)
=

(
∂2F
∂ai∂aj

)
then we have the following:

Proposition 4.1.4. The τ matrix coincide with that defined in definition 4.1.4 via the
period matrix Ω.
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Proof. By formula (3.1.45), there exists action one form αLiouville (also called Liouville
one form) such that

dαLiouville = ω2,0

Using this, the relations (4.1.36) can be rewritten as

ai =

∮
αi
αLiouville aD,j =

∮
βj

αLiouville

where αLiouville is given by

αLiouville =
∑
i

aD,i ∧ dθi + ai ∧ dθi

We will construct a meromorphic one form λSW with vanishing residues (the meaning
of it will be explained in the lemma 4.1.6 below) in the cohomological class of [αLiouville],
which will be called the Seiberg-Witten differential, i.e., we should have

ai =

∮
αi
λSW aD,j =

∮
βj

λSW (4.1.37)

Then wee see that

τij =
daD,i
daj

=
∑
k

∂aD,i
∂uk

/
∂aj

∂uk
=
∑
k

∮
βi

∂λSW
∂uk

/∮
αi

∂λSW
∂uk

from which we infer that in order for the τ matrix to match with that defined through
the period matrix Ω, it is suffice for the following identities to be satisfied

∂λSW
∂uk

= fk(u)ωk k = 2, · · · , n (4.1.38)

for some holomorphic functions fk(u) on the base B0.

One sees that
{
∂λSW
∂uk

}
1≤k≤g

form a basis of H0
(
Cu,Ω1

Cu

)
up to a scalar multiplication

induced by holomorphic functions fk(u).

The simplest choice of scaling functions being fk(u) ≡ 1 , ∀k. In this case, the SW
differential form can be chosen to be

λSW = u2 ω2 + · · ·+ un ωn (4.1.39)

The basis of H0
(
Cu,Ω0

Cu

)
can be chosen to be the following Abelian differentials of

the first kind (see for example the book [ACG11]):

ωk =
xn−kdx

y
k = 2, · · · , n

Then (4.1.39) becomes

λSW =
(
u2 x

n−2 + u3 x
n−3 + · · ·+ un

) dx
y

=
(
xn −WAn−1(x, ui)

) dx
y

(4.1.40)
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Following authors of the papers [Ler98],[Kle+94] e.t.c., we choose the following

Lemma 4.1.5. The Seiberg-Witten differential can be chosen to be

λSW = constant ·
(
∂

∂x
WAn−1(x, ui)

)
x dx

y
(4.1.41)

up to addition of exact forms.

Proof. In the formula (4.1.38), we choose the scalar factors to be

fk(u) := −(n− k) k = 2, · · · , n

which is being realized by letting λSW to be the linear combinations of ωk’s as follows

λSW = −(n− 2)u2 ω2 − (n− 3)u3 ω3 − · · · − un−1 ωn−1 + nxn

=
(
−(n− 2)u2 x

n−3 − (n− 3)u3 x
n−4 − · · · − un−1 + nxn−1

) x dx
y

which clearly equals

=

(
∂

∂x
WAn−1(x, ui)

)
x dx

y

.

Lemma 4.1.6. The Seiberg-Witten differential λSW constructed above is residues free,
thus when pairing with cycles, the value is invariant under continuous deformation of the
cycle even if the cycle crosses the poles of λSW .

Proof. By the proof of the lemma 4.1.5, we see that λSW is linear combination of basis
{ωi} of H1

(
Cu,Ω1

Cu

)
, which are holomorphic one forms, thus residues free. To prove the

second part of the lemma, suppose the one cycle γ is being deformed continuously to
another cycle γ′ which encircles exactly one pole p of the differential λSW , then consider
a small circle γp surrounding p with proper orientation such that γ′ = γ + γp, then it is
clear that ∫

γ′
λSW =

∫
γ

λSW +

∫
γ0

λSW

=

∫
γ

λSW +Resp (λSW ) =

∫
γ

λSW

Before closing this subsection, let us compute the Seiberg-Witten differential form in
SU(2) and SU(3) cases.

SU(2): By (4.1.21), we compute that up to a multiplication of a constant, we have
that

λSW =

(
∂

∂x
WA1

)
x dx

y
=

∂

∂x
(x2 − u)

x dx

y

=
2x2 dx

y
=

2x2 dx√
(x2 − u)2 − Λ4

(4.1.42)
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SU(3): By (4.1.24), we compute that up to a multiplication of a constant, we have
that

λSW =

(
∂

∂x
WA2

)
x dx

y
=

∂

∂x
(x3 − ux− v)

x dx

y

=
(3x2 − u)x dx

y
=

(3x2 − u)x dx√
(x3 − ux− v)2 − Λ6

(4.1.43)

Using the Seiberg-Witten differential λSW , and by (4.1.34) and (4.1.36), we see that
for the charge γ in (4.1.35), its central charge is given by

Zb(γ) =

∮
γ

λSW (4.1.44)

Definition 4.1.5. The mass m(γ) of the charge γ is defined to be the absolute value of
its central charge, i.e.,

mb(γ) := |Zb(γ)| =
∣∣∣∣∮
γ

λSW

∣∣∣∣ (4.1.45)

Remark 4.1.12. As had been mentioned in remark 4.1.8, when Λ → 0, the quantum
moduli space Mq collapses into the classical one Mc, and the torus Cu degenerates into
the level manifold M of the polynomial WAn−1. This means that the homologically non-
trivial one cycles γ on Cu would collapses into various contours encircling various zeros
e′λis of the polynomial WAn−1.
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4.1.3 SW Curve as Weight Diagram Fibration

We make the transformation of variables as y 7→ z = y−WAn−1(x,u) for the curve defined
in the formula (4.1.17) as bellows

Cu : y2 = Pn(x) =WAn−1(x,u)2 + Λ2n, x, y ∈ C

Then we get the following form of the curve in new variable z, still denoted by Cu:

Cu : z +
Λ2n

z
− 2WAn−1(x,u) = 0 x, z ∈ C (4.1.46)

This form of curves appear in physics literature (for example [MW96],[Mar99]) in con-
nection with the Toda chain system [Tod12]. It also arises from the rigid limit of type II
string theory on Calabi Yau 3-fold, (see for examples [KKV97],[LW98],[Kle+96],[Kle+96],
[BS97],[May99]). The Seiberg-Witten curve written in this fashion also appears in the
paper [KS08] (section 2.7) of Kontsevich and Soibelman.

Since the transformation is birational, Cu is being transformed into the same curve.
We first show what should be the form of Seiberg-Witten differential in terms of the new
variables.

Proposition 4.1.7. In terms of the new variable z, the Seiberg-Witten differential form
λSW (see 4.1.42) (assuming the constant ≡ 1) can be written as

λSW = −x dz
z

(4.1.47)

Proof. As z = y +WAn−1 , we have that

dz = dy −
∂WAn−1

∂x
dx

then we compute as follows:

x
dz

z
=
x

z

(
dy +

∂WAn−1

∂x
dx

)
=
x

z

(
WAn−1

∂WAn−1

∂x

y
dx−

∂WAn−1

∂x
dx

)

=
x

z

∂WAn−1

∂x

(WAn−1 − y)

y
dx =

x
∂WAn−1

∂x

y −WAn−1

WAn−1 − y
y

dx

= −WAn−1

x dx

y

Compactifying C by adding point at ∞, we see that the equation (4.1.46) describes a
fibration over the projective line P1 coordinated by z , with generic fibers being the level
manifold associated to the singularity WAn−1(x,u). See figure 4.5 for the illustration in
the rank one case.

Remark 4.1.13. Consequently, we can roughly say that each fiber corresponds to a classi-
cal story as had been discussed in section 4.1.1, while its families give rise to the quantum
deformation of the classical theory.
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Of course, the fibration is non-trivial only if the parameter Λ 6= 0, as when Λ ap-
proaches to zero, the fibration becomes

z + 2WAn−1(x,u) = 0

which gives nothing but the classical level surface

M =
{
x :WAn−1(x,u) = 0

}
This is the scenery to be expected from the remark above and the remark 4.1.8. Fur-

ther more, we should also expect the central charge function as well as the mass function
also degenerates into their classical counterparts when Λ → 0. Indeed, we have the fol-
lowing result which appeared in [Mar99]

Figure 4.5: Illustration of weight diagram fibration in SU(2) case, figure taken from
[Ler98]

Proposition 4.1.8. For the vanishing 0 cycle

νi,j = eλi − eλi ∈ H0(M ,Z) ∼= ΛR

corresponding to the root αi,j, we know from the formula (4.1.4) that

Z(αi,j) = eλi − eλj

By remark 4.1.12, we can lift a contour Cij (∞- shaped) encircling the two roots eλi and
eλj on the complex x-plane to a homology one cycle γij ∈ H1(Cu,Z). Here, the moduli u
lies near the components of ∆Λ where the two roots collide. Then, the central charge of
γij equals to that of the root αi,j given above, i.e.,

Z(γij) = Z(αi,j) = eλi − eλj (4.1.48)

Parallel result holds to the mass function.
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Proof. When Λ→ 0, we see that

z −→ −2WAn−1(x,u)

And by definition (see (4.1.44)), we compute as follows

Z(γij) =

∮
γij

λSW =

∮
γij

x
dz

z
Λ→0

====

∮
Cij

x
dz

z
=

∮
Cij

x d log z

Write WAn−1(x,u) =
∏

k(x− eλk), we see that as Λ→ 0, we have that

Z(γij) =

∮
Cij

x
dz

z
=

∮
Cij

x
d (−2WAn−1)

−2WAn−1

=

∮
Cij

x d log
(
WAn−1

)
=

∮
Cij

x d log
∏
k

(x−eλk)

=

∮
Cij

x d

(∑
k

log(x− eλk)

)
=

∮
Cij

x
∑
k

d log(x− eλk) =

∮
Cij

∑
k

x

x− eλk
dx

Cijis∞ shaped contour encircling two roots
========================== Reseλi

(∑
k

x

x− eλk

)
−Reseλj

(∑
k

x

x− eλk

)

= lim
x→eλi

(x− eλi)
∑
k

x

x− eλk
− lim

x→eλj
(x− eλj)

∑
k

x

x− eλk
= eλi − eλj = Z(αi,j)

By equation (4.1.45), we see that

mb(γij) = |Zb(γij)| =

∣∣∣∣∣
∮
γij

λSW

∣∣∣∣∣ = |eλi − eλj | = |Z(αi,j)|

By writing the SW differential form λSW in terms of z, we can easily prove the
following proposition which justifies our expectation that the central charge of the charges
represented by vanishing cycles should vanish.

Proposition 4.1.9. The SW one form λSW is regular near the locus corresponding to
vanishing cycles.

Proof. Near the discriminant locus ∆Λ, certain roots of WAn−1 collide with each other,
which means that whenever the complex moduli u hits ∆Λ, we have

y ≡ 0, and WAn−1 = ±Λn

Consequently, near the discriminant, we have

λSW = x d log z = x d log
(
y −WAn−1

)
∼ x d log(∓Λn)

which is clearly regular. Thus, if ν is a vanishing cycle in the fiber over b, then

Zb(ν) =

∮
ν

λSW = 0

as expected.
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Geometric Reformulation

Given z ∈ CP 1, there are generically n solutions to the equation (4.1.46) in x, thus
Cu could be realized as an n-sheeted cover of the projective line CP 1. Denote these n
solutions to the level surface equation of WAn−1(x,u) by

{e1(z,u), · · · , en(z,u)}

Then each of the above n coordinates define the local coordinate on particular sheet of
the covering, and each labeling a particular weight wi of the fundamental representation.
(Here ei(z,u) is just short for the previous notation eλi(z,u)).

On the sheet corresponding to ei, the SW differential form λSW lifts up to the form

λi = −ei(z,u)
dz

z
(4.1.49)

which can also be viewed as the coordinate for the corresponding ei-th sheet. The
following proposition is inspired by the construction in section 11.2.1 of the book [Tac15].

Proposition 4.1.10. The cycle {z : |z| = 1} ⊂ CP 1 lifts up to n cycles on each sheet of
the covering. Denote by γi the cycle living on the i-th sheet with coordinate given by λi,
then the cycle γij ∈ H1 (Cu,Z) (as had been constructed in the proposition 4.1.8) can be
identified with the the cycle represented by the difference cycle γj − γi.

Proof. We compute that

1

2πi

∮
γj−γi

λSW =
1

2πi

∮
γj

λSW −
1

2πi

∮
γi

λSW

=
1

2πi

∮
γj

λj −
1

2πi

∮
γi

λi

=
1

2πi

∮
γj

(
−eλj(z,u)

) dz
z
− 1

2πi

∮
γi

(−eλi(z,u))
dz

z

=
(
eλi(z,u)− eλj(z,u)

) 1

2πi

∮
|z|=1

dz

z

= eλi(z,u)− eλj(z,u)

Comparing with the formula (4.1.49), we see that as homology classes in H1 (Cu,Z),
we have that

[γij] = [γj − γi]

As a covering of the projective line CP 1 ∼= S2, it is branched exactly when two or
more roots ei collide with each other, i.e., when the following discriminant vanishes (by
viewing z as a constant):

δz =
∏
i<j

(ei − ej)2 (4.1.50)

Denote by ∆z the vanishing locus of the polynomial equation δz.
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Examples

SU(2) case: The equation of SW curve is given by

z +
Λ4

z
+ 2 (x2 − u) = 0 (4.1.51)

In this case, the two roots corresponding to a given z are given as

e± = ±

√
u− 1

2

(
z +

Λ4

z

)
there for the discriminant is given by

δz = 4

(
u− 1

2

(
z +

Λ4

z

))2

whence its vanishing locus (branching points) consists of the two points given as

z± = u±
√
u2 − Λ4 (4.1.52)

Notice that for the moduli u to hit the quantum discriminant ∆Λ, i.e. u = ±Λ2, the
two branch points z± coincide with ∆Λ.

SU(3) case: The equation of CW curve is given by

z +
Λ6

z
+ 2 (x3 − ux− v) = 0 (4.1.53)

Using the discriminant for cubic equation, we compute that

δz = 4u3 − 27

(
1

2

(
z +

Λ6

z

)
− v
)2

from which its vanishing locus can be computed to consist two pairs of points on the
sphere S2, namely

z±1 =
2u

3
2 + 3

√
3v ±

√(
2u

3
2 + 3

√
3v
)2

− 27Λ6

3
√

3

z±2 =
−2u

3
2 + 3

√
3v ±

√(
2u

3
2 − 3

√
3v
)2

− 27Λ6

3
√

3
(4.1.54)

In general, there are n − 1 pairs of branch points z±i , i = 1, · · · , n − 1, each pair is
related by the symmetry of the SW curve, namely

z 7−→ Λ2n

z
(4.1.55)

Remark 4.1.14. Each pair of the branch points corresponds to a particular pair of roots,
say ei and ej, colliding with each other, hence produces a vanishing cycle νij = eλi − eλj
in H0(M ,Z) (comparing with the corresponding discussion section 4.1.1).
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By the above remark, we see that the pair of branch points z±i corresponds to the
simple root αi = αi,i+1 ∈ ΛR, we then have the following

Proposition 4.1.11. The monodromy around the branch points z±i is given by the fun-
damental Weyl reflection Mαi (see 4.1.16) associated to the simple roots αi.

Proof. By circling around the branch point z+
i (the same for z−i ), the roots eλi and eλi+1

get exchanged, that is, the two sheets labeled by weights λi and λi+1 get permutated
which corresponds to a Weyl group action of the weights. Geometrically, the monodromy
is given by Picard-Lefeshetz transformation (4.4.16) associated to the vanishing cycle
νi = eλi − eλi+1

. Viewing it as action on the weight system, it is exactly the Weyl
refection 4.1.16 in this case.

Remark 4.1.15. The new form of the curve (4.1.46), which is birational to the original
one, defines a genus g = n − 1 Riemann surface. To describe it by cut and pasting of
complex plane C, we add two more branch points, say z0 = 0 and z∞ =∞, to the already
existing z±i , i = 1, · · · , n − 1. Choosing the branch cuts from z0 to each z−i , denoted by
l−i as well as the cuts from z∞ to each z+

i , denoted by l+i , there are altogether n− 1 pairs
of cuts. Then by the standard Riemann surface construction (uniformization procedure),
we play with two copies of CP 1 ∼= S2, each of which is attached with the n − 1 pair of
branch cuts l±i . Gluing the two spheres together by pasting the cut l±i cross-wisely with
the cut l±i , the resulting surface would be the desired genus g = n− 1 curve.

Figure 4.6: The Riemann surfaces through gluing and pasting, figure taken from [Ler98]

Monodromy action on the fiber

Considering a loop γ circling around components of the vanishing locus ∆z, and
by tracing along γ, we see that the individual roots eλi may undergone change even
though the totality of them are keep unchanged. Consequently, we get the monodromy
representation associated to the covering C → CP 1 as follows

ρ : π1

(
CP 1\∆z

)
−→ Sn (4.1.56)

which associates a loop γ to a permutation induced by the parallel transport near a
given fiber along the loop. The image of ρ generates the monodromy groupMρ (also
called the Galois group) associated to the covering.
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Proposition 4.1.12. The monodromy group of the covering associated to the SW curve
(4.1.46) is the full permutation group Sn.

Proof. As noted before, the sheets of the covering can be identified with the weights {λi}
of the n-dimensional fundamental representation n of SU(n). Tracing along a non-trivial
loop (homologically non-trivial) in CP 1\∆z, the sheets of the covering corresponding to
the weights would get permutated while the characteristic polynomial

det(xI− φ) =
∏
i

(x− eλi(z,u))

is invariant. This means that the roots {eλi} belong to the same conjugate class with its
elements being related by the Weyl group of the corresponding Lie algebra sun. As is
well known that the Weyl group in this case is exactly Sn.

As an example, let us look at the SU(2) case considered above. Similar to the simplest
example

√
z, when we trace along a curve around the origin-the only branch point for√

z, the two values {
√
z,−
√
z} get exchanged. In our case, consider for example, a simple

curve encircling only the branch point

z+ = u+
√
u2 − Λ2

where e+ collides with e−, we see easily that the two roots would get exchanged. This
verifies that the monodromy group in this case is given by the Weyl group of su2, namely
S2
∼= Z2, which is also the Galois group for the equation w = z2 defined over Q.

For more involved aspects of the appearance of Galois groups in supersymmetric
physics, see the paper of Frank Ferrari [Fer09] on Galois symmetry.
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4.1.4 SW Geometry from K3 Fibration

From the perspective of physics, the appearance of Seiberg-Witten hyper elliptic curve
in N = 2, d = 4 SYM is by no means accident, rather, it has a deep origin as certain
limit of type IIA string compactification on Calabi-Yau 3-fold which could be realized as
K3 fibration over the base CP 1 ∼= S2 (see [May99],[Kle+96],[Ler98],[LW98],[Bil+98] for
more details). Below, we review some mathematics that are relevant to this story.

Starting with the defining equation (4.1.46) of the SW curve, we consider its Morsifi-
cation by adding extra quadratic pieces in the complex variables y and z which does not
affect the singularity type

Xu : z +
Λ2n

z
+ 2WAn−1(x,u) + 2y2 + 2w2 = 0 (4.1.57)

Fixing z ∈ CP 1, the above equation describes a local ALE geometry sitting in a K3
surface, i.e., we get a fibration over S2 with generic fiber the non-compact ALE space of
type An−1 defined by the level manifold of the following polynomial equation in C3:

WALE
An−1

:=WAn−1(x,u) + y2 + w2 (4.1.58)

Here ALE (stands for Asymptotically Locally Euclidean) space of type An−1 means a
four dimensional Riemann manifold that at “∞” looks like C2/Γ, where Γ ⊂ SU(2) is
a finite group such that the quotient space has singularity of type An−1. It is proved in
[Kro+89] that it is diffeomorphic to the minimal resolution of the Kleinian singularity
C2/Γ.

Indeed, the parameters u = {u2, · · · , un} provide a minimal resolution of the singu-
larity at the origin in C3. By blowing up the singular points, we arrive at a collection of
exceptional spheres with self intersection 2, and they mutually interact with each other
in a way that could be encoded by the corresponding Dynkin diagram of type An−1.

Figure 4.7: Dynkin diagram of type An+1

Proposition 4.1.13. The critical points of the level manifold of WALE
An−1

at the level l are
the set

{(x1, 0, 0), · · · , (xn−1, 0, 0)}

where {x1, · · · , xn−1} is the set of critical points of the equation WAn−1.

Proof. The critical points are the solutions of the following system of equations

WALE
An−1

(x, y, w) = l
∂

∂x
WALE

An−1
=

∂

∂x
WAn−1 = 0

∂

∂y
WALE

An−1
= 2y = 0

∂

∂z
WALE

An−1
= 2z = 0
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which reduce to

WAn−1(x, y, w) = l
∂

∂x
WAn−1 = 0

which is exactly the way to compute the critical points associated to the level manifold
of An−1 singularity.

By the above proposition, we see that the singularity type of the ALE space resembles
to the one of the pre-classical moduli space M (see section 4.1.1) defined as the level
manifold of the polynomialWAn−1 . Inspired by this observation, we obtain the following,
which is the special case of geometric Mckay correspondence [GV83].

Proposition 4.1.14. There are n − 1 independent two spheres Si, i = 1, · · · , n − 1 in
each ALE space fiber, with intersection numbers given as

Si ◦ Si = 2, Si ◦ Si+1 = −1, Si ◦ Sj = 0, when ever |i− j| ≥ 2 (4.1.59)

which reflects exactly the Dynkin diagram of type An−1. These n−1 spheres consist of the
vanishing cycles that generate the middle homology H2(Xu,Z) ⊂ H2(K3,Z). Moreover,
we have the following isomorphism of the lattices

H2(Xu,Z) ∼= H2(M ,Z) ∼= ΛR (4.1.60)

where ΛR is the root lattice for SU(n).

Figure 4.8: Correspondence between vanishing cycles in ALE fiber and that in level
manifold, picture taken from[May99]

Proof. The n − 1 spheres Si are the exceptional fibers of the minimal resolution of the
An−1 singularity which can be described explicitly as follows:

Denote by li the critical value of WALE
An−1

at the critical point (xi, 0, 0), i.e., we have

that li = WAn−1(xi,u). Near the critical point corresponding li, WALE
An−1

can be put into
the following standard form

W ≡WALE
An−1

(x, y, w) = li + x2 + y2 + w2

Let the level l ∈ C trace along a small loop γ encircling only the critical value li. The
equation of γ is then seen to be given by

γ : l(t) = li + δ2e2πit

for δ small and t ∈ [0, 1].

143



Locally near the critical point, we have the situation described by the equation

x2 + y2 + w2 = l − li = δ2e2πit

Then the vanishing two sphere in this ALE-fiber is given by the real part of the above
equation, i.e.,

Si =
{

(x, y, z) : x2 + y2 + w2 =
√
l − li, Im(x) = Im(y) = Im(w) = 0

}
=
√
l − li S2 (4.1.61)

where S2 denotes the unit 2-sphere.

Indeed, as we approach to the critical point (xi, 0, 0), l→ li, the Kähler class
[√
l − li

]
measuring the size of the sphere Si approaches to zero, justifying that the 2-sphere Si is
the vanishing two cycle desired.

Now we compute the intersection numbers between these vanishing two cycles. First,
deforming the cycle Si a litter bit by deforming the line segment l − li to an arbitrary
path but with the two end points retained, then it is clear that the deformed two cycle
S̃i intersect with Si in exactly two points, i.e., the two end points. This shows that the
self intersection of each Si equals to two.

Let l be the line segment connecting the two critical points (xi, 0, 0) and (xi+1, 0, 0)
and use this line segment to construct the two vanishing spheres Si and Si+1 as above,
then it becomes clear that by deforming the two sphere such that the sum of the radius
of the two spheres equals to the length of the line l, we see that they intersect in exactly
one point but with negative sign. Thus, Si ◦ Si+1 = −1.

Apparently, by the above reasoning Si ◦ Sj = 0 for |i− j| ≥ 2. This finishes the proof
of the first part of the proposition.

To prove the second part of the proposition, note that the critical point xi ofWAn−1(x,u)
corresponds to the roots eλi and eλi+1

coinciding with each other, which by section 4.1.1
corresponds to the vanishing 0-cycle

νi = eλi − eλi+1
∈ H0(M ,Z)

As we know before that the n− 1 independent vanishing cycles νij generates H0(M ,Z)
and is isomorphic to the root lattice ΛR.

Remark 4.1.16. By the above proposition, we infer that the SW geometry, encoded by
the fibration of weight diagram over S2, which is linearized by the local system of lattices
H0(M ,Z) over CP 1, can be obtained by the degeneration of the ALE space fibration over
S2 by letting y and z equal to zero in the equation 4.1.59 (in physics term, it is called
integrate out the variables). In other words, the local system of lattices H2(ALE,Z) over
CP 1 encodes the same information as that of H0(M ,Z). The essential information is
the root lattice ΛR of type An−1. Indeed, the intersection matrix of the vanishing cycles
in both cases equal to the negative of the Cartan matrix for SU(n).
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In general, by remark 4.1.14, suppose that at z±i ∈ CP 1, the two roots eλi and eλj
collide with each other. Denote by Sij the vanishing 2-sphere in H2(X,Z) corresponding
to the vanishing 0-cycle νij = eλi − eλj in H0(M ,Z).

From the proof of the above proposition, we see that the vanishing two spheres van-
ishes exactly when W ≡ WALE

An−1
= 0, i.e., the points on the SW curve Cu, that is when

x = eλi for some i, which means that the radius of the vanishing two sphere Si is mea-
sured by eλi , and consequently that of the Sij is measured by eλi − eλj . We will use this
fact in the proof of the proposition below.

From the proposition and the remark above, we expect the SW one form λSW could
also be deduced from the local CY geometry.

Xu should be viewed as the defining equation of a local Calabi-Yau 3-fold near the
singular K3 surfaces fibred over CP 1 with the singularity type An−1.

Denote by Ω ∈ H3,0(X,C) the unique (up to scalar multiplication) holomorphic vol-
ume form (as ensured by Calabi-Yau condition: KX ≡ 0), which is given by

Ω =
dz

z
∧ dx ∧ dy
∂wWALE

An−1
(x, y, w, z)

(4.1.62)

We want to produce a one form on CP 1 by integrating the 3 form Ω over the vanishing
2-spheres Sij constructed above.

Proposition 4.1.15. Up to multiplication by some constant, we have that∫∫
Sij

Ω = (eλi − eλj)
dz

z
(4.1.63)

Proof. As the two sphere Sij corresponding to νij, we see that locally Sij is defined to be
the real part of

x2 + y2 + w2 = c2 · (eλi − eλj)2

where c is a constant, we then compute as follows∫∫
Sij

Ω =

∫∫
Sij

dz

z
∧ dx ∧ dy
∂wWALE

An−1
(x, y, w, z)

=

∫∫
Sij

dz

z
∧ dx ∧ dy

2w

=
1

2

∫∫
Sij

dz

z
∧ dx ∧ dy√

(c(eλi − eλj))2 − (x2 + y2)

x=ρcosθ, y=ρsinθ
============

=
1

2

∫∫
Sij

dz

z
∧ dρ ∧ dθ√

(c(eλi − eλj))2 − ρ2

=
2π

2

dz

z

∫ (c(eλi−eλj ))2

0

dρ√
(c(eλi − eλj))2 − ρ2

= 2πc (eλi − eλj)
dz

z
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Proposition 4.1.16. Up to multiplication by a constant, we have that∫
Ω = λSW = −x dz

z
(4.1.64)

Proof. By above proposition, we see that when integrated out the extra variables y and z
over the vanishing 2-sphere Sij, which corresponds to degenerate the lattice fromH2(X,Z)
to H0(M ,Z), the volume form Ω was reduced to the form

(eλi − eλj)
dz

z

By (4.1.49), this form equals λj − λi, which vanishes on νij. The claim then follows
from proposition 4.1.10.

Given the volume form Ω on a CY-3 fold X, we can define an analogous notion of
central charge function in this case, namely

Definition 4.1.6. The central charge ZCY associated to a CY-3 fold (X,Ω)is given
through the following period map, which is an abelian group homomorphism:

ZCY : H3(X, Z) −→ C

γ 7−→ ZCY (γ) :=

∫
γ

Ω (4.1.65)

Following from the proposition 4.1.14 and proposition 4.1.15 above, we can show that
the central charge function (periods of SW curve) associated to the SW integrable system
can be induced from the central charge function (periods of CY 3-fold) associated with
the CY 3-fold defined above.

By formula (4.1.64), the integration of the holomorphic form Ω over the vanishing
two spheres Sij in the local ALE fiber gives the SW form λSW = −xdz

z
restricted to the

i-th and the j-th sheets of the weight diagram fibration. As the vanishing 2 sphere Sij
is associated with νij = eλi − eλj that corresponds to the pair of branch points z±ij over
which the two roots coincide. Connect the two branch points (directed from z+

ij to z−ij)
by a line segment lij (branch cut) and integrate over it, we get the period for Ω as∫ z+

ij

z−ii

∫∫
Sij

Ω = (eλi − eλj)
∫ z+

ij

z−ij

dz

z
=

∫ z+
ij

z−ij

eλi
dz

z
−
∫ z+

ij

z−ij

eλj
dz

z

=

∫
lij

x
dz

z
+

∫
−lij

x
dz

z
=

∫
γij

x
dz

z
=

∫
γij

λSW (4.1.66)

where γij ∈ H1(C,Z) denotes the lift of the line segment lij ⊂ CP 1. The identity in
the last line of the above equation follows from the fact that the SW curve Cu is presented
as a Riemann surface by pasting two copies of complex line CP 1 along the branch cuts
lij with opposite direction. (see remark 4.1.15)

From the above computation, we see that when consider the three cycle γ ∈ H3(X,Z)
that can be written as a cycle composed of a vanishing two sphere Sij over the line
segment lij lying the Riemann sphere CP 1. Then we have that

ZCY (γ) =

∫
γ

Ω =

∫
γij

λSW = Z(γij) (4.1.67)
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Proposition 4.1.17. The three cycle γ above is topologically homemorphic to the three
sphere S3.

Proof. Clearly, the cycle γ presented above can be viewed as a two sphere fibration over
the line segment lij with two end points z+

ij and z−ij . Since at the two end points, the
sphere shrinks into zero size, we see that the topology type of γ is the same as that of
S3, i.e, by slicing S3 into S2 leaves with the north pole of S3 being identified with the
vanishing two sphere on one end, while the south pole that of the other end.

The topology type of the non contractible connected one cycles on two sphere CP 1,
besides the line segments described above, there are also cycles of the topology type of the
circle S1. The natural three cycles lifted from this type on the base CP 1 of the fibration
to X is of topology type S2 × S1 (see Figure 4.9).

Figure 4.9: The topology types of the lifted one cycles, either of the type S2 × S1 as
shown in the left hand side of the figure, or of the type of the three sphere S3 on the
right hand side of the figure.

Under the projection π : X → CP 1, the three cycles in X were mapped to one cycles
on CP 1 which falls into the two types described above. As we showed in proposition
4.1.14 that the middle dimensional homology of the ALE-space fiber Xu is given by

H2(Xu,Z) ∼= Λ
SU(n)
R

which is generated by the set of vanishing two spheres Sij corresponding to the colli-
sion of two roots eλi and eλj of An−1 singularityWAn−1 . Thus, by considering the fibration
of the vanishing two spheres over the two type of one cycles on the base of the fibration,
the three cycles of X would be generated.

In conclusion, we get the following map on the homology level

φ : H3(X,Z) −→ H1(C,Z) (4.1.68)

which is defined as the composition

φ : H3(X,Z)
π∗−→ H1(CP 1,Z)

lift−−→ H1(C,Z) (4.1.69)
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We have already noted above that if the three cycle γ is mapped into line segment
lij connecting the pair of branch points z±ij corresponding to the collision of two roots eλi
and eλj , then φ would map γ to the lifted one cycle γij in H1(C,Z). On the other hand,

if the three cycle γ is mapped under π∗ into a circle S1 ⊂ S2, then we denote by γS
1

its
lift on the Riemann surface C. Then it can be shown that these two types of cycles γS

1

and γij generates H1(C,Z).

It is clear that we have the following property which relates the periods of CY 3-fold
to the periods of SW curves Cu.

Proposition 4.1.18. We have that for γ ∈ H3(X,Z) the following identity

ZCY (γ) =

∫
γ

Ω =

∫
φ(γ)

λSW = Z(φ(γ)) (4.1.70)

H3(X,Z) is endowed with the intersection form 〈·, ·〉CY , which is symplectic as the
complex dimension of X is 3. Denote by 〈·, ·〉SW the intersection form on H1(X,Z), then
it was claimed in [Kle+96] that the map φ preserves the intersection form, i.e.,

〈γ1, γ2〉CY = 〈φ(γ1), φ(γ2)〉SW (4.1.71)

Besides it is also claimed in [Kle+96] that

ker(φ) = 0 (4.1.72)

which, together with (4.1.71), means that the information about the intersection of three
cycles on X could be encoded in the interaction pattern of the one cycles on the Riemann
Surface C.

Sketch of the proof of (4.1.71) and (4.1.72)

To show the validity of (4.1.71), notice that since we have presented the three cycles in
H3(X,Z) as S2 (which generates H2(Xu,Z)) fibration over the one cycles lying on CP 1,
while the one cycles H1(Cu,Z) on the SW curve is generated by the one cycles on the base
CP 1 that either connects the two branch points of the ALE fibration or the closed loops
circling around the branch points, thus under the push-forward map φ, the intersection
product 〈·, ·〉CY is determined by the induced intersection patterns on its ALE-fibers,
namely that induced on H2(Xu,Z). By proposition 4.1.14, this group is identified with
H1(Cu,Z) from which it follows that the intersection patterns of the three cycles on X
coincide with that of one cycles on the SW curve, i.e., we have

φ] 〈·, ·〉CY = 〈·, ·〉SW

Next, to show that the kernel of φ is trivial as homology class, we note that if φ(γ) = ∂c
for some two cycle c ∈ H2(C,Z), then we show that γ = ∂c̃. Indeed, by projecting the
two cycle c on to the base sphere CP 1, we will get a two cycle c∗ on the base. Then we
take the boundary ∂c∗ and consider the S2 fibration over it, we denote the three cycle
thus obtained by c̃, which by the construction of the map φ described in (4.1.69), we see
that ∂c̃ = γ. �
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Remark 4.1.17. The one cycles on the Riemann sphere CP 1 ∼= S2 is called in physics
literature as the self-dual strings (see [Kle+96][BS97][May99] for more information about
this story). From the discussion above, it is expected that the BPS states in type IIB string
theory compactified on CY 3 fold X, being represented as D3-brane wrapping three cycles
on X (see appendix A), could be studied through the configuration of self-dual strings on
complex z-plane. Of course, by supersymmetry the three branes wrapping three cycles
should minimize its volume in its homology class. Remember that we have represented
the three cycles as vanishing two spheres over the one cycle on CP 1, as the two spheres
are already of the minimum volume possible, we only need to minimize the length of the
self-dual strings in question, i.e., the geodesics of curves on S2 with the natural metric
defined below.

Definition 4.1.7. The natural metric on the base CP 1 is given by

ds2 = |λSW |2 = gzz dzdz = (x(z)/z)2 dzdz (4.1.73)

As the dependence of x on z is assumed to be holomorphic, we get that the curvature

∂∂ log gzz ≡ 0

Consequently, by going to the flat coordinate where the flat metric is in canonical form,
we see that the geodesics are straight affine lines in the affine structure induced by the
flat metric (see section 3.1.5).

The canonical flat coordinate is given by

Z ≡
∫ z

λSW (4.1.74)

Indeed, in terms of the coordinate Z, the metric can be rewritten as

ds2 = dZdZ = |λSW |2 (4.1.75)

which justifies the name “flat” of the coordinate Z. Using it, the equation of geodesics
can be written in the following form

Z(t) = αt+ β (4.1.76)

where t is the “time” parameter for the geodesic line, α and β two arbitrary complex
valued constant. Apparently, α specifies the direction of the geodesic line in complex
plane.

The above equation is the solution of the first order differential equation, i.e. the
geodesic equation in canonical flat coordinate:

d

dt
Z(t) = α (4.1.77)

which in our case reads

x(z)z−1 ∂z(t)

∂t
= α (4.1.78)

For the simplest SU(2) case, the above equation specifies into the following√
2u− z − Λ2

z
z−1∂z(t)

∂t
= α (4.1.79)

Some trajectories of the above equation and the relation to the BPS states for SU(2)
supersymmetric Yang-Mills theory can be found for example in [Kle+96].

149



Remark 4.1.18. Note that the form of equation (4.1.77) is very similar to the attractor
flow equation (3.2.7) in affine coordinates in section 3.1.7 if the flat coordinate Z here
could be interpreted as the central charge function. This is indeed the case, which on the
physics side, supports the plausibility that the structures of the self dual strings should in
principle encodes the BPS spectral of the theory lying behind.

We now state the following proposition which clarifies the remark above.

Proposition 4.1.19. Let Z : Γb := H1(Cb,Z) → Z be the central charge function of the
SW integrable system. Consider the wall of second kind defined by

Im(Zb(γ)) = 0

for some charge γ ∈ Γb. If the above equation is viewed as defining a curve in the base
B of the SW integrable system, then it gives the attractor flow equation (3.2.7) defined
before. However, if we present the SW curve as the fibration of weight diagram over
CP 1, then in terms of the base coordinate z, the wall equation above gives the geodesic
line equation (4.1.79) on CP 1.

Remark 4.1.19. Since both forms of SW curve are equivalent, we see that attractor
flows on the base of the SW integrable system and the self dual strings on the Riemann
sphere essential contains the same amount of information as regards to determining the
BPS-invariants (aka DT-invariants). Notice that in the SU(2) case the base B actually
coincides with the Riemann sphere S2 after one point compactification of the complex
plane.
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4.1.5 Connection with Hitchin System and Spectal Networks

The Seiberg-Witten curve is usually presented (for example the one given in [KS08])
in the form that is pertinent to the Hitchin integrable system (for more details see
[Moo12a][Nei14a][Lu10] and the references contained therein).

Given a punctured Riemann surface S together with certain data describing the
boundary conditions at the punctures, and let G be a simply laced compact Lie group (in
the following, G is assumed to be SU(n)). Let E be a complex G bundle over S endowed
with a G-connection of (0, 1) type, which can be written as

D = ∂z̄ + Az̄

Consider (1, 0) form valued in End(E) as follows

φ ∈ Ω(1,0) (S, End(E)) = H0 (S, End(E)⊗K)

where K is the canonical bundle of S. The adjoint field φ is called a Higgs field if it
gives solution to the following Hitchin equations:{

FD +R2[φ, φ̄] = 0

∂z̄φ+ [Az̄, φ] = 0
(4.1.80)

where FD is the curvature of the connection D, and R a positive real number.

The pair (E, φ) is then called a Higgs bundle over S. The space of all Higgs bundles
modulo the group G := Aut(E) gives the Hitchin moduli space MHiggs which carries
hyperkähler structure (see the definition 3.1.20).

A point of MHiggs corresponds to a cover of S through the spectral curve:

C := {λ ∈ T ∗S : det(λ I − φ) = 0} ⊂ T ∗S (4.1.81)

where in the fundamental representation of SU(n), the determinant can be written
(trace≡ 0 by the SU(n) condition) as

det(λ I − φ) = λn + λn−2φ2 + · · ·+ (−1)nφn = 0 (4.1.82)

Here the fields φi ∈ H0
(
S, K⊗iS

)
may have singularities at the punctures. Clearly, by

utilizing the spectral curve C, we get a n-folded cover of the Riemann surface S

π : C n:1−−→ S (4.1.83)

with the fiber over a generic z ∈ S given by

π−1(z) :=

{
λ(z) ∈ T ∗S : λn +

n∑
i=2

(−1)iφi λ
n−i = 0

}
(4.1.84)

The fiber above generically consists of the n-roots of the equation (4.1.82). The cov-
ering π is branched at the discriminant locus ∆ where two or more roots collide.
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The Coulomb branch B consists of tuples {φ2, · · · , φn} of meromorphic differentials,
which are the Casimirs of the Higgs field φ. Thus

B :=
n⊕
i=2

H0
(
S, K⊗iS

)
(4.1.85)

Given a point of B, i.e., by specifying n − 1 tuples {φi}ni=2, we will obtain a branched
covering of S through the spectral curve construction (4.1.81). Moving points in B gives
a family of covering (4.1.83).

Denote by Bsing the locus where this fibration is branched. And denote by B0 =
B\Bsing the smooth part. Then we have the Hitchin fibration

h :MHiggs −→ B =
n⊕
i=2

H0
(
S,K⊗iS

)
which maps a Higgs bundle (E, φ) to the characteristic polynomial of φ. It can be
proved that away from the singular locus Bsing, it gives a complex integrable system
([Hit+87a][Bot83]) in the sense that it is a holomorphic mapping with the generic fibers
being the compact Lagrangian tori. Actually, in our case, the generic fiber h−1(b) is an
abelian variety given by the Prym variety J(Cb) of the covering Cb → S, which in our
An−1 case can be identified with the Jacobi variety of Cb.

The following picture due to M.Kontsevich vividly illustrates the geometry of the
Hitchin fibration as a complex integrable system.

Figure 4.10: The geometry of Hitchin integrable system

Remark 4.1.20. The Prym variety of the covering π is defined to be the kernel of the
corresponding map on the Jacobian level, i.e.,

J(C) := ker (Jac(C)→ Jac(S)) (4.1.86)

In the case when S = CP 1 (to be focused on momentarily), as the Jacobian of S is
trivial, the Prym variety of the covering coincide with the Jacobian of C.
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Remark 4.1.21. Given coordinate (z, x) ∈ T ∗S, the tautological one form (Liouville one
form) on the cotangent space reads

λ = xdz (4.1.87)

while the canonical symplectic form on T ∗S is given by (up to a normalizing constant)

Ω2,0 = dλ = dx ∧ dz (4.1.88)

The restriction of the tautological one form λ on the spectral surface C gives the so
called Seiberg-Witten differential, while the surface C itself is termed as Seiberg-Witten
curve. The rational of these terminologies will be justified in the following in the case for
gauge group to be of type An−1.

Relation to SW curve for An−1 case

We take the Riemann surface to be the Riemann sphere S = CP 1 ∼= S2 with holo-
morphic coordinate z, while the complex bundle E is taken to be its cotangent bundle
T ∗CP 1. Let x be the fiber coordinate of T ∗CP 1, then the tautological (Liouville) one
form on the symplectic manifold T ∗CP 1 is given by

λcan = x
dz

z
(4.1.89)

Indeed, it is invariantly defined on CP 1 since its form is kept (albeit differed by a negative
sign which is inconsequential for our purpose) under the coordinate patch transformation
on the projective line CP 1, namely: z 7→ z−1.

The canonical symplectic form on T ∗CP 1 is given by

ω2,0 = dx ∧ dz
z

= d

(
x
dz

z

)
= d λcan (4.1.90)

We claim that by substituting

λ = λcan φi = ui

(
dz

z

)i
in the characteristic polynomial (4.1.82), the classical simple singularity of An−1 type in
the description of SW curve (4.1.46) will be recovered.

Indeed, the characteristic polynomial in this case becomes

det(λI− φ) =
xn

zn
(dz)n +

xn−2

zn−2
(dz)n−2u2

(
dz

z

)2

+ · · ·+ (−1)nun

(
dz

z

)n

=

(
dz

z

)n (
xn + u2 x

n−2 + · · ·+ (−1)nun
)

=

(
dz

z

)n (
WAn−1(x,u)

)
Thus in terms of coordinates (z, x) ∈ T ∗CP 1, the equation defining the spectral curve

can be written as WAn−1(x,u) = 0, which means that for each z ∈ CP 1, we get a copy of
the level manifold of WAn−1 , while the level itself can be fixed by judicious choice of λ.
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Consequently we get the SW curve in the form of (4.1.46), i.e., as the weight diagram
fibration over CP 1. For this reason, the curve C, viewed as a branched covering of CP 1

is also called the Seiberg-Witten curve in the mathematics and physics literature once a
fundamental representation of An−1 has been fixed.

Let’s take again the example of SU(2) case as an illustration of the perspective pre-
sented in above. The spectral curve equation in this A1 case reads

λ2 + φ2 = 0

Make the following choice for the quadratic differential

φ2 =

(
− u

z2
− 1

2z
− Λ4

2z3

)
⊗ (dz)2 (4.1.91)

Then by substituting λ = λcan = xdz
z

, we see that the spectral curve equation becomes

x2

(
dz

z

)2

−
(
u

z2
+

1

2z
+

Λ4

2z3

)
⊗ (dz)2 = 0

which, after collecting the terms becomes(
x2 − u− 1

2

(
z +

Λ4

z

))
⊗
(
dz

z

)2

= 0

that is

z +
Λ4

z
+ 2 (x2 − u) = 0

And this is exactly the SW curve (4.1.51) for SU(2) case.

Similarly, in SU(3) case, the characteristic polynomial reads as

λ3 + λφ2 − φ3 = 0

Choose

φ2 =
−u
z2
⊗ (dz)2

and

φ3 =

(
v

z3
− 1

2

(
1

z2
+

Λ6

z4

))
⊗ (dz)3

Substituting them in the characteristic polynomial, together with λ = xdz
z

, we will
obtain the equation for SW curve (4.1.53) in this case, namely

z +
Λ6

z
+ 2(x3 − ux− v) = 0

Remark 4.1.22. From the above description, one sees easily that the SW differential on
form for the SW curve Cu is exactly given by the minus of the restriction of the Liouville
one form λcan to C, which is the expected scenery from the perspective of the complex
integrable system.
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Split attractor flow versus spectral network

For a generic z ∈ S, the fiber of the spectral covering π (see 4.1.83) is given by the n
roots of the characteristic equation (4.1.82), namely

{λ1, · · · , λn} (4.1.92)

which correspond to the sheets of the covering. At the discriminant locus ∆, two or
more roots coincide, and the corresponding sheets collapse. Following the terminologies
in [GMN13b] and [GMN13a], we make the following definition.

Definition 4.1.8. The BPS ij-string of phase θ ∈ S1 ∼= R/2πZ labeled by pairs of
sheets is defined to be an integral path on S obeying the following differential equation:

〈λi − λj, ∂t〉 ∈ eiθ R+ (4.1.93)

where t is the “time” parameter for the path and ∂t is the tangent vector along the path.

Locally, write λi = fi(z)dz, then the equation (4.1.93) is equivalent to the following

(fi(z(t))− fj(z(t)))
dz

dt
= eiθ (4.1.94)

which, by introducing the Z-affine coordinate

wij :=

∫ z

λi − λj (4.1.95)

the above equations is solved by straight lines in the rotated Z affine structure (see remark
3.1.17 in section 3.1.5), namely

Im
(
e−iθwij

)
≡ 0 (4.1.96)

Remark 4.1.23. For fixed i, j, the affine lines solving the above equation gives a foliation
of the surface S.

Denote by Pij the path that solves the above differential equation. It can end on the
branch point where

λij := λi − λj = 0

or it can end on a junction point where a ij-string, an jk-string and an ki-string meet
each other.

Figure 4.11: Junction point where a ij-string, a jk-string and a ki-string meet.
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Definition 4.1.9. The central charge of Pij is defined through the following

Z(Pij) =

∫
Pij

λij (4.1.97)

while the mass function is defined as

M(Pij) =

∫
Pij
|λij| (4.1.98)

Remark 4.1.24. Clearly, we always have that M(Pij) ≥ |Z(Pij)|. Since BPS-states
corresponds to those paths that saturate this inequality, we see that this is possible if and
only if the phase of λij stays constant along the path. In this case we have the following
relation Z(Pij) = eiθM(Pij) which motivates the introduction of the notion of BPS string.

Lemma 4.1.20. If an ij-string, jk-string and ki-string meet at a junction point, then the
phases of the corresponding BPS strings coincide.

Proof. Suppose the central charge Z has phase θij along the path Pij, θjk along Pjk, and
θki along Pki. Since p is the junction point where the three paths meet, then at this p, we
must have θij = θjk = θki, as the phases are preserved along the paths by the definition
of the BPS-string, we conclude that the three paths share the same phase.

The ij-string Pij can be endowed with an orientation by requiring

Re

(
e−iθ

∫
Pij

λij

)
> 0 (4.1.99)

along the path, while the opposite orientation gives an jk-BPS string.

Definition 4.1.10. A Spectral network is defined to be a finite web consisting of BPS
strings at a given value θ (which is justified by the above lemma 4.1.20). All strings in
the web are assumed to have finite total central charge.

An example of spectral network due to Andrew Neitzke (taken from the note of his
talk in string math conference, 2013) is given below:

Figure 4.12: Example of spectral network. The wigged lines denote the new strings being
created after the “scattering”.
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We now associate the charge to BPS-strings as well as that of in the charge lattice
Γ = H1(C,Z) by lifting the paths and webs from S to the SW curve C. Thus, suppose
that we are given a spectral network as a web of BPS strings

W :=
⋃

finite

Pi (4.1.100)

Each path Pi ⊂ S can be lifted to a closed one cycle γi ∈ H1(C,Z) in C (see the
discussion around (4.1.68) for the construction of the lift or see the relevant discussion
in[GMN13a] for more details).

The lifted one cycle γi ∈ H1(C,Z) is then called the charge associated to the path
Pi. As the union is finite, we can define the charge associated to the web W as

γW :=
∑
i

γi (4.1.101)

then the central charge of it is determined additively, i.e.,

Z(γW) =
∑
i

Z(γi) =
∑
i

∮
γi

λSW (4.1.102)

In terms of the charge and the central charge of the path, we can rewrite the equation
of BPS string (see (4.1.96)) as

Im
(
e−iθ Z(γ)

)
= Im

(
e−iθ

∮
γ

λSW

)
= 0 (4.1.103)

were γ the charge associated to certain BPS string P ⊂ S.

Specializing to the case of SW integrable system for An−1, i.e., by take S = CP 1 as
before, then the BPS string equation above is exactly the equation for self-dual string on
CP 1, which should be obvious on physics ground.

Proposition 4.1.21. The spectral network on S associated with An−1 contains the same
amount of information as that of the split attractor flows introduced in section 3.2.1 so
long as the determination of the BPS charges (states) are concerned.

Proof. (Sketch) A single BPS string and a single attractor flow is two aspects of the
same object which follows directly from proposition 4.1.19, while for the webs of the BPS
strings, we just need to notice that the junction points of three BPS strings correspond
exactly to the splitting point of the attractor flows by the lemma 4.1.20 proved above.
Consequently, the WCS in terms of attractor flows (see section 3.2.3) can be transported
to that in terms of the spectral network as had been defined and studied in great details
in, for example [GMN13b],[GMN13a], and more recently[Lon18]. The proposition then
follows from these considerations.

Next we show that the balance condition for the split attractor flows (see definition
3.2.5) also holds in the case of spectral networks.
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Proposition 4.1.22. Consider the situation when an ij-BPS string Pij, an jk-BPS
string Pjk and an ik-BPS string Pik meet at the junction point p, with the corresponding
charges of the three strings denoted by γij,γjk and γik respectively, then at the junction
point p, we have that

γik = γij + γjk

Proof. By lemma 4.1.20, the central charges of the three charges share the same phase,
say θ. Consider then the following web defined as:

W ijk := Pij ∪ Pjk ∪ Pki

with the corresponding charge γW
ijk ∈ H1(C,Z), where the path Pki is the reverse path

of Pik. Then we compute as follows

m(γij) +m(γjk) +m(γki) =

∮
γij

|λSW |+
∮
γjk

|λSW |+
∮
γki

|λSW |

= e−iθ

(∮
γij

λSW +

∮
γjk

λSW +

∮
γki

λSW

)

= e−iθ

(∮
γij

(λi − λj) +

∮
γjk

(λj − λk) +

∮
γki

(λk − λi)

)

≤ e−iθ
(∮

γWijk
(λi − λj) +

∮
γWijk

(λj − λk) +

∮
γWijk

(λk − λi)
)

= e−iθ
(∮

γWijk
(λi − λj) + (λj − λk) + (λk − λi)

)
≡ 0

But as

m
(
γW

ijk
)

= m(γij) +m(γjk) +m(γki) ≥ 0

which forces it to vanish identically. As a consequence, we get that

Z
(
γW

ijk
)

= Z(γij) + Z(γjk) + Z(γki) = Z(γij + γjk + γki) = 0

Since by proposition 4.1.9, the SW form λSW does not blow up, from which it follows
that

γij + γjk + γki = 0

which, by our orientation convention, is equivalent to the following balancing condition
at the junction point p, i.e.,

γij + γjk = γik
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4.2 Vanishing Cycles and Monodromies

Recall that in section 4.1.2, we have already constructed SW integrable system associated
to SU(n). It is given through the family of SW curves (4.1.17) Cu with the parameter
u ∈ B = Cn−1, which is identified with the base of the SW integrable system. The
Lagrange tori fiber over u is given by the Jacobian Jac(Cu) of the curve Cu, while the
period lattice defining the Jacobian is identified with the first homology group with Z
coefficients. Therefore, we get a local system of lattices over B, with the charge lattice
being defined as previously by: Γu = H1 (Cu,Z). The SW integrable system is endowed
with a central charge function

Zu : Γu = H1 (Cu,Z)→ C

which is an abelian group homomorphism defined via the SW form λSW by

Zu(γ) =

∮
γ

λSW for γ ∈ Γu

We know that when the moduli u approaches the discriminant locus ∆ ⊂ B, the torus
fiber becomes degenerate (or singular) in the sense that certain nontrivial homology one
cycles on it shrink to zero. These middle dimensional cycles are termed vanishing cy-
cles and they are known to generate the middle dimensional homology H1(C,Z) (see for
example [AGV]).

Over B0 := B\∆, the Lagrangian torus fibration π is smooth. However, when circling
around the components of ∆, a given fiber of π would usually not come back to itself, it
undergoes the so called monodromy transformation which is given by the Picard Lefschetz
formula (see the formula (3.1.89)).

In view of the connection to WCS (see section 3.2.3), the attractor flows, which are
defined as the gradient flow lines of the real part of the (rotated) central charge function
Z, will terminate at the points (attractor points) belonging to the discriminant locus
∆. The charges γ corresponding to the monodromy invariant directions is assigned the
DT-invariants Ωb(γ) = 1 (see remark 3.2.14). In this way, we will obtain the initial data
of the WCS.

The WCS can then be constructed, roughly speaking, by shooting rays (attractor
flows in Z-affine structure) from the discriminate locus ∆, and applying the KSWCF at
the intersection points of these tail edges which lies on the wall of the first kind where
the phases of the corresponding central charges align.

Since their central importance in construction WCS for SW integrable system, the
vanishing cycles and the associated monodromies will be studied in the next few subsec-
tions. We focus here on the SU(2) and SU(3) cases.
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4.2.1 Classical and Semi-classical Monodromy

The exposition in this subsection is based mainly on the papers [klemm1996nonperturbative]
and [Kle+94].

Recall that the discriminant locus ∆c in the classical moduli space Mc (see definition
4.1.2) is given by the intersection of certain hypersurfaces (see the formula (4.1.11)):

Z(αij) = eαij(u) = eλi − eλj ≡ 0

for some positive roots α ∈ Φ+. That is, the discriminant locus ∆c characterize the
location of the vanishing 0 cycles in Mc:

ναi,j = eλi − eλj

We already noted in section 4.1.1 that the classical monodromy associated to the
vanishing cycle ναi,j , i.e., the effects on the coordinates a induced by tracing along a
contractible loops around the hypersurface: Z(αij) = 0 is given by the fundamental Weyl
refection associated with the simple roots αi,j. We now illustrate this in SU(2) and SU(3)
cases.

In the simplest SU(2) case, we know that the discriminant δc = 4a2 = 4u. Thus, by
looping around the point {u = 0}, i.e., u 7→ e2πitu for 0 ≤ t ≤ 1, which amounts to
a2 7→ (eπita)2, from which we see that the effect on a is given by

a 7→ −a

which is exactly Z2 transformation, i.e., the Weyl reflection in SU(2) case.

Next, we consider the SU(3) case. In this case, we have

u =
1

6

∑
α∈Φ+

(Z(α))2 =
1

2
at · CA2 · a

=
1

2

(
a1 a2

)( 2 −1
−1 2

)(
a1

a2

)
= a2

1 + a2
2 − a1a2

where CA2 is the Cartan matrix for A2.

as well as
v =

∏
fund.rep.weightsλ

Z(λ) = e1e2e3 = a1(−a2)(a2 − a1)

= a1a2(a1 − a2)

The discriminant is given by (see formula (4.1.12))

δc =
n∏
i<j

(
eλi(u)− eλj(u)

)2
=
∏
α∈Φ+

(eα(u))2 = 4u3 − 27v2

It is involved to compute the monodromy directly as in the previous SU(2) case. We
just verify here that the monodromy is indeed given by the Weyl group action.
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The Weyl group in this case reads S3, i.e., the permutation of the three roots ei

Around the locus ∆c where ν1,2 = e1 − e2 shrinks to zero, the monodromy is induced
by the permutation (12) ∈ S3, which exchanges e1 and e2 while leaving e3 unchanged.
Consequently, from the relation (4.1.9), we see that the effect on ai s is given by

a1 7−→ −a2, a2 7−→ −a1

Similarly, the transposition (13) induces the following monodromy

a1 7−→ a2 − a1, a2 7−→ a2

And the transposition (23) induces the following monodromy

a1 7−→ a1, a2 7−→ a1 − a2

As the permutation group S3 is generated by these transpositions, thus the Weyl action
is realized as the monodromy explicitly. Following the convention in [klemm1996nonperturbative],
we denote by r1 the Weyl refection induced by the transposition (13), and by r2 that in-
duced by (23) and r3 that by (12). In matrix representation, the action of Weyl group
on (a1 a2)t is given by

r1 =

(
−1 1
0 1

)
r2 =

(
1 0
1 −1

)
r3 =

(
0 −1
−1 0

)
(4.2.1)

Besides the “electric coordinates” a, we also have the dual coordinates (magnetic
duals) aD, which is given through the prepotential function F(a) by

aD,i ≡
∂F
∂ai

(4.2.2)

We claim that the induced monodromy on aD is given by (r−1)t in terms of the matrix
representation, where the uppercase t denotes the transpose of the matrix.

To see this, we compute as follows:

aD,i ≡
∂F
∂ai

=
∑
k

∂F
∂uk

∂uk
∂ai

As F is holomorphic and invariant under Weyl group action, and uk s being invariant
coordinates, thus the effect of the action r on a changes aD only through the Jacobian

matrix
(
∂uk
∂ai

)
of the coordinate transformation. Denote by a′ and a′D the transformed

forms of a and aD respectively under the action of r = (rij). Then, we see that

aD,i ≡
∂F
∂ai

=
∑
k

∂F
∂uk

∂uk
∂ai

=
∑
k,j

∂F
∂uk

∂uk
∂a′j

∂a′j
∂ai

=
∑
k,j

∂F
∂uk

∂uk
∂a′j

rji =
∑
j

rji a
′
D,j

thus it follows that
at′D = (r−1)t atD (4.2.3)
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Consequently, the classical monodromy action on (aD)t, a is given in matrix forms
as (

a′D
a′

)
=

(
(r−1)t 0

0 r

)(
aD
a

)
(4.2.4)

For notational convenience, we denote by rclass the matrix that appeared in the above
formula.

The above classical symmetry can be augmented to the semi-classical symmetry
by considering the form of the prepotential F in the semi-classical regime, i.e., the regime
where |u| � Λn. In this region, the semi-classical contribution to the prepotential func-
tion is given by ([Kle+94])

F1-loop =
i

2πn

∑
α∈Φ+

(Zα)2 log
[
(Zα)2/Λ2

]
=

i

2πn

∑
i<j

(ei − ej)2 log
[
(ei − ej)2/Λ2

]
(4.2.5)

while the classical part of the prepotential function is given by

Fclass =
1

2
τ a (4.2.6)

where τ is the matrix with entries
∂aD,i
∂aj

, which would be later (quantum moduli space

case) identified with the period matrix of certain hyperelliptic curve.

The semi-classical contribution comes from the ambiguity in the logarithmic piece in
F1-loop when circling various locus {Zα = 0}.

SU(2) semi-classical monodromy

In the simplest SU(2) case, e1 = a, e2 = −a, then

F1-loop =
i

π
a2 log

4a2

Λ2
=
i

π
u log

4u

Λ2
=
i

π
u log

δc
Λ2

The semi-classical contribution to the monodromy action on aD =
∂F1-loop

∂a
when cir-

cling the discriminant locus ∆c = {δc = 0} is given by the nontrivial logarithmic piece in
the expression aD, i.e.,

aD ∼
2i

π
a log

δc
Λ2

=
2i

π
a log

4a2

Λ2

The actual contribution to the classical monodromy depends on the particular path
circling around the singular locus ∆c = {u = 0}, for example, consider u 7→ e2πitu, that
is a 7→ eπita, for 0 ≤ t ≤ 1, then we have that

aD 7→
2i

π
eπita log

4a2e2πit

Λ2
=

2i

π
eπita log

4a2

Λ2
+

2i

π
eπita(2πit)

=
2i

π
eπita log

4a2

Λ2
− 4t eπita
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when t = 1, it specialize into

aD 7−→ −aD + 4a

Consequently, the semi-classical monodromy acting on (aD, a)t is given in matrix form
as (

a′D
a′

)
=

(
−1 4
0 −1

)(
aD
a

)
By letting a 7→ 1

a
, we see easily that the above monodromy coincide with the mon-

odromy around u =∞, for this reason, we denote by the above semi-classical monodromy
matrix by M∞, namely

M∞ =

(
−1 4
0 −1

)
(4.2.7)

SU(3) semi-classical monodromy

Next, we consider the SU(3) case. In this case, we have that

e1 = a1 e2 = −a2 e3 = a2 − a1

Thus, at the branch where Zα1,3 = e1 − e3 = a2 − 2a1 → 0, that is, the place where
a2 ≈ 2a1. Consequently, we have:

(e1 − e2)2 = (a1 + a2)2 ≈ (3a1)2

(e2 − e3)2 = (a1 − 2a2)2 ≈ (−3a1)2

Besides, we have that
u = a2

1 + a2
2 − a1a2 ≈ 3a2

1

Similarly, when Zα2,3 = e2 − e3 = a1 − 2a2 → 0, that is, when a1 ≈ 2a2, we have:

(e1 − e2)2 = (a1 + a2)2 ≈ (3a2)2

(e1 − e3)2 = (a2 − 2a1)2 ≈ (−3a2)2

Thus
u = a2

1 + a2
2 − a1a2 ≈ 3a2

2

Finally, when Zα1,2 = e1 − e2 = a1 + a2 → 0, that is, when a1 ≈ −a2, we have:

(e2 − e3)2 = (a1 − 2a2)2 ≈ (3a1)2

(e1 − e3)2 = (a2 − 2a1)2 ≈ (−3a1)2

Thus
u = a2

1 + a2
2 − a1a2 ≈ 3a2

1

163



In conclusion, we see that near the discriminant locus ∆c, we can use u as local
coordinate, in which the prepotential function (4.2.5) (can be expressed similarly as in
SU(2) case as

F1-loop =
i

6π

∑
i<j

u log
(
(ei − ej)2/Λ2

)
=

i

6π
u log

(∏
i<j

(ei − ej)2/Λ6

)
=

i

6π
u log

(
δc/Λ

6
)

(4.2.8)

Using this, we can now determine the semi-classical contribution of the monodromy
acting on aD.

First, the contribution to aD,1 is determined by

∂F1-loop

∂a1

∼ i

6π

∂u

∂a1

log(δc/Λ
6) =

i

6π

(
(2a1 − a2) log(δc/Λ

6)
)

(4.2.9)

while that of aD,2 is determined by

∂F1-loop

∂a2

∼ i

6π

∂u

∂a2

log(δc/Λ
6) =

i

6π

(
(2a2 − a1) log(δc/Λ

6)
)

(4.2.10)

Thus, tracing along the locus in which e1 → e3, the monodromy on (a1 a2)t is given
by the action of the Weyl reflection r1 which can be implemented by the following path

a1(t) = eiπta1 +
1

2
(1− eiπt)a2

a2(t) ≡ a2

Consequently, the coefficient (2a1 − a2) in (4.2.8) transform into

2(a2 − a1)− a2 = a2 − 2a1

Similarly, the coefficient (2a2 − a1) in (4.2.9) transform into

2a2 − (a2 − a1) = a1 + a2

Besides, as u ≈ 3a2
1 and v ≈ −2a3

1, we see that δc = 4u3 − 27v2 is of homogeneous
degree 6 in a1, so we see easily that upon traversing along the curve given above, the
logarithmic pieces in (4.2.8) and (4.2.9) will pick up a factor of log e6πit = 6πit, which
when multiplied by the coefficient i

6π
, gives us the monodromy factor −1 after evaluating

at t = 1.

In conclusion, we see that the semi-classical monodromy action on aD is given by the
following: (

a′D,1
a′D,2

)
=

(
−1 0
1 1

)(
aD,1
aD,2

)
+

(
2 −1
−1 −1

)(
a1

a2

)
(4.2.11)

Combining with the monodromy action on a, we conclude that the total semi-classical
monodromy associated to the Weyl reflection r1 is given by the following matrix which
acts on the vector (aD a)t as:
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Mc
r1

=


−1 0 2 −1
1 1 −1 −1
0 0 −1 1
0 0 0 1

 (4.2.12)

Which can be rewritten more succinctly in block form as follows:

Mc
r1

=

(
(r−1

1 )t 0
0 r1

)(
1 C̃
0 1

)
(4.2.13)

where the matrix C̃ is determined by

(r−1
1 )t C̃ =

(
2 −1
−1 −1

)
from which we get that

C̃ =

(
−2 1
1 −2

)
= −

(
2 −1
−1 2

)
= −C

where C is the Cartan matrix of A2.

Consequently, we get that

Mc
r1

=

(
(r−1

1 )t 0
0 r1

)(
1 −C
0 1

)
=

(
(r−1

1 )t 0
0 r1

)(
1 C
0 1

)−1

Denote by T the matrix

(
1 C
0 1

)
, which is called the quantum monodromy in

physics literature.

Finally, we write the total semi-classical monodromy as

Mc
r1

= rclass1 T−1 (4.2.14)

Computing in exactly the same fashion as that for r1 for the other two fundamental
Weyl reflections r2 and r3, the same pattern appears. We conclude that the semi-classical
monodromy is generated by

Mc
ri

= rclassi T−1, i = 1, 2, 3. (4.2.15)

By the matrix forms of r2 and r3 in the formula (4.2.1), we give the matrix represen-
tations of Mc

r2
and Mc

r2
as follows

Mc
r2

=


1 1 −1 −1
0 −1 −1 2
0 0 1 0
0 0 1 −1

 Mc
r3

=


0 −1 −1 2
−1 0 2 −1
0 0 0 −1
0 0 −1 0

 (4.2.16)
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Monodromy in terms of the SW-curve

We want reproduce the monodromy matrix directly in terms of the geometry of the
SW curve. The idea is that we choose a particular point u ∈ B such that the monodromy
would be easy to see in this case. The following exposition is based on the treatment
given in [AF95].

We choose a special point u = (u2, · · · , un−1, un) = (0, · · · , 0, un), which corresponds
to the direction in moduli space in which the roots of Wn−1(x,u) − Λ2n are maximally
separated. Indeed, in this case, the curve (4.1.17) becomes (for the sake of simplicity, in
the following, we denote by u ≡ un)

y2 = (xn − u)2 − Λ2n = (xn − u+ Λn)(xn − u− Λn)

Denote by u± := n
√
u∓ Λn. Notice that in the semi-classical region, i.e., when |u| �

Λn, we should have that u+ ≈ u−. The roots of the right hand of the above equation
then become

e±k = ωkn u
±, 1 ≤ k ≤ n.

where ωn := e
2πi
n denotes the n-th root of unit. Consequently, among these 2n-roots,

n of them, namely {e+
i } (or {e−i }) are distributed evenly along a circle centered at the

origin with radius |u+| (or |u−|). The two circles become very close to each other when
in the semi-classical region, i.e., in large radius region.

The cycles αi (1 ≤ i ≤ n) is defined to be the (lifted up to the double cover of the
x-complex plane) one encircling the pair of roots e±i , while the cycle βi (1 ≤ i ≤ n − 1)
the one that encircles the roots e+

i and e+
n . Notice that the cycles αi are not linearly

independent since they are easily seen to satisfy the relation∑
i

αi = 0

Clearly, the intersection numbers between αi and βi are given as 〈αi, βj〉 = δij after
choosing proper orientations along the α and β cycles.

Now consider the monodromy around u� Λn, i.e., the monodromy around ∞ in the
moduli space. Thus, take u 7→ e2πiθ u, 0 ≤ θ ≤ 1, we see that

e±k = ωkn u± 7−→ ωkn
n
√
e2πiθ u ∓ Λn ≈ ωkn ω

n
√
u ≈ ωk+1

n u± = e±k+1

which means that the cycle αk is get transformed into αk+1.

These transformations generate the permutation group Sn, which is exactly the Weyl
group for SU(n).

This further implies that the semi-classical monodromy acts on a by Weyl reflections,
which justifies our previous results by using the perturbative behaviour of the prepoten-
tial function F .
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Thus, the monodromy acts on −→α = (α1 · · ·αn−1) by the permutation matrix P defined
as

P ij = δi+1,j − δi+1,n

The action on the β cycles is slightly more complicated, let us determine it now.

As had been displayed above, going around a large loop near ∞, we have that

e+
k 7−→ e+

k+1, 1 ≤ k ≤ n− 1, and e+
n 7−→ e+

1

So the action corresponds to the permutation (12 · · ·n). As during the rotation pro-
cess, the cycle βk crosses the branch cut connecting e+

k and e−k , we expect that the
transformed cycle β̃ will receive contribution from αk.

To determine it, we assume that the monodromy action on β = (β1 · · · βn−1)t is given
in the following form:

β 7−→ A · β +B ·α

We claim that the matrix A is given by A = (P−1)t. Indeed, under the monodromy
transformation, the intersection numbers undergo no changes. Thus, we should have that〈∑

k

P ik · αk,
∑
l

Ajk · βk +
∑
k

Bjl · αl

〉
= 〈αi, βj〉

from which we get ∑
k

P ikAjk = δij

Thus, A = (P−1)t. To determine the “correction” matrix B, we first note that from
the above discussion, the (semi-classical) monodromy (around ∞) acts on the 2(n − 1)
column vector (β α)t by the matrix

M =

(
(P−1)t B

0 P

)
=

(
(P−1)t 0

0 P

)
·
(

I C̃
0 I

)
where (P−1)t · C̃ = B. We now make the “ansatz” such that

(P−1)t · C̃ = C̃ · P

so that the two matrices on the right hand side of the above identity commute with each
other, and consequently, we should have that

Mn =

(
(P−1)t 0

0 P

)n
·
(

I C̃
0 I

)n
=

(
I nC̃
0 I

)
Applying the monodromy M n-times, all roots are rotated back to the original place,

thus all α cycles return to themselves as indicated by the entries of the second row of the
above matrix.
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One subtle point here is that even though the β cycles would go back to themselves,
however, as βk wounds n-times around the branch-cuts connecting {e±n } and {e±k } respec-
tively, we see that it gets shifted by

nαk−1 − 2nαk + nαk+1 + 2nαn

From this observation, one can infer that

βk 7−→ βk + n
∑
j

C̃kj α
k = βk + nαk−1 − 2nαk + αk+1

Thus the matrix C̃ is given by

C̃kj = δk−1,j − 2 δk,j + δk+1,j

That is C̃ = −C, where C is the Cartan matrix for An−1.

This agrees with the previously computed (by using prepotential F) results for the
A1 and A2 case, and it generalizes to arbitrary SU(n).
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4.2.2 Quantum Monodromy: SU(2) case

In the quantum situation, the classical discriminant locus ∆c splits into two. That is, the
quantum discriminant locus becomes: ∆Λ = ∆+ ∪∆−, over which certain cycles on the
torus fibers degenerate.

By the well known facts in the singularity theory (for example [AGV]), the mon-
odromies generated by tracing paths around these discriminant are given by the Picard-
Lefschetz formula, namely, for the component of ∆Λ where ν is the associated vanishing
cycle, then the associated monodromy Mν acts on the one cycle µ ∈ H1(Cu,Z) is given
as

Mν : µ 7−→ µ+ 〈ν, µ〉µ (4.2.17)

where 〈·, ·〉 denotes the intersection paring on the one cycles.

In this subsection, we compute the vanishing cycles and the associated monodromies
in SU(2) and SU(3) cases, which would be our first step toward determining the WCS
for both cases. To start with, let us reproduce the relevent results for the SU(2) case as
a warming us exercise toward the more involved SU(3) case.

The methods and results presented in this subsection, while scattered around physics
literature ([Kle97],[Ler98][SW94],[AD95],[Kle+94],[KTL95],[Kle+95],[AF] etc.) are all
well-known, thus no originality is claimed, despite the fact that substantial revision and
re-organization have been made on my part to suit for the main theme of this thesis.

Figure 4.13: Seiberg-Witten integrable system associated to SU(2).

The moduli space B is the complex plane C in this case. And the discriminant locus
∆Λ consists of two points {−Λ2,Λ2}, over which the torus fibration degenerates. This is
illustrated by the figure 4.13 above.

The fiber over smooth point u ∈ B0 := B\∆Λ is given by (cf., (4.1.21))

Cu : y2 =W2
A1
− Λ4 = (x2 − u)2 − Λ4

The right hand side polynomial factors into the product of two polynomials, given as

P±(u;x) = x2 − u± Λ2
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Denote by e±k , k = 1, 2. the roots to the polynomial P± respectively, which are given
as

e+
1 =
√
u− Λ2 e+

2 = −
√
u− Λ2

e−1 =
√
u+ Λ2 e−2 = −

√
u+ Λ2

Now consider a small loop

γΛ2(δ) := {u : u = δeiθ + Λ2}

of small radius δ around the singularity Λ2 in B. By tracing around the loop, i.e., by
letting the parameter θ go from 0 to 2π, th two roots e+

1 , e+
2 rotates around each other.

Indeed, along the loop, the two roots have the following expression:

e+
1 =
√
δ e

iθ
2 e+

2 = −
√
δ e

iθ
2

Thus, as θ goes from 0 to 2π, e+
1 goes from

√
δ to −

√
δ, while e+

2 , the accompanying
root, goes from −

√
δ to
√
δ.

By a similar argument, it is easy to see that when circling around the small loop
γ−Λ2(δ) around the other singularity −Λ2, the roots e−1 and e−2 will rotate around each
other.

Then, the canonical basis for homology one cycles on the torus fibers are given as the
lift of the two cycles circling around the two pairs of roots to its double cover. Namely,
the cycle encircling around e−2 and e+

2 on the complex plane, when lifted, gives the cycle
denoted by α, while the cycle encircling around e+

2 and e+
1 gives the beta cycle β. Choos-

ing the orientation of the two cycles properly, we assume that their intersection number
is given as 〈α, β〉 = 1.

As the moduli u approaches to the singularity Λ2, the root e+
2 collide with the root

e+
1 , which means that the vanishing cycle ν+Λ2 , associated to the singularity +Λ2 is

just the cycle β.

Hence, we can compute the (quantum) monodromy M+Λ2 by using the Picard-
Lefschetz formula (4.2.17) as follows:

α 7−→ α + 〈β, α〉β = α− β
β 7→ β + 〈β, β〉β = β

Recall that we have identified the special Kähler coordinates a and aD with the period
integral of the elliptic curve in question, namely

a =

∮
α

λSW aD =

∮
β

λSW

where the Seiberg-Witten differential in this SU(2) case is given by (see (4.1.42))

λSW =
2x2dx

y

170



We see that the monodromy acting on (aD a)t is determined through

aD =

∮
β

λSW 7−→ aD

while for the period a, we have that

a =

∮
α

λSW 7−→
∮
α−β

λSW =

∮
α

λSW −
∮
β

λSW = a− aD

Thus, the quantum monodromy M+Λ2 associated to the singularity +Λ2 is given in
matrix form (which acts on (aD a)t) on the left) as:

M+Λ2 =

(
1 −1
0 1

)
(4.2.18)

Remark 4.2.1. The monodromy above can be determined directly by computation. As
β is the lifted cycle of that encircling the two roots e+

2 and e+
1 on the complex plane,

we see that β in unchanged when tracing along a small loop around +Λ2, consequently,
the β-period aD remains unchanged during the process. However, the α-period a changes
according the following:

a =

∮
α

λSW = 2

∫ e+2

e−2

λSW 7−→ 2

∫ e+1

e−2

λSW

= 2

∫ e+2

e−2

λSW + 2

∫ e+1

e+2

λSW = a− aD

Similarly, when u approaches the singularity −Λ2, the two roots e−1 and e−2 collide
with each other, which causes the cycle that is the lift of the cycle encircling these two
roots on C shrinking into zero size. Consequently, the vanishing cycle ν−Λ2 can be chosen
in the basis {α, β} as ν−Λ2 = β − 2α, from which we compute the quantum monodromy
associated by using Picard-Lefschtz formula as follows:

M−Λ2(α) = α + 〈ν−Λ2 , α〉 ν−Λ2 = α + 〈β − 2α, α〉 (β − 2α) = 3α− β
M−Λ2(β) = β + 〈ν−Λ2 , β〉 ν−Λ2 = β + 〈β − 2α, β〉 (β − 2α) = 4α− β

which means that M−Λ2 acts on (aD a)t as

aD =

∮
β

λSW 7−→
∮

4α−β
λSW = 4a− aD

a =

∮
α

λSW 7−→
∮

3α−β
= 3a− aD

In matrix form it is given by

M−Λ2 =

(
−1 4
−1 3

)
(4.2.19)
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Remark 4.2.2. It is easy to verify that the product of the two quantum monodromies
M±Λ2 coincide with the semi-classical monodromy M∞ given in last subsection (see
formula (4.2.7)), i.e., we have the following formula

M+Λ2M−Λ2 =M∞ (4.2.20)

This relation should be anticipated in view of the fact that the monodromy action forms
a representation of the fundamental group (see (3.1.70) and the related discussion there)
of B0 := C\{−Λ2,+Λ2} into SL(2,Z) in our case (More precisely, M±Λ2, together with
M∞ generates the subgroup Γ0(4) ⊂ SL(2,Z)).

Figure 4.14: Monodromy relation

Apparently, the fundamental group π1(B0, u0) is generated by two loops,namely, the
closed loops γ±Λ2 based at u0 encircling the two singularities ±Λ2 respectively. Tracing
along the two loops gives the two monodromies M±Λ2. However, by taking a loop that
encompassing both loops, which is to be denoted by γ∞, then with the proper orientations
being assigned to the three loops, we have the equivalence of loops:

γ∞ ≈ γ+Λ2 · γ−Λ2

from which the above identity (4.2.20) follows.

Remark 4.2.3. We notice that the monodromies M±Λ2 computed above by using the
Picard-Lefschtz formula associated to the vanishing cycles ν±Λ2 coincide with that (see
formulas (A.6.16) and (A.6.20) in appendix A) computed by using the perturbative ex-
pansion of the prepotential F1−loop (4.2.5) in appendix A (except that in the appendix
the two singularities ±Λ2 are normalized to be ±1 respectively, but that does not alter
the monodromies considered here). This provides rationality for using the Seiberg-Witten
(hyper-elliptic) curve to encode the analytically information expressed in terms of the pre-
potential function F , which is an infinite perturbative expansion (instanton expansion in
physicist’s terminology). This is wonderful since the curve, though a finite object, could
encode the perturbation of prepotential function. This gives the so called “exact solutions”
(non-perturbative aspect) to the physics question regarding N = 2, d = 4 supersymmetric
Yang-Mills theory (see for example [SW94] for more information about this story).

We give further rationality for the relation (4.2.20) by computing directly from the
Seiberg-Witten curve that the semi-classical monodromy is indeed given by M∞. To
this end, we use the another form of Seiberg-Witten curve (as Weight diagram fibration;
see section 4.1.3 for more details) to do the computation. This will proven to be much
simpler than the curve given in terms of the A1-singularity. Since we have proved the
equivalence (bi-rational) of the two forms of curves, this does not affect the results.
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First, recall that in SU(2)-case, the curve is given by (4.1.51) as

z +
Λ4

z
+ 2 (x2 − u) = 0 (4.2.21)

while the Seiberg-Witten differential assumes the following form

λSW = −xdz
z

(4.2.22)

The branch points, besides 0 and ∞, had been computed to be

z± = u±
√
u2 − Λ4 (4.2.23)

Then the semi-classical monodromy can be computed as follows:

The semi-classical region corresponds to the region where |u| � Λ2, i.e., near ∞ in
B. The α cycle is obtained by lifting the circle |z| = 1 on B ∼= C, while the β cycle can
be obtained by lifting the cycle circling the two branch points z±. Then in the semi-
classical limit |u| � Λ2, from equation (4.2.21), we see that near the circle |z| = 1, x is
approximately

√
u = a, thus the α-period integral is computed as:

a =

∮
α

λSW = −
∮
|z|=1

x
dz

z
≈ −

∮
|z|=1

a
dz

z
≈ −2πi

√
u

From expression (4.2.23), we see easily that in the semi-classical limit, x can be
approximated near the β-cycle as x ≈

√
u = a, thus the β-period aD is computed as:

aD =

∮
β

λSW = −2

∫ z+

z−

x
dz

z
= −2

∫ u+
√
u2−Λ4

u−
√
u2−Λ4

√
u
dz

z

= −2
√
u ln

u+
√
u2 − Λ4

u−
√
u2 − Λ4

= −2
√
u ln

(u+
√
u2 − Λ4)2

Λ4

≈ −4
√
u ln

2u

Λ2

From above computations, then it is easy to see by taking a loop around u = ∞,
a 7→ −a, while aD 7→ 4a− aD, which is indeed the semi-classical monodromy M∞ given
before (by formula (4.2.7)).

Remark 4.2.4. Since the Seiberg-Witten curve (4.2.21) has four branch points, given
respectively by z+, z−, 0,∞, these are points where the double cover degenerates. This
suggests to consider the following elliptic curve, which has ramification exactly at these
four branch points:

y2 = x(x− z+)(x− z−) = x(x− u+
√
u2 − Λ4)(x− u−

√
u2 − Λ4)

That is

y2 = x3 − 2ux2 + Λ4x (4.2.24)

which has two branch cuts, one from 0 to z+, and the other from z− to ∞.
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By the construction, it contains the same topological information as given by the form
of curve (4.2.21) as well as the form given in terms of A1 Singularity (see equation
(4.1.21)), we may expect them all to be birational equivalent in the sense that they have
the same j-invariant as elliptic curves, thus differ each other only by some birational
transformations of the variables of defining equations. Indeed, the birational equivalence
of the later two curves has been established at the beginning paragraph of the section
4.1.3, while the direct equivalence between (4.1.21) and (4.2.24) can be obtained by using
projective transformation that maps the four zeros e±1,2 to the four branch points 0,∞, z±
in some proper order, we omit the details here.

Before ending this subsection, let me use the form of curve given in (4.2.24) to verify
that it also gives the correct monodromies, which is expected as it is birational to the
previous forms of Seiberg-Witten curves.

First, we prove that the curve can reproduce the correct periods, thus the prepotential
function F1−loop near ∞.

Proposition 4.2.1. Choosing Seiberg-Witten differential on the curve (4.2.24) to be
λSW = dx

y
(as it is the unique holomorphic differential in this case, up to a normalizing

constant), then the period integrals of the curve give the desired expressions of special
Kähler coordinates (a aD) near u =∞ neighborhood.

Proof. As u2 � Λ4, i.e., in semi-classical region, we have that

z+ = u−
√
u2 − Λ4 =

Λ4

u+
√
u2 − Λ4

≈ Λ4

2u

while
z− = u+

√
u2 + Λ4 ≈ 2u

Since α cycle can be represented as small circle around the branch points 0 and z+,
and on this small circle α, since x is small compared with 2u, and thus x − 2u ≈ −2u.
Consequently, the α-period, and hence the “electric coordinate” a, can be computed as

a =

∮
α

λSW =

∮
α

dx

y
=

∮
α

dx√
x(x− z+)(x− z−)

=

=

∮
α

dx√
x(x− Λ4

2u
)(x− 2u)

≈ 1√
2ui

∮
α

dx√
x(x− Λ4

2u
)

≈ 1√
2ui

∮
α

dx

x
=

1√
2ui

2πi = π

√
2

u

On the other hand, the β cycle is obtained by circling the branch points z+ and z−,
thus we can compute the β-period aD, i.e., the “magnetic coordinate” as follows:

aD =

∮
β

dx

y
= 2

∫ z−

z+

dx√
x(x− Λ4

2u
)(x− 2u)

= −2i

∫ z−

z+

dx√
x(x− Λ4

2u
)(2u− x)
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To estimate the above integral, we split it into two parts by choosing a point xc such
that Λ4

2u
� xc � 2u, thus∫ z−

z+

(· · · ) =

∫ 2u

Λ4

2u

(· · · ) =

∫ xc

Λ4

2u

(· · · ) +

∫ 2u

xc

(· · · )

Then we notice that over
[

Λ4

2u
, xc

]
, x is very small compared with 2u, thus the first

part of integral in above formula can be approximated by∫ xc

Λ4

2u

dx√
x(x− Λ4

2u
)(2u)

=
1√
2u

∫ xc

Λ4

2u

dx√
x(x− Λ4

2u
)
≈ 1√

2u
log

8uxc
Λ4

while over [xc, 2u], x− Λ4

2u
≈ x, thus the second piece of integral can be approximated

by ∫ 2u

xc

dx

x
√

2u− x
2ut=x

=====

∫ 1

xc
2u

2u dt

2ut
√

2u− 2ut
=

1√
2u

∫ 1

xc
2u

dt

t
√

1− t

≈ 1√
2u

log
8u

xc

Combing the above computations, we see that as u→∞, we have that

aD ≈ −2i

(
1√
2u

log
8uxc
Λ4

+
1√
2u

log
8u

xc

)
= −2i

√
2

u
log

8u

Λ2

Given the above expressions for (aD a), by considering the loop around u = ∞, i.e.,
in the above expressions, by letting u 7→ e2πθu, we see that the semi-classical monodromy
M∞ is reproduced, thus the following:

Corollary 4.2.1.1. The curve (4.2.24) could be used to produce the semi-classical mon-
odromy M∞.

Remark 4.2.5. The semi-classical monodromy obtained above uses can also be read off
geometrically as follows: We know from the above that near u =∞, the four branch points
are given respectively by 0, Λ4

2u2 , 2u and ∞, we will obtain the monodromy M∞ by keeping
track with the motion of these branch points when circling around u = ∞. To make life
easy, let us first re-scale the variables (which does not affect the topological information to
be concerned here) so to make 2u stays finite during the process. Thus, define x̃ = x

u
, so

that the four branch points get mapped into 0, Λ4

2u2 , 2,∞. And the accompanied re-scaling

on y variable is given by ỹ = y/u
3
2 , so that the equation for the elliptic curve transforms

into the following

ỹ2 = x̃3 − 2x̃2 +
Λ4

u2
x̃

while the re-scaled Seiberg-Witten differential is given by

λSW =
dx

x
7−→ dx̃

ỹ
= u−

1
2
dx

y
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Let us trace along the u =∞ by letting u 7→ e2πiθu, 0 ≤ θ ≤ 1. It easy to see that the
branch point Λ4

2u2 will rotate twice around the branch point 0, while the other two branch

points stay unchanged during the process. As α cycle is the one encircling 0 and Λ4

2u2 , we

see that it remains the same, however, the β-cycle, which encircles Λ4

2u2 and 2, will be get

shifted by −4α as it would across the branch cut connecting 0 and Λ4

2u2 twice during the
process. Thus the monodromy around u =∞ acts on α and β cycles as

α 7−→ α, β 7−→ β − 4α

However, since the factor u−
1
2 in the re-scaled SW differential as above changes sign

when circling around u =∞, we conclude that the monodromy acts on (aD a) as follows:

aD 7−→ 4a− aD a 7−→ −a

which is indeed the desired semi-classical monodromy M∞ given before.

Remark 4.2.6. Besides the above proposition and corollary, the monodromies as u →
±Λ2 can also be checked to coincide with that computed by using the Picard-Lefschtz
formula before, we omit the details here.

From the discussion in the remark 4.2.5 above, we can deduce the following proposi-
tion, which tells us about the vanishing cycle associated to u =∞.

Proposition 4.2.2. The vanishing cycle at ∞, which, in either forms of Seiberg-Witten
curve given, correspond to more than two roots colliding with each other, i.e., “non-stable”
degeneration case, is given by ν∞ = 2α.

Proof. As already noted in remark 4.2.5 above, we see that as we loop around u = ∞
once (counter-clock wisely), SW differential λSW changes its sign, we just need to know
how the monodromy acts on the cycles. To this end, let us assume that its effect on the
symplectic basis {α, β} is given by

α 7−→ mα + nβ β 7−→ pα + qβ

where the matrix

(
m n
p q

)
∈ SL(2,Z). This means that its effect on the period matrix

(aD a) is given by
aD 7−→ −pa− qaD a 7−→ −ma− naD

Comparing with the known result for M∞ computed by using the prepotential F , we
find that (

m n
p q

)
=

(
1 0
−4 1

)
Next, suppose that ν∞ = aα+bβ, then compute by using the Picard-Lefschtz formula:

α 7→ α + 〈ν∞, α〉 ν∞ = (1− ab)α + b2β

β 7→ β + 〈ν∞, β〉 ν∞ = a2α + (1 + ab) β

Comparing with the above matrix, we conclude that b = 0 and a2 = 4. By choosing
proper orientation, a can be chosen to be 2, consequently ν∞ = 2α.
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Computing ν∞ analytically

By slightly modifying the argument in the paper [KTL95] in obtaining ν∞, we have
the following analytic way of determining the monodromy at infinity. Again, we shall
related the two equations defining the Seiberg-Witten curve, namely

y2 = x3 − 2ux2 + Λ4x c.f. equation (4.2.24)

y2 = (x2 − u)2 − Λ4 c.f. equation (4.1.21)

Since they define the same curve, i.e., birational to each other, there exists projective
transformation

x 7→ ax+ b

cx+ d
, where

(
a b
c d

)
∈ SL(2,Z)

such that the four branch points of (4.1.21) are transformed into the four branch points
of (4.1.24) in the following fashion:

e+
2 = −

√
u− Λ2 7−→ 0 (1)

e−1 =
√
u+ Λ2 7−→ u+

√
u2 − Λ4 (2)

e−2 = −
√
u+ Λ2 7−→ ∞ (3)

We want to know where does the branch point e+
1 go under the above transformation?

We do not need the precise solution since our purpose is to determine the monodromy
near ∞. Is is sufficient to exhibit its behavior as u

Λ2 →∞.

The equation (3) above reads:
b− a

√
u+ Λ2

d− c
√
u+ Λ2

= ∞, which implies that the relation

d = c
√
u+ Λ2 holds. Then by using this relation, the equations (1) and (2) become:

b− a
√
u− Λ2

c
(√

u+ Λ2 −
√
u− Λ2

) = 0 (1)′

b+ a
√
u+ Λ2

2c
√
u+ Λ2

= u+
√
u2 − Λ4 (2)′

By dividing both sides by Λ of the above two equations, and after a little bit arrange-
ment, we get the followings

b
Λ
− a
√

u
Λ2 − 1

c
(√

u
Λ2 + 1−

√
u

Λ2 − 1
) = 0 (1)′′

b
Λ

+ a
√

u
Λ2 + 1

2c
√

u
Λ2 + 1

=
u

Λ
+

√(u
Λ

)2

− Λ2 (2)′′

From the above equation (1)′′, we infer that asymptotically, we should have

b

Λ
= a

√
u

Λ2
(1)′′′
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inserting this relation into (2)′′, we see that asymptotically as u
Λ2 →∞, the equation (2)′′

becomes

a

2c
≈ u

Λ
(2)′′′

With the above preparation, we see that under the projective transformation, we have
that as u

Λ2 →∞:

e+
1 =
√
u− Λ2 7−→ ũ :=

a
√
u− Λ2 + b

c
√
u− Λ2 + d

=
a
√

u
Λ2 − 1 + b

Λ

c
(√

u
Λ2 − 1 +

√
u

Λ2 + 1
)

≈
a
√

u
Λ2 − 1 + a

√
u

Λ2

c
(√

u
Λ2 − 1 +

√
u

Λ2 + 1
) ≈ a

c
≈ 2u

Λ

but the root u +
√
u2 − Λ4 also approaches 2u

Λ
as u

Λ2 → ∞. Consequently, we see

that in this limit, the branch points u +
√
u2 − Λ4 and ũ collide with each other, which

corresponds to the collapse of e+
1 and e−1 . We thus infer that the cycle α vanishes (since

after gluing the branch cuts, the cycle enclosing e±1 is get identified with that enclosing
e±2 which gives the α-cycle).

To determine exactly the vanishing cycle ν∞ associated to u = ∞, we need to know
the asymptotic behavior of ũ as u

Λ2 →∞.

To this end, defining t = 1
s

= u
Λ2 . Let us first estimate the behavior of the quantity

ũ− 2u
Λ

as u
Λ2 →∞. In terms of the variable s, we then write as:

ũ− 2u

Λ
=

a
√

1− s+ b
Λ

√
s

c
(√

1− s+
√

1 + s
) − 2Λ

s

=

(
a
√

1− s+ b
Λ

√
s
) (√

1 + s−
√

1− s
)

2cs
− 2Λ

s
(∗)

By the relations (1)′′′ and (2)′′′ above, as well as bi-normal series, we get that the
above equation (∗) can be approximated when s→ 0 as follows

(∗) ≈

(
a
√

1− s+ a
) [

(1 + s
2
− s2

8
+ s3

16
− · · · )− (1− s

2
− s2

8
− s3

16
+ · · · )

]
2cs

− 2Λ

s

≈ a

2cs
(
√

1− s+ 1)

(
s+

s3

8

)
− 2Λ

s
≈ Λ

s
(1 +

√
1− s)

(
1 +

s2

8

)
− 2Λ

s

≈ 2Λ

s

(
1 +

s2

8

)
− 2Λ

s
=

Λs

4
=

Λ3

4u

Consequently, tracing one circle around u =∞, i.e., by letting u 7→ e2πiθu, 0 ≤ θ ≤ 1,
we get a whole loop around in ũ−plane, which implies that e+

1 would rotate around e−1 by
one whole circle. From this we infer that the vanishing cycle associated to u =∞ should
by 2α as the effect of the rotation, i.e., α cycle is dragged by rotating itself so that it is
get shifted by α.
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Remark 4.2.7. It is curious to note that if we take the monodromy with respect to the
parameter Λ, i.e., by letting Λ 7→ e2πiθ, 0 ≤ θ ≤ 1, the branch points e+

1 =
√
u− Λ2

and e−1 =
√
u+ Λ2 will trade place, while at the same time, the other pair of branch

points, namely e+
2 = −

√
u− Λ2 and e+

1 =
√
u− Λ2 will be transformed into e−2 and e−1

respectively. As a consequence of this fact, the α-cycle remains the same, while the β-
cycle is being dragged into β−2α−2α = β−4α. Thus, the monodromy M∞ can be seen
as the effect of monodromy with respect to the parameter Λ. For the moment being, I do
not know if there is some intrinsic explanation of this fact though a possible explanation
seems to be suggested in the reference [KTL95]. The idea is to view first Λ2 as a complex
parameter, and then compactify the moduli space B ∼= C by assigning the homogeneous
coordinate on B ∼= CP 1 as [u : Λ2]. By this construction, the line of infinity in the
moduli space is obtained by letting Λ2 = 0 (indeed we see in this case multiple branch
points get aligned which corresponds to the non-stable degeneration of the elliptic fibers),
consequently, it is intuitively clear that we can view the points at ∞ as corresponding to
the “singularity” {Λ = 0}. From this, we expect that the monodromy at u = ∞ should
correspond to the monodromy around the singularity {Λ = 0}, which is indeed the case
as had been shown at the beginning of this remark.

Summary of the main results to be cited later

In summary, the quantum monodromy in the SU(2) case consists of M±Λ2 corre-
sponding to the two singular points ±∆2. The semi-classical monodromy M∞ is given
by the monodromy around ∞. The quantum monodromies, together with the semi-
classical one, satisfy the relation (4.2.20). The vanishing cycles ν±Λ2 associated to ±Λ2

are given by β and −2α + β respectively, which correspond to monodromy invariant
directions of the corresponding Z-affine structure.

In view of the connection to WCS to be discussed later, we conclude that at the
(quantum) discriminant locus ∆c = {±Λ2}, there are two BPS states with charges given
respectively by:

γ−Λ2 = β − 2α = (−2, 1)

γ+Λ2 = β = (0, 1) (4.2.25)

where the first entry corresponds to the magnetic charge taking values in the weight
lattice ΛW , while the second entry to the electric charge with values in the root lattice
ΛR. Consequently, the local system of first homology group of hyper-elliptic fibers splits
in to the direct sum of local systems of root lattice (spanned by α-cycles, i.e., integral
combinations of α) and the weight lattice (spanned by β-cycles, i.e., integral combinations
of β). That is:

Γu = H1(Cu,Z) = Zα⊕ Zβ = ΛR ⊕ ΛW (4.2.26)
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4.2.3 More on Picard-Lefschetz and Braid Monodromy

In this subsection, we will give a detailed review about the techniques involved in inves-
tigating the monodromies associated to the Seiberg-Witten curves that had been scattered
in the physics literature (for example, see [AD95][Kle+94][KTL95]
[Kle+95][May99][AF][SD12][Seo13]). We will present them coherently so to make them
become more accessible (especially for those interested in mathematics other than its
physics contents). Also we display the relations between different methods by letting
them “interact” with each other.

This subsection serves as a “link” between the last subsection in which we dealt with
the SU(2)-case quantum monodromies and the next subsection in which the quantum
monodromies of the SU(3) case will be discussed. On the one hand, it helps further
understanding the methods used in the last subsection, and on the other hand, it provide
more general and more effective tools for a proper investigation of the SU(3)-case in the
last subsection.

The mathematics to be discussed in this subsection are interesting in itself, and ser-
vice as independent curiosity. For example, the idea that the monodromies associated to
the vanishing cycles can be computed either geometrically by employing Picard-Lefschtz
formula, or be directly read off from the asymptotic behavior of the prepotential function
F (which is related to the period integrals of the associated hyper-elliptic curves), is seen
to be a particular example (toy model) of the famous Mirror symmetry scheme. We will
compare the two methods by doing detailed computations. And at various occasions, we
will give different interpretations on particular result so to make the consistence between
various approaches becoming manifest. Furthermore, the general methods exhibited in
this subsection could be used in other places.

Although the materials to be discussed in this subsection are detailed and long in
length, which may form the impression that they will attract us away from the main
focus of this thesis, however, this is not true as these materials are not only indispensable
ingredients in studying the geometry of Seiberg-Witten integrable systems, but also shed
new lights on some discussions in chapter three. For example, the two remarks (remark
4.2.10 and 4.2.11) given in this subsection provides rationality in the description of the
local model near discriminant in sections 3.1.6 and 3.1.7 in the last chapter. Besides, the
vanishing cycles and the associated monodromies contain essential information about the
initial conditions for the Wall-Crossing Structure that had been discussed in chapter two.

No originality is claimed for the work done in this subsection, though
substantial efforts have been poured in arranging and polishing the results
existing in the physics literature.
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To begin with, let us discuss some ideas that apply to the general SU(n) case. And
their effectiveness will be illustrated by specifying the SU(3), which is our main concern
in the next subsection.

Recall that in section 4.1.2, we write the Seiberg-Witten curve in the SU(n) case (i.e.,
the curve associated to the simple singularity of An−1-type) as follows:

Cu : y2 = Pn(x) ≡
(
WAn−1(x,u)

)2 − Λ2n x, y ∈ C

= Pn+ × Pn− ≡
(
WAn−1(x,u) + Λn

)
×
(
WAn−1(x,u)− Λn

)
=
(
WAn−1(x;u2, · · · , un−1, un − Λn)

)
×
(
WAn−1(x;u2, · · · , un−1, un + Λn)

)
We denote the roots of the polynomials Pn± by {e±i }, and their discriminant by δ(Pn±)

respectively. The corresponding vanishing locus of δ± := δ(Pn±) are denoted by ∆±. Thus
the (quantum) discriminant δΛ, defined as the discriminant of the polynomial Pn(x), is
given by the product of δ+ and δ−. Consequently, the (quantum) discriminant locus, i.e.,
the locus of zeros of δΛ, factorizes as

∆Λ = ∆+ t∆−

On the other hand, as a genus g = n− 1 Riemann surface, Cu is obtained as a double
cover of complex x-plane, ramified at the 2n branch points {e±i }. It can be constructed
by pasting the n-copies of complex plane along the n-branch cuts given by line segments
li connecting the pair of branch points {e±i }. We now construct the canonical symplectic
basis for H1(Cu,Z) as follows:

• αi: the cycle encircling the branch cut li, i.e., the cycle that encloses the pair of
branch points {e±i }, for i = 1, · · · , n− 1.

• βi: the cycle encircling the branch points e+
i and e+

n , for i = 1, · · · , n− 1.

By proper and consistent choice of orientations, the above cycles can be arranged
into a symplectic basis in the sense of that the intersections among {αi, βi} satisfy the
following conditions:

〈αi, αj〉 = 〈βi, βj〉 = 0 〈αi, βj〉 = δij. (4.2.27)

A particular basis for the space of vanishing cycles

The vanishing cycles ν ∈ H1(Cu,Z) are caused by the coincidence of two or more roots
among e+

i or e−i as the moduli parameter u approaches to the various components of the
discriminant locus ∆Λ. We denote by ν±i,j the vanishing cycles associated to the colliding

of the two roots e±i and e±j , for i < j. Of course, not all of these n(n−1)
2

vanishing cycles
are independent, we thus selects from them the following 2(n− 1) ones as follows, which
generate the first (middle) homology group H1(Cu,Z).

• ν+
i : the cycle encircling the branch points e+

i and e+
i+1, for i = 1, · · · , n− 1.

• ν−i : the cycle encircling the branch points e−i and e−i+1, for i = 1, · · · , n− 1.
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We also denote by ν+
n the cycle encircling the branch points e+

1 and e+
n , and by ν−n

the cycle encircling the branch points e−1 and e−n .

In terms of the symplectic basis {αi, βj}, the set of vanishing cycles {ν±i } can be
expressed (see: [SD12][Seo13]) as:

ν+
i = βi+1 − βi − αi, 1 ≤ i ≤ n− 2

ν−i = βi+1 − βi + αi+1 − 2αi, 1 ≤ i ≤ n− 2

ν+
n−1 = −βn−1 +

∑n−2
i=1 αi

ν−n−1 = −βn−1 − 2αn−1

ν+
n = β1

ν−n = β1 +
∑n−1

i=1 αi + α1

(4.2.28)

For example, in the n = 2 case, we compute by using the above formulas that there
are exactly two vanishing cycles, namely ν+

2 = β1 and ν−2 = β1 + 2α1, which are exactly
the vanishing cycles associated with singularities ±Λ2 respectively in the SU(2)-case.
While in the n = 3 case, we have the vanishing cycles ν±i , which corresponds to the
coincidence of the branch points e±i and e±i+1, for i = 1, 2, as well as the vanishing cycles
ν±3 corresponding to the coincidence of e±1 and e±3 . In terms of the formula (4.2.28) above,
these vanishing cycles are given in the symplectic basis as follows:

ν+
1 = β2 − β1 − α1 ν−1 = β2 − β1 + α2 − 2α1

ν+
2 = −β2 + α1 ν−2 = −β2 − 2α2

ν+
3 = β1 ν−3 = β1 + 2α1 + α2

(4.2.29)

Remark 4.2.8. By the construction of the set of vanishing cycles (4.2.28) above, it is
clear that −ν±n =

∑n−1
i=1 ν±i , that is

n∑
i=1

ν±i = 0 (4.2.30)

which is consistent with the formulas above as can be easily verified as

n∑
i=1

ν+
i =

(
n−2∑
i=1

βi+1 − βi − αi
)

+

(
−βn−1 +

n−2∑
i=1

αi

)
+ β1

=

(
n−2∑
i=1

βi+1 − βi

)
−

n−2∑
i=1

αi − βn−1 +
n−1∑
i=1

αi + β1

= βn−1 − β1 − βn−1 + β1 = 0.

Similarly, we have

n∑
i=1

ν−i =

(
n−2∑
i=1

βi+1 − βi + αi+1 − 2αi

)
− βn−1 − 2αn−1 + β1 +

n−1∑
i=1

αi + α1

=

(
n−2∑
i=1

βi+1 − βi

)
− βn−1 + β1 +

(
n−2∑
i=1

αi+1 − αi
)
−

n−2∑
i=1

αi − 2αn−1 +
n−1∑
i=1

αi + α1
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=

[(
n−2∑
i=1

βi+1 − βi

)
− βn−1 + β1

]
+

[(
n−2∑
i=1

αi+1 − αi
)
− αn−1 + α1

]
= 0.

In connection with the SW-integrable system, this means that we can choose the coor-
dinates {ai}n−1

i=1 on B ∼= Cn−1 as

ai :=

∮
ν±i

λSW i = 1, · · · , n− 1. (4.2.31)

such that:
∑n−1

i=1 ai = 0, which follows from the condition:
∑n−1

i=1 ν
±
i = 0.

As the set of vanishing cycles generate H1(C,Z), we could select 2(n − 1) vanishing
cycles such that they are linearly independent.

Proposition 4.2.3. The vanishing cycles ν±i , 1 ≤ i ≤ n − 1 form a basis of the middle
homology group H1(C,Z) of the SW curve C.

Proof. From the formula (4.2.28), we see that the transition matrix between
(
ν+

1 · · · ν+
n−1 ν

−
1 · · · ν−n−1

)T
and (β1 · · · βn−1 α

1 · · ·αn−1)
T

is given by the following matrix:

M =



−1 1 0 · · · 0 0 −1 0 0 · · · 0 0
0 −1 1 · · · 0 0 0 −1 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · −1 1 0 0 0 · · · −1 0
0 0 0 · · · 0 −1 1 1 1 · · · 1 0
−1 1 0 · · · 0 0 −2 1 0 · · · 0 0
0 −1 1 · · · 0 0 0 −2 1 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · −1 1 0 0 0 · · · −2 1
0 0 0 · · · 0 −1 0 0 0 · · · 0 −2


=

(
A B
C D

)

From the expression above, we conclude that det(A) = det(C) = (−1)n−1, and
det(B) = 0, det(D) = (−2)n−1, consequently

det(M) = det(A)det(D)− det(B)det(C) = 2n−1 6= 0

For example, in the SU(3) case described in (4.2.29), we see that the remaining
vanishing cycles ν±3 can be expressed in terms of the basis {ν±i }i=1,2 as

ν+
3 = −ν+

1 − ν+
2

ν−3 = −ν−1 − ν−2 (4.2.32)
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Proposition 4.2.4. The only non-trivial intersections among various vanishing cycles
given in (4.2.28) are given by the followings:

〈ν+
i , ν

+
i+1〉 = 〈ν−i , ν−i+1〉 = 1

〈ν+
n , ν

+
1 〉 = 〈ν−n , ν−1 〉 = 1

〈ν+
i , ν

−
i 〉 = −2 〈ν+

i , ν
−
i+1〉 = 2 (4.2.33)

〈ν+
n , ν

−
n 〉 = −2 〈ν+

n , ν
−
1 〉 = 2

Proof. First, we consider the case that the intersections are between those with “ + ” or
“− ” sign only, i.e., not of the “mixing type” to be considered momentarily. By the form
of vanishing cycles ν±i for 1 ≤ i ≤ n − 2, we see that when |i − j| > 1, 〈ν±i , ν±j 〉 = 0, as
the appearance of the terms like 〈αi, βi〉 would be forbidden in this case. Thus, in this
sub-case (1 ≤ i ≤ n−3), the only possible non-vanishing intersections would fall into the
following two types:

〈ν+
i , ν

+
i+1〉 = 〈βi+1 − βi − αi, βi+2 − βi+1 − αi+1〉

= 〈βi+1,−αi+1〉 = 1

Similarly, we can show that 〈ν−i , ν−i+1〉 = 1 for 1 ≤ i ≤ n− 3, while

〈ν+
n−2, ν

+
n−1〉 =

〈
βn−1 − βn−2 − αn−2,−βn−1 +

n−2∑
i=1

αi

〉
= 〈−βn−2, α

n−2〉 = 1

and

〈ν+
n−1, ν

+
n 〉 =

〈
−βn−1 +

n−2∑
i=1

αi, β1

〉
= 〈α1, β1〉 = 1

Similarly, we have that

〈ν−n−2, ν
−
n−1〉 = 〈βn−1 − βn−2 + αn−1 − 2αn−2,−βn−1 − 2αn−1〉

= 〈βn−1,−2αn−1〉+ 〈αn−1,−βn−1〉 = 2− 1 = 1

and

〈ν−n−1, ν
−
n 〉 =

〈
−βn−1 − 2αn−1, β1 +

n−1∑
i=1

αi + α1

〉
= 〈−βn−1, α

n−1〉 = 1

We still need to check the cases when ν±n1
and ν±n intersect with ν±i for 1 ≤ i ≤ n− 3.

〈ν+
i , ν

+
n−1〉 =

〈
βi+1 − βi − αi,−βn−1 +

n−2∑
i=1

αi

〉

=

〈
βi+1,

n−2∑
i=1

αi

〉
−

〈
βi,

n−2∑
i=1

αi

〉
= 1− 1 = 0

and
〈ν−i , ν−n−1〉 =

〈
βi+1 − βi + αi+1 − 2αi,−βn−1 − 2αn−1

〉
= 0
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Next, we show that 〈ν+
n , ν

+
1 〉 = 〈νn− , ν−1 〉 = 1. Indeed, for 1 ≤ i ≤ n− 3, we have that

〈ν+
n , ν

+
i 〉 = 〈β1, βi+1 − βi − αi〉 = 〈β1,−αi〉 = δi1.

and

〈ν−n , ν−i 〉 =

〈
β1 +

n−1∑
i=1

αi + α1, βi+1 − βi + αi+1 − 2αi

〉

= 〈β1,−2αi〉+

〈
n−1∑
i=1

αi, βi+1

〉
−

〈
n−1∑
i=1

αi, βi

〉
− 〈α1, βi〉

= 2δi1 + 1− 1− δ1
i = 2δi1 − δ1

i

Now we consider the “mixing” of “± ” sigh types. First, note that for 1 ≤ i ≤ n− 2,
we compute that

〈ν+
i , ν

−
j 〉 = 〈βi+1 − βi − αi, βj+1 − βj + αj+1 − 2αj〉

= 〈βi+1, α
j+1〉 − 2〈βi+1, α

j〉 − 〈βi, αj+1〉 − 〈βi,−2αj〉 − 〈αi, βj+1〉 − 〈αi,−βj〉

= −δj+1
i+1 + 2δji+1 + δj+1

i − 2δji − δij+1 + δij

From the above identity, we infer that when i = j, the value of the above identity
specialize into −1 − 2 + 1 = −2, while for j = i + 1, it equals to 2 + 1 − 1 = 2, which
finishes the proof for the case 1 ≤ i ≤ n− 3. Next, we check the remaining cases:

For 1 ≤ i ≤ n− 2, we consider:

〈ν−n−1, ν
+
i 〉 =

〈
−βn−1 − 2αn−1, βi+1 − βi − αi

〉
= 〈−2αn−1, βi+1〉 = −2δn−1

i+1

〈ν+
n−1, ν

−
i 〉 =

〈
−βn−1 +

n−2∑
i=1

αi, βi+1 − βi + αi+1 − 2αi

〉

= 〈−βn−1, α
i+1〉+ 〈−βn−1,−2αi〉+

〈
n−2∑
i=1

αi, βi+1

〉
−

〈
n−2∑
i=1

αi, βi

〉

= δi+1
n−1 − 2δin−1 +

〈
n−2∑
i=1

αi, βi+1

〉
−

〈
n−2∑
i=1

αi, βi

〉
from which we deduce that when i = n−2, the above identity becomes 1−2×0+0−1 =

0, while for i < n− 2, it becomes 0− 0 + 1− 1 = 0.

Similarly, for 1 ≤ i ≤ n− 2, we have that

〈ν−n , ν+
i 〉 =

〈
β1 +

n−1∑
i=1

αi + α1, βi+1 − βi − αi
〉

= 〈β1,−αi〉+

〈
n−1∑
i=1

αi, βi+1

〉
−

〈
n−1∑
i=1

, βi

〉
+ 〈α1, βi+1〉 − 〈α1, βi〉
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= δi1 +

〈
n−1∑
i=1

αi, βi+1

〉
−

〈
n−1∑
i=1

, βi

〉
− δ1

i

=

〈
n−1∑
i=1

αi, βi+1

〉
−

〈
n−1∑
i=1

αi, βi

〉
= 1− 1 = 0.

Next

〈ν+
n , ν

−
i 〉 = 〈β1, βi+1 − βi + αi+1 − 2αi〉 = 〈β1,−2αi〉 = 2δi1

then

〈ν+
n−1, ν

−
n 〉 =

〈
−βn−1 +

n−2∑
i=1

αi, β1 +
n−1∑
i=1

αi + α1

〉

=

〈
−βn−1,

n−1∑
i=1

αi

〉
+

〈
n−2∑
i=1

αi, β1

〉
= 1 + 1 = 2.

and then

〈ν−n−1, ν
+
n 〉 = 〈−βn−1 − 2αn−1, β1〉 = 0.

and then

〈ν+
n−1, ν

−
n−1〉 =

〈
−βn−1 +

n−2∑
i=1

αi,−βn−1 − 2αn−1

〉
= 〈−βn−1,−2αn−1〉 = 2.

and finally

〈ν+
n , ν

−
n 〉 =

〈
β1, β1 +

n−1∑
i=1

αi + α1

〉
= 〈β1, α

1〉+ 〈β1, α
1〉 = −2.

which completes the proof of the proposition.

With the above proposition, the monodromy actionMν±i
associated to the vanishing

cycle ν±i , in the basis of H1(C,Z) given by the vanishing cycles {ν±i }n−1
1 can be determined

easily by using the Picard-Lefschetz formula:

Mν±i
(δ) = δ + 〈ν±i , δ〉 ν±i (4.2.34)

More explicitly, we have for 1 ≤ i, j ≤ n− 2 that

Mν+
i

(ν+
j ) =


ν+
j − ν+

i j = i− 1

ν+
j + ν+

i j = i+ 1

ν+
j j 6= i+ 1, i− 1

Mν+
i

(ν−j ) =


ν−j − 2ν+

i j = i

ν−j + 2ν+
i j = i+ 1

ν−j j 6= i, i+ 1

Mν−i
(ν+
j ) =


ν+
j − 2ν−i j = i− 1

ν+
j + 2ν−i j = i

ν+
j j 6= i− 1, i

Mν−i
(ν−j ) =


ν−j + ν−i j = i+ 1

ν−j − ν−i j = i− 1

ν−j j 6= i− 1, i+ 1
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Now we list the remaining case:

Mν+
i

(ν+
n−1) =

{
ν+
n−1 + ν+

i i = n− 2

ν+
n−1 i < n− 2

Mν+
i

(ν−n−1) =

{
ν−n−1 + 2ν+

i i = n− 2

ν−n−1 i < n− 2

Mν+
i

(ν+
n ) =

{
ν+
n − ν+

i i = 1

ν+
n i 6= 1

Mν+
i

(ν−n ) = ν−n 1 ≤ i ≤ n− 2

Mν−i
(ν+
n−1) = ν+

n−1 1 ≤ i ≤ n− 2 Mν−i
(ν−n−1) =

{
ν−n−1 + ν−i i = n− 1

ν−n−1 i 6= n− 2

Mν−i
(ν+
n ) =

{
ν+
n − 2ν−i i = 1

ν+
n i 6= 1

Mν−i
(ν−n ) =

{
ν−n − ν−i i = 1

ν−n i 6= 1

Mν+
n−1

(ν+
i ) =

{
ν+
i − ν+

n−1 i = n− 2

ν+
i i 6= n− 2

Mν+
n−1

(ν−i ) = ν−i 1 ≤ i ≤ n− 2

Mν+
n−1

(ν−n−1) = ν−n−1 − 2ν+
n−1,

{
Mν+

n−1
(ν+
n ) = ν+

n + ν+
n−1

Mν+
n−1

(ν−n ) = ν−n + 2ν+
n−1{

Mν+
n

(ν+
i ) = ν+

i

Mν+
n

(ν−i ) = ν−i

{
Mν+

n
(ν+
n−1) = ν+

n−1 − ν+
n

Mν+
n

(ν−n−1) = ν−n−1{
Mν+

n
(ν+
n ) = ν+

n

Mν+
n

(ν−n ) = ν−n − 2ν−n

{
Mν+

n
(ν+

1 ) = ν+
1 + ν+

n

Mν+
n

(ν−1 ) = ν−1 + 2ν+
n

Mν−n−1
(ν+
i ) =

{
ν+
i − 2ν−n−1 i = n− 2

ν+
i i 6= n− 2

Mν−n−1
(ν−i ) = ν−i 1 ≤ i ≤ n− 2

Mν−n−1
(ν+
n−1) = ν+

n−1 − 2ν−n−1,

{
Mν−n−1

(ν+
n ) = ν+

n

Mν−n−1
(ν−n ) = ν−n + ν+

n−1

Mν−n
(ν+
i ) = ν+

i

Mν−n
(ν−i ) =

{
ν−i + ν−n i = 1,

ν−i i 6= 1

{
Mν−n

(ν+
n−1) = ν+

n−1 − ν−n
Mν−n

(ν−n−1) = ν−n−1 − ν−n{
Mν−n

(ν+
n ) = ν+

n − 2ν−n
Mν−n

(ν−n ) = ν−n

{
Mν−n

(ν+
1 ) = ν−1

Mν−n
(ν−1 ) = ν−1 + ν−n
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Remark 4.2.9. Let a, b be two variables that can take value from {±}. εab is the two
dimensional anti-symmetric tensor. Denote by Iij the intersection matrix among the
vanishing cycles {ν+

i }n−1
i=1 , which in our case was chosen to be the standard symplectic

metric. Recall that the Cartan matrix for An−1 is given by (〈αi, αj〉). then the above
computation can be summarized more compactly as

Mνai
(νbj ) = νbj + (εba + Iji)〈αi, αj〉 νai

Remark 4.2.10. The intersection matrix of the standard symplectic basis {αi, βi} is the
standard symplectic metric given as

Ω =

(
0n−1×n−1 In−1×n−1

−In−1×n−1 0n−1×n−1

)
(4.2.35)

Then there exists some symplectic transformation U ∈ Sp (2(n− 1),Z) on the sym-
plectic basis such that the transformed intersection matrix has the following form

Ω̃ =

(
0n−1×n−1 CAn−1

−CAn−1 0n−1×n−1

)
(4.2.36)

where the matrix CAn−1 is the Cartan matrix of type An−1, which is given as follows

CAn−1 =



2 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 2


(4.2.37)

Notice that the matrix Ω̃ is again symplectic since it satisfies the following defining
property of symplectic matrix

Ω−1Ω̃ Ω = Ω̃

This means that the basis of one cycles {αi, βi} can be transformed into {α̃i, β̃i} such
that 〈

α̃i, β̃i

〉
= 2,

〈
α̃i, β̃i±1

〉
= −1

We note that the basis cycles satisfying the above condition can be obtained by “pushing
down” the n − 1 independent two spheres Si, 1 ≤ i ≤ n − 1 (see proposition 4.1.14) in
the ALE fibers when lifting of SW geometry to K3 fibration constructed in section 4.1.4.
Here, the term “pushing down” means that after degenerating the ALE fiber in the K3
fibration, the vanishing two sphere Si becomes the two closed “strings” encircling {e±i }
and {e+

i , e
+
n } respectively.

188



Compatibility of the Picard-Lefschetz formula with the monodromies com-
puted in terms of the prepotential

Suppose that the cycle ν vanishes at the component {u : Zu(ν) = 0} ⊂ ∆Λ of the
(quantum) discriminant locus. We know that the monodromy acting on the middle-
dimensional homology group Γu = H1(Cu,Z) of the torus fiber Cu is given in terms of the
Picard-Lefschetz formula, that is, for δ ∈ Γu, the (quantum) monodromy Mν associated
to ν acting on δ as

Mν : δ 7−→ δ + 〈ν, δ〉 ν (4.2.38)

We now show that the above formula can be obtained analytically from the prepo-
tential F computed from the periods of the torus fibers.

Recall that in terms of the period integrals, the prepotential function is given by the
following

F(a) =

∫
aD da

where

Ξ :=
(

aD a
)

=

(∮
βi

λSW · · ·
∮
αi
λSW

)
Denote by Φ+ = {αi} the set of positive roots. We have computed in great details in

the SU(2) case in the last subsection (see the lines of the proof of the proposition 4.2.1)
the analytic formula for aD (and consequently that for F(a)). For general SU(n) case,
the expression of aD in the limit where |a · αi| � Λ was given in the physics literature
(for example in [FH97] and[Hol97][Kuc08]) as follows

aD =
1

2πi

∑
α∈Φ+

α(a · α)

[
ln
(a · α

Λ

)2

+ 1

]
≈ 1

2πi

∑
α∈Φ+

α(a · α) ln
a2

Λ2

=
1

2πi

∑
i,j

(αi · αj) a ln
a2

Λ2
=

1

πi
h∨ a ln

a

Λ
(4.2.39)

where h∨ denotes the dual coxter number (see for example [Kac90]) of the gauge group
SU(n), which equals n in this case.

Now, suppose that the cycle (charge)

ν = (g q) = aD · g + a · q =
∑
i

giβi + qiα
i ∈ Γu = H1(Cu,Z)

vanishes at some place in the moduli space, then there exists some transformation U ∈
Sp (2n− 2,Z), such that

ν · U = (g q) U = (0; q̃1, 0, · · · , 0)

where q̃1 = gcd (g1, · · · , gn−1; q1, · · · , qn−1), the greatest common divisor of the num-
bers inside the bracket.

189



Thus, the singularity in the moduli space corresponds to {q̃1a
1 = 0}. By using {a1}

as local coordinate near the singular locus, it follows from (4.2.39) that aD is expressed
near {q̃1a

1 = 0} as

aD,j ≈
1

2πi
δj1 (q̃1)2 a1 ln

q̃1a
1

Λ
(4.2.40)

Remark 4.2.11. Assume for simplicity that q̃1 = 1, then by integrating the above formula
for aD,1 with respect to a1 gives that near the singularity, we have the following expression

F(a1) =
1

2πi

(a1)2

2
ln
a1

Λ
+ holomorphic part

By setting the parameter Λ to be 1, we see that this is exactly the from of the local
model of the prepotential function near the discriminant locus. (compare with the formula
(3.1.78) in subsection 3.1.6).

Using the formula (4.2.40), we can compute the monodromy around the origin as
follows:

Consider a loop around {a1 = 0}, i.e., a1 7→ a1 e2πiθ, 0 ≤ θ ≤ 1. Inserting in the
formula (4.2.40) above, we see that

aD,1 =
1

2πi
(q̃1)2 a1 ln

q̃1a
1

Λ2
7→ 1

2πi
(q̃1)2 a1 e2πiθ ln

q̃1a
1 e2πiθ

Λ

=
1

2πi
(q̃1)2 a1 e2πiθ ln

q̃1a
1

Λ
+

1

2πi
(q̃1)2 a1 e2πiθ ln

(
e2πiθ

)
=

1

2πi
(q̃1)2 a1 e2πiθ ln

q̃1a
1

Λ
+ θ (q̃1)2 a1 e2πiθ

By specializing θ = 1, we get that aD,1 7→ aD,1 + (q̃1)2 a1, consequently, we have that
the following proposition:

Proposition 4.2.5. The monodromy M(0,q1,··· ,0) acts on
(

aD a
)

by the following ma-
trix: (

I 0
(q̃1)2 E11 I

)
(4.2.41)

where I is the (n− 1)× (n− 1) identity matrix, while the (n− 1)× (n− 1) matrix E11

is defined as
(E11)ij = δi1 δ

j
1.

Remark 4.2.12. In comparison with the remark 4.2.10 above, we see that when q̃1 = 1,
the monodromy (4.2.41) above acts on (a1 a

1
D) by the following 2× 2 matrix:

Mfocus-focus =

(
1 1
0 1

)
which is easily seen to be the focus-focus type singularity (see formula (3.1.73) in

section 3.1.6), i.e., the monodromy near the local model of the discriminant locus.

This provides further rationality in the structure of the local model near the discrimi-
nant in section 3.1.6
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Let us remark that ifMν acts on the row vector Ξ := (aD a) by the right multiplica-
tion of the matrixMν , then it acts on the cycle γ = (g q) by the right multiplication of
the matrix (M−1

ν )
t
. This follows from the requirement that the central charge of ν (and

consequently its “mass”) should keep invariant under the monodromy action. Indeed,

suppose that the action on γ is given by the matrix M̃ν , then we have that

Z(ν) = g · aD + q · a = γ · Ξt 7−→
(
γ · M̃ν

)
· (Ξ · Mν)

t

= γ ·
(
M̃ν · Mt

ν

)
· Ξ ≡ Z(ν)

=⇒ M̃ν · Mt
ν ≡ I⇐⇒ M̃ν =

(
M−1

ν

)t
(4.2.42)

Thus, by (4.2.41), the monodromy M(0,q̃1,··· ,0) acts on the charge lattice Γu by right
multiplication of the following matrix

Mν·U =

(
I (q̃1)2 E11

0 I

)
(4.2.43)

Besides, since our basis {αi, βi} is chosen to have the intersection matrix given by the
standard symplectic metric Ω (see (4.2.35)), we see that the intersection number between
the two cycles γ1 = (g1 q1) and γ2 = (g2 q2) can be computed as

〈γ1, γ2〉 = 〈(g1 q1), (g2 q2)〉 =

〈∑
i

(gi1 βi + q1i α
i),
∑
i

(gi2 βi + q2i α
i)

〉

=
∑
i

gi2 q1i −
∑
i

gi1 q2i = g2 · q1 − g1 · q2

= (g2 q2) ·
(

0 I
−I 0

)
·
(

g1

q1

)
= γ2 · Ω · γt1 = γ1 · Ωt · γt2 (4.2.44)

Remark 4.2.13. In physics literature, the above intersection formula between two “charges”
(cycles), which gives the polarization of the complex integrable system, is called the Dirac-
Schwinger-Zwanziger pair (DSZ-pair for short). It is an integer-valued bilinear form
which gives quantization condition in physics.

Definition 4.2.1. We say that two charge vectors γ1 and γ2 to be local at some place
u ∈ B if and only if 〈γ1, γ2〉=0 at this place; and non local otherwise.

Proposition 4.2.6. For ν ∈ Γu = H1(Cu,Z), a vanishing cycle situated at the point
u ∈ ∆Λ, and U ∈ Sp (2(n− 1),Z), we have the following relation

Mν·U = U−1 · Mν · U (4.2.45)

Proof. Suppose that the monodromy Mν is implemented by taking a small contractible
loop around the singularity u (or irreducible component of the discriminant locus), and
the monodromy Mν·U by a small contractible loop around the singularity u′. Connect
the two singularity component by a line l, which is so chosen to avoid any other singular
component. Thus, to go (which means by parallel transportation) from the place u to
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the place u′ along the line l has the effect to transform an arbitrary cycle γ situated near
u into the cycle γ · U near u′. In order to compute the action associated with ν · U ,
i.e., Mν·U(γ), we need to place the cycle γ near the singular component u′, and then go
around a small loop around it to see to where it carries the cycle in question. However,
this can also be obtained by first parallel transporting the cycle γ near to u along the
line l by using the Gauss-Manin connection. This has the effect that the cycle γ will be
transformed into the cycle γ · U−1. Then, we go around a small loop around u, which
resulted in the new cycle γ · U−1 · Mν . Finally, we take the cycle back to the starting
point near u′ along the line l. The total effect therefore is to transform γ into the cycle
γ · U−1 · Mν · U . This finishes the proof of the proposition.

Before stating the next proposition, we introduce the notion of Kronecker product of
two matrices (c.f., [HJ91]), which would be very useful in writing the monodromy matri-
ces compactly.

Definition 4.2.2. Let A be a m× n matrix and B a p× q matrix, then the Kronecker
product of A and B, denoted by A⊗B, is defined as

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (4.2.46)

The following identities hold whenever the operations make sense:

(A⊗B)−1 = A−1 ⊗B−1 (A⊗B)t = At ⊗Bt

(A⊗B)⊗ C = A⊗ (B ⊗ C) (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D)

Proposition 4.2.7. Associated to the vanishing cycle ν = (g q), the monodromy Mν

is given by the following matrix

Mν = I + (Ω · νt)⊗ ν (4.2.47)

Proof. Defining a matrix q̃1 := (q̃1 0 · · · 0), then by using the definition of Kronecker
product, it follows that

q̃1
t ⊗ q̃1 =


q̃1

0
...
0

⊗ (q̃1 0 · · · 0) =


(q̃1)2 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


which is seen to be exactly the block (q̃1)2 E11 in the matrix (4.2.43). Thus the

monodromy matrix acting on the one cycles can be rewritten as

Mν·U =

(
I q̃1

t ⊗ q̃1

0 I

)
= I2(n−1)×2(n−1) +

(
0 q̃1

t ⊗ q̃1

0 0

)
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By using the standard symplectic metric Ω, the above matrix can be further rewritten
in the following form

Mν·U = I +

(
q̃1

t

0

)
⊗ (0 q̃1) = I + Ω ·

(
0

q̃1
t

)
⊗ (0 q̃1)

= I + Ω ·
(
0 q̃1

t
)
⊗ (0 q̃1) = I + Ω · (ν · U)t ⊗ (ν · U)

Then, by using (4.2.45), we see that

Mν = U · Mν·U · U−1

= U ·
[
I + Ω · (ν · U)t ⊗ (ν · U)

]
· U−1

= I + U · Ω · (ν · U)t ⊗ (ν · U) · U−1

= I + (U · Ω · U t) · νt ⊗ ν · (U · U−1)

As the transition matrix U belongs to Sp(2n − 2,Z), it follows that U · Ω · U t ≡ Ω.
Inserting it into the above formula, we finally get that

Mν = I + Ω · νt ⊗ ν

This finishes the proof of the proposition.

Now suppose that ν = (g q) = (gi; qi) =
∑

i g
iβi + qiα

i, then the formula (4.2.47)
can be rewritten as

Mν = I +
(
Ω · (g q)t

)
⊗ (g q)

= I +

(
0 I
−I 0

)
·
(

gt

qt

)
⊗ (g q)

= I +

(
qt

−gt

)
⊗ (g q) = I +

(
qt ⊗ g qt ⊗ q
−gt ⊗ g −gt ⊗ q

)
that is

Mν =M(g q) =

(
I + qt ⊗ g qt ⊗ q
−gt ⊗ g I− gt ⊗ q

)
(4.2.48)

=

(
δji + qjg

i qiqj
−gigj δji − gjqi

)

Proposition 4.2.8. The monodromy action Mν computed as above (4.2.47) is given
exactly by the Picard-Lefschetz formula (4.2.38).

Proof. Given δ ∈ H1(Cu,Z), by the formula (4.2.47), the monodromy action on it is given
by

Mν(δ) = δ · Mν = δ ·
(
I + Ω · νt ⊗ ν

)
= δ + (δ · Ω · νt)⊗ ν using (4.2.44)

========= δ + 〈ν, δ〉 ν
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Proposition 4.2.9. Given two local vanishing cycles ν1 and ν2, we have that

[Mν1 ,Mν2 ] = 0 (4.2.49)

Proof. Using Picard-Lefschetz formula, we can compute that

Mν2 · Mν1(δ) = δ + 〈ν1, δ〉 ν1 + 〈ν2, δ〉 ν2 + 〈ν2, 〈ν1, δ〉 ν1〉 ν2

= δ + 〈ν1, δ〉 ν1 + 〈ν2, δ〉 ν2 + 〈ν1, δ〉〈ν2, ν1〉 ν2
〈ν1,ν2〉=0

======= δ + 〈ν1, δ〉 ν1 + 〈ν2, δ〉 ν2

which is invariant under the exchange: ν1 ←→ ν2, consequently,

Mν2 · Mν1 =Mν1 · Mν2 ⇐⇒ [Mν1 ,Mν2 ] = 0.

Another proof of proposition 4.2.9

A direct proof by using the matrix representation (4.2.48) of Mν is also interesting.

Suppose Mν2 · Mν1 = A =

(
a11 a12

a21 a22

)
, then by the formula (4.2.48), the entries are

given respectively by

a11 = I + qt1 ⊗ g1 + qt2 ⊗ g2 + (qt2 ⊗ g2) · (qt1 ⊗ g1)

qt2⊗g2≡q2⊗gt2========== I + qt1 ⊗ g1 + qt2 ⊗ g2 + (q2 ⊗ gt2) · (qt1 ⊗ g1)

(A⊗B)·(C⊗D)=(A·B)⊗(C·D)
=================== I + qt1 ⊗ g1 + qt2 ⊗ g2 + (q2 · gt1)⊗ (qt2 · g1)

which is clearly invariant under the exchange of indices 1←→ 2. Similarly:

a12 = qt1 ⊗ q1 + qt2 ⊗ q2 + (qt2 ⊗ g2) · (qt1 ⊗ g1)− (qt2 ⊗ q2) · (gt1 ⊗ q1)

qt2⊗g2≡q2⊗gt2==========
qt2⊗q2≡q2⊗qt2

qt1 ⊗ q1 + qt2 ⊗ q2 + (q2 ⊗ gt2) · (qt1 ⊗ g1)− (q2 ⊗ qt2) · (gt1 ⊗ q1)

(A⊗B)·(C⊗D)=(A·B)⊗(C·D)
=================== qt1 ⊗ q1 + qt2 ⊗ q2 + (q2 · qt1)⊗ (gt2 · g1)− (q2 · gt1)⊗ (qt2 · q1)

As 〈ν1, ν2〉 = 0, we have that g2 · qt
1 = g1 · qt2. Inserting it in the above identity, we

get that

a12 = qt1 ⊗ q1 + qt2 ⊗ q2 + (q2 · qt1)⊗ (gt2 · g1)− (g2 · qt1)⊗ (qt2 · q1)

By exchanging the indices 1←→ 2, the last two terms in the above identities become

(q1 · qt2)⊗ (gt1 · g2)− (g1 · qt2)⊗ (qt1 · q2)

〈ν1,ν2〉=0=⇒g1·qt2=g2·qt1================= (q2 · qt1)⊗ (gt2 · g1)− (g2 · qt1)⊗ (qt2 · q1)

from which it follows that a12 is again invariant under exchange of indices.

By exactly the same reasoning, the invariance of the other two entries: a21 and a22

under 1 ←→ 2 can also be obtained. As a consequence, we see that the two matrices
Mν1 commutes with Mν2 . �.
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In terms of SW curve as weight diagram fibration

Now, we give the description of the vanishing cycles in terms of the SW curve written
as the weight diagram fibration (see section 4.1.3). The curve is given by the following

Cu : z +
Λ2n

z
+ 2WAn−1(x,u) = 0

with the associated Seiberg Witten differential given by (formula (4.1.47))

λSW = −xdz
z

The advantage of this form of equation makes the relations between the vanishing cy-
cles and the roots of SU(n) more transparent. The idea presented here is due to [Tac15]
and [Hol97].

Recall that for given z and u, the solutions to the equation defining the curve Cu
above are given by

{e1(z,u), · · · , en(z,u))}
which correspond to the n weights of the fundamental representation of SU(n), and

could be used to serve as local coordinates on the corresponding sheets of the fibra-
tion. Thus, on the i-th sheet, the coordinate is given by the Seiberg-Witten differential
restricted on it as

λi = −ei(z,u)
dz

z

Define the α cycles to be the lift of the unit circle S1 := {z : |z| = 1} ⊂ CP 1 of the
base of fibration, i.e.,

αi = lift of S1 to the i-th sheet of the fibration. (4.2.50)

Remark 4.2.14. Notice that in the proposition 4.1.10, we used the notation γi for the
cycle αi defined here. As in the An−1-case, we have that

∑
i ei(z,u) ≡ 0, which implies

that the cycles αi’s are not independent such that

αn = −α1 − · · · − αn−1

By defining the a periods as ai :=
∮
αi
λSW , the above identity becomes the desired

n∑
i=1

ai =
n∑
i=1

∮
αi
λSW ≡ 0

As had been discussed before, there are n−1 pairs of branch points z±i , i = 1, · · · , n−
1, each of which related by the symmetry relation (c.f., (4.1.55))

z+
i z
−
i = Λ2n

plus the other two branch points, which are situated at 0 and∞. The pair z±i corresponds
to the colliding of the roots ei and ei+1, i.e., the colliding of i-th branch and (i + 1)-th
branch of the fibration, which is associated to the simple root α of the Lie algebra.
Consequently, by proposition 4.1.11, the monodromy around this pair of branch points is
given by the fundamental Weyl reflection Mαi (see (4.1.16)) associate to the simple root
αi.
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Remark 4.2.15. Each of the branch point z±i has degree 2, while that for 0 and ∞ being
n− 1. Applying the Riemann-Hurwitz formula to the cover

Cu −→ CP 1 ∼= S2

we get that the relation between the Euler characteristics as

χ(Cu) = (number of sheets)χ(S2)−
∑

branch points pi

deg(pi)− 1

= 2n− 2(n− 1)− (n− 1)2 = 4− 2n

Using the relation between Euler characteristic and the genus of the curve Cu

χ(Cu) = 2− 2g (Cu)

we get that
g (Cu) = n− 1 as desired.

The β-cycles, which are dual to the α-cycles are defined as

βi =
−̃−→
0 z+

i , i.e., the lift of path up to i-th sheet connecting z+
i and 0. (4.2.51)

Proposition 4.2.10. The cycles {αi, βi} constructed above satisfy the following inter-
section properties

〈αi, αj〉 = 〈βi, βj〉 = 0;

〈αi, βj〉 = δij.

Proof. The identities in the first line are clear since the two entries inside the intersection
bracket come from different sheets, thus are void of intersection. For the non-trivial ones
in the second line, we notice that the path Bi intersects with S1 on the base of the
fibration in exactly one point positively (by proper choice of orientation), and by lifting
the configuration up to the i-th sheet, the intersection pattern remains unchanged.

Next we show that in this setting, the large u (semi-classical) behaviour of aD (see
(4.2.40)) can be reproduced, which generalizes similar computation we had performed in
the SU(2) between the remark 4.2.3 and remark 4.2.4.

Proposition 4.2.11. For |u| � Λn, we have that (compare with the formula (4.2.39))

aD,k ≈
nak

2πi
ln
ak

Λ

Lemma 4.2.12. On the k-th sheet, the Seiberg-Witten differential can be approximated
by

λk ≈
ak

2πi

dz

z

Proof. By definition, we have

ak =

∮
αk
−xdz

z
=

∮
|z|=1

−ek
dz

z
≈ −ek

∮
|z|=1

dz

z
= −2πiek

Using this, we get that

λk = −ej
dz

z
≈ ak

2πi

dz

z
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Lemma 4.2.13. For large |u|, z±k can be approximated by

z+
k ≈ (ak)n z−k ≈

Λ2n

(ak)n

Proof. Write the left hand side of z + Λ2n

z
+ 2WAn−1(x,u) = 0 as 2

∏
i(x− ei). When |u|

becomes very large, i.e., Λ is relatively very small, we see that the pair of branch points
z±k approaches to the pair {0,∞} (for examples, see the formula (4.1.54) and (4.1.55)).
We assume in the following that z+

k is the larger one. Inserting z = z+
k in the equation

defining Cu above, as z+
k is very large, we see that λ2n

z+
k

≈ 0. Also, some roots collide with

ek, without loss of generality, we assume that ei ≈ ek, ∀i 6= k. Thus, we get the relation
z+
k − un = enk , but as ek ≈ ak, we get that z+

k ≈ (ak)n. Since z+
k z
−
k = Λ2n, we get the

remaining approximation.

Proof. (of the proposition 4.2.11) As had been noted in the proof of the lemma above,
we see that in the semi-classical regime, z−k → 0, thus by lemma 4.2.12, we have follows:

aD,k =

∮
βk

λSW =

∫ z+
k

0

λk ≈
∫ z+

k

z−k

ak

2πi

dz

z
≈ ak

2πi

∫ (ak)n

Λ2n

(ak)n

dz

z

=
ak

2πi
ln

(ak)n

Λ2n/(ak)n
=

ak

2πi
ln

(
ak

Λ

)2n

=
nak

πi
ln
ak

Λ
.

Vanishing cycles and the associated charges

First, let P+
i = z̃+

i z
−
i denote the path that connects the pair of branch points z±i By

lifting P+
i to the i-th and (i + 1)-th sheet, we get the cycles denoted by P̃+

i and P̃+
i+1

respectively. Since the Weyl reflection ri associated with the root αi acts on the sheet by
the permutation simple transposition (i, i + 1), i.e., by permutating the i-th sheet with

the i+1-th sheet, we see that the difference cycle P̃+
i −P̃+

i+1 is closed as P̃+
i+1 represents

the reverse cycle of P̃+
i which intersects with each other over the points z±i where the

i-th and (i+ 1)-th sheets collide. We then define the following closed cycles

ν̃+
i = P̃+

i − P̃+
i+1 (4.2.52)

When the moduli u approaches to some components of the discriminant locus ∆Λ ⊂ B,
the two branch points z±i come together, which causes the path P+

i , and consequently
the cycle ν̃+

i to shrink into zero. This implies that ν̃+
i is the vanishing cycle associated

to the pair of branch points {z±i }. However, as the pair of branch points z±i satisfies
the relations z+

i z
−
i = Λ2n, we see that when the two branch points hit each other, their

common value equals ±Λn. This implies that there are two ways for the two branch
points to get together corresponding to the ± signs. Thus, besides the (n− 1) vanishing
cycles ν̃i

+ associated to the (n−1) pairs of branch points, there should be another (n−1)
vanishing cycles which are to be constructed in the following. Together, they will form
the basis of the first homology cycles of the SW curve. Denote then by the path P−

i

with homology class represented by P+
i followed by winding around the origin once

counterclockwise, i.e., as homology one cycle on the base CP 1, we have that

[P−
i ] = [P+

i ] + [S1] (4.2.53)
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We need to lift these paths to the sheets of fibration to get the required vanishing
cycles, we will employ an method that generalizes the construction of ν̃+

i . Denote by

P̃±
i (w) the lift of the path P±

i to the sheet labeled by the weight w of the fundamental
representation of SU(n). As the pair of branch points {z±i } is associated with the simple
roots αi = αi,i+1, with the monodromy around the branch points given by the Weyl

reflection ri = rαi ,we see that the path P̃±
i (w) on the sheet labeled by w is followed by

the returning path P̃±
i (ri(w)) on the sheet labeled by the weight ri(w). Motivated by

this, we define the following one cycles

ν̃±i :=
1

N

∑
w

〈w, αi〉 P̃±
i (w) (4.2.54)

where N is some normalizing constant so to make the vanishing cylces above indepen-
dent of the weights of the representation (thus independent of the representation itself).

Claim: To make the cycles constructed above independent of the representation, the
normalizing factor N can be chosen in such a way that [Hol97]:

N

2πi
· I =

∑
w

w ⊗ w

Proof of the claim: We consider the integral of the SW differential over these cycles.
First note that on the sheet labeled by the weight w, the differential λSW becomes:

λSW = −xdz
z

= −ei(z,u)
dz

z
= −〈w, φ〉 dz

z

where φ = a · H =
∑n−1

i=1 a
i Hi ∈ hn, the element in the Cartan algebra defined in

section 4.1.1, then we compute as follows:∮
ν̃±i

λSW =
1

N

∑
w

〈w, αi〉
∮

P̃±i (w)

λSW =
2

N

∑
w

〈w, αi〉
∮

P̃±i (w)−P̃±i (ri(w))

λSW

=
2

N

∑
w

〈w, αi〉

(∮
P̃±i (w)

λSW −
∮

P̃±i (ri(w))

λSW

)

=
2

N

∑
w

〈w, αi〉
∮

P̃±i (w)

(〈ri(w), φ〉 − 〈w, φ〉) dz
z

= − 2

N

∑
w

〈w, αi〉
∮

P̃±i (w)

〈w, αi〉
〈αi, αi〉

〈αi, φ(z)〉 dz
z

= − 2

N

∑
w

〈w, αi〉
〈w, αi〉
〈αi, αi〉

∮
P̃±i (w)

〈αi, φ(z)〉 dz
z

= − 2

N

∑
w

〈w, αi〉2

α2
i

∮
P̃±i (w)

〈αi, φ(z)〉 dz
z

α2
i=2 for

============
simply laced group

− 1

N

∑
w

〈w, αi〉2
∮

P̃±i (w)

〈αi, φ(z)〉 dz
z
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Consequently, by choosing N such that N
2πi

=
∑

w〈w, αi〉〈w, αi〉, we see that the inte-
gral is independent of the representation. �.

Thus, the overall effect is that as homology class of one cycles, i.e., when the integra-
tion over them is concerned, we have that[

ν̃±i
]

= −
[
P̃±

i

]
Besides the (n− 1) pair of branch points {z±i }, we also have two more branch points

{0,∞}. Let us connect them by a path P0∞, which connects all the sheets with weights
belonging to one orbit of the cyclic group generated by the Coexter elements. The Co-
exter element specifies how the sheets are connected above ∞.

By lifting the path P0∞ by using formula (4.2.54), we get the closed one cycle denoted
by ν̃±n , together with {ν̃±i }n−1

i=1 , we claim that their intersections are the same as that being
satisfied by the vanishing cycles {ν±i }ni=1 constructed before.

Proposition 4.2.14. The intersections numbers among {ν̃±i }ni=1 satisfy the relations
(4.2.33) given in proposition 4.2.4.

Proof. Instead of direct computation, we establish the one to one correspondence between
the two sets of vanishing cycles, namely {ν̃±i }ni=1 and {ν±i }ni=1, thus the proposition follows
from the proposition 4.2.4. Before establishing the correspondence, let us first note that
their are two ways that the pair of branch points {z±i } can come close to each other,
which correspond to two ways that the roots of y2 = (WAn−1(x,u))2 − Λ2n collapse with
each other, say, z+

i = z−i = Λn corresponds to the roots e+
i colliding with e+

i+1, while
z+
i = z−i = −Λn corresponds to the coincidence of the roots e−i with e−i+1. Similarly, by

approximating 0 by εΛn and ∞ by Λn

ε
as ε→ 0, we deem that ε→ 1 corresponds to the

root e+
1 colliding with e+

n , while ε→ −1 corresponds to the colliding of e−1 and e−n . In this

way, we associate the vanishing paths {P̃±
i }n−1

i=1 (and consequently the vanishing cycles

{ν̃±i }n−1
i=1 ) to {ν±i }n−1

i=1 ; as well as P̃0∞
±

(and thus the vanishing cycles ν̃±n ) to ν±n .

Proposition 4.2.15. Let a, b be two variables that can take value from {±}, then the
monodromy actions associated with the vanishing cycles can be summarized as

Mν̃ai
(ν̃bj ) = ν̃bj + (εab + Iij)〈αj, αi〉 ν̃ai (4.2.55)

where εab is the two dimensional anti-symmetric tensor, and Iij the intersection matrix
among the vanishing cycles {ν̃+

i }n−1
i=1 , which in our case is chosen to be the standard

symplectic metric. And the Cartan matrix for An−1 is given by
(
(CAn−1)ij

)
= (〈αi, αj〉).

Proof. This follows from the above proposition and the remark 4.2.9.

By the above proposition, we will not distinguish between ν̃±i and ν±i , we simply use
notation ν±i to denote both of them. Using the same notation ν̃±i := (g q) for the
charge vectors associated to the vanishing cycles ν̃±i . Namely, we have

ν̃±i =
n−1∑
i=1

giβi + qiα
i = (gi qi) · (βi αi)

Next, we will use the information we have obtained so far to give the expressions of
ν̃±i in terms of the roots of the Lie group SU(n) (c.f., [Hol97]).
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Proposition 4.2.16. The charge vectors associated to the vanishing cycles can be ex-
pressed as

ν+
i = (αi, (pi + 1)αi) ν−i = (αi, pi αi) (4.2.56)

where for i, j such that 〈αi, αj〉 6= 0, we have that the integers pi are restrained by

pi − pj = Iji (4.2.57)

Proof. First, by (4.2.54) and the proof of the claim, we have that

Z(ν+
i − ν−i ) =

∮
ν+
i

λSW −
∮
ν−i

λSW =

∮
P̃+
i λSW

−
∮

P̃−i

λSW

by (4.2.53): P−i −P+
i =S1

================ −
∮

lift of S1

λSW =

∮
lift of S1

〈αi, φ(z)〉dz
z

φ=a·H
======

∮
lift of S1

〈αi, a ·H〉
dz

z
=

∮
lift of S1

〈αi,H〉 a
dz

z
= αi · a

But
Z(ν+

i − ν−i ) = Ξ · (g q) = (aD a) · (ν+
i − ν−i )

Comparing, we get that

ν+
i − ν−i = (0, αi) (4.2.58)

Next, by Picard-Lefschtz formula, we have that

Mνai
(νbj ) = νbj +

〈
νai , ν

b
j

〉
νai

Comparing it with the formula (4.2.55), we have the following relation〈
νai , ν

b
j

〉
= (εab + Iij)〈αj, αi〉 (4.2.59)

Now suppose that ν−i = (gi,qi), then by (4.2.58), ν+
i = (gi,qi) + (0, αi). Then, by

(4.2.59), we get the following relation:

〈ν+
i , ν

+
j 〉 = Iij〈αj, αi〉 〈ν−i , ν−j 〉 = Iij〈αj, αi〉

〈ν+
i , ν

−
j 〉 = (Iij − 1)〈αj, αi〉

Using these identities, we get that

〈ν−i + (0, αi), ν
−
j 〉 = 〈ν−i , ν−j 〉+ 〈(0, αi), (gj,qj)〉

= Iij〈αj, αi〉 − 〈αi,gj〉 = (Iij − 1)〈αj, αi〉 ⇒ gj = αj

By using the third identity again, we have that

〈ν+
i , ν

−
i 〉 = 〈(αi, αi + qi), (αi,qi)〉 = 〈αi,qj〉 − 〈αj,qi〉 − 〈αi, αj〉

= Iij〈αi, αj〉 − 〈αi, αj〉 ⇒ 〈αi,qj〉 − 〈αj,qi〉 = Iij〈αi, αj〉
It is clear then that the above linear equation is solved by

qi = pi αi

for some integer pi ∈ Z, and the integers {pi} satisfy the condition (4.2.57).
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Remark 4.2.16. There are certain ambiguities in determining the charge vectors of
the associated vanishing cycles. Namely, the integer pi in the formulae (4.2.56) can be
shifted by arbitrary n ∈ Z by looping the paths P+

i n-times around the origin (orientation
depends on whether n is positive or negative). We can thus resolve the ambiguity by fixing
pi ≡ n for all i. Thus, the formula (4.2.57) can be specified as

ν+
i = (αi, (n+ 1)αi) ν−i = (αi, n αi) (4.2.60)

Note that the charge vector (αi, n αi) corresponds to the vanishing cycle that is the
lift of the path P+

i + (n − pi)S
1. In physics literature, this phenomenon is called the

manifestation of the democracy of dyons (see [Hol97] for more information).

Braid group and the Monodromy

We now introduce another approach to the computation of the vanishing cycles and
the associated monodromies. This method is based on the concept of braid group and its
representations. For its history and development, please see the book [Han89], the paper
[Lön06], as well as the references contained there in. Its application in the physics con-
tent related to the Seiberg-Witten integrable system are discussed in [Cer95] and [Bil+96].

We give some preliminary discussions. Recall that our purpose is to compute the mon-
odromy acting on the local system Γ := H1(Cu,Z) (thus on the period integrals (aD a))
when the moduli u circles the discriminant locus (singularities) ∆Λ. This amounts to
studying the representation of the fundamental group of the complement of the dis-
criminant ∆Λ in B on the local system of first homology lattices of the hyper-elliptic
curves fibration, i.e., we study the following homomorphism (by choosing a fixed point
b0 ∈ B\∆Λ)

ρ̃ : π1(B\∆Λ, b0) 7−→ GL(Γ) = GL(H1 (Cu,Z)) (4.2.61)

Since we require that the intersection paring 〈·, ·〉 is invariant under the monodromy,
we see that the monodromy should factorize into the symplectic representation, namely,
the image of ρ̃ should lie in the subgroup

Sp (H1(Cu,Z)) ∼= Sp(2n− 2,Z)

Consequently, we have the following monodromy representation

ρ : π1(B\∆Λ, b0) −→ Sp (2n− 2,Z) (4.2.62)

From this, we see that to solve the monodromy problem, we first need to understand
the structure of the fundamental group of the complement of the discriminant locus, and
then we should understand how its generators acts on the first homology cycles.

We will display in the following how the braid group action is related to the study
of the above representation.

Given the local system of lattice π : Γ→ B0 := B\∆Λ, the action of the fundamental
group π1(B0, b0) on the fiber Γu = H1(Cu,Z) can be constructed as follows:
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Given a small loop γ : [0, 1]→ B0 based at b0, consider the pull back of the fibration
π over [0, 1], which gives us a trivial fibration π∗ : γ∗(Γ)→ [0, 1], with fiber (π∗)−1(t) over
t ∈ [0, 1] being π−1(γ(t)), i.e., we have the following commutative diagram:

γ∗(Γ) Γ

[0, 1] B0

π∗ π

γ

Note that π∗ is trivial with the following trivilization map

φ : [0, 1]× Γ→ γ∗(Γ)

Then a section s of the π can be pulled back to a section s̃ of π∗ via

s̃ := φ−1 ◦ s ◦ γ.

Now given an one cycle α ∈ Γu, we want to describe the monodromy action of γ on α,
namely ρ(γ)(α) =: αγ.

To this end, let us first view the cycle α as a path α : [0, 1] → {0} × Γu, which
is a lifting of the zero constant path 0 : [0, 1] → [0, 1]. Considering the homotopy
h : [0, 1] × [0, 1] → [0, 1] given by h(s, t) = t that takes the constant zero path 0 to the
constant one path 1. By the homotopy lifting property, the homotopy can be lifted to the
fiber level as the following map

h̃ : [0, 1]× [0, 1]→ [0, 1]× Γu

such that h̃(s, 0) = α(s) and h̃(0, t) = h̃(1, t) = s̃(t).

Finally, the monodromy action of γ on α is given by the following

αγ(s) := φ ◦ h̃(s, 1) = s(γ)−1 ◦ α ◦ s(γ) ∈ Γ. (4.2.63)

That is, roughly speaking, we push the α cycle fiberwisely along the loop γ while
keeping the base point along the section s. Note that by the homotopy lifting property,
the αγ thus constructed is independent of the choice of the trivilization map φ.

After discussing the monodromy action, we show next that it is given by the braid
group action. We note that the fundamental group of B0 can be identified with the braid
group Bn. Denote by

Confn := {(z1, · · · , zn) ∈ Cn : zi 6= zj, i 6= j}

the configuration space of ordered n-distinct points on the complex plane C.

The symmetry group Sn acts on it by permutating the n-points. Then, the config-
uration space of non-ordered sets of distinct n-points on C is defined by the following
quotient

C̃onfn := Confn/Sn
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The braid group on n-strands is defined as the fundamental group of the above

configuration space based on a point S ∈ C̃onfn, namely

Bn := π1

(
C̃onfn, S

)
Denote by D ⊂ C ∼= R2 the unit disk in C ∼= R2. Consider

D̃n := (Dn\(big diagonal)) /Sn

Then it is easy to see that D̃n is homotopy equivalent to C̃onfn as the inclusion D ↪→ C
is a homotopy equivalent. As a consequence, it follows that

Bn = π1

(
D̃n, p

)

Figure 4.15: A braid

where the base point p ∈ D̃n can be chosen to be the point S ∈ C̃onfn which consists of
n distinct points situated on the line segment [−1, 1] ⊂ D ⊂ C.

Given a point (z1, · · · , zn) ∈ C̃onfn, we associate it with the following polynomial
that has exactly n-roots {zi}

n∏
i=1

(z − zi) = (z − z1) · · · (z − zn) = zn + a1 z
n−1 + · · ·+ an−1 z + zn

The above polynomial determines uniquely (as the polynomial associated is monic) the
n− 1-coefficients {ai}ni=1 of the above polynomial.

The totality of these coefficients, which is seen to be Cn−1, parametrizing the monic
polynomials of degree n. Inside Cn−1, we have the discriminant locus ∆, which is the
location where the monic polynomials associated have two or more roots colliding with

each other. Thus, by associating the point (z1, · · · , zn) ∈ C̃onfn to the n− 1 coefficients
(a1, · · · , an−1), we have established an one to one correspondence

C̃onfn ←→ Cn−1\∆

which implies that

Bn = π1

(
C̃onfn, S

)
= π1

(
Cn−1\∆, b

)
(4.2.64)

By a theorem of Artin, the braid group Bn is generated by n−1 elements σ1, · · · , σn−1,
which are subject the following relations:
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σiσj = σjσi if |i− j| > 1; (4.2.65)

σiσi+1σi = σi+1σiσi+1 for i = 1, · · · , n− 1. (4.2.66)

Geometrically, the generator σi corresponds to the exchange of the i-th and (i+ 1)-th
strand of the braid (see the below figure for illustration).

Figure 4.16: Geometric representation of the generator σi.

The nontrivial braid relation (4.2.66) can be illustrated as follows

Figure 4.17: Illustration of σiσi+1σi = σi+1σiσi+1

Consider the free group Fn generated by n letters {f1, · · · , fn}, it is shown by E.Artin
in [Art47] that the braid group acts on the free group Fn in the following way

fσij =


fj j 6= i, i+ 1

fifi+1f
−1
i j = i

fi j = i+ 1

(4.2.67)

Next, we give a geometric realization of the above Artin representation (which is
faithful).
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Consider the universal family of the complements C on D̃n, defined as

C :=
{

(S, y) ∈ D̃n × C : y /∈ S
}

where the point S is viewed as a subset of n-points in C. Then the projection to the
first factor defines a locally trivial fibration p : C → D̃n with fiber over the point S being
the complement C\S to the subset S. A particular section of p is given by S 7→ (S, 2i)
as 2i /∈ D. Then it is easy to see that

π1

(
p−1(S), 2i

)
= Fn

with n-generators given by the loops γi that starts at the base point 2i, circling around
the n-distinct points zi contained in S.

Proposition 4.2.17. The action of π1

(
D̃n, S

)
= Bn on π1 (p−1(S), 2i) is given by the

Artin representation (4.2.67).

Proof. Note that the generator σi of the braid group Bn corresponds to the exchange of
two points zi and zi+1 in S, which can be realized by a rotation of zi and zi+1 about their
center. This causes the loops γi and γi+1 to be dragged while the rest of the loops kept
intact. The effect is that the loop γi+1 is being dragged into γi, while the loop γi being
dragged into γiγi+1γ

−1
i , which corresponds exactly to the relations given in (4.2.67).

With these preparation, we can study the the relation between the vanishing cycles
and the braid group action. We want to see how the action of π1(B0, b0) on the first
homology group H1(Cu,Z) could be induced from the braid group action. The generator
σi corresponds to the exchange (braiding) of the two roots of the polynomials

Pn(x,u) =
(
WAn−1(x,u)

)2 − Λ2n

=
(
WAn−1(x,u) + Λn

)
·
(
WAn−1(x,u)− Λn

)
= P+

n · P−n
defining the curve Cu. We have pointed out before that any two roots of the polynomial
P±n can be exchanged by forming a suitable words in the generators σi. The roots of
the polynomial splits into two categories, namely the roots of P+

n and P−n respectively,
denoted respectively by {ν+

i }ni=1 and {ν−i }ni=1.

Thus, the fundamental group π1(B0, b0) should be generated by those elements σ ∈ B2n

that respects the above splitting of the roots of the polynomial. And to each such el-
ement in the braid group, we can associate it to the corresponding vanishing cycles
νσ = (g,q) = (gi, qi) in the homology basis {αi, βi}.

Since we know that the monodromy associated to the vanishing cycle νσ is given by
the Picard-Lefschtz formula, which in matrix form, is given by the formula (4.2.48) as

Mνσ =

(
I + qt ⊗ g qt ⊗ q
−gt ⊗ g I− gt ⊗ q

)
=

(
δji + qjg

i qiqj
−gigj δji − gjqi

)
Or in more compact form, it reads as

Mνσ = I + (Ω · νtσ)⊗ νσ
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Proposition 4.2.18. (c.f.[Bil+96]) The subgroup of B2n that respects the splitting of the
roots {ν+

i }ni=1

⋃
{ν−i }ni=1 is generated by the following set of 2n-generators{
σ1, · · · , σn−1, σ

2
n, σn+1, · · · , σ2n−1, T = (σ1σ2 · · ·σ2n−1)n

}
Before proving the above proposition, let us first illustrate it with the example of the

simplest SU(2)-case.

In this case, the four roots split into two groups, namely {ν+
1 , ν

+
2 } and {ν−1 , ν−2 }.

The element σ1 corresponds to the exchanges of the two roots ν+
1 and ν+

2 , while σ2
2 acts

as identity. Now σ3 corresponds to the exchange of ν−1 with ν−2 , while the braiding T
corresponds to the exchange of the two groups of the roots. These indeed generate all pos-
sible bradings among the two groups of roots, thus the proposition holds in this situation.

Generalizing a little bit, we can prove the proposition as follows

Proof. First, it is easy to see that the elements belong to the set {σ1, · · · , σn−1} gen-
erates the braidings among the roots in the group {ν+

i }ni=1; while the elements in the
group {σn+1, · · · , σ2n−1} generate the braidings among the roots in the second group
{ν−i }ni=1. Clearly, the element σ2

n corresponds to the identity element. Finally, since the
product σ1σ2 · · ·σ2n−1 induces the cyclic permutation of the set (ordered as indicated)
{ν+

1 , · · · , ν+
n , ν

−
1 · · · , ν−n }, consequently, the element T corresponds to the exchange of the

two groups of the roots as a whole. This completes the proof of the proposition.

Remark 4.2.17. By the discussion in the remark 4.2.7, the above proposition implies
that the brading T corresponds to the monodromy around ∞ in the moduli space.

The vanishing cycles νσi associated to the generators σi should satisfy the following
constraints which are imposed by the braid group relations (4.2.65) and (4.2.66). Indeed,
the relation σiσj = σjσi implies that[

Mνσi
,Mνσj

]
= 0

which by proposition 4.2.9, translates into the following relation

〈νσi , νσj〉 = νσi · Ωt · νtσj = 0 |i− j| > 1 (4.2.68)

Similarly, the relation σiσi+1σi = σi+1σiσi+1 becomes

Mνσi
· Mνσi+1

· Mνσi
=Mνσi+1

· Mνσi
· Mνσi+1

which translates into the following relation

〈νσi , νσi+1
〉 = νσi · Ωt · νtσi+1

= 1 i = 1, · · · , n− 1 (4.2.69)

In terms of coordinates, the above equations (4.2.68) and (4.2.69) becomes{∑
k g

k
j qik − gki qjk = 0 |i− j| > 1∑

k g
k
i+1 qik − gki qi+1 k = 1 i = 1, · · · , n− 1

(4.2.70)

206



By the proposition 4.2.4 and the remark 4.2.16, the solutions to the above equations
can be given in terms of the simple roots as follows{

νσi = ν+
i = (αi, (n+ 1)αi) i = 1, · · · , n

νσi+n = ν−i = (αi, n αi) i = 1, · · · , n
(4.2.71)

Remark 4.2.18. In [Bil+96], another solution to the equations (4.2.68) and (4.2.69) is
given by the following

νσ2i−1
= (0, ei − ei−1) i = 1, · · · , n− 1

νσ2n = (0,−en−1)

νσ2i
= (−ei,0) i = 1, · · · , n− 1

νσ2n = (e1 + · · ·+ en−1)

(4.2.72)

where ei denotes an orthonormal basis in Rn−1 (viewing e0 = 0). The merit of this form
of solution is that the electric charges of the odd-numbered ν and the magnetic charges
of the even numbered ν are given explicitly in terms of the roots and the fundamental
weights of SU(n). Actually, it can be shown that the two solutions differ by a duality
transformation, i.e., a Sp(2n,Z) transformation. Thus they can be viewed as equivalent
solutions.

Zariski-Van Kampen Theorem and the Fundamental Group of the Comple-
ment

The fundamental group π1(B0, b0) = π1(Cn−1\∆Λ, b0) can be computed by using
method initiated by Zariski and Van Kampen [Zar29][Van33]. Our exposition follows
the paper [Cog11]. Note that by Zariski-Lefschetz hyperplane section theorem, the com-
putation of the above fundamental group can be reduced in the complex two dimensional
case as follows

π1(Cn−1\∆Λ) = π1(H\H ∩∆Λ) (4.2.73)

where H ∼= C2 ⊂ Cn−1 is a hyperplane, and H ∩∆Λ is the corresponding hyperplane
section. Thus, in the following, we consider the hypersurface S ⊂ C2 defined by a poly-
nomial f(x, y) = 0, and find the method to compute the fundamental group π1(C2\S).
To this end, take a point P ∈ C2\S, and consider the projection from P , which defines a
map Pr : C2 → C1. The restrict of it on the curve S will be denoted by the same symbol
Pr. Thus, let us consider the map

Pr : S −→ C (4.2.74)

The fiber over z ∈ C is the intersection points of the line lz connecting between z and
the graph of the curve C, which generically consist of deg(f) points. The number of inter-
section points becomes less that deg(f) over the discriminant locus ∆ = {q1, · · · , qm} ⊂
C.

Denote by L := L1 ∪ · · · ∪Lm = Pr−1(∆), i.e., the union of non-generic vertical lines.
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Figure 4.18: The picture is taken from [Cog11]

The fibration Pr is not “good” in the sense that the fibers come close to each other
near the projection point P . In order to make a good locally trivial fibration out of Pr,
we need to separate the directions based at the point P by replacing it with a copy of
CP 1 which parameterizes all directions issuing from P , that is, we need to consider the
blow up BLP (C2) of C2 at P . Making a coordinate transformation, we can assume that
P = (0, 0), the explicit construction of the blow up goes as follows:

BLP (C2) :=
{

((z, w); [u, v]) ∈ C2 × CP 1|uw = vz
}

(4.2.75)

Denote by ε : BLP (C2)→ C2 the projection map onto the first factor. Note that the
fiber of ε over the point P = (0, 0) is a copy of CP 1, which we call it the exceptional
fiber, and denote it by E, while the rest fiber is given by ((z, w); [z, w]), i.e., the point
(z, w) together with its “direction” specified by the element [z, w] ∈ CP 1. Now consider
the following composition map

P̃ r = Pr ◦ ε : BLP (C2) −→ C (4.2.76)

Then it is easy to see that the fiber of P̃ r over a point z ∈ C is given by C. It can be
seen from the above construction that there is a birational isomporphism

BLP (C2)\{E} ∼= C2\{P} (4.2.77)

as well as the following identity

P̃ r|BLP (C2)\{E} = Pr|C2\{P} (4.2.78)

Now let us lift the curve S and the union of lines L from C2 to BLP (CP 2) through
the blowing up map ε, namely

S̃ := ε−1(S) L̃ := ε−1(L)

Note that we have that S̃ ∼= S as P /∈ S. As the blowing up is birational, P̃ r is a
proper submersion. Consequently, by Ehresmann’s fibration theorem, we conclude that
P̃ r is a locally trivial fibration with fiber being isomorphic to the projective line C, which
induces the following locally trivial fibration

P̃ r : BLP (C2)\(S̃ ∪ L̃) −→ C\∆ (4.2.79)
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with the generic fiber being F := C\Zd, where Zd is the union of d = deg(f) distinct
points. It can be shown (for example [Cog11]) that the blow up map ε will induce the
following isomorphism on the fundamental group lever, namely

ε∗ : π1

(
BLP (C2)\(S̃ ∪ L̃)

)
∼= π1(C2\(S ∪ L)) (4.2.80)

The fundamental group of the fiber F is a free abelian group generated by d-meridians
γi, i = 1, · · · , d with γi circling around the i-th distinct point, that is

π1(F ) = 〈γ1, · · · , γd〉 (4.2.81)

Apparently, the fundamental group of the base of the fibration C\∆ is a free abelian
group generated the meridians αi, i = 1, · · · ,m with the meridians αi being associated
with qi ∈ ∆, that is

π1(C\∆) = 〈α1, · · · , αm〉 (4.2.82)

Next we show that π1(C2\S) can be computed from the action of π1(C\∆) on π1(F ).

Let us begin by first eliminating the effect L and L̃ in the isomorphism ε∗ in (4.2.80).

Note that the inclusion of L̃ in BLP (C2)\(S̃ ∪ L̃) induces the following surjection on the
fundamental group level

i∗ : π1

(
BLP (C2)\(S̃ ∪ L̃)

)
� π1

(
BLP (C2)\S̃

)
(4.2.83)

We claim that the kernel of the above surjection is generated exactly by the meridians
of L̃, which is the same as the meridians of C\∆. Indeed, suppose that γ represents a

class [γ] ∈ π1(BLP (C2)\S̃) that maps to zero under the above surjection. It follows that
there exists a disc D such that γ = ∂ D. Then by putting the disk in general position if
necessary, we assume that D intersects transversely with L̃ at the points {s1, · · · , sm}.

Choosing small disks Di ⊂ D such that Di∩L̃ = {si}. Then by denoting αi = ∂ Di, i.e.,

the meridian associated to Li ⊂ L̃, it is easy to see that γ is homotopic (with orientations

being properly chosen) to
∏s

i=1 αi, which is seen to be the meridian associated to L̃. The
claim is thus proved, and we get the following

π1(C2\S) = π1(BLP (C2)\S̃) ∼= π1

(
BLP (C2)\(S̃ ∪ L̃)

ker(i∗)

)

= π1

(
BLP (C2)\(S̃ ∪ L̃)

)
/〈α1, · · · , αm〉 (4.2.84)

To continue, let us proof the following proposition

Proposition 4.2.19. Given a locally trivial fibration π : E → B with fiber F and a
section s : B → E. Then we have that

π1(E) = π1(F ) o π1(B) (4.2.85)

where π1(B) acts on π1(F ) by the monodromy representation (4.2.62).
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Proof. The existence of the section s implies the splitting of the following exact sequence

1 −→ π1(F )
i∗−→ π1(E)

π∗−→
←−
s∗

π1(B) −→ 1

Thus, as a set we have that

π1(E) = {(α, β) = s∗(α)i∗(β) : α ∈ π1(B), β ∈ π1(F )}

while the product structure is given as follows

(α1, β1) · (α2, β2) = s∗(α1)i∗(β1)s∗(α2)i∗(β2)

= s∗(α1)s∗(α2)s∗(α2)−1i∗(β1)s∗(α2)i∗(β2)

= (α1α2, s∗(α2)−1β1s∗(α2)β2) = (α1α2, β
α2
1 β2)

Thus
π1(E) = π1(F ) o π1(B)

Note that the fibration P̃ r (see (4.2.79)) is endowed with a section given by

s : z 7→ ((z, z); [z, z])

By applying the above proposition to P̃ r and using the isomorphism (4.2.84), we get

π1(C2\S) = (π1(F ) o π1(C\∆)) /〈α1, · · · , αm〉 (4.2.86)

Also note that when we trace along a generator αi of π1(C\∆) based at the point
z0 ∈ C\∆, which causes the motion of the roots of f(z0, w). This induces a braid among
the roots. Consequently, we get the following braid monodromy map

θ : π1(C\∆, z0) −→ Bd (4.2.87)

Thus π1(C\∆) acts on π1(F ) through the braid monodromy map θ, which is given by
Artin representation, i.e., the αi action is given by the action of θ(αi) ∈ Bd on π1(F ) = Fd
through (4.2.67).

Now we can state the following Zariski-Van Kampen theorem

Proposition 4.2.20. Given a curve S ⊂ C2 that gives rise to a d-sheeted cover of C
which ramifies at the discriminant locus ∆ ⊂ C that consists of n points. Then the
fundamental group π1(C2\S) has the following finite presentation

π1(C2\S) = 〈γ1, · · · , γd : θ(αi) γj = γj, j = 1, · · · , d〉 (4.2.88)

with the meridians γi and αi constructed as before.

Proof. By (4.2.86) we have that

π1(C2\S) = (π1(F ) oθ π1(C\∆)) /〈α1, · · · , αm〉

= 〈γ1, · · · , γd, α1, · · · , αm : θ(αi) γj = α−1
i γj αi〉/〈α1, · · · , αm〉

= 〈γ1, · · · , γd : θ(αi) γj = γj, j = 1, · · · , d〉
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Examples: Define C̃onfn
0

to be the configuration space of unordered n-distinct points
{z1, · · · , zn} on C with center of mass 1

n

∑n
i=1 zi being situated at the origin. Clearly

C̃onfn
0

is homotopic to C̃onfn with the homotopy given by

H(t)(z1, · · · , zn) =

(
z1 −

t

n

n∑
i=1

zi, · · · , zn −
t

n

n∑
i=1

zi

)
0 ≤ t ≤ 1

However, the associated polynomial for a point (z1, · · · , zn) ∈ C̃onfn
0

is given by∏n
i=1(z − zi) with the coefficient of z being zero, which is exactly our An−1 polynomial

given before. For the “trivial” n = 2 case, we get that

C̃onf2

0 ∼=
{
z2 + bz + c : b2 − 4c 6= 0, b = 0

} ∼= C∗

Thus

B2 = π1

(
C̃onf2

0

, base point

)
∼= π1(C∗, base point) = Z = 〈γ〉

where γ represents the class of loop that circling around the origin based at the “base
point”, which under the monodromy representation corresponds to the exchange of two
roots of the quadratic equation.

Figure 4.19: Fundamental group of C̃onf2

0

Next we compute the fundamental group of C̃onfn
0

in the case of n = 3. In this (less
trivial) case, the configuration space can be represented as

C̃onf3

0

=

{
z3 + uz + v : v2 − 4

27
u3 6= 0

}
∼= C2\

{
4u3 − 27v2 = 0

}
(4.2.89)

where the curve C := {(u, v) ∈ C2 : 4u3 − 27v2 = 0} is singular at (0, 0) with “cusp”
type singularity.

Now we apply the Zariski- Van Kampen theorem to compute the fundamental group

of C̃onf3

0

. To this end, let us choose the projection

π : C2 −→ C (u, v) 7−→ u
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Restricting it to the curve C, we get a double branch covering π|C of C ramified at
∆ = {u = 0} ⊂ C. The fiber over u consists of the solution to the equation 4u3−27v2 = 0
in v. The fundamental group π1(C\∆, base point) is generated by a single loop α around
the origin that start and end at the “base point”. By tracing along the loop α, the
induced braid monodromy θ(α) ∈ B2 = 〈σ1〉 can be computed as follows.

Let α be represented by a circle about the origin of radius δ, then replace u by
δ e2πiθ 0 ≤ θ ≤ 1 in the above equation, we get the solutions

v = ±
√

4

27
δ

3
2 e3πiθ 0 ≤ θ ≤ 1.

Thus, we see that when θ goes continuously from 0 to 1, the two roots first change
the sign when θ = 1

3
, and change it again when θ hits 2

3
and 1. As a consequence of it,

the induced monodromy θ(α) reads in this case as

θ(α) = σ3
1 (4.2.90)

Figure 4.20: The monodromy θ(α) = σ3
1 and the generator of the fundamental group

As the covering π is two-folded, we see that the fundamental group of the fiber be-
ing the free group F2 generated by two meridians 〈γ1, γ2〉 associated two two separated
branches of the curve. Then we have the following

Proposition 4.2.21. The fundamental group of the complement of the cusp curve C in
C2 has the following presentation

π1(C2\C) = 〈γ1, γ2 : γ1γ2γ1 = γ2γ1γ2〉 (4.2.91)

Proof. By the Zariski-Van Kampen theorem, we get that

π1(C2\C) = 〈γ1, γ2 : θ(α) γi = γi, i = 1, 2〉

By the Artin presentation (4.2.67), we compute the monodromy action of θ(α) as
follows

θ(α) γ1 = σ3
1(γ1) = σ2

1(γ1γ2γ
−1
1 ) = σ1

(
σ1(γ1)σ1(γ2)σ1(γ1)−1

)
= σ1

(
γ1γ2γ

−1
1 γ1γ1γ

−1
2 γ−1

1

)
= σ1

(
γ1γ2γ1γ

−1
2 γ−1

1

)
= σ1(γ1)σ1(γ2)σ1(γ1)σ1(γ2)−1σ1(γ1)−1

= γ1γ2γ
−1
1 γ1γ1γ2γ

−1
1 γ−1

1 γ1γ
−1
2 γ−1

1 = γ1γ2γ1γ2γ
−1
1 γ−1

2 γ−1
1
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Similarly, we have that

θ(α) γ2 = σ3
1(γ2) = σ2

1 (γ1) = σ1(γ1γ2γ
−1
1 ) = σ1(γ1)σ1(γ2)σ1(γ1)−1

= γ1γ2γ
−1
1 γ1γ1γ

−1
2 γ−1

1 = γ1γ2γ1γ
−1
2 γ−1

1

Consequently, the two relations θ(α) γ1 = γ1 and θ(α) γ2 = γ2 becomes the following

γ1γ2γ1γ2γ
−1
1 γ−1

2 γ−1
1 = γ1 and γ1γ2γ1γ

−1
2 γ−1

1 = γ2

The second relation simplifies immediately into γ1γ2γ1 = γ2γ1γ2, while the first is
easily seen to be equivalent to γ1γ2γ1γ2 = γ1γ1γ2γ1, which, by using the braid relation
(4.2.66) to the underlined part, simplifies further into γ1γ2γ1γ2 = γ1γ2γ1γ2, which is
trivial. This completes the proof of the proposition.

Remark 4.2.19. A faithful representation of B3 can be realized by letting the two gen-
erators γ1 and γ2 acting on C2 through the following SL(2,Z) matrices as follows

Mγ1 =

(
1 0
−1 0

)
Mγ2 =

(
1 1
0 1

)

The geometry of the cusp curve can be studied by surrounding the cusp curve C by
a 3-sphere S3

R := {|u|2 + |v|2 = R2} ⊂ C2 with varying radius R centered at the origin.
Considering the homeomorphism given by

u 7→ 2u
3
2 v 7→ 3

√
3v,

we see that the three sphere is diffeomorphic to {4|u|3 + 27|v|2 = R2}, which intersects
the cusp curve C : {(u, v) : 4u3 = 27v2} at the locus{

4|u|3 = 27|v|2 =
1

2
R2

}
Writing u as u = |u| eiθu , and v as v = |v| eiθv , we see that the above locus can be

described in the following way

|u|3 =
R2

8
; |v|2 =

R2

54
3θu ≡ 2θv mod 2π

which describes a curve that wraps the a torus in one direction (corresponding to the
angle θu) three times, while wrapping in another direction (corresponding to the angle θv)
two times. That is, we get a (2,3)-torus knot, which is of course the simplest non-trivial
knot—the trefoil knot.

Figure 4.21: Trefoil knot as torus knot, the picture is taken from [Tay01]
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Denote by U the complement of the C2 to the three sphere S3
R, we have that

C2\C ≈
(
C2 ∩ U

)
\ (C ∩ U) = S3\{trefoil knot}

where “≈” denotes homeomorphism. Thus, by above proposition 4.2.21, we get the
knot group for trefoil knot as follows

π1

(
S3\{trefoil knot}

)
= π1(C2\C) = 〈γ1, γ2 : γ1γ2γ1 = γ2γ1γ2〉 (4.2.92)

Note that in the computation in the proof of the proposition above, we have used the
projection to the u coordinate, which gives a two-fold branched covering. Similarly, by
projecting to the v coordinate, we will get a three-fold covering. Using this cover to do
the computation should give us the same result. Let us now verify this.

Consider the projection

π : C2 −→ C (u, v) 7−→ v

Restricting it to the curve C, we get a three-fold branch covering π|S of the complex
plane C ramified at ∆ = {v = 0} ⊂ C. The fiber over v consists of the solution to the
equation 4u3 − 27v2 = 0 in u. The fundamental group π1(C\∆, base point) is generated
by a single loop α around the origin that start and end at the “base point”. By tracing
along the loop α, the induced braid monodromy θ(α) ∈ B3 = 〈σ1, σ2〉 can be computed
as follows.

Let α be represented by a circle about the origin of radius δ, then replace v by
δ e2πiθ 0 ≤ θ ≤ 1 in the above equation, we get the solutions

uk =
3

√
27

4
δ

2
3 e

4πiθ
3 ωk−1 =

3

√
27

4
δ

2
3 e

2πi(2θ+k−1)
3 0 ≤ θ ≤ 1, k = 1, 2, 3.

from which we see that when θ first hit θ = 1
2
, the three roots uk undergo a cyclically

permutation represented by the brading σ2σ1, and the same happens when θ further hit
θ = 1. Consequently the braid monodromy in this case reads as

θ(α) = σ2σ1σ2σ1 = (σ2σ1)2 = σ2σ2σ1σ2 = σ2
2σ1σ2

Thus, by Zariski-Van Kampen theorem, we get that

π1(C2\C) = π1(S3\{trefoil knot}) = 〈γ1, γ2, γ3 : θ(α) γi = γi, i = 1, 2, 3〉

The results of the computations read as follows{
θ(α)(γ1) = γ−1

1 γ−1
2 γ−1

3 γ2γ3γ2γ1

θ(α)(γ2) = γ−1
1 γ−1

2 γ3γ2γ1 θ(α)(γ3) = γ1

From this we see that the relations θ(α)(γi) = γi, i = 1, 2, 3 specify into the following{
γ3γ2γ1 = γ2γ1γ2

γ2γ3γ2 = γ3γ2γ1 γ1 = γ3

Thus only two among the γi’s are independent. By eliminating γ3, for example, we
get the relation between γ1 and γ2 as: γ1γ2γ1 = γ2γ1γ2, exactly the one given in (4.2.92),
which gives another proof of the proposition 4.2.21.
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Remark 4.2.20. The equivalent of the two projections in computing the fundamental
group lies in the fact that as a torus knot, the trefoil knot can be either represented as a
(2, 3)-knot or as (3, 2)-knot, which corresponds to projecting to different projections.

Figure 4.22: The trefoil knot as (2, 3)-knot and (3, 2)-knot.
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4.2.4 Quantum Monodromy: SU(3) case

In this subsection, we study the monodromies associated to the vanishing cycles in SU(3)
case. As the moduli space in this case is given by B ∼= C2, and the (quantum) discriminant
locus ∆Λ is of codimension one. The situation is much more complicated than the SU(2)
case, and more involved tools (as had been reviewed substantially in the last subsection)
are needed. Let us begin by computing

π1(C2\∆Λ, base point) = π1(B0) = π1(Cn−1\∆Λ)

for n = 3 , i.e., SU(3) case. That is, we need to compute the fundamental group

π1

(
C2\{4u3 = 27(v ± Λ3)2}, base point

)
The discriminant curve is given in this case by

∆Λ := ∆+
Λ ∪∆−Λ =

{
(u, v) ∈ C2 : 4u3 = 27(v ± Λ3)2

}
where ∆±Λ is defined by

∆±Λ :=
{

(u, v) ∈ C2 : 4u3 = 27(v ∓ Λ3)2
}

This tells us that the curve ∆Λ is composed of two cusp curves ∆±Λ linked together.
Or equivalently, by intersecting the curve with the 3-sphere and by employing the iso-
morphism (4.2.92) established in last subsection, we see that C2\∆Λ is homeomorphic to
S3\{L }, where L is the link made by tangling the two trefoil knots together. The two
trefoil knots K± are given by the intersection S3 ∩∆±Λ and

L = K+ ∪K− =
(
S3 ∩∆+

Λ

)
∪
(
S3 ∩∆−Λ

)
(4.2.93)

Thus
π1(C2\∆Λ) = π1(S3\L ) = π1(S3\K+ ∪K−) (4.2.94)

To determine how the knots K± get linked together, we observe that since the equa-
tions defining the two curves ∆±Λ differ from the standard cusp curves 4u3 = 27v2 by a
shift in the v-direction by the amount ±Λ3. Thus by shifting the standard trefoil knots
defined by intersection the curve 4u3 = 27v2 with a three sphere S3 in the v-direction
by the amount ±Λ3, we will get the knots K± respectively. Thus, the knot K+ can be
obtained by shifting the knot K− in the direction corresponding to −v by 2Λ3 unit.

As a consequence of this, and in viewing of the computation laid down at the end of
the last subsection, we see that the fundamental group π1(C2\∆Λ) is generated by six

generators:
{
γ±i
}3

i=1
, where

{
γ+
i

}3

i=1
are the three generators corresponding to the knot

K+, while the generators
{
γ−i
}3

i=1
are that for the knot K−. Each set of three generators

satisfy the relations computed by using Zariski-Van Kampen theorem.

The three generators, in terms of the Trefoil knot, can be illustrated in Figure 4.23
taken from [AF95] (Fig.2 there). When in the quantum situation, the trefoil knot in
figure 4.23 “splits” into two, and the three generators become six generators which are
illustrated in Figure 4.24 taken again from [AF95] (Fig.3 there).
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Figure 4.23: Three generators of the fundamental group being illustrated, figure taken
from [AD95]

Figure 4.24: Six generators of the fundamental group illustrated, figure taken from [AD95]

Previously, we have displaced that the six generators are not independent homo-
topically, there are some relations among them. For example (proposition 4.2.21), as
homotopic classes, we have that

[γ±1 ] = [γ±3 ] [γ±1 ][γ±2 ][γ±1 ] = [γ±2 ][γ±1 ][γ±2 ]

or simply, we write directly as follows (with homotopic classes implicitly understood)

γ±1 = γ±3 γ±1 γ
±
2 γ
±
1 = γ±2 γ

±
1 γ
±
2 (4.2.95)

For example, the relation γ1 = γ3 origins from the geometric fact that as you slide the
loop γ1 in figure 4.23 along the Trefoil knot to becomes the loop γ3, the loop γ1 will come
cross the loop γ2 during the process, thus geometrically, we have that γ1 ∼ γ2 · γ3 · γ−1

2 ,
thus as homotopical classes, we have the identity γ1 ≡ γ3 in the fundamental group
π1 (C2\∆Λ). Now consider the monodromy representation (4.2.62) in this case:

ρ : π1(B\∆Λ) −→ Sp(4,Z)

For an element γ ∈ π1(B\∆Λ), denote the matrix that represents the monodromy
associated to ρ(γ) byMγ. Then since ρ is a group homeomorphism, they should respect
the relations (4.2.95), namely

Mγ±1
=Mγ±2

· Mγ±3
· M−1

γ±2
plus cyclic permutations of {1,2,3.} (4.2.96)

Mγ±1
· Mγ±2

· Mγ±1
=Mγ±2

· Mγ±1
· Mγ±2

(4.2.97)
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Detailed Analysis of the Geometry of Moduli Space

First, the two curves intersect with each other at the following three points, we call
them Z2-points in accordance with the convention in physics literature

∆+
Λ ∩ ∆−Λ =

{(
3

√
27

4
Λ2, 0

)
,

(
ω

3

√
27

4
Λ2 , 0

)
,

(
ω2 3

√
27

4
Λ2, 0

)}
(4.2.98)

where ω := e
2πi
3 is the primitive cubic root of unit one. We denote the above three

Z2-points by p1, p2, p3 respectively, that is

pk =

(
ωk−1 3

√
27

4
Λ2 , 0

)
k = 1, 2, 3. (4.2.99)

Denote by δ±Λ (u, v) = 4u3 − 27(v ∓ Λ3)2 the discriminant polynomial. Then the dis-
criminant locus ∆u∆Λ (where we denote by u := (u, v)) of the discriminant curve ∆Λ

itself is given by the solutions to the following set of equations

δ±Λ =
∂δ±Λ
∂u

=
∂δ±Λ
∂v

= 0 ⇐⇒


4u3 = 27(v ± Λ3)2

12u2 = 0

−54(v ± Λ3) = 0

The solutions are given by the two points set

∆u∆Λ := {q+, q−} =
{

(0,Λ3), (0,−Λ3)
}

(4.2.100)

which we call them Z3-points, again in accordance to the conventions in physics litera-
ture. Note that q± corresponds to the cusp singularities of the two curves ∆± respectively.
Next, we find the roots of the polynomial

P3(x,u) = (x3 − ux− v)2 − Λ6

= (x3 − ux− v + Λ3)(x3 − ux− v − Λ3) = P+
3 · P−3

which defines the Seiberg-Witten curve in the SU(3) case.

Recall that for a general cubic equation t3 + pt+ q = 0, its solutions are given by the
Cardano’s formula as follows

tk = ωk−1 3

√
−q

2
+

√
q2

4
+
p3

27
+ ω2(k−1) 3

√
−q

2
−
√
q2

4
+
p3

27
k = 1, 2, 3.

We apply it to the case of P3(x,u) = 0. To this end, let us denote by e±k , k = 1, 2, 3.
the three roots of the polynomials P±3 respectively. Also recall that the discriminant of
the polynomials P±3 is given by δ± = 4u3 − 27(v ∓ Λ3)2 respectively. Then by Cardano’s
formula above, we have the following explicit expressions of these roots:

e±k = ωk−1 3

√
v ∓ Λ3

2
+

√
−δ±

6
√

3
+ ω2(k−1) 3

√
v ∓ Λ3

2
−
√
−δ±

6
√

3
(4.2.101)

218



We see that when the moduli u = (u, v) lies in the locus ∆Λ, then roots degenerate.
For example, when δ+ = 0, we see easily that e+

2 = e+
3 , and at the node point, i.e., Z3-

point where v = Λ3, all three roots e+
k , k = 1, 2, 3 degenerate. Further, at the intersection

points pk, i.e., Z2-point where v = 0, again we have the degenerate situation: e+
2 = e+

3 .

Since ∆Λ is a complex surface sitting inside C2, in order to study the monodromy
around the various components (branches) of it, we cut the surface by a family of real
planes defined by

Ht := {Imv = t, t ∈ R} ⊂ C2 (4.2.102)

which will give us a family of real curves Lt := Ht ∩ ∆Λ, t ∈ C2. Thus, we reduce
the study of monodromies associated to various branches of ∆Λ into the studying of the
monodromies associated to various branches of Lt for different t. Near the two nodes q±,
we cut the surface by the three sphere S3, which give us the trefoil knots. We can study
the associated monodromies by using the braid monodromy as before. We first prove
that it is sufficient to study the situation in the case of t = 0.

Proposition 4.2.22. The monodromy group associated to the locus ∆Λ equals that as-
sociated to the locus L0 = H0 ∩∆Λ, i.e., we have that

π1 (∆Λ) = π1 (H0 ∩∆Λ) = π1 (L0) (4.2.103)

Proof. We note that the singularities of the surfaces, that is: the Z3-points {q±} lies
on the hyperplane section L0 by (4.2.100), thus, the complement set ∆Λ\L0 is smooth.
Then by applying the Lefschetz hyperplane theorem (for example, see [Mil63]), we get the
desired isomorphism.

Consequently, we focus on the hyperplane section L0 = H0 ∩ ∆Λ in the following
discussion. We simply write L0 and H0 as L and H respectively. We write u = x+ iy,
v = z + iw, where (x, y, z, w) ∈ C2 ∼= R4. Then ∆Λ ∩H is described by the equation:

4(x+ iy)3 = 27(z ± Λ3)2

Equating the real and imaginary part, we get the equations describing L :

L :

{
4(x3 − 3xy2) = 27(z ± Λ3)2

3x2y = y3
(4.2.104)

which “splits” into three different cases:

L1 :

{
4x3 = 27(z ± Λ3)2

y ≡ 0
L2 :

{
−32x3 = 27(z ± Λ3)2

y ≡
√

3x

L3 :

{
−32x3 = 27(z ± Λ3)2

y ≡ −
√

3x
(4.2.105)

which further “split” into the following three pairs of lines:

L1 = Σ1
+ ∪ Σ1

− L2 = Σ2
+ ∪ Σ2

− L3 = Σ3
+ ∪ Σ3

− (4.2.106)

where Σk
±, k = 1, 2, 3 is described by the equations in (4.2.105) with ± signs respectively.
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Apparently, the pair of lines L1 lie on the hyperplane H1 := {y ≡ 0}, while the pairs
L2,3 lie on the hypreplanes H2,3 := {y ≡ ±

√
3} respectively with 2 corresponding to +

and 3 to −. The three Z2-points pk, k = 1, 2, 3, (see equation:(4.2.99)) are given by the
following

pk = Σk
+ ∩ Σk

−, k = 1, 2, 3. (4.2.107)

All three points lie on the plane {v = 0}, and is rotated into each other under the
Z3 permutations. Besides, the three “positive” lines Σk

+ intersect at the Z3-point q− =
(0,−Λ3), while the three “negative” lines Σk

− intersect at the other Z3-point q+ = (0,Λ3).
That is

Σ1
± ∩ Σ2

± ∩ Σ3
± = q∓ = (0,∓Λ3) (4.2.108)

The situation described above can be depicted in the following picture (Figure 4.25),
this picture is taken from [KTL95] (Fig.4 there).

Figure 4.25: Geometry of moduli space for SU(3) when Imv = 0, figure taken from
[KTL95]

Now we can study the monodromies around each six singular lines Σi
± for i = 1, 2, 3.

Thus we fix a base point (see figure 4.25) u0 that belongs the the plane Hcut := {z =
Re(v) ≡ constant > Λ3}, we then consider the six loops based at u0 which encircling
the six singular points cut out by the plane above. Denote by γ±i the loops circling
around the singular lines Σi

± for i = 1, 2, 3. In other words, the loops γ±i circles around
the points P±i on the plane Hcut if P±i denote the intersection points of the base plane
with the six singular lines, that is: P±i := Σi

± ∩ Hcut.Denote the monodromy matrices
associated to the loops γ±i byM±

i for i = 1, 2, 3. Roughly speaking, when looping around

the points P±i , certain roots among
{
e±k
}3

i=1
coincide, which causes certain one cycles

become the vanishing cycles. And this induces the corresponding monodromies given by
Picard-Lefschtz formula.
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Remark 4.2.21. We notice that as Λ approaches to zero, i.e., when the quantum moduli
space “degenerate” into the classical moduli space. In particularly, the roots e+

i coincides
with e−i . Consequently, by denoting ri the loops circling around the pairs of the points
P±i for i = 1, 2, 3, we see that in this degenerating situation, the loops ri vanishes, which
produce exactly the classical monodromies Mc

ri
(see (4.2.15)) given before. Besides, by

proper choice of the orientations of loops, we see that as homotopical classes, we have
that ri = γ+

i · γ−i . In terms of the monodromies associated, this infers that

Mc
ri

=Mγ+
i
· Mγ−i

, i = 1, 2, 3. (4.2.109)

We note that the classical monodromy Mc
ri

corresponds to the braid monodromy Bγi

associated to the braid generator γi for the π1(C2\{trefoil knot}), thus they should obey
the braid relations given in (4.2.97), namely

Mc
r1

=Mc
r2
· Mc

r3
· Mc−1

r2
(4.2.110)

as well as the following

Mc
r1
· Mc

r2
· Mc

r1
=Mc

r2
· Mc

r1
· Mc

r2
(4.2.111)

Remark 4.2.22. Notice that since δ± = 4u3−27(v∓Λ3)2, we see that Λ→ 0 amounts to
the limit v →∞. Thus, geometrically, choosing the cut plane Hcut far Re(v)→∞, then
the monodromies computed with reference to the plane Hcut are reduced to the classical
monodromies.

Remark 4.2.23. Intuitively, each pair Li = Σi
+ ∪Σi

− of the singular lines correspond to
a situation similar to that SU(2) case discussed above. For example, ri, in this interpre-
tation, becomes the vanishing cycle that induces the classical monodromy at “∞” of the
SU(2)-quantum moduli space C (since we know that for SU(2) case,M∞ =M+Λ2 ·M−Λ2,
c.f., see formula (4.2.20)). And the vanishing cycles associated with the two singular lines
Σi
± are interpreted as the two vanishing cycles for this copy of SU(2) model. Thus the

three pairs of singular lines corresponds to the three ways of the embeddings of the Lie
groups SU(2) ↪→ SU(3) (c.f., [KTL95]), which further induces the embedding of the
moduli spaces BSU(2) ↪→ BSU(3). Roughly speaking, the moduli space BSU(2) “cuts out” a
subspace C inside BSU(3), with the two singular points {−Λ2,+Λ2} corresponding to one
pair of intersections of this complex plane with the discriminant locus ∆Λ for SU(3) case.

We see that the discriminant δΛ, when restricted to the tree pair of lines Li, i = 1, 2, 3,
becomes

δ± = 4u3 − 27(v ∓ Λ3)2 = 4(x+ iy)3 − 27(z ∓ Λ3)2

= 4(x3 − 3xy2)− 27(z ∓ Λ3)2 + 4i (3x2y − y3) = 4(x3 − 3xy2)− 27(z ∓ Λ3)2

Consequently, by (4.1.101), the roots e±k , k = 1, 2, 3, when restricted to pairs of lines
Li, i = 1, 2, 3, becomes

e±k = ωk−1 3

√
v ∓ Λ3

2
+

√
−δ±

6
√

3
+ ω2(k−1) 3

√
v ∓ Λ3

2
−
√
−δ±

6
√

3

= ωk−1 3

√
z ∓ Λ3

2
+

√
27(z ∓ Λ3)2 − 4(x3 − 3xy2)

6
√

3
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+ω2(k−1) 3

√
z ∓ Λ3

2
−
√

27(z ∓ Λ3)2 − 4(x3 − 3xy2)

6
√

3

More specifically, by (4.2.104) and (4.2.105), we have the followings:

On Σ1
±, we have that 4x3 = 27(z ∓ Λ3)2, and y = 0, thus by circling around Σ1

±, we
see that e±1 ↔ e±2 , with the corresponding vanishing cycle ν±1 ;

On Σ2
±, we have that −32x3 = 27(z ∓ Λ3)2, and y =

√
3x, thus by circling around

Σ2
±, we see that e±2 ↔ e±3 , with the corresponding vanishing cycle ν±2 ;

On Σ3
±, we have that −32x3 = 27(z ∓ Λ3)2, and y = −

√
3x thus by circling around

Σ3
±, we see that e±1 ↔ e±3 , with the corresponding vanishing cycle ν±3 ;

Following [KTL95] and [Seo13], after the proper choice of the homology basis (c.f.,
(4.2.27) in section 4.2.3)

{β1, β2;α1, α2} ∈ ΛW ⊕ ΛR = H1(C,Z)

the above six vanishing cycles ν±i = (g±i ,q
±
i ) associated to the six singular lines Σi

±
in the moduli space can be presented as follows (see formula (4.2.29)):

ν+
1 = β2 − β1 − α1, ν−1 = β2 − β1 + α2 − 2α1

ν+
2 = −β2 + α1, ν−2 = −β2 − 2α2

ν+
3 = β1, ν−3 = β1 + 2α1 + α2

(4.2.112)

In coordinates form, they read as follows
ν+

1 = (−1, 1;−1, 0), ν−1 = (−1, 1;−2, 1);

ν+
2 = (0,−1; 1, 0), ν−2 = (0,−1; 0,−2);

ν+
3 = (1, 0; 0, 0), ν−3 = (1, 0, 2, 1);

(4.2.113)

Remark 4.2.24. We noted before (see formula (4.2.32)), that the six vanishing cycles
are not independent, for example the vanishing cycles ν±3 can be expressed as

ν±3 = −ν±1 − ν±2

This echos the fact that only two of the three generators {γi}3
i=1 for the fundamental

group π1(C2\{trefoil knot}) are independent.

Recall that for the vanishing cycle ν, the associated monodromy matrix Mν is given
by

Mν =M(g q) =

(
I + qt ⊗ g qt ⊗ q
−gt ⊗ g I− gt ⊗ q

)
Thus, for ν+

1 = (g+
1 ,q

+
1 ) = (−1, 1;−1, 0) above, we compute that

I + (q+
1 )t ⊗ g+

1 =

(
1 0
0 1

)
+

(
−1
0

)
⊗
(
−1 1

)
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Figure 4.26: Monodromy around the singular lines

=

(
1 0
0 1

)
+

(
1 −1
0 0

)
=

(
2 −1
0 1

)
similarly

(q+
1 )t ⊗ q+

1 =

(
−1
0

)
⊗
(
−1 0

)
=

(
1 0
0 0

)
;

and

(g+
1 )t ⊗ g+

1 =

(
−1
1

)
⊗
(
−1 1

)
=

(
1 −1
−1 1

)
;

as well as

I− (g+
1 )t ⊗ q+

1 =

(
1 0
0 1

)
−
(
−1
1

)
⊗
(
−1 0

)
=

(
1 0
0 1

)
−
(

1 0
−1 0

)
=

(
0 0
1 1

)
Putting then above computations together, we finally get

Mν+
1

=


2 −1 1 0
0 1 0 0
−1 1 0 0
1 −1 1 1


We can do the same for all other vanishing cycles, we summarize the computations

as follows

Mν+
1

=


2 −1 1 0
0 1 0 0
−1 1 0 0
1 −1 1 1

 Mν−1
=


3 −2 4 −2
−1 2 −2 1
−1 1 −1 1
1 −1 2 0

 (4.2.114)

Mν+
2

=


1 −1 1 0
0 1 0 0
0 0 1 0
0 −1 1 1

 Mν−2
=


1 0 0 0
0 3 0 4
0 0 1 0
0 −4 0 −1

 (4.2.115)

Mν+
3

=


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1

 Mν−3
=


3 0 4 2
1 1 2 1
−1 0 −1 −1
0 0 0 1

 (4.2.116)
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Remark 4.2.25. Notice that the quantum monodromy matrices in SU(2) case, namely
M+Λ2 andM−Λ2 given in (4.2.18) and (4.2.19) respectively are embedded as sub-matrices
in the above Mν±i

s, which reflects the fact the embedding of the Lie groups SU(2) ↪→
SU(3).

Remark 4.2.26. The above results tell us that when restricted to the hyperplane H =
{Im(v) = 0} (generic situation) inside C2, the discriminant locus ∆Λ was cut into an
union of six singular lines Σi

±, with each point on the singular line Σi
± being associated

with the vanishing cycle ν±i , which in its coordinate form (4.2.112), can be realized as
the charge vector of a BPS state ν±i (by abusing the notation) with the corresponding
mass function vanishes. These “states” are important in the sense that they will later
(section 5.2) serve as the initial data for the wall crossing structure (WCS) associated to
the Seiberg-Witten integrable system in the SU(3) case.

Moreover, the Z2-points and Z3-points are worth special mentioning here. We notice
that at the three Z2 points pk = Σk

+∩Σk
−, k = 1, 2, 3, there are vanishing cycles with corre-

sponding charge vectors that are mutually local (see definition 4.2.1) to each other, which
means that at these three points, two BPS states can become massless simultaneously. In
our case, they read as: for pk, the pair being {ν+

k , ν
−
k+2} for k = 1, 2, 3, and k + 2 being

taken mod 3.

The two Z3-points {q±}, which by 4.2.108, are the common cusp points of the six lines,
which means that there are three massless BPS states situated there. At q+ = (0,Λ3), the
three BPS states are given by {ν+

k }, k = 1, 2, 3, while at q− = (0,−Λ3), they are given by
{ν−k }, k = 1, 2, 3. respectively. It can be verified directly (or by using the results given in
4.2.33) that the charge vectors in each group are mutually non-local, i.e., there mutual
intersections being non-trivial.

Remark 4.2.27. Note that the vanishing cycles and the associated monodromy matrices
we computed differ from the one given in for example [KTL95] and [AD95], however, they
differ each other by SL(4,Z) duality transformations. Indeed, in [KTL95], the authors
choose the homology cycles to be the ones such that α1 encircles e+

2 and e−2 ; α2 encircles
e+

3 and e−3 ; β1 encircles e−1 and e−2 , while β2 encircles e+
1 and e−3 . The particularity about

this choice is that the β-cycles vanish,and αi corresponds to the fundamental weights,
while αi to the simple roots of SU(3), see the following figure 4.27 for an illustration:

Figure 4.27: One choice of homology basis, figure taken from [KTL95]

In this basis, it was shown in [KTL95] that the vanishing cycles and the associated
monodromies are given by
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
ν̃+

1 = (1, 0;−2, 1) ν̃−1 = (1, 0; 0, 0);

ν̃+
2 = (0, 1; 0, 0) ν̃−2 = (0, 1;−1, 2);

ν̃+
3 = (−1,−1; 2,−1) ν̃−3 = (−1,−1; 1,−2);

(4.2.117)

M̃ν+
1

=


−1 0 4 −2
1 1 −2 1
−1 0 3 −1
0 0 0 1

 M̃ν−1
=


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1

 (4.2.118)

M̃ν+
2

=


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

 M̃ν−2
=


1 −1 1 −2
0 3 −2 4
0 0 1 0
0 −1 1 −1

 (4.2.119)

M̃ν+
3

=


−1 −2 4 −2
1 2 −2 1
−1 −1 3 −1
−1 −1 2 0

 M̃ν−3
=


0 −1 1 −2
2 3 −2 4
−1 −1 2 −2
−1 −1 1 −1

 (4.2.120)
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Chapter 5

WCS for Seiberg-Witten Integrable
systems

In this final chapter, we will use the wall-crossing structure (WCS) formalism that had
been laid in chapter two to study the Seiberg-Witten integrable systems in the SU(2)
and SU(3) cases.

The ideal is that the WCS associated to the corresponding integrable systems can be
used to generate the so-called BPS-states and study the wall-crossing phenomena of the
associated BPS-invariants (or DT-invariants) by employing the algorithm given in terms
of the split attractor flow.

The success of using WCS in these two cases shows the properness of the WCS formal-
ism, which gives us the confidence that this formalism could be applied to more general
settings. For example, it is expected (c.f., [KS14]) that the WCS formalism can be ap-
plied to the Hitchin integrable systems, as well as to the integrable system arsing from
the studying of N = 2 supersymmetric black holes in super-string theory.

The investigation of the BPS states and the corresponding BPS invariants in these
situations belong to the current pursuits of theoretical physics.

In section , the WCS for Seiberg-Witten integrable system in SU(2) case will be dis-
cussed in details. The main ingredients of the WCS for SU(2) case are the results of
physics (see for example [Fay97][BF98]). We just reformulate in terms of WCS.

We will generalize it to the SU(3) case in section . The construction roughly goes as
follows:

We know from [Kle+94][KTL95][Kle+95] the vanishing cycles associated to the dis-
criminant locus, which help producing the so-called initial condition of the WCS.

The WCS is then studied by cutting the real four dimensional base B with two com-
plementary hyperplanes, so that the situation is reduced to the real two dimensional case.
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On the resulting plane after cutting, the discriminant locus was cut into six singular
points that fall into three pairs, each of which determines a situation similar to the SU(2)
case. This corresponds to three embeddings of the Lie algebra su(2) ↪→ su(3). Thus, by
applying the WCS formalism to this situation, we get three families of BPS states with
non-trivial DT-invariants (or BPS invariants).

We apply again the WCS formalism to another wall (its existence is discussed for ex-
ample in [Tay01][Hol97]) in order to derive the results about the interaction of the above
three families. This gives us new BPS states with DT- invariants equal to 2.
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5.1 WCS for SW Integrable System: SU(2) Case

5.1.1 Description of the problem

Recall that the base of the SW integrable system in the SU(2) case is given by B ∼= C,
and we have a local system Γ of rank 2 lattice over the smooth part B0 = B\∆Λ, where
the discriminant locus ∆Λ (corresponding to the singularities of the Z-affine structure on
B) consists of just two points {±Λ2}.

Endowing B with coordinate u, then the elliptic curve Cu sitting over u ∈ B0 is given
by (c.f., (4.1.21))

Cu : y2 =W2
A1
− Λ4 = (x2 − u)2 − Λ4 (5.1.1)

Then the stalk of the local system Γ of charge lattices at u is described by

Γu = H1(Cu,Z) = Γeu ⊕ Γmu = Zα⊕ Zβ = ΛR ⊕ ΛW (5.1.2)

which splits the lattices (4.2.26) into the direct sum of two sub-lattices spanned by
the α and β cycles, denote respectively by Γeu and Γmu as above.

Figure 5.1: Local system Γ over B

When u approaches to ±∆2
Λ, the cycles γ±Λ2 shrinks to size zero, thus the vanishing

cycles associated are given by (c.f., (4.2.27)){
γ−Λ2 = β − 2α = (−2, 1)

γ+Λ2 = β = (0, 1)
(5.1.3)

Figure 5.2: Basis cycles on an elliptic curve

Thus, any charge γ ∈ Γ can be decomposed uniquely as

γ = q α + g β

where g and q are integers, which are called the “electric” and “magnetic” coordi-
nate of the charge vector γ.
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We need a central function Zu ∈ HomZ (Γu,C). To describe it, we denote the
central charges of α and β respectively by

a(u) := Zu(α) aD(u) := Zu(β)

Consequently, for the general charge vector γ ∈ Γu given as above, its central charge
is given by

Zu(γ) = q a(u) + g aD(u) (5.1.4)

It had been shown (see the relevant discussion in section 4.1.2) that the central charge
function, as a holomorphic function, can be expressed as the integral over the charge
vectors with respect to a holomorphic differential one form

λSW ∈ H1(Cu,C)

called the Seiberg-Witten differential (see formula (4.1.41)). The central charge function
is then expressed explicitly as

Zu(γ) =

∮
γ

λSW = q

∮
α

λSW + g

∮
β

λSW (5.1.5)

where λSW in this SU(2) case is given by (see formula (4.1.42)) :

λSW =

(
∂

∂x
WA1

)
x dx

y
=

∂

∂x
(x2 − u)

x dx

y

=
2x2 dx

y
=

2x2 dx√
(x2 − u)2 − Λ4

(5.1.6)

In particular, we see that the special Kähler coordinates a(u) and aD(u) can be ex-
pressed in terms of λSW as

a(u) =

∮
α

λSW aD(u) =

∮
β

λSW (5.1.7)

Recall (see definition (2.2.2) in section 2.2) that the wall of the first kind (which is
called the wall of marginal stability by physicists, see appendix A for more information
on it from the physicists’ perspective) is defined to be the locus in the moduli space
where two or more charge vectors with equal phase of the corresponding central charge
functions, namely

W1 :=
⋃
γ

W1
γ (5.1.8)

where
W1

γ :=
⋃

γ=γ1+γ2

Wγ1,γ2 (5.1.9)

and

Wγ1,γ2 := {u ∈ B : R>0 · Zu(γ1) = R>0 · Zu(γ2)}
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=

{
u ∈ B : Im

(
Zu(γ1)

Zu(γ2

)
= 0

}
We claim that the wall of the first kind W1 in SU(2) case is described by

W1 =

{
u ∈ B : Im

(
aD(u)

a(u)

)
= 0

}
(5.1.10)

Lemma 5.1.1. Given two complex numbers z1 and z2, we have that

Im

(
z1

z2

)
=
Im(z1z2)

|z2|2

The lemma follows from
z1

z2

=
z1z2

z2z2

=
z1z2

|z2|2

Proof. (of the claim) Given two charge vectors γi = qiα + giβ, for i = 1, 2. Applying the
lemma above, we compute as follows

Im

(
Zu(γ1)

Zu(γ2

)
= Im

(
q1a(u) + g1aD(u)

q2a(u) + g2aD(u)

)
= Im

(
q1 + g1

aD(u)
a(u)

q2 + g2
aD(u)
a(u)

)

z:=
aD(u)

a(u)
======= Im

(
q1 + g1z

q2 + g2z

)
= Im

(
(q1 + g1z)(q2 + g2z)

(q2 + g2z)(q2 + g2z)

)
= Im

(
q1q2 + g1g2|z|2 + q1g2z + g1q2z

q2
2 + g2

2|z|2 + q2g2Re(z)

)
= Im(q1g2z + g1q2z)

= (g1q2 − q1g2) Im(z) = (g1q2 − q1g2) Im

(
aD(u)

a(u)

)
Since we consider all possible γi, so the integers qi and gi are arbitrary, but the above

identity holds for all possibilities, thus follows the proposition.

It can be shown (for example [BF96]) by using the analytic expressions for a(u) and
aD(u) that the curve W1 (see the picture below) is a closed curve that passes through
two singularities ±Λ2 and looks like an ellipse, but not exactly.

The wall W1 divides the moduli space B = C into two connected components, the
inside of the curve is called the strong coupling region, and is denoted by Bstrong, while
the outside of the curve is called the weak coupling region, and is denoted by Bweak.

It had been shown (c.f.,[BF96],[BF96]) that the BPS states for the underlying physics
theory associated to the SU(2) Seiberg Witten integrable system were given as follows:

Within Bstrong, we have

• the “magnetic monopoles” with charge vectors given by (q, g) = ±(0, 1);

• a “dyon” with charge vectors given by (q, g) = ±(−2, 1) in the lower u plane, and
±(2, 1) in the upper u plane.
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Figure 5.3: Curve of marginal stability in SU(2) case

Within Bweak, we have

• the “magnetic monopole” with charge vectors given by (q, g) = ±(0, 1)

• “dyons” with charge vectors given by (q, g) = ±(2k, 1), with k ∈ Z.

• W± “gauge bosons” with charge vectors given by (q, g) = (±2, 0)

And the BPS invariants Ω(γ) of these states all equal to one except for the W-bosons,
which are equal to −2. Now we can state the main problem to be answered in this section.

Problem: To encode these charges and the corresponding BPS invariants using the
WCS formalism for complex integrable system that had been laid down in chapter 3 (see
section 3.2.3 for more details).

5.1.2 Attractor flows

Recall that in section 3.1.4, we have displayed that the base B0, as a complex manifold,
can be endowed with the Kähler metric gB0 (see equation (3.1.43)):

gB0 = Im (daDda) (5.1.11)

with the corresponding Kähler potential given by

K = Im (aDa) (5.1.12)

Given γ ∈ Γu0
, let θ = Arg Zu0(γ), we can consider the attractor flow to be given by

the gradient flow of the following function

Fγ(u) := Re
(
e−iθZu(γ)

)
(5.1.13)

where the gradient is taken with respect to the Kähler metric gB0 given above. Thus the
flow equation is given by (see formula (3.2.5))

u̇+ gradFγ(u) = 0 (5.1.14)

Denote by Lγ the flow line that satisfies the flow equation above, then by the propo-
sition 3.2.2 in section 3.2, we see that along the flow line Lγ, the quantity Im(e−iθZu(γ))
stays constant. However since at the point u0 ∈ B0, we have that θ = Arg Zu0(γ), we
deduce that Im(e−iθZu(γ)) ≡ 0. Consequently, as a set, the flow line is described by

Lγ :=
{
u ∈ B : Im

(
(e−iθZu(γ)

)
= 0
}

(5.1.15)
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We endow the base B0 with the Z-affine coordinates (see remark 3.1.17 in chapter 2):{
x := Im

(
e−iθZu(α)

)
= Im

(
e−iθ a(u)

)
y := Im

(
e−iθZu(β)

)
= Im

(
e−iθ aD(u)

)
By writing the charge vector γ = q α + g β, we see from above that the attractor

flows correspond to the Z-affine lines on the Z-affine manifold B0 given by the following
equation

Lγ : q x(t) + g y(t) = 0 (5.1.16)

where t is the “time” parameter for the flow line Lγ.

Note that the flow line equation (5.1.15) implies that the phase of the central charge
function Zu(γ) is preserved along the flow line Lγ, namely

Arg (Zu(γ)) ≡ θ (5.1.17)

For this reason, we also call the attractor flow lines the lines of constant phase.
Besides, the choice of the function Fγ(u) in (5.1.13) implies that along the flow line Lγ,
we have

Fγ(u) = Re
(
e−iθZu(γ)

)
= Re

(
e−iθei Arg(Zu(γ))|Zu(γ)|

)
= Re

(
e−iθ eiθ|Zu(γ)|

)
= Re (|Zu(γ)|) = |Zu(γ)|

which is exactly the “mass” function introduced before (in remark 3.2.3). Denote it
by

mu(γ) := |Zu(γ)| (5.1.18)

By applying the proposition 3.2.5 in section 3.2, we get the following

Proposition 5.1.2. Away from the discriminant locus ∆Λ, the mass function mu(γ) is
decreasing along the flow line Lγ.

Remark 5.1.1. The mass function mu(γ) in physics literature measures exactly the phys-
ical masses of the BPS states, for this aspect of the story, please consult appendix A for
relevant information.

From the proposition above, we conclude that away from the singularities and the
critical points of the function Fγ(u), along the flow line Lγ, Fγ(u) is always decreasing,
converging to a local minimum, the so called attractor points (see definition 3.2.2).

Proposition 5.1.3. The attractor points in SU(2) case considered here coincide with the
discriminant locus ∆Λ = {±Λ2}.

Proof. Indeed, as the mass function mu(γ) = Fγ(u) is decreasing along the attractor
flow line Lγ, and it is non-negative by definition, thus, the terminal points of the flow
correspond to the points where the mass function vanishes. However, we know from 5.1.3
that the cycles γ±Λ2 are the associated vanishing one cycles over ±Λ2. Thus the possible
attractor points for the attractor flow lines in this case are ±Λ2.
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Figure 5.4: Attractor flows and attractor points

Remark 5.1.2. By the above proof, we see that the attractor flow converges to the
minimum of |Z(γ)|, which should be the zeros of the central charge function Z(γ) =
qa(u) + gaD(u). Consequently,

aD(u)

a(u)
= − q

g
∈ R (assuming q 6= 0), which means that the

zeros of it must lie on the curve of marginal stability W1. This is indeed the case as had
been noted before that the points ±Λ2 lie on W1.

Remark 5.1.3. It is possible that the attractor flow lines terminate at a “regular zero”
of the central charge function lying on W1, however, this case can be excluded by the
following argument. Suppose that Zum(γ) vanishes, then since Seiberg-Witten differential
λSW is regular, thus Zum(γ) =

∮
γ
λSW ≡ 0 implies that γ must be the vanishing cycles

over the point um. But we know that the only possible vanishing cycles are situated at
±Λ2.

Remark 5.1.4. The proposition 5.1.3 also follows from the observation (5.1.17) that the
phase of the central charge function Zu(γ) stays constant along the flow line. For suppose
that the attractor flow line does not terminate at the zeros of Zu(γ), then the attractor
flow line could be continued further and the “constant phase” condition will be violated.

Proposition 5.1.4. The attractor flow associated to the charge γ can intersect with the
wall W1

γ1,γ2
at most once. In particular, the attractor flow line intersects with the wall

transversely. And since our flow is confined in the complex plane, thus it is atomically
planar (see definition 3.2.6), thus by using the terminology defined in definition 3.2.9, we
conclude that the attractor flow lines form an attractor tree that is good.

Proof. This is the special case of the proposition 3.2.10.

Thus by proposition 3.2.17, we expect that by considering the split attractor flow lines
on the base B of the SW integrable system in SU(2) case, we will get an local embedding

B0 ↪→ Stab(gb) for each b ∈ B0. (5.1.19)

from which we can obtain information about the charge vectors of the BPS states and
the corresponding BPS invariants (DT-invariants).

We will see that these are exactly the ones that had been obtained by physics consid-
erations.
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5.1.3 Algorithm for computing the BPS invariants

To get a WCS on the moduli space B ∼= C suitable for our purpose, we consider the
following map

Y : B × Sθ → Γ∗R

(u, θ) 7→ Yθ(u)(γ) := Im(e−iθZu(γ)) (5.1.20)

Remark 5.1.5. Intuitively speaking, this means that we want to “scan over” all possible
charge vectors γ ∈ Γu over all points u ∈ B, in all directions, in order to see which charge
vectors can be realized as the BPS states at the given place in the moduli space.

Notice that this essentially amounts to the (local) embedding of the moduli space into
Stab(gu), i.e., the space of stability conditions on g. For this reason, we say that the
information about the BPS states are “encoded” by WCS.

Choosing θ = Arg Zu(γ). By (5.1.17), we know that the attractor flow lines lie at the
locus where the central charge has constant phase θ.

The attractor flow lines on the base B can be lifted to (see the discussion in section
3.2.2) the flows on the following two sub-spaces of the total space of the local system of
lattice Γ over B:

B0′ := {(u, v) ∈ totΓR : Y (u)(v) = 0}
B0′
Z := {(u, γ) ∈ totΓ : Y (u)(v) = 0}

Moreover, the lifted flow lines equation are given by the following{
u̇ = ι(γ)

γ̇ = 0
(5.1.21)

Before giving the algorithm for computing the BPS invariants using the WCS, let us
first recall that the vanishing cycles associated to ±Λ2 are given by γ±Λ2 respectively
(see the formula 5.1.3). They correspond to the monodromy invariant directions of the
corresponding monodromy matrices M±Λ2 , namely

M±Λ2 · γ±Λ2 = γ±Λ2

From this, we easily see that the tail set (see section 3.2.3) TB0′
Z
⊂ B0′

Z in this case
reads

TB0′
Z

=
(
±Λ2, γ±Λ2

)
⊂ B0′

Z (5.1.22)

Indeed, we can verify that the fibers of ±Λ2 under the projection of totΓR to B0 are
one dimensional vector subspaces spanned by two vanishing charge vectors respectively,
which are strict convex cones. Further more, the tail set above is easily seen to be pre-
served by the “inverse attractor flow”.
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Consequently, the initial data (see definition 3.2.7) of our WCS, which is given by
the restriction of the map a : totΓ→ Γ∗R to the tail set, reads in this case as

a±Λ2(γ±Λ2) = DT (γ±Λ2) · eγ±Λ2 ∈ g±Λ2,γ±Λ2
(5.1.23)

That is, the local systems attached to the initial data are typically trivial of rank one.
And by the remark 3.2.14, we can assign the BPS invariants for the initial data by

Ω±Λ2(γ±Λ2) = 1. (5.1.24)

Remark 5.1.6. We see that the Tail assumption and Mass function assumption
are easily verified to be true in SU(2) case. Indeed, as the “initial points” ±Λ2 are the
attractor points for all attractor flows, thus given open subset U ⊂ B0′, the subset of
points (u, γ) ∈ U such that their maximal positive trajectories intersect the tail set TB0′

Z
is dense in U . The mass function that satisfies the mass function assumption is simply
Fγ(u) since its restriction on the attractor flow line Lγ is simply the “mass” function
mu(γ), which had been shown to be decreasing and strictly positive.

Figure 5.5: Attractor flows on the moduli space
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Algorithm for computing BPS invariants in SU(2) case

• Initial data: at the attractor points ±Λ2, we have BPS states with charges (0, 1) and
(2,−1) respectively. We assign the corresponding BPS invariants to be Ω±Λ2(γγ±Λ2 ) =
1. These are the only non-trivial invariants at the attractor points.

• Constructing attractor trees: Given (u, γ) ∈ Γu, we consider all trees, called the
attractor trees on B with (the only) root at u, and the external vertexes all ending at
the attractor points. All edges of the trees are given by the attractor flow associated
with (u, γ), and each internal vertex should have valency at least three and lies in
the wall of the first kind W1. Moreover, the following “balance condition” at each
such internal vertex v must be satisfied:

Balance condition: If the incoming edge at v is the attractor flow associated to
γin, and the out coming edges are associated to charges γouti , then we have that at
each internal vertex v:

γin =
∑
i

γouti (5.1.25)

• Determining Ωu(γ): Under the assumption that the number of the attractor trees
considered above is finite, we start at the attractor points of the union of above
trees, and move backward toward (u, γ), and at each inner vertex, we apply the
KSWCF

←−∏
KΩv(γout)
γout =

−→∏
KΩv(γin)

γin
(5.1.26)

so that at each inner vertex, Ωv(γ
in) can be computed from Ωv(γ

out).

By induction, we will eventually arrive at the value of the Ωu(γ).

Before applying the above algorithm, let me first remark that the strong and weak
coupling region are characterized as

Bstrong =
{
u ∈ B : Im

aD
a
< 0
}

Bweak =
{
u ∈ B : Im

aD
a
> 0
}
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5.1.4 WCS in the strong coupling region

We first work in the strong coupling region Bstrong, i.e., the region inside W1.

Given (u0, γ) ∈ Γu0
, where u0 ∈ Bstrong, we define θ0 = arg Zu0(γ), and consider the

attractor flow equation issuing from u0

u̇+ gradFγ(u) = 0

which by (5.1.15), is solved by

Lu0,γ := {u ∈ B : arg Zu(γ) ≡ θ0} (5.1.27)

From proposition 5.1.2 and proposition 5.1.3, we see that in order for the line Lu0,γ

to end at the attractor points, the only possibilities for the choice of γ are the vanishing
cycles γ±Λ2 situated at the attractor points ±Λ2 respectively.

We prove in the following that Lu0,γ is the unique line that connect u0 with either
±Λ2 depending on if γ = γ±Λ2 .

Proposition 5.1.5. The attractor flow can cross the wall W1 only at its end point.

Proof. Let γ = (q, g), then Zu(γ) = qa(u) + gaD(u). By proposition 3.2.8, the flow line
Lu0,γ can be rewritten as

qa(u) + gaD(u) = c(1− t), t ∈ [0, 1] (5.1.28)

where t is the real time parameter (for the flow) and the constant c is given by

c = qa(u0) + gaD(u0) such that Arg c = θ0

Assuming q > 0, we consider the Kähler potential K(t) = ImaDā of the metric

ds2 = Imτ daDdā

which is easily seen to have the same sigh as that of Im(aD
a

). We compute its restriction
on the flow line Lu0,γ as

K(u(t)) = ImaDā = Im

(
c(1− t)− ga

q
ā

)
= Im

(
ca(1− t)

q

)
=

1− t
q

Im(cā) (5.1.29)

from which we see that if Lu0,γ intersectsW1, i.e., Im(aD
a

) = 0, then it either intersects
at the end point where t = 1 or at points where Im(cā) = 0. But the following lemma
shows that this quantity cannot be zero. The proposition thus follows.

Lemma 5.1.6. Along the flow line Lu0,γ, the quantity Im(cā) never vanishes.
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Proof. Since u0 ∈ Bstrong, thus when t = 0,

K(u0) =
1

q
Im(cā) < 0

by our assumption that q > 0, we conclude that initially Im(cā) < 0. We then prove that
it can not be zero by showing that along the flow line, it is a decreasing function. This
can be done by showing instead that Im(c̄a) is increasing along Lu0,γ. Indeed, by using
the definition τ = daD

da
and taking the derivatives on both sides of the flow line equation

(5.1.28) with respect to t , we see that

da

dt
=
−c

p+ qτ

then we compute as follows

d

dt
Im(c̄a) = Im(c̄ȧ) = Im

(
−cc̄
p+ qτ

)

=
−|c|2

|p+ qτ |2
Im(p+ qτ̄) =

q|c|2

|p+ qτ |2
Imτ > 0

This completes the proof of the lemma.

In summary, we conclude that in the strong coupling region Bstrong, the only attractor
flow issuing from a point is the straight line (in the affine coordinate) that connects it
to the corresponding attractor points ±Λ2 depending on in which monodromy invariant
direction is our attractor flow pointing to.

Figure 5.6: Attractor flows in strong coupling region

Consequently, within Bstrong, the only BPS charges existing are those corresponding
to the two vanishing cycles γ±Λ2 at the two singularities ±Λ2, namely, the magnetic
monopole with charge vector (0, 1) and the dyon with charge vector (2,−1).

Remark 5.1.7. The proofs of the above two propositions are based on the treatment in
[Fay97].
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5.1.5 WCS in the weak coupling region

Given (u0, γ) ∈ Γu0
, where u0 ∈ Bweak, i.e., outside of the wallW1. In this weak coupling

region, we have Im (aD
a

) > 0. Define: θ0 = arg Zu0(γ), and consider the attractor flow
associated to the function

Fγ(u) = Re(e−iθ0Zγ(u))

as before, the flow line Lu0,γ is given as before, see equation (5.1.15).

From the algorithm described above, we need to consider rooted attractor trees with
root at u0 that terminates at the attractor points ±Λ2. We expect the following scenery:

• For γ = γ±Λ2 , the flow line Lu0,γ will directly flow into the attractor points {±Λ2}
without splitting, which means the two states with charges γ±Λ2 persists in the
weak coupling region.

• For charges γ other than the ones represented by the vanishing cycles, the flow line
Lu0,γ will intersect the wall W1 at the point u∗ where the flow line splits into two
flows Lu∗,mγ+Λ2 and Lu∗,nγ−Λ2 that start at u∗ and terminate at the attractor points

±Λ2 respectively, i.e.,

Lu0,γ = Lu∗,mγ+Λ2 + Lu∗,nγ−Λ2 (5.1.30)

corresponding to the split of the charge vector

γ = mγ+Λ2 + nγ−Λ2

We see that if such a split attractor flow exists, then the corresponding BPS state
with charge γ (with non-vanishing BPS invariant) exits in Bweak, and its BPS
invariant Ωu0(γ) can be computed by applying the KSWCF at the splitting points.

Figure 5.7: Split attractor flow

We need to further investigate the second case above. The first question need to be
addressed is when shall a split attractor flow exist?

Apparently, we should make sure that each of the three flow lines in (5.1.30) exits.
This is indeed guaranteed by the following two lemmas.

Lemma 5.1.7. The two attractor flow lines Lu∗,mγ+Λ2 and Lu∗,nγ−Λ2 issuing from ±Λ2

respectively can only intersect at the wall of marginal stability W1.
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Proof. We have that

Lu∗,mγ+Λ2 = {u ∈ B : Arg Zu(γ+Λ2) = θ0}

Lu∗,nγ−Λ2 = {u ∈ B : Arg Zu(γ−Λ2) = θ0}

from which we see that Lu∗,mγ+Λ2 intersects with Lu∗,nγ−Λ2 at

Lu∗,mγ+Λ2 ∩ Lu∗,nγ−Λ2 = {u∗ ∈ B : Arg Zu∗(γ−Λ2) = Arg Zu∗(γ+Λ2)}

which belongs to the following set{
u ∈ B : Im

(
Zu(γ+Λ2)

Zu(γ−Λ2)

)
= 0

}
=

{
u ∈ B : Im

aD(u)

2a(u)− aD(u)
= 0

}
=

{
u ∈ B : Im

aD(u)

a(u)
= 0

}
=:W1

Therefore, the intersection point u∗ lies on the wall W1.

Lemma 5.1.8. The intersection points u∗ coincides with the splitting point u∗.

Proof. At the splitting point u∗ is the point where the central charge function becomes

Zu(γ) = mZu(γ+Λ2) + nZu(γ−Λ2)

as we have at the splitting point that

γ = mγ+Λ2 + nγ−Λ2

Suppose that u∗ 6= u∗, then the phase of Zu∗(γ) would be different from that of
Zu∗(γ±Λ2), contradicting to

Arg Zu∗(γ) = Arg Zu∗(γ±Λ2) = θ0

Thus u∗ = u∗, and the lemma is proved.

Now we can answer the question: When will a split attractor flow tree like (5.1.30)
exist? Putting it in another way, we can ask: given a point u0 ∈ Bweak, for which partic-
ular charge vectors γ ∈ Γu0

, should the attractor flow tree associated to it exist?

To answer this question, we need to reverse the logical above, and consider instead the
two attractor flow lines L+Λ2 and L−Λ2 issuing from the two attractor points (singularities)
±Λ2, which are given respectively by

L+Λ2 = {u ∈ B : Arg Zu(γ+Λ2) = θ}

L−Λ2 = {u ∈ B : Arg Zu(γ−Λ2) = θ}

The two lines correspond to the same θ-value, though the θ here can be arbitrary. In
terms of the framework of WCS, we say that we need to consider the initial data of the
WCS. As the lemma 5.1.8 above shows, these two “incoming rays” L±Λ2 will intersect
exactly at one point u∗ ∈ W1.
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By KSWCF, the two rays will “scatter” at u∗ into possibly infinity many rays Lm,n
with all possible charges mγ+Λ2 +nγ−Λ2 . Together with the incoming rays, they form the
so-called scattering diagram.

Figure 5.8: Scattering of the incoming two rays

Then by considering a small loop around the scattering point u∗, i.e., the splitting
point, the KSWCF is then equivalent to the triviality of the following monodromy (see
proposition 2.2.1 in chapter 2)

�∏
ti

S(lγi) = id

where the product is taken in the increasing order of elements ti. Written in terms of the
KS transformations, this read as:

∏
m,n≥0;m/n↗

K
Ωu∗−

(m,n)

(m,n) =
∏

m,n≥0;m/n↘

K
Ωu∗+

(m,n)

(m,n) (5.1.31)

Figure 5.9: Monodromy around the splitting point

In the case in which we are concerned here, we have that

k = 〈γ−Λ2 , γ+Λ2〉 = 〈(2,−1), (0, 1)〉 = 2 · 1− 0 · (−1) = 2

Then the KSWCF above specialize to the following (see formula (2.2.11))

K2,−1K0,1 = (K0,1K2,1K4,1 · ··)K−2
2,0 (· · · K6,−1K4,−1K2,−1) (5.1.32)

from which we infer that after the “scattering”, we will get countably many BPS rays
associated to new BPS states with the charges indicated by the sub-index on the RHS of
the above formula, while the corresponding BPS invariants are indicated by the super-
index on the RHS of the formula above.
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Figure 5.10: Scattering diagram in k = 2 case

Finally, we can spell out the WCS that in some sense “foresees” these BPS states by
applying the algorithm in section 5.1.3 as follows:

Given (u0, γ) ∈ Γu0
, where u0 ∈ Bweak, our purpose is to test at u0, if the BPS state

with charge γ exists or not. And if it exists, then to determine its BPS invariant Ωu0(γ).
To this end, we follow the procedures (algorithm) as below:

• First, determine θ0 = arg Zu0(γ), and consider the gradient flow associated to the
function Fγ(u) = Re(e−iθ0Zγ(u)).

• Second, the rooted attractor flow tree with root u0 would be generically a tree that
splits only at some point u∗ ∈ W1, with the two external edges ending at the two
attractor points {±Λ2}.

• Third, we start with the attractor points, tracing along the external edges till the
scattering point u∗, at this point we use the KSWCF, and from which we can tell
if the charge γ coincides one of the charges on the RHS of (5.1.32):

If the answer is YES, the state with charge vector γ exists at the point u0 with
corresponding BPS invariant Ωu0(γ) can be read off from the KSWCF (5.1.32); If
the answer is NO, then at u0 there does not exist BPS state with charge vector γ.

Remark 5.1.8. We see that the possible BPS states that had been “captured” by the
procedure above fall into a convex cone on the space

B0′
Z := {(b, γ) ∈ totΓ : Y (b)(v) = 0}

which then confirms the claim in proposition 3.2.16, namely that in this case, the
WCS is uniquely determined by its initial data.

Figure 5.11: Convex cone generated by the BPS charges
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5.1.6 Further remarks and miscellaneous discussions

Remark 5.1.9. As we change θ continuously, i.e., by rotating the affine coordinates on
B (see remark 3.1.17 in chapter 3), we see that any flow line in the scattering diagram
described above would sweep the whole complex plane, from which we know that for the
BPS states with charge given by KSWCF in the weak coupling region, they actually exist
for all point u ∈ Bweak.

Figure 5.12: Rotating the affine coordinates

Actually, the split attractor flow lines also get rotated after continuously changing the
angle θ. Algebraically, this means that the flow lines are still the curves of constant Z-
phase, despite that the phases could be arbitrary θ, instead of being 0. Geometrically, this
means that if there exits a vanishing cycle in one direction specified by θ0, then it also
exits along all other directions of the Z-affine structure.

Figure 5.13: Rotating the splitting attractor flows

The discussion above enables us to verify the compactness assumption in section
3.2.3, that is: There exists an open dense subset B0′′

Z ⊂ B0′
Z with the property that for

every (b, γ) ∈ B0′′
Z , there exists a compact subset K(b,γ) ⊂ B0′

Z and an open neighbor-
hood U of (b, γ) such that for every attractor tree T with the root and root edge in U ,
the corresponding tree T 0 belongs to K(b,γ). Indeed, by the remark above we see that
given b0 ∈ B and γ ∈ Γb0 and an open neighborhood Ub0 around b0, then for b ∈ Ub0 that
is infinitesimally close to b0, the attractor flow line Lγb is also infinitesimally close to Lγb0 .

Even if in certain regions, the topological type of the attractor trees could “jump”,
however, as can be seen in the following discussion, they are still bounded by compact
sets, thus the compactness assumption holds. The asymptotic expansion for a(u) and
aD(u) are given by (after re-scaling Λ = 1 (c.f.,[BF98],[BF98]).

Nearu =∞

{
a(u) ∼

√
u/2

aD(u) ∼ i
π

√
2u (ln z + 3 ln 2− 2)

(5.1.33)

Nearu = −1

{
a(u) ∼ i

2π

[
εu+1

2
ln u+1

2
+ u+1

2
(−iπ − ε(1 + 4 ln 2)) + 4ε

]
aD(u) ∼ i

π

√
2u (ln z + 3 ln 2− 2)

(5.1.34)
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Nearu = 1

{
a(u) ∼ 2

π
− 1

2π
u−1

2

[
ln u−1

2
+ 1− 4 ln 2

]
aD(u) ∼ iu−1

2

(5.1.35)

Certain attractor flow lines can then be depicted by using Mathematica:

Figure 5.14: Curves of constant Z(γ) phase θ for γ = (1, 0), (0, 1), (2, 1), (4, 1). The
graphs are taken from [BF98].

Discussions: From the above graphs, we see that for γ−Λ2 = (0, 1) and γ+Λ2 = (2, 1),
there exists attractor flow line that starts at any point u ∈ B and ends at the attractor
points (±Λ2 corresponding to γ±Λ2 respectively), which means that the BPS states with
charge vectors given by γ±Λ2 exist through the moduli space. However for γ = (1, 0), i.e.,
the left upper picture above, we see that there are no flow lines that terminates at the
attractor points, which simply means that through out the moduli space, there are no
BPS state with charge (1, 0). This is indeed the case as had been implied by KSWCF.

The tricky part is about the flow lines associated to the “dyon” γ = (4, 1). As the right
lowest picture shows that for some values of θ (for example θ = π

4
), the flow lines will first

hit the wall W1, and then proceed to intersect the cut [−Λ2,Λ2]. In this case, it can be
shown that the flow line could be represented by a flow line that splits at the intersection
point into two flow lines that terminate at ±Λ2 respectively, as the charge vector (4, 1)
can be written as a sum of the primitive charge vectors associated to the monodromy
invariant directions at the attractor points ±Λ2, i.e., when above the cut, we have that

(4, 1) = 2× (2, 1)− (0, 1)

and when below the cut, we have that (4, 1) = 2×(2,−1)+(0, 1). However, for γ = (1, 0)
above, this decomposition is not possible, thus the flow line associated to γ can not be
represented by split attractor flows. For if

(1, 0) = m(2, 1) + n(0, 1)

then we have 2m = 1, which is impossible as we are seeking integer solutions.
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Figure 5.15: Representing the flow line by split attractor flow

More detailed analysis ([BF98]) shows more interesting properties of the rotated at-
tractor flow lines associated to the charge vector (4, 1), the same holds for more general
(2n, 1) and (2n,−1) BPS states, which are called “dyons” in physics literature.

So let γ = (4, 1), then the attractor flow lines are given by the equation

Arg(Zu(γ)) = θ, θ ∈ [0, 2π]

As θ varies, it can be show that the moduli space are separated by the wall W1, the
flow lines corresponding to θ = 0 and θ = π

2
into four regions.

Figure 5.16: Four regions in moduli space

We see from the above graph, that when θ = 0, π
2
, the attractor flows are given by a

single flow lines, however, when crossing the regions divided by the these two lines, the
attractor flow would undergone “phase transition” (see figure 5.17) in the sense that it
will be represented by splitting attractor flow instead of a single flow line.

Figure 5.17: “Phase transition” of the attractor flow lines

245



Before ending this section, let me point out that the split attractor flow trees on the
base B of the integrable system

π : X → B

when lifted to X, corresponds to how the torus fibers degenerate.

More precisely, borrowing the terminologies form [Lin17], it corresponds exactly to
the pseudo-holomorphic disc with boundaries in the relative class

γ ∈ H2((X0, π−1(b)),Z)

Thus when at the splitting point on the wall of the first kind, there would be new
holomorphic discs produced, which is called the “bubbling phenomenon” in [Lin14].

With this interpretation, the BPS invariant Ωb(γ), which is locally constant in b,
roughly speaking, corresponds to the counting of the number of pseudo holomorphic
discs in the relative class γ.

Near a singularity of focus-focus type, the local model is given by the Ooguri-Vafa
space (see section 3.1.6 for its description).

Figure 5.18: WCS and pseudo holomorphic discs

246



5.2 WCS for SW Integrable System: SU(3) Case

In this section, we will apply the formalism of WCS to the Seiberg-Witten integrable
system in the case of SU(3). It turned out that this case is much more involved than
the SU(2) case investigated in the last section as the moduli space B in this case is of
complex dimension two, and consequently, the discriminant locus ∆Λ, as well as the walls
of the first kind (walls of marginal stability) W1, are much more complicated than the
SU(2) case. Besides, the combinatory of the split attractor flows in this case is more
subtle than the SU(2) case considered before.

However, by employing the methods discussed in section 4.2.4, i.e., by considering
a slice of moduli space given by Im(v) = 0, the problem can be reduced to the real
three dimensional situation, so that the visualization become possible in this case. The
proposition 4.2.22 then guarantees that we will not losing essential information after this
induction.

Moreover, by remark 4.2.23, remark 4.2.25 and remark 4.2.26 in the last chapter,
we see that some aspects of the WCS in SU(3) case can be investigated through the
reduction to the SU(2) case which had already been explained in last section. Morally,
this corresponds to the embeddings SU(2) ↪→ SU(3).

5.2.1 Description of the problem

First, we collect some facts that had been given in previous chapters regarding the SW
integrable system in the SU(3) case. The SW curve in this case is given by (4.1.24) as

Cu : y2 =W2
A2
− Λ6 = (x3 − ux− v)2 − Λ6 (5.2.1)

where u := (u, v) denotes the moduli parameter.

Thus the moduli space is given by B = C2. And the quantum discriminant is given
by (4.1.25) as

δΛ = 26Λ18
(
4u3 − 27(v + Λ3)2

) (
4u3 − 27(v − Λ3)2

)
(5.2.2)

So the discriminant curve is given in this case by

∆Λ := ∆+
Λ ∪∆−Λ =

{
(u, v) ∈ C2 : 4u3 = 27(v ± Λ3)2

}
(5.2.3)

where ∆±Λ is defined as

∆±Λ :=
{

(u, v) ∈ C2 : 4u3 = 27(v ∓ Λ3)2
}

(5.2.4)

And the SW differential is given by (4.1.45) as follows

λSW =

(
∂

∂x
WA2

)
x dx

y
=

∂

∂x
(x3 − ux− v)

x dx

y

=
(3x2 − u)x dx

y
=

(3x2 − u)x dx√
(x3 − ux− v)2 − Λ6

(5.2.5)
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The central charge is given by the following

Zu(γ) =

∮
γ

λSW (5.2.6)

Given standard basis {α1, α2; β1, β2} of the hyper-elliptic curve Cu (c.f., 4.2.27 in
section 4.2.3), then a charge vector can be written as

γ = (g q) = g1β1 + g2β2 + q1α
1 + q2α

2 ∈ Γu = H1(Cu,Z)

where g =
(
g1 g2

)
denotes the “magnetic charge” of the “BPS state” represented

by γ, while q =
(
q1 q2

)
denotes the “electric charge” of the “state” represented sγ.

Defining

ai :=

∮
αi
λSW aD,i :=

∮
βi

λSW i = 1, 2.

then the central charge of γ can be written as follows

Zu(γ) =

∮
γ

λSW = g1aD,1 + g2aD,2 + q1a
1 + q2a

2 (5.2.7)

Recall that near the discriminant locus ∆Λ, the moduli space B is studied by inter-
secting the moduli space with the three sphere S3

R with radius R (see section 4.2.3), while
the monodromies near this locus is investigated by intersecting it with the hyperplane
given by {Im(v) ≡ 0} (see section 4.2.4). Then the region where R becomes very large,
or |Re(v)| becomes very large is called the weak coupling region. Or equivalently, the
weak coupling region is characterized by (see for examples: [FH97][BF96][Pet12])∣∣∣αi · a

Λ

∣∣∣ >> 1, for all positive roots αi. (5.2.8)

Remark 5.2.1. By remark 4.2.22, we see that the weak coupling region corresponds to
the semi-classical limit of the theory, thus the monodromies in this region will be given
by semi-classical limit discussed in chapter four.

Weak coupling spectrum

We list the known BPS states in the weak coupling region ([FH97]). As the above
remark indicated, these states should be the ones that are invariant under the semi-
classical monodromies. To this end, let us denote by {α1, α2, α3} the positive roots of
SU(3). In terms of the orthonormal basis {ei} of the plane, the positive roots can be
expressed as

αi =
1√
2

(ei − ei+1) i = 1, 2.

while α3 = α1 + α2, namely, we have that

α1 = (1, 0), α2 = (−1/2,
√

3/2), α3 = (1/2,
√

3/2)
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Then by proposition 4.2.16 and remark 4.2.16, we see that there exist BPS states that
are given by {

ν+
i = (αi, (n+ 1)αi)

ν−i = (αi, n αi)
(5.2.9)

for i = 1, 2 and n ∈ Z.

We introduce the following notations for these states in accordance with [Tay01] and
[Hol97]: {

Qn
1 : = (α1, (n− 1)α1)

Qn
2 : = (α2, nα2)

(5.2.10)

By what we had said above, the states obtained from these by applying the semi-
classical monodromies should also exist in the weak coupling region. Recall that the
semi-classical monodromies (see (4.2.15)) reads:

Mi ≡Mc
ri

= rclassi T−1, i = 1, 2, 3.

which acts as follows ([FH97]){
Q1

1 · M±n
1 = ±Qn

1

Q1
2 · M±n

2 = ±Qn
2

(5.2.11)

Since we have the braid relation (4.2.110)

M3 =M2 · M1 · M−1
2

we see that the remaining possible BPS states are given by

Qn
1 · M±

2 = Qn
2 · M±

1 (5.2.12)

That is, besides the tower of “dyonic BPS states” Qn
1 and Qn

2 as above, we should
also have the following two towers of BPS states:

Qn
3± := Qn

1 · M±
2 = (α1, (n− 1)α1) · M±

2

= (α1 + α2, (n− 1)α1 ± α2) = (α3,±α1 + nα3) (5.2.13)

Besides these states, there exist also the following family of BPS states in the weak
coupling region:

Wk := (0, αk), k = 1, 2. (5.2.14)

which are called the “W-bosons” in physics literature.

Remark 5.2.2. It should be understood that all BPS states above are accompanied by
their anti-BPS states, i.e., the BPS states with opposite charge vectors. For this reason,
we omit the discussion of them through out.
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Strong coupling spectrum

Since there does not exist a single wall (of the first kind) as in the SU(2) case, we can-
not separate the moduli space B by a single wall as the weak coupling region and strong
coupling region. However, inspired by the SU(2) case discussed in previous section, we
expect that the strong coupling region in SU(3) case corresponds to the region that is
near the discriminant locus ∆Λ. That is the region where the |u| becomes relatively small.

We know that in this region, there are at least six BPS states with vanishing “mass”
function (defined as the absolute value of the central charge function). These states are
represented by the six vanishing cycles ν±i , i = 1, 2, 3 as had been exhibited in section
4.2.4. These cycles are the invariant cycles under the (Picard-Lefschetz) monodromies
around the six singular lines

∑i
±, i = 1, 2, 3. They are given explicitly by (4.2.113):

ν+
1 = (−1, 1;−1, 0) ν−1 = (−1, 1;−2, 1)

ν+
2 = (0,−1; 1, 0) ν−2 = (0,−1; 0,−2)

ν+
3 = (1, 0; 0, 0) ν−3 = (1, 0, 2, 1)

(5.2.15)

In the following, we choose the basis of homology one cycles as in remark 4.2.27. In
this basis, the six vanishing cycles become the following (we use the same notation ν±i )

ν+
1 = (1, 0;−2, 1) ν−1 = (1, 0; 0, 0)

ν+
2 = (0, 1; 0, 0) ν−2 = (0, 1;−1, 2)

ν+
3 = (−1,−1; 2,−1) ν−3 = (−1,−1; 1,−2)

(5.2.16)

Like the vanishing cycles given in (5.2.15), these basis are not linearly dependent. In
fact, it can be verified (see formulas (4.2.32)) that{

ν+
3 = −ν+

1 − ν+
2

ν−3 = −ν−1 − ν−2
From proposition 4.2.4., we know that the intersection numbers among these vanishing

cycles are given by 
〈ν+
i , ν

+
i+1〉 = 〈ν−i , ν−i+1〉 = 1 i = 1, 2.

〈ν+
3 , ν

+
1 〉 = 〈ν−3 , ν−1 〉 = 1

〈ν+
i , ν

−
i 〉 = −2 〈ν+

i , ν
−
i+1〉 = 2 i = 1, 2.

〈ν+
3 , ν

−
3 〉 = −2 〈ν+

3 , ν
−
1 〉 = 2

(5.2.17)

We can choose the simple roots of SU(3) in Dynkin basis to be{
α1 = (2,−1)

α2 = (−1, 2)
(5.2.18)

which are the column vectors of the Cartan matrix A2 for SU(3), that is

A2 :=

(
2 −1
−1 2

)
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The fundamental weights are given by{
w1 = (1, 0)

w2 = (0, 1)
(5.2.19)

Since we know that the “magnetic charge vectors” sit in the weight lattice Λw, which
have elements expressed in terms of the co-roots, i.e., vector of the form

g = n1α
∨
1 + n2α

∨
2 ∈ Λw

where the co-root is defined through

α∨ =
2α

〈α, α〉

In our simply-laced case, the roots are self dual, namely, α∨ = α. In these notations, we
can re-express the six BPS states (see 5.2.17) associated to six singular lines Σk

± for k =
1, 2, 3 as follows 

ν+
1 = (α1,−α1) ν−1 = (α1, 0)

ν+
2 = (α2, 0) ν−2 = (α2, α2)

ν+
3 = (−α1 − α2, α1) ν−3 = (−α1 − α2,−α2)

(5.2.20)

In terms of the notation Qn
k , k = 1, 2 and Qn

3±, the above BPS states can be expressed
as 

ν+
1 = Q2

1 ν−1 = Q0
1

ν+
2 = Q0

2 ν−2 = Q1
2

ν+
3 = −Q0

3+ ν−3 = −Q−1
3−

(5.2.21)

Now we can state the main problem to be solved in this section.

Problem: Starting with the known BPS spectrum (5.2.21) at the strong coupling region
(as the initial data for the WCS), to enumerate the weak coupling BPS spectrum (5.2.10),
(5.2.13) and (5.2.14) by using WCS. Then to extend the known spectrum if possible.

5.2.2 Attractor flows and walls of the first kind

Again, in out SU(3) case, the attractor flow (see (3.2.5)) stating at (u, γ) ∈ Γu is defined
to be the gradient flow of the function

Fγ(u) = Re(e−iθZu(γ))

where θ = Arg(Zu(γ)), that is
u̇ +∇Fγ(u) = 0 (5.2.22)

which, by proposition 3.2.22 and proposition 3.2.23, is equivalent to the Hesse flow asso-

ciated to the Hesse potential F̂ x, i.e., the attractor flow lines are the flow lines on which

the gradient of the Hesse potential F̂ x vanishes identically.
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The gradient above is taken with respect to the following Kähler metric on B0

gB0 = Im
(
daD,1dā

1 + daD,2dā
2
)

Then by proposition 3.2.3, the above attractor flow equation is solved by

Im
(
e−iθZu(γ)

)
= 0 (5.2.23)

In Z-affine coordinates (yi, y
i) on B0

θ , the flow lines are straight affine lines

g1 y1(t) + g2 y2(t) + q1 y
1(t) + q2 y

2(t) = 0 (5.2.24)

here the charge vector γ is given by

γ = g1β1 + g2β2 + q1α
1 + q2α

2 ∈ H1(Cu,Z)

Further more, the central charge function is given by

Zu(γ) = g1aD,1(u) + g2aD,2(u) + q1a
1(u) + q2a

2(u) (5.2.25)

Since we know that the “mass function” mu(γ) := |Zu(γ)| decrease along the flow
lines, and the central charge function is free of critical points by proposition 3.2.3, we
see that the flow lines terminate (possibly after some splittings, to be discussed later) at
the locus where the central charge function vanishes. In other words, as in the SU(2)
case, if the BPS state with the charge γ exits at u ∈ B, then the attractor flow associated
to (u, γ) would eventually terminate at some places situated at the discriminant locus ∆Λ.

Walls of the first kind: Let us investigate the possible wallS of first kind (wall of
marginal stability in physics)W1. we expect that on certain components of the wallW1,
some BPS states decay into ν±i s. As each pair ν±i corresponds to a SU(2) copy of the
situation away from singular locus (see remark 4.2.23), we have the following three walls
of marginal stability :

W1(ν+
k , ν

−
k ) :=

{
u = (u, v) ∈ C2 : Im

(
Zu(ν+

k )

Zu(ν−k )

)
≡ 0

}
(5.2.26)

Denote byW1
k the wallW1(ν+

k , ν
−
k ) defined as above, then by the explicate expression

of these vanishing cycles in (5.2.16), these walls are described as

W1
1 =

{
u = (u, v) ∈ C2 : Im

(
aD,1

2a1 − a2

)
≡ 0

}

W1
2 =

{
u = (u, v) ∈ C2 : Im

(
aD,2

2a2 − a1

)
≡ 0

}
(5.2.27)

W1
3 =

{
u = (u, v) ∈ C2 : Im

(
aD,1 + aD,2 + a2 − 2a1

aD,1 + aD,2 + 2a2 − a1

)
≡ 0

}
The above are possible walls near the discriminant locus ∆Λ, they are of real dimension

three and has topology type S1×C (as had been pointed out in [AD95]) for large moduli
u. We will prove this fact later (see proposition 5.2.2).
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When restricted to the hyperplane H0 = {Im(v) = 0} inside B ∼= C2, the above walls
have the cylinder topology, i.e., S1 × R. Numerical test about their shapes are given in
[CAM10], we list some of them as below (see figure 5.19 and figure 5.20):

Figure 5.19: W1
2 away from singular locus when Im(v) = 0, Re(v) > 0

The change of the value of Im(v) (i.e., foliating the moduli space by Im(v) ≡
constants.) has the effect that the above wall are being shifted. We have the illustration
for this below taken from [CAM10].

Figure 5.20: Wall W1
2 away from singular locus when Im(v) = 3, 1, 0,−1,−3, Re(v) > 0

Indeed, the moduli variable v is “frozen” in this situation. The plane H is endowed
with the coordinate u. Notice that cutting the moduli space further with the plane Hcut

in figure 5.19 corresponds to taking a slice of cylinder (wall of the first kind in Im(v) = 0
hyperplane), which is of course of topological type S1. Also notice that the green lines in
the figure are nothing but the singular lines. Thus the two intersection points P±k plays
exactly same role as ±Λ2 played in the SU(2) case.

Away from the discriminant locus ∆Λ, we are entering into the weak coupling region.
By the form of weak coupling spectrum given in the last subsection, and since the charges
are written in terms of the simple roots α1 and α2, we infer that the wall (of the first
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kind) in the weak coupling spectrum region consists of a single wall, namely

W1(α1, α2) =

{
(u, v) ∈ C2 : Im

(
α1 · a
α2 · a

)
= Im

(
2a1 − a2

2a2 − a1

)
≡ 0

}
(5.2.28)

A mathematical argument supporting this fact will be given later in proposition 5.2.5.
This wall then separates the moduli space B0 within the weak coupling region into two
parts in which the towers of BPS states Qn

3± sit respectively (see figure 5.21 below).

Figure 5.21: Wall in the weak coupling region that separates Qn
3±

5.2.3 Algorithm for computing the BPS invariants

Now we put our discussion in the framework of WCS. To get a WCS on the moduli space
B ∼= C2 that is suitable for our purpose, we consider the following map

Y : B × Sθ → Γ∗R

(u, θ) 7→ Yθ(u)(γ) := Im(e−iθZu(γ)) (5.2.29)

Choosing θ = Arg Zu(γ), we see that the attractor flow lines lie at the locus where the
central charge has constant phase θ. And the attractor flow lines on the base B can be
lifted to the flows on the following two sub-spaces of the total space of the local system
of lattice Γ over B: {

B0′ := {(u, v) ∈ totΓR : Y (u)(v) = 0}
B0′
Z := {(u, γ) ∈ totΓ : Y (u)(γ) = 0}

From previous subsection (see formulas (5.2.16), (5.2.20), (5.2.21)), we know that the
tail set TB0′

Z
⊂ B0′

Z in this case reads

TB0′
Z

=
(
∆Λ, ν

±
k=1,2,3

)
⊂ B0′

Z (5.2.30)

where ν±k=1,2,3 denotes the six vanishing cycles associated to the discriminant.

Remark 5.2.3. The tail set in SU(3) case differs considerably from the SU(2) case in
that its projection to the base B0 is high dimensional manifold instead of just two points
±Λ2 in SU(2) case. Despite this, the associated BPS states, nevertheless, are finite in
number, as in SU(2) case. Besides, the set of attractor points where the split attractor
flows terminate, belongs to the discriminant locus. Thus the initial data of the WCS,
which is given by the restriction of the map a : totΓ → Γ∗R to the tail set, is given in
SU(3) case by

au(ν±k ) = DT (ν±k ) · eν±k ∈ g
u,ν±k

u ∈ Σk
±. (5.2.31)
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That is, the local systems attached to the initial data are typically trivial of rank one.
And by the remark 3.2.14, we can assign the invariants

Ωu(ν±k ) = 1 u ∈ Σk
±. (5.2.32)

The tail assumption and mass function are easily seen to be true in this case.

Given the initial data above, the BPS invariants in SU(3) case can be similarly com-
puted as in the SU(2) case. That is, we need to construct all the rooted attractor trees
with root (u, γ) ∈ Γu such that their edges are given by the attractor flow lines associated
to (u, γ). Each internal vertex should have valency at least three and lies in the wall of
the first kind W1.

Moreover, the “balance condition” at each such internal vertex v must be satisfied.
That is, at each such internal vertex v, if the incoming edge at v is the attractor flow
associated to γin, and the out coming edges are associated to charges γouti , then we have
that at each internal vertex v

γin =
∑
i

γouti (5.2.33)

Finally, under the assumption that the number of the attractor trees considered above
is finite, we start at the attractor points of the union of above trees, moving backward
toward (u, γ), and at each inner vertex, we apply the KSWCF

←−∏
KΩv(γout)
γout =

−→∏
KΩv(γin)

γin
(5.2.34)

so that at each inner vertex, Ωv(γ
in) can be computed from Ωv(γ

out). we will arrive at
the desired Ωu(γ) by induction.

In order to make this algorithm works, we first need to verify the finiteness assump-
tion, i.e., given (u, γ) ∈ Γu, we need to show that the number of attractor trees rooted
at u and with the root edge given by the attractor flow line in the direction of γ should
be finite. Let us denote the set of such attractor trees by Att(u, γ), now we state the
following proposition.

Proposition 5.2.1. For the SU(3) theory being considered in this chapter, the number
of elements in the set Att(u, γ) is finite.

Proof. First, we notice that for those charge vectors ν±k associated to the vanishing cy-
cles, the associated attractor trees Att(u, ν±k ) consists of a single flow line that starts at
u, and ends at where the vanishing cycle ν±k is situated. The terminal point is uniquely
determined by the initial point u, as well as the direction vector at u given by ı(ν±k ).
Now consider the case for general γ ∈ Γu. Since the “mass”function mu(γ) = |Zu(γ)| is
decreasing along the flow line Lγ, thus, if Lγ terminates at discriminant locus ∆Λ without
spitting along the way, then Att(u, γ) consists of a single flow Lγ. In this case, γ must
be of the form ν±k .

However, in general, we expect the scenery that the attractor flow will split several
times when it finally terminates at ∆Λ. This corresponds to the splitting of the charge
vector γ at various components of walls of the first kind W1. We argue that there are
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only finitely many possibilities, and therefore only finitely many attractor trees possible.
Indeed, an attractor tree in Att(u, γ) corresponds to a split of the following type:

γ → γ1 + γ2 → (γ11 + γ12) + (γ21 + γ22)→

→ (γ111 + γ112) + (γ121 + γ122) + (γ211 + γ212) + (γ221 + γ222)→ · · ·

where for each split indicated by “ → ”, the balancing condition should be satisfied,
for example γ = γ1 + γ2, γ2 = γ21 + γ22, ect.

The final split should give those charge vectors among the ones associated with van-
ishing cycles ν±k , so that the terminal edges of the attractor flow trees would land on the
attractor points as required. It is then clear that there are only finitely many possible
splits of the charge vector γ as above, thus only finitely many possible attractor tress
corresponding to them.

This shows that there are only finitely many combinatorial types of the attractor trees
associated to (u, γ). To finish the proof, we still need to show that for each attractor
tree, there are only finitely many edges of it, this can be seen from the following argument.

Suppose that to the contrary, that there are infinitely many possible tree edges, i.e.,
infinitely many splitting points, then the set of splitting points has an accumulation point
which we denote by u∗, and it hits the discriminant locus ∆Λ.

Then by the proof in proposition 3.2.12, we know that the length of the attractor
flow line connecting point on the wall of the first kind and on the point outside the wall
must be positive as the “mass”function mu(γ) = |Zu(γ)| is decreasing along the flow line.
However, in the situation being considered here, this length can be arbitrarily close to zero
when approaching the accumulating point. The contradiction shows the proposition.

Remark 5.2.4. As the moduli space is of real four dimensional, it is very hard to visualize
the situation. However, as we have noted before that the essential information regarding
the WCS retains if we restrict to generic hyperplane section of the moduli space. By
doing this, the problem is reduced to the three dimensional scenery, and the situation
becomes much more manageable. Moreover the discriminant locus ∆Λ, after intersecting
with the hyperplane, becomes a bunch of one-dimensional curves (see figure 4.26), and
each branch is associated with the (quantum) monodromies that are essentially all that
could be captured by the (quantum) discriminant locus ∆Λ.

Moreover, each pair of singular lines Σk
± corresponds to one way of embedding SU(2) ↪→

SU(3). Consequently, away from the singularities of the discriminant locus, by intersect-
ing with another plane that are complement to the original hyperplane, we will get a local
situation that resembles the one in SU(2) case, so we can apply the WCS in SU(2) case
for this local situation. And by “patching” together these local situation, we will get the
global WCS for the SU(3) SW integrable system.
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5.2.4 WCS in the strong coupling region

Strong coupling spectrum: The strong coupling region in SU(3) case is charac-
terized by small values of u and v (c.f.,[Gal+13]). It is known that in this region
([Kle+94][KTL95][Kle+95]) there exists only six BPS states with vanishing “mass” func-
tion.

These states correspond to the six vanishing cycles ν±i , i = 1, 2, 3 that are the in-
variant cycles under the Picard-Lefschetz monodromies around the six singular lines Σi

±,
i = 1, 2, 3 below.

This can be seen by cutting the base by hyperplane H = {Imv = 0}, in which ∆Λ

becomes three pairs of lines Lk = Σk
+ ∪ Σk

−, k = 1, 2, 3 (see [KTL95], from which the
figure 4.25 is taken).

There exists a symplectic basis such that in this basis ([Hol97]):
ν+

1 = (1, 0;−2, 1) ν−1 = (1, 0; 0, 0)

ν+
2 = (0, 1; 0, 0) ν−2 = (0, 1;−1, 2)

ν+
3 = (1, 1;−2, 1) ν−3 = (1, 1;−1, 2)

In the strong coupling region Bstrong in SU(3) case, where the moduli u := (u, v)
becomes small, we shall show that the WCS will give us exactly six BPS states ν±k for
k = 1, 2, 3, corresponding to the six vanishing cycles in the theory.

To facilitate our investigation, we will not cut the moduli space B by two complemen-
tary hyper-planes as in the investigation in the weak coupling region case, instead, as
what had been done in section 4.2.4, we intersect the moduli space by a three sphere S3

R

centered at the origin, and with radius R large that Λ3, then, the (quantum) discriminant
locus ∆Λ, after the cut, will become two trefoil knots linked together. The weak coupling
region corresponds to large Λ3, while the strong coupling region to be investigated below
corresponding to the radius being close to Λ3.

Then the walls of the first kindW1
k , k = 1, 2, 3, as defined in (5.2.27), when restricted

on the three sphere S3
R, become the family of closed curves that each of them touch the

two trefoil knots in exactly one point, that is, it looks like a tubular neighborhood of the
trefoil knot. For illustration, please see the following picture taken from wikipedia, the
trefoil knot entry.

Figure 5.22: The wall of first kind in strong coupling region
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It is clear then that the region bounded by this wall would be the strong coupling
region where there exists only six BPS states corresponding to the six vanishing cycles.
Because inside this region, there are no possible walls for the attractor flows to split,
thus, only for this states with charge vector ν±k s could the associated split attractor flows
exist that land on the location where ν±k vanishes.

If, as before, we cut our moduli space B by two complementary hyper-planes, and
concentrate the WCS on the resulting two plane

H := B ∩H ∩Hcut

where H = {Im(v) ≡ 0} and Hcut := {z = Re(v) ≡ constant}. The constant in this
case is allowed to be close to Λ3.

For z 6= 0,±Λ3, and given u ∈ H, and γ ∈ Γu, then the associated attractor flow
Lγ exists only for γ = ν±k , k = 1, 2, 3, which consists a single flow line starting at u and
terminates at the place where γ vanishes. And the direction of the flow line corresponds
to the monodromy invariant direction, where the monodromy is given by the Picard-
Lefschtz formula associated to the vanishing cycle.

For z = 0, then in this case v = 0, thus we have a single moduli u as in SU(2) case.
This corresponds to the three Z2 points pk, k = 1, 2, 3, where two mutually local BPS
states have vanishing mass simultaneously. And the three wallsW1

k , k = 1, 2, 3 all shrink
to a point. Thus there are no wall crossing phenomenon near Z2 points.

Finally, for z = ±Λ3, we are at the two Z3 points where three mutually non local
BPS states have vanishing mass simultaneously. At these two points, the three walls
W1

k , k = 1, 2, 3 merge together to touch each other in exactly one point, which is exactly
the Z3 point where the three cycles vanishing simultaneously.

More precisely, at the Z3 point q+ = (0,Λ3), the three walls touch together such that
the singular points P+

k , k = 1, 2, 3 coincide, which means that the cycles ν+
k , k = 1, 2, 3

vanish simultaneously. Similarly, at the Z3 point q− = (0,−Λ3), the three walls touch
together such that the singular points P−k , k = 1, 2, 3 coincide, which means that the
cycles ν−k , k = 1, 2, 3 vanish simultaneously.
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5.2.5 WCS in the weak coupling region

Recall that in section 4.2.4, we cut the moduli space by the hyperplane

H = {Imv = 0}

And ∆Λ becomes three pairs of lines (4.2.106)

L1 = Σ1
+ ∪ Σ1

− L2 = Σ2
+ ∪ Σ2

− L3 = Σ3
+ ∪ Σ3

− (5.2.35)

I copy the figure 4.25 to here for convenience.

Figure 5.23: Geometry of moduli space for SU(3) when Imv = 0, figure taken from
[KTL95]

The weakly coupled region is the region on B where |α · a| � Λ for all positive
roots α (c.f.,[FH97]).

In order to study the WCS in the weak coupling region, by remark 5.2.4 at the end
of the last subsection, we cut the moduli space by the horizontal plane given by

Hcut := {z = Re(v) ≡ constant >> Λ3}

which intersects with the six singular lines at P±k := Σi
± ∩Hcut.

With these preparation, let us investigate the WCS on the plane

H := B ∩H ∩Hcut

Then the walls of the first kind W1
k (see (5.2.27)), when restricted to the plane H,

becomes a closed curve that passes through the points P±k .

Proposition 5.2.2. The walls of the first kind W1
k , when restricted to the plane H, is

topologically homeomorphic to the circle S1, and plays the same role as the wall of stability
in SU(2) case.
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Proof. The variable v is “frozen”. H is endowed with coordinate u. We know from
[KTL95] and [CAM10] that the period integrals a and aD can be expressed in terms of
Appell function

F4(a, b, c, c′, u, v) =
∞∑
m=0

∞∑
n=0

(a)m+n(b)m+n

(c)n(c′)m(1)n(1)m
umvn

where (a)n is the Pochhammer symbol (a)n := Γ(a+n)
Γ(a)

. However, if one of the variables u,
v is set to be constant, the Appell function reduces to the hypergeometric function used
in expressing the period integrals in SU(2) case. Thus, the situation will be reduced to
the SU(2) case, to which the results about the shape of the SU(2)-wall applies.

Figure 5.24: when restricted to H, walls reduced to that in SU(2) case.

Proposition 5.2.3. The WCS formalism, when applied to H, enables us to produce the
following BPS states:

nν+
k + (n− 1)ν−k , k = 1, 2, 3; n = 1, 2, · · ·

ν+
k + ν−k , k = 1, 2, 3;

(n− 1)ν+
k + nν−k , k = 1, 2, 3; n = · · · − 3,−2,−1, 1.

(5.2.36)

All states with DT-invariants Ω = 1, except for the middle row states, which have
DT-invariants Ω = −2.

Proof. We know from (5.2.17) that 〈ν+
k , ν

−
k 〉 = 2, for k = 1, 2, 3, thus by (2.2.12), we can

apply the following KSWCF for k = 〈γ1, γ2〉 = 2 to each pair ν±k

Kγ2 Kγ1 =

(
∞∏
n=1

Knγ1+(n−1)γ2

)
K−2
γ1+γ2

(
1∏

n=−∞

K(n−1)γ1+nγ2

)
(5.2.37)

Figure 5.25: Wall crossing structure in the weak coupling region
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More precisely, the above proposition says that in the weak coupling region Bweak, i.e.,
where v becomes large compared with Λ3, we have the following: Given u ∈ Bweak and
γ ∈ Γu, we consider the attractor flow associated to (u, γ). Then, for γ among those in
(5.2.36), the flow line Lγ exists, which are in general (except for γ = ν±k ) splits according
to the splitting of the charge vector as in (5.2.36), where the splitting points occur at
W1

k , k = 1, 2, 3.

As an example, let us consider γ = nν+
k + (n − 1)ν−k ∈ Γu, the associated attractor

flow tree then looks like the following

Figure 5.26: Attractor flow in SU(3) WCS

where the two splitting flows that terminate at P±k respectively are given by the flow
lines associated to the charges nν+

k and (n− 1)ν−k respectively.

Remark 5.2.5. For those points inside the wall W1
k in the weak coupling region, to

show the above BPS states exist at this point, we can change the value of Im(v), i.e., by
choosing a different vertical intersection, we can move this point outside the wall, and
then consider the associated attractor flow, we will show the existence of these BPS states.
However, for the region in the moduli space where we restrain the value of v to be small,
then this kind of “perturbation” of the point will not be possible, this will restrain the
possible BPS states for those points in side the wall, and we are in the strong coupling
region to be discussed in the previous subsection.

Because in the weak coupling region, the three classical monodromiesMc
k, k = 1, 2, 3

act on the charge vectors, thus by proposition 4.2.15 and the remark 4.2.16, we know
that the charge vectors associated to the vanishing cycles, in the weak coupling region,
are represented (see (4.2.60)) by the following

ν+
k = (αk, (n+ 1)αk) ν−k = (αk, n αk) (5.2.38)

for k = 1, 2 that corresponds to the two simple roots α1 and α2, while for the root
α3 = α1 + α2, the monodromy action on ν±3 gives the following{

ν+
3 = (α3, nα3 − α1)

ν−3 = (α3, nα3 + α2)
(5.2.39)

Consequently, we expect that the attractor flow associated to these charge vectors also
exist in the weak coupling region Bweak. We show that the corresponding DT invariants
associated to these charge vectors are all equal to one. To this end, we note that since

〈(α1, (n− 1)α1), (α2, nα2)〉 = nα1 · α2 − (n− 1)α1 · α2 = α1 · α2 = 1
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the KSWCF gives us the following pentagon identity

K(α1,(n−1)α1) · K(α2,nα2) = K(α2,nα2) · K(α3,(n−1)α3+α2) · K(α1,(n−1)α1) (5.2.40)

Similarly, we also have the following

K(α2,(n−1)α2) · K(α1,nα1) = K(α1,nα1) · K(α3,(n−1)α3+α1) · K(α2,(n−1)α2) (5.2.41)

These two pentagon identities imply that the DT invariants of the states in (5.2.38)
and (5.2.39), being the exponents of the corresponding KS-transformationK, equal to one.

The states ν±3 in the formula (5.2.39) are separated in the weak coupling region by
the wall W1(α1, α2), whereas the states ν±k , k = 1, 2 in the formula (5.2.38) are present
in both sides being separated by the wall above. Indeed, we can build more complicated
KSWCF that takes account this fact by using the above two basic pentagon identities.

Lemma 5.2.4.
K(α1,nα1) · K(α2,nα2) = K(α2,nα2) · K(α1,nα1) (5.2.42)

Proof. This simply follows from

〈(α1, nα1), (α2, nα2)〉 = 0

thus the associated KS-transformations commute with each other.

Next, we start with the following trivial identity

∞∏
n=−∞

K(α1,nα1) · K(α1,(n+1)α1) · K(α2,(n+1)α2) · K(α2,(n+2)α2)

=
∞∏

n=−∞

K(α2,(n−2)α2) · K(α2,(n−1)α2) · K(α1,(n−1)α1) · K(α1,nα1) (5.2.43)

Applying the above lemma, we can rewrite it as

∞∏
n=−∞

K(α1,nα1) · K(α2,(n+1)α2) =
∞∏

n=−∞

K(α2,nα2) · K(α1,(n−1)α1) (5.2.44)

Then we apply the pentagon identities (5.2.40) and (5.2.41), we get the following
wall-crossing formula

∞∏
n=−∞

K(α2,(n+1)α2) · K(α3,nα3+α2) · K(α1,nα1)

=
∞∏

n=−∞

K(α1,(n−1)α1) · K(α3,nα3−α1) · K(α2,nα2) (5.2.45)

In terms of the attractor flows, the existence of these BPS states can be verified as
follows: For BPS states with charge vectors (αk, nαk), for k = 1, 2, since it can be written
uniquely as

(αk, nαk) = −nν+
k + (n+ 1)ν−k
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Thus, we see that the corresponding attractor flow is a rooted tree with two terminal
points landing where ν±k vanish, and splits at the wall W1

k . However, for charge vectors
(α3, nα3 + α2) and (α3, nα3 − α1), the situation is different, we show that the associated
split attractor flows consist of two tress in each case. First, note that we the two charge
vectors can be written as{

(α3, nα3 + α2) = nν+
3 − (n+ 1)ν−3

(α3, nα3 − α1) = (n− 1)ν+
3 − nν−3

(5.2.46)

Thus, the corresponding attractor flow, for each of the above charge vector in the
weak coupling region, consists of a single rooted tree with exactly two terminal points
terminating at the locus where ν±3 vanish. The illustration of the attractor flows is similar
to that given in figure 5.25. The two charge vectors above can also be written as follows{

(α3, nα3 + α2) = (α1, nα1) + (α2, (n+ 1)α2)

(α3, nα3 − α1) = (α1, (n− 1)α1) + (α2, nα2)
(5.2.47)

The splitting of the charge vectors is represented as follows

(α3, nα3 + α2)→ (α1, nα1) + (α2, (n+ 1)α2)→

→ (−nν+
1 + (n+ 1)ν−1 ) + (−(n+ 1)ν+

2 + (n+ 2)ν−2 )

And similarly, for (α3, nα3 − α1), we have that

(α3, nα3 − α1)→ (α1, (n− 1)α1) + (α2, nα2)→

→ (−(n− 1)ν+
1 + nν−1 ) + (−nν+

2 + (n+ 1)ν−2 )

Therefore, the corresponding attractor flow first splits on the wall W1(α1, α2) at u∗,
and then splits at u∗1 and u∗2 onW1

1 andW1
2 respectively. See the left of the below picture

(figure 5.27) for the split attractor tree L(α3,nα3+α2) in this case, while the right one denote
the other possible splitting attractor tree discussed above.

Figure 5.27: Two split attractor trees for (α3, nα3 + α2)

To illustrate, we compute the DT-invariant Ωu((α3, nα3 + α2)) by applying the algo-
rithm to the above splitting attractor tree.
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Indeed, for the left picture of the above graph (see figure 5.27), we see that the initial
data of the WCS consists four “vanishing” charge vectors {ν±1 , ν±2 } with the DT invari-
ants all equal to one.

Then move toward the splitting points u∗1 and u∗2, and applying KSWCF for

〈ν+
k , ν

−
k 〉 = 2, k = 1, 2

we get the the DT invariants for (α1, nα1) and (α2, (n + 1)α2) are both equal to one.
Namely, we have that

Ωu∗1
((α1, nα1)) = 1 Ωu∗2

((α2, (n+ 1)α2)) = 1

Finally, we move toward the splitting point u∗, and apply the KSWCF there, what we
will get is nothing but the Pentagon identity, which further implies that the DT invariant

Ωu((α3, nα3 + α2)) = 1

And for the attractor flow tree in the right of the above figure, by applying the
KSWCF once at the only splitting point u∗∗, we will get the same result.

We will have a similar picture for the attractor tree L(α3,nα3−α1), so we omit the dis-
cussion here.

Interaction among split attractor flows

SU(3) case is interesting in that when Λ→ 0, there exists wall W1
α1,α2

responsible for
the “decay” of states like the following

(α3, α1 + (n− 1)α3) = (α1, nα1) + (α2, (n− 1)α2)

which means that the state with charge (α3, α1 + (n − 1)α3), besides being created by
“scattering” ν+

3 and ν−3 , can also be created on one side ofW1
α1,α2

by ”scattering” (α1, nα1)
and (α2, (n− 1)α2) (the relevant KSWCF is given by the pentagon identity).

Proposition 5.2.5. ([Tay01][Hol97][Kuc08]) The wall (of the first kind) at weak coupling
region is given by

W1
α1,α2

=

{
(u, v) ∈ C2 : Im

(
α1 · a
α2 · a

)
= Im

(
a1

a2

)
≡ 0

}
Proof. It is known ([Hol97]) that in the weak coupling region, we have the following
expression

aD(a) =
i

2π

∑
αpositive roots

α(α · a)

[
ln
(α · a

Λ

)2
]

Then, as Λ→ 0 (or equivalently, |α ·a| � 0 for all positive roots α), aD ∼ (C · ln Λ) a
for some constant C.Thus, in this limit, |aD| � |a|, which implies that Z(γ) = aD · g +
a · q ≈ (ln Λ) a · g. This means that in this region, the central charge is dominated by
the magnetic charge, thus follows the proposition.
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Figure 5.28: Attractor trees for γ3 outside Wα1,α2

Therefore, on one side of W1
α1,α2

where the walls W1
k ’s are present, the states with

charge (α3, α1 + (n − 1)α3) exist with DT-invariant equals to 1 (following from k = 2
KSWCF), while on the other side, the same states derive their existence in two ways.

Figure 5.28 above illustrates the corresponding split attractor flow. Thus, we expect
that the DT-invariant Ω((α3, α1 + (n − 1)α3)) to “jump” from 1 to 2 after crossing the
wall of the first kind: W1

α1,α2
.

The KSWCF to be used at the split point b∗ is given by the proposition 5.2.6 below.

Using short notations:

γ1 := (α1, nα1) γ2 := (α2, (n− 1)α2) γ3 := (α3, α1 + (n− 1)α3)

we prove the following wall-crossing formula:

Proposition 5.2.6. The KSWCF at the split point b∗ is given by:

Kγ1Kγ3Kγ2 = Ξ+K2
γ3
K−2

2γ3
Ξ−Kγ1 (5.2.48)

where

Ξ+ :=
∞∏
n=1

Knγ2+(n−1)(γ1+γ3)Knγ2+(n−1)(γ1+γ3)+γ3

Ξ− :=
1∏

n=∞

K(n−1)γ2+n(γ1+γ3)+γ3 K(n−1)γ2+n(γ1+γ3)

Proof. Since 〈γ1, γ2〉 = 〈γ1, γ3〉 = 1, by applying the pentagon identity, we have

Kγ1Kγ3Kγ2 = Kγ3Kγ1+γ3Kγ1Kγ2 = Kγ3Kγ1+γ3Kγ2Kγ1+γ2Kγ1 (5.2.49)

Note that
〈γ1 + γ3, γ2〉 = 〈γ1, γ2〉+ 〈γ3, γ2〉 = 2
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so by applying KSWCF for k = 2, the right hand side of (5.2.49) becomes

Kγ3

∞∏
n=1

Knγ2+(n−1)(γ1+γ3)K−2
γ1+γ2+γ3

1∏
n=∞

K(n−1)γ2+n(γ1+γ3)Kγ3 Kγ1 = P K−2
2γ3

QKγ1

where

P := Kγ3

∞∏
n=1

Knγ2+(n−1)(γ1+γ3)

and

Q :=
1∏

n=∞

K(n−1)γ2+n(γ1+γ3)Kγ3

We now simplify P and Q. By repeated use of pentagon identities, we get that

P = Kγ3

(
Kγ2 K2γ2+(γ1+γ3)K3γ2+2(γ1+γ3) · · ·

)
= Kγ2 Kγ2+γ3 Kγ3 K2γ2+(γ1+γ3)K3γ2+2(γ1+γ3)K4γ2+3(γ1+γ3) · · ·

= Kγ2 Kγ2+γ3 K2γ2+(γ1+γ3)K2γ2+(γ1+2γ3)Kγ3 K3γ2+2(γ1+γ3)K4γ2+3(γ1+γ3) · · ·

= Kγ2 Kγ2+γ3 K2γ2+(γ1+γ3)K2γ2+(γ1+2γ3)K3γ2+2(γ1+γ3)K3γ2+2(γ1+γ3)+γ3 Kγ3 K4γ2+3(γ1+γ3) · · ·

= (Kγ2 Kγ2+γ3)
(
K2γ2+(γ1+γ3)K2γ2+(γ1+γ3)+γ3

) (
K3γ2+2(γ1+γ3)K3γ2+2(γ1+γ3)+γ3

)
Kγ3 K4γ2+3(γ1+γ3) · · ·

= · · · =
∞∏
n=1

Knγ2+(n−1)(γ1+γ3)Knγ2+(n−1)(γ1+γ3)+γ3 Kγ3 = Ξ+Kγ3 (5.2.50)

Similarly, we have that

Q =
(
· · · K3γ2+4(γ1+γ3)K2γ2+3(γ1+γ3)Kγ2+2(γ1+γ3)Kγ1+γ3

)
Kγ3

= · · · K3γ2+4(γ1+γ3)K2γ2+3(γ1+γ3)Kγ2+2(γ1+γ3)Kγ3 Kγ1+2γ3 Kγ1+γ3

· · · K3γ2+4(γ1+γ3)K2γ2+3(γ1+γ3)Kγ3 Kγ2+2(γ1+γ3)+γ3 Kγ2+2(γ1+γ3)

· · · K3γ2+4(γ1+γ3)Kγ3 K2γ2+3(γ1+γ3)+γ3 K2γ2+3(γ1+γ3)Kγ2+2(γ1+γ3)

= · · · = Kγ3

1∏
n=∞

K(n−1)γ2+n(γ1+γ3)+γ3 K(n−1)γ2+n(γ1+γ3) = Kγ3 Ξ− (5.2.51)

Putting these together, we get finally that

Kγ1 Kγ3 Kγ2 = P K−2
2γ3

QKγ1 = Ξ+Kγ3 K−2
2γ3
Kγ3 Ξ−Kγ1 = Ξ+K2

γ3
K−2

2γ3
Ξ−Kγ1

Remark 5.2.6. The proposition 5.2.6 above yields the desired “jump” of the BPS invari-
ants:

Ω(γ3) = Ω((α3, α1 + (n− 1)α3))

which is compatible with the “primitive wall crossing formula”(see for example
[MPS11]) that gives the “jump”

∆Ω(γ3 → γ1 + γ2) = (−1)〈γ1,γ2〉+1|〈γ1, γ2〉|Ω(γ1) Ω(γ2) = 1 (5.2.52)
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Proposition 5.2.7. In parallel with the above argument, since we have that

(−α3, α2 + (n− 1)α3) = (−α1, (n− 1)α1) + (−α2, nα2)

we infer that on one side of W1
α1,α2

, where W1
k ’s are present, the states with charge

(−α3, α2 + (n − 1)α3) exist with DT-invariant equals to 1, while on the other side, the
same states derive their existence in two ways.

Thus, we expect the DT-invariant Ω((−α3, α2 + (n − 1)α3)) to “jump” from 1 to 2
after crossing the wall W1

α1,α2
.

Proof. The same as the proof of the proposition 5.2.6 above.

Yet, there exist states that are present only on one side of W1
α1,α2

, which are ”scat-
tered” by (α1, nα1) and (α2, (n+ 1)α2).

Indeed, by applying pentagon identity, we see that after crossing the wall, new states
with charge (α3, α2 + nα3) exist with DT invariants one.

The BPS spectrum for pure SU(3) gauge theory thus obtained by using WCS is
consistent with that obtained by physical approaches ([FH97][Hol97][Kuc08]).
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Appendix A

BPS states in 4d, N=2 theories

In order to motivate the emergence of wall-crossing structures discussed in great detail
in the first chapter, we need to review a little bit about the relevant physics background.
We will see what a BPS state is and how to associate the invariant (BPS degeneracies)
to it. Also, we will use examples to show the phenomena of wall-crossing, i.e., how these
invariants “jump” (corresponding to particle creations and decays) when the background
parameters are being changed in the moduli space of the theory. Especially, we will give
a short account of pure SU(2) supersymmetric Yang-Mills theory.

Recall that for any quantum theory, there is associated Hilbert space describing the
“particle states” of the theory. The theories to be discussed in this section describe
particle states with charges taking in some charge lattice Γ, thus the Hilbert space H in
these theories are graded by the charge lattice Γ

H =
⊕
γ∈Γ

Hγ (A.0.1)

where the subsector Hγ describes the states with charge γ.

However, the Hilbert space H sometimes contains too much information, it would be
desirable if we could extract some useful information from it. By doing this, we hope
that the Hilbert space could be under good control on the one hand, and still provides
sufficient information to infer the essential features of the theory in question. Although
this would be hard for general quantum field theory, but it turned out that for theories
enjoying the supersymmetry (SUSY), this could be done.

The results the study of the so-called BPS states which are much more tractable. We
will focus here on the theories with N = 2 supersymmetric in four dimension because
they always posse holomorphic structures so that the powerful tools of complex analysis
can be applied to extract useful information. This manifests especially notable in SU(2)
Yang-Mills theory, which can be solved exactly by the celebrated Seiberg-Witten solu-
tions [SW94]. Besides, the BPS states can even led us into the non-perturbative realm
of physics.
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A.1 4d,N = 2 supersymmetry algebra

Supersymmetry (SUSY) is a symmetry between bosons with integer spins and fermions
with half integer spins. In four dimension, the N = 2 SUSY s extends the usual Poincaré
symmetry poin(1, 3) in the following way

s = s0 ⊕ s1

where the bosonic algebra s0 is the even part of s, while the fermionic algebra s1 is the
odd part of s. More concretely,

s0 = poin(1, 3)⊕ su(2)R ⊕ u(1)R ⊕ C

here the R-symmetry part su(2)R ⊕ u(1)R accounts for the ambiguity in rotating the
supercharges into one another and the phase shift of the supercharge. And the C in the
above formula, being the center of the algebra, is represented as the central charge Z of
the theory, which is a linear function from the charge lattice to the complex plane, i.e.,

Z ∈ HomZ (Γ,C)

The odd part s1, generated by two supercharges QA
α and Q̄A

α̇ , mapping bosons to
fermions and vice verse, give a representation of the bosonic algebra. As a representation
of s0, we have

s1 = (2, 1; 2)+1 ⊕ (1, 2; 2)−1

By writing poin(1, 3) as su(2)⊕ su(2), the first two representations in the parentheses
above refers to a singlet or a fundamental of the su(2) in the Lorentz group, while the
third representation means the fundamental of the R-symmetry su(2)R. Besides, the ±
sign refers to the charges associated to u(1)R. In particular, under u(1)R, QA

α has charge
+1 while Q̄A

α̇ has charge −1.

The fermionic part s1 consists of the conserved supercharges QA
α , and denote the

conjugated supercharges as (QA
α )† := Q̄A

α̇ , where the lower indices α = 1, 2 and α̇ = 1, 2
denote the spinor indices and A = 1, 2 the number of supersymmetries. As usual, we
can raise and lower indices by using the Levi-civita tensor εAB with ε12 = −ε21 = ε21 =
−ε12 = 1, i.e.,

Q̄α̇A = εABQ̄
B
α̇

These supersymmetry (odd) generators satisfy the following anti-commutation rela-
tions

{QA
α , Qβ̇B} = 2σµ

αβ̇
Pµδ

A
B

{QA
α , Q

B
β } = 2εαβε

ABZ̄ (A.1.1)

{Q̄α̇A, Q̄β̇B} = −2εα̇β̇εABZ

where Pµ = (E, ~p)T is the Lorentz four-momentum vector, and σµ
αβ̇

the Pauli-matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
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A.2 Particle representations

The particle states in the Hilbert space H (A.0.1) should be the representations of the
SUSY algebra s. In this subsection, we concentrate on the massive representation, i.e.,
representations that satisfy P 2 = M2, where P 2 is the Casimir operator and M > 0.
Again, we will mimic the Wigner’s “little group” methods to construct the single-particle
representations of the SUSY algebra.

Thus, we first bring the particle with mass M > 0 in its rest frame where the only
non-trivial component of the four momentum P is P 0 = E = M (in the units that the
speed of light c=1), i.e., it represents the one particle state characterized by

Pm|Ψ〉 = Mδm0 |Ψ〉 (A.2.1)

then by Wigner’s construction, the little superalgebra in this case becomes

s0
l ⊕ s1

where the Bosonic part s0
l = so(3) ⊕ su(2)R ⊕ u(1)R, with so(3) being the little algebra

of poin(1, 3).

The states satisfying (A.2.1) form a finite dimensional representation of the little su-
peralgebra, and the fermionic part s1 acts as Clifford algebra. We will construct them in
the following.

First notice that a particle in its rest frame in invariant under the operation of spatial
parity, denoted by P , which acts on the supercharges as

P(QA
α ) = σ0

αβ̇
Q̄β̇B, P(Q̄β̇A) = σ0β̇αQαA (A.2.2)

Besides, the u(1)R part, being represented by the operator U , can change the phase
of the supercharge Q as

U(Q) = ζQ, U(Q̄) = ζ−1Q̄ (A.2.3)

Define the composition of the two operations as I(ζ) := U ◦P , which is easily seen to
be an involution. Thus, it is desirable to decompose the fermionic algebra s1 under this
involution, for this, we define the following new generators of the SUSY transformations

RA
α := ζ1/2QA

α + ζ−1/2σ0
αβ̇
Q̄β̇A (A.2.4)

T Aα := ζ1/2QA
α − ζ−1/2σ0

αβ̇
Q̄β̇A (A.2.5)

with eigenvalues +1 and −1 respectively under the involution I(ζ), then the fermionic
algebra s1 canbe splited into two partes generated by RA

α and T Aα respectiely, i.e.,

s1 = s1,+ ⊕ s1,−

The anti-commutation relations between these generators can be computed by using
the relations (A.1.1), for example

{RA
α ,RB

β } = {ζ1/2QA
α + ζ−1/2σ0

αγ̇ Q̄
γ̇A, ζ1/2QB

β + ζ−1/2σ0
βδ̇
Q̄δ̇B}
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= ζ{QA
α , Q

B
β }+ ζ−1σ0

αγ̇σ
0
βδ̇
{Q̄γ̇A, Q̄δ̇B}

+σ0
αγ̇ {QB

β , Q̄
γ̇A}+ σ0

βδ̇
{QA

α , Q̄
˙δB}

= 2ζZ̄εαβε
AB + ζ−1σ0

αγ̇σ
0
βδ̇
εACεBDεγ̇λ̇εδ̇κ̇ {Q̄λC , Q̄κ̇D}

+σ0
αγ̇ ε

γ̇λ̇εAC {QB
β , Q̄λ̇C}+ σ0

βδ̇
εδ̇κ̇εBD {QA

α , Q̄κ̇D}

= 2ζZ̄εαβε
AB − 2ζ−1Zσ0

αγ̇σ
0
βδ̇
εACεBDεγ̇λ̇εδ̇κ̇ελ̇κ̇εCD

+2Mσ0
αγ̇ ε

γ̇λ̇εAC σ0
βλ̇
δBC + 2Mσ0

βδ̇
εδ̇κ̇εBD σ0

ακ̇δ
A
D

= (2ζZ̄ + 2ζ−1Z + 4M) εABαβ = 4(M +Re(Z/ζ))εαβε
AB

Performing similar computations for the other generators, we will get

{RA
α ,RB

β } = 4(M +Re(Z/ζ)) εαβε
AB (A.2.6)

{T Aα , T Bβ } = 4(−M +Re(Z/ζ)) εαβε
AB (A.2.7)

The above relations would yield very important consequences, indeed by the Her-
miticity conditions

(RA
α )† = εαβεABRB

β

we have the following

(R1
1 + (R1

1)†)2 = (R2
1 + (R2

1)†)2 = 4(M +Re(Z/ζ))2 (A.2.8)

Since the LHS is always non-negative, we obtain the BPS bound as follows:

M +Re(Z/ζ) ≥ 0 (A.2.9)

In particular, if the central charge Z has phase α, i.e., Z = eiα|Z|, and choose ζ to be
−eiα, we will get the so-called BPS bound :

M ≥ |Z| (A.2.10)

and by this choice of ζ, the anti-commutation relations (A.2.6) and (A.2.7) specialize
into

{RA
α ,RB

β } = 4(M − |Z|) εαβεAB (A.2.11)

{T Aα , T Bβ } = −4(M + |Z|) εαβεAB (A.2.12)

In particular, in this case we have also the following relation

{RA
α , T Bβ } = 0 (A.2.13)

Because we have already fixed the gauge ζ in deducing the above relations, thus the
u(1)R symmetry is broken, and the above relations define a representation of the new
little algebra

s̃0
l = so(3)⊕ su(2)R (A.2.14)

To describe the representation of the SUSY algebra s, we can now distinguish between
two cases, namely, the M ≥ |Z| case, which yield the so called “non-BPS” or “long” rep-
resentations; and the M = |Z| case, which yields the “BPS” or “short” representations.
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Long representations

In this case, M > |Z|, thus by the relations (A.2.11), (A.2.12) and (A.2.13), we now
have Clifford module structures. In order to see this more clearly, let us focus on the R-
generators case, since the same conclusions hold for the T -generators. First, the equation
(A.2.11), written in its components, gives us

{R1
1,R1

1} = {R2
2 = R2

2} = 0 {R1
1,R2

2} = 4(M − |Z|)

as well as
{R2

1,R2
1} = {R1

2 = R1
2} = 0 {R2

1,R1
2} = −4(M − |Z|)

We get two copies of commuting Clifford algebras, and s1,+ is the tensor product of
the above two Clifford algebras. By treating RA

1 , A = 1, 2 as annihilation operator, we
can define the Clifford vacuum |Ω〉 as

RA
1 |Ω〉 = 0 A = 1, 2

thus we get the following basis of the R-Clifford module as

{|Ω〉,R1
2|Ω〉,R2

2|Ω〉,R1
2R2

2|Ω〉}

which spans a four dimensional irreducible Clifford representation, which is usually de-
noted by ρhh, called the half-hypermultiplet.

As noted before, the R-Clifford module should also be a module of the new little
algebra s̃0

l (see (A.2.14). Indeed, we see that

T(αβ) :=
1

2
RA
αRB

β εAB

generates a copy of so(3) ∼= su(2), while

T (AB) :=
1

2
RA
αRB

β ε
αβ

generates a copy of su(2). As the Clifford generators transform in the (1
2
; 1

2
) of su(2) ⊕

su(2), which is just the vector of so(4), thus the half-hypermultiplet ρhh is the Dirac
spinor, i.e.,

ρhh = (0;
1

2
)⊕ (

1

2
, 0) (A.2.15)

It can be shown that the general representation of s̃0
l ⊕ s1,+ is of the form

ρhh ⊕ h

where h is arbitrary representation of the little algebra s̃0
l .

Now take the T -generators into consideration, we finally get the long representation
of s̃0

l ⊕ s1 as
tlong = ρhh ⊗ ρhh ⊗ h (A.2.16)

The general representation is then obtained from this rest frame one by a Lorentz
boost.
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Short (BPS) representations

When the BPS bound (A.2.10) is saturated, i.e., M = |Z|, then the R-part (A.2.11)
commutation relation vanishes, thus we just have one copy of Clifford module contributing
to the full representation. Namely, the short or BPS representation

tBPS = ρhh ⊗ h (A.2.17)

There are two special cases to be considered about the BPS representations. First, the
hypermultiplet is obtained by letting h to be the one dimensional trivial representation
(0; 0). In this case, we are just left with ρhh. It contains a pair of scalars in a doublet of
su(2)R and a Dirac fermion. By taking h = (1

2
; 0), we get the vector multiplet

ρhh ⊗ (
1

2
; 0) = [(

1

2
; 0)⊗ (

1

2
; 0)]⊕ [(0;

1

2
)⊗ (

1

2
; 0)]

= (
1

2
;
1

2
)⊕ (1; 0)⊕ (0; 0)

which consists of a spinor doublet of su(2)R, a vector and a complex scalar.

A.3 BPS states and BPS index

BPS states are one particle states that fall into the short (BPS) representations of the
SUSY algebra. The Hilbert space of BPS states can thus be defined as

HBPS := {|Ψ〉 ∈ H : H|Ψ〉 = |Z|Ψ〉} (A.3.1)

where H denotes the Hamiltonian of the corresponding field theory.

Again, the space of BPS states is graded by the charge lattice Γ, in accordance with
the decomposition (A.0.1), i.e.,

HBPS =
⊕
γ∈Γ

HBPS
γ (A.3.2)

The peculiar nature of the d = 4, N = 2 theories to be considered in this thesis is that
the vacuum of the theory is in general not unique, but forms a space of vacua, denoted
by B, also called the moduli space of the theory. Thus, over each point b ∈ B, there is a
copy of BPS states space as above, and by varying b, we get a family of Hilbert spaces
parametrized by B. (A.3.1) and (A.3.2) above then get lifted into the following

HBPS
b := {|Ψ〉 ∈ Hb : H|Ψ〉 = |Zb|Ψ〉} (A.3.3)

HBPS
b =

⊕
γ∈Γ

HBPS
b,γ (A.3.4)

Now, as b varies in the moduli space B, a Non-BPS state that satisfies the BPS bound:
(Mb ≥ |Zb|) may becomes a sum of BPS states for some b ∈ B where the BPS bound
becomes saturated. This kind of states are called fake BPS states, to distinguish them
from the true BPS states. This can be illustrated by the following

tlong → tfake−BPS = ρhh ⊗ h′ = ρhh ⊗ ρhh ⊗ h
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Compared with the true BPS states, these fake ones are more difficult to deal with,
since they can appear and disappear when other parameters of the theory being varies.
Thus, we want to have some means to distinguish the more stable BPS states from the
fake ones, it turned out that this could be done by introducing the so-called BPS index
to be characterized by the property that it vanishes on the long representations. And
consequently it also vanishes on the fake BPS states.

Given a representation t of the little superalgebra s0
l ⊕ s1, we can define its character

χ with respect to the Cartan elements J3 of so(3) and I3 of su(2)R as follows

χ(t) := Trt q
2J3
1 q2I3

2 (A.3.5)

It is then easy to see that for t = tlong, the character becomes

χ(tlong) = (q1 + q−1
1 + q2 + q−1

2 )2 χ(h) (A.3.6)

while for short or BPS representations, it reads

χ(tBPS) = (q1 + q−1
1 + q2 + q−1

2 )χ(h) (A.3.7)

We now consider the quantity derived from χ as follows

χ̃(t) := q1
∂

∂q1

∣∣∣∣
q1=−q2=y

(
Trt q

2J3
1 q2I3

2

)
(A.3.8)

Claim: This quantity satisfies the desired property that it vanishes on the long rep-
resentations.

Proof: By (A.3.6), we have that

q1
∂

∂q1

χ(tlong) = 2(q1 + q−1
1 + q2 + q−1

2 )(1− 1/q2
1)χ(h)

by evaluating at q1 = −q2 = y, we see it vanishes. �.

we now give a more convenient form of the character.

χ̃(t) := q1
∂

∂q1

∣∣∣∣
q1=−q2=y

(
Trt q

2J3
1 q2I3

2

)
=

∂

∂ log q1

∣∣∣∣
q1=−q2=y

(
Trt q

2J3
1 q2I3

2

)
=

∂

∂ log q1

∣∣∣∣
q1=−q2=y

(
Trt e

2I3 log q1e2I3 log q2
)

= Trt(2J3)(y)2J3(−y)2I3 = Trt(2J3)(−1)2J3(−y)2(J3+I3)

J3:=J3+I3======== Trt(2J3)(−1)2J3(−y)2J3 (A.3.9)

From it, we easily calculated that

χ̃(tBPS) = (y − y−1)χ̃(h) = (y − y−1)Trh y
2J3(−y)2I3

Provided that each summand on the RHS of (A.3.4) is of finite dimensional, we can
restrict the above trace to each summand, and get

TrHb,γ (2J3)(−1)2I3(−y)2J3 (A.3.10)
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Definition A.3.1. (Protected spin character): The protected spin character Ωb(γ, y)
associated to charge γ ∈ Γb is defined through the following relation

(y − y−1) Ωb(γ, y) := TrHb,γ (2J3)(−1)2I3(−y)2J3 (A.3.11)

From the definition, we see that for BPS state with charge γ, i.e. belongs to the short
representation tBPS, we have that Ωb(γ, y) = 1. Equivalently, we can write Ωb(γ, y) :=
Trhby

2J3 (−y)2I3 . By specializing it to y = −1, we get the so-called second helicity super-
trace. We will call it simply the BPS index.

Definition A.3.2. (BPS index): The BPS index is defined as

Ωb(γ) := Trhb y
2J3

Remark A.3.1. In the first chapter, the index Ωb(γ) defined above is also called BPS
invariant (as they counts BPS states) since they are stable under generic variation of the
parameter b ∈ B. However, the index will “jump” when b crosses certain codimension
one locus in B, a phenomenon called Wall-Crossing, as had been formalized in the first
chapter.

Suppose we have two BPS states with charges γ1 and γ2 respectively, for generic b ∈ B,
the BPS index Ωb(γ1) and Ωb(γ2) stay constant, but for certain b in the moduli space B,
it may happen that the two states γ1 and γ2 may form a bound state γ1 + γ2, thus leave
the one particle states space, this will cause the BPS indices would jump at such b, i.e.,
Wall-crossing phenomena.

Since the particles in question are all BPS, so the mass M (= energy E in the units
where the speed of light: c = 1), consequently, for this process to be possible energetically
at least, we must have the following (see the short note [Nei] for explanation):

E before = Eγ1 + Eγ2 ≤ Eγ1+γ2 = E final

which is the same as

|Zb(γ1)|+ |Zb(γ2)| ≤ |Zb(γ1 + γ2)|

As Z is additive, by triangle inequality, we also have

|Zb(γ1 + γ2)| = |Zb(γ1) + Zb(γ2)| ≤ |Zb(γ1)|+ |Zb(γ2)|

The two inequalities are compatible if and only if

|Zb(γ1) + Zb(γ2)| = |Zb(γ1)|+ |Zb(γ2)|

This is possible when the phase of Zb(γ1) equals that of Zb(γ2), i.e.

Zb(γ1)/Zb(γ2) ∈ R+

Motivated by this, we can define the wall of marginal stability associated with γ1 and
γ2 as

MS(γ1, γ2) := {b ∈ B : Zb(γ1)/Zb(γ2) ∈ R+} (A.3.12)

We may expect that when crossing the wall of stability, some states may form bound
states, and some may decay into new states, causing the BPS indices to jump. The
jumping is governed by the so-called Kontsevich-Soibelman Wall-Crossing Formula to be
explained in chapter 2.

Remark A.3.2. The wall of marginal stability would be called the wall of first kind in
the next section.
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A.4 BPS states in type II superstring theory

In order to have N = 2 SUSY in string theoretical framework, we need to compactify
the type II string theory on a Calabi-Yau three fold X. Locally, the moduli space of
the theory would split into the product of vector multipletMvector moduli space and the
hyermultiplet moduli space Mhyper, i.e.,

M =Mvector ×Mhyper

The dimension of the moduli spaces depend on the compactification. In type IIA
compactification, the number of hypermultiplets is given by h2,1(X) + 1, and the number
of vector multiplets in this case is h1,1; while in type IIB compactificaion, the number
of hypermultiplets is given by h1,1 + 1, and that of the vector multiplets is h2,1, here,
hi,j := dimH i,j(X,C) denotes the Hodge number of X.

Type IIA and type IIB compactifications are related by the well-known duality known
as Mirror Symmetry.

In order to describe the charged particle state, we need to introduce the concepts of
charged Dp-branes.

A Dp-brane is an extended object with p+ 1 dimensional world volume in 10d space-
time. They are the objects on which open strings can end.

It turned out that the Dp-brane can also carry sorts of electromagnetic charges, in
order to define them, let us first review what happens in classical electromagnetism.

Recall that the classical Maxwell equations read{
dF = ∗Jm
d ∗ F = ∗Je

(A.4.1)

where Jm is the magenetic four-current, and Je the electric four current, and “ ∗ ”
denotes the Hodge duality operation in four dimension.

For a particle, the electric charge e and the magnetic charge g is defined through

e =

∫
S2

∗F (A.4.2)

g =

∫
S2

F (A.4.3)

where S2 is a sphere surrounding the particle source.

Similarly, for a Dp-brane in D = 10 dimension, which couples to a (p+1) form C(p+1),
and consequently, there is a corresponding p + 2-form Fp+2 = dCP+1, which is the field
strength. We surround the Dp-brane with a D − (p + 2)-dimensional sphere, then the
electric charge is defined as

qp =

∫
SD−(p+2)

∗Fp+2 (A.4.4)
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The magnetic dual of a Dp-brane is a D(6 − p)-brane, and its magnetic charge is
defined as

p6−p =

∫
Sp+2

Fp+2 (A.4.5)

In type IIA compactification, the low energy spectrum contains RR 1-form C(1) and
a RR 3-form C(3), which are coupled by D0-brane and D4-brane, thus we could have the
following types of Dp-branes and the corresponding charges

•D0-branes with electric charge q0 =
∫
S8 ∗ dC(1)

•D2-branes with electric charge q2 =
∫
S6 ∗ dC(3)

•D4-branes with magnetic charge p4 =
∫
S4 dC

(3)

•D6-branes with magnetic charge p6 =
∫
S2 dC

(1)

Note that D0-branes are dual to D6-branes, while D2-branes are dual to D4-branes.

In type IIB compactification, the low energy spectrum contains a RR 0-form C(0), a
RR 2-form C(2), and a RR 4-form C(4), which are coupled by D(−1)-brane (D-instanton),
D1-brane and D3-brane respectively. Together with their magnetic duals, we thus have
the following types of Dp-branes and the corresponding charges

•D1-branes with electric charge q1 =
∫
S7 ∗ dC(2)

•D3-branes with electric charge q3 =
∫
S5 ∗ dC(4)

•D3-branes with magnetic charge p3 =
∫
S5 dC

(4)

•D5-branes with magnetic charge p5 =
∫
S3 dC

(2)

Notice that in this case D3-branes are self dual.

With these preparations, we can try to describe what are the charged BPS particles
in type II string theory.

Roughly speaking, they can be viewed as Dp-branes wrapping on cycles in the Calabi-
Yau inner space X, which would yield a point-like objects moving in time from the 4d
space-time perspective. In this way, we can “geometrilize” the point particle, or even
black holes. Thus, by what had been said above, we conclude that

• In Type IIA, the particle states should be charged in the charge lattice Heven(X,Z)
with rank h1,1(X).

• In Type IIB, the particle states should be charged in the charge lattice Hodd(X,Z)
with rank h2,1(X).
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We now explain briefly what should be the notion of BPS particles in this situation.

If a particle state is represented by a Dp-brane D, then its mass can be identified (up
to normalization) to be the volume of the brane V ol(D).

The central charge function Z in both Type IIA and IIB theory involves an integrate
some holomorphic (3, 0) form Ω over D, i.e.

Z(D) =

∫
D

Ω

In both cases, the BPS bound M ≥ |Z| easily seen to be hold, and for the states to
be BPS, i.e. the BPS bound is saturated, we require the followings

• In Type IIA, the Dp-brane D needs to be wrapping special Lagrangian 3-cycles.

• In Type IIB, the Dp-brane D needs to be wrapping holomorphic cycles.

A.5 BPS states in SU(n) SYM theory

A detailed review of the d = 4, N = 2 gauge theory would be beyond the scope of this
thesis on the one hand, and irrelevant to the mathematical investigations later in later
sections on the other hand, thus it is sufficient here to just outline its main features to
the extent that the basis for later discussions could be laid down. The interested reader
can consult various good expository papers for more details, for example[AH97] and the
references contained therein.

Description of the classical moduli space

Given a d = 4, N = 2 supersymmetric Yang Mills theory (SYM for short) theory with
compact Gauge group G, by gauge invariance, the theory posses a continuum of inde-
pendent vacua (ground states), which form a manifoldMclass, called the moduli space of
vacua, also named as the classical moduli space of the theory.

The classical moduli space Mclass has complex dimension r = rank(G), and it splits
into the Higgs branch, where the gauge group G is completely broken, and the Coulomb
branch where G breaks down to its maximal abelian subgroup. We will focus in the
following the Coulomb branch, and denote it by Bclass.

In order to describe the (classical) Coulomb branch Bclass, we note that the scalar
potential of the N = 2 SYM takes the following form

V (φ) =
1

g2
Tr
(
[φ†, φ]2

)
where g is the coupling constant of the theory, and φ is a Higgs field, i.e. a complex

field taking values in the adjoint representation of G that transforms as scalar under
Poincaré group.
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As [φ†, φ] is self-adjoint, the minimum of V (φ) is obtained when it vanishes, thus φ
can be diagonalized, i.e. can be rotated into the Cartan subalgebra t of the complexified
Lie algebra gC corresponding to G. So the gauge group G generically breaks down to the
subgroup H which is generated by elements coming from the Cartan subalgebra t. In
other words, we see that the gauge transformations in G/H acts by changing the choice of
this Cartan subalgebra, and consequently they also “permutate” different vacuum. But,
there are elements in the Weyl group that leave t invariant. So we need to use Weyl
invariant coordinates on Bclass.

Since the Weyl group acts on φ by conjugation, thus the following characteristic
polynomial of φ is manifestly invariant

det(λ− φ) = 0 (A.5.1)

Specializing to the case when G = SU(n), so that H = U(1)n−1 is the maximal torus
in G, while the Weyl group in this case becomes W = S(n)-the symmetric group on
n-letters.

Hence, (A.5.1) becomes in this case the following

det(λ− φ) =
n∑
k=0

(−1)kck(φ)λn−k

= λn − λn−1c1(φ) + λn−2c2(φ) + · · ·+ (−1)ncn(φ) = 0

the coefficients ck(φ) can be computed by performing the following formal computation

det(λ− φ) = λndet(1− φ/λ) = λneTr ln(1−φ/λ) =

= λn exp

(
−
∞∑
m=1

Tr (φm)

mλm

)
Tr(φ)=0

======

= λn − 1

2
Tr(φ2)λn−2 − 1

3
Tr(φ3)λn−3 + · · ·

From this we see that the classical moduli space Bclass can be parametrized by the
coordinates

uk := lim
~x→∞

Tr (φk(~x)), for k = 2, · · ·n. (A.5.2)

Let a1, · · · an denote the roots of the characteristic polynomial (A.5.1), then φ can be
diagonalized as

φ ∼ diag(a1, · · · an) with
∑
i

ai = 0

then by using the relations (Tr φ)k = 0, we computed that

c1(φ) = 0

c2(φ) =
∑

i<j aiaj

c3(φ) =
∑

i<j<k aiajak

· · ·
cn(φ) =

∏n
i=1 ai
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In particularly, when G = SU(2), and suppose φ = 1
2
aσ3, where σ3 is the third Pauli

matrix, then the moduli space can be parametrized by

u = Tr(φ2) =
1

2
a2 (A.5.3)

and in the SU(3) case, the moduli space can be parametrized by

u =
1

2
Tr(φ2) = −(a1a2 + a1a3 + a2a3) v = −1

3
Tr(φ3) = a1a2a3 (A.5.4)

where we have written that φ ∼ diag (a1, a2, a3).

The Kähler metric on the moduli space

It is clear from the above description of good coordinates on the moduli space, we see
that at low energy, for generic vacuum u = (u2, · · ·un), the Gauge group SU(n) breaks
down to its maximal abelian subgroup U(1)n−1 by Higgs mechanism, thus we have a
family of abelian gauge theories (of the Maxwell type) parametrized by u ∈ Bclass, while
the full gauge symmetry get restored at the origin of the moduli space. The moduli space
is easily seen to be Cn−1, which can be compactified by adding points at infinity.

It can be shown that the low energy effective action is fully determined by a prepo-
tential F(A), which is a holomorphic function in a single N = 2 vector multiplet A, in
N = 1 superspace formalism, the Lagrangian reads

Leff =
1

4π

[
d4

∫
θ
∂F
∂Ai

Āi +

∫
d2θ

1

2

∂2F
∂Ai∂Aj

WαiW j
α

]
(A.5.5)

where the chiral superfield Ai is the N = 1 chiral multiplet in the N = 2 vector
multiplet A, with its scalar components given by ai. Further more the prepotential
induces a Kähler metric on Bclass by

ds2 = gij̄ daidāj = Im
∂F

∂ai∂aj
daidāj (A.5.6)

with the corresponding Kähler potential given by

K = Im

(
āi
∂F
∂ai

)
(A.5.7)

Denote by τij := ∂F
∂ai∂aj

, and call it the period matrix, the metric (A.5.6) can be written

more compactly as
ds2 = Im(τij) daidāj (A.5.8)

It follows that the period matrix should be a symmetric n×n matrix whose imaginary
part is positive definite. By introducing the variables that dual to ai, i.e.,

aiD :=
∂F
∂ai

the above metric becomes
ds2 = Im (daiDdāi) (A.5.9)
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with corresponding Kähler potential becomes

K(a, ā) = Im(āia
i
D) (A.5.10)

Besides, the real symplectic structure on the moduli space can be defined as follows

ω =
i

2
∂∂̄ K =

i

2
∂∂̄ Im(āia

i
D) (A.5.11)

Remark A.5.1. We will discuss later in chpater 4 that this metric actually induces the
so called special Kähler structure on the moduli space

Remark A.5.2. The positivity of Im τij comes from the fact it is part of kinetic action
of the bosonic piece

The above metric posses some singularities, we illustrate this by focusing at the ori-
gin u = 0 of the moduli space, where the full gauge symmetry SU(n) being restored.
At such points, some massive states, which had been integrated out when constructing
the effective description at low energy, will become massless, thus renders the effective
description meaningless at such points, i.e. they should be viewed as the singularities of
the moduli space.

The sigularities in the exact quantum moduli space B would be deformed by quantum
effects. For example, in the SU(2) case, instead of single singularity at the origin, the
exact quantum moduli space would have two singularities, i.e. the original singularity
splits into two points.

This is due to that the entries of the imaginary part of period matrix τij is harmonic
function, so it cannot have a minimum if it is globally defined on the moduli space. But
to ensure the unitary of the theory, Im (τij) > 0 should hole through out Bclass. Conse-
quently, the period matrix can only be defined locally, so to force the global structure of
the exact quantum moduli space B to be differed from that of Bclass. We will discuss this
further in the next subsection for the SU(2) case.

Central charge and BPS states

From the previous discussion, we conclude that there is a singular locus (codimension
one) Bsing inside the exact quantum moduli space (or moduli space in short) B. Denote
by B0 its complement, i.e.

B0 := B\Bsing

Over B0, the low energy effective theoy is described by a family of abeliean gauge
theories, which can be viewed as r = rk(SU(n)) = n− 1 copies of SUSY Maxwell theory.
Thus, the abelian gauge symmetries U(1)r would act on the Hilbert space of the theories,
which would endow the Hilbert space with a grading coming from the electromagnetic
charges.

In the Coulomb branch with which we are concerned here, we can distinguish between
the eclectic charges q and the magnetic charges p. When the rank of gauge group is r,
we see that the electric charges and magnetic charges can be combined together to take
values in a rank 2r charge lattice Γ. Since it depends on the particular point b ∈ B0 at
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which the theory being considered, we actually get a local system of lattices Γ over B0.

Schematically, Γ ∼= Z⊕2r, which splits into electric part Γe ∼= Z⊕r and the magnetic
part Γm ∼= Z⊕r, i.e., for each point b ∈ B0, we have

Γb = Γb,e ⊕ Γb,m (A.5.12)

and the one particle states Hilbert space Hb at b ∈ B0 can be decomposed as

Hb =
⊕
γ∈Γ

Hb,γ (A.5.13)

where Hb,γ is the Hilbert space of one particle states with charge γ.

Denote by {γe,i} for i = 1, · · · , r a Z-basis of Γe, and {γim} for i = 1, · · · , r a Z-basis of
Γm. By Dirac quantisation condition, there is a integer-valued symplectic bilinear paring
〈·, ·〉 on Γ such that the above basis can be chosen to satisfy the following

〈γe,i, γjm〉 = δji

while the pairing restricting to Γe and Γm vanishes. Given two states γ1, γ2 with
electromagnetic charges the following

γ1 = qi1γe,i + p1
jγ

j
m, γ2 = qi2γe,i + p2

jγ
j
m

then we have the following

〈γ1, γ2〉 = qi1p
2
i − p1

jq
j
2 (A.5.14)

From the N = 2 SUSY algebra, we see that there should be a central charge function
defined on each of the Hilbert space Hb,γ, which should be linear with respect to γ, i.e.,

Zb(γ1 + γ2) = Zb(γ1) + Zb(γ2)

For a charge γ = (qi; pj) = qiγe,i + pjγ
j
m ∈ Γb, Zb acts on it as

Zb(γ) = qiZb(γe,i) + pjZb(γ
j
m)

We claim that Zb(γe,i) can be identified with ab,i, while Zb(γ
j
m) should be identified

with the dual coordinate ajD,b, thus, we get the following formula

Zb(γ) = qiab,i + pja
j
D,b (A.5.15)

Since B has coordinates u = (u2, · · · , un), we can rewrite the above formula as follows
to indicate it is a function of u:

Zu(γ) = qiai(u) + pja
j
D(u) (A.5.16)

or in terms of the period matrix (τij) = (
∂aD,i
∂aj

), this is equivalent to

Zu(γ) = ai(u)(qi + pjτij(u)) (A.5.17)

Again, the BPS bound M ≥ |Z| is satisfied, and the BPS states are defined as those
that saturate this bound. We will give the BPS specturm for SU(2) SYM in the next
section.
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A.6 Details on SU(2) case and the electric-magnetic

duality

We now specialize the previous general discussion to the case when gauge group is G =
SU(2), the good thing about this theory is that it can be solved exactly. Here, we just
review its basic features. Now the classical moduli space Bclass ∼= C, with good coordinate
(A.5.3)

u =
1

2
Tr(φ2) =

1

2
a2

And on it we have the Kähler metric determined as

ds2 = Im(τ) dadā, with τ(a) =
∂2F
∂a2

(A.6.1)

where F is the prepotential of the theory. Or in terms of the magnetic dual coordinate
aD = ∂F

∂a
, the metric can be written as

ds2 = Im (daDda) = − i
2

(
daD
du

dā

dū
− da

du

dāD
dū

)
dudū (A.6.2)

with the corresponding Kähler potential given by

K = Im(āaD) (A.6.3)

and the Hessian τ(u) can be expressed as

τ(u) =
daD
da

=

(
daD
du

)(
da
du

) (A.6.4)

Remark A.6.1. τ(a) represents the complexified effective gauge coupling of the theory,
it is related to the gauge coupling g and the theta-angle θ in the following way

τ(a) =
θ(a)

π
+

4πi

g2(a)
(A.6.5)

We have remarked that the effective action of the theory is fully determined by the
prepotential F , which is classically given by

F(a) =
1

2
τ0 a

2 (A.6.6)

where τ0 is the bare coupling constant.

While in the full quantum theory it receives perturbative (one loop) and non-perturbative
corrections, yields the following form

F =
1

2
τ0 a

2 +
i

π
a2 ln

a2

Λ2
+ a2

∞∑
k=1

Fk
(

Λ

a

)4k

(A.6.7)

where Λ is the dynamically generated scale.
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From this, we see that for large a, i.e., we focus on the near ∞ region of the moduli
space, the instanton sum above converges. So that by taking derivative twice, we see that
near u =∞, the effective constant τ is given by

τ = const +
4i

π
ln

u

Λ2
+ single-valued (A.6.8)

Now, the monodromy around u =∞ acts on τ by shifting it to τ − 8.

As had been noted before (after Remark A.5.2) that the strongly coupling singularity
u = 0 in Bclass will be deformed in the exact quantum moduli space B. It is the insights
of Seiberg and Witten that the quantum moduli space B should still be the complex
plane C, but with the singularity u = 0 being deformed into two singularities located at
u = ±1 respectively. Again, at these singularities, some particle states become massless.

The charge lattice Γ in this case is or rank 2, which form a local system of lattice
over B0. As noted before, Γ splits into magnetic part and electric part. Denote by
γe the basis of the electric part, and γm that of the magnetic part. Then, for any
γ = (q, p) = qγe + pγm ∈ Γ, its central charge can be evaluated as

Zu(γ) = qa(u) + paD(u) (A.6.9)

For the state with charge γ to be BPS, the following condition should be satisfied

m = |Zu(γ)| = |qa(u) + paD(u)| =
∣∣∣∣(p q)(aDa

)∣∣∣∣ (A.6.10)

Electric-Magnetic duality

Electric-Magnetic duality, originally discovered by Montonen and Olive in the context
of N = 4 SYM, was shown to be still valid in the N = 2 context by Seiberg and Witten.
It is a duality that exchanges the electric and magnetic charges, as well as the gauge
coupling constant g of the theory, i.e.,

E → B, B → −E, g → 1

g

where E and B denote the electric and magnetic field respectively.

Seiberg and Witten discovered that starting with the effective Lagrangian Leff (a),
and by applying the super version of Hodge duality operation, they will end up with
a new effective Lagrangian LDeff (aD), which is equivalent to the original one, but now
written in the magnetic dual variable aD, i.e.,

Leff (a) = LDeff (aD)

By applying this duality once again, we see that aD would get transformed into −a.
We now see how this duality acts on the complexified effective coupling constant τ(u).
By definition

τ(u) =
daD
da

(A.6.11)
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and the dual coupling constant τD should be defined as

τD =
d(−a)

daD
(A.6.12)

thus we see that under the electric-magnetic duality

τ(a)→ τD(aD) = − 1

τ(a)
(A.6.13)

From this, and by (A.6.5), if the theta-angle θ = 0, this specializes into g → −1
g
,

which is part of the original Montonen-Olive duality.

There is another transformation thus leaves the theory unchanged, namely, the theta
angle θ, being of topological origin, is defined only modulo 2πZ, so that τ is defined
up to Z. There for we have the following symmetry τ → τ + 1, which is equivalent to
aD → aD + a. The two duality transformations are represented by the matrices

S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
(A.6.14)

which act on the vector (aD, a)† by left matrix multiplication, and on the coupling
constant τ by linear fractional transformation. It is well known that S, T generates the
group SL(2,Z). which acts on the upper half plane H by linear fractional transformation.
Thus points on the upper half plane that are related by SL(2,Z)-action would give rise
to equivalent theories. This is called the S duality, or the electric-magnetic duality.

Monodromies on the moduli space B

We first study the monodromy of a(u) and aD(u) around u = ∞. At large |u|, the
theory is asymptotically free, the one loop part of F (A.6.7) gives a good approximation

F1−loop =
i

π
a2 ln

a2

Λ2

From this, we computed that

aD =
∂F
∂a

=
2ia

π
+

4ia

π
ln
a

Λ

Considering the monodromy around u = ∞, i.e. u → e2πi u, and from the relation
u = 1

2
a2, we get that

a→ −a, ln a→ ln a+ iπ

Consequently, we have that aD → −aD + 4a. So the monodromy at∞ can be written
in terms of matrix as

M∞ =

(
−1 4
0 −1

)
(A.6.15)

which acts on the vector (aD, a)† on the left, it should act on the BPS charge (q, p) at right
by its inverse M−1

∞ so to make the mass formula (A.6.9) still hold after the monodromy,
i.e.,

(q, p)→ (−p− 4q,−p)
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Remark A.6.2. The monodromy M∞ can be written as PT−4, where P is the element
−id ∈ SL(2,Z). The Weyl group W in SU(2) case is just Z2, which acts ons classical
level as a → −a, thus we see that the P part of the monodromy already exists at the
classical level. Apparently, since the good coordinate is u = 1

2
a2, we can remove the

ambiguity caused by P by working in the u-complex plane instead of the a-plane.

The nontrivial monodromy M∞ at weak coupling region implies there are must be
other singularities on the exact quantum moduli space B since as noted before Im(τ)
must be locally defined to ensure its positivity (unitarty requirement). Im(τ) is defined
only semi-classically near u = ∞, where u = 1

2
a2. However, the quantum effects would

shift this relation such that the zero u = 0 splits into ±1, related by Z2 symmetry.

Besides ∞, there must be at least two singularities, which can be relocated at ±1.
This can be seen by requiring that the monodromy should be non-abelian in order to
ensure the positivity of Im(τ) all over the moduli space. Since if otherwise, say, the mon-
odromies around other singularities all commute withM∞, then the coordinate u = 1

2
a2

will become globally defined on B, contradicting to our assumption that it should be
locally defined. Seiberg and Witten proposed to consider the simplest situation, namely,
there are just two singularities ±1 (besides ∞) at which some BPS states become mass-
less. In the following we will compute the monodromies M±1 around ±1.

The idea is that besides the natural coordinate a(u) near u =∞, we also consider the
magnetic dual aD(u), and treat it on the equal footing as a(u). At some region in B, the
description in terms of aD(u) should be more preferred. This had been suggested by the
electric-magnetic duality discussed above, and can be seen more clearly as follows.

When we move away from the region near u = ∞, we see that the instanton sum in
(A.6.7) may not be convergent any more, thus to get the new effective Lagrangian Leff ,
we need new prepotential F , which can be viewed as kind of “analytic continuation” of
the holomorphic function F over B.

Let u0 be the point where aD(u0) = 0 (will be transformed into +1 later). Near
u0, aD ≈ c0(u − u0), and by using renormalization technique, wee see that near u0, the
magnetic dual coupling is given approximately as

τD ≈ −
i

2π
ln aD

by the definition of τD (see (A.6.12), we computed the following

a(u) ≈
∫ u

u0

τD daD
a0=a(u0)
≈ a0 +

i

2π
aD ln aD

≈ a0 +
i

2π
c0(u− u0) ln(u− u0)

The monodromy around u0 can be read off by considering the loop around u0 as

(u− u0)→ e2πi (u− u0)

from which we get that
aD → aD a→ a− aD
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Thus by adjusting the parameters, u0 can be normalized to +1, and the corresponding
monodromy matrix is given by

M+1 =

(
1 0
−1 1

)
(A.6.16)

which can be written in terms of S and T as M+1 = STS−1. Note that by the
definition of BPS state (A.6.10), the magnetic monopole with charge (0, 1) would become
massless at the singularity u = 1. Near the region where aD = 0, the magnetic dual aD
becomes natrual coordinate, in which the prepotential can be written as

FD(aD) =
1

2
τ0,D a

2
D −

i

4π
a2
D ln

aD
Λ

+ Λ2

∞∑
k=1

Fk
(aD

Λ

)k
(A.6.17)

which is seen to be convergent as aD → 0.

At the remaining singularity u = −1, there is nothing essential new as we can go
from u = 1 to u = −1 simply by using the Z2 symmetry, i.e. u → −u. Thus, the
prepotential near u = −1 region is obtained through replacing aD in (A.6.17) by 2a− aD
(corresponding to the state with charge (1,-1) that vanishes at the sigularity u = −1),
i.e.,

F̃ = FD(2a− aD) (A.6.18)

In summary, we have three coordinate patches on the moduli space B, namely, near∞
patch, and near ±1 patches, in each patch, we have preferred coordinates, namely a(u),
aD(u) and a(u) − aD(u) respectively, and the prepotential in each coordinate patches is
given in (A.6.7), (A.6.17) and (A.6.18) respectively.

To get a global theory, we need to glue these three coordinate patches together that
is consistent globally, i.e., we require the monodromies to satisfy the following relation

M+1 ·M−1 = M∞ (A.6.19)

from which the monodromy M−1 at the third singularity −1 becomes

M−1 =

(
−1 4
−1 3

)
(A.6.20)

As said above, the particle state that becomes massless at −1 is of electric-magnetic
charge (2,−1). From the mathematical point of view, we need to solve the following
Riemann-Hilbert problem.

RH problem: To find multi-valued functions a(u), aD(u) that exhibit the mon-
odromies M±1 and M∞, which are subject to the relation (A.6.19). Further, the coupling
τ computed from them should satisfy Imτ > 0.

Sieberg and Witten, in their celebrated paper[SW94], gives a geometric solution to
this RH problem involving family of elliptic curves, which in turn gives exact solution to
SU(2) SYM theory. Before closing this section, let me comment on the stability of the
BPS states inSU(2) case, as well as the spectrum of the theory.
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Stability of BPS states and BPS spectrum

Recall that at the end of section A.3, we discussed the necessary condition for BPS
states to decay, or conversely, to form bound state when the moduli of the theory being
varied. We argued that this is possible only when b ∈ B crosses certain one dimensional
walls, called the walls of marginal stability. We now describe the wall in SU(2) SYM
theory case.

For two BPS states with charges γ1 and γ2, the wall of marginal stability associated
to them is defined as

MS(γ1, γ2) =

{
b ∈ B : Im

(
Zb(γ1)

Zb(γ2)

)
= 0

}
(A.6.21)

The charge lattice Γ splits into electric part Γe and the magnetic part Γm, which is
generated by γe and γm respectively. Thus for two states γ1 = (q1, p1) and γ2 = (q2, p2) ,
the associated central charges evaluated at u ∈ B read

Zu(γ1) = q1a(u) + p1aD(u)

Zu(γ2) = q2a(u) + p2aD(u)

Im

(
Zb(γ1)

Zb(γ2)

)
= Im

(
q1a(u) + p1aD(u)

q2a(u) + p2aD(u)

)
= Im

(
q1 + p1

aD(u)
a(u)

q2 + p2
aD(u)
a(u)

)
from which, we see that

Im

(
Zb(γ1)

Zb(γ2)

)
= 0 iff Im

(
aD(u)

a(u)

)
= 0

Since this holds for arbitrary γ1 and γ2, we conclude that the wall of the first kind W
in SU(2) SYM can be defined as

C :=

{
u ∈ B : Im

(
aD(u)

a(u)

)
= 0

}
(A.6.22)

The shape of this curve is a closed curve passing through the two singularities Bsing,
which divides the moduli space B into two connected component. Inside of the curve is
called the strong coupling region, denoted by Bstrong, while outside of which is called the
weak coupling region, denoted by Bweak. The BPS spectrum of this theory is then can be
described as

Inside Bstrong, we have

• the magnetic monopole with charge (q, p) = ±(0, 1)

• a dyon with charge (q, p) = ±(−2, 1) in the lower u plane, and ±(2, 1) in the upper
u plane.

Inside Bweak, we have

• the magnetic monopole with charge (q, p) = ±(0, 1)

• dyons with charge (q, p) = ±(2k, 1), with k ∈ Z.

• W± gauge bosons with charge (q, p) = (±2, 0)
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Appendix B

Physics motivation of attractor flows

Motivated from the relevant works [Den00] in the study of super-symmetric black holes
as well, as the work of Kontsevich and Soibelman on Mirror symmetry [KS06], it seems
that the construction of these BPS invariants which is compatible with the formalism
of WCS can be obtained by studying certain integer flows on the moduli space of the
corresponding theories. Roughly speaking, the flow for a given charge γ is a tree lying on
the moduli space, which splits at the points on the walls of first kind (physicists would
call them wall of marginal stability). Since this kind of flow was first studied in 4d,N = 2
supersymmetric gravity under the name of attractor mechanism, so these flows would be
called the attractor flows, or more precisely split attractor flows.

The concept of attractor flows and the technique to study them have been proved
useful in determining the existence of (multi-centered )BPS black hole solutions as well
as their classifications. Indeed, the so called the attractor flow conjecture states that a
multicentered black hole solution exists if and only if the corresponding flow tree exists.
This is very convenient because even if the check that if a supergravity solution exist or
if it is well-defined can be very challenging in most cases, yet the corresponding flow tree
is simple in nature and to check that if it exists and well-defined is relatively not that
hard in general. Thus, under the assumption of this attractor flow conjecture, one can
translate the problems of finding certain type of solutions in supergravity into the prob-
lems of determining if the corresponding attractor flows exist or not. Although there is no
rigorous proof of this conjecture so far, nevertheless, no counterexamples have been found.

Although the technique of attractor flows originated in the supergravity regime, i.e.,
low energy regime, its power is not limited by this. In fact, in is conjectured that the
split attractor flow trees can even be used in the study of existence and classification for
BPS states in the full type II string theories.

Even in the context of N = 2 field theories decoupled from gravity, it was found
out that the same kind of structures still persist and are still useful in describing the
BPS states in these theories. This leads to the speculation that the appearance of split
attractor flows may be investigated entirely from the microscopic D-brane perspective.
This is already reminiscent in the study of mirror symmetry in the above mentioned work
of Soibelman and Kontsevich.
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In particular, the Seiberg-Witten for SU(2), N = 4 super Yang-Mills theory can be
obtained from the N = 2 super gravity theory describing the low energy physics of type II
string theory in a certain rigid, i.e. gravity decoupling limit([Den99]). Hence, we can take
the rigid limits of supergravity attractor flows to get the BPS solutions of this effective
abelian theory.

As is well known that there are two types of D-branes in type Calabi-Yau compactifica-
tions. Namely, the A branes that wrap special Lagrangian (SLG) submanifolds endowed
with flat connections, and B branes that wrap holomorphic cycles which are endowed
with holomorphic bundles. There have been tremendously amount of rigorous mathe-
matical formalisms focusing on the B branes side even though the current understanding
is far more from complete, while the A branes side turned out to be harder to deal with,
if not in-attractable at all. This is partly because the explicit constructions of generic
SLGs is virtually impossible since there are difficult foundational geometric questions still
unsolved, and partly because the quantum corrections on B-side are better in control.

Thus, it would be desirable if the split attractor flows could be used in the studying
of these SLGs since the former are much easier to deal with than the later. Indeed, in
the work of Frederik Denef [Den01], it is argued that split attractor flows can be used
to assemble and disassemble of SLGs by studying their deformations. The process here
corresponds to the decay or form of states in the corresponding field theory.

On the A side, the DT-invariant Ωb(γ) should be thought of as counting the virtual
number of certain SLGs with the charge γ, i.e. the ones that are wrapping the three
cycles γ ∈ H3(X,Z) in a CY 3 fold X, where b depends on the complex moduli space.
By SYZ torus fibration, these correspond to holomorphic discs in the total space with
boundaries on a torus fiber. By the same reasons as mentioned above, the direct counting
of these holomorphic discs can be very challenging. Thus it is suggested by Kontsevich
and Soibelman that this counting problem maybe tackled by using Non-archimedean ge-
ometry, i.e., by tropicalization map, the space X can be retracted to its base B, which
is non-archimedean analytic space (c.f.,[KS06]). Therefore, the counting of holomorphic
discs in X is translated into the problem of counting of tropical curves in B, which are
piecewise linear graphs in B. Certainly, the later problem in much more attractable.

The above construction should be compared with the technique of split attractor
flows, and the attractor flow trees should be thought of as analogy of the tropical trees.
This provides us with further motivation of the usefulness of this technique.

B.0.1 Attractor flows in supergravity

In the following we will review the works of Denef (see [Den00]) on the correspondence
between existence/stability of BPS states in type II string theory compactified on a
Calabi-Yau manif old and BPS solutions of four dimensional N = 2 supergravity. We
will especially focus on the emergence of splitting attractor flows in this story as well as
its relation to the stability condition. The main purpose here is to motivate the mathe-
matical formalism of attractor flows proposed by Kontsevich and Soibelman (see section
3 of [KS14]).
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It is well known that the investigate of the 4d N = 2 supergravity can be approached
from the super string theoretical techniques by embedding it into either a Type IIA theory
(controlled by Kähler moduli) or Type IIB theory (controlled by complex moduli) in ten
dimension, and in this way, many supergravities can be realized as low energy descrip-
tions of the corresponding string theories. Even more remarkably, there is well-known
mirror symmetry relating the two embeddings, i.e. the four dimensional theory coming
from the Type IIA compactified on a Calabi-Yau three fold X should be equivalent to the
description of that coming from Type IIB compactified on another Calabi-Yau three fold
X̌, called the mirror dual of X. For certain problem, its manifest in the IIA side maybe
more attractable than its counterpart in the IIB side, and vice verse. For this reason,
mirror symmetry becomes very powerful think-kit both from computational perspective
and from the landscape of theoretical insights in both physics and mathematics.

We are especially interested in how black holes could be realized in such frame work.
It turned out that we can model black holes in supergravity with various type of charges
by wrapping various types of D-branes around cycles in the extra compactified dimen-
sions in such a way that one could from the three dimensional space point of view, we
will obtain a point like object in time (singularities of space-time). Of course, these black
hole solutions thus obtained should preserve certain amount of N = 2 supersymmetry so
that the BPS bound is being saturated. Thus, we normally call these solutions BPS black
hole solutions.Further more, the ambiguities for making a BPS black hole by wrapping
branes is associted to the entropy of the black hole.

However, it has been known since Denef ([Den00]) that the above single-centered,
spherically symmetric solutions can not cover all BPS spectrum. For some BPS state
of a given charge, it is often being realized in low energy limit (supergravity regime) as
multi-centered stationary bound state of black hole which not only carries the intrinsic
angular momentum, but the relative distances between the centers are also subject to
certain equilibrium distances constrains.

Besides its metric properties, the multi-centered black hole solution in N = 2, d = 4
supergravity theories thus obtained also depends on the values of the gauge fields as well
as the scalars in the theories. The scalars fall into either hypermultiplets or vector mul-
tiplets. For the discussion of BPS black holes, the solution only depends on the vector
multiplets, the values of hypermultiplets scalars can be set to be constants. The most
important fact discovered is that the manifold of vector multiplets scalars, as a special
Kähler manifold, is highly constrained by the so called attractor mechanism.

Let me explain briefly what this mechanism meat to tell us about the geometry of
black hole configurations, as well as its relevance to the splitting attractor flows which
would be our main concern later.

Roughly speaking, a BPS black hole in this setting is determined by first specifying
a “background”, i.e. the values of the scalars at the spatial infinity r = ∞, where r
denotes the radial distance in three dimension, and the values of these scalars at other
points are controlled by a first order linear differential equation, called the attractor flow
equation, which flows these values radially inward to the event horizon of the black hole.
The peculiar nature of the attractor flow equation tells us that the value at the event
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horizon does not change even if the background being perturbed. We will call the fixed
value attractor value (or the attractor point on the vector multiplet moduli space) for the
black hole solution, and for this reason, this mechanism is called the attractor mechanism.

Thus, for a single centered black hole configuration, the scalars associated with it,
stating at the values at spatial infinity and ending at the attractor point, would flow
along a line on the scalars manifold, this will be called a single attractor flow.

And in the case that the black hole configuration consists of more than one centers,
i.e. the so-called multi-centered black hole solution, a similar attractor mechanism still
exits, though the flow lines obtained by solving the corresponding attractor flow equation
would be different in that the attractor flow in this case would usually splits (could be
more than once) along the way when it flows from the spatial infinity down to the even
horizon. For each center, there would be one branch of flow terminating on the attractor
point associated to this center. These type of flow trees will be called the split attractor
flows. And the so-called the split flow conjecture asserts that the configurations of these
flow lines could be used to classify the supergravity solutions. It turned out that the split
points of the flow would lie on certain walls in the moduli space of scalars. Physicists
call these walls the walls of marginal stability, which is analogous to the walls of the first
kind defined previously.
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[Rac04] Sébastien Racaniere. “Lie Algebroids, Lie Groupoids and Poisson Geome-
try”. In: Preprint, June (2004).

[KS06] Maxim Kontsevich and Yan Soibelman. “Affine Structures and Non-Archimedean
Analytic Spaces”. In: The unity of mathematics. Springer, 2006, pp. 321–385.

[Lön06] Michael Lönne. “Braid Monodromy of Hypersurface Singularities”. In: arXiv
preprint math/0602371 (2006). url: https://arxiv.org/pdf/math/0602371.
pdf.

[KS08] Maxim Kontsevich and Yan Soibelman. “Stability Structures, Motivic Donaldson-
Thomas Invariants and Cluster Transformations”. In: arXiv preprint arXiv:0811.2435
(2008). url: arXiv:0811.2435.

[Kuc08] Michael Yu Kuchiev. “Charges of Dyons in N = 2 Supersymmetric Gauge
Theory”. In: Nuclear physics B 803.1-2 (2008), pp. 113–134.

[B+09] Ricardo Castano Bernard, Diego Matessi, et al. “Lagrangian 3-torus Fibra-
tions”. In: Journal of Differential Geometry 81.3 (2009), pp. 483–573.

[Fer09] Frank Ferrari. “Galois Symmetries in Super Yang-Mills Theories”. In: Jour-
nal of High Energy Physics 2009.03 (2009), p. 128.
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works”. In: Annales Henri Poincaré. Vol. 14. 7. Springer. 2013, pp. 1643–
1731.

[GMN13b] Davide Gaiotto, Gregory W Moore, and Andrew Neitzke. “Wall-crossing,
Hitchin systems, and the WKB Approximation”. In: Advances in Mathe-
matics 234 (2013), pp. 239–403.

[Gal+13] Dmitry Galakhov et al. “Wild Wall-crossing and BPS Giants”. In: Journal
of High Energy Physics 2013.11 (2013), p. 46.

[Seo13] Jihye Sofia Seo. “Singularity Structure of N = 2 Supersymmetric Yang-
Mills Theories: A Review”. In: arXiv preprint arXiv:1307.2691 (2013). url:
https://arxiv.org/abs/1307.2691.

[KS14] Maxim Kontsevich and Yan Soibelman. “Wall-crossing structures in Donaldson-
Thomas Invariants, Integrable Systems and Mirror Symmetry”. In: Homo-
logical Mirror Symmetry and Tropical Geometry. Springer, 2014, pp. 197–
308.

[Lin14] Yu-Shen Lin. “Reduced Open Gromov-Witten Invariants on HyperK\” aher
Manifolds”. In: arXiv preprint arXiv:1404.4684 (2014). url: https://arxiv.
org/abs/1404.4684.

[LTY14] Yuan Luo, Meng-Chwan Tan, and Junya Yagi. “N = 2 Supersymmetric
Gauge Theories and Quantum Integrable Systems”. In: Journal of High En-
ergy Physics 2014.3 (2014), p. 90.

[Nei14a] Andrew Neitzke. “Hitchin Systems in N= 2 Field Theory”. In: arXiv preprint
arXiv:1412.7120 (2014). url: https://arxiv.org/abs/1412.7120.

[Nei14b] Andrew Neitzke. “Notes on a New Construction of Hyperkahler Metrics”.
In: Homological Mirror Symmetry and Tropical Geometry. Springer, 2014,
pp. 351–375.

[Tac15] Yuji Tachikawa. N = 2 Supersymmetric Dynamics for Pedestrians. Springer,
2015, p. 236.

[Lin17] Yu-Shen Lin. “Open Gromov–Witten Invariants on Elliptic K3 Surfaces and
Wall-Crossing”. In: Communications in Mathematical Physics 349.1 (2017),
pp. 109–164.

[Lon18] Pietro Longhi. “Wall-crossing Invariants from Spectral Networks”. In: An-
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