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The Kirkwood-Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates
the molecular distributions between the solution components to the thermodynamic properties of the
mixture. Ideal solutions represent a useful reference for understanding the properties of real
solutions. Here, we derive expressions for the KB integrals, the central components of KB theory,
in ideal solutions of any number of components corresponding to the three main concentration
scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions
mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach
ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a
quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this
system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small
number of components. © 2010 American Institute of Physics. [doi:10.1063/1.3398466]

I. INTRODUCTION

The Kirkwood-Buff (KB) theory of solutions has pro-
vided a wealth of data and insight into the properties of so-
lution mixtures.'"* KB theory can be applied to any stable
mixture containing any number of components. In particular,
the theory provides exact relationships from the molecular
distributions between the various species in solution to the
corresponding thermodynamics of the mixture. The central
quantities of interest in KB theory are the KB integrals
(KBIs),!

VT,
G;= Gji=47Tf0 (g (r) = 1]rdr, (1)

where g;; is the corresponding radial distribution function
(rdf) between species i and j, and r is their intermolecular
separation. In applying KB theory to understand solutions, it
is often useful to compare the properties of a real solution
with those of a corresponding ideal solution.*®'*1 In par-
ticular, deviations from ideal solution behavior provide indi-
cations of specific associations or affinities between the so-
lution components which affect the thermodynamics.16’17
Furthermore, assuming ideal behavior for some components
may be the only possible approach to describe solutions con-
taining a large number of components, where experimental
data are usually very rare.'*1° Consequently, it is important
to understand the nature of ideal solutions as formulated by
KB theory.

Ideality in solution mixtures at constant pressure (P) and
temperature (7) can be expressed using a variety of concen-
tration scales. The most common is the mole fraction con-
centration scale where the corresponding activity coefficients
are unity for all species at all solution compositions. These
mixtures are also known as symmetric ideal (SI) or perfect
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solutions. In SI solutions the KBIs are neither zero nor inde-
pendent of composition. The KBIs for these solutions can be
expressed in terms of the isothermal compressibility («;) and
molar volumes (V;) of the pure components at the same T
and P. Expressions for binary, ternary, and quaternary solu-
tions are available.”**?' Ben-Naim has also shown that SI
solutions including up to four components satisfy AG;;=G;;
+G;i—2G;;=0 for all i,j pairs.22 Our recent analysis of the
results obtained from the KB theory of solutions for n=1 to
4 components proposed the following general expression for
the KBIs:*'

n

G,-SjI =RTkr-V,;— Vj +S,, S,= E PkV/%’ (2)
k=1

where R is the gas constant and p;,=N;/V are the number
densities of each species. The above expression was postu-
lated to be valid for any i and j combination in any n com-
ponent SI solution. This can be shown to be true for
n=1-4 components.21 Here we provide rigorous proof that
this expression is valid for any number of components at
constant 7" and P. Furthermore, we also determine the corre-
sponding expressions for the KBIs which result in ideal be-
havior on the molality and molarity concentration scales. The
results are then illustrated using data obtained from computer
simulations.

Il. THEORY

The chemical potential (u) of a solute in solution can be
expressed in a variety of ways using a series of different
concentration scales. There are three major expressions re-
lated to whether the species concentrations are represented in
terms of mole fractions (x), molalities (), or molarities (c).
It is then typical to write

=+ RT In fix; = w™ + ui + RT In x;,
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pi=p;" +RT In ym;,
pi=p+ RT Inyic;,

pi= i +RTIn Alp;, 3)

where a set of activity coefficients (f, y,y) are used to quan-
tify deviations from ideal behavior on the mole fraction, mo-
lality, and molarity concentration scales, respectively. The
final equation is the statistical mechanical expression for the
chemical potential in terms of the pseudochemical potential
(u*), thermal de Broglie wavelength (A), and number
density.2 The standard chemical potentials (1) can refer to
an infinitely dilute solute or the pure solute at the same 7 and
P. They are constants and independent of the concentration
of i, whereas the pseudochemical potential is composition
dependent. The following discussion is focused on changes
in the chemical potentials with composition, and therefore
the choice of standard state is largely irrelevant. We also note
that du*=RT dIny when T is constant. It is generally
known that the activity coefficients decrease when the solute
displays significant solute self-association, whereas the activ-
ity coefficients increase when the solute is significantly sol-
vated by the other species in solution.

The general approach used here to determine the re-
quired KBIs involves generating a series of expressions in-
volving derivatives of the chemical potentials which are
valid for real solutions, followed by application of the appro-
priate conditions corresponding to ideality for the various
concentration scales. Let us consider the species number
densities in the grand canonical ensemble to be functions of
tempfzzgature and all the chemical potentials. One can then
write

dlnp;= 32 (8 + N;jdu,;, 4)
j=1

which is valid for changes in the number density of any
component in any multicomponent system and any (thermo-
dynamically reasonable) ensemble with T constant. Here,
N;j=p;G;j, B=1/RT, and &; is the Kroenecker delta function.
Two further sets of equations can be derived from the above
equation. If we take derivatives with respect to In N;, while
keeping 7', P, and all other N, constant, we find an expres-

sion for the partial molar volumes (V), written here in terms
of volume fractions (¢;=p;V,),

n

Si— =2 (8 + Nyj) g (5)
=1

for any i species and where we defined

£
B( i

= Mij- (6)
d1n Nj)T’P’Nkséj /

The relationships to derivatives on other concentration scales
are given by

I Mij
o) i
dlnx;/rp Oj—x;

J
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o,
,3( : ) = Mij»
d ln m/ T’P’mk#j

ou,
4—ﬁ;

Mij
) = (7)
dIn p; TPN,;

8-

which are general for any number of components. Alterna-
tively, if one starts from Eq. (4) and then takes derivatives
with respect to pressure with all N; and T constant one finds
that

Jj=1

for any i component.

The above equations relate the KBIs to properties of the
solution. It is easier, albeit less general, if we select a par-
ticular species to continue. We choose i=1 and k# 1, and
then write Egs. (5) and (8) (after multiplication by p;) in an
n X n matrix form so that

piVi piVa piVs iV, I+Ny p1RT Ky
K2 Mo M3 M2 Nip - ¢
M3 M3 M33 M3 Niz |=| —¢3
| Min Man M3p 7 Mnn JdL Nln i | - d’n i
)

Hence, we have a set of simultaneous equations which can
be solved quite easily for the required KBIs to give

1+N11 leTKT
Npp -
Ny |=M'| =& | (10)
| Nln i | _¢n

where M,, is the matrix from Eq. (9). This is the approach we
used recently for outlining a general KB inversion
plrocedulre.21 After the appropriate chemical potential deriva-
tives are used in the M, matrix, and its inverse has been
determined, the expressions for the KBIs representing our
series of ideal solutions can be obtained from Eq. (10).

lll. METHODS

All mixtures were simulated via classical molecular dy-
namics techniques using the GROMACS program (version
3.3).* The simulations were performed in the isothermal-
isobaric NpT ensemble at the temperature and pressure of
interest using Berendsen thermostats and barostats.” All sol-
ute and solvent bonds were constrained using the LINCS
algorithm.26 A 2 fs time step was used for integration of the
equations of motion. Electrostatic interactions were evalu-
ated using the particle-mesh-Ewald technique,27 with cutoff
distances of 1.2 nm and of 1.5 nm for the real space electro-
static and van der Waals interactions, respectively. Details of
the force fields are provided elsewhere.® " All mixtures
were simulated with enough molecules to occupy a cubic

Downloaded 04 Aug 2011 to 129.130.37.167. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



164501-3 KB integrals for ideal solutions

box of length of ~6 nm, starting from random initial con-
figurations, and were simulated for between 10 and 20 ns.
The simulated KBIs have to be truncated in closed sys-
tems. We discussed this issue in detail > Typically, the
integral is truncated after several solvation shells (1-1.5 nm)
depending on the size of the solute and solvent. To eliminate
statistical variations we averaged the integral values over a
small range of integration distances corresponding to one
solvation shell. The accuracy of this truncation procedure
can be checked by determining the simulated partial molar
volumes and compressibility using other approaches.28 Error
estimates were obtained from multiple 5 ns block averages.

IV. RESULTS

A. ldeal solutions on the mole fraction concentration
scale

The most common and useful reference for solution mix-
tures is that of SI solutions. The following conditions must
hold:

I =1+p(Vi=Vy)) =14p(V;=V;) -

my 1+p(Vy=V,) po(Vy = V3)
(MH™' = | ms p3(Vy = V) L+ p3(V=V3)
m, pn(Vl - V2) pn(vl - V3)

after evaluation of the required cofactors, or by the binomial
inverse theorem. Here, m;=p,/ p;, are dimensionless molali-
ties. Using this result in Eq. (10) the SI expressions for the
KBIs can be obtained for any n component solution such that

n

L+ Nﬂ = pRTkr+ E [1+p(Vi=V)]dy
k=2

(15)

N% = poRTrr—[1+pa(Vy = Vo) ]y + E P2 (V= V1) .
k=3

(16)

The above equations can be simplified further to provide

n

G} =RTkr=2V,+ 2, pV;,
k=1

(17)

n

Gy =RTkr=V, = Vo+ 2 p Vi,
k=1

(18)

which are the expressions provided by the proposed Eq. (2).
KBIs for the other components can be obtained by a simple
index change. The expressions for the KBIs that result in
ideal behavior on the molal and molar concentration scales
can be found in Appendices A and B.

J. Chem. Phys. 132, 164501 (2010)

du'=RTd In x;, (11)

My = 8=, (12)
and illustrate that the chemical potential of each component
is affected by the addition of j through a change in their mole
fractions. For SI solutions [defined by Eq. (11)] the required

matrix reduces to

piVi piVa piVs p1Va
— Xy 1 — Xy — Xy — Xy

M21= — X3 — X3 1—)(3 — X3 (13)
-X, —-X, —X, 1-x,

The determinant of this matrix equals x;, and the inverse
matrix is given by

—1+p(V,=-V,)
p(Vi=V,)

p3(Vl - Vn) > (14)

L+ pn(vl - Vn)

It is clear that applying the SI condition to a solution
mixture will not lead to ideality for the alternative concen-
tration scales. Consequently, it is interesting to note the con-
sequences of SI behavior and their effect on the other activity
coefficients. By taking appropriate derivatives of the expres-
sions in Eq. (3), applying the SI condition for du; [Eq. (11)],
and then equating the results it can be shown that

(& lnfi>sI 0 (& In yi)SI
a.x]‘ T,P ’ z9mj

T’P’mk;tj

=_‘x15

<&1nyi)SI V=V, (19)
Pj /1Py 1-¢;
After integration one finds
S i1 |4
f\iSI:L 11: kMg - iSI:_m (20)
m] + E]H&jmk Vom

for any i on addition of any j component. The zero super-
script indicates a molality or molar volume of the solution
(V,,) before addition of the j component. Therefore, 7, al-
ways decreases, while y; will increase if V;>V,, and vice
versa.
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B. Deviations from ideal solution behavior

KB theory provides a wealth of data on real solutions in
terms of the molecular distributions. Thermodynamically,
real solutions are characterized by activity coefficients. Gen-
eral expressions for changes in the activity coefficients can
be derived and provide further information concerning the
conditions for ideality and how real solutions deviate from
these conditions. Using Egs. (3) and (4), together with a
similar manipulation that led to Eq. (C5), one can show that

RTdIn f;=-2 (Nij_Ekakj)d:uj (21)

j=1 k=1

for any real or ideal solution at constant 7" and P. Alterna-
tively, Eq. (C2) leads directly to

RTdIn y;=- > N}du, (22)
j=2

for i>1 and solutions at constant 7 and P. Here, N;;:N,-j
+m;(1+Ny;=N;—N;;). Finally, Eq. (4) provides

RTdIny,=du} =— 2 Nydp;j=~ > (N;; = m;N;)du;
= =2

(23)

at constant 7" and P. Clearly, the simplest expression for real
solutions uses the molarity, or pseudochemical potential, ap-
proach. Thermodynamically, stable solution mixtures require
#i;=0 and p; <O for all components.34 Therefore, on in-
creasing the concentration of i the molar activity coefficient
of i decreases when N;>0 and N;;<<0, i.e., when self-
association of i dominates, and vice versa. Equations
(21)—(23) can also be used to obtain the expressions provided
in Eq. (19).

Deviations from ideal behavior for an infinitely dilute
solute (2) can be expressed in terms of the KBIs and chemi-
cal potential derivatives,

dlny,\”
—< y2> =(G0202_G§1)+P51
dp, TPy

X 2 pi(Gyi = Gy o (24)

j>2

where a general recursive relationship exists for the deriva-
tives in Eq. (24).” Here, the molar activity coefficient will
tend to decrease if the distribution of solutes around a central
solute (G,,) exceeds the distribution of the primary solvent
(1) around the solute (G,,), but will increase if the distribu-
tion of the other cosolvents (G, j) exceeds the distribution of
the primary solvent around the solute.

It is also possible to rewrite the usual KBI expressions
for binary solutions to emphasize the similarities to the SI
expressions. This is useful as the real partial molar volumes
are often reasonably independent of composition. Changes in
solute activity then dictate the variation of the real KBIs
from the SI expressions. Here, one finds that for real solu-
tions,

J. Chem. Phys. 132, 164501 (2010)

S,=Vi-V,

G =RTky+ ——=, (25)
2 T 1+ 10
S,-V,-V,
G11=RTKT+ 2 ! 1_ f22 ) (26)
1+ f2 pi(1+ fr)

where foy=py»—1=(d1n f5/d In x,)p y and the expression for
G,, can be obtained from a suitable index change. The sec-
ond term on the right hand side (rhs) of Eq. (25) is always
negative and typically dominates the first term. Both the sec-
ond and third terms on the rhs of Eq. (26) can be negative or
positive. Alternatively, one could express the above KBIs
and the deviation from their ideal values using the KB ex-
pression for f22.22 Hence,

Gij=RTkr+ (S, - V- vj)(l +x1p,AG,)
+ 5,1(1 —xi)AGlz. (27)

The above equations illustrate that the expressions for the
KBIs in real solutions are in fact strongly related to the SI
expressions under most reasonable conditions. We also find
that

Gy — (RTky+ 5, =2V,) _Gn- G (28)
i ¢
where the approximation should be valid when the partial
molar volumes do not vary significantly with composition.
The above relationships could be useful for modeling devia-
tions from ideal solution behavior—as obtained using the
Debye—Hueckel theory, for example.

AGp=

C. Molecular dynamics simulations of symmetric
ideal solutions

The KBIs represent integrals over the rdfs between the
various species in solution. The rdfs are closely related to the
potential of mean force (W;;=—RT In g;;) between species
pairs obtained after averaging over all other molecules in the
system, including other i and j molecules. The only way to
gain reliable insights into these rdfs is from integral equation
studies or molecular simulations performed with accurate po-
tentials. Here, we present some of our recent molecular dy-
namics results using force fields specifically designed to re-
produce the experimental KBIs. Two binary systems
displaying close to SI behavior were studied. The first is the
classic example of benzene (BEN) and toluene (TOL). The
second involves mixtures of methanethiol (MSH) and dim-
ethylsulfide (MSM). The resulting KBIs are displayed in
Fig. 1.

Figure 1 clearly demonstrates that the simulations repro-
duce, within the statistical errors, the correct KBIs for both
mixtures. In addition, the values of the integrals are close to
those predicted for SI solutions using the pure molar vol-
umes of 91, 109, 54, and 74 cm?/mol for benzene, toluene,
methanethiol, and dimethylsulfide, respectively. We note that
not all force fields accurately reproduce the experimental
KBIs. 353 The simulated enthalpy of mixing (8H,,) for
the BEN/TOL and MSH/MSM mixtures with x,=0.5 was
0.02(1) and 0.01(1), respectively. The experimental value is
0.03 for the BEN/TOL mixture.”” The corresponding simu-
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FIG. 1. KBIs for mixtures of benzene (1) and toluene (2) at 313 K (top),
methanethiol (1) and dimethylsulfide (2) at 288 K (middle), and methanol
(1) and benzene (2) at 308 K (bottom). The experimental KBIs are displayed
as solid lines for G, (circles), G,, (squares), and G, (triangles), while
dashed lines represent the SI solution results [Eq. (2)], and symbols corre-
spond to the simulation data. The experimental KBIs were determined from
literature data (Refs. 37, 39, and 48) as described previously (Ref. 29-31).

lated values of AG;; were —25(3) and +10(7) cm?/mol for
the two mixtures, compared to —1 and —-10 cm?/mol ob-
served experime,ntally.3&39 All these values indicate close to
perfect SI behavior and provide some confidence in the
simulated rdfs.

The corresponding rdfs for mixtures with x,=0.5 are dis-
played in Figs. 2 and 3. The expected similarity between the
respective rdfs is apparent, although the two solution mix-
tures accomplish this in two different ways. The BEN/TOL
mixture indicates solvation shells which essentially appear at

3 \ \
" N — BEN-BEN |
A — - TOL-TOL
2" | -~ BEN-TOL |
=t
1 —
0 —+—+—+
" P — BEN-BEN |
P — - TOL-TOL
2= 1 « pure ]
::/D B r
on
1 —
0
0 05 1 15

r (nm)

FIG. 2. Center of mass based rdfs obtained from a simulation of benzene (1)
and toluene (2) at 313 K. The rdfs for a mole fraction of x,=0.5 are dis-
played in the top panel. The rdfs for a mole fraction of x,=0.5 are compared
with the distributions obtained for the pure solvents at the same temperature
in the bottom panel.
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3 \
B — MSH-MSH
2 — - MSM-MSM
B YA - MSH-MSM
i | '
1 —
0 —+—
B — MSH-MSH
N —- MSM-MSM
=
=
l —
0
0

r (nm)

FIG. 3. Center of mass based rdfs obtained from a simulation of meth-
anethiol (1) and dimethylsulfide (2) at 288 K. The rdfs for a mole fraction of
x,=0.5 are displayed in the top panel. The rdfs for a mole fraction of
x,=0.5 are compared with the distributions obtained for the pure solvents at
the same temperature in the bottom panel.

the same distances but with small differences in their mag-
nitude. In contrast, the MSH/MSM mixture displays similar
magnitudes for the various solvation shells, but these are
shifted to slightly different » values. In both cases the
changes from the pure solution values are small. The differ-
ent behavior observed for the rdfs in the two solutions can be
explained by the fact that the BEN/TOL system will be
dominated by ring-ring interactions and packing effects
which will be essentially the same for both components.
Hence, the variation of the rdfs with distance is also similar.
However, in the case of MSH/MSM the different sizes of
both molecules has a larger effect and the rdfs become
shifted relative to each other. They display similar peak
heights due to a presumed similarity of their interactions. In
both systems g, is intermediate between g;; and g,, and
further ensures that AG;;=~0.

For comparison, we also included the simulated and ex-
perimental results for a nonideal solution involving a mixture
of one of the above components (BEN) with methanol
(MOH). The KBIs and corresponding rdfs are displayed in
Figs. 1 and 4. Clearly, the experimental KBIs indicate sig-
nificant nonideality, especially at high BEN mole fractions.
This is reproduced by the simulations. The rdfs indicate only
minor changes for the BEN-BEN distribution, but significant
changes in the MOH-MOH distribution. Presumably, these
differences arise from the need for MOH molecules to satisfy
their hydrogen bonding requirements, which leads to a high
degree of self-association at low MOH mole fractions. Simi-
lar trends are observed for mixtures of TOL/MOH, MSH/
MOH, and MSM/MOH.***’

Mixtures of BEN/TOL and, to some extent, MSH/MSM
would be expected to display close to ideal behavior. In con-
trast, the behavior of BEN/MSH mixtures would be more
difficult to predict using basic chemical principles. We per-
formed additional simulations and found that a quaternary
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FIG. 4. Center of mass based rdfs obtained from a simulation of benzene (1)
and methanol (2) at 308 K. The rdfs for a mole fraction of x,=0.5 are
displayed in the top panel. The rdfs for a mole fraction of x,=0.5 are com-
pared with the distributions obtained for the pure solvents at the same tem-
perature in the middle panel. The MOH-MOH rdf is displayed as a function
of methanol mole fraction in the bottom panel.

mixture of BEN/TOL/MSH/MSM at x;=0.25 also displays
near ideal behavior. The results from this simulation are dis-
played in Fig. 5 and Table I. Clearly, the rdfs are somewhat
different and yet they all possess first and second solvation
shells at essentially the same distances, and occur with simi-
lar probabilities. The enthalpy of mixing is negligible
(BH,,,=0.00). Unfortunately, there is no experimental data
for this mixture, but the simulations suggest that this would
be an interesting solution mixture for study and that ideal
behavior is not limited to trivial solutions with a small num-
ber of components.

Finally, in Fig. 6 and Table I we present a comparison of
the simulated and experimental AG;; for all the mixtures con-
sidered here. The simulated, and presumably experimental,
KBIs displayed in Fig. 6 clearly distinguish between ideal
and nonideal behavior. While the simulated values of AG;

J. Chem. Phys. 132, 164501 (2010)

TABLE 1. Simulated and experimental values of AG;; for equimolar binary
and quaternary solutions. (Estimated errors are displayed in parentheses.)

AG;

(cm?/mol)
System Simulated Experimental
n=2
BEN-TOL —25(3) -1
MSH-MSM 10(7) —-10
BEN-MOH 1584(159) 1570
n=4
BEN-TOL —90(6)
BEN-MSH —5(8)
BEN-MSM —52(5)
TOL-MSH —14(13)
TOL-MSM —68(3)
MSH-MSM —43(10)

for the different component pairs can differ from the SI value
of zero, these differences are negligible in comparison with
the changes observed for nonideal solutions—assuming one
has a well parametrized force field. > 1t is possible that
the KBIs or AG;; for solution mixtures may be used to help
define a variety of solution behavior. However, this requires
a detailed analysis of a large number of solution mixtures
and is beyond the scope of the current study.

V. DISCUSSION

In the previous sections we established expressions for
the KBIs, in terms of the isothermal compressibility and mo-
lar volumes of the pure components, which correspond to
ideal solutions using three different concentration scales. The
different ideal solutions all result in the same form for the

KBIs,
G =RTkp- V= V;+8,. (29)

except that when using the molality scale, one takes V;=0
for all G;; and includes a —1/p; term for the Gy, integral,
while for the molarity scale the same molar volume is used

1000

800 - —
L MOH-MOH

600 - —

(cm3/mol)

400 — -

ij

200 -

25 " ‘ ‘
S " — BEN-BEN | — TOL-BEN |
1 — BEN-TOL P — TOL-TOL
r 1 - BEN-MSH [ N TOL-MSH |
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FIG. 5. Center of mass based rdfs obtained from a simulation of a quater-
nary mixture (x;=0.25) of benzene, toluene, methanethiol, and dimethylsul-
fide at 300 K.

FIG. 6. A comparison between the simulated KBIs and the ST KBIs [Eq. (2)]
for the two binary ideal solutions (open circles), one nonideal binary solu-
tion (crosses and labels), and one quaternary solution (filled circles) used in
this study. All data refer to equimolar mixtures.
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(V;=V, and S,=V,) for all species. All the expressions re-
duce to the compressibility equation as ¢;— 1. The use of
V=0 for all KBIs, and the addition of the —1/p; term for
Gy, in Im solutions leads to a description of the solvent as a
continuum characterized by a number density, but no struc-
tural or volume information.

Only the S, term in the KBI expressions for SI and ideal
molal scale (Im) solutions depends strongly on composition
(ky is also composition dependent but only slightly so when
away from critical points). This dependence is the same for
all G;; pairs. The S, term plays no role in the expressions for
either the partial molar volumes or chemical potential deriva-
tives as these involve differences in pairs of KBIs.> % It is
only necessary to obtain the correct expression for the com-
pressibility, as illustrated by Eq. (8). We note that one could
also write S,=(V?)/{V), where the angular brackets denote
an average (using mole fractions) over the different compo-
nents in the solution mixture, and are not to be considered an
ensemble average. Alternatively, S,=(V), if one uses volume
fractions in the averaging.

There are several implications that arise from the KBI
expressions derived above. The Ben-Naim result,?

AGgeal=GU+ij—2G,-j=(), (30)

can be shown to be valid for any number of components and
any ideal solution as long as i,j# 1 in the Im case. The
difference between any two KBIs in ideal solutions is given
by

Gi-(;eal ~G"=V+V,~V,— V;=constant i,j # 1 for Im

(31)

and is zero for ideal molar scale (Ic) solutions. Finally, the
difference between the KBIs for SI and Im solutions is sim-
ply related to properties of the primary solvent,

GI-G'=p\Vi ij#1, (32)

for any number of components. Another situation of interest
arises when all the components except for the primary sol-
vent (1) are present at low concentrations, i.e., when they
would be expected to display some ideal behavior. Here, one
finds that as ¢; — 1,

G =RTkp=V,=V;+V, (33)

for all i and j (except for i=j=1 in the Im case). This may be
particularly relevant for biological systems where the con-
centrations of the peptides and/or proteins of interest are usu-
ally small. However, it should be noted that ideal behavior
for a component appearing at very low concentrations does
not imply that the KBIs adopt the corresponding ideal val-
ues. For example, salts display large positive values for G,,
even at very low salt concentrations.

Experimental and theoretical data on solutions contain-
ing a large number of components are rare. This is especially
true for biological systems. In these situations it is tempting
to assume that many of the components behave ideally and
that one can then use the expressions provided by Eq. (2) for
the ideal components. It is immediately apparent, however,
on examining Egs. (9) and (10) that even if only a couple of

J. Chem. Phys. 132, 164501 (2010)

the components exhibit nonideal behavior, this affects the
KBIs between all of the ideal components as the solutions to
Eq. (10) involve the determinant of the matrix in Eq. (9).
Hence, this type of assumption should be used with care.

The properties of SI solutions and their relationships to
the underlying rdfs and originating potential functions have
been discussed in detail by Ben-Naim.” It should be noted
that all the KBI expressions corresponding to the three ideal
solution types represent thermodynamic models of solution
behavior. This is clear from Egs. (11), (A1), and (B1), which
are thermodynamic statements of ideality, and are not clearly
related to any physical models of the solution. It is tempting
to present simple pictures for the underlying potential or rdfs
which might lead to ideal behavior, but this may not be pos-
sible, especially for Im solutions where V; is zero. This is in
contrast, for example, to the physical model of solution mix-
tures provided by scaled particle theory (SPT),***! or simple
hard sphere potentials. On the other hand, a more physical
model is unlikely to obey all the thermodynamic relation-
ships required by Egs. (4), (5), and (8) for real solutions.

In Figs. 1-3 we provided data for two systems which
approach SI behavior. SI behavior over the whole composi-
tion range is rare. In particular, it is unlikely that any salt will
display ideal behavior since G,, approaches infinity at low
concentrations due to local electroneutrality constraints be-
tween the ions.* Examples of systems exhibiting Im and Ic
behavior appear unlikely, but ideality in urea and water mix-
tures on the molarity scale is observed up to SM—6M urea
(m,~6.5m or x2%0.10).16’43 Here, the activity derivative
presented in Eq. (C6) deviates from unity by less than 4%
over this range. However, the molar volumes of urea and
water are 46 and 18 cm®/mol, respectively, certainly not
identical. Ideal behavior is observed because G,,—G |, varies
from 50 cm®/mol at very low concentrations to
-1 cm?/mol at 5M. Consequently, when the value of G,,
-Gy, is non-negligible the value of p, is small, whereas
when the urea concentration is much larger the above differ-
ence is small. Furthermore, computer simulations of urea and
water mixtures indicate that the g,, and g, rdfs are quite
different and suggest that neither the size of the molecules,
nor the effective interactions between them, could be consid-
ered similar.®® Hence, in our opinion, this is an interesting
system but not a clear example of an Ic mixture.

Finally, we note that there has been some controversy
concerning the interpretation of the KBIs in real and ideal
solutions.**** This has primarily revolved around the exact
meaning of N;; and the comparison of real and SI KBIs. The
results presented here have no bearing on the above issue,
they merely provide the appropriate expressions which can
be used in either case.

VI. CONCLUSIONS

Expressions for the KBIs that lead to ideal solution be-
havior using a variety of concentration scales have been pre-
sented. The relationships are valid for any number of com-
ponents covering the full range of composition. The
expressions for the KBIs are very similar for the different
concentration scales. These expressions correspond to ther-
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modynamic models for solutions which can be used as a
reference for understanding real solution behavior. In addi-
tion, they provide a basis for studying complicated multi-
component systems for which experimental data might not
be available. Computer simulations of BEN/TOL and MSH/
MSM mixtures, both displaying close to SI behavior, indi-
cate that different patterns for the rdfs are obtained in these
systems and suggest that even these solutions exhibit some
variability in their molecular distributions. However, these
differences are small in comparison with the behavior of
nonideal solutions.
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APPENDIX A: IDEAL SOLUTIONS ON THE MOLALITY
CONCENTRATION SCALE

The conditions for ideality depend on the concentration
scale adopted. If one desires ideal behavior on the molality
scale (Im) then the following relationships must hold:

du™ = RTd In m;, (A1)

=8y L =—m, (A2)

7

where the latter is obtained from the Gibbs—Duhem equation
at constant 7 and P.> Clearly, the addition of j has no affect
on the molality of i unless i=j. The above expressions can be
used in the matrix shown in Eq. (9) to obtain the expressions
for the KBIs which are required for ideality on the molality
scale. The only additional problem lies in the fact that solv-
ing Eq. (10) provides only the KBIs to the primary solvent 1,
which occupies a unique position for the molality scale.
However, choosing i=2 and k# 1 in Egs. (5) and (8) pro-
vides a new set of equations which can be solved in the same
way as before to generate expressions for i,j # 1. We will not
present all the matrices in the interest of brevity. The final
results are

n

G™=RTky+5. - 1p,, S.=> pV2,
k=2

G\1 =Gl =RTky—V;+S,, j#1,

G'=RTkr=V;=V;+S,, ij# L. (A3)

The above expressions can be generalized by setting V=0 to
give
GE}“=RTKT— Vi=V;+S,- 5[15J‘IPII’ (A4)

which is valid for any number of components.
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APPENDIX B: IDEAL SOLUTIONS ON THE MOLAR
CONCENTRATION SCALE

Finally, ideality on the molar concentration scale (Ic)
requires the following relationships to hold:

dul=RTd In p;, (B1)

,U«},c =5;—¢;. (B2)
Here, the addition of j affects all the chemical potentials as a
result of a change in solution volume. These can be used in
the matrix shown in Eq. (9) to obtain expressions for the
KBIs which are required for ideality on the molarity scale.
The initial results are

GiS = V{(RTkr= VIS, (B3)
which are valid for any number of components. These ex-
pressions obey Egs. (5) and (8), but give the appearance that
G;;#Gj;, an impossible outcome according to the well
known fluctuation formula for the KBIs,1

(NNY - (NINY 6,
= i i _ 9
=V Ty ) (B4)

Consequently, the expression provided in Eq. (B3) can only
be true if V;=V,, and therefore it is more appropriate to write
Eq. (B3) as

G = Vo(RTxy = Vp)/S, = RTkp = Vy, (B5)

where V, is the same for all components. Hence, all G;; have
to be identical and are independent of composition for ideal
behavior on the molarity scale, a much more restrictive con-
dition than for SI or Im solutions. This extra restriction arises
as the addition of any component j changes the concentration
of all the species through the solution volume. The only way
this change can be the same for all j is if they have the same
molar volumes.

APPENDIX C: PROOF OF THE KBI EXPRESSIONS
FOR IDEAL SOLUTIONS

To demonstrate that Egs. (2), (A4), and (B5) are indeed
correct, we will derive the appropriate expressions for du;
using the different ideal KBIs in solutions containing any
number of components. This ensures that the symbolic ma-
trix inversion was performed correctly. The easiest to prove
is the Ic case. Combining Egs. (4) and (B5), one finds

RTd In p;=du + 2, pj(RTkp— Vo)du. (C1)
j=1

Using the Gibbs—Duhem equation at constant 7" and P, 3 p;
du;=0, the summation term disappears and the required re-
lationship [Eq. (B1)] is obtained.

To prove ideality on the molality scale one can start with
Eq. (4), eliminate du, using the Gibbs—Duhem relationship,
and then convert to molalities using d Inm;=d In p;

—d In p, to provide the following expression:l’B’46
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n
RTd Inm;= 2, (8;+N})du;, (C2)
j=2

for i=2,n. Using the KBIs for Im solutions [Eq. (A4)] one
finds that N};:O for all i,j# 1. Therefore, Eq. (Al) is
obeyed.

Finally, for SI solutions, we start with Eq. (4) and con-
vert to molalities to provide the expression23

RTd In m; = 2 (61] +Nij_ 511 _Nl])dlu’j (C3)
Jj=1

Using the ST KBI expressions presented in Eq. (2) and the
Gibbs—Duhem relation, this reduces to

RTd In m;=dp’" — duy". (C4)

Noting that changes in the mole fractions can be written as
dIn x;=d In m;=2;x,d In mj,47 and using Eq. (C4) leads
gives
RTd Inx;=dp — dus' - 2 x(dp' - du). (C5)
J=1 '

After a further application of the Gibbs—Duhem expression
the above equation reduces to Eq. (11) as required.

One can also demonstrate that the KBI expressions for
SI, Im, and Ic solutions are correct by applying them to the
established relationships for binary solutions. The solute
chemical potential derivatives for a binary system of solvent
(1) and solute (2) are given by2

( Iy ) _ pPLt P2 _ 1
dlnxy)rp pr+pr+pipAG,  1+x0AG),

((?,LQ) R 1
dlnmy)rp 14N, 1+my(l+pAG))’

J 1
)
dlnpy/rpy 1+ p2(Gr—Gyn)

The above derivatives all reduce to unity after inserting the
appropriate expressions for the KBIs. This is also true for the
corresponding expressions describing ternary and quaternary
solutions.”’ Furthermore, the KBI expressions for ideal solu-
tions provided above all lead to the correct expressions for
the partial molar volumes and compressibility for solutions
with any number of components. This can be shown by in-
serting the ideal KBI expressions into Eq. (5) for the partial
molar volumes and into Eq. (8) for the compressibility.
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