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Abstract

Peridynamics is a non-local continuum theory that formulates problems in terms of

integration of interactions between the material points. Because the governing equation

of motion in the peridynamic theory involves only integrals of displacements, rather than

derivatives of displacements, this new theory offers great advantages in dealing with prob-

lems that contain discontinuities. Integration of the interaction force plays an important

role in the formulation and numerical implementation of the peridynamic theory. In this

study two enhanced methods of integration for peridynamics have been developed. In the

first method, the continuum is discretized into cubic cells, and different geometric config-

urations over the cell and the horizon of interaction are categorized in detail. Integration

of the peridynamic force over different intersection volumes are calculated accurately using

an adaptive trapezoidal integration scheme with a combined relative-absolute error control.

Numerical test examples are provided to demonstrate the accuracy of this new adaptive

integration method. The bond-based peridynamic constitutive model is used in the calcu-

lation but this new method is also applicable to state-based peridynamics. In the second

method, an integration method with fixed Gaussian points is employed to accurately cal-

culate the integration of the peridynamic force. The moving least square approximation

method is incorporated for interpolating the displacement field from the Gaussian points.

A compensation factor is introduced to correct the soft boundary effect on the nodes near

the boundaries. This work also uses linear viscous damping to minimize the dynamic ef-

fect in the solution process. Numerical results show the accuracy and effectiveness of this

Gaussian integration method. Finally current research progress and prospective directions

for several topics are discussed.
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Chapter 1

Introduction to the Peridynamic
Theory

Solving problems with cracks is always a big challenge for classic solid mechanics because

the necessary spatial derivatives do not apply to the discontinuities. There is a rich body of

literature on the methods of getting around this difficulty. However, most of these methods

require to know or pre-define the location of the discontinuities which limits their applica-

tions.

Recently, a non-local continuum theory called Peridynamics 1 seems to be promising in

overcoming the aforementioned difficulty. It uses integral equations, instead of derivatives,

to be evaluated within the body. The advantage is obvious, because integration can be

applied to discontinuities without any special mathematical treatment.

Peridynamics assumes the body is composed of material points. Each material point can

interact with neighboring points within a finite distance, called horizon. The interacting

force between two points, called peridynamic force, exists even when they are not in contact.

The first version of peridynamic theory is referred to as bond-based peridynamics to

be distinguished from state-based peridynamics, the latest development of the peridynamic

theory. In bond-based peridynamics, the connection between two interacting material points

is described as a bond and the interaction in one bond is totally independent of all other

local conditions. While in state-based peridynamics, interactions in the neighboring material

1



points pairs have effects on the behavior of the point of interest. Also the concept of

stress tensor is added into state-based peridynamics while it is not necessary in bond-based

peridynamics. Because of the rich literature about both the theory and applications of

bond-based peridynamics, this study chooses the bond-based peridynamic theory as the

research focus.

The paper-based format is used for this thesis. Chapter 1 serves as an overall review

of the bond-based peridynamic theory. Chapter 2 is a published paper: A new adaptive

integration method for the peridynamic theory. Chapter 3 is a journal paper in preparation:

A Gaussian integration with moving least square approximation for the peridynamic theory.

Chapter 4 talks about three future research topics. Chapter 5 is an overall conclusion.

1.1 Equation of motion

Reference configuration is a set containing the initial positions of all material points of the

body, i.e., the configuration at t = 0. For bond-based peridynamics, the acceleration of a

material point at x in the reference configuration at time t is1

ρü(x, t) =

∫
Rx

f [u(x′, t)− u(x, t), x′ − x] dVx′ + b(x, t), ∀x′ ∈ Rx (1.1)

where Rx is a neighborhood of x (Fig. 1.1), dVx′ is an infinitesimal volume associated with

point x′, u is the displacement vector field, b is a prescribed body force density field, ρ

is mass density, and f is the pairwise peridynamic force function whose value is the force

vector (per unit volume squared) that the material point x′ exerts on point x. The bold

letter represents vector. One dot over a letter represents first order time derivative and two

dots over a letter represents second order time derivative, etc.

The governing equation of motion in peridynamics is similar to that of traditional molecu-

lar dynamics (MD) as both of them involve a summation of interactions between neighboring

material points/particals. However, MD employs a discrete description of material where

material is viewed as a collection of individual particles of finite size. Peridynamics is a con-

2



tinuum mechanics and material is viewed as a collection of material points of infinitesimally

small size. As the limit of size approaches zero, the material is a continuum.

Figure 1.1: Rx as a neighborhood of the material point x1.

Two frequently used terms are defined: the relative position, ξ, of two material points

in the reference configuration:

ξ = x′ − x (1.2)

and the relative displacement, η, of two material points in the reference configuration:

η = u(x′, t)− u(x, t) (1.3)

So |ξ| is the undeformed bond length and |ξ+ η| is the deformed bond length as shown in

Fig. 1.2.

It is natural to assume that the peridynamic force can only exist within a finite distance

δ, called horizon. So Rx is actually a sphere neighborhood centered at the material point

x.

By Newton’s Third Law, the force function in Eqn. (1.1) must satisfy the linear admis-

sibility condition:

f(−η, −ξ) = −f(η, ξ) (1.4)

3



Figure 1.2: Relative position ξ and relative displacement η.

Also it is required to satisfy the angular admissibility condition:

(η + ξ)× f(η, ξ) = 0 (1.5)

which means the peridynamic force vector between two material points is parallel to their

current relative position vector η + ξ.

A general form of the peridynamic force function can be concluded from Eqns. (1.4) and

(1.5):

f(η, ξ) = F (η, ξ)(η + ξ), ∀η, ξ (1.6)

where F (η, ξ) is a scalar-valued even function.

1.2 Elasticity

In bond-based peridynamics, elastic behavior (plus failure) is of primary interest. A peri-

dynamic material is called microelastic if1∫
Γ

f(η, ξ) · dη = 0, ∀ closed curve Γ, ∀ξ 6= 0 (1.7)

where dη is the differential vector path length along Γ. This means that the net work done

on any material point x′ due to the peridynamic force with another fixed point x as x′ moves

along any closed path is zero.

4



If f is continuously differentiable in η, then by Stoke’s Theorem, a necessary condition

for Eqn. (1.7) to hold is

∇η × f(η, ξ) = 0, ∀ξ 6= 0 (1.8)

Another consequence of Stoke’s Theorem is that the peridynamic force can be derived

from a scalar micropotential w:

f(η, ξ) =
∂w

∂η
(η, ξ), ∀η, ξ (1.9)

It can be shown that the micropotential depends on the relative displacement vector

η only through the scalar distance between the deformed points2. Thus there exists a

scalar-valued function ŵ such that

w(η, ξ) = ŵ(|η + ξ|, |ξ|), ∀η, ξ (1.10)

Substituting above equation into Eqn. (1.9) yields a general peridynamic force function

for microelastic material:

f(η, ξ) = H(|η + ξ|, ξ)(η + ξ), ∀η, ξ (1.11)

where H is another scalar-valued even function:

H(p, ξ) =
∂ŵ

∂p
(p, ξ), p = |η + ξ|, ∀η, ξ (1.12)

1.3 Linearization

Although large deformation is allowed in the general peridynamic theory, focus of this study

will be given to small deformation. Assume |η| � 1, then the peridynamic force function

can be linearized by carrying out a Taylor expansion of first order to Eqn. (1.6) at (0, ξ)

while holding ξ fixed:

f(η, ξ) = C(ξ)η + f(0, ξ) (1.13)

where C is a second-order tensor, called micromodulus :

C(ξ) =
∂f

∂η
(0, ξ) (1.14)

5



Taking the partial derivative of Eqn. (1.6) with respect to η yields

∂f

∂η
(η, ξ) = ξ ⊗ ∂F

∂η
(η, ξ) + F (η, ξ)1 (1.15)

where ⊗ is the sign of dyadic product which is the tensor product of two vectors and results

in a tensor of order two.

Thus C(ξ) can be expressed as

C(ξ) = ξ ⊗ ∂F

∂η
(0, ξ) + F (0, ξ)1 (1.16)

Recall the condition for microelastic material (Eqn. (1.8)) and take a close look at it:

∇η × f(η, ξ) =

~i ~j ~k
∂

∂η1

∂

∂η2

∂

∂η3
f1 f2 f3

=

(
∂f3
∂η2
− ∂f2
∂η3

)
~i+

(
∂f1
∂η3
− ∂f3
∂η1

)
~j +

(
∂f2
∂η1
− ∂f1
∂η2

)
~k

= 0

which implies
∂fi
∂ηj

=
∂fj
∂ηi

, for i, j = 1, 2, 3 (1.17)

So for a linear material to be microelastic, applying above condition to Eqn. (1.14)

shows that its micromodulus must be symmetric:

C(ξ) = CT (ξ), ∀ξ (1.18)

In general, the micromodulus C derived from Eqn. (1.14) is not symmetric. A necessary

and sufficient condition for it to be symmetric is that there be a scalar-valued even function

λ(ξ) such that1

ξ ⊗ ∂F

∂η
(0, ξ) = λ(ξ)ξ ⊗ ξ (1.19)

where

λ(ξ) =
ξ

|ξ|2
∂F

∂η
(0, ξ) (1.20)

6



Therefore, a symmetric micromodulus takes the form of

C(ξ) = λ(ξ)ξ ⊗ ξ + F (0, ξ)1 (1.21)

and the linearized bond force function takes the general form of

f(η, ξ) = [λ(ξ)ξ ⊗ ξ + F (0, ξ)1]η + f(0, ξ) (1.22)

For a microelastic material, applying Eqn. (1.11) to (1.20) yields

λ(ξ) =
1

|ξ|
∂H

∂p
(|ξ|, ξ), p = |ξ + η| (1.23)

So the linearized peridynamic force function for a microelastic material is

f(η, ξ) =

[
1

|ξ|
∂H

∂p
(|ξ|, ξ) +H(0, ξ)1

]
(ξ ⊗ ξ)η + f(0, ξ) (1.24)

1.4 Areal force density

The bond-based peridynamic theory can be related with the classic elasticity theory through

the concept of force per unit area. Assume an infinite body R undergoes a homogeneous

deformation. Choose a point x in R and let a plane normal to unit vector n pass through

x to divide the body into two parts R− and R+ (Fig. 1.3):

R+ = {x′ ∈ R : (x′ − x) · n ≥ 0}, R− = {x′ ∈ R : (x′ − x) · n ≤ 0} (1.25)

Let L be the following set of colinear points:

L = {x̂ ∈ R− : x̂ = x− sn, 0 ≤ s <∞} (1.26)

The areal force density, τ (x, n) is defined at x in the direction of n1:

τ (x, n) =

∫
L

dl̂

∫
R+

f(u′ − û, x′ − x̂)dVx′ (1.27)

where d l̂ represents differential path length over L .

7



Figure 1.3: Definition of areal force density τ .

For such a homogeneous deformation, a meaningful representation of a stress tensor σ

independent of x can be proposed1:

τ (x, n) = σn, ∀n (1.28)

This stress tensor is a Piola-Kirchhoff stress tensor because τ is force per unit area in the

reference configuration.

1.5 Unstressed configuration

The restriction on the scalar-valued function F can be found by calculating the areal force

density of a microelastic material at unstressed configuration. A configuration is said to be

unstressed if1

τ (x, n) = 0, ∀n (1.29)

Let an orthonormal basis {e1, e2, e3} be given. Set x = 0, n = e1, η = 0, then by Eqn.

(1.26)

x̂ = −se1 (1.30)

hence

ξ = x′ − x̂ = x′ + se1 (1.31)

8



also from Eqn. (1.6)

f(η, ξ) = f(0, ξ) = F (0, ξ)ξ (1.32)

Now calculate the areal force density τ in the e1 direction using Eqn. (1.27):

τ(0, e1) =

∫ ∞
0

∫
R+

F (0, x′ + se1)(x′ + se1)dVx′ds (1.33)

By carrying out a change of variables with spherical coordinate (Fig. 1.4):

ξ1 = r cosθ, ξ2 = r sinθ cosφ, ξ3 = r sinθ sinφ (1.34)

Eqn. (1.33) becomes

τ(0, e1) =

∫ ∞
0

∫
R+

F (0, x′ + se1)(x′ + se1)dVx′ds

=

∫ ∞
0

∫ r

0

∫ cos−1(s/r)

0

∫ 2π

0

F (0, r)(r cosθ)r2 sinθ dφ dθ ds dr

=
2π

3

∫ ∞
0

F (0, r)r4 dr

= Ψ (1.35)

Because of Eqn. (1.29), the restriction on F for an unstressed reference configuration is

Ψ = 0 (1.36)

1.6 Fixed Poisson’s ratio for bond-based peridynamic

material

Because the principle of bond-based peridynamics involves only two-particle interactions, it

is inevitable that all bond-based peridynamic materials (a “Cauchy crystal”) have a fixed

Poisson’s ratio of 1
4

1. This can be explained by comparing the stress tenor out of the areal

force density with the classic stress tensor out of the same given strain of a linear microelastic

bond-based peridynamic body.

Let an orthonormal basis {e1, e2, e3} be given. Assume an infinite linear microelastic

body is unstressed in the reference configuration and undergoes a homogeneous deformation

9



Figure 1.4: Change of variables1.

given as u1 = c11x1, u2 ≡ u3 ≡ 0. By Eqns. (1.2) and (1.3), η1 = c11ξ1, η2 ≡ η3 ≡ 0.

Substituting these into Eqn. (1.22) yields

f(η, ξ) =

λ(ξ)

 ξ2
1 ξ1ξ2 ξ1ξ3

ξ2ξ1 ξ2
2 ξ2ξ3

ξ3ξ1 ξ3ξ2 ξ2
3

+ F (0, ξ)

 1 0 0
0 1 0
0 0 1




η1

η2

η3


=


c11[λ(ξ)ξ3

1 + F (0, ξ)ξ1]
c11λ(ξ)ξ2

1ξ2

c11λ(ξ)ξ2
1ξ3

 (1.37)

Use f1, f2, f3 to denote the three components of the above peridynamic force. The nine

components of the stress tensor σ at the origin are given as

σij = τj(ei) =

∫
L

∫
R+

fi dVx′dl̂, for i, j = 1, 2, 3 (1.38)

The derivation of the first three components of σ are given here using the change of
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variables rule in Eqn. (1.34):

σ11 = τ1(e1)

=

∫
L

∫
R+

f1 dVx′dl̂

= c11

∫ ∞
0

∫ r

0

∫ cos−1(s/r)

0

∫ 2π

0

[
λ(r)(r cos θ)3 + F (0, r)(r cosθ)

]
r2 sinθ dφ dθ ds dr

= c11

[
2π

5

∫ ∞
0

λ(r)r6 dr +
2π

3

∫ ∞
0

F (0, r)r4 dr

]
= c11(Λ + Ψ) (1.39)

σ12 = τ2(e1)

=

∫
L

∫
R+

f2 dVx′dl̂

= c11

∫ ∞
0

∫ r

0

∫ cos−1(s/r)

0

∫ 2π

0

[
λ(r)(r cos θ)2 r sinθ cosφ

]
r2 sinθ dφ dθ ds dr

= 0 (1.40)

σ13 = τ3(e1)

=

∫
L

∫
R+

f3 dVx′dl̂

= c11

∫ ∞
0

∫ r

0

∫ cos−1(s/r)

0

∫ 2π

0

[
λ(r)(r cos θ)2 r sinθ sinφ

]
r2 sinθ dφ dθ ds dr

= 0 (1.41)

where notations of

r = |ξ|

Λ =
2π

5

∫ ∞
0

λ(r)r6 dr (1.42)

are used and Ψ = 0 as defined in Eqn. (1.36).

Similar calculation for the other six components of σ can be done. For example, to

calculate the components in e2 direction, the change of variables rule in Eqn. (1.34) needs

be changed to

ξ1 = r sinθ sinφ, ξ2 = r cosθ, ξ3 = r sinθ cosφ (1.43)

11



Thus the stress tensor σ at the origin under small homogeneous deformation is

[σ] = c11


Λ 0 0

0
Λ

3
0

0 0
Λ

3

 (1.44)

The stress tensor with the given strain can also be calculated by the classic theory of

elasticity:

[σ] =

 λ+ 2µ λ λ
λ λ+ 2µ λ
λ λ λ+ 2µ


c11

0
0


= c11

 λ+ 2µ 0 0
0 λ 0
0 0 λ

 (1.45)

where λ is the Lamé constant and µ is the shear modulus.

Comparing Eqns. (1.44) and (1.45) yields

ν =
1

4
, E =

5Λ

6
, µ =

Λ

3
(1.46)

This means for a linear microelastic bond-based peridynamic material undergoing small

homogeneous deformation, the value of Poisson’s ratio is fixed to 0.25 and the term Λ in

Eqn. (1.42) which is not directly measurable is linked to other easily measurable material

properties.

1.7 Prototype Microelastic Brittle material

A simple example of bond-based peridynamic material, called the Prototype Microelastic

Brittle (PMB) material, is often used to illustrate the bond-based peridynamic theory. The

bonds in PMB material have some similar properties as mechanical springs:

(1) The bond stretch s is the ratio of the peridynamic force f to the bond stiffness c, called

spring constant.
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(2) The bond breaks when the bond stretch reaches a critical limit s0, called critical stretch.

Once the bond fails, it cannot be recovered which makes the bond stretch history-

dependent.

(3) Bond will not fail in compression.

For a PMB material, the scalar-valued function H in Eqn. (1.11) is now a linear function

of spring constant c and bond stretch s. Hence the peridynamic force function for a PMB

material is

f(η, ξ) = c s µ(ξ)
η + ξ

|η + ξ|
(1.47)

where the bond stretch s is defined as

s =
|η + ξ| − |ξ|

|ξ|
(1.48)

and µ is a history-dependent scalar-valued function that equals either 1 or 0 depending on

the bond broken status:

µ(ξ) =

{
1, if s < s0

0, otherwise
(1.49)

The spring constant c can be expressed in terms of known material properties using the

concept of areal force density. Consider an infinite body undergoes homogeneous deforma-

tion where the bond stretch s is constant for all ξ. Let ξ = |ξ|, and η = |η|. Because

η = sξ, by Eqn. (1.47) the scalar-valued function H is now

H = c s =
c η

ξ
(1.50)

The micropotential in a single bond can be computed by Eqn. (1.9):

ŵ =

∫
H dη =

∫
c η

ξ
dη =

c η2

2ξ
=
c s2 ξ

2
(1.51)

Integrating the micropotential over the whole horizon sphere to find the total elastic

energy at a given material point (i.e., the local elastic energy density):

W =
1

2

∫
Rx

w(η, ξ) dVx′ (1.52)
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where the factor of 1/2 means each material point in one bond pair shares half of the energy.

Substituting Eqn. (1.51) into (1.52) and integrating using the spherical coordinate yields

W =
1

2

∫ δ

0

(
cs2ξ

2

)
4πξ2 dξ =

πcs2δ4

4
(1.53)

This is required to equal the strain energy density in the classic theory of elasticity at

the given strain:

εij = δijs (1.54)

σij = 2µεij + λδijεkk (1.55)

or in matrix form

ε =

 s 0 0
0 s 0
0 0 s


σ =

 (2µ+ 3λ)s 0 0
0 (2µ+ 3λ)s 0
0 0 (2µ+ 3λ)s


The elastic strain energy density in the classic theory is

W =
1

2
σijεij =

1

2
· (2µ+ 3λ)s · s · 3 = 3Es2 =

9Ks2

2
(1.56)

where ν = 1/4 is being used to get the following variables:

µ =
E

(2 + 2ν)
=

2E

5
(1.57)

λ =
Eν

(1− 2ν)(1 + ν)
=

2E

5
(1.58)

K =
E

3(1− 2ν)
=

2E

3
(1.59)

Comparing Eqns. (1.53) and (1.56) yields the spring constant c for a PMB material:

c =
18K

πδ4
(1.60)

For a PMB material, a yield point is defined when the bond stretch reaches certain

extent:

sy =
σy
2E

(1.61)
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where σy is the tensile yield strength, and E is the modulus of elasticity.

A schematic diagram of the peridynamic force versus bond stretch for the PMB material

is shown in Fig. 1.5.

Figure 1.5: Peridynamic force vs. bond stretch for microelastic material.

1.8 Numerical discretization and implementation

In the numerical implementation, the body is discretized into an array of grid points called

nodes (Fig. 1.6). Most published work used uniform grid for convenience. The distance

∆x between two nearest neighboring nodes is called the grid spacing. Each node possesses

a cube of mass with side length equals one grid spacing. The node of interest is referred to

as the source node. All the neighboring nodes in the horizon are referred to as the family

nodes of the source node. All the bonds connecting the source node and the family nodes

are referred to as the family bonds of the source node.

The discretized form of the general peridynamic force function (Eqn. (1.1)) replaces the

integral by a finite summation:

ρüni =
M∑
j=1

f(unj − uni , xj − xi)(∆x)3 + bni (1.62)
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where n is the number of time step, node i is the source node, node j is one of the M family

nodes of node i, and (∆x)3 is the volume of node j. Also an abbreviation of uni = u(xi, t
n)

is used.

Figure 1.6: Spacial discretization of a cubic grid.

An explicit central difference formula is used to calculate the acceleration in Eqn. (1.62)

üni =
un+1
i − 2uni + un−1

i

∆t2
(1.63)

where ∆t is a stable time step which is smaller than the critical time step ∆tc defined as

∆tc =
(|ξ|)min
(ck)max

(1.64)

where (|ξ|)min is the smallest bond length in the body, and (ck)max is the highest bulk sound

speed which is defined by the square root of the ratio of bulk modulus to material density.

In the program, a safety factor smaller than 1 (usually 0.8) is used for stability:

∆t = βsafe ∆tc (1.65)

1.9 Loading and boundary conditions

The general equation of motion (Eqn. (1.1)) shows that there is no necessary natural

boundary condition involved. Some literature3,5 explains in detail why the concept of trac-
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tion boundary condition could only be supplied through the body force density b. Some

different thoughts about this topic are discussed in Chapter 4.

All the derivation and calculation done in the above sections are based on the assumption

that the point/node of interest is located inside an infinite body, i.e., its horizon sphere is

fully inside the body. When dealing with problems with finite body, there exists a soft

boundary effect for the boundary points/nodes. This is because the point/node near the

boundary will have its horizon sphere partially outside the body, thus the integration in

Eqn. (1.52) will lose some contributions from the non-existing material points which are

in the horizon sphere but out of the body. Therefore the elastic energy density for the

boundary node would be smaller compared with that for an interior node if bond stiffness

is defined the same way for the boundary node and the interior node. To maintain the

same level of elastic energy for both the boundary node and interior node, a larger value

of spring constant (bond stiffness) for the boundary node is required to compensate for

smaller contributing integration volume. A compensation factor larger than 1 is introduced

in Chapter 3 to minimize the soft boundary effect.

The conventional prescribed displacement and velocity boundary conditions do apply to

bond-based peridynamics. To minimize the soft boundary effect, they should be applied on a

certain number of layers under the boundary surface. Based on experience from simulations,

a suitable number of layers should be equal or comparable to the ratio of the horizon radius

to the grid spacing. This will be explored further in Chapter 3.
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Chapter 2

A New Adaptive Integration Method
for the Peridynamic Theory 1

Abstract

Peridynamics is a new formulation of solid mechanics based on direct interactions between

material points in a continuum separated by a finite distance. Integration of interactions

between material points plays a crucial role in the formulation of peridynamics. To overcome

the deficiencies in numerical integration methods for peridynamics in the literature, the

work presented here focuses on a new method of numerical integration for the peridynamic

theory. In this method, the continuum is discretized into cubic cells, and different geometric

configurations over the cell and the horizon of interaction are classified in detail. Integration

of the peridynamic force over different intersection volumes are calculated accurately using

an adaptive trapezoidal integration scheme with a combined relative-absolute error control.

Numerical test examples are provided to demonstrate the accuracy of this new method. The

bond-based peridynamic constitutive model is used in the calculation but this new method

is also applicable to state-based peridynamics.

1K Yu, X J Xin and K B Lease 2011 Modelling Simul. Mater. Sci. Eng. 19 045003
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2.1 Introduction

Problems involving crack growth and damage are fundamental and important in solid me-

chanics. The partial differential equations in the classic theory are incompatible with the

discontinuities because the spatial derivatives needed by those equations are undefined along

the crack tips or crack surfaces. A non-local theory called peridynamics has been developed

by Silling in an attempt to overcome the aforementioned difficulty1. In peridynamics the

classic partial differential equations are replaced with integral equations so that the same

equations hold true anywhere in the body, including crack tips and surfaces.

The peridynamic theory has been applied successfully to crack and damage problems

such as high speed impact damage2, low speed impact damage in composite laminates3,

and dynamic crack branching in brittle materials4. A meshfree method to numerically im-

plement the peridynamic theory was proposed in5 where the parameters characterizing a

bond-based peridynamic material are connected to bulk modulus and energy release rate.

Kilic et al 6 applied bond-based peridynamics to brazed single-lap joints and showed that the

peridynamic theory can capture crack propagation without any additional damage criteria.

The peridynamic theory also serves as a nice framework that allows for other constitutive

models. Boraru et al 7,8 introduced van der Waals interactions into the peridynamic model

to deal with deformation and damage in membranes and nanofibers. Gerstle et al 9,10 added

pairwise peridynamic moments into the peridynamic model to create the micropolar peridy-

namic model for quasistatic simulation of damage and cracking in concrete structures. Kilic

et al 11 introduced a response function which involves an internal length l. This internal

length is used to create a non-linear response to the interaction distance to measure non-

local behavior. The response function with the peridynamic theory is able to predict crack

growth patterns in quenched glass plates12 and the damage in center-cracked composite

laminates13. The convergence of peridynamics has been studied in14,15 which show that a

peridynamic model of an elastic material converges to classic model as the length scale hori-

zon goes to zero. Numerical analysis for the bond-based peridynamic model can be found
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in16,17. In particular, simulations using the finite element method are developed in18,19. In

the recent years, the peridynamic theory has been advanced from the original bond-based

peridynamics to state-based peridynamics20 which removes the restriction of a constant

Poisson’s ratio of 1
4

and introduces the classic concepts of stress and strain. These new

developments also allow the peridynamic theory to handle dynamic fracture problems21,22.

In the literature, research on the peridynamic theory has been focused mostly on dy-

namic material behavior rather than fundamental mechanics problems involving stress and

strain calculations, and published methods of numerical integration1,2,5 yield poor stress re-

sults. In this work, a new integration method is developed which allows for a more accurate

integration of the governing equation in peridynamics and the calculation of stresses and

strains with predetermined accuracy. Applications of the method to some simple test exam-

ples have been presented in23. In this paper, the adaptive integration method is described

in detail with the bond-based peridynamic model. Numerical results using the adaptive

integration are compared with closed form solutions to validate the method.

The paper is organized as follows: Section 2.2 gives a brief overview of bond-based peri-

dynamics. Section 2.3 discusses two deficiencies in the published method of numerical inte-

gration in peridynamics. Section 2.4 presents the new adaptive integration method, which

involves categorization of geometric configuration and adaptive integration using trapezoidal

rule with error control. In Section 2.5, the integration of the volume of a sphere and an infi-

nite body subjected to three different stress states are solved using the adaptive integration

method developed in this work, and the results are compared with closed form solutions

and numerical results using previously published method. Finally, Section 2.6 gives the

conclusions and suggestions for further work.

2.2 A brief review of bond-based peridynamics

This section gives a brief review of bond-based peridynamics, including basic equation of

motion, definition of horizon, prototype microelastic brittle material, definition of areal force
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density, and the numerical implementation of peridynamics.

In bond-based peridynamics1,5 a solid body is viewed as a collection of material points.

Each point interacts with others within a finite distance δ called the horizon (figure 2.1).

The pairwise interaction between two points exists even when they are not in contact. This

physical interaction is referred to as the bond, which has a close analogy to a mechanical

spring.

In bond-based peridynamics, the equation of motion for point i in the reference config-

uration at time t is defined as

ρü(xi, t) =

∫
Hi

f [u(xj, t)− u(xi, t), xj − xi] dVj + b(xi, t) ∀j ∈Hi, (2.1)

where Hi is a spherical neighborhood of points that interact with point i, dVj is an infinites-

imal volume associated with point j, x is the position vector field, u is the displacement

vector field, b is a prescribed body force density field, ρ is the mass density, and f is the

pairwise peridynamic force (henceforth referred to as the PD force) function whose value is

the force vector (per unit volume squared) that point j exerts on point i.

Figure 2.1: Material point i has peridynamic force with other points within a spherical
neighborhood.

There are two frequently used terms in the peridynamic theory: the relative position ξ

of two material points i and j in the reference configuration

ξ = xj − xi (2.2)
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and the relative displacement η

η = u(xj, t)− u(xi, t). (2.3)

So |ξ| and |η+ ξ| represent the initial and current length of the bond, respectively.

The horizon, which is a distance limit that any two material points can interact, is

defined as

δ = {∀ |ξ| > δ : f(η, ξ) = 0}. (2.4)

A simple and useful type of bond-based peridynamic material is called the Prototype

Microelastic Brittle (PMB) material5. Bonds in PMB material behave like mechanical

springs:

(1) The current bond stretch s is defined as the ratio of PD force and bond stiffness c, or

spring constant.

(2) Damage is introduced by bond breakage. The bond breaks when the bond stretch

reaches a critical limit s0, or critical stretch. Once the bond fails, it cannot be recovered.

Bonds will not fail in compression.

The material property of PMB material is characterized by two parameters: spring

constant c and critical bond stretch s0. For a PMB material, the PD force function f is a

linear function of the current bond stretch, which also serves as the constitutive model:

f(η, ξ) = c · s(|η + ξ|, |ξ|) · µ(ξ) · η + ξ

|η + ξ|
, (2.5)

where spring constant c is defined as5

c =
18K

πδ4
, (2.6)

where K is the bulk modulus and the current bond stretch s is defined as

s(|η + ξ|, |ξ|) =
|η + ξ| − |ξ|

|ξ|
, (2.7)
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and µ(ξ) is a history-dependent scalar-valued function that equals either 1 or 0 depending

on the bond breakage status:

µ(ξ) =

{
1 for s < s0,
0 otherwise.

(2.8)

The bond-based peridynamic theory can be related to classic elasticity theory through

the concept of force per unit area. Assume an infinite body R undergoes a deformation.

Choose a point x and a unit vector n at x and let a plane pass through x to divide the

whole body into two parts: R− and R+ (figure 2.2):

R+ = {x′ ∈ R : (x′ − x) · n ≥ 0}, (2.9)

R− = {x′ ∈ R : (x′ − x) · n ≤ 0}. (2.10)

And let L be the following set of colinear points:

L = {x̂ ∈ R− : x̂ = x− pn, 0 ≤ p <∞}. (2.11)

The areal force density τ (x, n) at x in the direction of unit vector n is defined as1

τ (x, n) =

∫
L

∫
R+

f(u′ − û, x′ − x̂)dVx′ dl̂, (2.12)

where d l̂ represents the differential path length over L .

Figure 2.2: Definition of areal force density τ (x, n).
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A meaningful representation of a stress tensor σ can be proposed1:

τ (x, n) = σn ∀n. (2.13)

This stress tensor is a Piola-Kirchhoff stress tensor since τ (x, n) is force per unit area in

the reference configuration.

In the literature, a meshfree code named EMU 2 has been developed to implement the

peridynamic theory. In this implementation the domain of interest is discretized into a

cubic lattice system. Each cubic cell contains a representative point at the mass center

called a node. Generally all cubes have the same size so all nodes together form a uniform

grid system. The distance between two nearest neighboring nodes is called the grid spacing,

denoted as ∆x.

For convenience, the node of interest is referred to as the source node. According to

the peridynamic theory, the family nodes of the source node is a set of nodes which have

peridynamic interaction with the source node. Following (2.4), the family nodes form a

spherical neighborhood (henceforth referred to as the horizon sphere) centered at the source

node with radius equals to the horizon. A horizon of three times the grid spacing has been

suggested in5.

For numerical integration, the equation of motion at the source node i can be discretized

to

ρüi =
∑
j

∫
f(uj − ui, xj − xi) dVj + bi ∀j ∈Hi, (2.14)

where Hi is the horizon sphere of node i and an abbreviation of u = u(x, t) is used. For

each family node j in Hi, the integration is carried out over the cell volume of node j which

may be fully or partially in the horizon sphere. Equation (2.14) is the discretized form of the

equation of motion corresponding to the continuum form in (2.1). For the PMB material,

the PD force function f is supplied by (2.5).

Because the principle of bond-based peridynamics involves only two-particle interactions,

it is inevitable that all bond-based peridynamic materials (a “Cauchy crystal”) have a fixed

Poisson’s ratio of 1
4

5. A further development of the theory removes this restriction20.
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2.3 Deficiencies in the existing numerical implementa-

tion of peridynamics

There are two deficiencies in the existing implementation of peridynamics presented in1,2,24

that may prevent it from achieving accurate and consistent results:

(1) Theoretically, all material points inside the horizon sphere should be included in the

calculation of PD force. The implementation in1,2, however, counts each cell as either

entirely in or entirely out of the horizon, and thus results in an inaccurate accounting

of material points. Consider a grid of ∆x = δ/3. Figure 2.3(A) shows all the family

nodes (solid dots) counted by the existing implementation1,2 in a projection view where

the circle represents the horizon sphere and the square grids represent the cells of the

nodes. Because only cells with their center nodes inside the horizon sphere (solid dots)

are considered family nodes, the partial cell areas (denoted with horizontal line pattern)

whose center nodes are located outside the horizon sphere (open dots) are omitted.

Since the omitted volume contains material points that are part of the horizon sphere,

the summation in (2.14) excludes partial cell volumes represented by open dots. Grid

refinement may reduce the error, but the problem remains.

Figure 2.3: (A) Accounting of the family nodes by the numerical implementation presented
in1,2, (B) The volume of the quarter horizon sphere calculated by the cubic-cell integration.
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(2) The three-dimensional integration in (2.14) is performed using a one-point integra-

tion2,24:

ρüi =
∑
j

[
f(uj − ui, xj − xi) · β(∆x)3

]
+ bi ∀j ∈Hi, (2.15)

where (∆x)3 is the cell volume and β is the volume reduction factor defined as

β =


1 for |ξ| ≤ δ − 0.5∆x,

δ + 0.5∆x− |ξ|
∆x

for δ − 0.5∆x < |ξ| ≤ δ + 0.5∆x,

0 otherwise.

(2.16)

For convenience in description, the integration method as presented in1,2,24 is referred to

as cubic-cell integration. Figure 2.3(B) illustrates the cubic-cell integration method when

|ξ| is within the range of δ − 0.5∆x and δ + 0.5∆x, i.e., the cubic cell is partially in the

horizon sphere. In the figure, the circular arc represents a quarter of the horizon sphere.

The volume of the quarter sphere calculated by the cubic-cell integration is marked as the

dark shaded area. The volume missed in the calculation is marked as the horizontal line

patterned area. For family node 1, a small extra volume is added to the actual intersection

volume. For family node 2, the cubic-cell integration overcompensates the missing volume

in the cell with the calculated volume (vertical slashed area). For node 3, since it is not

counted as a family node, its cell contributes nothing to the integration. Partial cell volumes

of three other nodes (represented by unnumbered open dots) in the figure are also excluded

from the calculation. Such an approximation in counting the volume integration elements

leads to poor accuracy of the numerical peridynamic model.

2.4 A new method of adaptive integration with error

control

In this section, researches on method of volume integration for peridynamics are reviewed

briefly, and the new adaptive integration method with error control are presented in detail.

The key to improving the accuracy in the numerical implementation of peridynamics is

to evaluate the integration in (2.14) properly. Kilic et al 11 recently introduced a volume
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integration scheme to solve the discretized peridynamic equation of motion. In this scheme,

the solution domain is discretized into hexahedral subdomains. Shape function transforma-

tion13 is used to transform the volume integration over the subdomains with different shapes

into one same equation. Then the Gaussian integration method with 2 × 2 × 2 Gaussian

points is utilized to solve the volume integration.

The work presented here employs a systematic categorization of geometric configurations.

This bears some resemblance to the recent advances in the XFEM method in that both

identify the intersection configurations of cutter interfaces/elements and cut elements. Fries

et al 25,26 used different decomposition strategies for different geometric configurations. If a

quadrilateral reference element is cut by a discontinuity, then this element is divided into

two triangles and standard Gaussian integration is used to carry out the integration. If an

element contains a crack tip, then this element is divided into six triangles and an “almost

polar integration” method is employed. Tabarraei et al 27 divided the intersected physical

elements into sub triangles such that the crack does not intersect any triangle. Mayer et

al 28 proposed an interface algorithm which performs an intersection test on all candidates

with the corresponding XFEM elements to find the intersection points and computes an

appropriate subdivision for each intersected element.

The new adaptive integration method proposed here is focused on a more accurate nu-

merical integration of (2.14), i.e., the integration is calculated over the intersection volume

with controlled accuracy. First, the counting of family nodes is modified. Second, a system-

atic categorization of all possible geometric configurations relating the cells of family nodes

to the horizon sphere of the source node is conducted. For each category, examples are cho-

sen to illustrate the scheme of identifying the intersection points/curves between family node

cells and horizon sphere. Although the current method of categorization works for uniform

grid only which is commonly used in practice, it is not difficult to extend to non-uniform

grid. Third, integration using the trapezoidal rule and a combined relative-absolute error

control is employed to carry out the integration in (2.14). For convenience in description,
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Figure 2.4: Modified accounting of family nodes (solid dots) by the adaptive integration.

the new integration method is referred to as adaptive integration.

2.4.1 Modification of counting the family nodes

To integrate (2.14) accurately, the family nodes must be counted properly. Besides all the

nodes fully inside the horizon sphere, the adaptive integration also considers those nodes

which are out of the horizon sphere and yet with cell volumes intersecting the horizon sphere

as family nodes. For every node, the shortest distance from the source node to the cell

associated with that node is calculated. If the distance is smaller than the horizon, then

the cell has volume inside the horizon sphere and the node is considered a family node. The

newly-evaluated family nodes are shown in figure 2.4.

2.4.2 Categorization of geometric configurations

The integration limits in the three coordinate directions need to be determined to evaluate

the integral in (2.14). For cells fully inside the horizon sphere, the integration limits in

the X (Y or Z) direction are simply the coordinates of the projection of the two opposite

cell walls normal to X (Y or Z) onto the X (Y or Z) axis. For cells partially inside the

horizon, the limits are more difficult to calculate and are described in detail below. Two

terms are defined: the family coordinate is used to denote the local coordinate centered at

the source node, and the first octant is used to denote the octant with all three positive
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family coordinates. Various possibilities of geometric configuration can be classified into

two categories defined as follows. All the calculations are based on the family coordinate

system.

Geometric configuration type one.

This type is for the configuration when the family node is located on one axis of the family

coordinate. Without loss in generality, assume family node j is on the Z+ axis of the family

coordinate and its coordinates are given as (xj1, x
j
2, x

j
3). Because of its location on the family

coordinate axis, xj1 = xj2 = 0. There are three subtypes of possible configurations between

node i and j. Defining ξ = |ξ| = |xj3|, the three subtypes are stated as (recall δ is the

horizon and ∆x is the grid spacing):

Subtype 1: ξ − 0.5∆x < δ < [(ξ − 0.5∆x)2 + 0.25∆x2]1/2,

Subtype 2: [(ξ − 0.5∆x)2 + 0.25∆x2]1/2 ≤ δ ≤ ξ + 0.5∆x,

Subtype 3: ξ + 0.5∆x < δ < [(ξ + 0.5∆x)2 + 0.25∆x2]1/2.

Figure 2.5: Projection of the cell of family node j onto X-Z plane for three subtypes of
geometric configuration type one. (A) Subtype 1, (B) subtype 2, (C) subtype 3.

These three subtypes are illustrated in figure 2.5. Because of the relative position of

nodes i and j, the intersection (dark shaded area in figure 2.5) between the cell and the

horizon sphere is symmetric in the X and Y directions.
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Figure 2.6: Possible geometric configurations for three subtypes of type one. (A) Subtype
1, (B) subtype 2, (C) subtype 3, (D) projection of the intersected horizon sphere surface on
the right face of the cell.

(1) Figure 2.6(A) depicts a possible geometric configuration for subtype 1. The intersection

volume is formed by vertices A-B-C-D-E. The integration is carried out by integrating

the Z direction first and the X direction last.

The equation of circle A-B-C-D is found by solving the equations of the horizon sphere

and the left face of the cell: {
X2 + Y 2 + Z2 = δ2

Z = xj3 − 0.5∆x
(2.17)

which yields {
X2 + Y 2 = δ2 − (xj3 − 0.5∆x)2

Z = xj3 − 0.5∆x
(2.18)

where X and Y are restricted by the boundary of the cell: xj1−0.5∆x ≤ X ≤ xj1 +0.5∆x

and xj2 − 0.5∆x ≤ Y ≤ xj2 + 0.5∆x.

The X coordinates of intersection points B and D are found by solving the equations
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of circle A-B-C-D and the central cross-section plane which yields

xB1 =

√
δ2 − (xj3 − 0.5∆x)2, (2.19)

and

xD1 = −
√
δ2 − (xj3 − 0.5∆x)2. (2.20)

The integration of (2.14) for the geometric configuration shown in figure 2.6(A) is there-

fore written as

I =

∫ xB1

xD1

∫ √δ2−(xj3−0.5∆x)2−X2

−
√
δ2−(xj3−0.5∆x)2−X2

∫ √δ2−X2−Y 2

xj3−0.5∆x

f(η, ξ) dZdY dX, (2.21)

where dZdY dX is the infinitesimal volume associated with the integration point within

the intersection volume.

(2) One possible geometric configuration for subtype 2 is shown in figure 2.6(B). The inter-

section volume is formed by vertices A-B-C-D-E-F -G-H. Because all the intersection

points are on the edges, the integration of (2.14) is written as

I =

∫ xj1+0.5∆x

xj1−0.5∆x

∫ xj2+0.5∆x

xj2−0.5∆x

∫ √δ2−X2−Y 2

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.22)

(3) Figure 2.6(C) shows a possible geometric configuration for subtype 3. The intersection

can be divided into seven parts. Because of the symmetry in the X and Y direction,

part 1-4 are similar. For example, part 1 integrates over the volume formed by vertices

A-D-P -E-H-R, part 2 is symmetric to part 1 in the X direction and integrates over

the volume formed by vertices B-C-Q-F -G-C, etc. Part 5 integrates over the volume

formed by vertices D-P -D′-P ′-H-R-H ′-R′, and part 6 is symmetric to part 5 in the X

direction and integrates over the volume formed by vertices C-Q-C ′-Q′-G-S-G′-S ′. Fi-

nally part 7 integrates over the volume formed by vertices P -Q-P ′-Q′-R-S-R′-S ′. Again

the integration is carried out by integrating the Z direction first and the X direction

last.
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Figure 2.6(D) is the projection view of the horizon sphere surface intersected by the

node cell. To define the integration limits for the Y direction, the equation of curve

Q-C needs to be solved. It is actually a part of the intersection line between the horizon

sphere and the right face of the cell:{
X2 + Y 2 = δ2 − (xj3 + 0.5∆x)2

Z = xj3 + 0.5∆x
(2.23)

To define the integration limits for the X direction, the X coordinates of the intersection

points Q and P need to be solved. Since point Q is also located on the horizontal edge,

its X coordinate is found by solving the equations of the horizontal edge and curve Q-C

which yields

xQ1 =

√
δ2 − (xj3 + 0.5∆x)2 − (0.5∆x)2. (2.24)

Because point P is symmetric to Q in the X direction, its X coordinate is

xP1 = −
√
δ2 − (xj3 + 0.5∆x)2 − (0.5∆x)2. (2.25)

Thus the integration for part 1 is written as

I1 =

∫ xP1

−0.5∆x

∫ 0.5∆x

√
δ2−(xj3+0.5∆x)2−X2

∫ √δ2−X2−Y 2

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.26)

Part 2 is symmetric to part 1 in the X direction:

I2 =

∫ 0.5∆x

xQ1

∫ 0.5∆x

√
δ2−(xj3+0.5∆x)2−X2

∫ √δ2−X2−Y 2

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.27)

Part 3 is symmetric to part 1 in the Y direction:

I3 =

∫ xP1

−0.5∆x

∫ −√δ2−(xj3+0.5∆x)2−X2

−0.5∆x

∫ √δ2−X2−Y 2

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.28)

Part 4 is symmetric to part 3 in the X direction:

I4 =

∫ 0.5∆x

xQ1

∫ −√δ2−(xj3+0.5∆x)2−X2

−0.5∆x

∫ √δ2−X2−Y 2

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.29)
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The integration for part 5 is written as

I5 =

∫ xP1

−0.5∆x

∫ √δ2−(xj3+0.5∆x)2−X2

−
√
δ2−(xj3+0.5∆x)2−X2

∫ xj3+0.5∆x

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.30)

Part 6 is symmetric to part 5 in the X direction:

I6 =

∫ 0.5∆x

xQ1

∫ √δ2−(xj3+0.5∆x)2−X2

−
√
δ2−(xj3+0.5∆x)2−X2

∫ xj3+0.5∆x

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.31)

The integration for part 7 is written as

I7 =

∫ xQ1

xP1

∫ 0.5∆x

−0.5∆x

∫ xj3+0.5∆x

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.32)

The integration of (2.14) for the geometric configuration shown in figure 2.6(C) is the

summation of above integrations from parts 1 to 7.

Geometric configuration type two.

This type is for the configuration when the family node is not located on any axis of the

family coordinate. Without loss in generality, assume node j is in the first octant of the

family coordinate and its coordinates are given as (xj1, x
j
2, x

j
3). Figure 2.7 shows one possible

geometric configuration for this type. The horizon sphere intersects with edges T1, T2,

V2, B3, B4. The intersection volume is formed by vertices A-B-C-D-E-F -G-K-L. The

integration is carried out by integrating the Z direction first and the X direction last.

From the projection of the intersected sphere surface shown in figure 2.7(B), the equa-

tions of curve B-C and curve F ′-E ′ need to be solved to define the integration limits in the

Y direction. The equation of curve B-C is found by solving the equations of the horizon

sphere and the front face of the cell which yields{
X2 + Y 2 = δ2 − (xj3 − 0.5∆x)2

Z = xj3 − 0.5∆x
(2.33)

where X and Y are restricted by the boundary of the cell: xj1 − 0.5∆x ≤ X ≤ xj1 + 0.5∆x

and xj2 − 0.5∆x ≤ Y ≤ xj2 + 0.5∆x.
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Figure 2.7: One possible geometric configuration for type two. (A) 3D view, (B) projection
onto the front face of the cell.

Since curve F ′-E ′ is the projection of curve F -E onto the front face of the cell, its

equation is similar to curve F -E except for the position in the Z direction. The equation of

curve F -E is found by solving the equations of the horizon sphere and the back face of the

cell which yields {
X2 + Y 2 = δ2 − (xj3 + 0.5∆x)2

Z = xj3 + 0.5∆x
(2.34)

with the same restrictions on X and Y as curve B-C. So the equation of curve F ′-E ′ is{
X2 + Y 2 = δ2 − (xj3 + 0.5∆x)2

Z = xj3 − 0.5∆x
(2.35)

To define the integration limits in the X direction, the X coordinate of points F ′ and C

are required. The X coordinate of point F ′ is found by solving the equations of curve F ′-E ′

and the vertical edge V1 which yields

xF
′

1 =

√
δ2 − (xj3 + 0.5∆x)2 − (xj2 − 0.5∆x)2. (2.36)

The X coordinate of point C is found by solving the equations of curve B-C and the

vertical edge V2 which yields

xC1 =

√
δ2 − (xj3 − 0.5∆x)2 − (xj2 + 0.5∆x)2. (2.37)
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The integration of (2.14) for this geometric configuration is divided into two parts: part

1 integrates over the volume formed by vertices A-B-C-D-E-F -G-F ′-E ′-L and part 2 inte-

grates over the volume formed by vertices F -E-M -F ′-E ′-K. For part 1, the X coordinates of

point F ′ and C need to be compared to determine the integration limits in the X direction.

As in figure 2.7(B), assume xF
′

1 > xC1 . Then the integration of part 1 is written as

I1 =

(∫ xj1+0.5∆x

xF
′

1

∫ √δ2−(xj3−0.5∆x)2−X2

xj2−0.5∆x

+

∫ xF
′

1

xC1

∫ √δ2−(xj3−0.5∆x)2−X2

√
δ2−(xj3+0.5∆x)2−X2

+

∫ xC1

xj1−0.5∆x

∫ xj2+0.5∆x

√
δ2−(xj3+0.5∆x)2−X2

)
×
∫ √δ2−X2−Y 2

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.38)

The integration of part 2 is written as

I2 =

∫ xF
′

1

xj1−0.5∆x

∫ √δ2−(xj3+0.5∆x)2−X2

xj2−0.5∆x

∫ xj3+0.5∆x

xj3−0.5∆x

f(η, ξ) dZdY dX. (2.39)

Assume that node j is either in the first octant of the family coordinate or on the plane

formed by the positive side of the X and Y axis, the horizon sphere of node i may intersect

with the cell of node j at any edges. Besides the aforementioned configuration, an additional

17 possible geometric configurations are listed in Table 2.1. The “check” mark means the

horizon sphere intersects with that edge. The projections of the intersection between the

horizon sphere of node i and the cell of node j for each configuration are shown in figure 2.8.

For nodes located in any other position of the family coordinate, the geometric configuration

is symmetric to one of the 18 defined configurations.

2.4.3 Adaptive integration using the trapezoidal rule with error
control

Because of its simplicity and ease of error control, the trapezoidal rule29 is used to carry out

the preceding integrations. In an one-dimensional case, the basic trapezoidal rule calculates

a definite integral over function f(x) by approximating the region under the graph of the

function as a trapezoid and calculates its area:∫ b

a

f(x) dx ≈ (b− a)
f(a) + f(b)

2
. (2.40)
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Figure 2.8: The projections of the intersection between the horizon sphere and the family
node cell onto Y-Z plane for 17 other possibilities of geometric configurations type two.

To achieve higher accuracy, the composite trapezoidal rule is employed which splits the

interval of integration [a, b] into M subintervals and applies the basic trapezoidal rule on

each subinterval:∫ b

a

f(x) dx ≈ b− a
M

[
f(a) + f(b)

2
+

M−1∑
k=1

f

(
a+ k

b− a
M

)]
, (2.41)

where M is a function of a trapezoidal integer index, n:

M = 2n−1. (2.42)

When n = 1, (2.41) converges to (2.40) where only the end points of the interval are used

in the integration. Increasing the value of n will improve the accuracy by adding 2n−2

additional interior points. Thus the total number of subintervals with the trapezoidal index

equals n is 2n−1.

Figure 2.9 shows the composite trapezoidal rule with n = 3 (or 5 trapezoidal points) is

used to achieve piecewise approximation of the shaded area under the curve. The accuracy

can be improved by adding more trapezoidal points into the calculation, i.e., by increasing

the value of n. By applying the composite trapezoidal rule to each direction of the afore-

36



Table 2.1: 17 other possibilities for type 2 geometric configurations . The check mark means
the horizon sphere intersects with that edge. The letters of T1-4, V1-4, and B1-4 come from
the edges of the cell in figure 2.7.

Configurations T1 T2 T3 T4 V1 V2 V3 V4 B1 B2 B3 B4
1 X X X X
2 X X X X
3 X X X X X
4 X X X X
5 X X X X X
6 X X X X
7 X X X X X
8 X X X X X
9 X X X X X
10 X X X X
11 X X X
12 X X X X
13 X X X X X
14 X X X
15 X X X X
16 X X X X
17 X X X X

mentioned three-dimensional integrations (such as (2.21)), the position of the integration

points can be found and the integration can be solved numerically.

The integration in (2.21) is chosen to illustrate the sequence of evaluating the three-

dimensional integration using the composite trapezoidal rule. Denote the integration limits

as

y1(X) = −
√
δ2 − (xj3 − 0.5∆x)2 −X2. (2.43)

y2(X) =

√
δ2 − (xj3 − 0.5∆x)2 −X2. (2.44)

z1(X, Y ) = xj3 − 0.5∆x. (2.45)

z2(X, Y ) =
√
δ2 −X2 − Y 2. (2.46)
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Figure 2.9: The composite trapezoidal rule with 5 trapezoidal points is used to achieve
piecewise approximation of the shaded area under the curve.

Then (2.21) becomes

I =

∫ xB1

xD1

∫ y2(X)

y1(X)

∫ z2(X,Y )

z1(X,Y )

f(η, ξ) dZdY dX. (2.47)

To integrate (2.47), first define a function H(x, y) for the integration in the Z direction29:

H(x, y) =

∫ z2(X,Y )

z1(X,Y )

f(η, ξ) dZ. (2.48)

Then define a function G(x) for the integration in the Y direction:

G(x) =

∫ y2(X)

y1(X)

H(x, y) dY. (2.49)

The three-dimensional integration is then

I =

∫ xB1

xD1

G(x) dX. (2.50)

To implement this integration scheme numerically, a base function T implementing (2.41)

is prepared to be called recursively:

T [f(·), a, b, M ] =
b− a
M

[
f(a) + f(b)

2
+

M−1∑
k=1

f

(
a+ k

b− a
M

)]
. (2.51)
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The pseudo code in one iteration for solving the integration in (2.47) is as follows:

Iteration starts at trapezoidal index equals n

I = T [G(x), xB1 , x
D
1 , M ]

for every trapezoidal point xp between xB1 and xD1 ,

evaluate G(x) = T [H(x, y), y1(xp), y2(xp), M ]

for every trapezoidal point yp between y1(xp) and y2(xp),

evaluate H(x, y) = T [f(η, ξ), z1(xp, yp), z2(xp, yp), M ]

return the value of I, increase trapezoidal index by 1

Iteration ends

A combined relative-absolute error control is used to achieve the desired accuracy. If the

value of integration from the current iteration is denoted as Ir where r is the current step,

and the value from the previous iteration is denoted as Ir−1, the error control is stated as

the following pseudo code:

if (abs(Ir−1) > TOL)

if (abs(Ir − Ir−1) <= EPS · abs(Ir−1))

return (I = Ir)

else

if (abs(Ir − Ir−1) <= EPS)

return (I = Ir)

where abs(·) indicates the absolute value, EPS is the prescribed accuracy, and TOL is a

pre-defined tolerance to prevent the dead lock when the integrand is very close to zero. A

typical value of TOL is chosen to be 1.0 × 10−4. The number of integration points at the

beginning of the adaptive process is referred to as the starting integration points, and the

number of integration points when the adaptive process is ended is referred to as the ending

integration points.

The adaptive integration scheme developed in this work can evaluate an integration
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with controlled accuracy. The convergence speed has been shown to be close to quadratic

(i.e., O(∆x2)) and the error control method is quite effective. Both of these features are

illustrated in the following numerical examples.

2.5 Numerical results

This section provides the comparison of the numerical results produced by the adaptive

integration (AI) and the cubic-cell integration (CCI) in two types of examples: one is to

calculate the volume of the horizon sphere with a fixed horizon and varying grid spacing,

and the other is to calculate the stress tensor at a source node in an infinite body under

uniaxial, triaxial, and pure shear stress states. The physical length unit is denoted as h in

the following calculations. Due to insufficient information about the Gaussian integration

method presented in11, direct comparison with results from11 is not provided. Instead,

results using the AI and CCI method as described in previous section are carried out.

2.5.1 The volume of the horizon sphere

In this example, the AI and CCI methods are used to calculate the volume of the horizon

sphere of a source node and the results are compared with the exact volume of the sphere.

As only a finite array of nodes is used in the simulation, the source node is chosen at or near

the center of the array so that its horizon sphere is fully inside the array. For example, in a

uniform grid with ∆x = δ/3 as shown in figure 2.4, node i is the source node which has a

total of 250 family nodes.

The rate of convergence, defined as the slope of the relative error versus grid spacing or

the average distance between integration point (ADIP) is plotted. ADIP is defined as

ADIP =

(
volume of the horizon sphere

total number of integration points inside the horizon sphere

) 1
3

. (2.52)

For the AI method, the total number of integration points (TNIP) is the summation of

the integration points for all family node. For the CCI method, since each family node
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contributes only one integration point (the node itself), the TNIP is the same as the total

number of family nodes. In contrast, a cell in the AI method generally contains multiple

integration points. Comparing the two methods at the same grid spacing is therefore unfair

in the sense that there are more integration points in a cell for the AI method than for the

CCI method. Comparing AI with CCI at the same ADIP avoids the unfairness and provides

a better measure of performance for each method.

Figure 2.10: The convergence rate for the AI and the CCI: grid spacing versus percentage
error.

The horizon is fixed to 18h giving an exact horizon sphere volume of 4πR3/3 (or

24429.0h3). Table 2.2 shows the comparison of the results by the two methods with grid

spacing ranging from ∆x = δ/3 to ∆x = δ/30. Table 2.3 shows the comparison of the

results by the two methods with the same or closest ADIP. The CPU runtime is also p-

resented in the table. The rates of convergence for the two methods are shown in figure

2.10 and 2.11. Both methods become more accurate as the grid gets finer, or as the ADIP

becomes smaller. The results produced by the AI method match the accurate volume very

well (within 0.05%) even at the coarsest grid (∆x = δ/3) and maintain a convergence rate
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Figure 2.11: The convergence rate for the AI and the CCI: ADIPs versus percentage error.

of 1.72 (in figure 2.10) and 2.20 (in figure 2.11). For a given grid spacing, the AI method is

about 2.5 to 3 orders of magnitude more accurate than the CCI method. For a given ADIP,

AI is about 2 orders of magnitude more accurate than CCI. Some fluctuations during the

grid refinement (at ∆x = δ/4, δ/8, δ/10) are observed from the results of CCI, which is

possibly caused by the deficiencies discussed in Section 3.

The program is run on a Dell XPS M1210 notebook with Windows XP OS, Intel Core2

T7400 2.16GHz×2 CPU and 2GB RAM. Owing to the adaptive process in AI, the com-

putation time is about 10 times longer than CCI (with the same or closest ADIP). When

relative errors are taken into account, however, AI is still advantageous. For CPU runtime

equals 421 ms and 592 ms, AI achieves a relative error of 0.050% and 0.029%, respectively.

For a comparable CPU runtime of 624 ms, CCI produces a relative error of 1.12%. The

comparison based on same relative error reveals that overall AI is a more efficient method

than CCI.
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Table 2.2: The volume of horizon sphere calculation by the AI and the CCI with the same
grid spacing (∆x). δ is the horizon radius.

AI CCI
∆x [h] Error [%] Runtime [ms] Error [%] Runtime [ms]
δ/3 0.050 421 7.992 7
δ/4 0.029 592 10.525 8
δ/5 0.025 811 7.966 10
δ/6 0.017 1045 4.891 19
δ/8 0.011 1966 5.367 40
δ/9 0.009 2356 3.773 43
δ/10 0.007 2855 3.862 60
δ/15 0.003 6958 2.415 94
δ/20 0.002 12948 2.028 172
δ/30 0.001 34148 1.251 513

2.5.2 Infinite body under different stress states

In this example, the stress tensor at a source node in an infinite body under three different

stress states is calculated by the AI and CCI methods and the results are compared with

the closed form solutions. This stress tensor is based on the concept of the areal force

density (henceforth referred to as AFD) described in Section 2. The rate of convergence is

investigated for both AI and CCI methods with respective to ADIP.

To simulate an infinite body with, for example, a grid spacing of ∆x = 6h and a horizon

of δ = 18h, a uniform grid of 10×10×10 nodes is created and the node near the center

of the domain at the coordinate of (∆x/2, ∆x/2, ∆x/2) is chosen to be the source node.

The displacement of every node is prescribed according to the displacement solution of an

infinite body for the given stress state. Consequently, this finite domain behaves like an

infinite body.

By assuming small deformation and linear elastic response, the closed form solution for

the stress at every node can be solved using classic elasticity theory. For instance, given a
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Table 2.3: The volume of horizon sphere calculation by the AI and the CCI with the closest
ADIP. ∆x is the grid spacing and δ is the horizon radius.

AI CCI
ADIP [h] ∆x Error [%] Runtime [ms] ADIP [h] ∆x Error [%] Runtime [ms]

1.708 δ/3 0.050 421 1.636 δ/11 3.317 78
1.457 δ/4 0.029 592 1.386 δ/13 3.056 92
1.239 δ/5 0.025 811 1.200 δ/15 2.415 94
1.121 δ/6 0.017 1045 1.127 δ/16 2.531 110
0.887 δ/8 0.011 1966 0.901 δ/20 2.028 172
0.817 δ/9 0.009 2356 0.819 δ/22 1.833 203
0.755 δ/10 0.007 2855 0.751 δ/24 1.635 250
0.535 δ/15 0.003 6958 0.545 δ/33 1.120 624
0.415 δ/20 0.002 12948 0.409 δ/44 0.873 1279
0.286 δ/30 0.001 34148 0.286 δ/63 0.595 3838

prescribed strain matrix as

ε =

 e11 e12 e13

e12 e22 e23

e13 e23 e33

 (2.53)

the prescribed displacement field is

U =


e11x1 + e12x2 + e13x3

e12x1 + e22x2 + e23x3

e13x1 + e23x2 + e33x3

 (2.54)

the closed form solution for the corresponding stress at every node is therefore

σ =
2E

5

 3e11 + e22 + e33 2e12 2e13

2e12 e11 + 3e22 + e33 2e23

2e13 2e23 e11 + e22 + 3e33

 (2.55)

where E is the Young’s modulus. A Poisson’s ratio of 1
4

is used because it is a natural

outcome of the bond-based peridynamic theory.

The average distance between integration points (ADIP) in the stress calculation is

defined as

ADIP =

(
half volume of the horizon sphere

total number of integration points in the half sphere

) 1
3

(2.56)
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In the above, only half the horizon sphere is used in calculating ADIP because that is the

volume needed in the calculation of the areal force density.

The whole domain will be subjected to three types of stress states (in units of N/h2):

uniaxial, triaxial, and pure shear. For each stress state, three types of comparison are made

between the AI and CCI methods:

(1) Comparison of the stress tensor at the source node i for AI with grid spacing ∆x = δ/3

and for CCI with ADIP closest to that of AI.

(2) Comparison of the ratios of horizon to grid spacing for AI and CCI to achieve the same

prescribed accuracy of the largest component of the stress tensor at node i. Since the

ratio of horizon to grid spacing is chosen to be an integer, the accuracy may not be

exactly equal to the prescribed value.

(3) Comparison of the convergence rate of the largest component of the stress tensor at

node i with the same or closest ADIP.

A PMB material with Young’s modulus of 1.0 × 105N/h2 is used. The horizon is fixed at

18h for all the calculations. For AI, the tolerance TOL is chosen to be 1.0×10−4. The areal

force density at the source node is calculated based on (2.12).

Uniaxial tension.

The domain is subjected to a uniaxial tension in the Y direction. The stress at any node is

σ =

 0 0 0
0 100 0
0 0 0

 (2.57)

(1) At grid spacing ∆x = 6h (or δ/3), the ADIP of AI is 0.78h. The stress tensor from AI

is

σAI =

 -0.34 −5.43× 10−16 7.41× 10−18

−7.29× 10−17 100.81 4.70× 10−15

−3.60× 10−16 7.28× 10−16 -0.34

 (2.58)
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For CCI, the closest ADIP to that of AI is 0.79h (at grid spacing ∆x = 1.5h, or δ/12).

The stress tensor from CCI is

σCCI =

 0.17 −3.41× 10−16 2.16× 10−16

3.41× 10−16 95.01 6.70× 10−15

−2.23× 10−17 2.02× 10−16 0.17

 (2.59)

Both methods calculate the non-diagonal terms within machine accuracy. For the di-

agonal terms, however, the AI method is more accurate. The largest principal stress

σ22 by AI is about 0.81% from the closed form solution while the CCI method is about

4.99%.

(2) The prescribed error for stress σ22 is set to 1.0%. For AI, the result at the coarsest grid

(∆x = 6h, or δ/3) is already below 1.0%. For CCI, the grid is refined to ∆x = 0.37h

(or δ/49) to achieve an accuracy of 1.01%:

σCCI =

 0.05 2.40× 10−13 −3.37× 10−13

−5.20× 10−13 98.99 −2.91× 10−13

−4.74× 10−13 1.02× 10−13 0.05

 (2.60)

(3) The convergence rates of σ22 for both methods are similar to those shown in figure

2.11. The results produced by the AI method match the closed form solution very well

(about 0.8%) even at the largest ADIP (or at grid spacing ∆x = δ/3) and maintain a

convergence rate of 2.31. The CCI method has a relatively flat convergence rate of 0.82.

Triaxial stress state.

The domain is subjected to a triaxial stress state. The stress at any node is

σ =

 100 0 0
0 -150 0
0 0 220

 (2.61)

(1) At grid spacing ∆x = 6h (or δ/3), the ADIP of AI is 0.81h. The stress tensor from AI

is

σAI =

 101.12 −1.72× 10−15 −3.79× 10−15

−4.56× 10−17 -151.47 −7.14× 10−15

−1.84× 10−15 −3.62× 10−15 221.98

 (2.62)
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For CCI, the closest ADIP to that of AI is 0.80h (at grid spacing ∆x = 1.5h, or δ/12).

The stress tensor from CCI is

σCCI =

 96.17 5.83× 10−16 6.31× 10−15

1.67× 10−16 -140.61 −2.21× 10−15

7.51× 10−15 9.58× 10−16 212.22

 (2.63)

The error of the largest principal stress σ33 by the AI method is about 0.90% from the

closed form solution while that of the CCI method is about 3.54%.

(2) The prescribed error for the largest principal stress σ33 is set to 1.0%. For AI, the result

at the coarsest grid (∆x = 6h, or δ/3) is already below 1.0%. For CCI, the grid is

refined to ∆x = 0.72h (or δ/25) to achieve an accuracy of 0.71%:

σCCI =

 98.88 −2.14× 10−15 1.80× 10−15

7.83× 10−17 -145.06 4.29× 10−15

−1.33× 10−16 2.50× 10−15 218.43

 (2.64)

(3) The convergence rates of the largest principal stress σ33 for both methods are shown in

figure 2.12. The AI method shows a convergence rate of 1.43 with an error of 0.05%

at ADIP = 0.09h (at grid spacing ∆x = 0.72h, or δ/25). The CCI method shows a

fluctuating trend as the grid gets finer. Its convergence rate is 0.90 with an error of

0.73% at ADIP = 0.09h (at grid spacing ∆x = 0.29h, or δ/63).

Pure shear.

The domain is subjected to a pure shear stress state. The stress at any node is

σ =

 0 0 200
0 0 0

200 0 0

 (2.65)

(1) At grid spacing ∆x = 6h (or δ/3), the ADIP of AI is 0.79h. The stress tensor from AI

is

σAI =

 0.30 −1.44× 10−15 201.02
9.79× 10−15 0.02 −9.57× 10−16

201.02 −1.01× 10−15 0.32

 (2.66)
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Figure 2.12: The convergence rates of σ33 in triaxial and σ13 in pure shear stress state for
the AI and the CCI: ADIPs versus percentage error.

For CCI, the closest ADIP to that of AI is 0.80h (at grid spacing ∆x = 1.5h, or δ/12).

The stress tensor from CCI is

σCCI =

 0.29 2.66× 10−15 191.23
8.22× 10−15 0.03 2.22× 10−16

191.23 1.78× 10−15 0.29

 (2.67)

The result produced by the AI method matches the closed form solution quite well

(about 0.51%) while that of the CCI method is about 4.39%.

(2) The prescribed error for the non-zero shear stress σ13 is set to 1.0%. For AI, the result

at the coarsest grid (∆x = 6h, or δ/3) is already below 1.0%. For CCI, the grid is

refined to ∆x = 0.37h (or δ/49) to achieve an accuracy of 1.02%:

σCCI =

 0.31 1.39× 10−15 197.95
−2.36× 10−15 0.04 −9.98× 10−17

197.95 −3.46× 10−16 0.31

 (2.68)

(3) The convergence rates of σ13 in the pure shear stress state for both methods are shown

in figure 2.12. The AI method shows a convergence rate of 1.73 with an error of 0.01%
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Figure 2.13: CPU runtime versus percentage error plot for the pure shear stress state
calculation for the AI and the CCI.

at ADIP = 0.09h (at grid spacing ∆x = 0.72h, or δ/25). The CCI method exhibits a

slow convergence rate of 0.74 with an error of 0.87% at ADIP = 0.09h (at grid spacing

∆x = 0.29h, or δ/63). The CPU runtime versus relative error for both methods is

shown in figure 2.13. The figure reveals that comparing relative error at the same CPU

runtime, AI is advantageous. For CPU runtime around 8000 ms, AI achieves a relative

error around 0.5%. At the same CPU runtime, CCI produces a relative error around

1.8%. The convergence rate reveals that overall AI is a more efficient method than CCI.

2.6 Conclusions and further work

Integration plays an important role in the formulation and numerical implementation of

peridynamics. Published cubic-cell integration method in the literature, however, gives rel-

atively low accuracy, and the convergence rate with mesh refinement is low, in the range

of 0.74 to 1.00 for the examples tested. The study here presents a new adaptive integra-

tion method with error control. The adaptive integration method improves the numerical
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implementation of peridynamics in the following ways:

(1) The way to count the family nodes is modified to include all the material points inside

the horizon sphere.

(2) A systematic categorization of geometric configuration for the intersection volume be-

tween the cell of a family node and the horizon sphere of the source node is developed.

Examples are given to illustrate the procedure of finding the integration limits accu-

rately.

(3) Adaptive trapezoidal quadrature with a combined relative-absolute error control is intro-

duced into the new integration method for achieving numerical integration with desired

accuracy.

(4) Examples show results produced by the new adaptive integration method match the

closed form solutions quite well even at the coarsest grid (∆x = δ/3). Tested examples

show the new adaptive integration method has high convergence rates (in the range of

1.43 to 2.20, or nearly quadratic) for the examples tested.

(5) The bond-based peridynamic model with PMB material is used in the numerical results,

but the AI method is also applicable to state-based peridynamics.

Below are suggestions for further work:

(1) Special treatment for boundary nodes needs to be considered. For example, if the source

node is near the boundary of a finite body (figure 2.14), then it only has partial horizon

sphere. For those nodes (in the dashed rectangle) whose horizons are not fully inside

the body, a scale factor (usually larger than 1) needs to be introduced to compensate

the original bond stiffness (spring constant c).

(2) This work is focused on the details of the adaptive integration method. The more

general situation when the displacement field is computed from the equation of motion

is left for further work, but the principle of the current method is still applicable.
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Figure 2.14: The source node i is near the boundary of a finite body.

Figure 2.15: Two types of spring constant c: uniform in the horizon or with a bell-shaped
distribution.

(3) The convergence property of the AI method in the presence of discontinuities needs to

be studied. If the body contains a crack, cares must be taken for both AI and CCI

methods. The mesh needs to be carefully defined to avoid placing integration points in

space where material does not exist.

(4) The convergence property of the AI method when the spring constant c is non-uniform
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within the horizon needs to be studied. A spring constant with a compact support

distribution as illustrated in figure 2.15 has been proposed in11–13,15. For spring constant

with a compact support, the inaccuracy caused by the simple and inaccurate counting

of material points near the horizon boundary in the CCI method is reduced because

contributions from material points near the boundary diminish. But the inaccuracy

caused by using just one integration point for each cell in the CCI method may increase

slightly because of the additional variation in the spring constant. With the AI method,

more integration points will be automatically placed in regions with greater functional

variations, therefore AI should still be a preferred method of integration.
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Chapter 3

An Integration Method with Fixed
Gaussian Points for the Periydynamic
Theory 1

Abstract

Integration of interaction forces plays an important role in the formulation and numerical

implementation of the peridynamic theory. Several integration methods proposed in the

literature are reviewed. The main focus of the presented work is to achieve a balance between

the accuracy of the numerical results and the effectiveness of the computation program.

In this work, an integration method with fixed Gaussian points is employed to calculate

the integration of peridynamic forces. The moving least square approximation method

is employed to interpolate displacements at the Gaussian points from neighboring nodal

displacements. A compensation factor is introduced to correct the peridynamic force on

the nodes near the boundaries. This work also uses linear viscous damping to minimize the

dynamic effect in the solution process. Numerical results show the accuracy and effectiveness

of this Gaussian integration method.

1journal paper in preparation
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3.1 Introduction

Recently a novel non-local continuum theory called Peridynamics is receiving more and

more research attentions. The peridynamic theory shows advantage dealing with problems

with discontinuities because the governing equation of motion in the peridynamic theory

involves only integration of interacting force density on a material point, and thus the

same equation holds true anywhere inside the body, including the discontinuities. The

peridynamic theory1,2 assumes that the body is composed of material points. Each point

interacts with others within a finite distance δ called the horizon. The pairwise interaction

between two points exists even when they are not in contact. This physical interaction is

referred to as the bond, which has a close analogy to a mechanical spring.

The peridynamic theory with pairwise force interaction independent of all other local

conditions is called bond-based peridynamics. In bond-based peridynamics, the equation of

motion for point i in the reference configuration at time t is defined as

ρü(xi, t) =

∫
Hi

f(η, ξ) dVj + b(xi, t), ∀j ∈Hi (3.1)

where Hi is a spherical neighborhood of points that interact with point i, dVj is an infinites-

imal volume associated with point j, b is a prescribed body force density field, ρ is the mass

density, and f is the pairwise peridynamic force (PD force) function whose value is the force

vector (per unit volume squared) that point j exerts on point i. ξ is defined as the relative

position of two material points i and j in the reference configuration: ξ = xj − xi. η is

defined as the relative displacement of i and j: η = u(xj, t)− u(xi, t).

One way to numerically implement the peridynamic theory is to discretize the domain

of interest into a cubic lattice system. Each cubic cell contains a representative point at the

mass center called a node. Generally all cubes have the same size so all nodes together form

a uniform grid system. The distance between two nearest neighboring nodes is called the

grid spacing, denoted as ∆x.

For numerical integration, the equation of motion at the node of interest (source node),
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i can be discretized to

ρüi =
M∑
j=1

∫
f(η, ξ) dVj + bi, ∀j ∈Hi (3.2)

where Hi is now a group (horizon sphere) of M neighboring nodes (family nodes) which

have PD force with the source node i. For each family node j, the integration is carried out

over the cell volume of node j which may be fully or partially in the horizon sphere. Eqn.

(3.2) is the discretized form of the equation of motion corresponding to the continuum form

in Eqn. (3.1).

In Section 3.2, several numerical integration methods regarding the three-dimensional

integration in Eqn. (3.2) are reviewed. In Section 3.3, a Gaussian integration with fixed

Gaussian points is presented, and the reason to use fixed Gaussian points is discussed.

The proposed method also incorporates the moving least square method to calculate the

displacement of Gaussian points, special treatment to minimize the soft boundary effect, and

linear viscous damping to minimize the dynamic effect in the solution process. Numerical

results of a column subjected to uniaxial and triaxial tension loadings are presented and

discussed in Section 3.4. Conclusions are given in Section 3.5.

3.2 Literature review of numerical integration in peri-

dynamics

Integration of the PD forces in the horizon plays an important role in the formulation

and numerical implementation of peridynamics. Several integration methods have been

published in the literature. Silling developed a three-dimensional computer code called EMU

that implements the peridynamic theory1,3,4. In the code, a simplified way of counting the

family nodes is employed. Theoretically, all material points inside the horizon sphere should

be included in the calculation of PD forces. The implementation in EMU, however, counts

each cell as either entirely in or entirely out of the horizon, and thus results in an inaccurate

accounting of material points. Consider a grid of ∆x = δ/3. Fig. 3.1(a) shows all the family
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nodes (solid dots) counted by the implementation1,3 in a projection view where the circle

represents the horizon sphere and the square grids represent the node cells. Because only

cells with their center nodes inside the horizon sphere (solid dots) are considered family

nodes, the partial cell areas (denoted with horizontal line pattern) whose center nodes are

located outside the horizon sphere (open dots) are omitted. Since the omitted volume

contains material points that are part of the horizon sphere, the summation in Eqn. (3.2)

excludes partial cell volumes represented by open dots. Grid refinement can not solve this

problem.

Furthermore the three-dimensional integration in Eqn. (3.2) is performed using a one-

point integration3,4:

ρüi =
∑
j

[
f(uj − ui, xj − xi) · β(∆x)3

]
+ bi ∀j ∈Hi, (3.3)

where (∆x)3 is the cell volume and β is the volume reduction factor defined as

β =


1 for |ξ| ≤ δ − 0.5∆x

δ + 0.5∆x− |ξ|
∆x

for δ − 0.5∆x < |ξ| ≤ δ + 0.5∆x

0 otherwise

(3.4)

For convenience in description, the integration method as presented in1,3,4 is referred

to as cubic-cell integration. Fig. 3.1(b) illustrates the cubic-cell integration method when

|ξ| is within the range of δ − 0.5∆x and δ + 0.5∆x, i.e., the cubic cell is partially in the

horizon sphere. In the figure, the circular arc represents a quarter of the horizon sphere.

The volume of the quarter sphere calculated by the cubic-cell integration is marked as the

dark shaded area. The volume missed in the calculation is marked as the horizontal line

patterned area. For family node 1, a small extra volume is added to the actual intersection

volume. For family node 2, the cubic-cell integration overcompensates the missing volume

in the cell with the calculated volume (vertical slashed area). For node 3, since it is not

counted as a family node, its cell contributes nothing to the integration. Partial cell volumes

of three other nodes (represented by unnumbered open dots) in the figure are also excluded
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from the calculation. Such an approximation in counting the volume integration elements

leads to poor accuracy of the numerical peridynamic model.

Figure 3.1: (a) Accounting of the family nodes by the numerical implementation presented
in1,3, (b) the volume of the quarter horizon sphere calculated by the cubic-cell integration.

Yu et al proposed an adaptive integration method which utilizes the trapezoidal integra-

tion rule with a combined relative-absolute error control5,6. This method amends the EMU

implementation by properly counting the family nodes and accurately calculating the inte-

gration over the intersection volume with controlled accuracy. First, besides all the nodes

fully inside the horizon sphere, the adaptive integration also considers those nodes which are

out of the horizon sphere and yet with cell volumes intersecting the horizon sphere as family

nodes. Second, all possible geometric configurations relating the cells of family nodes to

the horizon sphere of the source node are systematically categorized. Thus the integration

limits of the integration in Eqn. (3.2) can be found. Third, integration using the trapezoidal

rule and a combined relative-absolute error control is employed to carry out the integration

in Eqn. (3.2).

Kilic et al recently introduced a volume integration scheme to solve the discretized

peridynamic equation of motion7–9. In this scheme, the solution domain is discretized into

hexahedral subdomains. These subdomains can have different shapes. After discretization,

Gaussian integration points are placed into each subdomain (usually one or eight integration
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points). Shape function transformation is used to transform the volume integration over the

subdomains with different shapes into one single equation of same format. Then Gaussian

integration is utilized for volume integration. A cutoff radius (similar to the concept of

horizon), rc, is introduced to reduce the computation time by limiting the interaction range

when the domain contains large number of integration points.

3.3 A integration method with fixed Gaussian points

In this section, the deficiency of the adaptive integration method is discussed and a Gaussian

integration with fixed Gaussian points is presented in detail.

The adaptive integration method proposed by Yu et al solves the integration of PD force

within a prescribed accuracy. However, it becomes computational expensive to apply this

method when the displacement field needs to be solved for from the equation of motion.

Assume that three nodes i, j, and k are positioned as shown in Fig. 3.2. Node k is the

family node of both node i and j. The horizon sphere of node i intersects with the cell of

node k and forms a intersection of A-B-E-F . The horizon sphere of node j intersects with

the cell of node k and forms a intersection of C-D-E-F . Because intersections A-B-E-F

and C-D-E-F are of different shapes, the integration limits for the PD force calculation

on bonds ki and kj are different. Thus node k will have two different sets of trapezoidal

(integration) points for bonds ki and kj. In addition, the integration of PD force requires the

knowledge of current displacements of the integration points. Because the displacement field

is prescribed in5,6, no extra calculation is needed. While in the more general situation when

the displacement field is determined by the equation of motion, the current displacements

of every set of trapezoidal (integration) points need to be evaluated separately, and the

evaluation process needs to be conducted at every time step which will consume a lot of

computation time. One possible way to alleviate this computational difficulty is to use the

same set of trapezoidal (integration) points for bonds ki and kj. However, because of the

principle of the trapezoidal rule, it is not easy to realize this idea.
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Figure 3.2: Different shapes of intersection volume for the same node k.

A Gaussian integration with fixed Gaussian points is developed in this work to overcome

the aforementioned difficulty. The technique of counting the family nodes in the adaptive

integration5,6 is adopted, while a fixed set of Gaussian points are used for force integration.

Because the positions of the Gaussian points in each node cell are fixed, the integration limits

for the PD force integration on each bond are always the same, thus the categorization of

geometric configurations relating the cells of family nodes to the horizon sphere of the source

node is not needed. The moving lease square approximation method is utilized to construct

the displacement field from the nodal displacements of the nodes inside the support domain

for the Gaussian integration points at each time step. Special treatment for nodes near the

boundaries are introduced to minimize the soft boundary effect. Finally a linear viscous

damping coefficient is incorporated in the equation of motion to expedite the solution into

steady state effectively.
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3.3.1 Gaussian quadrature with fixed Gaussian points

In one-dimensional case, the Gaussian quadrature rule calculates a definite integral over

function f(x) by the sum of weighted integrand values sampled at n Gaussian points:∫ b

a

f(x)dx ≈ b− a
2

n∑
g=1

ωgf

(
b− a

2
ξg +

b+ a

2

)
(3.5)

where the abscissas ξ and the corresponding weights ω are provided by the nth-degree

Legendre polynomial. The positions of the Gaussian points in the reference coordinate are

xg =
b− a

2
ξg +

b+ a

2
(3.6)

As shown in Fig. 3.2, node k will have different intersection volumes for different bonds

resulting in different integration limits for the PD force calculation depending on the bond

connecting to node k. If Eqn. (3.5) is used in the numerical integration, then the positions

of the Gaussian points will vary with every bond because they are determined by the inte-

gration limits. Assume the equation of intersecting curve A-B is yi(x) and the equation of

intersecting curve C-D is yj(x) as shown in Fig. 3.3(a). The force integration of bond ki is

Ii =

∫ yi(x)

yk−∆x
2

∫ xk+ ∆x
2

xk−∆x
2

f(x, y)dxdy (3.7)

and the Gaussian points for bond ki are the open dots in Fig. 3.3(a). A different equation

is needed for the force integration of bond kj:

Ij =

∫ yj(x)

yk−∆x
2

∫ xk+ ∆x
2

xk−∆x
2

f(x, y)dxdy (3.8)

and the Gaussian points for bond kj are the solid dots in Fig. 3.3(a). Therefore node k has

two different sets of Gaussian points for two different bond ki and kj.

In addition, because the displacements of the Gaussian points need to be calculated

with the moving least square method which requires the knowledge of the position of the

Gaussian points, the implementation will result in a tremendous increase of computation

time. Although using different sets of Gaussian points for different bond yields the best

62



Figure 3.3: Different positions of Gaussian points in a node cell. (a) positions are deter-
mined by the intersection volume, (b) positions are fixed.

accuracy, the computation time may be unacceptable. The fixed Gaussian points is therefore

developed in this study as an alternative way to take the advantage of Gaussian quadrature

with acceptable computational efficiency.

The proposed method employs fixed Gaussian points whose positions in the reference

coordinate are actually fixed (Fig. 3.3(b)) during the numerical integration:

I =

∫ yk−∆x
2

yk+ ∆x
2

∫ xk+ ∆x
2

xk−∆x
2

f(x, y)dxdy

≈
(

∆x

2

)2 Nr∑
r=1

Ns∑
s=1

ωrgω
s
g f

(
∆x

2
ξrg + xk,

∆x

2
ξsg + yk

)
(3.9)

where ∆x is the grid spacing, (xk, yk) is the position of node k in the reference coordinate,

ωrg, ω
s
g are the weights of the Gaussian point in x and y direction and ξrg , ξ

s
g are the abscissases

of the Gaussian points in x and y direction. Thus the positions of the fixed Gaussian points

in cell of node k are

xg =
∆x

2
ξsg + xk, yg =

∆x

2
ξrg + yk (3.10)

With the concept of fixed Gaussian points, the node cells are further decomposed into

subcells with each subcell containing a Gaussian point as shown in Fig. 3.4. Except for
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the case where one point integration is used for a cell and the Gaussian point is the node

itself, the Gaussian points are generally not uniformly distributed in the cells. Therefore an

effective subcell volume associated with each Gaussian point, Vg, is defined as

Vg = (∆xg)
3 (3.11)

where ∆xg is the effective subcell size defined as

∆xg =
∆x

2
3

√
ωrg ω

s
g ω

t
g (3.12)

where ωrg, ω
s
g, ω

t
g are the respective weights of the Gaussian point in three directions.

Figure 3.4: Gaussian points in subcells of a node. (a) 2 × 2 Gaussian points, (b) 3 × 3
Gaussian points.

By applying the concept of fixed Gaussian points to the integration in Eqn. (3.2), the

equation of motion at the source node i is now

ρüi =

(
∆x

2

)3 M∑
j=1

Nr∑
r=1

Ns∑
s=1

Nt∑
t=1

ωrg ω
s
g ω

t
g f(ug − ui, xg − xi)Vg + bi (3.13)

where j is one of the M family nodes of node i, and Nr, Ns, Nt are the numbers of the

Gaussian points in node j’s cell in three directions. xg is the position vector of the indexed

Gaussian point g in node j’s cell, and ug is the displacement vector of g.

Because the positions of the Gaussian points are fixed inside the node cells, some of the

Gaussian points can be located outside the horizon while having partial effective subcell
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volumes inside the horizon, like the top left Gaussian points in Fig. 3.3(b). The idea

of volume reduction factor in3,4 is borrowed to introduce an adjusting factor, βg, to take

account of the partial volume:

βg =


1 for |xg − xi| ≤ δ − 0.5∆xg

δ + 0.5∆xg − |xg − xi|
∆xg

for δ − 0.5∆xg < |xg − xi| ≤ δ + 0.5∆xg

0 otherwise

(3.14)

Thus the discretized equation of motion with the adjusting factor is

ρüi =

(
∆x

2

)3 M∑
j=1

[
Nr∑
r=1

Ns∑
s=1

Nt∑
t=1

βg ω
r
g ω

s
g ω

t
g f(ug − ui, xg − xi)Vg

]
+ bi (3.15)

For the time integration in Eqn. (3.15), an explicit central difference formula of order

O(∆t2) is chosen:

üni =
un+1
i − 2uni + un−1

i

∆t2
(3.16)

where ∆t is a stable time step which is smaller than the critical time step ∆tc defined as

∆tc =
(|ξ|)min
(ck)max

(3.17)

where (|ξ|)min is the smallest bond length in the body, and (ck)max is the highest bulk sound

speed which is defined by the square root of the ratio of bulk modulus to material density.

In this study, a safety factor smaller than 1 (usually 0.8) is used for stability:

∆t = βsafe ∆tc (3.18)

3.3.2 Moving least square approximation

Introduction to the moving least square approximation method

Because the PD force integration requires the information of the current displacements of

the Gaussian points, the moving least square (MLS) approximation method is employed

to reconstruct the displacement field from the displacements of nearby nodes, which are

referred to as the contributing nodes. There contributing nodes form a neighborhood called

the support domain whose radius is called the support domain size and is denoted as rw.
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Generally the fitting accuracy and computation time increase with the increase of the sup-

port domain size. To achieve a balance between accuracy and efficiency, the default support

domain size is chosen to be equal to three times the grid spacing.

Assume the displacement field u(x) in the support domain is continuous. The approx-

imation of u(x) at one Gaussian point inside the support domain x is denoted as uh(x).

The MLS approximates the displacement field function in the form of polynomial series:

uh(x) =
m∑
j

pj(x)aj(x) ≡ pT (x)a(x) (3.19)

where m is the total number of terms of the polynomial basis pT (x), and a(x) is the vector

of unknown coefficients for each polynomial basis term to be solved. In general, m is

determined by the spatial dimension of the domain d and the degree of the polynomial basis

k:

m =
(d+ k)!

k! d!
(3.20)

For example, in this work with the three-dimensional domain and a polynomial of degree 2,

the series representation is given as

pT (x) = {1, x, y, z, xy, yz, zx, x2, y2, z2} (3.21)

Assume the support domain contains n contributing nodes, then the approximated dis-

placements at these nodes are given by Eqn. (3.19)

uh(x, xi) = pT (xi)a(x), i = 1, 2, . . . , n (3.22)

A functional of weighted residual J is then constructed using the approximated nodal

displacement and exact nodal displacement, ui = u(xi):

J =
n∑
i

W (x− xi) [uh(x, xi)− u(xi)]
2︸ ︷︷ ︸

residual

=
n∑
i

W (x− xi)[p
T (xi)a(x)− u(xi)]

2 (3.23)
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where W (x−xi) is a weight function. A quartic spline weight function is used in this work:

W (x− xi) = W (di) =

{
1− 6d2

i + 8d3
i − 3d4

i for di ≤ 1

0 for di > 1
(3.24)

where di is given as

di =
|x− xi|
rw

(3.25)

Eqn. (3.23) can be minimized by setting the partial derivatives of the weighted residual

J to zero:
∂J

∂a(x)
= 0 (3.26)

which results in a linear equation system:

Aa(x) = Bds (3.27)

where matrix A is called the MLS moment matrix given by

A =
n∑
i

W (di)p(xi)p
T (xi) (3.28)

and matrix B has the form of

B = [B1 B2 . . . Bn] (3.29)

where

Bi = W (di)p(xi) (3.30)

and ds is the vector contains all the nodal parameters:

ds = {u1 u2 . . . un}T (3.31)

If the moment matrix is not singular (usually requires n � m), Eqn. (3.27) can be

solved as

a(x) = A−1Bds (3.32)

Substituting Eqn. (3.32) into Eqn. (3.19) yields

uh(x) =
n∑
i

m∑
j

pj(x)(A−1B)jiui (3.33)
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or

uh(x) =
n∑
i

φi(x)ui (3.34)

where φi(x) is called the MLS shape function. Thus the displacement field in the support

domain is reconstructed and the displacements at the Gaussian points can be expressed in

terms of the nodal displacements.

In the numerical implementation, the displacements of the Gaussian points are calculated

at each time step for use in Eqn. (3.15). But the real time displacement data are not stored

in the memory, thus saving the required memory and increases the computational efficiency.

Numerical implementation

Given n contributing nodes and a m terms of polynomial basis, the MLS subroutine calcu-

lates the approximated displacement at a Gaussian point x in the following steps:

(1) Assemble moment matrix A:

Am×m =
n∑
i

W (di)p(xi)m×1p
T (xi)1×m (3.35)

(2) Solve system of equations:

Am×m · {v}m×1 = p(x)m×1 (3.36)

where the solution is stored in vector {v}m×1.

(3) Assemble matrix B:

Bm×n = [B1 B2 . . . Bn] (3.37)

where Bi = W (di)p(xi).

(4) Calculate the shape functions:

{φ}n×1 = BT
n×m · {v}m×1 (3.38)
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(5) Calculate the approximated displacement by Eqn. (3.34):

uh(x) =
n∑
i

φi(x)ui

Close attention should be paid to the following two issues:

(1) An ill-conditioned moment matrix A should be prevented. A system of equations is

considered to be ill-conditioned if a small change in the coefficient matrix or a small

change in the right hand side results in a large change in the solution vector. To avoid

this situation, the condition number of the moment matrix A needs to be checked before

solving Eqn. (3.36). The condition number κ of a matrix A is defined as

κ = ||A|| · ||A−1|| (3.39)

Two types of norm are used in this work:

(a) Row sum norm (uniform-matrix norm). For a m× n matrix, the row sum norm is

defined as

||A||∞ = max
n∑
j=1

|aij|, 1 ≤ i ≤ m (3.40)

(b) Frobenius norm:

||A||F = (
m∑
i=1

n∑
j=1

a2
ij)

1
2 (3.41)

According to IEEE 754-2008 standard, the machine epsilon for double precision is about

1.11 × 10−16, so a matrix with its condition number greater than 1.0 × 108 is likely to

be considered as ill-conditioned.

(2) A consistency check is required after the shape functions are acquired. The consistency

check is based on reproducing conditions of Eqn. (3.34):

uh(x) =
n∑
i

φiu(xi)

For example:
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(a) If u(x) ≡ 1 is chosen, then the shape functions need to satisfy the unity consistency:

n∑
i

φi = 1 (3.42)

(b) If u(x) = x is chosen, then the shape functions need to satisfy the linear consis-

tency:

x =
n∑
i

φixi ⇒
n∑
i

φi(xi − x) = 0 (3.43)

(c) If u(x) = x2 is chosen, then the shape functions need to satisfy the second order

consistency:

x2 =
n∑
i

φix
2
i ⇒

n∑
i

φi(x
2
i − x2) = 0 (3.44)

3.3.3 Soft boundary effect

In peridynamic theory, a simple type of bond-based peridynamic material is called the

Prototype Microelastic Brittle (PMB) material2 whose PD force is a linear function of spring

constant c and current bond stretch s:

f(η, ξ) = c s µ(ξ)
η + ξ

|η + ξ|
(3.45)

where spring constant c is defined as

c =
18K

πδ4
(3.46)

where K is the bulk modulus and the current bond stretch s is defined as

s =
|η + ξ| − |ξ|

|ξ|
(3.47)

and µ(ξ) is a history-dependent scalar-valued function that equals either 1 or 0 depending

on the bond breakage status:

µ(ξ) =

{
1, for s < s0

0, otherwise
(3.48)

70



Assume an infinite PMB body undergoes a small homogeneous deformation strain field:

[ε] =

 e 0 0
0 e 0
0 0 e

 (3.49)

Because the value of e does not show significant effect on the following calculation, generally

e = 1.0e−4 is used. The nodal displacement is now u = ex. By the definition of η and ξ,

η = eξ.

By Eqn. (3.45), the PD force for any bond is

f(η, ξ) = c
|η + ξ| − |ξ|

|ξ|
η + ξ

|η + ξ|

=
c

|ξ|
(|η + ξ| − |ξ|) η + ξ

|η + ξ|
(3.50)

Because the bond in a PMB material is similar to a mechanical spring, if c/|ξ| is treated

as spring stiffness with |η + ξ| − |ξ| be the spring elongation, the micropotential, ω for the

bond is

ω =
1

2

c

r
(p− r)2 =

ce2r

2
(3.51)

where r = |ξ| and p = |η + ξ|.

The total elastic energy at a source node (i.e., the local elastic energy density) is found

by integrating the micropotential of its family bonds over the horizon:

W =
1

2

∫
Rx

w(η, ξ) dVxj (3.52)

The factor of 1/2 means each node in one bond pair shares half of the energy.

Substituting Equation (3.51) into (3.52) and integrating with the spherical coordinate

yields

W =
1

2

∫ δ

0

(
ce2r

2

)
4πr2 dr =

πce2δ4

4
(3.53)

This is required to equal the strain energy density at given strain in the classical theory

of elasticity:

W =
1

2
σijεij =

1

2
· (2µ+ 3λ)s · s · 3 = 3Es2 =

9Ks2

2
(3.54)
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where Poisson’s ratio of ν = 1/4 is used to calculate the following material properties:

µ =
E

(2 + 2ν)
=

2E

5
(3.55)

λ =
Eν

(1− 2ν)(1 + ν)
=

2E

5
(3.56)

K =
E

3(1− 2ν)
=

2E

3
(3.57)

Comparing Equations (3.53) and (3.54), the spring constant c for a PMB material is

c =
18K

πδ4
(3.58)

Figure 3.5: Nodes near the boundary (in the dashed rectangle) show soft boundary effect.

The above derivation of the spring constant c is based on the assumption that the body

is infinite, i.e., the horizon of the source node is fully inside the body. If the source node

is located near the boundary of the body as shown in Fig. 3.5, a special treatment is

needed to compensate the reduction in stiffness because of smaller integration volume. If

the same spring constant of the interior nodes is used on the boundary nodes, the strain

energy density for boundary nodes will become smaller, i.e., the soft boundary effect. In

order to maintain the same energy density for both boundary nodes and interior nodes, a

higher spring constant needs to be used for boundary nodes.

A compensation factor βs is introduced to minimize the soft boundary effect. First, the

elastic energy density, Winf , at a given source node is calculated as if it is in an imaginary
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infinite body. Second, the elastic energy density, Wbdry, is calculated with the position of

the same source node in the real body. βs is then defined as the ratio of Winf to Wbdry.

Take the boundary node i Fig. 3.5 as an example. Given the prescribed displacement

field in Eqn. (3.49). The local elastic energy density at node i as if it is in an imaginary

infinite body is given by Eqn. (3.53):

Winf =
1

2

∫
Hi

ω dVj =
cπe2δ4

4
(3.59)

The local elastic energy density at the same node with its location in the real body can

be calculated by integrating over the micropotential of the bonds in the partial horizon Pi

(shaped partial sphere in Fig. 3.5):

Wbdry =
1

2

∫
Pi

ω dVj (3.60)

The compensation factor βs for node i is there:

βs =
Winf

Wbdry

(3.61)

With the compensation factor, the discretized equation of motion becomes:

ρüi =

(
∆x

2

)3 M∑
j=1

βjs

[
Nr∑
r=1

Ns∑
s=1

Nt∑
t=1

βg ω
r
g ω

s
g ω

t
g f(ug − ui, xg − xi)Vg

]
+ bi (3.62)

3.3.4 Linear viscous damping coefficient

When the boundary condition is applied in the form of a step function, some dynamic

effects are introduced into the numerical simulation of the peridynamic problems. To reduce

oscillations during the solution process, two different damping models could be considered:

applying damping coefficient on the absolute velocity (the velocity of the source node), or on

the relative velocity (the velocity difference between the source node and the family node).

By applying a linear viscous damping coefficient on the absolute velocity, cv, to Eqn. (3.2),

the general equation of motion becomes

ρü(xi) =

∫
Hi

f(η, ξ)dVj + b(xi)− cvvi, ∀j ∈Hi (3.63)
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However, this model may cause errors when dealing with a full dynamic problem. For

example, assuming a body undergoes constant velocity. By Eqn. (3.63), this body will come

to a stop because of the damping. But rigid body motion of this body should physically

continue forever in the absence of external loads. On the other hand, this model could be

quite useful for quasi-static problems where dynamic effects are not essential.

The aforementioned error can be avoid by applying damping coefficient on the relative

velocity and the peridynamic force function of Eqn. (3.45) becomes

f(η, ξ) = c (s+ cv(vj − vi))µ(ξ)
η + ξ

|η + ξ|
(3.64)

Because this study is mainly focused on problems with small dynamic effect, the model of

applying damping coefficient on the absolute velocity is used. Thus the discretized equation

of motion with linear viscous damping is

ρüi =

(
∆x

2

)3 M∑
j=1

βjs

[
Nr∑
r=1

Ns∑
s=1

Nt∑
t=1

βg ω
r
g ω

s
g ω

t
g f(ug − ui, xg − xi)Vg

]
+ bi − cvvi (3.65)

3.4 Numerical results

3.4.1 Column subjected to uniaxial tension

In this example, a column of square cross-section is subjected to uniaxial tension loading

in the X2 direction (Fig. 3.6). The physical length unit is denoted as h. The column is

discretized into a 20× 40× 20 uniform grid (a total of 16000 nodes) with a grid spacing of

2h. The horizon radius is set to be three times the grid spacing, or 6h. A PMB material

with Young’s modulus of 1.0 × 105N/h2 and Poisson’s ratio of 0.25 is used. The solution

process runs a total time step for of 300 with a linear viscous damping coefficient of 0.3

(unit N · s/h).

The boundary condition is applied as a uniform strain field:

[ε] =

 −2.5× 10−5 0 0
0 1.0× 10−4 0
0 0 −2.5× 10−5

 (3.66)
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In the literature, it is suggested the boundary condition be applied on a number of bound-

ary layers. From the numerical experiments conducted, it gave the best results when the

boundary condition is applied on the number of boundary layers equals to the ratio of the

horizon radius to the grid spacing, which in this example is the three outermost layers on

the boundary.

Figure 3.6: Column subjected to uniaxial tension loading.

Prescribed displacement boundary conditions on top and bottom surfaces

Prescribed displacements corresponding to the uniform strain field are applied on the top

and bottom surfaces of the column. The closed form solution of the example is obtained

easily, and linear relationships of displacements versus coordinates are expected:

[u] =

 −2.5× 10−5x1 0 0
0 1.0× 10−4x2 0
0 0 −2.5× 10−5x3

 (3.67)

Principal stresses in closed form are also obtained:

[σ] =
2E

5

 3ε11 + ε22 + ε33 2ε12 2ε13

2ε12 ε11 + 3ε22 + ε33 2ε23

2ε13 2ε23 ε11 + ε22 + 3ε33


=

2E

5

 0 0 0
0 2.5× 10−4 0
0 0 0

 (3.68)
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where E is the Young’s modulus.

The sample nodes (red dots in Fig. 3.7) are along the lines in the loading direction where

their coordinates in the lateral direction (or X1 and X3 directions) are (−1, −1) (near the

center of the column). Because of the symmetry, only nodes with positive X2 coordinates

are chosen (x2 = 1, 3, · · · 39). Numerical results with the boundary effect compensation

factor on/off at different numbers of boundary condition layers are compared with the closed

form solution.

Figure 3.7: Positions of the sample nodes in the column.

Fig. 3.8 shows the nodal displacements in the loading direction (or X2 direction) at one

layer of boundary condition. The compensation factor effectively corrects the soft boundary

effect on the nodes near the boundary. The results with compensation factor on match the

closed form solution quite well except two outmost nodes near the boundary. Fig. 3.9 shows

the calculated principal strain ε22 on the same nodes. Given the nodal displacement uk on

two neighboring nodes i and j, the strain on node i is computed numerically in the program

as follows:

εikk =
uik − u

j
k

xik − x
j
k

, k = 1, 2, 3 (3.69)

For results with compensation factor on, the calculated ε22 of all other nodes match the

prescribed strain of 1.0× 10−4 besides the two outmost nodes near the boundary.
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Figure 3.8: node coordinate x2 versus node displacement u2 at one layer of boundary
condition.

Fig. 3.10 and 3.12 shows the nodal displacements in the loading direction (or X2 direc-

tion) at two and three layers of boundary condition, respectively. Fig. 3.11 and 3.13 shows

the calculated principal strain ε22 at two and three layers of boundary condition, respec-

tively. For results of two layers of boundary condition, the results with compensation factor

on is still more accurate than those with compensation factor off. But the difference is not

obvious as shown in results of one layer of boundary condition. As shown in Fig. 3.13 where

the number of boundary condition layers are three, the results with compensation factor

off is more accurate than those with compensation factor on (especially for nodes near the

boundary). This is because the thickness of the boundary condition layer is now equal to

the length of the horizon. Therefore nodes from the most interior one to the one closest

the boundary condition layer can all be treated as if they are inside an infinite body. Since

the displacements of nodes inside the boundary condition layers are prescribed, applying

compensation factor on these nodes overcorrects the results.
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Figure 3.9: node coordinate x2 versus node strain ε22 at one layer of boundary condition.

Prescribed displacement boundary conditions on six surfaces

Prescribed displacements corresponding to the uniform strain field are applied on all six

surfaces of the column. The sample nodes are the same as in the previous section. Fig.

3.14, 3.16 and 3.18 shows the nodal displacements in the loading direction (or X2 direction)

at one, two and three layers of boundary condition, respectively. Fig. 3.15, 3.17 and

3.19 shows the calculated principal strain ε22 at one, two and three layers of boundary

condition, respectively. In the previous section, boundary conditions only apply to top

and bottom surfaces of the column, which leaves the other four surfaces unconstrained,

or equivalently, as stress free surfaces. In this section, prescribed displacement boundary

condition is applied to all boundaries. Comparing results from these two sections reveals

that applying prescribed displacement boundary condition to all boundaries leads to a more

accurate numerical peridynamic model. Also it is shown that as the thickness of boundary

condition layers increases to the length of the horizon (or three boundary condition layers

in this example), the compensation factor will overcorrect the numerical results.
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Figure 3.10: node coordinate x2 versus node displacement u2 at two layers of boundary
condition.

3.4.2 System responses with various damping coefficients

System behavior varies with different values of damping coefficient. The numerical model in

pervious section at three boundary condition layers is used to explore the system responses

with various damping coefficients. The body is at zero-velocity initial condition. Total time

step is 300 with a step length of 8.7635 × 10−6s. For each figure, the total kinetic energy

and elastic energy versus time step are plotted. Fig. 3.20 shows an undamped response

with cv = 0. Fig. 3.21 shows an overdamped response with cv = 0.1. Fig. 3.22 shows

an underdamped response with cv = 0.2. As shown in the figure, the dynamic effect is

effectively ceased after the first ten steps.

3.5 Conclusions

Accurate integration of peridynamic forces in the governing equation is critical in to achiev-

ing accurate numerical results of peridynamic problems. The fixed Gaussian integration

method presented in this work provides enhanced numerical integration over previously

published methods while maintaining high computational efficiency. This method has the
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Figure 3.11: node coordinate x2 versus node strain ε22 at two layers of boundary condition.

following features:

(1) The positions of the Gaussian (integration) points inside the discretized node cells are

fixed. Thus the same set of Gaussian points of one source node is always used to carry

out the integration of the peridynamic force on every bond connecting the source node

and its family nodes. An adjusting factor is introduced to correct the results when the

Gaussian point is partially or fully outside the integration limit range.

(2) The moving least square approximation is utilized to interpolate the current displace-

ment of the Gaussian points at each time step. The displacements of the Gaussian

points are not stored to reduce the memory requirement and improve the computation-

al efficiency.

The presented method also incorporates the following features:

(1) The soft boundary effect for nodes near the boundary is corrected by introducing a

compensation factor into the equation of motion. The compensation factor is defined

as the ratio of the elastic energy density on the boundary node as if it is in an infinite

body to that as it is in the real body.
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Figure 3.12: node coordinate x2 versus node displacement u2 at three layers of boundary
condition.

(2) Linear viscous damping is introduced so that the system can reach the steady state as

quickly as possible.
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Figure 3.14: node coordinate x2 versus node displacement u2 at one layer of boundary
condition.

Figure 3.15: node coordinate x2 versus node strain ε22 at one layer of boundary condition.
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Figure 3.16: node coordinate x2 versus node displacement u2 at two layers of boundary
condition.

Figure 3.17: node coordinate x2 versus node strain ε22 at two layers of boundary condition.
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Figure 3.18: node coordinate x2 versus node displacement u2 at three layers of boundary
condition.

Figure 3.19: node coordinate x2 versus node strain ε22 at three layers of boundary condition.
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Figure 3.20: kinetic energy and elastic energy versus time step plot: undamped.

Figure 3.21: kinetic energy and elastic energy versus time step plot: overdamped.
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Figure 3.22: kinetic energy and elastic energy versus time step plot: underdamped.
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Chapter 4

Work in Progress

In this chapter, several research topics the author is currently pursuing are presented. Due

to time limit, they have not been completed yet when the PhD defense is scheduled.

4.1 Traction boundary condition

Recall the general equation of motion for the bond-based peridynamic theory:

ρü(x, t) =

∫
Rx

f [u(x′, t)− u(x, t), x′ − x] dVx′ + b(x, t), ∀x′ ∈ Rx (4.1)

The equation does not contain any term that involves the natural boundary condition.

Furthermore, boundary traction does not directly enter into the formulation of peridynamics.

In his original paper about peridynamics1 Silling stated that the traction boundary condition

in the classic theory does not apply in the peridynamic theory. He further commented that

external forces must be supplied through the body force density b.

This idea is also expanded in detail in several of Kilic’s papers3–6. Assume a source node

i is located on a planar boundary surface of the body as shown in Fig. 4.1. One half of its

horizon sphere, V + is inside the body and contains real material points. The other half, V −

is outside the body and does not contain any material points. If a surface traction density

Ts is applied on node i, based on the concept of areal force density, the traction on node i

can be expressed as follows:

Ts =

∫
L

dl

∫
V −

f(η, ξ) dV (4.2)
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Kilic argued that because the volume V − is void, the volume integration in Eqn. (4.2)

vanishes. Thus traction or point force cannot be directly applied as boundary conditions in

the peridynamic framework.

Figure 4.1: Surface traction on node i.

Imposing traction or natural boundary condition is a challenging and important topic in

the numerical implementation of peridynamics. The original concept of areal force density as

proposed in1 requires an integration over a finite volume of material on one side of the point

of interest and a line integral on the other side, and therefore applies only to interior material

points. The concept breaks down when it is applied to boundary points as suggested by

Kilic in the proceeding paragraph. Numerous engineering structures, however, do sustain

traction loadings on boundaries. For peridynamics to be a useful theory, the concept of

areal force density (and thus traction) needs to be extended so that it can be applied to

both interior as well as boundary points. In the following, the concept of areal force density

is first reviewed, and several auxiliary concepts are then defined with the goal of extending

the concept of areal force density to boundary points.

4.1.1 Pairwise peridynamic force function

The pairwise peridynamic force function f(x, x′) is the force vector that the material point

x′ per unit volume of material exerts on point x per unit volume of material. Since the
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pairwise peridynamic force function characterizes interaction force between two material

points, it is also referred to as the point-to-point force density in this study.

In order to extend the concept of areal force density to boundary points so that the

concept of boundary traction can be applied to the peridynamic theory, two auxiliary con-

cepts, i.e., line-to-point force density and volume-to-point force density, are defined, and

the generalized areal force density is proposed which allows the concept of traction on a

boundary to be introduced into peridynamics.

4.1.2 Line-to-point force density fL

As shown in Fig. 4.2, assume x is a material point in an infinite body R, and plane MN

passing point x with a unit normal n to MN at x divides R into two parts, V − and V +, i.e.,

V + = {x′ ∈ R : (x′ − x) · n ≥ 0}

V − = {x′ ∈ R : (x′ − x) · n ≤ 0} (4.3)

Figure 4.2: Line-to-Point Force Density fL.

Plane MN is denoted as surface S, i.e.,

S = {xs ∈ R : (xs − x) · n = 0} (4.4)

90



Line L+ normal to MN passes x and lies in V +, and line Ls normal to MN passes xs and

lies in V −, i.e.,

L+ = {x̂ ∈ V + : x̂ = x− hn, 0 ≤ h <∞}

Ls = {x′ ∈ V − : x′ = xs + hn, 0 ≤ h <∞} (4.5)

To emphasize the dependence of L+ on x, L+ can be written as L+(x). Similarly, Ls(xs)

indicates the dependence of Ls on xs.

Define a function

fL(x̂, xs) =

∫
Ls(xs)

f(x̂, x′) dh(x′) (4.6)

Physically, fL represents the peridynamic force between line Ls in V − and point x̂ in V +.

Therefore fL(x̂, xs) is referred to as the line-to-point force density. It has the dimension of

force per unit area per unit volume of material.

4.1.3 Volume-to-point force density fV

Define a function

fV (x̂) =

∫
S

fL(x̂, xs) dS(xs) (4.7)

Physically, fV (x̂) represents the peridynamic force between all material points in volume V −

and point x̂ in V +. Therefore fV (x̂) is referred to as the volume-to-point force density. It

has the dimension of force per unit volume of material.

4.1.4 Volume-to-line force density or areal force density T

Define a function

T(x) =

∫
L+(x)

fV (x̂) dL(x̂) (4.8)

Physically, T(x) represents the peridynamic force between all material points in volume V −

and points on line L+(x). Therefore T(x) is referred to as the volume-to-line force density.

It has the dimension of force per area of material. Substituting Eqn. (4.7) into Eqn. (4.8)
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leads to

T(x) =

∫
L+(x)

dL(x̂)

∫
S

fL(x̂, xs) dS(xs) (4.9)

Substituting Eqn. (4.6) into Eqn. (4.9) leads to

T (x) =

∫
L+(x)

dL(x̂)

∫
S

dS(xs)

∫
Ls(xs)

f(x̂, x′) dh(x′) (4.10)

Since the last two integrations in Eqn. (4.10) can be combined into a volume integration,

or, ∫
S

dS(xs)

∫
Ls(xs)

f(x̂, x′) dh(x′) =

∫
V −

f(x̂, x′) dV (x′) (4.11)

the volume-to-line force density turns out to be exactly the same as the areal force density

introduced in1, i.e.,

T(x) =

∫
L+(x)

dL(x̂)

∫
V −

f(x̂, x′) dV (x′) (4.12)

4.1.5 Generalized areal force density for boundary points

The above discussion reveals that the areal force density can be defined by Eqn. (4.12),

Eqn. (4.10) or Eqn. (4.9). However, there is an advantage of using definition Eqn. (4.9).

Integration over V − and L+ involves material points on both sides of MN, and therefore

Eqn. (4.10) and Eqn. (4.12) are only applicable when x is an interior point. In contrast, as

long as the line-to-point force density function fL(x̂, xs) is defined or prescribed, Eqn. (4.9)

involves only surface integration over S and line integration along L+. In another word, the

areal force density defined by Eqn. (4.9) does not formally require the volume of V −. This

offers the possibility of extending the concept of areal force density to a boundary point

where MN becomes a real boundary. Areal force density T(x) defined by Eqn. (4.9) is

referred to as the generalized areal force density.

4.1.6 Line-to-point force density for uniform stress field

Assume a uniform traction F0 is applied to the two ends of a rectangular plate UVRQ as

shown in Fig. 4.3(a). The center of the plate is P, and line MN passes P. Traction at P
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from the upper part of the plate on the lower part of the plate (i.e., MNRQ) is given by the

areal force density

T0 =

∫
L+(x)

dL(x̂)

∫
V −

f0(x̂, x′) dV (x′) (4.13)

Fig. 4.3(b) shows the free body diagram of MNRQ with traction T0 acting on MN.

Figure 4.3: (a) A uniform traction on two ends of rectangular plate, (b) free body diagram
of MNRQ, (c) boundary traction on body M’N’R’Q’.

For a body M’N’R’Q’ identical to MNRQ in geometry and subjected boundary traction

F0 as shown in Fig. 4.3(c), since F0 on M’N’ in Fig. 4.3(c) is equal to T0 on MN in Fig.

4.3(b), M’N’R’Q’ and MNRQ must have the same displacement and stress fields. The only

difference between Fig. 4.3(b) and Fig. 4.3(c) is that T0 is caused by the peridynamic force

from material points in the upper part (UVNM of Fig. 4.3(a)), while F0 is an externally

applied force. Since T0 is equal to F0, applying the generalized areal force density concept

in Eqn. (4.9) to point P in M’N’R’Q’ leads to

T0 =

∫
L+(x)

dL(x̂)

∫
S

fL0(x̂, xs) dS(xs) = F0 (4.14)

where the line-to-point force density function fL0 can be derived using the displacement field

of MNRQ in Fig 4.3(a) which is a uniform stress field.
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Assume the loading direction of the traction is X2 direction. For a PMB material in

Section 1.7, the force function f0 has the form of

f0(x̂, x′) = c · |ξ + η| − |ξ|
|ξ|

· ξ + η

|ξ + η|
(4.15)

And η and ξ satisfy

{η} = [ε]{ξ} (4.16)

where [ε] is the prescribed strain field given as

[ε] =

−νε22 0 0
0 ε22 0
0 0 −νε22

 (4.17)

where ν is the Poisson’s ratio and the principle strain ε22 is

ε22 =
F0

EA
(4.18)

where E is the Young’s modulus and A is the area of cross-section of the plate. Therefore
η1 = −νε22ξ1

η2 = ε22ξ2

η3 = −νε22ξ3

(4.19)

Recall from Eqn. (4.5) that h is a real number constant represents the distance from

point x̂ and x′ to line MN. From Fig. 4.2, it is clear that

ξ2 = x′2 − x̂2 = 2h (4.20)

Further assume that the distance between point x and xs is D, i.e.,

ξ2
1 + ξ2

3 = (x′1 − x̂1)2 + (x′3 − x̂3)2 = D2 (4.21)

Then

ξ + η = (1− νε22)ξ1 i + (1 + ε22)ξ2 j + (1− νε22)ξ3 k (4.22)
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and

|ξ + η| =
√

(1− νε22)2(ξ2
1 + ξ2

3) + (1 + ε22)2ξ2
2

=
√

(1− νε22)2D2 + (1 + ε22)2(2h)2 (4.23)

also

|ξ| =
√
ξ2

1 + ξ2
3 + ξ2

2

=
√
D2 + (2h)2 (4.24)

With the above equations, f0 can be written as

f0 = c · |ξ + η| − |ξ|
|ξ||ξ + η|

·
[
(ξ1 + η1)i + (ξ2 + η2)j + (ξ3 + η3)k

]
= c

[
1

|ξ|
− 1

|ξ + η|

] [
(1− νε22)ξ1i + (1 + ε22)ξ2j + (1− νε22)ξ3k

]
= c

[
1

|ξ|
− 1

|ξ + η|

] [
(1− νε22)ξ1i + 2(1 + ε22)hj + (1− νε22)ξ3k

]
= (f0)1i + (f0)2j + (f0)3k (4.25)

With Eqn. (4.25), the line-to-point force density can be calculated in closed form ac-

cording to Eqn. (4.6):

fL0(x̂, xs) =

∫
Ls(xs)

f0(x̂, x′) dh(x′)

=

∫
Ls(xs)

[
(f0)1i + (f0)2j + (f0)3k

]
dh(x′)

= (fL0)1i + (fL0)2j + (fL0)3k (4.26)

where

(fL0)1 = c(1− νε22)ξ1

∫ ∞
0

dh

|ξ|
− dh

|ξ + η|
(4.27)

(fL0)2 = 2c(1 + ε22)

∫ ∞
0

hdh

|ξ|
− hdh

|ξ + η|
(4.28)

(fL0)3 = c(1− νε22)ξ3

∫ ∞
0

dh

|ξ|
− dh

|ξ + η|
(4.29)
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since ξ1 ad ξ3 are independent of h.

Because of the similarity of the integrands in Eqns. (4.27, 4.28, 4.29), first solve two

template integrations

I1 =

∫ ∞
0

dh√
A2D2 +B24h2

(4.30)

and

I2 =

∫ ∞
0

hdh√
A2D2 +B24h2

(4.31)

where A and B are non-zero constants.

For integration I1, let
2B

A

h

D
= tanθ, then

I1 =
1

2B

∫ π
2

0

dθ

cosθ
(4.32)

Let t = sinθ, then

I1 =
1

2B

∫ 1

0

dt

1− t2

=
1

4B

[
ln(1 + t)

∣∣∣1
0
− ln(1− t)

∣∣∣1
0

]
(4.33)

Because the values of h and D are restricted by

|ξ| =
√
D2 + 4h2 ≤ δ (4.34)

where δ is the radius of horizon sphere.

Therefore

1 +

(
2h

D

)2

≤
(
δ

D

)2

1 +

(
A

B

)2

tan2θ ≤
(
δ

D

)2

1 +

(
A

B

)2
sin2θ

1− sin2θ
≤
(
δ

D

)2

1 +

(
A

B

)2(
t2

1− t2

)
≤
(
δ

D

)2

t2 ≤ B2(δ2 −D2)

D2(A2 −B2) +B2δ2
(4.35)

96



Since A and B are non-zero, t will not reach 1. Therefore

I1 =
1

4B

[
ln(1 + t)

∣∣∣t0
0
− ln(1− t)

∣∣∣t0
0

]
=

1

4B

[
ln(1 + t0)− ln(1− t0)

]
(4.36)

where

t20 =
B2(δ2 −D2)

D2(A2 −B2) +B2δ2
(4.37)

The template integration I2 can be solved in the similar way. Let
2B

A

h

D
= tanθ, then

I2 =
AD

4B2

∫ π
2

0

sinθdθ

cos2θ

=
AD

4B2

∫ 0

1

−d(cosθ)

cos2θ
(4.38)

Let g = cosθ, then

I2 =
AD

4B2
· 1

g

∣∣∣0
1

(4.39)

Because the values of h and D are restricted by

|ξ| =
√
D2 + 4h2 ≤ δ (4.40)

Therefore

1 +

(
2h

D

)2

≤
(
δ

D

)2

1 +

(
A

B

)2

tan2θ ≤
(
δ

D

)2

1 +

(
A

B

)2
1− cos2θ

cos2θ
≤
(
δ

D

)2

1 +

(
A

B

)2(
1− g2

g2

)
≤
(
δ

D

)2

g2 ≥ A2D2

D2(A2 −B2) +B2δ2
(4.41)

Since A and B are non-zero, g will not reach zero. Therefore

I2 =
AD

4B2
· 1

g

∣∣∣g0

1

=
AD

4B2

(
1

g0

− 1

)
(4.42)
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where

g2
0 =

A2D2

D2(A2 −B2) +B2δ2
(4.43)

With template integrations I1 and I2 solved, the integrations in Eqns. (4.27, 4.28, 4.29)

can be expressed as the template integration. For integration

∫ ∞
0

dh

|ξ|
and

∫ ∞
0

hdh

|ξ|

A = 1, B = 1 (4.44)

for integration

∫ ∞
0

dh

|ξ|
− dh

|ξ + η|
and

∫ ∞
0

hdh

|ξ|
− dh

|ξ + η|

A = 1− νε22, B = 1 + ε22 (4.45)

Recall ν = 0.25 for all PMB materials. Substituting Eqns. (4.44) into Eqns. (4.36)

and (4.37), and substituting Eqn. (4.45) into Eqns. (4.42) and (4.43) yields the values of

integrations in Eqns. (4.27, 4.28, 4.29). Then the closed form solution of fL0(x̂, xs) in Eqn.

(4.26) can be found. With the line-to-point force density from Eqn. (4.26), the boundary

traction at x is expressed by Eqn. (4.14) and can be evaluated.

In terms of peridynamic force on interior material points, the effect of the applied traction

F0 on the boundary S is realized by the presence of line-to-point force density fL0(x̂, xs) on

S. The equation of motion of an interior point x, as presented by Eqn. (1.1) in Chapter 1,

is therefore modified accordingly to

ρü(x, t) =

∫
Rx

f [u(x′, t)− u(x, t), x′ − x] dV x′ +

∫
S

fL0(x, xs) dS(xs) + b(x, t) (4.46)

for surface point xs within the horizon of x.

4.1.7 Line-to-point force density for non-uniform boundary trac-
tion

Assume a non-uniform external boundary traction F (xs) is applied on the boundary surface

SF , the line-to-point force density at xs ∈ SF can be scaled proportionally as follows:

fL(x̂, xs) =
F (xs)

F0

fL0(x̂, xs) (4.47)
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The equation of motion of an interior point x is then modified accordingly to

ρü(x, t) =

∫
Rx

f [u(x′, t)− u(x, t), x′ − x] dV x′ +

∫
SF

F (xs)

F0

fL0(x, xs) dS(xs) + b(x, t)

(4.48)

for surface point xs within the horizon of x.

4.1.8 Future work

Eq. (4.48) will be implemented numerically, and numerical tests involving applied boundary

traction will be carried out to verify the validity of the concepts of line-to-point force density,

generalized areal force density, and applied boundary traction in peridynamics.

4.2 Analytical expression of the boundary effect com-

pensation factor

In the current work the compensation factor is calculated by the program using the energy

method presented in Chapter 3. It is also possible to obtain the analytical solution of the

compensation factor, especially for the type of boundary nodes shown in Fig. 4.4, where the

horizon sphere of the boundary node intersects with only one surface of the body. Because

the partial volume Vout outside the body (dark shaded area in Fig. 4.4) is symmetric, the

elastic energy density of the imaginary material points in Vout can be calculated by Eqn.

(3.52)

Wout =
1

2

∫
Vout

w(η, ξ) dV

=
1

2

∫ δ

h

dr

∫ cos−1(h/r)

0

dθ

∫ 2π

2

dϕ
ce2r

2
(r2sinθ)

=
cπe2

2

[
δ4

4
+
δ3h

3
− h4

12

]
(4.49)

Therefore the elastic energy density of the partial volume inside the body is

Wbdry = Winf −Wout

=
cπe2

2

[
δ4

4
− δ3h

3
+
h4

12

]
(4.50)
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Figure 4.4: Boundary node i with its horizon sphere intersecting with only one surface of
the body (projection view).

where Winf is supplied by Eqn. (3.59).

The compensation factor for the type of boundary nodes shown in Fig. 4.4 is

βs =
Winf

Wbdry

=
6δ4

3δ4 − 4δ3h+ h4
(4.51)

However, for the type of boundary nodes where its horizon sphere intersects with multiple

surfaces of the body, it is not as easy to obtain the analytical solution of compensation

factor. For example, for the source node shown in Fig. 4.5, it becomes more difficult to

calculate the elastic energy density of volume V2 because it is not symmetric. Analytical

solution, however, is possible and work is in progress to calculate the compensation factor

for boundary formed by two surfaces (termed an edge boundary) and by three surfaces

(termed a vertex boundary).
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Figure 4.5: Boundary node i with its horizon sphere intersecting with two surfaces of the
body (projection view).

4.3 Dynamic relaxation method

In this study linear viscous damping has been used to minimize the dynamic effect in the

solution:

ρü(xi) =

∫
Hi

f(η, ξ)dVj + b(xi)− cvu̇(xi), ∀j ∈Hi (4.52)

Where the damping coefficient cv is manually chosen so that the transient response is damped

out as quickly as possible. This is not the most efficient way minimize the dynamic effect.

In this section, a dynamic relaxation method developed by Underwood9 is reviewed. The

explicit nature of this method makes it highly suitable for structural dynamic problems.

4.3.1 Brief review of dynamic relaxation

Dynamic relaxation (DR) is an explicit iterative method for the static solution of structural

mechanics problems. It is based on the fact that the static solution is the steady state part

of the transient response of the solution. The governing equation in peridynamics can be
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modified for the DR method:

[M]{ü}+ [C]{u̇} = {f(η, ξ)} (4.53)

where [M] is the mass matrix and [C] is the damping matrix which is assumed to be

proportional to the mass matrix:

[C] = c[M] (4.54)

where c is the damping coefficient.

By applying the central difference integration on the time integration in Eqn. (4.53),

the nodal velocity at half time step can be expressed as

{u̇n+1/2} =
2− c∆t
2 + c∆t

{u̇n−1/2}+
2∆t[M]−1{fn}

2 + c∆t
(4.55)

and the nodal displacement at full time step is

{un+1} = {un}+ ∆t{u̇n+1/2} (4.56)

where n is the number of time step and ∆t is the stable time step length.

Eqns. (4.55) and (4.56) can not be used to start the iteration because the velocity at

t−1/2 is unknown. The DR algorithm can start by assuming

{u0} 6= 0; {u̇0} = 0 (4.57)

thus the nodal velocity for the first time step is

{u̇1/2} =
∆t[M]−1{f0}

2
(4.58)

It is stated that in the DR method, c and [M] do not need to represent the physical

structure9. Their values are fictitiously chosen so that the static solution is obtained in a

minimum number of time steps. Also, ∆t is a pseudo-time increment which must be chosen

to ensure stability and accuracy of the iterations.

The fictitious mass matrix can be chosen using the Gerschgorin’s theorem9:

mij ≥
1

4
∆t2

∑
j

|kij| (4.59)
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where kij are the elements of the stiffness matrix. It has been suggested Eqn. (4.59) be

evaluated for ∆t = 1.1 and the iterations are performed with ∆t = 1.09.

Because the peridynamic force function is not necessary a linear function of relative

displacement η, it is difficult to obtain the analytical expression for the stiffness matrix.

However, by carrying out the linearization process in Section 1.3, the expression of the

stiffness matrix can be solved. Take the peridynamic force function for PMB material for

example. By Eqn. (1.24), the linearized microelastic peridynamic force function takes the

form of

f(η, ξ) =

[
1

|ξ|
∂H

∂p
(|ξ|, ξ) +H(0, ξ)1

]
(ξ ⊗ ξ)η + f(0, ξ) (4.60)

where H is supplied by

H(η, ξ) =
18K

πδ4

p− r
pr

, r = |ξ|, p = |ξ + η| (4.61)

Because for PMB material:

H(0, ξ) = 0, f(0, ξ) = H(0, ξ)(η + ξ) = 0 (4.62)

thus Eqn. (4.60) is simplified to

f(η, ξ) =

[
1

|ξ|
∂H

∂p
(|ξ|, ξ)

]
(ξ ⊗ ξ)η (4.63)

Because the partial derivative of H respect to p is

∂H

∂p
=

18K

πδ4

1

p2
(4.64)

thus
∂H

∂p
(|ξ|, ξ) =

18K

πδ4

1

|ξ|2
(4.65)

Therefore the linearized peridynamic force function for PMB material is finally

f(η, ξ) =
18K

πδ4

ξ ⊗ ξ
|ξ|3

η (4.66)

and the absolute row sum of the stiffness matrix is∑
j

|kij| =
18K

πδ4
| ξi
|ξ|3
|(|ξ1|+ |ξ2|+ |ξ3|), i = 1, 2, 3 (4.67)
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The damping coefficient can be connected to the lowest frequency of the structure esti-

mated by Rayleigh’s quotient:

ω2
0 =
{uT}[K]{u}
{uT}[M]{u}

(4.68)

the damping coefficient is then

c = 2

√
{uT}[1K]{u}
{uT}{u}

(4.69)

where [1K] is the diagonal local stiffness matrix given as

1knii = −

fni
mii

− fn−1
i

mii

∆t u̇
n−1/2
i

(4.70)

4.3.2 Future work

Future work includes numerically implementing DR method and comparing the results with

the current damping model. The effects of the fictitious mass matrix and time step ∆t need

to be explored.
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Chapter 5

Final Conclusions

5.1 An overview of current work

Two types of integration are involved in solving the equation of motion in peridynamics:

integration over time, and integration over material volume of the peridynamic force on a

material point. There is a rich body of literature on the first type of integration. In this

study a central difference integration of order O(h2) is chosen. For the second type of in-

tegration, one-point integration over each cell, referred to as the cubic-cell integration, or

CCI, in this study, has been the dominant method of integration for peridynamics in the

literature, although the accuracy for CCI is poor. Poor accuracy of numerical integration

of peridynamic forces over material volume has become a bottleneck that hinders the de-

velopment of peridynamics, and methods of integration in peridynamics have emerged as

a topic of significant interest. This study focuses on two enhanced numerical methods of

integration of interacting forces in the implementation of the peridynamic theory.

5.2 Overall conclusions

The first method investigated in this study is an adaptive integration method with a com-

bined relative-absolute error control. It starts with a modification to the method of counting

family nodes in the implementation of the CCI method. Theoretically, all material points

inside the horizon sphere should be included in the calculation of the peridynamic forces.
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The CCI method, however, counts each cell as either entirely in or entirely out of the

horizon, and thus results in an inaccurate accounting of material points. The adaptive in-

tegration improves the counting by considering those nodes which are out of the horizon

sphere and yet with cell volumes intersecting the horizon sphere as family nodes, thus all

material points inside the horizon contribute to the integration of peridynamic forces over

the horizon. Second, a systematic categorization of geometric configurations between the

cells of family node and the horizon sphere of the source node is developed and explained

in detail. Two types of configurations are discussed along with the subtypes of configura-

tions associated with each type. By categorizing all possible geometric configurations, the

integration limits for the integration of peridynamic forces can be obtained in closed form.

Then, an adaptive integration method is employed to implement the numerical integration

with a combined relative-absolute error control to achieve the desired accuracy. The error

control scheme has a pre-defined tolerance to prevent a dead lock in the program when the

integrand is very close to zero. The examples in the numerical results provide comparisons

between the adaptive integration (AI) method and the CCI method. The main compari-

son of convergence rate between the two methods is based on the relative error versus the

average distance between integration point (ADIP). This is a fair comparison because the

grid is refined automatically in AI while it is not in CCI. By using ADIP in the comparison,

the results of AI and CCI are compared at the same grid refinement level. The convergence

speed for the AI method is shown to be close to quadratic (i.e., O(∆x2)). For a given ADIP,

AI is about one or two orders of magnitude more accurate than CCI. The computational

efficiency of the AI method is also discussed. Because of the adaptive process in AI, the

computation time is about 10 times longer than CCI (with the same or closest ADIP). When

relative errors are taken into account, however, AI is still advantageous. The comparison

based on same relative error reveals overall that AI is a more efficient method than CCI.

The second method presented in this study is an integration method with fixed Gaus-

sian points. This method adopts the family nodes counting scheme in the first method
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and changes the integration scheme to a Gaussian integration using a set of fixed Gaussian

points. The adaptive integration method solves the integration of peridynamic forces ac-

curately. However, it becomes computationally expensive to apply this method when the

displacement field needs to be calculated by the equation of motion. For any given node,

it has many bonds connected to neighboring nodes. With adaptive integration, each bond

has its own set of trapezoidal (integration) points whose displacments need to be updated

at each iteration, resulting in a huge computation time. To improve computational effi-

ciency, an integration method with fixed Gaussian points is developed where the positions

of Gaussian (integration) points are fixed for each node during iterations. With the fixed

Gaussian integration method, all integration points need to be determined only once and re-

main fixed during iterations. A moving least square approximation is utilized to interpolate

displacement field for the Gaussian points from the displacements of neighboring nodes. By

reconstructing the displacement field in the support domain using the nodal displacements

of the contributing nodes (nodes inside the support domain), the displacement of any po-

sition inside the support domain can be given. The soft boundary effect is also discussed.

The problem arises when a node is located near the boundary of a finite body. Because

a boundary node has less family nodes than an interior node, the elastic energy density

for the boundary node would be smaller compared with that for an interior node if bond

stiffness is defined the same way for the boundary node and the interior node. To maintain

the same level of elastic energy for both the boundary node and interior node, a larger value

of spring constant (bond stiffness) for the boundary node is required to compensate for s-

maller contributing integration volume. In the method a compensation factor is introduced

to minimize the soft boundary effect. The compensation factor is defined as the ratio of

the elastic energy density for the boundary node as if it is in an infinite body to that as it

is in the real body. Finally a linear viscous damping method is used to reach the steady

state as quickly as possible. Numerical results of a column subjected to uniaxial tension

are provided to illustrate the effectiveness of the integration method with fixed Gaussian
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points.

Finally discussions about three future research topics are presented:

(1) Apply traction boundary condition in the peridynamic problems.

(2) Analytical expression of the boundary effect compensation factor.

(3) Use dynamic relaxation method to damp out the transient response.
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Appendix A

Program Flow for the Integration
with Fixed Gaussian Points

A.1 Data initialization

(1) Read input file. Initial boundary condition and material. Initial boundary condition

regions and material regions.

(2) Initial grid and nodal data. Associate boundary condition and material data to those

nodes inside the boundary condition regions and material regions.

(3) Initial bonds. Initial domain of influence for each node. Initial Gaussian points inside

each node cell.

(4) Calculate the boundary effect compensation factor for every node.

A.2 Dynamic solution

Recall: each node stores its own displacement u (at full time step), velocity v (at half time

step), and velocity buffer vb. vb provides a temporary storage to manipulate node velocity

at each time step without touching the actual data. Following is the pseudo code for each

time step n:

(1) Copy the nodal velocity of pervious step into buffer.
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For each node, v
n+ 1

2
b = vn−

1
2 .

(2) For each node i, calculate the total peridynamic force between node i and its family

nodes and update its velocity buffer.

The discretized equation of motion states

ρüi =
M∑
j=1

∫ x1j+∆x/2

x1j−∆x/2

∫ x2j+∆x/2

x2j−∆x/2

∫ x3j+∆x/2

x3j−∆x/2

f(xj − xi, uj − ui) dVj + bi − cvvi

=

(
∆x

2

)3 M∑
j=1

βjs

[
Nr∑
r=1

Ns∑
s=1

Nt∑
t=1

βg ω
r
g ω

s
g ω

t
g f(ug − ui, xg − xi) (∆xg)

]
+ bi − cvvi

= INTG+ bi − cvvi

where xg and ug are the global coordinates and displacement of the Gaussian points in

node j’s cell, ∆x is the grid spacing, Nr, Ns, Nt is the number of Gaussian points in

three directions, ωrg, ω
s
g, ω

t
g are the weights of the Gaussian points in three directions, βs

is the boundary effect compensation factor for node j, and βg is a compensation factor

defined as

βg =


1 for |ξ| ≤ δ − 0.5∆xg

δ + 0.5∆xg − |ξ|
∆xg

for δ − 0.5∆xg < |ξ| ≤ δ + 0.5∆xg

0 otherwise

where δ is the radius of the horizon and ∆xg is the effective cell size of the Gaussian

point defined as

∆xg =
3
√
ωrgω

s
gω

t
g

2
∆x

given the definition

ξ = xg − xi, η = ug − ui

The displacements of the Gaussian points ug are updated in step 4 at the previous time

step.

Once the INTG part is calculated using Gaussian quadrature integration, the velocity

buffer of node i is update:

v
n+ 1

2
b = v

n+ 1
2

b +
∆t

ρ
(INTG+ b− cv · vn−

1
2 )

111



where ∆t is the length of the current time step and ρ is the material density associated

with node i.

(3) Update the current nodal velocity and displacement.

For each node, copy the displacement of previous time step into buffer:

unb = un−1

If it is associated with a prescribed displacement boundary condition with the value of

up, then overwrite the displacement and velocity buffers with the boundary condition

value:

unb = up, v
n+ 1

2
b = 0

also applies the prescribed displacement to the Gaussian points inside this node.

Else if it is associated with a prescribed velocity boundary condition with the value of

vp, then overwrite the velocity buffer with the boundary condition value:

v
n+ 1

2
b = vp

Else if it is associated with a prescribed displacement gradient boundary condition with

the value of ε, then overwrite the displacement and velocity buffer with the boundary

condition value:

unb =

 e11 e12 e13

e12 e22 e23

e13 e23 e33


x1

x2

x3

 , v
n+ 1

2
b = 0

also apply the prescribed displacement gradient to the Gaussian points inside this node.

Finally update nodal velocity and displacement:

vn+ 1
2 = v

n+ 1
2

b , un = unb + vn+ 1
2 ·∆t

(4) Update the displacements of the Gaussian points inside each node using MLS approx-

imation. Those Gaussian points whose displacements have been update in step 3 are

not updated in this step. The displacements data are stored in the Gaussian points.
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